WorldWideScience

Sample records for electrothermal vaporisation-inductively coupled

  1. A reduced low-temperature electro-thermal coupled model for lithium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Jiuchun; Ruan, Haijun; Sun, Bingxiang; Zhang, Weige; Gao, Wenzhong; Wang, Le Yi; Zhang, Linjing

    2016-01-01

    Highlights: • A reduced low-temperature electro-thermal coupled model is proposed. • A novel frequency-dependent equation for polarization parameters is presented. • The model is validated under different frequency and low-temperature conditions. • The reduced model exhibits a high accuracy with a low computational effort. • The adaptability of the proposed methodology for model reduction is verified. - Abstract: A low-temperature electro-thermal coupled model, which is based on the electrochemical mechanism, is developed to accurately capture both electrical and thermal behaviors of batteries. Activation energies reveal that temperature dependence of resistances is greater than that of capacitances. The influence of frequency on polarization voltage and irreversible heat is discussed, and frequency dependence of polarization resistance and capacitance is obtained. Based on the frequency-dependent equation, a reduced low-temperature electro-thermal coupled model is proposed and experimentally validated under different temperature, frequency and amplitude conditions. Simulation results exhibit good agreement with experimental data, where the maximum relative voltage error and temperature error are below 2.65% and 1.79 °C, respectively. The reduced model is demonstrated to have almost the same accuracy as the original model and require a lower computational effort. The effectiveness and adaptability of the proposed methodology for model reduction is verified using batteries with three different cathode materials from different manufacturers. The reduced model, thanks to its high accuracy and simplicity, provides a promising candidate for development of rapid internal heating and optimal charging strategies at low temperature, and for evaluation of the state of battery health in on-board battery management system.

  2. An evaluation of inductively coupled plasma optical emission spectrometry using electrothermal atomisation sample introduction and photographic plate detection

    International Nuclear Information System (INIS)

    Khathing, D.T.; Pickford, C.J.

    1984-05-01

    A photographic radiation measurement approach has been used with an inductively coupled plasma source to evaluate and tabulate the more prominent optical emission lines of 66 elements. Compared with the more common sample introduction technique using nebulisation, increased sensitivity for multielement analysis of small samples was achieved by using a simple graphite electrothermal atomisation system. This was constructed to serve as a dual purpose atomiser ie both for Atomic Absorption and for Inductively Coupled Plasma Emission spectroscopy. The system offers the advantage of a wide multi-elemental coverage, but sensitivities achieved with photographic detection are poorer than those obtained photoelectrically. (author)

  3. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis

    Science.gov (United States)

    Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H.-M.

    2000-02-01

    A commercial atomic absorption graphite furnace (AAGF), with a self-made adapter and valve system, was used as a slurry sampling cell for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The system was applied to the determination of As, Sn, Sb, Se, Te, Bi, Cd, V, Ti and Mo in steelmaking flue dusts. Experimental conditions with respect to ETV and ICP-MS operating parameters were optimized. Compared to aqueous solutions, slurry samples were found to present better analyte transport. Microgram amounts of Rh were used to reduce the difference in analyte response in sensitivity for aqueous solutions of the tested analytes. No such increasing effect was observed for slurry samples and aqueous standards. An added quantity of Rh acting as modifier/carrier resulted in an increase for the same analytes in matrix-slurry solutions, even the addition of an extra Rh quantity has resulted in a decrease in the signals. The effect of Triton X-100 (used as a dispersant agent) on analyte intensity and precision was also studied. External calibration from aqueous standards spiked with 100 μg ml -1 Rh was performed to quantified 0.010 g/100 ml slurry samples. Results are presented for a certified reference electrical arc furnace flue dust (EAF): CRM-876-1 (Bureau of Analysis Samples Ltd., Cleveland, UK), a reference sample of coke ashes X-3705 (from AG der Dillinger Hüttenwerke, Germany), and a representative sample of EAF flue dust from a Spanish steelmaking company (CENIM-1). For the two reference materials an acceptable agreement with certificate values was achieved, and the results for the CENIM sample matched with those obtained from conventional nebulization solution.

  4. Simultaneous electrothermal vaporization and nebulizer sample introduction system for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Arnquist, Isaac J.; Kreschollek, Thomas E.; Holcombe, James A.

    2011-01-01

    The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO 3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51 V and 53 Cr suffering from Cl interferences ( 51 ClO + and 53 ClO + respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51 V and 53 Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.

  5. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...

  6. Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grindlay, Guillermo, E-mail: guillermo.grindlay@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 - Alicante (Spain); Mora, Juan; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 - Alicante (Spain); de Loos-Vollebregt, M.T.C. [Delft University of Technology, Fac. Applied Sciences, Julianalaan 67, 2628 BC - Delft (Netherlands)

    2009-10-12

    The determination of Pb, Se and As in wine has a great interest due to health risks and legal requirements. To perform the analysis of wine, two considerations must be taken into account: (i) the low concentration level of the analytes; and (ii) the risk of interferences due to wine matrix components. The goal of this work is to evaluate electrothermal vaporization (ETV) sample introduction for ultratrace determination of Pb, Se and As in wine samples by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained with ETV-ICP-MS were compared to those obtained with conventional liquid sample introduction in ICP-MS and electrothermal atomic absorption spectrometry (ETAAS). Analytical figures of merit of ETV sample introduction strongly depend on the amount of wine sample, on the modifier nature (i.e. Pd, ascorbic acid or citric acid) and concentration and on the temperature program. Wine matrix components exert a great influence on analyte transport efficiency. Due to this fact, the analysis of wine cannot be performed by means of external calibration but the standard addition methodology should be used. The determination of Pb and Se in wine by ETV-ICP-MS provides similar results as conventional liquid sample introduction ICP-MS. For As, the concentration values obtained with ETV sample introduction were between two and four times lower than with the conventional system. These differences are related to the lower intensity of polyatomic interferences (i.e. {sup 40}Ar{sup 35}Cl{sup +} vs. {sup 75}As{sup +}) obtained for ETV sample introduction when compared to the conventional system. Finally, no differences for Pb determination were observed between ETV sample introduction and ETAAS. Unfortunately, the limits of detection for As and Se in ETAAS were not low enough to quantify these elements in the wine samples tested.

  7. Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Grindlay, Guillermo; Mora, Juan; Gras, Luis; de Loos-Vollebregt, M.T.C.

    2009-01-01

    The determination of Pb, Se and As in wine has a great interest due to health risks and legal requirements. To perform the analysis of wine, two considerations must be taken into account: (i) the low concentration level of the analytes; and (ii) the risk of interferences due to wine matrix components. The goal of this work is to evaluate electrothermal vaporization (ETV) sample introduction for ultratrace determination of Pb, Se and As in wine samples by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained with ETV-ICP-MS were compared to those obtained with conventional liquid sample introduction in ICP-MS and electrothermal atomic absorption spectrometry (ETAAS). Analytical figures of merit of ETV sample introduction strongly depend on the amount of wine sample, on the modifier nature (i.e. Pd, ascorbic acid or citric acid) and concentration and on the temperature program. Wine matrix components exert a great influence on analyte transport efficiency. Due to this fact, the analysis of wine cannot be performed by means of external calibration but the standard addition methodology should be used. The determination of Pb and Se in wine by ETV-ICP-MS provides similar results as conventional liquid sample introduction ICP-MS. For As, the concentration values obtained with ETV sample introduction were between two and four times lower than with the conventional system. These differences are related to the lower intensity of polyatomic interferences (i.e. 40 Ar 35 Cl + vs. 75 As + ) obtained for ETV sample introduction when compared to the conventional system. Finally, no differences for Pb determination were observed between ETV sample introduction and ETAAS. Unfortunately, the limits of detection for As and Se in ETAAS were not low enough to quantify these elements in the wine samples tested.

  8. Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Xiang Guoqiang; Jiang Zucheng; He Man; Hu Bin

    2005-01-01

    A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 deg. C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l -1 . The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g -1 (Eu)-33.3 ng g -1 (Nd) with the precisions of 4.1% (Yb)-10% (La) (c = 1 μg l -1 , n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory

  9. Determination of Pt, Pd and Rh in Brassica Napus using solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nischkauer, Winfried [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria); Herincs, Esther [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria); University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad Lorenz Straße 24, A-3430 Tulln (Austria); Puschenreiter, Markus; Wenzel, Walter [University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad Lorenz Straße 24, A-3430 Tulln (Austria); Limbeck, Andreas, E-mail: A.Limbeck@tuwien.ac.at [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria)

    2013-11-01

    Conventional approaches for the analysis of platinum group elements (PGEs) in plant material suffer from sample digestion which results in sample dilution and therefore requires high sample intakes to maintain the sensitivity. The presented solid-sampling method avoids sample digestion while improving sensitivity when compared to digestion-based inductively coupled plasma optical emission spectrometry (ICP-OES) methods and allows the analysis of sample masses of 5 mg or less. Detection limits of 0.38 μg g{sup −1}, 0.14 μg g{sup −1} and 0.13 μg g{sup −1} were obtained for Pt, Pd and Rh, respectively using a sample intake of 5 mg. The reproducibility of the procedure ranged between 4.7% (Pd) relative standard deviation (RSD, n = 7) and 7.1% (Rh) RSD for 25 ng analytes. For quantification, aqueous standards were applied on paper filter strips and dried. Only the dried filters were introduced into the electrothermal vaporization unit. This approach successfully removed memory-effects observed during analysis of platinum which occurred only if liquid standards came into contact with the graphite material of the furnace. The presented method for overcoming the Pt-memory-effects may be of further interest for the analysis of other carbide-forming analytes as it does not require any technical modification of the graphite furnace (e.g., metal inlays, pyrolytic coating). Owing to lack of suitable certified reference materials, the proposed method was compared with conventional ICP-OES analysis of digested samples and a good agreement was obtained. As a result of the low sample consumption, it was possible to determine the spatial distribution of PGEs within a single plant. Significant differences in PGE concentrations were observed between the shoots (stem, leaves) and the roots. Pd was mainly found in the roots, whereas Pt and Rh were also found in higher concentrations in the shoots. - Highlights: • The uptake of Pt, Pd and Rh by hydroponically grown plants was

  10. Determination of Pt, Pd and Rh in Brassica Napus using solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Nischkauer, Winfried; Herincs, Esther; Puschenreiter, Markus; Wenzel, Walter; Limbeck, Andreas

    2013-01-01

    Conventional approaches for the analysis of platinum group elements (PGEs) in plant material suffer from sample digestion which results in sample dilution and therefore requires high sample intakes to maintain the sensitivity. The presented solid-sampling method avoids sample digestion while improving sensitivity when compared to digestion-based inductively coupled plasma optical emission spectrometry (ICP-OES) methods and allows the analysis of sample masses of 5 mg or less. Detection limits of 0.38 μg g −1 , 0.14 μg g −1 and 0.13 μg g −1 were obtained for Pt, Pd and Rh, respectively using a sample intake of 5 mg. The reproducibility of the procedure ranged between 4.7% (Pd) relative standard deviation (RSD, n = 7) and 7.1% (Rh) RSD for 25 ng analytes. For quantification, aqueous standards were applied on paper filter strips and dried. Only the dried filters were introduced into the electrothermal vaporization unit. This approach successfully removed memory-effects observed during analysis of platinum which occurred only if liquid standards came into contact with the graphite material of the furnace. The presented method for overcoming the Pt-memory-effects may be of further interest for the analysis of other carbide-forming analytes as it does not require any technical modification of the graphite furnace (e.g., metal inlays, pyrolytic coating). Owing to lack of suitable certified reference materials, the proposed method was compared with conventional ICP-OES analysis of digested samples and a good agreement was obtained. As a result of the low sample consumption, it was possible to determine the spatial distribution of PGEs within a single plant. Significant differences in PGE concentrations were observed between the shoots (stem, leaves) and the roots. Pd was mainly found in the roots, whereas Pt and Rh were also found in higher concentrations in the shoots. - Highlights: • The uptake of Pt, Pd and Rh by hydroponically grown plants was investigated

  11. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  12. Evaluation of pyrolysis curves for volatile elements in aqueous standards and carbon-containing matrices in electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.F. [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands); Universidade Federal de Santa Catarina, Departamento de Quimica, 88040-900 Florianopolis, SC (Brazil); Welz, B. [Universidade Federal de Santa Catarina, Departamento de Quimica, 88040-900 Florianopolis, SC (Brazil); Loos-Vollebregt, M.T.C. de [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands)], E-mail: m.t.c.deloos-vollebregt@tudelft.nl

    2008-07-15

    Pyrolysis curves in electrothermal atomic absorption spectrometry (ET AAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) have been compared for As, Se and Pb in lobster hepatopancreas certified reference material using Pd/Mg as the modifier. The ET AAS pyrolysis curves confirm that the analytes are not lost from the graphite furnace up to a pyrolysis temperature of 800 deg. C. Nevertheless, a downward slope of the pyrolysis curve was observed for these elements in the biological material using ETV-ICP-MS. This could be related to a gain of sensitivity at low pyrolysis temperatures due to the matrix, which can act as carrier and/or promote changes in the plasma ionization equilibrium. Experiments with the addition of ascorbic acid to the aqueous standards confirmed that the higher intensities obtained in ETV-ICP-MS are related to the presence of organic compounds in the slurry. Pyrolysis curves for As, Se and Pb in coal and coal fly ash were also investigated using the same Pd/Mg modifier. Carbon intensities were measured in all samples using different pyrolysis temperatures. It was observed that pyrolysis curves for the three analytes in all slurry samples were similar to the corresponding graphs that show the carbon intensity for the same slurries for pyrolysis temperatures from 200 deg. C up to 1000 deg. C.

  13. A radiotracer study on the volatilization and transport effects of thermochemical reagents used in the analysis of alumina powders by slurry electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Peschel, Birgit U.; Herdering, Wilhelm; Broekaert, Jose A.C.

    2007-01-01

    A neutron-activated Al 2 O 3 powder SRM 699 (NIST) containing the γ-radiation emitting radionuclides 51 Cr, 59 Fe, 60 Co and 65 Zn has been used to study the influence of thermochemical reagents on the volatilization and transport efficiency for these trace elements in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) of Al 2 O 3 powders. From the signals in the γ-spectra for the radiotracers it has been found that less than 2% of the elements Cr, Fe, Co and Zn is left back in a graphite furnace from Al 2 O 3 powders at 2200 deg. C even without addition of a thermochemical reagent and the latter even was found to decrease the volatilization efficiencies. The recovery for the radiotracers on filters at the end of the transport tube as measured from the signals in the γ-spectra, however, was found to increase in most cases (i.e. from about 10% to more than 20%) when Pd(NO 3 ) 2 , Pd(NO 3 ) 2 + Mg(NO 3 ) 2 , PdCl 2 , IrCl 3 , SnCl 2 , AgCl, NaF, NH 4 Cl and NH 4 F were added at amounts generally used in electrothermal vaporization inductively coupled plasma mass spectrometry. However, when adding higher amounts as stoichiometrically required for a complete halogenation of the sample matrix in the case of AgCl, C 8 F 15 O 2 Na, IrCl 3 or PdCl 2 the transport efficiencies considerably decrease again. As shown in the case of NH 4 Cl the amount of thermochemical reagent used has to be optimized so as to obtain maximum analyte transport efficiencies. A comparison of the influence of NH 4 Cl on the transport efficiencies with its influence on the ETV-ICP-MS signals for Fe demonstrates the importance of transport efficiency changes for the effects of thermochemical reagents in electrothermal vaporization inductively coupled plasma mass spectrometry

  14. Determination of Cu, Mn, Ni and Sn in gasoline by electrothermal vaporization inductively coupled plasma mass spectrometry, and emulsion sample introduction

    International Nuclear Information System (INIS)

    Saint'Pierre, Tatiana D.; Dias, Lucia Felicidade; Pozebon, Dirce; Aucelio, Ricardo Q.; Curtius, Adilson J.; Welz, Bernhard

    2002-01-01

    Trace metals in fuels, except in the case of additives, are usually undesirable and normally they occur in very low concentrations in gasoline, requiring sensitive techniques for their determination. Coupling of electrothermal vaporization with inductively coupled plasma mass spectrometry minimizes the problems related to the introduction of organic solvents into the plasma. Furthermore, sample preparation as oil-in-water emulsions reduces problems related to gasoline analysis. In this work, a method for determination of Cu, Mn, Ni and Sn in gasoline is proposed. Samples were prepared by forming a 10-fold diluted emulsion with a surfactant (Triton X-100), after treatment with concentrated HNO 3 . The sample emulsion was pre-concentrated in the graphite tube by repeated pipetting and drying. External calibration was used with aqueous standards in a purified gasoline emulsion. Six samples from different gas stations were analyzed, and the analyte concentrations were found to be in the μg l -1 range or below. The limits of detection were 0.22, 0.02, 0.38 and 0.03 μg l -1 for Cu, Mn, Ni and Sn, respectively. The accuracy of the method was estimated using a recovery test

  15. Electrothermal frequency reference

    NARCIS (Netherlands)

    Makinwa, K.A.A.; Kashmiri, S.M.

    2011-01-01

    An electrothermal frequency-locked loop (EFLL) circuit is described. This EFLL circuit includes an oscillator in a feedback loop. A drive circuit in the EFLL circuit generates a first signal having a fundamental frequency, and an electrothermal filter (ETF) in the EFLL circuit provides a second

  16. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  17. Imaging of elements in leaves of tobacco by solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Masson, Pierre, E-mail: masson@bordeaux.inra.fr

    2014-12-01

    Plants take up and store elements according to the environment in which they are growing. Because plants are at the base of the food chain, the determination of essential elements or toxic elements in plant materials is of importance. However, it is assumed that the element content determined on selected tissues may provide more specific information than that derived from the whole plant analysis. In this work, we assessed the feasibility of solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry analyses for quantitative imaging of Cd and Mg in plant leaves. Leaves of tobacco (Nicotiana tabacum) were selected to be used as samples. To produce a two dimensional image, sections cut from leaf samples were analyzed. Cellulose doped with multi-element solution standards was used as calibration samples. Two certified reference materials (NIST SRM 1547 Peach Leaves and NIST SRM 1573a Tomato leaves) were used to verify the accuracy of measurements with good agreement between the measured concentrations and the certified values. Quantitative imaging revealed the inhomogeneous distribution of the selected elements. Excess of Cd and Mg tended to be focused on peripheral regions and the tip of the leaf.

  18. Optimization of a single-drop microextraction method for multielemental determination by electrothermal vaporization inductively coupled plasma mass spectrometry following in situ vapor generation

    International Nuclear Information System (INIS)

    Gil, Sandra; Loos-Vollebregt, Margaretha T.C. de; Bendicho, Carlos

    2009-01-01

    A headspace single-drop microextraction (HS-SDME) method has been developed in combination with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the simultaneous determination of As, Sb, Bi, Pb, Sn and Hg in aqueous solutions. Vapor generation is carried out in a 40 mL volume closed-vial containing a solution with the target analytes in hydrochloric acid and potassium ferricyanide medium. Hydrides (As, Sb, Bi, Pb, Sn) and Hg vapor are trapped onto an aqueous single drop (3 μL volume) containing Pd(II), followed by the subsequent injection in the ETV. Experimental variables such as medium composition, sodium tetrahydroborate (III) volume and concentration, stirring rate, extraction time, sample volume, ascorbic acid concentration and palladium amount in the drop were fully optimized. The limits of detection (LOD) (3σ criterion) of the proposed method for As, Sb, Bi, Pb, Sn and Hg were 0.2, 0.04, 0.01, 0.07, 0.09 and 0.8 μg/L, respectively. Enrichment factors of 9, 85, 138, 130, 37 and 72 for As, Sb, Bi, Pb, Sn and Hg, respectively, were achieved in 210 s. The relative standard deviations (N = 5) ranged from 4 to 8%. The proposed HS-SDME-ETV-ICP-MS method has been applied for the determination of As, Sb, Bi, Pb, Sn and Hg in NWRI TM-28.3 certified reference material.

  19. Automated magnetic sorbent extraction based on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Giakisikli, Georgia; Anthemidis, Aristidis N

    2013-06-15

    A new automatic sequential injection (SI) system for on-line magnetic sorbent extraction coupled with electrothermal atomic absorption spectrometry (ETAAS) has been successfully developed for metal determination. In this work, we reported effective on-line immobilization of magnetic silica particles into a microcolumn by the external force of two strong neodymium iron boron (NdFeB) magnets across it, avoiding the use of frits. Octadecylsilane functionalized maghemite magnetic particles were used as sorbent material. The potentials of the system were demonstrated for trace cadmium determination in water samples. The method was based on the on-line complex formation with diethyldithiocarbamate (DDTC), retention of Cd-DDTC on the surface of the MPs and elution with isobutyl methyl ketone (IBMK). The formation mechanism of the magnetic solid phase packed column and all critical parameters (chemical, flow, graphite furnace) influencing the performance of the system were optimized and offered good analytical characteristics. For 5 mL sample volume, a detection limit of 3 ng L(-1), a relative standard deviation of 3.9% at 50 ng L(-1) level (n=11) and a linear range of 9-350 ng L(-1) were obtained. The column remained stable for more than 600 cycles keeping the cost down in routine analysis. The proposed method was evaluated by analyzing certified reference materials and natural waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Comparative study of injection into a pneumatic nebuliser and tungsten coil electrothermal vaporisation for the determination of rare earth elements by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Dittrich, K.

    1988-01-01

    Injection into a pneumatic nebuliser and vaporisation using a tungsten coil electrothermal vaporisation system, with a 3-kW argon-nitrogen inductively coupled plasma (ICP), are compared for the determination of the rare earth elements. The sampling efficiency and thus also the absolute power of detection of the tungsten coil ICP optical emission spectrometric (ICP-OES) technique are better by two orders of magnitude, than the injection technique. The absolute detection limits for the rare earth elements are at the pg level; for the refractory rare earth elements (Er, La, Lu and Y), they are lower than those obtained by graphite furnace atomic absorption spectrometry, whereas for the other rare earth elements (Eu, Sc, Tm and Yb), the detection limits are comparable. With injection of samples into a pneumatic nebuliser and ICP-OES, matrix effects are low and absolute amounts of the order of mg of the rare earth matrix can be tolerated, giving relative detection limits down to 1 μg g -1 . The amount of rare earth matrix that can be tolerated with the tungsten-coil atomiser is two orders of magnitude lower. Thus the relatively detection limits of the two methods are of the same order, although the matrix effects are considerably higher with the tungsten coil. (author)

  1. Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluroethylene emulsion as a chemical modifier

    International Nuclear Information System (INIS)

    He Man; Hu, Bin; Jiang Zucheng

    2005-01-01

    A method of electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of trace lanthanides and yttrium in soil samples with a polytetrafluorethylene (PTFE) emulsion as chemical modifier to promote the vaporization of the analytes from the graphite furnace was developed in this paper. The analytical characteristics, spectral interference and matrix effect of the analytical method were evaluated and critically compared with those of pneumatic nebulization inductively coupled plasma mass spectrometry (PN-ICP-MS). Under the optimized operation conditions, the relative detection limits of lanthanides (La-Lu) and yttrium for ETV-ICP-MS and PN-ICP-MS were 0.4-20 ng l -1 and 1.0-21 ng l -1 , respectively, the absolute detection limits for ETV-ICP-MS were 4-200 fg, which were improved by 1-2 orders of magnitude compared with PN-ICP-MS. While the analytical precision of ETV-ICP-MS is worse than that of PN-ICP-MS, with the R.S.D.s (%) of 4.1-10% for the former and 2.9-7.8% for the latter. Regarding to the matrix effect, both conventional method and stepwise dilution method were employed to observe the effect of matrix and the very similar results were obtained. It was found that the highest tolerance concentration of the matrix is 1000 mg l -1 and 800 mg l -1 for ETV-ICP-MS and PN-ICP-MS, respectively. To assess the accuracy, the proposed method was applied to the determination of trace lanthanides and yttrium in three different soil standard reference materials and one soil sample, and the determined values are in good agreement with the certified values or reference values

  2. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    Energy Technology Data Exchange (ETDEWEB)

    Grijalba, Alexander Castro; Martinis, Estefanía M. [Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Lascalea, Gustavo E. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar [Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina)

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L{sup −1} and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L{sup −1} of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea. - Highlights: • We report an efficient method for As speciation. • We have modified a knotted reactor with activated carbon for high sorption capacity. • We provide a simple procedure for surface modification of a PTFE knotted reactor. • We have selectively separated inorganic As species from complex matrix samples. • We have implemented a modified KR in a flow injection system coupled to ETAAS.

  3. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    International Nuclear Information System (INIS)

    Grijalba, Alexander Castro; Martinis, Estefanía M.; Lascalea, Gustavo E.; Wuilloud, Rodolfo G.

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L −1 and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L −1 of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea. - Highlights: • We report an efficient method for As speciation. • We have modified a knotted reactor with activated carbon for high sorption capacity. • We provide a simple procedure for surface modification of a PTFE knotted reactor. • We have selectively separated inorganic As species from complex matrix samples. • We have implemented a modified KR in a flow injection system coupled to ETAAS

  4. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Yi [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min{sup −1} methane (CH{sub 4}) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g{sup −1} for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g{sup −1} (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions. - Highlights: • Determination of Cr, Fe, Cu, Zn and Se in cereal samples • Ultrasonic slurry sampling in combination with DRC-ICP-MS • Better sensitivity with thioacetamide modifier in ETV • Decreased sample preparation time with solid sampling • Validation with NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour.

  5. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    International Nuclear Information System (INIS)

    Huang, Shih-Yi; Jiang, Shiuh-Jen; Sahayam, A.C.

    2014-01-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min −1 methane (CH 4 ) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g −1 for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g −1 (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions. - Highlights: • Determination of Cr, Fe, Cu, Zn and Se in cereal samples • Ultrasonic slurry sampling in combination with DRC-ICP-MS • Better sensitivity with thioacetamide modifier in ETV • Decreased sample preparation time with solid sampling • Validation with NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour

  6. Method development for the determination of cadmium, copper, lead, selenium and thallium in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution calibration

    International Nuclear Information System (INIS)

    Dias, Lucia Felicidade; Miranda, Gilson R.; Saint'Pierre, Tatiana D.; Maia, Sandra M.; Frescura, Vera L.A.; Curtius, Adilson J.

    2005-01-01

    A procedure for the determination of Cd, Cu, Pb, Se and Tl by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) with calibration by isotopic dilution is proposed. The slurry is prepared by mixing the sample with diluted nitric and hydrofluoric acids in an ultrasonic bath and then in a water bath at 60 deg C for 120 min. The slurries were let to stand at least for 12 h, manually shaken before poured into the autosampler cups and homogenized by passing through an argon flow, just before pipetting it into the furnace. The analytes were determined in two groups, according to their thermal behaviors. The furnace temperature program was optimized and the selected compromised pyrolysis temperatures were: 400 deg C for Cd, Se and Tl and 700 deg C for Cu and Pb. The vaporization temperature was 2300 deg C. The analyses were carried out without modifier as no significant effect was observed for different tested modifiers. Different sample particle sizes did not affect the sensitivity significantly, then a particle size ≤50 μm was adopted. The accuracy was checked by analyzing five certified reference sediments, with analytes concentrations from sub-μg g -1 to a few hundreds μg g -1 . The great majority of the obtained concentrations were in agreement with the certified values. The detection limits, determined for the MESS-2 certified sediment, were, in μg g -1 : 0.01 for Cd; 0.8 for Cu; 0.4 for Pb; 0.4 for Se and 0.06 for Tl. The precision was adequate with relative standard deviations lower than 12%. Isotopic dilution showed to be an efficient calibration technique for slurry, as the extraction of the analyte to the liquid phase of the slurry and the reactions in the vaporizer must help the equilibration between the added isotope and the isotope in the sample

  7. Preconcentration and speciation of chromium in a sequential injection system incorporating dual mini-columns coupled with electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zou Aimei; Tang Xiaoyan; Chen Mingli [Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110004 (China); Wang Jianhua [Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110004 (China)], E-mail: jianhuajrz@mail.neu.edu.cn

    2008-05-15

    A procedure for chromium preconcentration and speciation with a dual mini-column sequential injection system coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed. At pH 6, the sample solution was firstly aspirated to flow through a Chlorella vulgaris cell mini-column on which the Cr(III) was retained. The effluent was afterwards directed to flow through a 717 anion exchange resin mini-column accompanied by the retention of Cr(VI). Thereafter, Cr(III) and Cr(VI) were eluted by 0.04 mol L{sup -1} and 1.0 mol L{sup -1} nitric acid, respectively, and the eluates were quantified with ETAAS. Chemical and flow variables governing the performance of the system were investigated. By using a sampling volume of 600 {mu}L, sorption efficiencies of 99.7% for Cr(III) and 99% for Cr(VI) were achieved along with enrichment factors of 10.5 for Cr(III) and 11.6 for Cr(VI), within linear ranges of 0.1-2.5 {mu}g L{sup -1} for Cr(III) and 0.12-2.0 {mu}g L{sup -1} for Cr(VI). Detection limits of 0.02 {mu}g L{sup -1} for Cr(III) and 0.03 {mu}g L{sup -1} for Cr(VI) along with RSD values of 1.9% for Cr(III) and 2.5% for Cr(VI) (1.0 {mu}g L{sup -1}, n = 11) were obtained. The procedure was validated by analyzing a certified reference material of GBW08608 and further demonstrated by chromium speciation in river and tap water samples.

  8. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    Science.gov (United States)

    Huang, Shih-Yi; Jiang, Shiuh-Jen; Sahayam, A. C.

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min- 1 methane (CH4) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g- 1 for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g- 1 (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions.

  9. Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determination of Cr, Cu, Cd, Hg and Pb in rice flour

    International Nuclear Information System (INIS)

    Li, P.-C.; Jiang, S.-J.

    2003-01-01

    Ultrasonic slurry sampling (USS)-electrothermal vaporization (ETV) dynamic reaction cell TM (DRC) inductively coupled plasma-mass spectrometry (ICP-MS) has been applied to determine Cr, Cu, Cd, Hg and Pb in rice samples. The influences of instrument operating conditions and slurry preparation on the ion signals were reported. Ascorbic acid was used as a modifier to enhance the ion signals. The background ions at the chromium masses were reduced in intensity significantly by using 0.4 ml min -1 NH 3 as reaction cell gas in the dynamic reaction cell while a q value of 0.6 was used. Since the sensitivities of Cr, Cu, Cd, Hg and Pb in rice flour slurry and aqueous solution were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Cu, Cd, Hg and Pb in these rice samples. This method has been applied to the determination of Cr, Cu, Cd, Hg and Pb in NIST SRM 1568a rice flour reference material and two rice samples purchased from the market. The analytical results for the reference material agreed with the certified values. The results for the rice samples for which no reference values were available were also found to be in good agreement between the isotope dilution and standard addition methods. The method's detection limits estimated from the standard addition plots were about 0.44, 1.7, 0.4, 0.53 and 0.69 ng g -1 for Cr, Cu, Cd, Hg and Pb, respectively, in the original rice flour

  10. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  11. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  12. Determination of Cd, Hg, Pb and Tl in coal and coal fly ash slurries using electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution

    Energy Technology Data Exchange (ETDEWEB)

    Maia, S.M.; Pozebon, D.; Curtius, A.J. [Univ. Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2003-07-01

    A method has been investigated for the determination of Cd, Hg, Pb and Tl in coal and in coal fly ash, using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotope dilution. The slurry, 25 mg ml{sup -1}, was prepared by mixing the powdered sample (less than or equal to 36 - 45 mm) with acid solutions (nitric acid for coal and nitric and hydrofluoric acids for coal fly ash) and submitting the mixture to an ultrasonic agitation, letting it stand afterwards in a water bath at 60{sup o}C for 2 h. An ultrasonic probe was used to homogenize the slurry in the autosampler cup just before its introduction into the graphite tube. The best conditions were determined regarding analyte sensitivity, furnace temperature program, amount of modifier, acid concentration, gas flow rate and particle size. For Hg, the pyrolysis stage was omitted and a low vaporization temperature was used (450 - 1000{sup o}C); the residual matrix was eliminated in the first step of the following cycle. The modifiers used were: Pd for Cd and Tl; Au, Ir or Pd for Hg; Ir or Pd for Pb. The accuracy of the method was checked by analyzing six certified coal reference materials (SARM 20, SARM 19, BCR No. 40, BCR No. 180, BCR No. 181 and NIST 1630a) and one certified coal fly ash (NIST 1633b). With one exception (Hg in BCR No. 180), the found concentrations were typically within 95% confidence interval of the certified values, or close enough to the recommended values, as long as the samples were ground to a small enough particle size. The limits of detection were typically around 0.08 {mu}g g{sup -1}, 0.03 {mu}g g{sup -1}, 1 {mu}g g{sup -1} and 0.02 {mu}g g{sup -1} for Cd, Hg, Pb and Tl, respectively. The precision was also adequate with relative standard deviations of usually < 5%.

  13. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  14. FEM assisted design and simulation of novel electrothermal actuators

    NARCIS (Netherlands)

    Deladi, S.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2003-01-01

    In this work the authors present the design, simulation, and experimental results of novel electrothermal actuators, such as the trimorph actuator for out-of-plane motion, the coupled in-plane actuator for in-plane motion and an actuator providing combined in- and out-of-plane motion that have been

  15. Topology optimized electrothermal polysilicon microgrippers

    DEFF Research Database (Denmark)

    Sardan Sukas, Özlem; Petersen, Dirch Hjorth; Mølhave, Kristian

    2008-01-01

    This paper presents the topology optimized design procedure and fabrication of electrothermal polysilicon microgrippers for nanomanipulation purposes. Performance of the optimized microactuators is compared with a conventional three-beam microactuator design through finite element analysis...

  16. Compliant electro-thermal microactuators

    DEFF Research Database (Denmark)

    Jonsmann, Jacques; Sigmund, Ole; Bouwstra, Siebe

    1999-01-01

    This paper describes design, microfabrication and characterisation of topology optimised compliant electro-thermal microactuators. The actuators are fabricated by a fast prototyping process using laser micromachining and electroplating. Actuators are characterised with respect to displacement...

  17. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-01

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be < 5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L- 1 and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples.

  18. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-05

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be <5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L(-1) and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Rapid and sensitive determination of radiocesium (Cs-135, Cs-137) in the presence of excess barium by electrothermal vaporization-inductively coupled plasma-mass spectrometry (ETV-ICP-MS) with potassium thiocyanate as modifier

    International Nuclear Information System (INIS)

    Song, M.; Probst, T.U.; Berryman, N.G.

    2001-01-01

    An electrothermal vaporization-inductively coupled plasma-mass spectrometric (ETV-ICP-MS) method based on selective volatilization of cesium with KSCN as modifier has been developed for determination of radiocesium, i.e. 135 Cs and 137 Cs, in the presence of isobaric barium. A 10000 times excess of barium, which was volatilized at a temperature of 1100 C, resulted only in a 1% signal increase in the signal of mass 135 amu. The recommended concentration of KSCN is 0.3 mM, and pretreatment and volatilization temperatures are 400 C and 1100 C, respectively. A ramp time of 1 s is recommended for the volatilization step. The achieved limit of detection for 135 Cs is 0.2 pg/mL (10 μBq/mL) and 4 fg (0.2 μBq) absolute for a sample volume of 20 μL. This means a limit of detection for 137 Cs of 0.2 pg/mL (0.6 Bq/mL) and of 4 fg (0.01 Bq) absolute. Signal variations of 135 Cs and 137 Cs, respectively, in spiked samples with various matrices were investigated. (orig.)

  20. Selenium speciation using capillary electrophoresis coupled with modified electrothermal atomic absorption spectrometry after selective extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles.

    Science.gov (United States)

    Yan, Lizhen; Deng, Biyang; Shen, Caiying; Long, Chanjuan; Deng, Qiufen; Tao, Chunyao

    2015-05-22

    A new method for selenium speciation in fermented bean curd wastewater and juice was described. This method involved sample extraction with 5-sulfosalicylic acid (SSA)-functionalized silica-coated magnetic nanoparticles (SMNPs), capillary electrophoresis (CE) separation, and online detection with a modified electrothermal atomic absorption spectrometry (ETAAS) system. The modified interface for ETAAS allowed for the introduction of CE effluent directly through the end of the graphite tube. Elimination of the upper injection hole of the graphite tube reduced the loss of the anlayte and enhanced the detection sensitivity. The SSA-SMNPs were synthesized and used to extract trace amounts of selenite [Se(IV)], selenite [Se(VI)], selenomethionine (SeMet), and selenocystine (SeCys2) from dilute samples. The concentration enrichment factors for Se(VI), Se(IV), SeMet, and SeCys2 were 21, 29, 18, and 12, respectively, using the SSA-SMNPs extraction. The limits of detection for Se(VI), Se(IV), SeMet, and SeCys2 were 0.18, 0.17, 0.54, 0.49ngmL(-1), respectively. The RSD values (n=6) of method for intraday were observed between 0.7% and 2.9%. The RSD values of method for interday were less than 3.5%. The linear range of Se(VI) and Se(IV) were in the range of 0.5-200ngmL(-1), and the linear ranges of SeMet and SeCys2 were 2-500 and 2-1000ngmL(-1), respectively. The detection limits of this method were improved by 10 times due to the enrichment by the SSA-SMNP extraction. The contents of Se(VI) and Se(IV) in fermented bean curd wastewater were measured as 3.83 and 2.62ngmL(-1), respectively. The contents of Se(VI), Se(IV), SeMet, and SeCys2 in fermented bean curd juice were determined as 6.39, 4.08, 2.77, and 4.00ngmL(-1), respectively. The recoveries were in the range of 99.14-104.5% and the RSDs (n=6) of recoveries between 0.82% and 3.5%. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): an investigation of rare earth element signatures in otolith microchemistry

    International Nuclear Information System (INIS)

    Arslan, Zikri; Paulson, Anthony J.

    2003-01-01

    Uptake of trace elements into fish otoliths is governed by several factors such as life histories and environment in addition to stock and species differences. In an attempt to elucidate the elemental signatures of rare earth elements (REEs) in otoliths, a solid phase extraction (SPE) protocol was used in combination with electrothermal vaporization (ETV) as a sample introduction procedure for the determinations by inductively coupled plasma quadrupole mass spectrometry (ICP-MS). Effects of various parameters, such as carrier gas flow rate, atomization temperature and chemical modification, were examined for optimization of the conditions by ETV-ICP-MS. Atomization was achieved at 2800 deg. C. Lower temperatures (i.e. 2600 deg. C) resulted in severe memory problems due to incomplete atomization. Palladium was used as a chemical modifier. It was found that an increase in Pd concentration up to 0.5 μg in the injection volume (70 μl) led up to four-fold enhancement in the integrated signals. This phenomenon is attributed to the carrier effect of Pd rather than the stabilization since no significant losses were observed for high temperature drying around 700 deg. C even in the absence of Pd. Preconcentration was performed on-line at pH 5 by using a mini-column of Toyopearl AF-Chelate 650M chelating resin, which also eliminated the calcium matrix of otolith solutions. After preconcentration of 6.4 ml of solution, the concentrate was collected in 0.65 ml of 0.5% (v/v) HNO 3 in autosampler cups, and then analyzed by ETV-ICP-MS. The method was validated with the analysis of a fish otolith certified reference material (CRM) of emperor snapper, and then applied to samples. Results obtained from otoliths of fish captured in the same habitat indicated that otolith rare earth element concentrations are more dependent on environmental conditions of the habitat than on species differences

  2. Determination of arsenic, lead, selenium and tin in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry using Ru as permanent modifier and NaCl as a carrier

    International Nuclear Information System (INIS)

    Dias, Lucia Felicidade; Saint'Pierre, Tatiana D.; Maia, Sandra M.; Mesquita da Silva, Marcia A.; Frescura, Vera L.A.; Welz, Bernhard; Curtius, Adilson J.

    2002-01-01

    A procedure for the determination of As, Pb, Se and Sn in sediment slurries by electrothermal vaporization inductively coupled plasma mass spectrometry is proposed. The slurry, 1 mg ml -1 , is prepared by mixing the sample ground to a particle size ≤50 μm with 5% v/v nitric and 1% v/v hydrofluoric acids in an ultrasonic bath. The slurry was homogenized with a constant flow of argon in the autosampler cup, just before transferring an aliquot to the graphite furnace. The tube was treated with Ru as a permanent modifier, and an optimized mass of 1 μg of NaCl was added as a physical carrier. The pyrolysis temperature was optimized through pyrolysis curves, and a compromised temperature of 800 deg. C was used; the vaporization temperature was 2300 deg. C. The effect of different acid concentrations in the slurry on the analyte signal intensities was also evaluated. The accuracy of the method was assured by the analysis of certified reference sediments MESS-2, PACS-2 and HISS-1 from the National Research Council Canada, SRM 2704 and SRM 1646a from the National Institute of Standards and Technology and RS-4 from a round robin test, using external calibration with aqueous standards prepared in the same medium as the slurries. The obtained concentrations were in agreement with the certified values according to the Student's t-test for a confidence level of 95%. The detection limits in the samples were: 0.17 μg g -1 for As; 0.3 μg g -1 for Pb; 0.05 μg g -1 for Se and 0.28 μg g -1 for Sn. The precision found for the different sediment samples, expressed as R.S.D. was 1-8% for As, 2-9% for Pb, 6-12% for Se and 3-8% for Sn (n=5)

  3. Determination of trace metal ions via on-line separation and preconcentration by means of chelating Sepharose beads in a sequential injection lab-on-valve (SI-LOV) system coupled to electrothermal atomic absorption spectrometric detection

    DEFF Research Database (Denmark)

    Long, Xiangbao; Hansen, Elo Harald; Miró, Manuel

    2005-01-01

    The analytical performance of an on-line sequential injection lab-on-valve (SI-LOV) system using chelating Sepharose beads as sorbent material for the determination of ultra trace levels of Cd(II), Pb(II) and Ni(II) by electrothermal atomic absorption spectrometry (ETAAS) is described and discussed...

  4. Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap

    Science.gov (United States)

    Zhang, Ying; Mao, Xuefei; Liu, Jixin; Wang, Min; Qian, Yongzhong; Gao, Chengling; Qi, Yuehan

    2016-04-01

    In this work, a solid sampling device consisting of a tungsten coil trap, porous carbon vaporizer and on-line ashing furnace of a Ni-Cr coil was interfaced with inductively coupled plasma mass spectrometry (ICP-MS). A modified double gas circuit system was employed that was composed of carrier and supplemental gas lines controlled by separate gas mass flow controllers. For Cd determination in food samples using the assembled solid sampling ICP-MS, the optimal ashing and vaporization conditions, flow rate of the argon-hydrogen (Ar/H2) (v:v = 24:1) carrier gas and supplemental gas, and minimum sampling mass were investigated. Under the optimized conditions, the limit of quantification was 0.5 pg and the relative standard deviation was within a 10.0% error range (n = 10). Furthermore, the mean spiked recoveries for various food samples were 99.4%-105.9% (n = 6). The Cd concentrations measured by the proposed method were all within the certified values of the reference materials or were not significantly different (P > 0.05) from those of the microwave digestion ICP-MS method, demonstrating the good accuracy and precision of the solid sampling ICP-MS method for Cd determination in food samples.

  5. Statics and dynamics of electrothermal micromirrors

    Science.gov (United States)

    Morrison, Jessica A.

    Adaptive and smart systems are growing in popularity as we shift toward personalization as a culture. With progressive demands on energy efficiency, it is increasingly important to focus on the utilization of energy in a novel way. This thesis investigates a microelectromechanical system (MEMS) mirror with the express intent to provide flexibility in solid state lighting (SSL). By coupling the micromirror to an optical source, the reflected light may be reshaped and directed so as to optimize the overall illumination profile. In addition, the light may be redirected in order to provide improved signal strength in visible light communications (VLC) with negligible impact on energy demands. With flexibility and full analog control in mind, the design of a fully integrated tip-tilt-piston micromirror with an additional variable focus degree of freedom is outlined. Electrothermal actuators are used to both steer the light and tune the focal length. A detailed discussion of the underlying physics behind composite beams and thermal actuators is addressed. This leads directly into an overview of the two main mirror components, namely the segmented mirror and the deflection actuators. An in-depth characterization of the dynamics of the mirror is discussed including the linearity of the thermal response. Frequency domain analysis of such a system provides insight into tunable mechanical properties such as the resonant frequency and quality factor. The degenerate resonant modes can be separated significantly. It is shown that the frequency response may be tuned by straining specific actuators and that it follows a predictable pattern. As a result, the system can be scanned at increasingly large angles. In other words, coupled mechanical modes allow variable damping and amplification. A means to determine the level of coupling is examined and the mode shape variations are tracked as a function of the tuning parameters. Finally, the applications of such a device are explored

  6. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-15

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 {mu}L, 1-10 {mu}L and 10-100 {mu}L) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 {mu}L volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg ({approx} 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 {mu}L volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for 'taking part of the lab to the sample' applications, such as testing for Cu concentration-compliance with the lead

  7. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Ramini, Abdallah; Alcheikh, Nouha; Younis, Mohammad I.

    2016-01-01

    that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches

  8. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam

  9. Electrothermal Frequency Modulated Resonator for Mechanical Memory

    KAUST Repository

    Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.

    2016-01-01

    In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure

  10. Electrothermal plasma gun as a pellet injector

    International Nuclear Information System (INIS)

    Kincaid, R.W.; Bourham, M.A.

    1994-01-01

    The NCSU electrothermal plasma gun SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets, to determine the feasibility of the use of electrothermal guns as pellet injectors. The use of an electrothermal gun to inject frozen hydrogenic pellets requires a mechanism to provide protective shells (sabots) for shielding the pellet from ablation during acceleration into and through the barrel of the gun. The gun has been modified to accommodate acceleration of the plastic pellets using special acceleration barrels equipped with diagnostics for velocity and position of the pellet, and targets to absorb the pellet's energy on impact. The length of the acceleration path could be varied between 15 and 45 cm. The discharge energy of the electrothermal gun ranged from 2 to 6 kJ. The pellet velocities have been measured via a set of break wires. Pellet masses were varied between 0.5 and 1.0 grams. Preliminary results on 0.5 and 1.0 g pellets show that the exit velocity reaches 0.9 km/s at 6 kJ input energy to the source. Higher velocities of 1.5 and 2.7 km/s have been achieved using 0.5 and 1.0 gm pellets in 30 cm long barrel, without cleaning the barrel between the shots

  11. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.

  12. Impurity effects in the electrothermal instability

    International Nuclear Information System (INIS)

    Tomimura, A.; Azevedo, M.T. de

    1982-01-01

    A 'impure' plasma model is proposed based on the homogeneous hydrogen plasma used in the theory formulated by Tomimura and Haines to explain the electrothermal instable mode growth with the wave vector perpendicular to the applied magnetic field. The impurities are introduced implicitly in the transport coefficients of the two-fluid model through a effective charge number Z sub(eff). (Author) [pt

  13. Electrothermal Frequency Modulated Resonator for Mechanical Memory

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-08-18

    In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure is deliberately fabricated as an in-plane shallow arch to achieve geometric quadratic nonlinearity. We exploit this inherent nonlinearity of the arch and drive it at resonance with minimal actuation voltage into the nonlinear regime, thereby creating softening behavior, hysteresis, and coexistence of states. The hysteretic frequency band is controlled by the electrothermal actuation voltage. Binary values are assigned to the two allowed dynamical states on the hysteretic response curve of the arch resonator with respect to the electrothermal actuation voltage. Set-and-reset operations of the memory states are performed by applying controlled dc pulses provided through the electrothermal actuation scheme, while the read-out operation is performed simultaneously by measuring the motional current through a capacitive detection technique. This novel memory device has the advantages of operating at low voltages and under room temperature. [2016-0043

  14. Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation

    DEFF Research Database (Denmark)

    Nordström Andersen, Karin; Petersen, Dirch Hjorth; Carlson, Kenneth

    2009-01-01

    Microgrippers that are able to manipulate nanoobjects reproducibly are key components in 3-D nanomanipulation systems. We present here a monolithic electrothermal microgripper prepared by silicon microfabrication, and demonstrate pick-and-place of an as-grown carbon nanotube from a 2-D array onto...

  15. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.

    2016-03-30

    This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341

  16. Electrothermal instability growth in magnetically driven pulsed power liners

    International Nuclear Information System (INIS)

    Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles

    2012-01-01

    This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.

  17. Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Xiong, Binyu

    2014-01-01

    Highlights: • A dynamic electro-thermal model is proposed for VRB with forced cooling. • The Foster network is adopted to model the battery cooling process. • Both the electrolyte temperature and terminal voltage can be accurately predicted. • The flow rate of electrolyte and coolant significantly impact battery performance. - Abstract: The present study focuses on the dynamic electro-thermal modeling for the all-vanadium redox flow battery (VRB) with forced cooling strategies. The Foster network is adopted to dynamically model the heat dissipation of VRB with heat exchangers. The parameters of Foster network are extracted by fitting the step response of it to the results of linearized CFD model. Then a complete electro-thermal model is proposed by coupling the heat generation model, Foster network and electrical model. Results show that the established model has nearly the same accuracy with the nonlinear CFD model in electrolyte temperature prediction but drastically improves the computational efficiency. The modeled terminal voltage is also benchmarked with the experimental data under different current densities. The electrolyte temperature is found to be significantly influenced by the flow rate of coolant. As compared, although the electrolyte flow rate has unremarkable impact on electrolyte temperature, its effect on system pressure drop and battery efficiency is significant. Increasing the electrolyte flow rate improves the coulombic efficiency, voltage efficiency and energy efficiency simultaneously but at the expense of higher pump power demanded. An optimal flow rate exists for each operating condition to maximize the system efficiency

  18. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.

    Science.gov (United States)

    Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter

    2018-06-01

    We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.

  19. Experimental Studies of Electrothermal Plasma Gun

    International Nuclear Information System (INIS)

    Diab, F.B.A.

    2013-01-01

    The aim of the present work is to study the capillary plasma discharge dynamics and characteristics. The capillary plasma device is a new technology for producing high density plasma after ablating the capillary wall using a pulsed electric power. An Electrothermal Plasma Gun (ETG) is composed of a capillary discharge tube made of Teflon operated with simple RLC circuit. The device called Electrothermal Gun (ETG) which is composed of 4 capacitors (70 μF, 10 kV, 1.28 μH) connected in parallel to a plasma source by means of one high power supply. The gun was operated in open air at discharge energies between 35 J - 3.5 kJ according to charging voltage. The work presented in this thesis covers the following items, 1- Measurements of the basic parameters and characterizations of the pretest results of the electrical circuits and capillary plasma discharge using Rogowski coil, voltage probe and Photomultiplier. 2- Material processing including (physics of the surface modifications, the morphology of the surface by using Scanning Electron Microscope (SEM) at different conditions, compositions of the materials by using X-ray Fluorescence (XRF), Micro hardness test and material particle deposition.

  20. Electrothermal Desorption of CWA Simulants from Activated Carbon Cloth

    National Research Council Canada - National Science Library

    Sullivan, Patrick D; Wander, Joseph D; Newsome, Kolin C

    2006-01-01

    The use of activated carbon fabrics (ACFs) that are desorbed electrothermally, also known as the Joule effect, is explored as a potential method to create a regenerating chemical warfare agent (CWA) filter...

  1. Electrothermal Simulation of Large-Area Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    C Kirsch

    2017-06-01

    Full Text Available The lateral charge transport in thin-film semiconductor devices is affected by the sheet resistance of the various layers. This may lead to a non-uniform current distribution across a large-area device resulting in inhomogeneous luminance, for example, as observed in organic light-emitting diodes (Neyts et al., 2006. The resistive loss in electrical energy is converted into thermal energy via Joule heating, which results in a temperature increase inside the device. On the other hand, the charge transport properties of the device materials are also temperature-dependent, such that we are facing a two-way coupled electrothermal problem. It has been demonstrated that adding thermal effects to an electrical model significantly changes the results (Slawinski et al., 2011. We present a mathematical model for the steady-state distribution of the electric potential and of the temperature across one electrode of a large-area semiconductor device, as well as numerical solutions obtained using the finite element method.

  2. Bringing part of the lab to the field: On-site chromium speciation in seawater by electrodeposition of Cr(III)/Cr(VI) on portable coiled-filament assemblies and measurement in the lab by electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Badiei, Hamid R.; McEnaney, Jennifer; Karanassios, Vassili

    2012-12-01

    A field-deployable electrochemical approach to preconcentration, matrix clean up and selective electrodeposition of Cr(III) and Cr(III) + Cr(VI) in seawater is described. Using portable, battery-operated electrochemical instrumentation, Cr species in seawater were electrodeposited in the field on portable coiled-filament assemblies made from Re. Assemblies with dried residues of Cr(III) or Cr(III) + Cr(VI) on them were transported to the lab for concentration determination by electrothermal, near-torch vaporization (NTV) sample introduction and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Electrodeposition offers selective species deposition, preconcentration and matrix clean up from seawater samples. For selective deposition, free Cr(VI) was electrodeposited at - 0.3 V and Cr(III) + Cr(VI) at - 1.6 V (both vs Ag/AgCl). Interestingly, at 0 V (vs Ag/AgCl) and in the absence of an electrodeposition potential only Cr(VI) was spontaneously and selectively adsorbed on the coil and reasons for this are given. Due to preconcentration afforded by electrodeposition, the detection limits obtained after a 60 s electrodeposition at the voltages stated above using buffered (pH = 4.7) artificial seawater spiked with either Cr(III) or Cr(VI) were 20 pg/mL for Cr(III) and 10 pg/mL for Cr(VI). For comparison, the detection limit for Cr obtained by pipetting directly on the coil 5 μL of diluted standard solution was 500 pg/mL, thus it was concluded that electrodeposition offered 40 to 60 fold improvements. Matrix clean up is required due to the high salt content of seawater and this was addressed by simply rinsing the coil with 18.2 MΩ water without any loss of Cr species. Reasons for this are provided. The method was validated in the lab using buffered artificial seawater and it was used in the field for the first time by sampling seawater, buffering it and immediately electrodepositing Cr species on portable assemblies on-site. Electrodeposition in the

  3. Electrothermally Actuated Microbeams With Varying Stiffness

    KAUST Repository

    Tella, Sherif Adekunle

    2017-11-03

    We present axially loaded clamped-guided microbeams that can be used as resonators and actuators of variable stiffness, actuation, and anchor conditions. The applied axial load is implemented by U-shaped electrothermal actuators stacked at one of the beams edges. These can be configured and wired in various ways, which serve as mechanical stiffness elements that control the operating resonance frequency of the structures and their static displacement. The experimental results have shown considerable increase in the resonance frequency and mid-point deflection of the microbeam upon changing the end conditions of the beam. These results can be promising for applications requiring large deflection and high frequency tunability, such as filters, memory devices, and switches. The experimental results are compared to multi-physics finite-element simulations showing good agreement among them.

  4. Electric and electrothermal conductivity of planetary ionospheres

    International Nuclear Information System (INIS)

    Pavlov, A.V.

    1984-01-01

    In the first, second and third approximations of expansion of the Chapman-Enskog method in Sonin polynomials, an explicit form is found of coefficients of electrical and electrothermal electron condituctjvity in a magnetic field in a multicomponent ionosphere with allowance for the electron temperature difference from the heavy component temperature. The generic expressions for the electron transport coefficients are reduced to the form suitable for practical applications. In the first approximation of expansion in Sonin polynomials, the equations are derived for determining the ion diffusion velocities in a magnetic field in a multicomponent gas mixtures. +he approximating expressions for frequencies of electron collisions with main neutral components of planet upper atmospheres are refined. In the first, second and third approximations the equations are derived for determining velocities of ambipolar ion diffusion in a multicomponent ionosphere without a magnetic field (or parallel to it). The explicit form of the electron thermodiffusion factor, being a part of these equations, has been found

  5. Interfase y software de control para operar en sincronismo un automuestreador y un atomizador electrotérmico por filamento de tungsteno en espectrofotometría de absorción atómica Development of interface and software for synchronous operation of an autosampler and a tungsten coil electrothermal atomizer coupled to an atomic absorption spectophotometer

    OpenAIRE

    J. Neira; G. Valenzuela; J. Vega; J. Moya; C. G. Bruhn; J. A. Nóbrega

    1998-01-01

    The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 1...

  6. Dynamic response modelling and characterization of a vertical electrothermal actuator

    International Nuclear Information System (INIS)

    Li, Lijie; Uttamchandani, Deepak

    2009-01-01

    Mathematical modelling and characterization of the dynamic response of a microelectromechanical system (MEMS) electrothermal actuator are presented in this paper. The mathematical model is based on a second-order partial differential equation (one-dimensional heat transfer) and a second-order ordinary differential equation (mechanical dynamic equation). The simulations are implemented using the piecewise finite difference method and the Runge–Kutta algorithm. The electrothermal modelling includes thermal conduction, convective thermal loss and radiation effects. The temperature dependence of resistivity and thermal conductivity of single crystal silicon have also been taken into consideration in the electrothermal modelling. It is calculated from the simulation results that the 'cold' beam of the electrothermal actuator is not only a mechanical constraint but also a thermal response compensation structure. The 0–90% electrothermal rise times for the individual 'hot' and 'cold' beams are calculated to be 32.9 ms and 42.8 ms, respectively, while the 0–90% electrothermal rise time for the whole actuator is calculated to be 17.3 ms. Nonlinear cubic stiffness has been considered in the thermal-mechanical modelling. Dynamic performances of the device have been characterized using a laser vibrometer, and the 0–90% thermal response time of the whole structure has been measured to be 16.8 ms, which matches well with the modelling results. The displacements of the device under different driving conditions and at resonant frequency have been modelled and measured, and the results from both modelling and experiment agree reasonably well. This work provides a comprehensive understanding of the dynamic behaviour of the electrothermal actuation mechanism. The model will be useful for designing control systems for microelectrothermal actuated devices

  7. Development of electrothermal actuation based planar variable optical attenuators (VOAs)

    International Nuclear Information System (INIS)

    Lee, Chengkuo; Yeh, J Andrew

    2006-01-01

    Several sorts of MEMS (Microelectromechanical Systems) based have been demonstrated by using electrostatic actuation scheme up to date. The comb drive and parallel plate are the two most common electrostatic actuators that have been well studied in variable optical attenuator (VOA) applications. In addition to the known retro-reflection type of optical attenuation being realized by our new devices driven by electrothermal actuators in present study, a novel planar tilted mirror with rotational and translation moving capability is proposed by using electrothermal actuators as well. Using electrothermal actuators to provide said planar tilted mirror with rotational and translational displacement has granted us a more efficient way to perform the light attenuation for in-plane structure. The static and transient characteristics of devices operated at ambient room temperature environment show good repeatability and stability

  8. Electrothermally actuated tunable clamped-guided resonant microbeams

    KAUST Repository

    Alcheikh, Nouha

    2017-06-11

    We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide–range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.

  9. Electrothermally actuated tunable clamped-guided resonant microbeams

    Science.gov (United States)

    Alcheikh, N.; Hajjaj, A. Z.; Jaber, N.; Younis, M. I.

    2018-01-01

    We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide-range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.

  10. Effect of impurities in the electrothermic instability

    International Nuclear Information System (INIS)

    Azevedo, M.T. de.

    1982-04-01

    It is proposed a model for a ''impure'' plasma based on the homogenous hydrogen plasma used in the theory formulated by Tomimura and Haines to explain the increasing of instable electrothermal modes with wave vector perpendicular to the applyed magnetic field. The impurities are implicity introduced in the transport coeficients of the model of two fluids through the effective charge number Z eff as suggested by Duechs et al., Furth etc... The results obtained are: (i) the greatest increasing ratio for the absolute mode (non-convective) decreases with the increasing of Z eff going to zero for a given value of these parameter which is denominated Z crit ; (ii) the wavelenght associated with that greatest ratio of increasing decreases with the increasing of Z eff ; (iii) Z crit x T eo /T io curves, where T eo and T io are the electronic and ionic temperatures of equilibri um show that, for each value of T eo (used as a parameter) there is a limiting value Z crit from which the plasma is stable, independently of the temperature ratio. The correlation of these results with that of a difuse pinch model, which shows the tendency in assume in the stationary state a filamental current structure is inconclusive with respect to the Z eff dependence. (M.W.O.) [pt

  11. Electrothermal frequency references in standard CMOS

    CERN Document Server

    Kashmiri, S Mahdi

    2013-01-01

    This book describes an alternative method of accurate on-chip frequency generation in standard CMOS IC processes. This method exploits the thermal-diffusivity of silicon, the rate at which heat diffuses through a silicon substrate.  This is the first book describing thermal-diffusivity-based frequency references, including the complete theoretical methodology supported by practical realizations that prove the feasibility of the method.  Coverage also includes several circuit and system-level solutions for the analog electronic circuit design challenges faced.   ·         Surveys the state-of-the-art in all-silicon frequency references; ·         Examines the thermal properties of silicon as a solution for the challenge of on-chip accurate frequency generation; ·         Uses simplified modeling approaches that allow an electronics engineer easily to simulate the electrothermal elements; ·         Follows a top-down methodology in circuit design, in which system-level des...

  12. Bringing part of the lab to the field: On-site chromium speciation in seawater by electrodeposition of Cr(III)/Cr(VI) on portable coiled-filament assemblies and measurement in the lab by electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Badiei, Hamid R.; McEnaney, Jennifer; Karanassios, Vassili

    2012-01-01

    A field-deployable electrochemical approach to preconcentration, matrix clean up and selective electrodeposition of Cr(III) and Cr(III) + Cr(VI) in seawater is described. Using portable, battery-operated electrochemical instrumentation, Cr species in seawater were electrodeposited in the field on portable coiled-filament assemblies made from Re. Assemblies with dried residues of Cr(III) or Cr(III) + Cr(VI) on them were transported to the lab for concentration determination by electrothermal, near-torch vaporization (NTV) sample introduction and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Electrodeposition offers selective species deposition, preconcentration and matrix clean up from seawater samples. For selective deposition, free Cr(VI) was electrodeposited at − 0.3 V and Cr(III) + Cr(VI) at − 1.6 V (both vs Ag/AgCl). Interestingly, at 0 V (vs Ag/AgCl) and in the absence of an electrodeposition potential only Cr(VI) was spontaneously and selectively adsorbed on the coil and reasons for this are given. Due to preconcentration afforded by electrodeposition, the detection limits obtained after a 60 s electrodeposition at the voltages stated above using buffered (pH = 4.7) artificial seawater spiked with either Cr(III) or Cr(VI) were 20 pg/mL for Cr(III) and 10 pg/mL for Cr(VI). For comparison, the detection limit for Cr obtained by pipetting directly on the coil 5 μL of diluted standard solution was 500 pg/mL, thus it was concluded that electrodeposition offered 40 to 60 fold improvements. Matrix clean up is required due to the high salt content of seawater and this was addressed by simply rinsing the coil with 18.2 MΩ water without any loss of Cr species. Reasons for this are provided. The method was validated in the lab using buffered artificial seawater and it was used in the field for the first time by sampling seawater, buffering it and immediately electrodepositing Cr species on portable assemblies on-site. Electrodeposition in the

  13. Interfase y software de control para operar en sincronismo un automuestreador y un atomizador electrotérmico por filamento de tungsteno en espectrofotometría de absorción atómica Development of interface and software for synchronous operation of an autosampler and a tungsten coil electrothermal atomizer coupled to an atomic absorption spectophotometer

    Directory of Open Access Journals (Sweden)

    J. Neira

    1998-07-01

    Full Text Available The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 10-µl injections of solutions (prepared in 0.2% v/v HNO3 using autosampler and manual sample introduction, and also by long term operation.

  14. Coupling sequential injection on-line preconcentration by means of a renewable microcolumn with ion-exchange beads with detection by electrothermal atomic absorption spectrometry. Comparing the performance of eluting the loaded beads with transporting them directly into the graphite tube

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2001-01-01

    The design of a flow injection/sequential injection (FIA/SIA) on-line preconcentration system incorporating a renewable microcolumn with ion-exchange beads and interfaced with an electrothermal atomic absorption spectrometry (ETAAS) detector is described, and its practical applicability.......4% for the procedure in which the loaded beads are transported directly to the graphite furnace for pyrolysis and atomization, and even improved in comparison to the traditional unidirectional and bidirectional repetitive elution procedures which under comparable conditions yield R.S.D.-values of 5.8 and 4...

  15. Parallel-beams/lever electrothermal out-of-plane actuator

    NARCIS (Netherlands)

    Deladi, S.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2004-01-01

    We report on the design, modeling, fabrication and testing of a powerful electrothermal actuator allowing for various modes of movement and exhibiting forces large enough to be usable in a micro-tribotester. The performance of the actuator has been simulated combining numerical and analytical

  16. Scalable Pressure Sensor Based on Electrothermally Operated Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Alcheikh, Nouha; Younis, Mohammad I.

    2017-01-01

    We experimentally demonstrate a new pressure sensor that offers the flexibility of being scalable to small sizes up to the nano regime. Unlike conventional pressure sensors that rely on large diaphragms and big-surface structures, the principle of operation here relies on convective cooling of the air surrounding an electrothermally heated resonant structure, which can be a beam or a bridge. This concept is demonstrated using an electrothermally tuned and electrostatically driven MEMS resonator, which is designed to be deliberately curved. We show that the variation of pressure can be tracked accurately by monitoring the change in the resonance frequency of the resonator at a constant electrothermal voltage. We show that the range of the sensed pressure and the sensitivity of detection are controllable by the amount of the applied electrothermal voltage. Theoretically, we verify the device concept using a multi-physics nonlinear finite element model. The proposed pressure sensor is simple in principle and design and offers the possibility of further miniaturization to the nanoscale.

  17. Scalable Pressure Sensor Based on Electrothermally Operated Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-11-03

    We experimentally demonstrate a new pressure sensor that offers the flexibility of being scalable to small sizes up to the nano regime. Unlike conventional pressure sensors that rely on large diaphragms and big-surface structures, the principle of operation here relies on convective cooling of the air surrounding an electrothermally heated resonant structure, which can be a beam or a bridge. This concept is demonstrated using an electrothermally tuned and electrostatically driven MEMS resonator, which is designed to be deliberately curved. We show that the variation of pressure can be tracked accurately by monitoring the change in the resonance frequency of the resonator at a constant electrothermal voltage. We show that the range of the sensed pressure and the sensitivity of detection are controllable by the amount of the applied electrothermal voltage. Theoretically, we verify the device concept using a multi-physics nonlinear finite element model. The proposed pressure sensor is simple in principle and design and offers the possibility of further miniaturization to the nanoscale.

  18. Electrothermal efficiency, temperature and thermal conductivity

    Indian Academy of Sciences (India)

    A study was made to evaluate the electrothermal efficiency of a DC arc plasma torch and temperature and thermal conductivity of plasma jet in the torch. The torch was operated at power levels from 4 to 20 kW in non-transferred arc mode. The effect of nitrogen in combination with argon as plasma gas on the above ...

  19. Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses

    International Nuclear Information System (INIS)

    Han, Jeong Sam

    2010-01-01

    In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator

  20. A novel electro-thermal model for wide bandgap semiconductor based devices

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    This paper propose a novel Electro-Thermal Model for the new generation of power electronics WBG-devices (by considering the SiC MOSFET-CMF20120D from CREE), which is able to estimate the device junction and case temperature. The Device-Model estimates the voltage drop and the switching energies...... by considering the device current, the off-state blocking voltage and junction temperature variation. Moreover, the proposed Thermal-Model is able to consider the thermal coupling within the MOSFET and its freewheeling diode, integrated into the same package, and the influence of the ambient temperature...... variation. The importance of temperature loop feedback in the estimation accuracy of device junction and case temperature is studied. Furthermore, the Safe Operating Area (SOA) of the SiC MOSFET is determined for 2L-VSI applications which are using sinusoidal PWM. Thus, by considering the heatsink thermal...

  1. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    Science.gov (United States)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  2. Magnetic-field dependence of electrothermal conductivity in YBCO

    Energy Technology Data Exchange (ETDEWEB)

    Marino, A.; Uribe, R. [Universidad del Tolima, Ibague (Colombia); Grupo de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogota (Colombia)

    2008-11-15

    Experimental measurements of the electrothermal conductivity (P) near T{sub c}, as a function of external magnetic field were carried out in undoped YBCO (123) superconducting samples. The electrothermal conductivity which relates electrical and thermal currents, depends on the applied magnetic field in high T{sub c} materials, contrary to conventional low T{sub c} superconductors where P is nearly independent of the magnetic field. The experimental P(B,T) data determined from resistivity and thermopower measurements were analyzed in terms of theoretical models and showed a behavior consistent with an order-parameter symmetry (OPS) of d{sub x{sup 2}-y{sup 2}}-wave type. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. A zero-dimensional model for electrothermal-chemical launchers

    International Nuclear Information System (INIS)

    Song Shengyi; Chen Li; Sun Chengwei

    2002-01-01

    In this paper a zero-dimensional (0-D) model for the electrothermal-chemical (ETC) launchers has been established, where the propellant is an energetic work liquid. The model consists of three parts to correspond to three steps of the process in ETC launching. The results calculated with the model are well compared to the measured ones. Additionally, the dependence of chamber pressure, mass fraction of burnt propellant and muzzle velocity of projectile on capillary current has been investigated

  4. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  5. An electrothermal chemical technology for thermal spray coatings

    International Nuclear Information System (INIS)

    Wald, S.; Appelbaum, G.; Alimi, R.; Rabani, L.; Zoler, D.; Zhitomirsky, V.; Factor, M.; Roman, I.

    1998-01-01

    A new spray technology for producing hard-coatings, has been developed at the SOREQ Nuclear Research Center. The concept is based on the extensive experience accumulated at SOREQ in the course of the development of Electrothermal (ET), Electrothermal-Chemical (ETC) and Solid-Propellant Electrothermal-Chemical (SPETC) guns(r). High quality coatings may be obtained by thermal spraying powder particles onto a variety of substrates. Mature state-of-the-art technologies such as plasma spray, high velocity oxy fuel (HVOF) and detonation gun (D-Gun) are widely used for many applications. As each method has its own drawbacks there is a need for a combination of several parameters which cannot be achieved by any existing individual commercial technology. The method presented is oriented toward a high-quality, multi-step, high-throughput, easily programmable continuous coating process and relatively inexpensive technology. The combustion products of a solid or liquid propellant accelerate the powder particles of the coating material. A pulsed-plasma jet, provided by a confined capillary discharge, ignites the propellant and controls the combustion process. The powder particles are accelerated to velocities over 1000 m/s. Due to the very high carrier gas density, high velocity, high throughput and high powder consumption efficiency are obtained. The plasma jet enables control of the gas temperature and consequently influences the powder temperature

  6. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  7. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process

    International Nuclear Information System (INIS)

    Chen, Mingbiao; Bai, Fanfei; Song, Wenji; Lv, Jie; Lin, Shili

    2017-01-01

    Highlights: • 2D network equivalent circuit considers the interplay of cell units. • The temperature non-uniformity Φ of multilayer model is bigger than that of lumped model. • The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. • Increasing the thermal conductivity of the separator can effectively relieve the heat spot effect of ISC. - Abstract: As the electrical and thermal characteristic will affect the batteries’ safety, performance, calendar life and capacity fading, an electro-thermal coupled model for pouch battery LiFePO_4/C is developed in normal discharge and internal short circuit process. The battery is discretized into many cell elements which are united as a 2D network equivalent circuit. The electro-thermal model is solved with finite difference method. Non-uniformity of current distribution and temperature distribution is simulated and the result is validated with experiment data at various discharge rates. Comparison of the lumped model and the multilayer structure model shows that the temperature non-uniformity Φ of multilayer model is bigger than that of lumped model and shows more precise. The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. The electro-thermal model can also be used to guide the safety design of battery. The temperature of the ISC element near tabs is the highest because the equivalent resistance of the external circuit (not including the ISC element) is the smallest when the resistance of cell units is small. It is found that increasing the thermal conductivity of integrated layer can effectively relieve the heat spot effect of ISC.

  8. Contribution to the electrothermal simulation in power electronics. Development of a simulation methodology applied to switching circuits under variable operating conditions; Contribution a la simulation electrothermique en electronique de puissance. Developpement d`une methode de simulation pour circuits de commutation soumis a des commandes variables

    Energy Technology Data Exchange (ETDEWEB)

    Vales, P.

    1997-03-19

    In modern hybrid or monolithic integrated power circuits, electrothermal effects can no longer be ignored. A methodology is proposed in order to simulate electrothermal effects in power circuits, with a significant reduction of the computation time while taking into account electrical and thermal time constants which are usually widely different. A supervising program, written in Fortran, uses system call sequences and manages an interactive dialog between a fast thermal simulator and a general electrical simulator. This explicit coupling process between two specific simulators requires a multi-task operating system. The developed software allows for the prediction of the electrothermal power dissipation drift in the active areas of components, and the prediction of thermally-induced coupling effects between adjacent components. An application to the study of hard switching circuits working under variable operating conditions is presented

  9. Transient electro-thermal modeling of bipolar power semiconductor devices

    CERN Document Server

    Gachovska, Tanya Kirilova; Du, Bin

    2013-01-01

    This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio

  10. Nanostructured carbon materials based electrothermal air pump actuators

    Science.gov (United States)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with

  11. Experimental evidences of electro-thermal ablation acceleration of water

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1987-07-01

    We report the first demonstrations of driving water of about 1000 grams by electro-thermally ablated gas pressure in a cavity with a single exhauster. A blob of water was shot into the air with a shooting angle of about 45 deg, and the flight velocity observed was about 13 meters per second with the capacitor (28μF) charged up to 10 KV. The discharge sound was almost suppressed by the water blob loaded in the chamber possilbly because the energy of sound was dissipated into the water blob. The application of this ablation water driver to ship propulsion is also discussed. (author)

  12. Laser-induced fluorescence with an OPO system. Part II: direct determination of lead content in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF).

    Science.gov (United States)

    Le Bihan, A; Lijour, Y; Giamarchi, P; Burel-Deschamps, L; Stephan, L

    2003-03-01

    Fluorescence was induced by coupling a laser with an optical parametric oscillator (OPO) to develop an analytical method for the direct determination of lead content, at ultra-trace level, in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF). The optimization of atomization conditions, laser pulse energy, and mainly temporal parameters allowed us to reach a 3 fg detection limit (0.3 ng L(-1)) despite the low repetition rate of the device. The expected error on predicted concentrations of lead, at trace levels, in seawater was below 15%.

  13. Rigorous Mathematical Modeling of an Adsorption System With Electrothermal Regeneration of the Used Adsorbent

    National Research Council Canada - National Science Library

    Petkovska, Menka; Antov-Bozalo, Danijela; Nikacevic, Nikola

    2006-01-01

    The general objective of the project is fundamental mathematical modeling of a complex TSA system with electrothermal desorption step, with absorbers assembled of one or more cartridge-type, radial...

  14. Rigorous Mathematical Modeling of an Adsorption System With Electrothermal Regeneration of the Used Adsorbent

    National Research Council Canada - National Science Library

    Petkovska, Menka; Antov-Bozalo, Danijela; Markovic, Ana

    2005-01-01

    The general objective of the project is fundamental mathematical modeling of a complex TSA system with electrothermal desorption step, with adsorbers assembled of one or more activated carbon fiber clot (ACFC...

  15. A scalable pressure sensor based on an electrothermally and electrostatically operated resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Hafiz, Md Abdullah Al; Ilyas, Saad; Younis, Mohammad I.

    2017-01-01

    We present a pressure sensor based on the convective cooling of the air surrounding an electrothermally heated resonant bridge. Unlike conventional pressure sensors that rely on diaphragm deformation in response to pressure, the sensor does

  16. A low-power-consumption out-of-Plane electrothermal actuator

    OpenAIRE

    Girbau Sala, David; Llamas Morote, Marco Antonio; Casals Terré, Jasmina; Simó Selvas, Francisco Javier; Pradell i Cara, Lluís; Lázaro Guillén, Antoni

    2007-01-01

    This paper proposes a new vertical electrothermal actuator. It can be considered as a hybrid between the traditional in-plane buckle-beam actuator and the vertical hot-cold actuator. It is here referred to as vertical buckle beam. At identical dimensional and bias conditions, it features a displacement larger than that of other vertical electrothermal actuators proposed so far in the literature. The actuator performance is demonstrated by means of an analytical model along with finite-element...

  17. Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging

    Directory of Open Access Journals (Sweden)

    Joris de Hoog

    2018-03-01

    Full Text Available Fast charging is an exciting topic in the field of electric and hybrid electric vehicles (EVs/HEVs. In order to achieve faster charging times, fast-charging applications involve high-current profiles which can lead to high cell temperature increase, and in some cases thermal runaways. There has been some research on the impact caused by fast-charging profiles. This research is mostly focused on the electrical, thermal and aging aspects of the cell individually, but these factors are never treated together. In this paper, the thermal progression of the lithium-ion battery under specific fast-charging profiles is investigated and modeled. The cell is a Lithium Nickel Manganese Cobalt Oxide/graphite-based cell (NMC rated at 20 Ah, and thermal images during fast-charging have been taken at four degradation states: 100%, 90%, 85%, and 80% State-of-Health (SoH. A semi-empirical resistance aging model is developed using gathered data from extensive cycling and calendar aging tests, which is coupled to an electrothermal model. This novel combined model achieves good agreement with the measurements, with simulation results always within 2 °C of the measured values. This study presents a modeling methodology that is usable to predict the potential temperature distribution for lithium-ion batteries (LiBs during fast-charging profiles at different aging states, which would be of benefit for Battery Management Systems (BMS in future thermal strategies.

  18. Development of the striation and filament form of the electrothermal instability

    Science.gov (United States)

    Yu, Edmund; Awe, T. J.; Yelton, W. G.; McKenzie, B. B.; Peterson, K. J.; Bauer, B. S.; Hutchinson, T. M.; Fuelling, S.; Yates, K. C.; Shipley, G.

    2017-10-01

    Magnetically imploded liners have broad application to ICF, dynamic material property studies, and flux compression. An important consideration in liner performance is the electrothermal instability (ETI), an Ohmic heating instability that manifests in 2 ways: assuming vertical current flow, ETI forms hot, horizontal bands (striations) in metals, and vertical filaments in plasmas. Striations are especially relevant in that they can develop into density perturbations, which then couple to the dangerous magneto Rayleigh-Taylor (MRT) instability during liner acceleration. Recent visible emission images of Ohmically heated rods show evidence of both the striation and filament form of ETI, suggesting several questions: (1) can simulation qualitatively reproduce the data? (2) If so, what seeds the striation ETI, and how does it transition to filaments? (3) Does the striation develop into a strong density perturbation, important for MRT? In this work, we use analytic theory and 3D MHD simulation to study how isolated resistive inclusions, embedded in a perfectly smooth rod and communicating through current redistribution, can be used to address the above questions. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DOE NNSA under contract DE-NA0003525.

  19. A carbon nanofibre scanning probe assembled using an electrothermal microgripper

    DEFF Research Database (Denmark)

    Carlson, Kenneth; Dyvelkov, Karin Nordström; Eicchorn, V.

    2007-01-01

    Functional devices can be directly assembled using microgrippers with an in situ electron microscope. Two simple and compact silicon microgripper designs are investigated here. These are operated by electrothermal actuation, and are used to transfer a catalytically grown multi-walled carbon...... nanofibre from a fixed position on a substrate to the tip of an atomic force microscope cantilever, inside a scanning electron microscope. Scanning of high aspect ratio trenches using the nanofibre supertip shows a significantly better performance than that with standard pyramidal silicon tips. Based...... on manipulation experiments as well as a simple analysis, we show that shear pulling (lateral movement of the gripper) is far more effective than tensile pulling (vertical movement of gripper) for the mechanical removal of carbon nanotubes from a substrate....

  20. A carbon nanofibre scanning probe assembled using an electrothermal microgripper

    International Nuclear Information System (INIS)

    Carlson, K; Andersen, K N; Eichorn, V; Petersen, D H; Moelhave, K; Bu, I Y Y; Teo, K B K; Milne, W I; Fatikow, S; Boeggild, P

    2007-01-01

    Functional devices can be directly assembled using microgrippers with an in situ electron microscope. Two simple and compact silicon microgripper designs are investigated here. These are operated by electrothermal actuation, and are used to transfer a catalytically grown multi-walled carbon nanofibre from a fixed position on a substrate to the tip of an atomic force microscope cantilever, inside a scanning electron microscope. Scanning of high aspect ratio trenches using the nanofibre supertip shows a significantly better performance than that with standard pyramidal silicon tips. Based on manipulation experiments as well as a simple analysis, we show that shear pulling (lateral movement of the gripper) is far more effective than tensile pulling (vertical movement of gripper) for the mechanical removal of carbon nanotubes from a substrate

  1. Infrared electro-thermal NDE of stainless steel

    International Nuclear Information System (INIS)

    Green, D.R.; Hassberger, J.A.

    1975-01-01

    Electro-thermal examination, a branch of thermal testing, is a promising method being developed for nondestructive examination of stainless steel welds. This paper describes the first phase of development; i.e., preliminary demonstration and laboratory evaluation of the method's sensitivity to notches in Type 304 stainless steel plate specimens. It also includes a description of the basic principles, together with a description of the hardware and experimental results showing that electrical discharge machined notches down to 0.16 cm long x 0.08 cm deep were detected. A qualitative technique for interpreting the test results to determine whether defects are at the surface or deeper within the material is demonstrated

  2. Numerical simulation of travelling wave induced electrothermal fluid flow

    International Nuclear Information System (INIS)

    Perch-Nielsen, Ivan R; Green, Nicolas G; Wolff, Anders

    2004-01-01

    Many microdevices for manipulating particles and cells use electric fields to produce a motive force on the particles. The movement of particles in non-uniform electric fields is called dielectrophoresis, and the usual method of applying this effect is to pass the particle suspension over a microelectrode structure. If the suspension has a noticeable conductivity, one important side effect is that the electric field drives a substantial conduction current through the fluid, causing localized Joule-heating. The resulting thermal gradient produces local conductivity and permittivity changes in the fluid. Dielectrophoretic forces acting upon these pockets of fluid will then produce motion of both the fluid and the particles. This paper presents a numerical solution of the electrical force and the resulting electrothermal driven fluid flow on a travelling wave structure. This common electrode geometry consists of interdigitated electrodes laid down in a long array, with the phase of the applied potential shifted by 90 0 on each subsequent electrode. The resulting travelling electric field was simulated and the thermal field and electrical body force on the fluid calculated, for devices constructed from two typical materials: silicon and glass. The electrothermal fluid flow in the electrolyte over the electrode array was then numerically simulated. The model predicts that the thermal field depends on the conductivity and applied voltage, but more importantly on the geometry of the system and the material used in the construction of the device. The velocity of the fluid flow depends critically on the same parameters, with slight differences in the thermal field for glass and silicon leading to diametrically opposite flow direction with respect to the travelling field for the two materials. In addition, the imposition of slight external temperature gradients is shown to have a large effect on the fluid flow in the device, under certain conditions leading to a reversal of

  3. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sardans, Jordi; Montes, Fernando; Penuelas, Josep

    2010-01-01

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at μg L -1 levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages of

  4. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  5. An electro-thermal model and its application on a spiral-wound lithium ion battery with porous current collectors

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Shi, Yixiang; Saw, Lip Huat; Tay, Andrew A.O.

    2014-01-01

    Highlights: • A local electro-thermal model is developed to verify the validity of a lump electro-thermal model. • Comparisons on edge effect of batteries with porous current collectors and batteries normal current collector foil. • Investigation on thermal performance of novel battery with porous current collector sheets. - Abstract: A local electro-thermal model for a spiral-wound lithium ion battery is developed to provide detailed and local insights of electrochemistry, transport phenomenon and heat transfer processes in spiral-wound geometries. The discharging potential, bulk heat generation rate, battery surface temperature and the temperature distribution within battery predicted by the model are used to verify a lumped electro-thermal model. The results show good agreement between the lumped electro-thermal model and the local electro-thermal model. The edge effect is investigated using the local electro-thermal model. And the results indicate that a novel battery with porous current collector sheets has a higher utilization rate of porous electrode materials than a commercial battery with normal current collector foils. The novel battery with porous current collector sheets is also investigated using the local electro-thermal model, simulation results show smaller liquid phase potential gradient and smaller liquid concentration gradient in the novel battery. The increased electrical resistance has minor effect on the overall heat generation within the battery when the porous current collector is employed, while it reduces the discharging potential of the battery

  6. Experimental electro-thermal method for nondestructively testing welds in stainless steel pipes

    International Nuclear Information System (INIS)

    Green, D.R.

    1979-01-01

    Welds in austenitic stainless steel pipes are notoriously difficult to nondestructively examine using conventional ultrasonic and eddy current methods. Survace irregularities and microscopic variations in magnetic permeability cause false eddy current signal variations. Ultrasonic methods have been developed which use computer processing of the data to overcome some of the problems. Electro-thermal nondestructive testing shows promise for detecting flaws that are difficult to detect using other NDT methods. Results of a project completed to develop and demonstrate the potential of an electro-thermal method for nondestructively testing stainless steel pipe welds are presented. Electro-thermal NDT uses a brief pulse of electrical current injected into the pipe. Defects at any depth within the weld cause small differences in surface electrical current distribution. These cause short-lived transient temperature differences on the pipe's surface that are mapped using an infrared scanning camera. Localized microstructural differences and normal surface roughness in the welds have little effect on the surface temperatures

  7. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2017-06-01

    Full Text Available A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.

  8. Electrothermal debracketing: patient acceptance and effects on the dental pulp.

    Science.gov (United States)

    Dovgan, J S; Walton, R E; Bishara, S E

    1995-09-01

    Adhesives bond ceramic brackets so effectively that their removal by mechanical forces can fracture the brackets and may damage the tooth surface. Electrothermal debracketers have been developed to facilitate removal; whether the heat generated will damage the underlying pulp is unclear. In our experiment, a prototype device with a high heat tip was used to remove brackets from premolars in patients. The following parameters were evaluated: (1) time required for removal, (2) patient acceptance, and (3) histologic effect on the pulp. Forty-eight experimental teeth planned for orthodontic extraction were bonded by a filled Bis-GMA composite resin and a monocrystalline sapphire bracket. After the chemically cured composite set, debracketing was performed according to the manufacturer's recommendations. Seventeen premolars were not etched or bracketed and served as controls. The interval between heat application and removal of the bracket was timed. Patients were questioned as to sensations during debracketing. Teeth were extracted at 5 to 7 or 28 to 32 days and histologically prepared. Pulps were evaluated for alterations. Brackets were removed in an average of 2.1 seconds, usually at the bracket/composite interface. Patient acceptance was generally positive. Pulpal necrosis was not observed but, in a number of specimens, slight inflammation and odontoblastic disruption occurred at both observation periods.

  9. Modeling the capillary discharge of an electrothermal (ET) launcher

    Science.gov (United States)

    Least, Travis

    Over the past few decades, different branches of the US Department of Defense (DoD) have invested at improving the field ability of electromagnetic launchers. One such focus has been on achieving hypervelocity launch velocities in excess of 7 km/s for direct launch to space applications [1]. It has been shown that pre-injection is required for this to be achieved. One method of pre-injection which has promise involves using an electro-thermal (ET) due to its ability to achieve the desired velocities with a minimal amount of hot plasma injected into the launcher behind the projectile. Despite the demonstration of pre-injection using this method, polymer ablation is not very well known and this makes it challenging to predict how the system will behave for a given input of electrical power. In this work, the rate of ablation has been studied and predicted using different models to generate the best possible characteristic curve. [1] - Wetz, David A., Francis Stefani, Jerald V. Parker, and Ian R. McNab. "Advancements in the Development of a Plasma-Driven Electromagnetic Launcher." IEEE TRANSACTIONS ON MAGNETICS 45.1 (2009): 495--500. IEEE Xplore. Web. 18 Aug. 2012.

  10. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    Science.gov (United States)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  11. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate.

    Science.gov (United States)

    Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H; Pappas, R Steven

    2017-05-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection (LODs) for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method LOD was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. A Combined Electro-Thermal Breakdown Model for Oil-Impregnated Paper

    Directory of Open Access Journals (Sweden)

    Meng Huang

    2017-12-01

    Full Text Available The breakdown property of oil-impregnated paper is a key factor for converter transformer design and operation, but it is not well understood. In this paper, breakdown voltages of oil-impregnated paper were measured at different temperatures. The results showed that with the increase of temperature, electrical, electro-thermal and thermal breakdown occurred successively. An electro-thermal breakdown model was proposed based on the heat equilibrium and space charge transport, and negative differential mobility was introduced to the model. It was shown that carrier mobility determined whether it was electrical or thermal breakdown, and the model can effectively explain the temperature-dependent breakdown.

  13. Electrothermally-Actuated Micromirrors with Bimorph Actuators—Bending-Type and Torsion-Type

    Directory of Open Access Journals (Sweden)

    Cheng-Hua Tsai

    2015-06-01

    Full Text Available Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA. A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  14. Chemonucleolysis and intradiscal electrothermal therapy: What is the current evidence?

    International Nuclear Information System (INIS)

    Relder-Puig, Rosemarie; Gyimesi, M.; Mittermayr, T.; Geiger-Gritsch, S.

    2009-01-01

    We evaluated the efficacy and safety of chemonucleolysis and intradiscal electrothermal therapy (IDET) on the basis of the data presented in recently published papers with respect to pain relief, function, and complication rates. Detailed searches for English and German articles published between 2003 and 2008 were performed in a number of electronic databases. Further publications were identified by manual search. For summarizing the evidence, we considered only systematic reviews and controlled studies. The internal validity of reviews and studies was judged by two authors independently. Data extraction was performed by one author, and the extracted data was checked for completeness and correctness by a second author. The evidence of the efficacy of chemonucleolysis using chymopapain or collagenase is summarized in two recent, high-quality systematic reviews. We found 5 controlled studies evaluating nucleolysis using an oxygen-ozone mixture (O 2 O 3 -nucleolysis). Some of those studies were of limited methodological quality, but all showed the efficacy of O 2 O 3 -nucleolysis in comparison to microdiscectomy or the use of alternative substances. There is hardly any data regarding O 2 O 3 -nucleolysis complications. Regarding IDET, the authors of the 6 identified systematic reviews come to different conclusions about the efficacy of the procedure. The results of the 3 included controlled IDET studies, of which 2 are of high methodological quality, are also conflicting. The complication rates range from 0 to 15%. In summary, the evidence of efficacy is presently more compelling for chemonucleolysis than for IDET. This may also be because indications for chemonucleolysis are more firmly established. However, safety aspects should be better evaluated and presented in the literature. (orig.)

  15. Characterization of an electrothermal plasma source for fusion transient simulations

    Science.gov (United States)

    Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2018-01-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.

  16. A Temperature-to-Digital Converter Based on an Optimized Electrothermal Filter

    NARCIS (Netherlands)

    Kashmiri, S.M.; Xia, S.; Makinwa, K.A.A.

    2009-01-01

    This paper describes the design of a CMOS temperature-to-digital converter (TDC). It operates by measuring the temperature-dependent phase shift of an electrothermal filter (ETF). Compared to previous work, this TDC employs an ETF whose layout has been optimized to minimize the thermal phase spread

  17. Electrothermal Behavior of High-Frequency Silicon-On-Glass Transistors

    NARCIS (Netherlands)

    Nenadovic, N.

    2004-01-01

    In this thesis, research is focused on the investigation of electrothermal effects in high-speed silicon transistors. At high current levels the power dissipation in these devices can lead to heating of both the device itself and the adjacent devices. In advanced transistors these effects are

  18. Use of electrothermal atomization for determining metallic impurities in nuclearly pure uranium compounds

    International Nuclear Information System (INIS)

    Franco, M.B.

    1986-01-01

    Atomic absorption spectrometry with electrothermal atomization was used for the determination of Al, Cd, Cr, Fe, Mn, Mo and Ni as impurities in uranium oxide samples. The determinations were performed in solubilized samples both with and without uranium separation as well as in solid samples. (Author) [pt

  19. A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Muscato, Orazio; Di Stefano, Vincenza [Univ. degli Studi di Catania (Italy). Dipt. di Matematica e Informatica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin (Germany)

    2012-11-01

    This paper is concerned with electron transport and heat generation in semiconductor devices. An improved version of the electrothermal Monte Carlo method is presented. This modification has better approximation properties due to reduced statistical fluctuations. The corresponding transport equations are provided and results of numerical experiments are presented.

  20. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vojtková, Blanka; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s489-s491 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] Institutional research plan: CEZ:AV0Z40310501 Keywords : solid sampling * electrothermal atomic absorption spectrometry * trace analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  1. Electro-thermal modeling of high power IGBT module short-circuits with experimental validation

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2015-01-01

    A novel Insulated Gate Bipolar Transistor (IGBT) electro-thermal modeling approach involving PSpice and ANSYS/Icepak with both high accuracy and simulation speed has been presented to study short-circuit of a 1.7 kV/1 kA commercial IGBT module. The approach successfully predicts the current...

  2. Determination of metallic impurities in nuclearly pure uranium compounds by electrothermal spectrophotometry

    International Nuclear Information System (INIS)

    Franco, M.B.

    1986-01-01

    Atomic absorption spectrometry, with electrothermal atomization, has been used for the determination of Al, Cd, Cr, Fe, Mn and Ni in uranium oxide standards. The analysis were performed without sample dissolution and without uranium chemical separation. This technique is adequate for the qualification of nuclearly pure uranium, according to the standard specifications. (Author) [pt

  3. Use of electrothermal atomization for determining metallic impurities in nuclearly pure uranium compounds

    International Nuclear Information System (INIS)

    Franco, M.B.

    1985-01-01

    Atomic absorption spectrometry with electrothermal atomization was used for the determination of Al, Cd, Cr, Fe, Mn, Mo and Ni as impurities in uranium oxide samples. The determinations were performed in solubilized samples both with and without uranium separation as well as in solid samples. (Author) [pt

  4. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  5. Pocket rocket: An electrothermal plasma micro-thruster

    Science.gov (United States)

    Greig, Amelia Diane

    Recently, an increase in use of micro-satellites constructed from commercial off the shelf (COTS) components has developed, to address the large costs associated with designing, testing and launching satellites. One particular type of micro-satellite of interest are CubeSats, which are modular 10 cm cubic satellites with total weight less than 1.33 kg. To assist with orbit boosting and attitude control of CubeSats, micro-propulsion systems are required, but are currently limited. A potential electrothermal plasma micro-thruster for use with CubeSats or other micro-satellites is under development at The Australian National University and forms the basis for this work. The thruster, known as ‘Pocket Rocket’, utilises neutral gas heating from ion-neutral collisions within a weakly ionised asymmetric plasma discharge, increasing the exhaust thermal velocity of the propellant gas, thereby producing higher thrust than if the propellant was emitted cold. In this work, neutral gas temperature of the Pocket Rocket discharge is studied in depth using rovibrational spectroscopy of the nitrogen (N2) second positive system (C3Πu → B3Πg), using both pure N2 and argon/N2 mixtures as the operating gas. Volume averaged steady state gas temperatures are measured for a range of operating conditions, with an analytical collisional model developed to verify experimental results. Results show that neutral gas heating is occurring with volume averaged steady state temperatures reaching 430 K in N2 and 1060 K for argon with 1% N2 at standard operating conditions of 1.5 Torr pressure and 10 W power input, demonstrating proof of concept for the Pocket Rocket thruster. Spatiotemporal profiles of gas temperature identify that the dominant heating mechanisms are ion-neutral collisions within the discharge and wall heating from ion bombardment of the thruster walls. To complement the experimental results, computational fluid dynamics (CFD) simulations using the commercial CFD

  6. Speciation analysis of thallium using electrothermal AAS following on-line pre-concentration in a microcolumn filled with multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Gil, R.A.; Pacheco, P.H.; Olsina, R.A.; Martinez, L.D.; Smichowski, P.

    2009-01-01

    The enrichment ability of carbon nanotubes (CNTs) was investigated and a new method established for the determination of trace thallium species in environmental samples using electrothermal atomization-atomic absorption spectrometry (ETAAS). The CNTs were employed as sorbent substrate in a continuous flow system coupled to ETAAS. Parameters influencing the recoveries of thallium were optimized. Under optimal conditions, the detection limit and precision of the method were 0.009 μg L -1 and 3.9 %, respectively. The method was applied to the determination of thallium in real environmental samples and the recoveries were in the range from 96 to 100 %. This system was able to separate thallium (I) from the matrix, which allowed its selective determination. The total thallium content was then determined by reducing Tl(III) with hydroxylamine. All these experimental results indicated that this new procedure can be applied to the determination of trace thallium in drinking water samples. (author)

  7. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2009-01-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  8. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D{sub 2} and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground

  9. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    Katskov, Dmitri

    2015-01-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D 2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  10. Electrothermal model of choking-coils for the analysis of dc-dc converters

    Energy Technology Data Exchange (ETDEWEB)

    Gorecki, Krzysztof, E-mail: gorecki@am.gdynia.pl [Gdynia Maritime University, Department of Marine Electronics, Morska 83, Gdynia (Poland); Detka, Kalina [Pomeranian Higher School in Gdynia, Opata Hackiego 8-10, Gdynia (Poland)

    2012-09-01

    The paper concerns modelling the choking-coil for the needs of the electrothermal analysis of dc-dc converters. A new electrothermal model of the choking-coil is proposed. This model is dedicated for SPICE software and it takes into account nonlinearity of the dependences of the inductance on the current, selfheating and mutual thermal interactions between the core and the winding. The structure of this model is described in detail and its correctness is experimentally verified for the choking-coils with the ferrite and powder cores. Both the characteristics of the choking-coils and the buck converter with these choking-coils were considered. The satisfying agreement between the results of calculations and measurements is obtained.

  11. Determination of microquantities of cesium in leaching tests by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Crubellati, R.O.; Di Santo, N.R.

    1988-01-01

    An original method for cesium determinations by atomic absorption spectrometry with electrothermal atomization is described. The effect of foreign ions (alkali and earth alkaline metals) present in leaching test of glasses with incorporated radioactive wastes was studied. The effect of different mineral acids was also investigated. A comparison between the flame excitation method and the electrothermal atomization one was made. Under optimum conditions, cesium in quantities down to 700 ng in 1000 ml of sample could be determined. The calibration curve was linear in the range of 0.7 - 15 ng/mL. The fact that the proposed determinations can be performed in a short time and that a small sample volume is required are fundamental advantages of this method, compared with the flame excitation procedure. Besides, it is adaptable to be applied in hot cells and glove boxes. (Author) [es

  12. Electrothermal model of choking-coils for the analysis of dc–dc converters

    International Nuclear Information System (INIS)

    Górecki, Krzysztof; Detka, Kalina

    2012-01-01

    The paper concerns modelling the choking-coil for the needs of the electrothermal analysis of dc–dc converters. A new electrothermal model of the choking-coil is proposed. This model is dedicated for SPICE software and it takes into account nonlinearity of the dependences of the inductance on the current, selfheating and mutual thermal interactions between the core and the winding. The structure of this model is described in detail and its correctness is experimentally verified for the choking-coils with the ferrite and powder cores. Both the characteristics of the choking-coils and the buck converter with these choking-coils were considered. The satisfying agreement between the results of calculations and measurements is obtained.

  13. Lithium-ion Battery Electrothermal Model, Parameter Estimation, and Simulation Environment

    Directory of Open Access Journals (Sweden)

    Simone Orcioni

    2017-03-01

    Full Text Available The market for lithium-ion batteries is growing exponentially. The performance of battery cells is growing due to improving production technology, but market request is growing even more rapidly. Modeling and characterization of single cells and an efficient simulation environment is fundamental for the development of an efficient battery management system. The present work is devoted to defining a novel lumped electrothermal circuit of a single battery cell, the extraction procedure of the parameters of the single cell from experiments, and a simulation environment in SystemC-WMS for the simulation of a battery pack. The electrothermal model of the cell was validated against experimental measurements obtained in a climatic chamber. The model is then used to simulate a 48-cell battery, allowing statistical variations among parameters. The different behaviors of the cells in terms of state of charge, current, voltage, or heat flow rate can be observed in the results of the simulation environment.

  14. A Fast Electro-Thermal Co-Simulation Modeling Approach for SiC Power MOSFETs

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Bahman, Amir Sajjad; Iannuzzo, Francesco

    2017-01-01

    The purpose of this work is to propose a novel electro-thermal co-simulation approach for the new generation of SiC MOSFETs, by development of a PSpice-based compact and physical SiC MOSFET model including temperature dependency of several parameters and a Simulink-based thermal network. The PSpice...... the FEM simulation of the DUT’s structure, performed in ANSYS Icepack. A MATLAB script is used to process the simulation data and feed the needed settings and parameters back into the simulation. The parameters for a CREE 1.2 kV/30 A SiC MOSFET have been identified and the electro-thermal model has been...

  15. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    Science.gov (United States)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  16. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  17. Determination of lead and cadmium in urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vasil'eva, L.A.; Grinshtejn, I.L.; Gucher, Sh.; Izgi, B.

    2008-01-01

    The applicability of a DETATA sorbent to the preconcentration of lead and cadmium followed by the determination of these elements in urine using atomic absorption spectrometry with electrothermal atomization was demonstrated. After preconcentration by a factor of 10, the limits of detection were 0.01 and 0.2 μg/l for cadmium and lead, respectively. The accuracy of the results was supported by the analysis of Seronorm TM Trace Elements Urine Batch no.101021 [ru

  18. The electrical Discharge Characteristics of the 3.5 KJ Electrothermal Plasma Gun Experiment

    International Nuclear Information System (INIS)

    Diab, F.; El-Aragi, G.M.; El-Kashef, G.M.; Saudy, A.H.

    2013-01-01

    In order to better understand the operating characteristics of an electrothermal plasma gun and its design, a variety of operation characteristics including ( the length of the capillary, applied voltage, diameter of the capillary tube, circuit inductance) were investigated to determine performance effects and viability in a real system. An Electrothermal Plasma Gun (ETG) is composed of a capillary discharge tube made of Teflon operated with simple RLC circuit. The device called Electrothermal Gun (ETG) which is composed of 4 capacitors (70 μF, 10 kV, 1.3 μH) connected in parallel to a plasma source by means of one high power plane transmission line by mean of a switch triggered by negative pulse 360/385 V. For the present studies a simple RLC was chosen, which allowed the circuit parameters to be easily measure d. The electrothermal discharge characteristics of the plasma gun operated in open air, So that at atmospheric pressure the main parameters were measured. The gun voltage and discharge current are measured with voltage divider and Rogowiski coil respectively. From the results recorded we found that, the current lagged the voltage i-e the plasma source has an inductive reactivity. Moreover, the current value was changed by changing the circuit parameters, including the discharge voltage and circuit inductance, and the wire properties such as the length and diameter. The maximum gun current ranged between (5 - 50 KA) according to the charging voltage of capacitors between (1-7 KV), a typical discharge times are on the order r of 125 μS.

  19. Integration of Solid-phase Extraction with Electrothermal Atomic Absorption Spectrometry for Determination of Trace Elements

    OpenAIRE

    NUKATSUKA, Isoshi; OHZEKI, Kunio

    2006-01-01

    An enrichment step in a sample treatment is essential for trace analysis to improve the sensitivity and to eliminate the matrix of the sample. Solid-phase extraction (SPE) is one of the widely used enrichment technique. Electrothermal atomic absorption spectrometry (ETAAS) is a well-established determination technique for trace elements. The integration of SPE with ETAAS leads to further improvement of sensitivity, an automation of the measurement and the economy in the sample size, amounts o...

  20. Estimation of the thermal characteristics of a bridgewire environment by an electrothermal response test

    International Nuclear Information System (INIS)

    Donaldson, A.B.; Strasburg, A.C.

    1976-01-01

    The electrothermal response of an electroexplosive device is determined by applying a subcritical square wave current pulse to the bridgewire and monitoring the resultant temperature excursion. The temperature profile, thus obtained, can be utilized with a mathematical model called the ''Probe Method'' for approximating thermal properties. It is possible to estimate the thermal conductivity and specific heat of the pyrotechnic and the thermal contact conductance at the bridgewire/pyrotechnic interface by this technique

  1. Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields

    Directory of Open Access Journals (Sweden)

    Weiyu Liu

    2017-11-01

    Full Text Available In this work, we focus on investigating electrothermal flow in rotating electric fields (ROT-ETF, with primary attention paid to the horizontal traveling-wave electrothermal (TWET vortex induced at the center of the electric field. The frequency-dependent flow profiles in the microdevice are analyzed using different heat transfer models. Accordingly, we address in particular the importance of electrode cooling in ROT-ETF as metal electrodes of high thermal conductivity, while substrate material of low heat dissipation capability is employed to develop such microfluidic chips. Under this circumstance, cooling of electrode array due to external natural convection on millimeter-scale electrode pads for external wire connection occurs and makes the internal temperature maxima shift from the electrode plane to a bit of distance right above the cross-shaped interelectrode gaps, giving rise to reversal of flow rotation from a typical repulsion-type to attraction-type induction vortex, which is in good accordance with our experimental observations of co-field TWET streaming at frequencies in the order of reciprocal charge relaxation time of the bulk fluid. These results point out a way to make a correct interpretation of out-of-phase electrothermal streaming behavior, which holds great potential for handing high-conductivity analytes in modern microfluidic systems.

  2. Dynamic behavior of ultra large graphene-based membranes using electrothermal transduction

    Science.gov (United States)

    Al-mashaal, A. K.; Wood, G. S.; Torin, A.; Mastropaolo, E.; Newton, M. J.; Cheung, R.

    2017-12-01

    This letter reports an experimental study of an electrothermal actuator made from an ultra-large graphene-based bilayer thin film with a diameter to thickness aspect ratio of ˜10 000. Suspended thin films consisting of multilayer graphene and 350-500 nm-thick Poly(methyl methacrylate) have been transferred over circular cavities with a diameter of 3.5 mm. The use of bilayer materials with different mechanical and thermal properties results in thin film structures that can be induced to vibrate mechanically under the electrothermal transduction mechanism. The dynamic response of the bilayer has been investigated electrothermally by driving the structures with a combination of alternating current and direct current actuation voltages ( Va c and Vd c) and characterizing their resonant frequencies. It has been found that the bilayer thin film structure behaves as a membrane. In addition, the actuation configurations affect not only the amplitude of vibration but also the tuning of the resonant frequency of the vibrating membranes. The existence of Joule heating-induced tension lowers the mechanical stiffness of the membrane and hence shifts the resonant frequency downwards by -108187 ppm. A resonant frequency of 3.26 kHz with a vibration amplitude of 4.34 nm has been achieved for 350 nm-thick membranes under actuation voltages of 1 V of Va c and 8 V of Vd c.

  3. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    Science.gov (United States)

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  4. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.K. [Department of Health and Environment, Kosin University, Dong Sam Dong, Young Do Gu, Busan (Korea, Republic of); Sivakumar, S., E-mail: ssivaphd@yahoo.com [Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 627-706 (Korea, Republic of); Rood, M.J. [Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL (United States); Kim, B.J. [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center (ERDC-CERL), Champaign, IL (United States)

    2016-01-15

    Highlights: • We study the adsorption and desorption of VOCs by an activated carbon fiber cloth. • Desorption concentration was controlled via electrothermal heating. • The desorption rate was successfully equalized and controlled by this system. - Abstract: Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40–900 ppm{sub v}) and superficial gas velocity (6.3–9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  5. In-situ water vaporization improves bitumen production during electrothermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Calgary Univ., AB (Canada); McGee, B. [E-T Energy, Calgary, AB (Canada); Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Electro-thermal processes are now being considered as an alternative or complementary process to steam injection processes. This study used an in situ vaporized water process to optimize electrothermal processes for steam injection enhanced oil recovery (EOR). A simulation tool was used to model electro-thermal processes in an Athabasca oil sands reservoir. Incremental oil recovery was estimated based on a 3-block conceptual model. A field scale model was then used to investigate the effects of electrode spacing, water injection rates, and electrical heating rates on bitumen recovery. Results of the simulation studies were then analyzed using a statistical tool in order to determine optimal conditions for maximizing bitumen production. Results of the study showed that incremental recovery using the water vaporization technique resulted in oil recovery rates of 25 per cent original oil in place (OOIP). Sensitivity analyses showed that medium electrical heating rates, low water injection rates, and small spacings between electrodes maximized bitumen production rates. It was concluded that the technique can be used alone or combined with other methods to economically produce bitumens. 2 refs., 7 tabs., 9 figs.

  6. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagarová, Ingrid, E-mail: hagarova@fns.uniba.sk; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb–dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l{sup −1} HNO{sub 3}. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l{sup −1}, quantification limit of 0.38 μg l{sup −1}, relative standard deviation of 4.2% (for 2 μg l{sup −1} of Pb; n = 26), linearity of the calibration graph in the range of 0.5–4.0 μg l{sup −1} (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91–96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters. - Highlights: • The potential of coacervates for the extraction of metal ions is examined. • No difficulties in coupling of ETAAS with the proposed CAE are observed. • Achieved preconcentration factor results in enhanced sensitivity. • Analytical performance is confirmed by the reliable determination of trace Pb. • The proposed CAE is ecofriendly and efficient.

  7. Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption

    Directory of Open Access Journals (Sweden)

    Miguel Lara-Castro

    2017-06-01

    Full Text Available Endoscopic optical-coherence tomography (OCT systems require low cost mirrors with small footprint size, out-of-plane deflections and low bias voltage. These requirements can be achieved with electrothermal actuators based on microelectromechanical systems (MEMS. We present the design and modeling of polysilicon electrothermal actuators for a MEMS mirror (100 μm × 100 μm × 2.25 μm. These actuators are composed by two beam types (2.25 μm thickness with different cross-section area, which are separated by 2 μm gap. The mirror and actuators are designed through the Sandia Ultra-planar Multi-level MEMS Technology V (SUMMiT V® process, obtaining a small footprint size (1028 μm × 1028 µm for actuators of 550 µm length. The actuators have out-of-plane displacements caused by low dc voltages and without use material layers with distinct thermal expansion coefficients. The temperature behavior along the actuators is calculated through analytical models that include terms of heat energy generation, heat conduction and heat energy loss. The force method is used to predict the maximum out-of-plane displacements in the actuator tip as function of supplied voltage. Both analytical models, under steady-state conditions, employ the polysilicon resistivity as function of the temperature. The electrothermal-and structural behavior of the actuators is studied considering different beams dimensions (length and width and dc bias voltages from 0.5 to 2.5 V. For 2.5 V, the actuator of 550 µm length reaches a maximum temperature, displacement and electrical power of 115 °C, 10.3 µm and 6.3 mW, respectively. The designed actuation mechanism can be useful for MEMS mirrors of different sizes with potential application in endoscopic OCT systems that require low power consumption.

  8. Experimental investigation and characterization of micro resistance welding with an electro-thermal actuator

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Yeh, Cheng-Chi; Hsu Wensyang

    2009-01-01

    Resistance welding is a common scheme of assembly on the macro scale by pressing together two workpieces with current passing through them to generate joule heating at the contact region due to high contact resistance. However, micro assembly by resistance welding is seldom reported. Here, resistance welding with an electro-thermal microactuator to assemble micro Ni structures is experimentally investigated and characterized. The bent-beam electro-thermal microactuator is designed to provide the necessary displacements and pressing forces. The two-mask metal-based surface micromachining process is adopted to fabricate the micro Ni structures. The calibrated initial contact resistance is shown to decrease with increasing contact pressure. Furthermore, stronger welding strength is achieved at a smaller initial contact resistance, which indicates that a larger clamping force would enhance the welding strength as large as 3.09 MPa (74.4 µN) at a contact resistance of 2.7 Ω here. The input welding energy is also found to be a critical factor. In our tests, when welding energy is below the threshold limit of 0.05 J, the welding trials all fail. For the energy between 0.05 J and 1 J, there is a transition from a lower yield of 33.3% to a higher yield of 58.3%. At high welding energy, between 1 and 10 J, 100% yield is achieved. With the demonstration and characterization of micro resistance welding by the electro-thermal microactuator, the scheme proposed here would be helpful in the automation of micro assembly

  9. Experimental observation of the stratified electrothermal instability on aluminum with thickness greater than a skin depth

    Science.gov (United States)

    Hutchinson, T. M.; Awe, T. J.; Bauer, B. S.; Yates, K. C.; Yu, E. P.; Yelton, W. G.; Fuelling, S.

    2018-05-01

    A direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μ m Parylene-N were driven to 1 MA in 100 ns , with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally correlated stratified thermal perturbations perpendicular to the current whose wave numbers, k , grew exponentially with rate γ (k ) =0.06 n s-1-(0.4 n s-1μ m2ra d-2 ) k2 in ˜1 g /c m3 , ˜7000 K aluminum.

  10. Electro-thermal Modeling of Modern Power Devices for Studying Abnormal Operating Conditions

    DEFF Research Database (Denmark)

    Wu, Rui

    in industrial power electronic systems in the range above 10 kW. The failure of IGBTs can be generally classified as catastrophic failures and wear out failures. A wear out failure is mainly induced by accumulated degradation with time, while a catastrophic failure is triggered by a single-event abnormal....... The objective of this project has been to model and predict the electro-thermal behavior of IGBT power modules under abnormal conditions, especially short circuits. A thorough investigation on catastrophic failure modes and mechanisms of modern power semiconductor devices, including IGBTs and power diodes, has...

  11. Matrix modifiers application during microimpurities determination in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  12. Matrix modification for determination of microimpurities in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  13. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  14. Experimental Observation of the Stratified Electrothermal Instability on Aluminum with Thickness Greater than a Skin Depth

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, Trevor M. [Univ. of Nevada, Reno, NV (United States); Hutchinson, Trevor M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Awe, Thomas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States); Yates, Kevin [Univ. of New Mexico, Albuquerque, NM (United States); Yu, Edmund p. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yelton, William G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fuelling, Stephan [Univ. of Nevada, Reno, NV (United States)

    2017-07-01

    The first direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μm Parylene-N were driven to 1 MA in approximately 100 ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally-correlated stratified structures perpendicular to the current. Strata amplitudes grow rapidly, while their Fourier spectrum shifts toward longer wavelength. Assuming blackbody emission, radiometric calculations indicate strata are temperature perturbations that grow exponentially with rate γ = 0.04 ns -1 in 3000- 10,000 K aluminum.

  15. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed...... by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the eluate forwarded...

  16. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  17. Nursing care for patients receiving percutaneous lumbar discectomy and intradiscal electrothermal treatment for lumbar disc herniation

    International Nuclear Information System (INIS)

    Mou Ling

    2009-01-01

    Objective: To summarize the nursing experience in caring patients with lumbar intervertebral disc herniation who received percutaneous lumbar discectomy (PLD) together with intradiscal electrothermal treatment (IDET) under DSA guidance. Methods: The perioperative nursing care measures carried out in 126 patients with lumbar intervertebral disc herniation who underwent PLD and IDET were retrospectively analyzed. Results: Successful treatment of PLD and IDET was accomplished in 112 cases. Under comprehensive and scientific nursing care and observation, no serious complications occurred. Conclusion: Scientific and proper nursing care is a strong guarantee for a successful surgery and a better recovery in treating lumbar intervertebral disc herniation with PLD and IDET under DSA guidance. (authors)

  18. Determination of cobalt in human liver by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Caldas, E.D.; Gine-Rosias, M.F.; Dorea, J.G.

    1991-01-01

    A detailed study of the use of electrothermal atomic absorption spectrometry for the determination of cobalt in human liver is described. Comparisons of sample digestion using nitric acid or nitric acid plus perchloric acid, atomization procedures and the application of palladium and magnesium nitrate chemical modifiers were studied using NBS SRM 1577a Bovine Liver. The best results were achieved with sample decomposition in nitric acid, atomization from the tube wall and no chemical modifier. Cobalt was determined in 90 samples of livers from foetuses and deceased newborns using the standard addition method with an average recovery of 99.8%. (author). 30 refs.; 4 figs.; 2 tabs

  19. ASPECTS REGARDING THE ELECTROTHERMAL HEATING THROUGH ELECTROMAGNETIC INDUCTION

    Directory of Open Access Journals (Sweden)

    Teodor LEUCA

    2009-05-01

    Full Text Available The paper present the numerical modeling of the electromagnetic phenomena coupled with the thermic ones when processing the semi-finished products made up of non-ferrous alloy, through electromagnetic induction with the purpose to obtain a homogenous heating of the pieces in the shortest time. Maxwell’s equations that describe the heating process through induction, show that the important quantity, basically important to determine the eddy currents induced in the piece, is the intensity of the magnetic field, resulting the electromagnetic losses, due to their transformation in thermic energy. So far the results of the experiments have show that the intensity of the magnetic field considering a long inductor is more intense in the center of the inductor and weaker at its extremes. The purpose of the numerical modeling is to render solution to homogenize the intensity of the magnetic field according to the geometry of the inductor.

  20. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: A comparative study

    International Nuclear Information System (INIS)

    Cabon, J.Y.; Giamarchi, P.; Le Bihan, A.

    2010-01-01

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L -1 (20 μL, 3σ) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3σ) of 3 ng L -1 (i.e. 54 pM) for total Fe concentration with the use a 20 μL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 μg L -1 ) seawater sample were in good agreement with the certified values.

  1. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: a comparative study.

    Science.gov (United States)

    Cabon, J Y; Giamarchi, P; Le Bihan, A

    2010-04-07

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L(-1) (20 microL, 3sigma) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3sigma) of 3 ng L(-1) (i.e. 54 pM) for total Fe concentration with the use a 20 microL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 microg L(-1)) seawater sample were in good agreement with the certified values. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Characterising thermal resistances and capacitances of GaN high-electron-mobility transistors through dynamic electrothermal measurements

    DEFF Research Database (Denmark)

    Wei, Wei; Mikkelsen, Jan H.; Jensen, Ole Kiel

    2014-01-01

    This study presents a method to characterise thermal resistances and capacitances of GaN high-electron-mobility transistors (HEMTs) through dynamic electrothermal measurements. A measured relation between RF gain and the channel temperature (Tc) is formed and used for indirect measurements...

  3. Determination of chromium in treated crayfish, Procambarus clarkii, by electrothermal ASS: study of chromium accumulation in different tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, F.; Diaz, J.; Medina, J.; Del Ramo, J.; Pastor, A.

    1986-06-01

    In the present study, the authors investigated the accumulation of chromium in muscle, hepatopancreas, antennal glands, and gills of Procambarus clarkii (Girard) from Lake Albufera following Cr(VI)-exposure. Determinations of chromium were made by using Electrothermal Atomic Absorption Spectroscopy and the standard additions method.

  4. A low aspect ratio electrothermal gun for metal plasma vapor discharge and ceramic nanopowder production

    International Nuclear Information System (INIS)

    Kim, Kyoung Jin; Peterson, Dennis R.

    2008-01-01

    Traditionally, the electrothermal gun design has the bore of a large aspect ratio: however, a low aspect ratio design with a shorter bore length has been employed for efficient production of metal plasma vapors and synthesis of nanomaterials. In a comparison of the arc resistance-current relationship, a low aspect ratio design is found to exhibit distinctively different characteristics compared to a high aspect ratio design, and this trend is explained by the scaling law of plasma properties including theory of plasma electrical conductivity. A one-dimensional isothermal model has been applied to the present experiments to confirm the scaling laws, and it was found that the present modification of the electrothermal gun is able to produce fully ionized metal plasma vapor, while the plasma vapor produced in a conventional design is partially ionized. Also, by reacting metal plasma vapors with the controlled gases in the reaction chamber, nanoscale materials such as aluminum oxide, aluminum nitride, and titanium oxide were synthesized successfully

  5. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    Science.gov (United States)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  6. Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads

    KAUST Repository

    Alcheikh, Nouha

    2018-02-14

    The paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.

  7. Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads

    KAUST Repository

    Alcheikh, Nouha; Tella, Sherif Adekunle; Younis, Mohammad I.

    2018-01-01

    The paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.

  8. A scalable pressure sensor based on an electrothermally and electrostatically operated resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-11-29

    We present a pressure sensor based on the convective cooling of the air surrounding an electrothermally heated resonant bridge. Unlike conventional pressure sensors that rely on diaphragm deformation in response to pressure, the sensor does not require diaphragms of the large surface area, and hence is scalable and can be realized even at the nanoscale. The concept is demonstrated using both straight and arch microbeam resonators driven and sensed electrostatically. The change in the surrounding pressure is shown to be accurately tracked by monitoring the change in the resonance frequency of the structure. The sensitivity of the sensor, which is controllable by the applied electrothermal load, is shown near 57 811 ppm/mbar for a pressure range from 1 to 10 Torr. We show that a straight beam operated near the buckling threshold leads to the maximum sensitivity of the device. The experimental data and simulation results, based on a multi-physics finite element model, demonstrate the feasibility and simplicity of the pressure sensor. Published by AIP Publishing.

  9. Effect of electrothermal annealing on the transformation behavior of TiNi shape memory alloy and two-way shape memory spring actuated by direct electrical current

    International Nuclear Information System (INIS)

    Wang, Z.G.; Zu, X.T.; Feng, X.D.; Zhu, S.; Deng, J.; Wang, L.M.

    2004-01-01

    In this work, the effect of electrothermal annealing on the transformation characterization of TiNi shape memory alloy and the electrothermal actuating characteristics of a two-way shape memory effect (TWSME) extension spring were investigated with direct electrical current. The results showed that with increasing direct electrical current density, the B2→R-phase transformation shifts to a lower temperature and R-phase→B19' shifts to a higher temperature in the cooling process. When annealing electrical current density reached 12.2 A/mm 2 , the R-phase disappeared and austenite transformed into martensite directly. The electrothermal annealing was an effective method of heat treatment in a selected part of shape memory alloy device. The electrothermal actuating characteristics of a TWSME spring showed that the time response and the maximum elongation greatly depended on the magnitude of the electrical current

  10. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  11. Practical aspects of the uncertainty and traceability of spectrochemical measurement results by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duta, S.; Robouch, P.; Barbu, L.; Taylor, P.

    2007-01-01

    The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out

  12. Practical aspects of the uncertainty and traceability of spectrochemical measurement results by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duta, S. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium); National Institute of Metrology, 042122 Vitan Barzesti 11, sector 4 Bucharest (Romania)], E-mail: steluta.duta@inm.ro; Robouch, P. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: Piotr.Robouch@ec.europa.eu; Barbu, L. [Coca-Cola Entreprise, Analytical Department, Bucharest (Romania); Taylor, P. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: Philip.Taylor@ec.europa.eu

    2007-04-15

    The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out.

  13. Analysis of nuclear grade uranium oxides by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.; Pazos, A.L.

    1986-01-01

    The application of atomic absorption spectrometry for the determination of five trace impurities in nuclear grade uranium oxides is described. The elements were separated from the uranium matrix by extraction chromatography and determined in 5.5 M nitric acid by electrothermal atomization using pyrolytic graphite coated tubes. Two elements, cadmium and chromium, with different volatility characteristics were employed to investigate the operating conditions. Drying and ashing conditions were studied for both elements. Ramp and constant potential (step) heating modes have also been studied and compared. Good reproducibility and a longer life of graphite tubes were obtained with ramp atomization. Detection limits (in micrograms per gram of uranium) were: Cd 0.01; Cr 0.1; Cu 0.4; Mn 0.04 and Ni 0.2. (author) [es

  14. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  15. An Electro-thermal MEMS Gripper with Large Tip Opening and Holding Force: Design and Characterization

    Directory of Open Access Journals (Sweden)

    Jay J. KHAZAAI

    2011-12-01

    Full Text Available This paper presents the design, fabrication, and characterization of a novel MEMS gripper that is driven electro-thermally by a new V-shape actuator (VSA and a set of modified Guckel U-shape actuators (mUSA. The modification of the angle between the hot and cold arms in the mUSA facilitates unidirectional in-plane displacement causing the opening of the gripper. This configuration distinguishes the MEMS gripper from others in its ability to generate larger tip displacement and greater holding force. The metallic structures allow for a low operating voltage and low overall power consumption. A tip opening of 173.4 μm has been measured at the operating voltage of 1 V with consuming power of 0.85 W. MetalMUMPs is employed to fabricate the device, in which electroplated nickel is used as the structural material.

  16. Feasibility study on infrared electro-thermal NDE of stainless steel

    International Nuclear Information System (INIS)

    Green, D.R.; Hassberger, J.A.

    1975-11-01

    Electro-thermal examination, a branch of thermal testing (TT), is a promising method being developed for NDE of stainless steel welds. This report describes the first phase of development; i.e., preliminary demonstration and laboratory evaluation of the method's sensitivity to notches in Type 304 stainless steel plate specimens. It also includes a description of the basic principles, together with a description of the hardware and experimental results showing that electrical discharge machined notches down to 0.16 cm (0.06 in.) long x 0.08 cm (0.03 in.) deep were detected. A qualitative technique for interpreting the test results to determine whether defects are at the surface or deeper within the material is demonstrated

  17. Determination of cobalt in human biological liquids from electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dragan, Felicia [University of Oradea, Faculty of Medicine and Pharmacy, 29 N Jiga, 410028 Oradea (Romania); HIncu, Lucian [University of Medicine and Pharmacy ' Carol Davila' , Faculty of Pharmacy, 6 Traian Vuia, 020956 Bucuresti (Romania); Bratu, Ioan, E-mail: fdragan@uoradea.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Problems and possibilities of the determination of Co in serum and urine samples by electrothermal atomic absorption spectrometry (ETAAS) are described. Optimal instrumental parameters as well as a suitable atomizer, calibration procedure and hydrogen peroxide as modifier are proposed for direct ETAAS measurement of Co in serum and urine. The detection limit achieved was 0.1 {mu}g L{sup -1} for both matrices and relative standard deviations varied in the range 5-20% depending on the Co concentration in the sample. The validity of the method was verified by the analyses of standard reference materials. For serum samples with Co content lower than the detection limit, a separation and preconcentration procedure based on liquid/liquid extraction is suggested prior to determination of Co in the organic phase by ETAAS. This procedure permits determination of 0.02 {mu}g L{sup -1} Co in serum samples with a relative standard deviation of 10-18%.

  18. Fringe-tunable electrothermal Fresnel mirror for use in compact and high-speed diffusion sensor.

    Science.gov (United States)

    Kiuchi, Yuki; Taguchi, Yoshihiro; Nagasaka, Yuji

    2017-01-23

    This paper reports the development of an electrothermal microelectromechanical systems (MEMS) mirror with serpentine shape actuators. A micro Fresnel mirror with fringe-spacing tunability is required to realize a compact and high-speed diffusion sensor for biological samples whose diffusion coefficient changes significantly because of a conformational change. In this case, the measurement time-constant is dependent on the fringe-spacing and diffusion coefficient of the sample. In this study, a fringe-tunable MEMS mirror with an actuation voltage less than 10 V was developed. The characteristics of the fabricated mirror were investigated experimentally. A high-visibility optical interference fringe was successfully demonstrated using both an ultranarrow-linewidth solid-state laser and a low-cost compact laser diode. The experimental results demonstrated a distinct possibility of developing a measurement device using only simple and low-voltage optical components.

  19. Direct measurement of axial momentum imparted by an electrothermal radiofrequency plasma micro-thruster

    Science.gov (United States)

    Charles, Christine; Boswell, Roderick; Bish, Andrew; Khayms, Vadim; Scholz, Edwin

    2016-05-01

    Gas flow heating using radio frequency plasmas offers the possibility of depositing power in the centre of the flow rather than on the outside, as is the case with electro-thermal systems where thermal wall losses lower efficiency. Improved systems for space propulsion are one possible application and we have tested a prototype micro-thruster on a thrust balance in vacuum. For these initial tests, a fixed component radio frequency matching network weighing 90 grams was closely attached to the thruster in vacuum with the frequency agile radio frequency generator power being delivered via a 50 Ohm cable. Without accounting for system losses (estimated at around 50%), for a few 10s of Watts from the radio frequency generator the specific impulse was tripled to ˜48 seconds and the thrust tripled from 0.8 to 2.4 milli-Newtons.

  20. Direct measurement of axial momentum imparted by an electrothermal radiofrequency plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Christine eCharles

    2016-05-01

    Full Text Available Gas flow heating using radio frequency plasmas offers the possibility of depositing power in the centre of the flow rather than on the outside, as is the case with electro-thermal systems where thermal wall losses lower efficiency. Improved systems for space propulsion are one possible application and we have tested a prototype micro-thruster on a thrust balance in vacuum. For these initial tests, a fixed component radio frequency matching network weighing 90 grams was closely attached to the thruster in vacuum with the frequency agile radio frequency generator power being delivered via a 50 Ohm cable. Without accounting for system losses (estimated at around 50~$%$, for a few 10s of Watts from the radio frequency generator the specific impulse was tripled to $sim$48 seconds and the thrust tripled from 0.8 to 2.4 milli-Newtons.

  1. Ultratrace determination of lead in whole blood using electrothermal atomization laser-excited atomic fluorescence spectrometry.

    Science.gov (United States)

    Wagner, E P; Smith, B W; Winefordner, J D

    1996-09-15

    Laser-excited atomic fluorescence has been used to detect lead that was electrothermally atomized from whole blood in a graphite furnace. A 9 kHz repetition rate copper vapor laser pumped dye laser was used to excite the lead at 283.3 nm, and the resulting atomic fluorescence was detected at 405.8 nm. No matrix modification was used other than a 1:21 dilution of the whole blood with high-purity water. Using the atomic fluorescence peak area as the analytical measure and a background correction technique based upon a simultaneous measurement of the transmitted laser intensity, excellent agreement for NIST and CDC certified whole blood reference samples was obtained with aqueous standards. A limit of detection in blood of 10 fg/mL (100 ag absolute) was achieved.

  2. Laser-excited atomic-fluorescence spectrometry with electrothermal tube atomization.

    Science.gov (United States)

    Vera, J A; Leong, M B; Stevenson, C L; Petrucci, G; Winefordner, J D

    1989-12-01

    The performance of graphite-tube electrothermal atomizers is evaluated for laser-excited atomic-fluorescence spectrometry for several elements. Three pulsed laser systems are used to pump tunable dye lasers which subsequently are used to excite Pb, Ga, In, Fe, Ir, and Tl atoms in the hot graphite tube. The dye laser systems used are pumped by nitrogen, copper vapour and Nd:YAG lasers. Detection limits in the femtogram and subfemtogram range are typically obtained for all elements. A commercial graphite-tube furnace is important for the successful utilization of the laser-based method when the determination of trace elements is intended, especially when complicated matrices may be present.

  3. Creating large out-of-plane displacement electrothermal motion stage by incorporating beams with step features

    International Nuclear Information System (INIS)

    Kim, Yong-Sik; Dagalakis, Nicholas G; Gupta, Satyandra K

    2013-01-01

    Realizing out-of-plane actuation in micro-electro-mechanical systems (MEMS) is still a challenging task. In this paper, the design, fabrication methods and experimental results for a MEMS-based out-of-plane motion stage are presented based on bulk micromachining technologies. This stage is electrothermally actuated for out-of-plane motion by incorporating beams with step features. The fabricated motion stage has demonstrated displacements of 85 µm with 0.4 µm (mA) −1 rates and generated up to 11.8 mN forces with stiffness of 138.8 N m −1 . These properties obtained from the presented stage are comparable to those for in-plane motion stages, therefore making this out-of-plane stage useful when used in combination with in-plane motion stages. (paper)

  4. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mandiwana, Khakhathi L.; Panichev, Nikolay

    2010-01-01

    Solid Certified Reference Materials (CRMs) with known vanadium(+5) content are currently not commercially available. Because of this, vanadium species have been determined in solid CRMs of soil, viz. CRM023-50, CRM024-50, CRM049-50, SQC001 and SQC0012. These CRMs are certified with only total vanadium content. Vanadium(+5) was extracted from soil reference materials with 0.1 M Na 2 CO 3 . The quantification of V(+5) was carried out by electrothermal atomic absorption spectrometry (ET-AAS). The concentration of V(+5) in the analyzed CRMs was found to be ranging between 3.60 and 86.0 μg g -1 . It was also found that SQC001 contains approximately 88% of vanadium as V(+5) species. Statistical evaluation of the results of the two methods by paired t-test was in good agreement at 95% level of confidence.

  5. Computer model for the recombination zone of a microwave-plasma electrothermal rocket

    Energy Technology Data Exchange (ETDEWEB)

    Filpus, J.W.; Hawley, M.C.

    1987-01-01

    As part of a study of the microwave-plasma electrothermal rocket, a computer model of the flow regime below the plasma has been developed. A second-order model, including axial dispersion of energy and material and boundary conditions at infinite length, was developed to partially reproduce the absence of mass-flow rate dependence that was seen in experimental temperature profiles. To solve the equations of the model, a search technique was developed to find the initial derivatives. On integrating with a trial set of initial derivatives, the values and their derivatives were checked to judge whether the values were likely to attain values outside the practical regime, and hence, the boundary conditions at infinity were likely to be violated. Results are presented and directions for further development are suggested. 17 references.

  6. Electro-thermal modelling of polymer lithium batteries for starting period and pulse power

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, P. [Electricite de France DER, Site des Renardieres, Moret-sur-Loing (France); Neri, M. [Electricite de France DER, Site des Renardieres, Moret-sur-Loing (France); Gueguen, M. [Bollore Technologies, Odet, 29 Quimper (France); Lonchampt, G. [CEA/CEREM, CENG-85X, 38 Grenoble (France)

    1995-04-01

    Since power capabilities of solid polymer lithium batteries can only be delivered above 60 C, the thermal management in electric-vehicle applications has to be carefully considered. Electro-thermal modelling of a thermally insulated 200 kg battery was performed, and electrochemical data were obtained from laboratory cell impedance measurements at 20 and 80 C. Starting at 20 C as initial working temperature, the battery reaches 40 C after 150 s of discharge in a 0.5 {Omega} resistance. At 40 C, the useful peak power is 20 kW. The energy expense for heating the battery from 20 to 40 C is 1.4 kWh, corresponding to 6% of the energy available in the battery. After a stand-by period of 24 h, the temperature decreases from 80 to 50 C, allowing efficient starting conditions. (orig.)

  7. Programmable and functional electrothermal bimorph actuators based on large-area anisotropic carbon nanotube paper

    Science.gov (United States)

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2018-04-01

    Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.

  8. Design and characterization of a microelectromechanical system electro-thermal linear motor with interlock mechanism for micro manipulators.

    Science.gov (United States)

    Hu, Tengjiang; Zhao, Yulong; Li, Xiuyuan; Zhao, You; Bai, Yingwei

    2016-03-01

    The design, fabrication, and testing of a novel electro-thermal linear motor for micro manipulators is presented in this paper. The V-shape electro-thermal actuator arrays, micro lever, micro spring, and slider are introduced. In moving operation, the linear motor can move nearly 1 mm displacement with 100 μm each step while keeping the applied voltage as low as 17 V. In holding operation, the motor can stay in one particular position without consuming energy and no creep deformation is found. Actuation force of 12.7 mN indicates the high force generation capability of the device. Experiments of lifetime show that the device can wear over two million cycles of operation. A silicon-on-insulator wafer is introduced to fabricate a high aspect ratio structure and the chip size is 8.5 mm × 8.5 mm × 0.5 mm.

  9. Fabrication of 3D electro-thermal micro actuators in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Li, Qichao; Shan, Chao; Yang, Qing; Chen, Feng; Bian, Hao; Hou, Xun

    2017-02-01

    This paper demonstrates a novel electro-thermal micro actuator's design, fabrication and device tests which combine microfluidic technology and microsolidics process. A three-dimensional solenoid microchannel with high aspect ratio is fabricated inside the silica glass by an improved femtosecond laser wet etch (FLWE) technology, and the diameter of the spiral coil is only 200 μm. Molten alloy (Bi/In/Sn/Pb) with high melting point is injected into the three-dimensional solenoid microchannel inside the silica glass , then it solidifys and forms an electro-thermal micro actuator. The device is capable of achieving precise temperature control and quick response, and can also be easily integrated into MEMS, sensors and `lab on a chip' (LOC) platform inside the fused silica substrate.

  10. Direct determination of beryllium, cadmium, lithium, lead and silver in thorium nitrate solution by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Thulasidas, S.K.; Kulkarni, M.J.; Porwal, N.K.; Page, A.G.; Sastry, M.D.

    1988-01-01

    An electrothermal atomization atomic absorption spectrometric (ET-AAS) method is developed for the direct determination of Ag, Be, Cd, Li and Pb in thorium nitrate solution. The method offers detection of sub-nanogram amounts of these analytes in 100-microgram thorium samples with a precision of around 10%. A number of spiked samples and pre-analyzed ThO 2 samples have been analyzed to evaluate the performance of the analytical methods developed here

  11. New Electro-Thermal Battery Pack Model of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Muhammed Alhanouti

    2016-07-01

    Full Text Available Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO4 battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests.

  12. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-10-01

    Full Text Available A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls.For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  13. Electrothermal Feedback and Absorption-Induced Open-Circuit-Voltage Turnover in Solar Cells

    Science.gov (United States)

    Ullbrich, Sascha; Fischer, Axel; Tang, Zheng; Ávila, Jorge; Bolink, Henk J.; Reineke, Sebastian; Vandewal, Koen

    2018-05-01

    Solar panels easily heat up upon intense solar radiation due to excess energy dissipation of the absorbed photons or by nonradiative recombination of charge carriers. Still, photoinduced self-heating is often ignored when characterizing lab-sized samples. For light-intensity-dependent measurements of the open-circuit voltage (Suns-VO C ), allowing us to characterize the recombination mechanism, sample heating is often not considered, although almost 100% of the absorbed energy is converted into heat. Here, we show that the frequently observed stagnation or even decrease in VOC at increasingly high light intensities can be explained by considering an effective electrothermal feedback between the recombination current and the open-circuit voltage. Our analytical model fully explains the experimental data for various solar-cell technologies, comprising conventional inorganic semiconductors as well as organic and perovskite materials. Furthermore, the model can be exploited to determine the ideality factor, the effective gap, and the temperature rise from a single Suns-VOC measurement at ambient conditions.

  14. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer

    International Nuclear Information System (INIS)

    Kazi, T.G.; Jalbani, N.; Arain, M.B.; Jamali, M.K.; Afridi, H.I.; Sarfraz, R.A.; Shah, A.Q.

    2009-01-01

    It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy

  15. Three types of planar structure microspring electro-thermal actuators with insulating beam constraints

    Science.gov (United States)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-08-01

    A new concept of using an electrically insulating beam as a constraint is proposed to construct planar spring-like electro-thermal actuators with large displacements. On the basis of this concept, three types of microspring actuators with multi-chevron structures and constraint beams are introduced. The constraint beams in one type (the spring) of these devices are horizontally positioned to restrict the expansion of the active arms in the x-direction, and to produce a displacement in the y-direction only. In the other two types of actuators (the deflector and the contractor), the constraint beams are positioned parallel to the active arms. When the constraint beams are on the inner side of the active arms, the actuator produces an outward deflection in the y-direction. When they are on the outside of the active arms, the actuator produces an inward contraction. Finite-element analysis was used to model the performances. The simulation shows that the displacements of these microspring actuators are all proportional to the number of the chevron sections in series, thus achieving superior displacements to alternative actuators. The displacement of a spring actuator strongly depends on the beam angle, and decreases with increasing the beam angle, the deflector is insensitive to the beam angle, while the displacement of a contractor actuator increases with the beam angle.

  16. Photovoltaic optimizer boost converters: Temperature influence and electro-thermal design

    International Nuclear Information System (INIS)

    Graditi, G.; Adinolfi, G.; Tina, G.M.

    2014-01-01

    Highlights: • The influence of temperature on DC–DC converter devices properties is considered. • An electro-thermal design method for PV power optimizer converters is proposed. • The electro-thermal design method proposed is applied to DR boost and SR boost. • Efficiency results of the designed SR converter and DR converters are presented. - Abstract: Objective: Photovoltaic (PV) systems can operate in presence of not uniform working conditions caused by continuously changing temperature and irradiance values and mismatching and shadowing phenomena. The more the PV system works in these conditions, the more its energy performances are negatively affected. Distributed Maximum Power Point Tracking (DMPPT) converters are now increasingly used to overcome this problem and to improve PV applications efficiency. A DMPPT system consists in a DC–DC converters equipped with a suitable controller dedicated to the Maximum Power Point Tracking (MPPT) of a single PV module. It is arranged either inside the junction-box or in a separate box close to the PV generator. Many power optimizers are now commercially available. In spite of different adopted DC–DC converter topologies, the shared interests of DMPPT systems designers are the high efficiency and reliability values. It is worth noting that to obtain so high performances converters, electronic components have to be carefully selected between the whole commercial availability and appropriately matched together. In this scenario, an electro-thermal design methodology is proposed and a reliability study by means of the Military Handbook 217F is carried out. Method: The developed DMPPT converters design method is constituted by many steps. In fact, beginning from installation site, PV generators and load data, this process selects power optimizers commercially available devices and it verifies their electro-thermal behavior to the aim to identify a set of suitable components for DMPPT applications. Repeating this

  17. Determination of molybdenum in human urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pita Calvo, C.; Bermejo Barrera, P.; Bermejo Barrera, A.

    1995-01-01

    Various matrix modifiers were investigated for the determination of molybdenum in human urine samples by electrothermal atomization atomic absorption spectrometry. Methods with nitric acid, barium difluoride, magnesium nitrate, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride were studied by introducing the urine samples directly into the graphite furnace with 0.3% Triton X-100. The charring and atomization curves, the amount of modifier and the calibration and addition graphs were studied in all instances. The precision, accuracy and chemical interferences of the methods were also investigated. The matrix interferences have been removed with the modifiers barium difluoride, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride. The limits of detection and quantification were 0.2 and 0.7 μg l -1 , respectively, for these modifiers. The characteristic masses were 14.1, 18.0 and 14.9 pg of Mo for palladium-magnesium nitrate, palladium-hydroxylamine hydrochloride and barium difluoride, respectively. The method with palladium-magnesium nitrate has been applied to the study of the amount of molybdenum in human urine samples. The molybdenum levels found lie between 4.8-205.6 μg l -1

  18. Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation

    Directory of Open Access Journals (Sweden)

    Yan-jie Ni

    2016-04-01

    Full Text Available A 30 mm electrothermal-chemical (ETC gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.

  19. A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhang

    2015-12-01

    Full Text Available This paper reports a large-range electrothermal bimorph microelectromechanical systems (MEMS mirror with fast thermal response. The actuator of the MEMS mirror is made of three segments of Cu/W bimorphs for lateral shift cancelation and two segments of multimorph beams for obtaining large vertical displacement from the angular motion of the bimorphs. The W layer is also used as the embedded heater. The silicon underneath the entire actuator is completely removed using a unique backside deep-reactive-ion-etching DRIE release process, leading to improved thermal response speed and front-side mirror surface protection. This MEMS mirror can perform both piston and tip-tilt motion. The mirror generates large pure vertical displacement up to 320 μm at only 3 V with a power consumption of 56 mW for each actuator. The maximum optical scan angle achieved is ±18° at 3 V. The measured thermal response time is 15.4 ms and the mechanical resonances of piston and tip-tilt modes are 550 Hz and 832 Hz, respectively.

  20. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-09-01

    Full Text Available A Fourier transform spectrometer (FTS that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work.

  1. Electrothermal piezoresistive cantilever resonators for personal measurements of nanoparticles in workplace exposure

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Wu, Wenze; Uhde, Erik; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Low-cost and low-power piezoresistive cantilever resonators with integrated electrothermal heaters are developed to support the sensing module enhancement of the second generation of handheld cantilever-based airborne nanoparticle (NP) detector (CANTOR-2). These sensors are used for direct-reading of exposure to carbon engineered nanoparticles (ENPs) at indoor workplaces. The cantilever structures having various shapes of free ends are created using silicon bulk micromachining technologies (i.e, rectangular, hammer-head, triangular, and U-shaped cantilevers). For a complete wearable CANTOR-2, all components of the proposed detector can be grouped into two main units depending on their packaging placements (i.e., the NP sampler head and the electronics mounted in a handy-format housing). In the NP sampler head, a miniaturized electrophoretic aerosol sampler and a resonant silicon cantilever mass sensor are employed to collect the ENPs from the air stream to the cantilever surfaces and measuring their mass concentration, respectively. After calibration, the detected ENP mass concentrations of CANTOR-2 show a standard deviation from fast mobility particle sizer (FMPS, TSI 3091) of 8-14%.

  2. Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold

    International Nuclear Information System (INIS)

    Konecna, Marie; Komarek, Josef

    2007-01-01

    Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 deg. C, with Re 1300 deg. C. The relative standard deviation for the determination of 2 μg l -1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l -1 for 2 min electrodeposition, 3.7 ng l -1 for 30 min, 1.5 ng l -1 for 1 h and 0.4 ng l -1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l -1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%

  3. Wet sample digestion for quantification of vanadium(V) in serum by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Heinemann, G.; Vogt, W.; Jacob, K.

    1999-01-01

    Three types of pressure digestion systems used prior to the determination of the ultratrace element vanadium by electrothermal atomic absorption spectrometry were evaluated: The high-pressure ashing (HPA) system, the DAB III pressure digestion system and the pressurized microwave digestion (PMD) system. Complete sample digestion and no loss of graphite tube sensitivity as well as reliable vanadium values could only be achieved with HPA digests of freeze-dried serum. The mean recovery rate was 98% and no loss of tube sensitivity could be observed. Using non-lyophilized serum the mean recovery rate was 70%. The DAB III digestion system, vicarious for closed pressure digestion in steel bombs with an allowable temperature up to about 200C, cannot be recommended to mineralize human biological material for vanadium determinations, because the remaining not completely decomposed organic compounds extracted together with the vanadium-cupferron complex caused a marked carbon-buildup and formation of carbides in the graphite tube were found to change the shape of the absorption signals distinctly, and to decline the tube sensitivity strongly (about 25%) so that reliable results cannot be achieved. The recovery rate was too low in general (about 50%). In addition, a subsequent treatment of the DAB III digests with perchloric acid was unsuccessful. The PMD system proved to be not suited, because the samples became highly contaminated by vanadium possibly from the titan seal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Rare earth analysis in human biological samples by atomic absorption using electrothermal atomization

    International Nuclear Information System (INIS)

    Citron, I.M.; Holtzman, R.B.; Leiman, J.

    1982-01-01

    The determination of Sc and seven rare earth elements, Nd, Sm, Dy, Ho, Eu, Tm, and Yb, in biological samplesby atomic absorption spectrophotometric analysis (AAS) using electrothermal atomization in a pyrolytic graphite tube is shown to be rapid, precise and accurate. The technique utilizes the method of standard additions and linear regression analysis to determine results from peak area data. Inter-elemental interferences are negligible. The elements found sensitive enough for this type of analysis are, in order of decreasing sensitivity, Yb, Eu, Tm, Dy, Sc, Ho, Sm and Nd. The determination in these types of materials of Gd and elements less sensitive to AAS detection than Gd does not appear to be feasible. Results are presented on the concentrations of these elements in 41 samples from human subjects, cows and vegetables with normal environmental exposure to the rare earth elements. The composite percent mean deviation in peak-area readings for all samples and all elements examined was 4%. The mean standard error in the results among samples was about 6.5%

  5. High sensitivity detection of selenium by laser excited atomic fluorescence spectrometry using electrothermal atomization

    International Nuclear Information System (INIS)

    Heitmann, U.; Hese, A.; Schoknecht, G.; Gries, W.

    1995-01-01

    The high sensitivity detection of the trace element selenium is reported. The analytical method applied is Laser Excited Atomic Fluorescence Spectrometry using Electrothermal Atomization within a graphite furnace atomizer. For the production of tunable laser radiation in the VUV spectral region a laser system was developed which consists of two dye lasers pumped by a Nd:YAG laser. The laser radiations are subsequently frequency doubled and sum frequency mixed by nonlinear optical KDP or BBO crystals, respectively. The system works with a repetition rate of 20 Hz and provides output energies of up to 100 μJ in the VUV at a pulse duration of 5 ns. The analytical investigations were focused on the detection of selenium in aqueous solutions and samples of human whole blood. From measurements on aqueous standards detection limits of 1.5 ng/l for selenium were obtained, with corresponding absolute detected masses of only 15 fg. The linear dynamic range spanned six orders of magnitude and good precision was achieved. In case of human whole blood samples the recovery was found to be within the range of 96% to 104%. The determination of the selenium content yielded medians of [119.5 ± 17.3] μg/l for 200 frozen blood samples taken in 1988 and [109.1 ± 15.6] μg/l for 103 fresh blood samples. (author)

  6. Electrothermal modeling, fabrication and analysis of low-power consumption thermal actuator with buckling arm

    KAUST Repository

    So, Hongyun

    2013-10-31

    © 2013, Springer-Verlag Berlin Heidelberg. This paper reports on a novel thermal actuator with sub-micron metallic structures and a buckling arm to operate with low voltages and to generate very large deflections, respectively. A lumped electrothermal model and analysis were also developed to validate the mechanical design and easily predict the temperature distribution along arms of the sub-micron actuator. The actuator was fabricated via the combination of electron beam lithography to form actuator arms with a minimum feature size of 200 nm and lift-off process to deposit a high aspect ratio nickel structure. Reproducible displacements of up to 1.9 μm at the tip were observed up to 250 mV under confocal microscope. The experimentally measured deflection values and theoretically calculated temperature distribution by the developed model were compared with finite element analysis results and they were in good agreement. This study shows a promising approach to develop more sophisticated nano actuators required larger deflections for manipulation of sub-micron scale objects with low-power consumption.

  7. Control of electrothermal heating during regeneration of activated carbon fiber cloth.

    Science.gov (United States)

    Johnsen, David L; Mallouk, Kaitlin E; Rood, Mark J

    2011-01-15

    Electrothermal swing adsorption (ESA) of organic gases generated by industrial processes can reduce atmospheric emissions and allow for reuse of recovered product. Desorption energy efficiency can be improved through control of adsorbent heating, allowing for cost-effective separation and concentration of these gases for reuse. ESA experiments with an air stream containing 2000 ppm(v) isobutane and activated carbon fiber cloth (ACFC) were performed to evaluate regeneration energy consumption. Control logic based on temperature feedback achieved select temperature and power profiles during regeneration cycles while maintaining the ACFC's mean regeneration temperature (200 °C). Energy requirements for regeneration were independent of differences in temperature/power oscillations (1186-1237 kJ/mol of isobutane). ACFC was also heated to a ramped set-point, and the average absolute error between the actual and set-point temperatures was small (0.73%), demonstrating stable control as set-point temperatures vary, which is necessary for practical applications (e.g., higher temperatures for higher boiling point gases). Additional logic that increased the maximum power application at lower ACFC temperatures resulted in a 36% decrease in energy consumption. Implementing such control logic improves energy efficiency for separating and concentrating organic gases for post-desorption liquefaction of the organic gas for reuse.

  8. Experimental Studies of the Electrothermal and Magneto-Rayleigh Taylor Instabilities on Thin Metal Foil Ablations

    Science.gov (United States)

    Steiner, Adam; Yager-Elorriaga, David; Patel, Sonal; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.

    2015-11-01

    The electrothermal instability (ETI) and magneto-Rayleigh Taylor instability (MRT) are important in the implosion of metallic liners, such as magnetized liner implosion fusion (MagLIF). The MAIZE linear transformer driver (LTD) at the University of Michigan generates 200 ns risetime-current pulses of 500 to 600 kA into Al foil liners to study plasma instabilities and implosion dynamics, most recently MRT growth on imploding cylindrical liners. A full circuit model of MAIZE, along with I-V measurements, yields time-resolved load inductance. This has enabled measurements of an effective current-carrying radius to determine implosion velocity and plasma-vacuum interface acceleration. Measurements are also compared to implosion data from 4-time-frame laser shadowgraphy. Improved resolution measurements on the laser shadowgraph system have been used to examine the liner interface early in the shot to examine surface perturbations resulting from ETI for various seeding conditions. Fourier analysis examines the growth rates of wavelength bands of these structures to examine the transition from ETI to MRT. This work was supported by the U.S. DoE through award DE-SC0012328. S.G. Patel is supported by Sandia National Labs. D.A. Yager is supported by NSF fellowship grant DGE 1256260.

  9. Electro-thermal modelling of anode and cathode in micro-EDM

    International Nuclear Information System (INIS)

    Yeo, S H; Kurnia, W; Tan, P C

    2007-01-01

    Micro-electrical discharge machining is an evolution of conventional EDM used for fabricating three-dimensional complex micro-components and microstructure with high precision capabilities. However, due to the stochastic nature of the process, it has not been fully understood. This paper proposes an analytical model based on electro-thermal theory to estimate the geometrical dimensions of micro-crater. The model incorporates voltage, current and pulse-on-time during material removal to predict the temperature distribution on the workpiece as a result of single discharges in micro-EDM. It is assumed that the entire superheated area is ejected from the workpiece surface while only a small fraction of the molten area is expelled. For verification purposes, single discharge experiments using RC pulse generator are performed with pure tungsten as the electrode and AISI 4140 alloy steel as the workpiece. For the pulse-on-time range up to 1000 ns, the experimental and theoretical results are found to be in close agreement with average volume approximation errors of 2.7% and 6.6% for the anode and cathode, respectively

  10. Electro-thermal modelling of anode and cathode in micro-EDM

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, S H; Kurnia, W; Tan, P C [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2007-04-21

    Micro-electrical discharge machining is an evolution of conventional EDM used for fabricating three-dimensional complex micro-components and microstructure with high precision capabilities. However, due to the stochastic nature of the process, it has not been fully understood. This paper proposes an analytical model based on electro-thermal theory to estimate the geometrical dimensions of micro-crater. The model incorporates voltage, current and pulse-on-time during material removal to predict the temperature distribution on the workpiece as a result of single discharges in micro-EDM. It is assumed that the entire superheated area is ejected from the workpiece surface while only a small fraction of the molten area is expelled. For verification purposes, single discharge experiments using RC pulse generator are performed with pure tungsten as the electrode and AISI 4140 alloy steel as the workpiece. For the pulse-on-time range up to 1000 ns, the experimental and theoretical results are found to be in close agreement with average volume approximation errors of 2.7% and 6.6% for the anode and cathode, respectively.

  11. Electro-thermal modelling of anode and cathode in micro-EDM

    Science.gov (United States)

    Yeo, S. H.; Kurnia, W.; Tan, P. C.

    2007-04-01

    Micro-electrical discharge machining is an evolution of conventional EDM used for fabricating three-dimensional complex micro-components and microstructure with high precision capabilities. However, due to the stochastic nature of the process, it has not been fully understood. This paper proposes an analytical model based on electro-thermal theory to estimate the geometrical dimensions of micro-crater. The model incorporates voltage, current and pulse-on-time during material removal to predict the temperature distribution on the workpiece as a result of single discharges in micro-EDM. It is assumed that the entire superheated area is ejected from the workpiece surface while only a small fraction of the molten area is expelled. For verification purposes, single discharge experiments using RC pulse generator are performed with pure tungsten as the electrode and AISI 4140 alloy steel as the workpiece. For the pulse-on-time range up to 1000 ns, the experimental and theoretical results are found to be in close agreement with average volume approximation errors of 2.7% and 6.6% for the anode and cathode, respectively.

  12. Laser-induced fluorescence of se, as, and sb in an electrothermal atomizer.

    Science.gov (United States)

    Swart, D J; Ezer, M; Pacquette, H L; Simeonsson, J B

    1998-04-01

    Trace detection of Se, As, and Sb atoms has been performed by electrothermal atomization laser-induced fluorescence (ETA-LIF) approaches. Production of far-UV radiation necessary for excitation of As atoms at 193.696 nm and Se atoms at 196.026 nm was accomplished by stimulated Raman shifting (SRS) of the output of a frequency-doubled dye laser operating near 230 nm. Both wavelengths were obtained as second-order anti-Stokes shifts of the dye laser radiation and provided up to 10 μJ/pulse, which was shown through power dependence studies to be sufficient for saturation in the ETA. An excited-state direct line fluorescence approach using excitation at 206.279 nm was also investigated for the LIF detection of Se. High-sensitivity LIF of Sb atoms was accomplished using 206.833-nm excitation and detection at 259.805 nm. The accuracy of the ETA-LIF approaches was demonstrated by determining the As and Se content of aqueous reference samples. The limits of detection (absolute mass) were 200 fg by ground-state LIF and 150 fg by excited-state direct line fluorescence for Se, 200 fg for As, and 10 fg for Sb; these LODs compare favorably with results reported previously in the literature for ETA-LIF, GFAAS, and ICP-MS methods.

  13. Investigation of ceramic materials using ICP-AES with external electrothermal vaporization

    International Nuclear Information System (INIS)

    Reisch, M.; Gartz, R.; Mazurkiewicz, M.; Nickel, H.

    1989-01-01

    The evaporation and excitation processes for several trace elements in ceramic powders are studied. The advantages of an electrothermal vaporization are the easier preparation, no dilution and a shorter experiment duration. The investigated ceramic powders consist of synthetic mixtures including the systems Al 2 O 3 -SiO 2 and Al 2 O 3 -MgO. The trace elements are bound as oxides. The evaporation is monitored by 59 Fe and 115 Cd. Since the evaporation rates are measured in addition to line intensities, the influence of various parameters on evaporation as well as on excitation processes can be individually examined. The influence of matrix composition is determined. It is found that melting and sintering processes of the matrix are of great importance for the evaporation of trace elements. Thus the best results are obtained when trace elements evaporate below the melting temperature of the matrix. Therefore the addition of thermochemical substances is necessary for several elements of low volatility. In the case of highly volatile elements, for example Cd, additives seemed to have only a small influence on the volatilization rate. Accordingly, only the excitation is affected. For example, the evaporation rate of Cd is constant through the whole Al 2 O 3 -MgO system. The measured line intensity of Cd is also constant within a large range of MgO content. The evaporation rate and line intensity of Fe decrease linearly with MgO concentration. (author)

  14. Study on an alternating current electrothermal micropump for microneedle-based fluid delivery systems

    Science.gov (United States)

    Zhang, Rumi; Jullien, Graham A.; Dalton, Colin

    2013-07-01

    In this paper, we report on a modeling study of an AC electrothermal (ACET) micropump with high operating pressures as well as fast flow rates. One specific application area is for fluid delivery using microneedle arrays which require higher pressures and faster flow rates than have been previously reported with ACET devices. ACET is very suitable for accurate actuation and control of fluid flow, since the technique has been shown to be very effective in high conductivity fluids and has the ability to create a pulsation free flow. However, AC electrokinetic pumps usually can only generate low operating pressures of 1 to 100 Pa, where flow reversal is likely to occur with an external load. In order to realize a high performance ACET micropump for continuous fluid delivery, applying relatively high AC operating voltages (20 to 36 Vrms) to silicon substrate ACET actuators and using long serpentine channel allows the boosting of operating pressure as well as increasing the flow rates. Fast pumping flow rates (102-103 nl/s) and high operating pressures (1-12 kPa) can be achieved by applying both methods, making them of significant importance for continuous fluid delivery applications using microneedle arrays and other such biomedical devices.

  15. Column preconcentration and electrothermal atomic absorption spectrometric determination of rhodium in some food and standard samples.

    Science.gov (United States)

    Taher, Mohammad Ali; Pourmohammad, Fatemeh; Fazelirad, Hamid

    2015-12-01

    In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra-trace amounts of rhodium after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015-0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  17. Monte Carlo simulation of electrothermal atomization on a desktop personal computer

    Science.gov (United States)

    Histen, Timothy E.; Güell, Oscar A.; Chavez, Iris A.; Holcombea, James A.

    1996-07-01

    Monte Carlo simulations have been applied to electrothermal atomization (ETA) using a tubular atomizer (e.g. graphite furnace) because of the complexity in the geometry, heating, molecular interactions, etc. The intense computational time needed to accurately model ETA often limited its effective implementation to the use of supercomputers. However, with the advent of more powerful desktop processors, this is no longer the case. A C-based program has been developed and can be used under Windows TM or DOS. With this program, basic parameters such as furnace dimensions, sample placement, furnace heating and kinetic parameters such as activation energies for desorption and adsorption can be varied to show the absorbance profile dependence on these parameters. Even data such as time-dependent spatial distribution of analyte inside the furnace can be collected. The DOS version also permits input of external temperaturetime data to permit comparison of simulated profiles with experimentally obtained absorbance data. The run-time versions are provided along with the source code. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by a diskette with a program (PC format), data files and text files.

  18. Electro-thermal dynamic stripping process : integrating environmentalism with bitumen production

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.W.; McDonald, C.W. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[E-T Energy, Calgary, AB (Canada); Little, L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Energy Research Inst., Edmonton, AB (Canada)

    2008-10-15

    This paper presented a new method of in situ oil sands extraction developed by Calgary-based E-T Energy. The Electro-Thermal Dynamic Stripping Process (ET-DSP) uses electricity to melt oil sands deposits that are too deep for open pit mining. The energy intensity of production compares favourably with alternative thermal bitumen extraction techniques and water consumption for the process is comparatively low, with all produced water being re-injected into the producing formation without any treatment. With ET-DSP, electrodes are drilled and completed next to the oil sands formation which ensures that the electrical currents are forced to flow to the oil sands formation. The viscosity of the bitumen is lowered by the heat from the current, thereby making the fluid flow more readily into vertical extraction wells. ET-DSP uses electricity directly from the power grid, and does not produce any greenhouse gas (GHG) emissions of its own. The process has the potential to allow operators to focus on areas of oil sands reservoirs that have remained inaccessible. Field studies confirmed that the production of bitumen using this method was achieved with reduced greenhouse gas emissions as compared to other thermal recovery process. The bitumen had trace amount of sand and no emulsions. 5 refs., 5 figs.

  19. Review of research and development on the microwave-plasma electrothermal rocket

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.C.; Asmussen, J.; Filpus, J.W.; Frasch, L.L.; Whitehair, S.

    1987-01-01

    The microwave-plasma electrothermal rocket (MWPETR) shows promise for spacecraft propulsion and maneuvering, without some of the drawbacks of competitive electric propulsion systems. In the MWPETR, the electric power is first converted to microwave-frequency radiation. In a specially-designed microwave cavity system, the electromagnetic energy of the radiation is transferred to the electrons in a plasma sustained in the working fluid. The resulting high-energy electrons transfer their energy to the atoms and molecules of the working fluid by collisions. The working fluid, thus heated, expands through a nozzle to generate thrust. In the MWPETR, no electrodes are in contact with the working fluid, the energy is transferred into the working fluid by nonthermal mechanisms, and the main requirement for the materials of construction is that the walls of the plasma chamber be insulating and transparent to microwave radiation at operating conditions. In this survey of work on the MWPETR, several experimental configurations are described and compared. Diagnostic methods used in the study are described and compared, including titration, spectroscopy, calorimetry, electric field measurements, gas-dynamic methods, and thrust measurements. Measured and estimated performance efficiencies are reported. Results of computer modeling of the plasma and of the gas flowing from the plasma are summarized. 32 references.

  20. Electrothermal atomization laser-excited atomic fluorescence spectroscopy for the determination of indium

    International Nuclear Information System (INIS)

    Aucelio, R.Q.; Smith, B.W.; Winefordner, J.D.

    1998-01-01

    A dye laser pumped by a high-repetition-rate copper vapor laser was used as the excitation source to determine indium at parts-per-trillion level by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS). A comparison was made between wall atomization, in pyrolytic and nonpyrolytic graphite tubes, and platform atomization. The influence of several chemical modifiers either in solution or precoated in the graphite tube was evaluated. The influence of several acids and NaOH in the analyte solution was also studied. Optimization of the analytical conditions was carried out to achieve the best signal-to-background ratio and consequently an absolute limit of detection of 1 fg. Some possible interferents of the method were evaluated. The method was evaluated by determining indium in blood, urine, soil, and urban dust samples. Recoveries between 99.17 and 109.17% are reported. A precision of 4.1% at the 10 ng g -1 level in water standards was achieved. copyright 1998 Society for Applied Spectroscopy

  1. Rapid determination of 90Sr by electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS)

    International Nuclear Information System (INIS)

    Berryman, N.; Probst, T.

    1997-01-01

    A two-step temperature program has been developed to determine 90 Sr in highly active samples in the presence of Zr. In a first step, Sr is volatilized at 2400 C using argon as a carrier gas, while Zr is completely retained in the graphite tube. It is removed in a second step by adding 0.1% CHF 3 to the argon carrier gas and increasing the temperature to 2650 C. Even a 100 fold excess of Zr has no detrimental effects on the determination of 90 Sr. The detection limit is 2 pg/ml (10 Bq/ml) without using a modifier. (orig.)

  2. Thermoelectrical-electrothermal feedback (te-et f) enhanced performance characteristics of a high temperature superconductor far-infrared bolometer

    International Nuclear Information System (INIS)

    Kaila, M.M.; Russell, G.J.

    2000-01-01

    Full text: It is more than a decade since the discovery of new a High Temperature Superconducting (HTSC) materials. Their adaptation to large scale applications e.g. high magnetic fields, friction-less motors, levitation trains etc., is still long way to go. Small scale applications e.g., far-infrared sensors, has certainly been established as a highly suitable area for immediate economically viable commercial exploitation. The semiconductor counterparts, NT(Neutron Transmutation doped)Ge, CD(Compensation Doped)Si sensors are not only expensive and difficult to manufacture but also require liquid helium refrigeration at mK temperatures to operate. Although the work around the world has centered on photo-electrical bolometers, in our approach we have adopted a much simpler, temperature stable and a better performing photo-thermoelectrical mode of operation. It is well known that the semi-metal BiSb has the highest electronic thermoelectric figure of merit at liquid nitrogen temperatures. One can obtain a value around 1x10 -2 / K by application of a magnetic field to the BiSb leg of a composite. BiSb-HTSC bolometer. We can use this high figure of merit to our advantage in two different modes of operation of the detector. One is the static mode where the thermoelectric power generated across the semi-metal leg (connected in parallel with the HTSC leg) of the bolometer drives the external electronic circuitry. This circuitry can be remotely (no direct electrical contact) coupled to the bolometer e.g. through the primary coil of a SQUID current amplifier, which can be connected in series with the bolometer inside the cryostat, for better noise performance, or outside, for convenience. Second is the heterodyne operation. The external bias is applied in a constant voltage bias mode. The direction of the bias is so chosen that the transient Peltier power generated, from the incident radiation, in the circuit extracts additional heat at the sensitive area of the bolometer

  3. Compact electro-thermal modeling of a SiC MOSFET power module under short-circuit conditions

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Reigosa, Paula Diaz; Bahman, Amir Sajjad

    2017-01-01

    A novel physics-based, electro-thermal model which is capable of estimating accurately the short-circuit behavior and thermal instabilities of silicon carbide MOSFET multi-chip power modules is proposed in this paper. The model has been implemented in PSpice and describes the internal structure.......2 kV breakdown voltage and about 300 A rated current. The short-circuit behavior of the module is investigated experimentally through a non-destructive test setup and the model is validated. The estimation of overcurrent and temperature distribution among the chips can provide useful information...

  4. An analytical model for pulse shape and electrothermal stability in two-body transition-edge sensor microcalorimeters

    International Nuclear Information System (INIS)

    Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.; Hoover, A. S.; Hoteling, N. J.; Rabin, M. W.

    2010-01-01

    High-resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct thermal bodies. We derive the time domain behavior of the current and temperature for compound TES devices in the small signal limit and demonstrate the utility of these equations for device design and characterization. In particular, we use the model to fit pulses from our gamma-ray microcalorimeters and demonstrate how critical damping and electrothermal stability can be predicted.

  5. Experimental and theoretical study of plasma-water interaction in electrothermal guns

    International Nuclear Information System (INIS)

    Arensburg, Alex.

    1993-05-01

    This thesis comprises an experimental and theoretical study of the plasma- jet-water interaction in electrothermal guns. In the present work the plasma jet was produced by high current pulsed discharge in a plasma injector consisting of polyethylene capillary, closed at one end by a metallic anode and supported at the other end with a hollow cathode. A thin aluminium fuse placed inside the capillary and connecting both electrodes, provided an initial conducting element. A pulse forming network delivering a high current pulse through the fuse, exploded it and produced an aluminium plasma. Subsequently, ablation of the capillary wall begun as a result of its exposure to radiation from the fuse plasma. The ablation products were heated by the pulse current until ionized, replacing the fuse plasma by a polyethylene plasma thus sustaining the ablation process. The experimental investigation reported here used x-ray shadowgraphy to observe the plasma-working fluid interaction process. The working fluid was an aqueous solution of 92% water and 8% lead acetate gelatinized with agar. The penetration of the plasma jet into the working fluid was exposed on films at successive time intervals by means of x-ray shadowgraphy. When the water interacts with the plasma it also ablated. This ablation rate was estimated from energy conservation considerations. Peak pressures up to 3.5*10 8 Pa were measured during the process. At such pressure water does not undergo phase transformation when heated. Thus the mass density at the plasma water interface should be regarded as a continuous function of temperature. The determination of the temperature profile at the interface between the capillary plasma and the water requires the solution of the heat transfer and radiative transfer equations under ablation conditions. This constituted the main theoretical part of the present work. 36 refs., 4 tabs., 29 figs

  6. Performance of an electrothermal swing adsorption system with postdesorption liquefaction for organic gas capture and recovery.

    Science.gov (United States)

    Mallouk, Kaitlin E; Rood, Mark J

    2013-07-02

    The use of adsorption on activated carbon fiber cloth (ACFC) followed by electrothermal swing adsorption (ESA) and postdesorption pressure and temperature control allows organic gases with boiling points below 0 °C to be captured from air streams and recovered as liquids. This technology has the potential to be a more sustainable abatement technique when compared to thermal oxidation. In this paper, we determine the process performance and energy requirements of a gas recovery system (GRS) using ACFC-ESA for three adsorbates with relative pressures between 8.3 × 10(-5) and 3.4 × 10(-3) and boiling points as low as -26.3 °C. The GRS is able to capture > 99% of the organic gas from the feed air stream, which is comparable to destruction efficiencies for thermal oxidizers. The energy used per liquid mole recovered ranges from 920 to 52,000 kJ/mol and is a function of relative pressure of the adsorbate in the feed gas. Quantifying the performance of the bench-scale gas recovery system in terms of its ability to remove organic gases from the adsorption stream and the energy required to liquefy the recovered organic gases is a critical step in developing new technologies to allow manufacturing to occur in a more sustainable manner. To our knowledge, this is the first time an ACFC-ESA system has been used to capture, recover, and liquefy organic compounds with vapor pressures as low as 8.3 × 10(-5) and the first time such a system has been analyzed for process performance and energy consumption.

  7. WC-Co coatings deposited by the electro-thermal chemical spray method

    Energy Technology Data Exchange (ETDEWEB)

    Zhitomirsky, V.N. [Tel Aviv Univ. (Israel). Faculty of Engineering; Wald, S.; Rabani, L.; Zoler, D. [Propulsion Physics Division, SOREQ NRC, 81800, Yavne (Israel); Factor, M.; Roman, I. [School of Applied Sciences, The Hebrew University, 91904, Jerusalem (Israel); Cuperman, S.; Bruma, C. [School of Physics and Astronomy, Tel-Aviv University, 69978, Tel-Aviv (Israel)

    2000-10-02

    A novel thermal spray technology - an electro-thermal chemical spray (ETCS) for producing hard coatings is presented. The experimental coating apparatus consists of a machine gun barrel, a cartridge containing the coating material in powder form, a solid propellant, and a plasma ignition system. The plasma ignition system produces plasma in pulsed mode to ignite the solid propellant. On ignition, the drag force exerted by the combustion gases accelerates the powder particles towards the substrate. Using the ETCS technique, the process of single-shot WC-Co coating deposition on stainless steel substrate was studied. The influence of process parameters (plasma energy, mass of the solid propellant and the coated powder, distance between the gun muzzle and the substrate) on the coating structure and some of its properties were investigated. It was shown that ECTS technique effectively deposited the WC-Co coating with deposition thicknesses of 100-200 {mu}m per shot, while deposition yield of {proportional_to}70% was attained. The WC-Co coatings consisted of carbide particles distributed in amorphous matrix. The powder particle velocity was found to depend on the solid propellant mass and was weakly dependent on the plasma energy, while the particle processing temperature was strongly dependent on the plasma energy and almost independent of the solid propellant mass. Whilst increasing the solid propellant mass from 5 to 7 g, the deposition rate and yield correspondingly increased. When increasing the plasma energy, the temperature of the powder particles increased, the average carbide particle size decreased and their shape became more rounded. The deposition yield and microhardness at first increased and then achieved saturation by increasing the plasma energy. (orig.)

  8. Intradiscal electrothermal treatment for discogenic back pain: experimental investigation and preliminary clinical application

    International Nuclear Information System (INIS)

    Fang Wen; Teng Gaojun; He Shicheng; Guo Jinhe; Deng Gang; Zhu Guangyu; Li Guozhao; Ding Huijuan; Shen Zhiping

    2005-01-01

    Objective: To assess the effectiveness and the safety of IDET for chronic discogenic low back pain. Methods: Standard intradiscal electrothermal treatment were performed in two adjacent disc levels (L3-4, L4-5) of two domestic pigs. MRI were available at pretreatment, posttreatment of 1,2 weeks, and then the two animals were killed respectively at 1,2 weeks after the procedure. The specimens were then undergone thin sectioned and subjected to humatoxylin and eosin staining for histological investigation. 23 patients (totally 29 discs, including L2-3 to L5-S1) with chronic symptoms underwent IDET for clinical study. VAS (Visual Analog Scale) pain scores were collected before the treatment, 1 week and 3 months after the procedure. One way ANOVA was used for statistical analysis. Results: 4 discs of standard IDET models have been set up in two pigs showing normal MRI T2W1 signal of nucleus pulposus immediately after the procedure, but the high signal extent of the central part of the nucleo pulposus shrinked with conspicuous peripheral low signal changes during the following 1-2 W. Degeneration and shrinkage of nucleo-pulposus with lecolized fibrous ring thickening were found pathologically but without damage to nurve roots and epidural sac. 29 discs in 23 patients were performed successfully, without complication. The follow-up evaluation of 1 week and 3 months after the treatment showing significant differences with those before the treatment on was scores 65.3% and 78.9% respectively (P<0.0001). Conclusions: IDET is safe and effective for chronic discogenic low back pain. (authors)

  9. A multi-axis electrothermal micromirror for a miniaturized OCT system

    KAUST Repository

    Izhar, U.

    2011-06-01

    We report on the development of a low power thermally actuated bi-axis SOI micromirror that is capable of performing angular and vertical scans for optical coherence tomography (OCT) applications. The device consists of a mirror with an aluminum coating over a 3 μm thick single crystal silicon base, aluminum/polysilicon electrothermal actuators with embedded heaters and polysilicon flexural connectors. In scanning mode, this mirror can satisfy our target specification of 5° angle at the low power of 1.7 mW with a temperature increase of 16.5 °C ± 7 °C from ambient in the actuator. Furthermore, a maximum angle of 32° has been achieved at 12 mW. In piston mode, it can reach vertical displacements of up to 131 μm at 12 mW with the temperature increase of 16.5 °C ± 7 °C from ambient in the actuator. The scanning speed for the mirror has been measured and the time response of the mirror is found to be 100 ms. The curvature of the mirror is found to be 2.4 mm ± 0.26 mm with a roughness of 100 nm ± 20 nm. Due to low driving power and moderate temperatures developed during its operation, this device can potentially be integrated with broadband light source, photodetector and interferometery system, to form a fully integrated OCT system on GaAs substrate. © 2011 Elsevier B.V. All rights reserved.

  10. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    Science.gov (United States)

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    Science.gov (United States)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  12. Wear-out Failure Analysis of an Impedance-Source PV Microinverter Based on System-Level Electro-Thermal Modeling

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Chub, Andrii; Wang, Huai

    2018-01-01

    and system-level finite element method (FEM) simulations, the electro-thermal models are built for the most reliability-critical components, i.e., power semi-conductor devices and capacitors. The dependence of the power loss on the junction/hotspot temperature is considered, the enclosure temperature...

  13. Electrothermal impedance spectroscopy measurement on high power LiMO2/Li4Ti5O12 battery cell with low bandwidth test setup

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    2015-01-01

    be executed on-line (e.g. in the electric vehicle Battery Management System). The Electrothermal Impedance Spectroscopy (ETIS) can be used as a relatively simple and fast method for non-destructive parametrization of the battery thermal models. However, the ETIS requires expensive galvanostat with high...

  14. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples.

    Science.gov (United States)

    Vassileva, E; Baeten, H; Hoenig, M

    2001-01-02

    A slurry sampling-fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 micrograms kg-1, respectively.

  15. Imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry for determination of mercury in seawater.

    Science.gov (United States)

    Le Bihan, Alain; Cabon, Jean-Yves; Deschamps, Laure; Giamarchi, Philippe

    2011-06-15

    In this study, direct determination of mercury at the nanogram per liter level in the complex seawater matrix by imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry (ITR-ETA-LEAFS) is described. In the case of mercury, the use of a nonresonant line for fluorescence detection with only one laser excitation is not possible. For measurements at the 253.652 nm resonant line, scattering phenomena have been minimized by eliminating the simultaneous vaporization of salts and by using temporal resolution and the imaging mode of the camera. Electrothermal conditions (0.1 M oxalic acid as matrix modifier, low atomization temperature) have been optimized in order to suppress chemical interferences and to obtain a good separation of specific signal and seawater background signal. For ETA-LEAFS, a specific response has been obtained for Hg with the use of time resolution. Moreover, an important improvement of the detection limit has been obtained by selecting, from the furnace image, pixels collecting the lowest number of scattered photons. Using optimal experimental conditions, a detection limit of 10 ng L(-1) for 10 μL of sample, close to the lowest concentration level of total Hg in the open ocean, has been obtained.

  16. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

    Science.gov (United States)

    Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu

    2018-03-01

    Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag particle composites

    Science.gov (United States)

    Wang, Qian; Li, Yu-Tao; Zhang, Tian-Yu; Wang, Dan-Yang; Tian, Ye; Yan, Jun-Chao; Tian, He; Yang, Yi; Yang, Fan; Ren, Tian-Ling

    2018-03-01

    In this paper, low-voltage, large-strain flexible electrothermal actuators (ETAs) based on laser-reduced graphene oxide (LRGO)/Ag particle composites were fabricated in a simple and cost-efficient process. By adding Ag particles to the LRGO, the sheet resistance decreased effectively. Under a driving voltage of 28 V, the actuator obtained a bending angle of 192° within 6 s. Besides, the bending deformation could be precisely controlled by the driving voltage ranging from 10° to 192°. Finally, a gripper composed of two actuators was demonstrated to manipulate a piece of polydimethylsiloxane block. With the advantages of low-voltage, fast-response, and easy-to-manufacture, the graphene based ETAs have a promising application in soft robotics and soft machines.

  18. Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters

    Science.gov (United States)

    Sun, Hongyan; Chen, Ding; Ye, Chen; Li, Xinming; Dai, Dan; Yuan, Qilong; Chee, Kuan W. A.; Zhao, Pei; Jiang, Nan; Lin, Cheng-Te

    2018-03-01

    Graphene shows great promise as a high-efficiency electrothermal film for flexible transparent defoggers/defrosters. However, it remains a great challenge to achieve a good balance between the production cost and the properties of graphene films. Here, we proposed a cost-effective self-assembly method to fabricate high-performance, large-area graphene oxide/electrochemically exfoliated graphene hybrid films for heater applications. The self-assembled graphene hybrid films with the area of 20 × 20 cm2 could be transferred onto arbitrary substrates with nonplanar surfaces and simply patterned with the hard mask. After reduction by hydrogen iodide vapor followed by 800 °C thermal treatment, the hybrid films with the transmittance of 76.2% exhibit good heating characteristics and defogging performance, which reach a saturation temperature of up to 127.5 °C when 40 V was applied for 60 s.

  19. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Blecker, Carlo R.; Hermann, Gerd M.

    2009-01-01

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  20. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2017-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  2. An electro-thermally activated rotary micro-positioner for slider-level dual-stage positioning in hard disk drives

    International Nuclear Information System (INIS)

    Lau, Gih Keong; Chong, Nyok Boon; Yang, Jiaping; Tan, Cheng Peng

    2016-01-01

    Slider-level micro-positioners are useful to assist a voice coil motor to perform fine head positioning over a Tb/in 2 magnetic disk. Recently, a new kind of slider-level micro-positioner was developed using the thermal unimorph of the Si/SU8 composite. It has the advantages of a very small footprint and high mechanical resonant frequency, but its stroke generation is inadequate, with a 50 nm dynamic stroke at 1 kHz. There is a need for a larger thermally induced stroke. This paper presents a rotary design of an electrothermal micro-positioner to address the stroke requirements without consuming more power or decreasing the mechanical resonant frequency. Experimental studies show the present rotary design can produce a six-fold larger displacement, as compared to the previous lateral design, while possessing a 35 kHz resonant frequency. In addition, simple analytical models were developed to estimate: (i) the rotational stiffness and system’s natural frequency, (ii) thermal unimorph bending and stage rotation, and (iii) the system’s thermal time constant for this rotary electro-thermal micro-positioner. This study found that this rotary electro-thermal micro-positioner can meet the basic stroke requirement and high mechanical resonant frequency for a moving slider, but its thermal cut-off frequency needs to be increased further. (paper)

  3. Electrothermal atomic absorption spectrometry: contribution to the establishment of a rational method for the determination of trace elements in natural media

    International Nuclear Information System (INIS)

    Hoenig, Michel

    1990-01-01

    This research thesis aimed at extending, rationalising, simplifying and accelerating opportunities initially offered by electrothermal atomic absorption spectroscopy (ETAAS), more particularly in the marine, estuarine, rural or urban environment. Thus, this work mainly focused on the various aspects of this technique. The author first addresses the electrothermal atomisation process by presenting the atomiser, the platform, the sample insertion, ETAAS properties and use, the electrothermal program, and a comparison of ETAAS with other spectroscopic methods. She reports the study of spectral, ionisation and chemical perturbations, and of their correction. She introduces matrix and analyte modifiers, and presents refractory elements (effect of carbon surface, problems faced with molybdenum, barium, chromium and vanadium). She presents and discusses aspects related to sample preparation: problems related to trace dosing, methods of preparation of solutions, analyte concentration or separation, examples of applications to plants, to animal tissues, to geological materials, to soils and sediments, to atmospheric particles and matters in suspension in natural waters, and to blood and urine. She finally addresses the analysis of solid samples with a description of the apparatus and of the adopted methodology in the case of slurries [fr

  4. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mahmoud Chamsaz

    2013-07-01

    Full Text Available A simple microextraction method based on solidification of a floating organic drop (SFOD was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS. Ammonium pyrolidinedithiocarbamate (APDC was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD with OA16 (45 matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples.

  5. Optimization of trace elements determination (Arsenic and chromium) in blood and serum of human by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ahmadi Faghih, M. A.; Aflaki, F.

    2003-01-01

    Trace elements play an important role in the bio physiology of cells by affecting their growth and contributions to various biological processes such as wound healing. Determination of toxic trace elements in biological fluids is an important subject of interest for toxicological purposes. Increasing the concentration of these elements in the blood levels, cause serious diseases in patients. Recently instrumental analysis procedures such as atomic absorption spectrometry have been used in clinical measurements for determination of many toxic trace elements in the biological samples. In this paper we are reporting the study of various methods of blood and serum samples preparation for determining the toxic trace elements of Arsenic and Chromium. The measurement of this elements performed by using electrothermal atomic absorption spectrometry. The best and reliable results for Chromium analysis was achieved by injection of diluted serum samples, where the samples were diluted with H CI 0.1N. In Arsenic analysis, the best results obtained by extraction with aqueous solution of TCA. For determining all of these elements the RSD% was less than 5%

  6. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  7. Optimal stochastic management of renewable MG (micro-grids) considering electro-thermal model of PV (photovoltaic)

    International Nuclear Information System (INIS)

    Najibi, Fatemeh; Niknam, Taher; Kavousi-Fard, Abdollah

    2016-01-01

    This paper aims to report the results of the research conducted to one thermal and electrical model for photovoltaic. Moreover, one probabilistic framework is introduced for considering all uncertainties in the optimal energy management of Micro-Grid problem. It should be noted that one typical Micro-Grid is being studied as a case, including different renewable energy sources, such as Photovoltaic, Micro Turbine, Wind Turbine, and one battery as a storage device for storing energy. The uncertainties of market price variation, photovoltaic and wind turbine output power change and load demand error are covered by the suggested probabilistic framework. The Micro-Grid problem is of nonlinear nature because of the stochastic behavior of the renewable energy sources such as Photovoltaic and Wind Turbine units, and hence there is need for a powerful tool to solve the problem. Therefore, in addition to the simulated thermal model and suggested probabilistic framework, a new algorithm is also introduced. The Backtracking Search Optimization Algorithm is described as a useful method to optimize the MG (micro-grids) problem. This algorithm has the benefit of escaping from the local optima while converging fast, too. The proposed algorithm is also tested on the typical Micro-Grid. - Highlights: • Proposing an electro-thermal model for PV. • Proposing a new stochastic formulation for optimal operation of renewable MGs. • Introduction of a new optimization method based on BSO to explore the problem search space.

  8. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-01-01

    Silver nanoparticles in the presence of Triton-X114 were extracted into a micellar phase obtained after incubation at 40 °C for 10 min followed by centrifugation. After injection of an aliquot (30 μL) of the surfactant-rich phase into the electrothermal atomizer, the enrichment effect due to cloud point extraction allowed a detection limit of 2 ng L −1 silver to be achieved. The preconcentration factor was 242, and the repeatability for ten measurements at a 50 ng L −1 silver level was 4.6%. Ag(I) species were adsorbed onto the silver nanoparticles and were also extracted in the micellar phase. The incorporation of 0.01 mol L −1 ammonium thiocyanate to the sample solution prevented the extraction of Ag(I) species. Speciation was carried out using two extractions, one in the absence and the other in the presence of thiocyanate, the concentration of Ag(I) species being obtained by difference. The procedure was applied to the determination of silver nanoparticles and Ag(I) species in waters and in lixiviates obtained from sticking plasters and cleaning cloths. - Highlights: • Silver nanoparticles and Ag(I) species are separated into a surfactant-rich phase. • The Ag(I) species are not extracted in the presence of thiocyanate. • The cloud point extraction of two aliquots allows speciation to be carried out. • Extreme sensitivity (detection limit 2 ng L −1 ) is achieved

  9. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Sandra [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Fragueiro, Sandra [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain)]. E-mail: bendicho@uvigo.es

    2005-01-10

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-{mu}l volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium.

  10. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo

    2015-05-01

    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  11. Nickel and strontium nitrates as modifiers for the determination of selenium in wine by Zeeman electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, J. [Inst. of Agriculture, Skopje (Yugoslavia); Stafilov, T. [Inst. of Chemistry, Faculty of Science Sts. Cyril and Methodius Univ., Skopje (Yugoslavia); Mihajlovic, D. [RZ Tehnicka Kontrola, Skopje (Yugoslavia)

    2001-08-01

    A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300 C and 800 C were chosen for aqueous and organic solutions, respectively; 2700 C and 2100 C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100 C and 1600 C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 {mu}g L{sup -1}. (orig.)

  12. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Hartmann, Georg; Schuster, Michael

    2013-01-25

    The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L(-1) is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L(-1). The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L(-1) is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  14. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    Science.gov (United States)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  15. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    International Nuclear Information System (INIS)

    Vilar Farinas, M.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.; Herrero Latorre, C.

    2007-01-01

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO 3 ) 2 and (NH 4 )H 2 PO 4 -Mg(NO 3 ) 2 ] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 μg L -1 ), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged -1

  16. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  17. The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tokman, Nilgun

    2007-01-01

    Manganese and copper in multivitamin-mineral supplements and standard reference materials were determined by slurry sampling electrothermal atomic absorption spectrometry. Slurries were prepared in an aqueous solution containing Triton X-100. The effects of different parameters such as ratio of solid to liquid phase volume, total slurry volume and addition of Triton X-100 as a dispersant on the analytical results were investigated. The graphite furnace programs were optimized for slurry sampling depending on the analytes and their concentrations in the samples. The linear calibration method with aqueous standard solutions was used for the quantification. At optimum experimental conditions, R.S.D. values were below 5%. The analytes were determined in the limits of 95% confidence level with respect to certified values in coal and soil standard reference materials and to those found by wet-digestion in multivitamin-mineral supplements. Detection limits (3δ) for Mn and Cu were 0.10 μg L -1 and 1.82 μg L -1 for 10 μL coal standard reference material slurry, respectively

  18. The determination, by atomic-absorption spectrophotometry using electrothermal atomization, of platinum, palladium, rhodium, ruthenium, and iridium

    International Nuclear Information System (INIS)

    Haines, J.; Robert, R.V.D.

    1982-01-01

    A method that involves measurement by atomic-absorption spectrophotometry using electrothermal atomization has been developed for the determination of trace quantities of platinum, palladium, rhodium, ruthenium, and iridium in mineralogical samples. The elements are separated and concentrated by fusion, nickel sulphide being used as the collector, and the analyte elements are measured in the resulting acid solution. An organic extraction procedure was found to offer no advantages over the proposed method. Mutual interferences between the five platinum-group metals examined, as well as interferences from gold, silver, and nickel were determined. The accuracy of the measurement was established by the analysis of a platinum-ore reference material. The lower limits of determination of each of the analyte elements in a sample material are as follows: platinum 1,6μg/l, palladium 0,2μg/1, rhodium 0,5μg/l, ruthenium 3μg/l, and iridium 2,5μg/l. The relative standard deviations range from 0,05 for rhodium to 0.08 for iridium. The method, which is described in detail in the Appendix, is applicable to the determination of these elements in ores, tailings, and geological materials in which the total concentration of the noble metals is less than 1g/t

  19. Finite element modelling and experimental characterization of an electro-thermally actuated silicon-polymer micro gripper

    International Nuclear Information System (INIS)

    Krecinic, F; Duc, T Chu; Sarro, P M; Lau, G K

    2008-01-01

    This paper presents simulation and experimental characterization of an electro-thermally actuated micro gripper. This micro actuator can conceptually be seen as a bi-morph structure of SU-8 and silicon, actuated by thermal expansion of the polymer. The polymer micro gripper with an embedded comb-like silicon skeleton is designed to reduce unwanted out-of-plane bending of the actuator, while offering a large gripper stroke. The temperature and displacement field of the micro gripper structure is determined using a two-dimensional finite element analysis. This analysis is compared to experimental data from steady-state and transient measurements of the integrated heater resistance, which depends on the average temperature of the actuator. The stability of the polymer actuator is evaluated by recording the transient behaviour of the actual jaw displacements. The maximum single jaw displacement of this micro gripper design is 34 µm at a driving voltage of 4 V and an average actuator temperature of 170 °C. The transient thermal response is modelled by a first-order system with a characteristic time constant of 11.1 ms. The simulated force capability of the device is 0.57 mN per µm jaw displacement

  20. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    International Nuclear Information System (INIS)

    Gil, Sandra; Fragueiro, Sandra; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium

  1. Electro-thermal injuries due to high-current accidents with special regard to the skeletal muscles

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, M.

    1982-02-25

    Seven patients suffering from high-current accidents with different degrees of severity are reported on. Damages to the striped musculature are preferentially considered. When the function of the cellular membrane is affected by an electric current, the Na/sup +//K/sup +/ mechanism collapses due to an increase of membrane permeability for calcium. Depolarisation, development of contractures, changes of the fibrillar structures and decay of the stripes or swelling of the Q (A) substance were found to indicate damage. A particular effect of electrothermal muscle damages is the affection of other organs, e.g. of the kidneys, provoked by an increased chromoprotein production and a higher output of myoglobin and hemoglobin. Since in case of an accident due to electric current affecting the musculature, more acid substances enter the vascular system, an acute renal damage provoked by an alkalinisation of the urine, shall be treated by drugs. In most cases, an anuria, occurring several days after deep burn of musculature, is a so-called constipational anuria, if it is not an anuria induced by a decrease of blood pressure or by shock. The therapy of wounds due to electrical burning depends on the size of the affected skin area and down to which depth the tissue is burnt. Particular attention must be paid to the affection of bones being situated in the depth of wounds due to burning. In the last part of the study possible reconstructive and ensuing rehabilitation measures are indicated.

  2. Electrothermal atomic absorption spectrometric determination of cobalt, copper, lead and nickel traces in aragonite following flotation and extraction separation.

    Science.gov (United States)

    Zendelovska, D; Pavlovska, G; Cundeva, K; Stafilov, T

    2001-03-30

    A method of determination of Co, Cu, Pb and Ni in nanogram quantities from aragonite is presented. Flotation and extraction of Co, Cu, Pb and Ni is suggested as methods for elimination matrix interferences of calcium. The method of flotation is performed by iron(III) hexamethylenedithiocarbamate, Fe(HMDTC)(3), as a colloid precipitate collector. The liquid-liquid extraction of Co, Cu, Pb and Ni is carried out by sodium diethyldithiocarbamate, NaDDTC, as complexing reagent into methylisobutyl ketone, MIBK. The electrothermal atomic absorption spectrometry (ETAAS) is used for determination of analytes. The detection limits of ETAAS followed by flotation are: 7.8 ng.g(-1) for Co, 17.1 ng.g(-1) for Cu, 7.2 ng.g(-1) for Pb and 9.0 mug.g(-1) for Ni. The detection limits of ETAAS followed by extraction are found to be: 12.0 ng.g(-1) for Co, 51.0 ng.g(-1) for Cu, 24.0 ng.g(-1) for Pb and 21.0 ng.g(-1) for Ni.

  3. Determination of mercury in microwave-digested soil by laser-excited atomic fluorescence spectrometry with electrothermal atomization.

    Science.gov (United States)

    Pagano, S T; Smith, B W; Winefordner, J D

    1994-12-01

    A sample digestion procedure was developed which employs microwave heating of soil and sediment in concentrated nitric acid in a high-pressure closed vessel. Complete dissolution of mercury into the sample solution occurs within 5 min at 59 W/vessel without loss of analyte through overpressurization. Laser-excited atomic fluorescence spectrometry with electrothermal atomization (LEAFS-ETA) was used as the detection method. The scheme uses a two-step excitation, with lambda(1) = 253.7 nm and lambda(2) = 435.8 nm. Direct line fluorescence was measured at 546.2 nm. The absolute instrumental limit of detection was 14 fg; 1.4 pg/ml with a 10 mul sample injection. The recoveries of mercury in two spiked samples were 94 and 98%. The SRM 8406 (Mercury in River Sediment) was digested and analyzed for mercury, and the results (58.4 +/- 1.8 ng/g) agreed well with the reference value of 60 ng/g. The results obtained by LEAFS-ETA with microwave sample digestion are in good agreement with those found by cold vapor atomic absorption spectrometry with EPA Series Method 245.5 sample digestion, which is one of the most commonly used methods for the determination of mercury in soil.

  4. Development of an electrothermal atomization laser-excited atomic fluorescence spectrometry procedure for direct measurements of arsenic in diluted serum.

    Science.gov (United States)

    Swart, D J; Simeonsson, J B

    1999-11-01

    A procedure for the direct determination of arsenic in diluted serum by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS) is reported. Laser radiation needed to excite As at 193.696 and 197.197 nm is generated as the second anti-Stokes stimulated Raman scattering output of a frequency-doubled dye laser operating near 230.5 and 235.5 nm, respectively. Two different LEAFS schemes have been utilized and provide limits of detection of 200-300 fg for As in aqueous standards. When measurements of serum samples diluted 1:10 with deionized water are performed, a stable background signal is observed that can be accounted for by taking measurements with the laser tuned off-wavelength. No As is detected in any of the bovine or human serum samples analyzed. Measurements of 100 pg/mL standard additions of As to a diluted bovine serum sample utilizing either inorganic or organic As species demonstrate a linear relationship of the fluorescence signal to As spike concentration, but exhibit a sensitivity of approximately half that observed in pure aqueous standards. The limit of detection for As in 1:10 diluted serum samples is 65 pg/mL or 650 fg absolute mass, which corresponds to 0.65 ng/mL As in undiluted serum. To our knowledge, the ETA-LEAFS procedure is currently the only one capable of directly measuring As in diluted serum at these levels.

  5. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Magnetic ferrite particles combined with electrothermal atomic absorption spectrometry for the speciation of low concentrations of arsenic.

    Science.gov (United States)

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Freshly in situ prepared ferrite particles were used for the micro-solid phase extraction of arsenic species. When the separation was carried out at pH 8, inorganic arsenic (As(III) + As(V)) and monomethylarsonic acid (MMA) were retained in the magnetic material. A second aliquot was treated with 2,3 dimercapto propanol, leading to the retention of As(V)+MMA, while a third aliquot was first treated with sodium thiosulphate, in which case only inorganic arsenic passed to the solid phase. In all cases, the solid residue collected by a magnet was suspended in a dilute nitric acid solution containing Triton X-100 and introduced into the electrothermal atomizer to obtain the analytical signal of arsenic. The use of palladium as a chemical modifier allowed calibration to be carried out with aqueous standards. The detection limit was 0.02µgL -1 arsenic for a 10mL sample volume. The procedure was applied to waters and herbal infusions, and its reliability was evaluated by analyzing eleven certified reference materials for which speciation data are provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of ultratrace amounts of uranium and thorium in aluminium and aluminium alloys by electrothermal vaporization/ICP-MS

    International Nuclear Information System (INIS)

    Nakamura, Yasushi; Kobayashi, Yoshio; Kakurai, Yousuke

    1993-01-01

    A method has been developed for determining the 0.01 ng g -1 level of uranium and thorium in aluminium and aluminium alloys by electrothermal vaporization (ETV)/ICP-MS. This method was found to be significantly interfered with any matrices or other elements contained. An ion-exchange technique was therefore applied to separate uranium and thorium from aluminium and other elements. It was known that uranium are adsorbed on an anion-exchange resin and thorium are adsorbed on cation-exchange resin. However, aluminium and copper were eluted with 6 M hydrochloric acid. Dissolve the sample with hydrochloric acid containing copper which was added for analysis of pure aluminium, and oxidize with hydrogen peroxide. Concentration of hydrochloric acid in the solution was adjusted to 6 M, and then passed the solution through the mixed ion-exchange resin column. After the uranium and thorium were eluted with 1 M hydrofluoric acid-0.1 M hydrochloric acid, the solution was evaporated to dryness. It was then dissolved with 1 M hydrochloric acid. Uranium and thorium were analyzed by ETV/ICP-MS using tungsten and molybdenum boats, respectively, since the tungsten boat contained high-level thorium and the molybdenum boat contained uranium. The determination limit of uranium and thorium were 0.003 and 0.005 ng g -1 , respectively. (author)

  8. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design

    Science.gov (United States)

    Cassella, Ricardo J.; de Sant'Ana, Otoniel D.; Santelli, Ricardo E.

    2002-12-01

    This paper reports the development of a methodology for the determination of arsenic in petroleum refinery aqueous streams containing large amounts of unknown volatile organic compounds, employing electrothermal atomic absorption spectrometry with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of chemical modification and the drying step was examined. Also, pyrolysis and atomization temperatures and the amount of nitric acid added to the sample were optimized using a multivariate approach based on Doehlert matrix. Obtained results indicate that, in this kind of sample, arsenic must be determined by standard addition procedure with a careful control of the drying step temperature and ramp pattern. In order to evaluate the accuracy of the procedure, a test was performed in six spiked samples of petroleum refinery aqueous streams and the relative errors verified in the analysis of such samples (added As between 12.5 and 190 μg l -1) ranged from -7.2 to +16.7%. The detection limit and the relative standard deviation were also calculated and the values are 68 pg and 7.5% (at 12.5 μg l -1 level), respectively.

  9. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design

    International Nuclear Information System (INIS)

    Cassella, Ricardo J.; Sant'Ana, Otoniel D. de; Santelli, Ricardo E.

    2002-01-01

    This paper reports the development of a methodology for the determination of arsenic in petroleum refinery aqueous streams containing large amounts of unknown volatile organic compounds, employing electrothermal atomic absorption spectrometry with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of chemical modification and the drying step was examined. Also, pyrolysis and atomization temperatures and the amount of nitric acid added to the sample were optimized using a multivariate approach based on Doehlert matrix. Obtained results indicate that, in this kind of sample, arsenic must be determined by standard addition procedure with a careful control of the drying step temperature and ramp pattern. In order to evaluate the accuracy of the procedure, a test was performed in six spiked samples of petroleum refinery aqueous streams and the relative errors verified in the analysis of such samples (added As between 12.5 and 190 μg l -1 ) ranged from -7.2 to +16.7%. The detection limit and the relative standard deviation were also calculated and the values are 68 pg and 7.5% (at 12.5 μg l -1 level), respectively

  10. Determination of caesium in river and sea waters by electrothermal atomic-absorption spectrometry. Interference of cobalt and iron

    International Nuclear Information System (INIS)

    Frigieri, P.; Trucco, R.; Ciaccolini, I.; Pampurini, G.

    1980-01-01

    For the enrichment or the simple recovery of caesium from river and sea waters, selective inorganic exchangers were considered. Ammonium hexacyanocobalt ferrate (NCFC) was chosen because it can be used in strongly acidic solutions (with the exception of concentrated sulphuric acid). Caesium is fully retained by the NCFC chromatographic column and can then be recovered by dissolution in hot sulphuric acid. The solution is then diluted and analysed, either directly or following caesium separation, by atomic-absorption spectrometry. To check the reliability of the analytical procedure, a series of experiments were carried out in which the possible interfering species were added to the aqueous caesium solution prior to analysis. The well known ionic interference in flame atomisation processes caused by magnesium, calcium, strontium and metals was investigated by electrothermal atomisation measurements. The experimental data showed that this effect does not occur even when these elements are present in concentrations of the order of thousands of parts per million. However, strong interferences from iron and cobalt were observed. (author)

  11. Nonlinear numerical analysis and experimental testing for an electrothermal SU-8 microgripper with reduced out-of-plane displacement

    Science.gov (United States)

    Voicu, Rodica-Cristina; Zandi, Muaiyd Al; Müller, Raluca; Wang, Changhai

    2017-11-01

    This paper reports the results of numerical nonlinear electro-thermo-mechanical analysis and experimental testing of a polymeric microgripper designed using electrothermal actuators. The simulation work was carried out using a finite element method (FEM) and a commercial software (Coventorware 2014). The biocompatible SU-8 polymer was used as structural material for the fabrication of the microgripper. The metallic micro-heater was encapsulated in the polymeric actuation structures of the microgripper to reduce the undesirable out-of-plane displacement of the microgripper tips, and to electrically isolate the micro-heater, and to reduce the mechanical stress as well as to improve the thermal efficiency. The electro- thermo-mechanical analysis of the actuator considers the nonlinear temperature-dependent properties of the SU-8 polymer and the gold thin film layers used for the micro-heater fabrication. An optical characterisation of the microgripper based on an image tracking approach shows the thermal response and the good repeatability. The average deflection is ~11 µm for an actuation current of ~17 mA. The experimentally obtained tip deflection and the heater temperature at different currents are both shown to be in good agreement with the nonlinear electro-thermo-mechanical simulation results. Finally, we demonstrate the capability of the microgripper by capture and manipulation of cotton fibres.

  12. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...

  13. Electrothermal vaporisation ICP-mass spectrometry (ETV-ICP-MS) for the determination and speciation of trace elements in solid samples - A review of real-life applications from the author's lab

    Energy Technology Data Exchange (ETDEWEB)

    Vanhaecke, Frank; Resano, Martin; Moens, Luc [Laboratory of Analytical Chemistry, Ghent University, Institute for Nuclear Sciences, Proeftuinstraat 86, 9000 Ghent (Belgium)

    2002-09-01

    The use of electrothermal vaporisation (ETV) from a graphite furnace as a means of sample introduction in inductively coupled plasma mass spectrometry (ICP-MS) permits the direct analysis of solid samples. A multi-step furnace temperature programme is used to separate the vaporisation of the target element(s) and of the matrix components from one another. Sometimes, a chemical modifier is used to enable a higher thermal pre-treatment temperature, by avoiding premature analyte losses (stabilisation) or promoting the selective volatilisation of matrix components. In almost all instances, accurate results can be obtained via external calibration or single standard addition using an aqueous standard solution. Absolute limits of detection are typically 1 pg, which corresponds to 1 ng/g for a typical sample mass of 1 mg. Real-life applications carried out in the author's lab are used to illustrate the utility of this approach. These applications aim at trace element determination in industrial and environmental materials. The industrial materials analysed include different types of plastics - Carilon, polyethylene, poly(ethyleneterephtalate) and polyamide - and photo- and thermographic materials. As samples from environmental origin, plant material, animal tissue and sediments were investigated. Some applications aimed at a multi-element determination, while in other, the content of a single, but often challenging, element (e.g., Si or S) had to be measured. ETV-ICP-MS was also used in elemental speciation studies. Separation of Se-containing proteins was accomplished using polyacrylamide gel electrophoresis (PAGE). Subsequent quantification of the Se content in the protein spots was carried out using ETV-ICP-MS. As the volatilisation of methylmercury and inorganic mercury could be separated from one another with respect to time, no chromatographic or electrophoretic separation procedure was required, but ETV-ICP-MS as such sufficed for Hg speciation in fish tissue

  14. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO interference by least-squares background correction.

    Science.gov (United States)

    Husáková, Lenka; Urbanová, Iva; Šafránková, Michaela; Šídová, Tereza

    2017-12-01

    In this work a simple, efficient, and environmentally-friendly method is proposed for determination of Be in soil and sediment samples employing slurry sampling and high-resolution continuum source electrothermal atomic absorption spectrometry (HR-CS-ETAAS). The spectral effects originating from SiO species were identified and successfully corrected by means of a mathematical correction algorithm. Fractional factorial design has been employed to assess the parameters affecting the analytical results and especially to help in the development of the slurry preparation and optimization of measuring conditions. The effects of seven analytical variables including particle size, concentration of glycerol and HNO 3 for stabilization and analyte extraction, respectively, the effect of ultrasonic agitation for slurry homogenization, concentration of chemical modifier, pyrolysis and atomization temperature were investigated by a 2 7-3 replicate (n = 3) design. Using the optimized experimental conditions, the proposed method allowed the determination of Be with a detection limit being 0.016mgkg -1 and characteristic mass 1.3pg. Optimum results were obtained after preparing the slurries by weighing 100mg of a sample with particle size < 54µm and adding 25mL of 20% w/w glycerol. The use of 1μg Rh and 50μg citric acid was found satisfactory for the analyte stabilization. Accurate data were obtained with the use of matrix-free calibration. The accuracy of the method was confirmed by analysis of two certified reference materials (NIST SRM 2702 Inorganics in Marine Sediment and IGI BIL-1 Baikal Bottom Silt) and by comparison of the results obtained for ten real samples by slurry sampling with those determined after microwave-assisted extraction by inductively coupled plasma time of flight mass spectrometry (TOF-ICP-MS). The reported method has a precision better than 7%. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.

    2017-01-30

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.

  16. Electro-thermal analysis and optimisation of edge termination of power diode supported by 2-D/3-D numerical modelling and simulation

    International Nuclear Information System (INIS)

    Príbytný, P; Donoval, D; Chvála, A; Marek, J; Molnár, M

    2014-01-01

    Numerical modelling and simulation provide an efficient tool for analysis and optimization of device structure design. In this paper we present the analysis and the geometry optimization of the power module with high power pin diode structure supported by the advanced 2-D/3-D mixed-mode electro-thermal device simulation. The structure under investigation is P + NN + power diode device designed for high reverse voltages and very high forward currents, with a maximum forward surge current up to 2.7 kA.

  17. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  18. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound in-vestment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  19. Application of scale test modules for model the electrothermal performance in buildings for the efficient use of energy; Aplicacion de modulos de prueba a escala para modelar el funcionamiento electrotermico de edificios para el uso eficiente de la energia

    Energy Technology Data Exchange (ETDEWEB)

    Acoltzi Acoltzi, Higinio

    2000-10-01

    Due to the amount of materials and parameters that are included in the calculations of cooling spaces in buildings in real scale are very costly, the scale test modules coupled to air conditioner systems are used to obtain their electrothermal behavior. The test modules quantify the electrical energy consumption of each module considering test materials. A transitory theoretical thermal model is analyzed. It describes the thermal behavior of the scale test modules varying the materials of the roofs and glazing of windows, this results allow uns to establish a criteria of what materials can be used in buildings. Additionally a steady state theoretical electrothermal model is presented. This model calculates the electrical energy consumption to maintain the conditions of comfort at the interior of the test modules, that consider the variation of the mentioned materials. The experimentation is developed exposing the scale test modules coupled to air conditioners to the direct solar radiation, recording: the consumption of electric power of air conditioners, the solar radiation incident on test roofs and test windows, the interior temperatures of the modules, the interior and exterior temperature of the test roofs, the ambient temperature, and the speed of the wind. The results obtained comparing the electrical power consumption of the measured and the electrical power consumption calculated present a difference of 16%. The electrical energy savings observed with the theoretical electrothermal model are: 1) Changing only clear glass by sun filter glass it can be achieved savings up to 14.5% for the small beam and small vault pottery and 12.4% for the monolithic pottery; and 2) Changing only clear glass by sun reflector glass it can be obtained savings up to 28.1% for the small beam and small vault pottery and up to 16.8% for the monolithic pottery. The greater detected electrical energy saving was for substitution monolithic pottery with clear glass by the small beam

  20. Direct observation of electrothermal instability structures on intensely Ohmically heated aluminum with current flowing in a surface skin layer

    Science.gov (United States)

    Awe, Thomas

    2017-10-01

    Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.

  1. Numerical investigation of the electric field distribution and the power deposition in the resonant cavity of a microwave electrothermal thruster

    Directory of Open Access Journals (Sweden)

    Mehmet Serhan Yildiz

    2017-04-01

    Full Text Available Microwave electrothermal thruster (MET, an in-space propulsion concept, uses an electromagnetic resonant cavity as a heating chamber. In a MET system, electromagnetic energy is converted to thermal energy via a free floating plasma inside a resonant cavity. To optimize the power deposition inside the cavity, the factors that affect the electric field distribution and the resonance conditions must be accounted for. For MET thrusters, the length of the cavity, the dielectric plate that separates the plasma zone from the antenna, the antenna length and the formation of a free floating plasma have direct effects on the electromagnetic wave transmission and thus the power deposition. MET systems can be tuned by adjusting the lengths of the cavity or the antenna. This study presents the results of a 2-D axis symmetric model for the investigation of the effects of cavity length, antenna length, separation plate thickness, as well as the presence of free floating plasma on the power absorption. Specifically, electric field distribution inside the resonant cavity is calculated for a prototype MET system developed at the Bogazici University Space Technologies Laboratory. Simulations are conducted for a cavity fed with a constant power input of 1 kW at 2.45 GHz using COMSOL Multiphysics commercial software. Calculations are performed for maximum plasma electron densities ranging from 1019 to 1021 #/m3. It is determined that the optimum antenna length changes with changing plasma density. The calculations show that over 95% of the delivered power can be deposited to the plasma when the system is tuned by adjusting the cavity length.

  2. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  3. Determination of Cd, Pb and As in sediments of the Sava River by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    SIMONA MURKO

    2010-01-01

    Full Text Available The applicability of nitric acid, palladium nitrate and a mixture of palladium and magnesium nitrate as matrix modifiers were estimated for the accurate and reproducible determination of cadmium (Cd, lead (Pb and arsenic (As in sediments of the Sava River by electrothermal atomic absorption spectrometry, ETAAS. Decomposition of the samples was done in a closed vessel microwave-assisted digestion system using nitric, hydrochloric and hydrofluoric acids, followed by the addition of boric acid to convert the fluorides into soluble complexes. The parameters for the determination of Cd, Pb and As in sediments were optimised for each individual element and for each matrix modifier. In addition, two sediment reference materials were also analysed. In determination of Cd and Pb, nitric acid was found to be the most appropriate matrix modifier. The accurate and reliable determination of Cd and Pb in sediments was possible also in the presence of boric acid. The use of a mixture of palladium and magnesium nitrate efficiently compensated for matrix effects and enabled the accurate and reliable determination of As in the sediments. Quantification of Cd and As was performed by calibration using acid matched standard solutions, while the standard addition method was applied for the quantification of Pb. The repeatability of the analytical procedure for the determination of Cd, Pb and As in sediments was ±5 % for Cd, ±4 % for Pb and ±2 % for As. The LOD values of the analytical procedure were found to be 0.05 mg/kg for Cd and 0.25 mg/kg for Pb and As, while the LOQ values were 0.16 mg/kg for Cd and 0.83 mg/kg for Pb and As. Finally, Cd, Pb and As were successfully determined in sediments of the Sava River in Slovenia.

  4. Study of power-to-weight ratio of the electrothermal propulsion system of nanosatellite maneuvering satellite platform

    Science.gov (United States)

    Blinov, V. N.; Vavilov, I. S.; Kositsin, V. V.; Lukyanchik, A. I.; Ruban, V. I.; Shalay, V. V.

    2018-01-01

    The direction of the solution of the actual task of maneuvering satellite platforms (MSP) design for nanosatellite weighing up to 10 kg, power-to-weight ratio of PS up to 8 W (electrothermal micro engine (ETME) 5 W, vaporizer 2 W, electrovalve up to 1 W) and with characteristic velocity up to 60 m/s were considered on the basis of studies of the propulsion system(PS) with ETME. The aim of study is the confirmation of technical possibility of nanosatellites design with mass up to 10 kg, power-to-weight ratio up to 8 W and with characteristic velocity up to 60 m/s on the basis of PS prototype experimental studies. In the course of the research tasks were solved to determine the design of PS and ETME of nanosatellit’s MSP, determine the electric parameters of PS depending on power consumption that determining specific impulse of ETME, and estimate the implemented characteristic velocity of the nanosatellite. The PS constructive scheme of nanosatellite mass of 10 kg was design, PS experimental prototype was produced and PS experimental research on ammonia were conducted. The 200°C was reached per 900 s at 5 W ETME power consumption with nitrogen, that equivalent to specific impulse of ammonia ETME 124/136 s when entering the stationary mode. 2 W energy consumption of a two-thread liquid ammonia vaporizer is experimentally substantiated. The using of electrovelve stepped control cyclogram allowed to reduce the average power consumption to 1 W.

  5. Direct determination of lead in human urine and serum samples by electrothermal atomic absorption spectrometry and permanent modifiers

    International Nuclear Information System (INIS)

    Andrada, Daniel; Pinto, Frederico G.; Magalhaes, Cristina Goncalves; Nunes, Berta R.; Silva, Jose Bento Borba da; Franco, Milton B.

    2006-01-01

    The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ETAAS). Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 μL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO 3 1% v/v and 0.02% v/v of cetyl trimethyl ammonium chloride (CTAC) were prepared directly in the autosampler cups and placed into the graphite furnace. For modifiers in solutions 10 μL were used. Pyrolysis and atomization temperature curves were used in all optimizations in the matrixes diluted as exposed. For urine with permanent iridium (500 μg), the best pyrolysis and atomization temperatures were 900 and 1600 deg C, respectively, with a characteristic mass of 12 pg (recommended of 10 pg), with symmetrical absorption pulses and corrected background. Spiked urine samples presented recoveries between 86 and 112% for Ir permanent. The analysis results of certified urine samples are in agreement with certified values (95% of confidence) for two levels of the metal. For serum, good results were obtained with the mixture of Zr+Rh or Ir+Rh as permanent modifiers, with characteristic masses of 9.8 and 8.1 pg, respectively. Recoveries from spiked serum samples varied between 98.6 and 100.1% (Ir+Rh) and between 93.9 and 105.2% (Zr+Rh). In both recovery studies, the relative standard deviation (n=3) was lower than 7%. Calibration for both samples were made with aqueous calibration curves and presented r 2 higher than 0.99. The limits of detection were 0.7 μg L -1 for serum samples, with Zr+Rh permanent, and 1.0 μg L -1 for urine with iridium permanent. (author)

  6. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hartmann, Georg; Schuster, Michael

    2013-01-01

    Highlights: ► We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. ► A selective ligand (sodium thiosulphate) is introduced for species separation. ► A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. ► Measurement of samples with high natural organic mater content is possible. ► Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L −1 is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L −1 . The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L −1 is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  7. Comparison of colorimetry and electrothermal atomic absorption spectroscopy for the quantification of non-transferrin bound iron in human sera.

    Science.gov (United States)

    Jittangprasert, Piyada; Wilairat, Prapin; Pootrakul, Pensri

    2004-12-01

    This paper describes a comparison of two analytical techniques, one employing bathophenanthrolinedisulfonate (BPT), a most commonly-used reagent for Fe (II) determination, as chromogen and an electrothermal atomic absorption spectroscopy (ETAAS) for the quantification of non-transferrin bound iron (NTBI) in sera from thalassemic patients. Nitrilotriacetic acid (NTA) was employed as the ligand for binding iron from low molecular weight iron complexes present in the serum but without removing iron from the transferrin protein. After ultrafiltration the Fe (III)-NTA complex was then quantified by both methods. Kinetic study of the rate of the Fe (II)-BPT complex formation for various excess amounts of NTA ligand was also carried out. The kinetic data show that a minimum time duration (> 60 minutes) is necessary for complete complex formation when large excess of NTA is used. Calibration curves given by colorimetric and ETAAS methods were linear over the range of 0.15-20 microM iron (III). The colorimetric and ETAAS methods exhibited detection limit (3sigma) of 0.13 and 0.14 microM, respectively. The NTBI concentrations from 55 thalassemic serum samples measured employing BPT as chromogen were statistically compared with the results determined by ETAAS. No significant disagreement at 95% confidence level was observed. It is, therefore, possible to select any one of these two techniques for determination of NTBI in serum samples of thalassemic patients. However, the colorimetric procedure requires a longer analysis time because of a slow rate of exchange of NTA ligand with BPT, leading to the slow rate of formation of the colored complex.

  8. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode

    International Nuclear Information System (INIS)

    Pourbagian, Mahdi; Habashi, Wagdi G.

    2015-01-01

    Highlights: • We introduce an efficient methodology for the optimization of a de-icing system. • We can replace the expensive CHT simulation by ROM without loosing much accuracy. • We propose different criteria affecting the energy usage and aerodynamic performance. • These criteria can significantly improve the performance of the de-icing system. - Abstract: Even if electro-thermal ice protection systems (IPS) consume less energy when operating in de-icing mode than in anti-icing mode, they still need to be optimized for energy usage. The optimization, however, should also take into account the effect of the de-icing system on the aerodynamic performance. The present work offers an optimization framework in which both thermal and aerodynamic viewpoints are taken into account in formulating various objective and constraint functions by considering the energy consumption, the thickness, the volume, the shape and the location of the accreted ice on the surface as the key parameters affecting the energy usage and the aerodynamic performance. The design variables include the power density and the activation time of the electric heating blankets. A derivative-free technique, called the mesh adaptive direct search (MADS) method, is used to carry out the optimization process, which would normally need a large number of unsteady conjugate heat transfer (CHT) calculations for the IPS simulation. To avoid such prohibitive computations, reduced-order modeling (ROM) is used to construct simplified low-dimensional CHT models. The approach is illustrated through several test cases, in which different combinations of objective and constraint functions, design variables and cycling sequence patterns are examined. In these test cases, the energy consumption is significantly reduced compared to the experiments by improving the spatial and temporal distribution of the thermal energy usage. The results show the benefits of the approach in bringing energy, safety and

  9. Simulation of two-dimensional interior ballistics model of solid propellant electrothermal-chemical launch with discharge rod plasma generator

    Directory of Open Access Journals (Sweden)

    Yan-jie Ni

    2017-08-01

    Full Text Available Instead of the capillary plasma generator (CPG, a discharge rod plasma generator (DRPG is used in the 30 mm electrothermal-chemical (ETC gun to improve the ignition uniformity of the solid propellant. An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun (2D-IB-SPETCG is presented to describe the process of the ETC launch. Both calculated pressure and projectile muzzle velocity accord well with the experimental results. The feasibility of the 2D-IB-SPETCG model is proved. Depending on the experimental data and initial parameters, detailed distribution of the ballistics parameters can be simulated. With the distribution of pressure and temperature of the gas phase and the propellant, the influence of plasma during the ignition process can be analyzed. Because of the radial flowing plasma, the propellant in the area of the DRPG is ignited within 0.01 ms, while all propellant in the chamber is ignited within 0.09 ms. The radial ignition delay time is much less than the axial delay time. During the ignition process, the radial pressure difference is less than 5  MPa at the place 0.025 m away from the breech. The radial ignition uniformity is proved. The temperature of the gas increases from several thousand K (conventional ignition to several ten thousand K (plasma ignition. Compare the distribution of the density and temperature of the gas, we know that low density and high temperature gas appears near the exits of the DRPG, while high density and low temperature gas appears at the wall near the breech. The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch. The 2D-IB-SPETC model can be used for prediction and improvement of experiments.

  10. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  11. Use of an electrothermal bipolar sealing device in ligation of major mesenteric vessels during laparoscopic colorectal resection.

    LENUS (Irish Health Repository)

    Martin, S T

    2012-02-01

    BACKGROUND: A variety of approaches are available for division of major vascular structures during laparoscopic colorectal resection. Ultrasonic coagulating shears (UCS), vascular staplers, plastic or titanium clips and electrothermal bipolar vessel sealing (EBVS) are currently available. We report our experience with an EBVS device, LigaSure (Covidien AG), used in division of the ileocolic, middle colic and inferior mesenteric arteries during laparoscopic colorectal resection. METHODS: We report the immediate outcome of 802 consecutive unselected patients who underwent elective laparoscopic colorectal cancer resection performed with use of the LigaSure (5 and 10 mm) at our institution over a 5-year period. Operative procedures included right hemicolectomy (n = 180), left hemicolectomy (n = 96), sigmoid colectomy (n = 347) and anterior resection (n = 179). Data were collected from a prospectively maintained cancer database and operative records. The procedures were performed primarily by three consultant surgeons with an interest in laparoscopic colorectal resection. RESULTS: Of 802 cases in which the LigaSure device was employed to divide major vascular structures, immediate effective vessel sealing was achieved in 99.8% (n = 800). Two patients experienced related adverse events both following division of the inferior mesenteric artery with a 5 mm LigaSure. Both patients had immediate uncontrolled haemorrhage that required laparotomy. CONCLUSIONS: Use of the LigaSure device to seal and divide the major mesenteric vessels during laparoscopic colorectal resection is very effective, with a high success rate of 99.8%. Caution should be exercised in elderly atherosclerotic patients, particularly when using the 5-mm LigaSure device.

  12. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel, E-mail: hcordoba@um.es

    2014-11-01

    Silver nanoparticles in the presence of Triton-X114 were extracted into a micellar phase obtained after incubation at 40 °C for 10 min followed by centrifugation. After injection of an aliquot (30 μL) of the surfactant-rich phase into the electrothermal atomizer, the enrichment effect due to cloud point extraction allowed a detection limit of 2 ng L{sup −1} silver to be achieved. The preconcentration factor was 242, and the repeatability for ten measurements at a 50 ng L{sup −1} silver level was 4.6%. Ag(I) species were adsorbed onto the silver nanoparticles and were also extracted in the micellar phase. The incorporation of 0.01 mol L{sup −1} ammonium thiocyanate to the sample solution prevented the extraction of Ag(I) species. Speciation was carried out using two extractions, one in the absence and the other in the presence of thiocyanate, the concentration of Ag(I) species being obtained by difference. The procedure was applied to the determination of silver nanoparticles and Ag(I) species in waters and in lixiviates obtained from sticking plasters and cleaning cloths. - Highlights: • Silver nanoparticles and Ag(I) species are separated into a surfactant-rich phase. • The Ag(I) species are not extracted in the presence of thiocyanate. • The cloud point extraction of two aliquots allows speciation to be carried out. • Extreme sensitivity (detection limit 2 ng L{sup −1}) is achieved.

  13. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    International Nuclear Information System (INIS)

    Ruiz, Frine; Benzo, Zully; Quintal, Manuelita; Garaboto, Angel; Albornoz, Alberto; Brito, Joaquin L.

    2006-01-01

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo 6+ and Mo 2+ ) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO 3 . Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo 6+ and Mo 5+ ) and carbide (Mo 2+ ) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar + ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform

  14. Direct determination of lead in human urine and serum samples by electrothermal atomic absorption spectrometry and permanent modifiers

    Directory of Open Access Journals (Sweden)

    Andrada Daniel

    2006-01-01

    Full Text Available The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ET AAS. Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 µL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO3 1% v/v and 0.02% v/v of cetil trimethyl ammonium chloride (CTAC were prepared directly in the autosampler cups and placed into the graphite furnace. For modifiers in solutions 10 µL were used. Pyrolysis and atomization temperature curves were used in all optimizations in the matrixes diluted as exposed. For urine with permanent iridium (500 µg, the best pyrolysis and atomization temperatures were 900 and 1600 ºC, respectively, with a characteristic mass of 12 pg (recommended of 10 pg, with symmetrical absorption pulses and corrected background. Spiked urine samples presented recoveries between 86 and 112% for Ir permanent. The analysis results of certified urine samples are in agreement with certified values (95% of confidence for two levels of the metal. For serum, good results were obtained with the mixture of Zr+Rh or Ir+Rh as permanent modifiers, with characteristic masses of 9.8 and 8.1 pg, respectively. Recoveries from spiked serum samples varied between 98.6 and 100.1% (Ir+Rh and between 93.9 and 105.2% (Zr+Rh. In both recovery studies, the relative standard deviation (n=3 was lower than 7%. Calibration for both samples were made with aqueous calibration curves and presented r² higher than 0.99. The limits of detection were 0.7 µg L-1 for serum samples, with Zr+Rh permanent, and 1.0 µg L-1 for urine with iridium permanent.

  15. Effect of nitric acid for equal stabilization and sensitivity of different selenium species in electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Feyime [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Volkan, Muervet [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)]. E-mail: ataman@metu.edu.tr

    2005-08-15

    Determination of selenium by electrothermal atomic absorption spectrometry (ETAAS) is complicated by the presence of different species of this analyte. The presence of different oxidation states (-II, IV and VI) may result in different sensitivities obtained for each species rendering impossible the use of a single species for calibration. These species also exhibit different behaviours regarding thermal stabilities; the temperature program must be provided to conform to this problem. Chemical modifiers are commonly used for thermal stabilization of selenium species. In this study, experiments were carried out to demonstrate the effect of nitric acid in the presence of chemical modifiers. Nickel and palladium + magnesium were selected as the most commonly used chemical modifiers. Using both aqueous and human serum solutions it has been demonstrated that although chemical modifiers provide thermal stabilization of species so that higher ashing temperatures can be used, equal sensitivities cannot be achieved unless nitric acid is also present. Selenite, selenate, selenomethionine and selenocystine were used in experiments. When equal sensitivities for all these species are achieved, determination of total selenium by ETAAS can be performed by using a single species as the standard; selenite was used in this study. Precision was 5.0% or better using peak height signals. There was no significant difference in detection limits (3s) when Ni or Pd + Mg(NO{sub 3}){sub 2} was used as chemical modifier; 37 and 35 pg of selenium were found to be the detection limits for Ni and Pd + Mg(NO{sub 3}){sub 2} chemical modifiers, respectively. For chemical modifications, either 5 {mu}g of Ni or 0.5 {mu}g of Pd and 5 {mu}g of Mg(NO{sub 3}){sub 2} were used; final solutions contained 2.5% HNO{sub 3}. In serum analyses, 10 {mu}g of Ni was used in presence of 2.5% HNO{sub 3}.

  16. Sequential injection on-line matrix removal and trace metal preconcentration using a PTFE beads packed column as demonstrated for the determination of cadmium by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    A sequential injection (SI) on-line matrix removal and trace metal preconcentration procedure by using a novel microcolumn packed with PTFE beads is described, and demonstrated for trace cadmium analysis with detection by electrothermal atomic absorption spectrometry (ETAAS). The analyte...

  17. Electro-thermal characterization of Lithium Iron Phosphate cell with equivalent circuit modeling

    International Nuclear Information System (INIS)

    Saw, L.H.; Ye, Y.; Tay, A.A.O.

    2014-01-01

    Highlights: • We modeled the electrical and thermal behavior of the Li-ion battery. • We validated the simulation results with experimental studies. • We studied the thermal response of the battery pack using UDDS and US06 test. • Active cooling system is needed to prolong life cycle of cell. - Abstract: Prediction of the battery performance is important in the development of the electric vehicles battery pack. A battery model that is capable to reproduce I–V characteristic, thermal response and predicting the state of charge of the battery will benefit the development of cell and reduce time to market for electric vehicles. In this work, an equivalent circuit model coupled with the thermal model is used to analyze the electrical and thermal behavior of Lithium Iron Phosphate pouch cell under various operating conditions. The battery model is comprised three RC blocks, one series resistor and one voltage source. The parameters of the battery model are extracted from pulse discharge curve under different temperatures. The simulations results of the battery model under constant current discharge and pulse charge and discharge show a good agreement with experimental data. The validated battery model is then extended to investigate the dynamic behavior of the electric vehicle battery pack using UDDS and US06 test cycle. The simulation results show that an active thermal management system is required to prolong the calendar life and ensure safety of the battery pack

  18. Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles

    Science.gov (United States)

    Saw, L. H.; Somasundaram, K.; Ye, Y.; Tay, A. A. O.

    2014-03-01

    Lithium ion batteries offer an attractive solution for powering electric vehicles due to their relatively high specific energy and specific power, however, the temperature of the batteries greatly affects their performance as well as cycle life. In this work, an empirical equation characterizing the battery's electrical behavior is coupled with a lumped thermal model to analyze the electrical and thermal behavior of the 18650 Lithium Iron Phosphate cell. Under constant current discharging mode, the cell temperature increases with increasing charge/discharge rates. The dynamic behavior of the battery is also analyzed under a Simplified Federal Urban Driving Schedule and it is found that heat generated from the battery during this cycle is negligible. Simulation results are validated with experimental data. The validated single cell model is then extended to study the dynamic behavior of an electric vehicle battery pack. The modeling results predict that more heat is generated on an aggressive US06 driving cycle as compared to UDDS and HWFET cycle. An extensive thermal management system is needed for the electric vehicle battery pack especially during aggressive driving conditions to ensure that the cells are maintained within the desirable operating limits and temperature uniformity is achieved between the cells.

  19. Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Durrant, S.F.; Krushevska, A.; Amarasiriwardena, D.; Argentine, M.D.; Romon-Guesnier, S.; Barnes, R.M.

    1994-01-01

    Following an evaluation of three chelating resins [Chelex-100, poly(dithiocarbamate) (PDTC) and carboxymethylated poly(ethyleneimine)-poly(methylenepolyphenylene) isocyanate (CPPI)], a procedure was established with the last of these for the separation of Zn from biological matrix elements prior to 70 Zn: 68 Zn isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). The method was verified by establishing Zn recoveries and by determining its effectiveness in removing Cl and Na from buffered test solutions. Calcium, Na, and Zn concentration data were determined by inductively coupled plasma atomic emission spectrometry. Chlorine was measured by electrothermal vaporization ICP-MS. The efficacy of the technique was demonstrated by the determination of zinc isotope ratios in bovine milk and human urine. (Author)

  20. Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Anawar, Hossain Md

    2012-01-15

    For the past few years many studies have been performed to determine arsenic (As) speciation in drinking water, food chain and other environmental samples due to its well-recognized carcinogenic and toxic effects relating to its chemical forms and oxidation states. This review provides an overview of analytical methods, preconcentration and separation techniques, developed up to now, using HGAAS and ETAAS for the determination of inorganic As and organoarsenic species in environmental samples. Specific advantages, disadvantages, selectivity, sensitivity, efficiency, rapidity, detection limit (DL), and some aspects of recent improvements and modifications for different analytical and separation techniques, that can define their application for a particular sample analysis, are highlighted. HG-AAS has high sensitivity, selectivity and low DL using suitable separation techniques; and it is a more suitable, affordable and much less expensive technique than other detectors. The concentrations of HCl and NaBH(4) have a critical effect on the HG response of As species. Use of l-cysteine as pre-reductant is advantageous over KI to obtain the same signal response for different As species under the same, optimum and mild acid concentration, and to reduce the interference of transition metals on the arsine generation. Use of different pretreatment, digestion, separation techniques and surfactants can determine As species with DL from ngL(-1) to μgL(-1). Out of all the chromatographic techniques coupled with HGAAS/ETAAS, ion-pair reversed-phase chromatography (IP-RP) is the most popular due to its higher separation efficiency, resolution selectivity, simplicity, and ability to separate up to seven As species for both non-ionic and ionic compounds in a signal run using the same column and short time. However, a combination of anion- and cation-exchange chromatography seems the most promising for complete resolution up to eight As species. The ETAAS method using different

  1. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  2. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  3. Effect of Electrothermal Treatment on Nerve Tissue Within the Triangular Fibrocartilage Complex, Scapholunate, and Lunotriquetral Interosseous Ligaments.

    Science.gov (United States)

    Pirolo, Joseph M; Le, Wei; Yao, Jeffrey

    2016-05-01

    To evaluate the effect of thermal treatment on neural tissue in the triangular fibrocartilage complex (TFCC), scapholunate interosseous ligament (SLIL), and lunotriquetral interosseous ligament (LTIL). The intact TFCC, SLIL, and LTIL were harvested from cadaveric specimens and treated with a radiofrequency probe as would be performed intraoperatively. Slides were stained using a triple-stain technique for neurotrophin receptor p75, pan-neuronal marker protein gene product 9.5 (PGP 9.5), and 4',6-diamidino-2-phenylindole for neural identification. Five TFCC, 5 SLIL, and 4 LTIL specimens were imaged with fluorescence microscopy. Imaging software was used to measure fluorescence signals and compare thermally treated areas with adjacent untreated areas. A paired t test was used to compare treated versus untreated areas. P < .05 was considered significant. For the TFCC, a mean of 94.9% ± 2.7% of PGP 9.5-positive neural tissue was ablated within a mean area of 11.7 ± 2.5 mm(2) (P = .02). For the SLIL treated from the radiocarpal surface, 97.4% ± 1.0% was ablated to a mean depth of 2.4 ± 0.3 mm from the surface and a mean horizontal spread of 3.4 ± 0.5 mm (P = .01). For the LTIL, 96.0% ± 1.5% was ablated to a mean depth of 1.7 ± 0.7 mm and a mean horizontal spread of 2.6 ± 1.0 mm (P = .02). Differences in the presence of neural tissue between treated areas and adjacent untreated areas were statistically significant for all specimens. Our study confirms elimination of neuronal markers after thermal treatment of the TFCC, SLIL, and LTIL in cadaveric specimens. This effect penetrates below the surface to innervated collagen tissue that is left structurally intact after treatment. Electrothermal treatment as commonly performed to treat symptomatic SLIL, LTIL, and TFCC tears eliminates neuronal tissue in treated areas and may function to relieve pain through a denervation effect. Copyright © 2016 Arthroscopy Association of North America. Published by

  4. Effect of chemical modification on behavior of various organic vanadium forms during analysis by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2007-01-01

    The behavior of various organic V forms dissolved in xylene during analysis by electrothermal atomic absorption spectrometry (ETAAS) was compared. The investigated analyte forms included compounds with vanadium at the oxidation state III, IV or V, as well as N, O or S atoms in molecules. Another group consisted of petroleum products containing naturally-occurring V species. Although the characteristic mass determined under different analytical conditions was in the very wide range from 11 up to 55 pg, some rules of V behavior were found. In the case of porphyrins and petroleum products, the application of Pd as a chemical modifier (xylene solution of Pd(II) acetylacetonate) seemed to be crucial. It was shown that Pd must be introduced to a furnace together with a sample. Pd injected and thermally pretreated before the sample injection was less effective for porphyrins and the petroleum products, but it increased signals of V compounds containing O as donor atom. The iodine pretreatment followed by the methyltrioctylammonium chloride (MTOACl) pretreatment was advantageous for these V forms. The air ashing in a graphite tube appeared to be important to improve decomposition of the petroleum products. No significant influence of the V oxidation state on the analytical signal was observed. The behavior of V contained in two Conostan oil standards, the single-element and the S21 multielement standard, was different in many situations. Probably, the joint action of other elements is responsible for this effect. In general, chemical modification was applied in the work for two reasons: to reduce the V volatility (in some cases losses at about 300 deg. C were observed) and to enhance the atomization efficiency. For routine analysis air ashing, modification by Pd introduced into the furnace together with the sample solution and petroleum products with known V content as standard is recommended. Using this procedure the characteristic mass varied from 16 to 19 pg for

  5. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    and selectivity. Either in order to separate/preconcentrate the analyte material, or because of the presence of potentially interfering matrix constituents. Such pretreatments are advantageously performed in flow injection (FI) or sequential injection (SI) manifolds, where all appropriate unit operations can...

  6. Determination of Cd, Hg, Pb and Se in sediments slurries by isotopic dilution calibration ICP-MS after chemical vapor generation using an on-line system or retention in an electrothermal vaporizer treated with iridium

    International Nuclear Information System (INIS)

    Vieira, Mariana Antunes; Ribeiro, Anderson Schwingel; Dias, Lucia Felicidade; Curtius, Adilson Jose

    2005-01-01

    A method for the determination of Cd, Hg, Pb and Se in sediments reference materials by slurry sampling chemical vapor generation (CVG) using isotopic dilution (ID) calibration and detection by inductively coupled plasma mass spectrometry (ICP-MS) is proposed. Two different systems were used for the investigation: an on-line flow injection system (FI-CVG-ICP-MS) and an off-line system with in situ trapping electrothermal vaporization (CVG-ETV-ICP-MS). About 100 mg of the reference material, ground to a particle size ≤50 μm, was mixed with acid solutions (aqua regia, HF and HCl) in an ultrasonic bath. The enriched isotopes 111 Cd, 198 Hg, 206 Pb and 77 Se were then added to the slurry in an adequate amount in order to produce an altered isotopic ratio close to 1. For the on-line system, a standing time for the slurry of 12 h before measurement was required, while for the batch system, no standing time is needed to obtain accurate results. The conditions for the formation of the analyte vapor were optimized for the evaluated systems. The following altered isotope ratios were measured: 111 Cd/ 114 Cd, 198 Hg/ 199 Hg, 206 Pb/ 208 Pb e 77 Se/ 82 Se. The obtained detection limits in the on-line system, in μg g -1 , were: Cd: 0.15; Hg: 0.09; Pb: 6.0 and Se: 0.03. Similar detection limits were obtained with the system that uses the ETV: 0.21 for Hg, 6.0 for Pb and 0.06 μg g -1 for Se. No signal for Cd was obtained in this system. One estuarine, two marine and two river certified sediments were analyzed to check the accuracy. The obtained values by both systems were generally in agreement with the certified concentrations, according to the t-test for a confidence level of 95%, demonstrating that isotope equilibration was attained in the slurries submitted to a chemical vapor generation procedure and detection by ICP-MS. The relative standard deviations were lower than 10%, adequate for slurry analysis. The almost quantitative analytes extractions to the aqueous phase

  7. A large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxide

    Science.gov (United States)

    Zhang, Tian-Yu; Wang, Qian; Deng, Ning-Qin; Zhao, Hai-Ming; Wang, Dan-Yang; Yang, Zhen; Liu, Ying; Yang, Yi; Ren, Tian-Ling

    2017-09-01

    In this paper, we have developed a high-performance graphene electrothermal actuator (ETA). The fabrication method is easy, fast, environmentally friendly, and suitable for preparing both large-size and miniature graphene ETAs. When applied with the driving voltage of 65 V, the graphene ETA achieves a large bending angle of 270° with a fast response of 8 s and the recovery process costs 19 s. The large bending deformation is reversible and can be precisely controlled by the driving voltage. A simple robotic hand prepared by using a single graphene ETA can hold the object, which is more than ten times the weight of itself. By virtue of its large-strain, fast response, and easy-to-manufacture, we believe that the graphene ETA has tremendous potential in extensive applications involving biomimetic robotics, artificial muscles, switches, and microsensors in both macroscopic and microscopic fields.

  8. Power Capability Investigation Based on Electrothermal Models of Press-pack IGBT Three-Level NPC and ANPC VSCs for Multimegawatt Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2012-01-01

    to provide reactive power support as an ancillary service. For multimegawatt full-scale wind turbines, power capability depends on converter topology and semiconductor switch technology. As power capability limiting factors, switch current, semiconductor junction temperature, and converter output voltage...... are addressed in this study for the three-level neutral-point-clamped voltage source converter (3L-NPC-VSC) and 3L Active NPC VSC (3L-ANPC-VSC) with press-pack insulated gate bipolar transistors employed as a grid-side converter. In order to investigate these VSCs' power capabilities under various operating...... conditions with respect to these limiting factors, a power capability generation algorithm based on the converter electrothermal model is developed. Built considering the VSCs' operation principles and physical structure, the model is validated by a 2 MV·A single-phase 3L-ANPC-VSC test setup. The power...

  9. Determination of lead and cadmium in hen eggs by graphite france electrothermal atomic absorption spectrometry and estimation of the daily intake

    International Nuclear Information System (INIS)

    Siddiqui, I.; Nizami, S.S.

    2012-01-01

    A total of 54 hen eggs were procured from nine poultry farms of Sindh, Pakistan in different batches to determine lead and cadmium toxicity. The quantitative analysis of lead (Pb) and cadmium (Cd) in egg samples were performed on electrothermal atomic absorption spectrometer (ETAAS), with Zeeman effects background correction. Lead concentrations in hen egg samples ranged from 0.027 to 1.056 micro g/g with a mean value of 0.283 micro g/g +- 0.86, whereas cadmium concentrations ranged from 0.001 to 0.012 micro g/g with a mean value of 0.003 micro g/g +-0.002. Lead concentrations exceeded the normal levels of 0.020 but cadmium was found lower than the normal levels of 0.005 micro g/g. (author)

  10. Charging and discharging tests for obtaining an accurate dynamic electro-thermal model of high power lithium-ion pack system for hybrid and EV applications

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Camacho, Oscar Mauricio Forero; Nørgård, Per Bromand

    2013-01-01

    This paper presents a battery test platform including two Li-ion battery designed for hybrid and EV applications, and charging/discharging tests under different operating conditions carried out for developing an accurate dynamic electro-thermal model of a high power Li-ion battery pack system....... The aim of the tests has been to study the impact of the battery degradation and to find out the dynamic characteristics of the cells including nonlinear open circuit voltage, series resistance and parallel transient circuit at different charge/discharge currents and cell temperature. An equivalent...... circuit model, based on the runtime battery model and the Thevenin circuit model, with parameters obtained from the tests and depending on SOC, current and temperature has been implemented in MATLAB/Simulink and Power Factory. A good alignment between simulations and measurements has been found....

  11. Electro-thermal Modeling for Junction Temperature Cycling-Based Lifetime Prediction of a Press-Pack IGBT 3L-NPC-VSC Applied to Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    Reliability is a critical criterion for multi-MW wind turbines, which are being employed with increasing numbers in wind power plants, since they operate under harsh conditions and have high maintenance cost due to their remote locations. In this study, the wind turbine grid-side converter...... reliability is investigated regarding IGBT lifetime based on junction temperature cycling for the grid-side press-pack IGBT 3L-NPC-VSC, which is a state-of-the art high reliability solution. In order to acquire IGBT junction temperatures for given wind power profiles and to use them in IGBT lifetime...... prediction, the converter electro-thermal model including electrical, power loss, and dynamical thermal models is developed with the main focus on the thermal modeling regarding converter topology, switch technology, and physical structure. Moreover, these models are simplified for their practical...

  12. Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wang Yang; Luo Xiaoyu; Tang Jie; Hu Xiaoya; Xu Qin; Yang Chun

    2012-01-01

    Graphical abstract: An approach to performing extraction and preconcentration employing functionalized magnetic particles for the determination of cobalt in the sequential injection lab-on-valve system using detection by electrothermal atomic absorption spectrometry. Highlights: ► New SPE method for cobalt separation/preconcentration was reported. ► Functionalized magnetic nanoparticles were used as adsorbent. ► Extraction, elution, and detection procedures were performed in the LOV system. ► This automatic extraction technique provided a good platform for metal analysis. - Abstract: A new approach to performing extraction and preconcentration employing functionalized magnetic nanoparticles for the determination of trace metals is presented. Alumina-coated iron oxide nanoparticles were synthesized and used as the solid support. The nanoparticles were functionalized with sodium dodecyl sulfate and used as adsorbents for solid phase extraction of the analyte. Extraction, elution, and detection procedures were performed sequentially in the sequential injection lab-on-valve (SI-LOV) system followed by electrothermal atomic absorption spectrometry (ETAAS). Mixtures of hydrophobic analytes were successfully extracted from solution using the synthesized magnetic adsorbents. The potential use of the established scheme was demonstrated by taking cobalt as a model analyte. Under the optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 0.01–5 μg L −1 , and the relative standard deviation was 2.8% at the 0.5 μg L −1 level (n = 11). The limit of detection was 6 ng L −1 with a sampling frequency of 18 h −1 . The present method has been successfully applied to cobalt determination in water samples and two certified reference materials.

  13. Dark coupling

    International Nuclear Information System (INIS)

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  14. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Burguera-Pascu, Margarita [Department of Oral Medicine, School of Dentistry, University of Granada, Granada (Spain)], E-mail: margaburpas@hotmail.com; Rodriguez-Archilla, Alberto [Department of Oral Medicine, School of Dentistry, University of Granada, Granada (Spain); Burguera, Jose Luis; Burguera, Marcela; Rondon, Carlos; Carrero, Pablo [Department of Chemistry, Faculty of Sciences, University of Los Andes, Merida (Venezuela)

    2007-09-26

    An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI{sub 1}) which allowed the introduction of 10 {mu}L of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI{sub 1} also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 {mu}L aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI{sub 2}). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 deg. C), followed by pyrolysis and atomization at 700 and 1700 deg. C, respectively. The aqueous calibration was linear up to 120.0 {mu}g L{sup -1} for diluted standard solutions/samples and its slope was similar (p > 0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3{sigma}) was of 0.35 {mu}g L{sup -1}. To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery

  15. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films

    Science.gov (United States)

    Preissler, Natalie; Bierwagen, Oliver; Ramu, Ashok T.; Speck, James S.

    2013-08-01

    A comprehensive study of the room-temperature electrical and electrothermal transport of single-crystalline indium oxide (In2O3) and indium tin oxide (ITO) films over a wide range of electron concentrations is reported. We measured the room-temperature Hall mobility μH and Seebeck coefficient S of unintentionally doped and Sn-doped high-quality, plasma-assisted molecular-beam-epitaxy-grown In2O3 for volume Hall electron concentrations nH from 7×1016 cm-3 (unintentionally doped) to 1×1021 cm-3 (highly Sn-doped, ITO). The resulting empirical S(nH) relation can be directly used in other In2O3 samples to estimate the volume electron concentration from simple Seebeck coefficient measurements. The mobility and Seebeck coefficient were modeled by a numerical solution of the Boltzmann transport equation. Ionized impurity scattering and polar optical phonon scattering were found to be the dominant scattering mechanisms. Acoustic phonon scattering was found to be negligible. Fitting the temperature-dependent mobility above room temperature of an In2O3 film with high mobility allowed us to find the effective Debye temperature (ΘD=700 K) and number of phonon modes (NOPML=1.33) that best describe the polar optical phonon scattering. The modeling also yielded the Hall scattering factor rH as a function of electron concentration, which is not negligible (rH≈1.4) at nondegenerate electron concentrations. Fitting the Hall-scattering-factor corrected concentration-dependent Seebeck coefficient S(n) for nondegenerate samples to the numerical solution of the Boltzmann transport equation and to widely used, simplified equations allowed us to extract an effective electron mass of m*=(0.30±0.03)me (with free electron mass me). The modeled mobility and Seebeck coefficient based on polar optical phonon and ionized impurity scattering describes the experimental results very accurately up to electron concentrations of 1019 cm-3, and qualitatively explains a mobility plateau or local

  16. Development of an automated sequential injection on-line solvent extraction-back extraction procedure as demonstrated for the determination of cadmium with detection by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium pyrrolidinedithioc......An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium....../preconcentration process of the ensuing sample. An enrichment factor of 21.4, a detection limit of 2.7 ng/l, along with a sampling frequency of 13s/h were obtained at a sample flow rate of 6.0mlmin/sup -1/. The precision (R.S.D.) at the 0.4 mug/l level was 1.8% as compared to 3.2% when quantifying the organic extractant...

  17. Measurements of β or α emitter long lived radionuclides using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Provitina, O.

    1993-01-01

    The measurement of long-lived radionuclides is highly important for characterizing nuclear wastes for their later storage. The main techniques for characterizing these isotopes are α spectrometry, β counting and γ spectrometry. The large period of these isotopes leads to low specific activity needing time consuming measurements in order to obtain significant signals. Moreover, the radiometric techniques are often limited by problems of interferences involving several steps of pretreatments. Among these steps, the specific extraction with crown ethers is highly selective for the separation of 99 Tc, 129 I and 135 Cs particularly. The radiometric techniques are here replaced by inductively coupled plasma mass spectroscopy (ICP-MS) the advantages of which are: few interferences, sensitivity which does not depend on the radiologic period as compared to radiochemistry. ICP-MS can then measure 237 Np in enriched uranium matrix and thereby reduce by a factor of 4 the sample pretreatment and the duration of the analysis usually performed by α spectrometry. Another technique, electrothermal vaporization (ETV), is consequently used. Crown ether extraction-ETV-ICP-MS is employed for measuring the long lived radionuclides 99 Tc and 129 I. The conditions of the extraction and the parameters of the ETV and the ICP-MS are studied and optimized. The methods optimized (extraction, electrothermal vaporization) are validated in the case of 99 Tc, in real samples. The spike method is required to quantify technetium, the quantification with calibration leading to bad results. The results obtained are in good agreement with the expected values. Extraction of technetium on anionic resin and its measurement by the spike method with pneumatic nebulization-ICP-MS is also performed on other samples. Measured values are also in agreement with expected values, but the method of extraction is more time consuming (half a day) than the extraction with crown ether (one hour). (author). 54 figs

  18. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  19. Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review

    International Nuclear Information System (INIS)

    Sánchez, Raquel; Todolí, José Luis; Lienemann, Charles-Philippe; Mermet, Jean-Michel

    2013-01-01

    The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decomposition. The first one is the most widely employed due to its simplicity. Once the sample has been prepared, an organic matrix is usually present. The performance of the sample introduction system (i.e., nebulizer and spray chamber) depends strongly upon the nature and properties of the solution finally obtained. Many different devices have been assayed and the obtained results are shown. Additionally, samples can be introduced into the plasma by using an electrothermal vaporization (ETV) device or a laser ablation system (LA). The recent results published in the literature showing the feasibility, advantages and drawbacks of latter alternatives are also described. Therefore, the main goal of the review is the discussion of the different approaches developed for the analysis of crude oil and its derivates by inductively coupled plasma (ICP) techniques. - Highlights: • Analysis of petroleum products by inductively coupled plasma techniques is revisited. • Fundamental studies are included together with reports dealing with applications. • Conventional and non-conventional sample introduction methods are considered. • Sample preparation methods are critically compared and described

  20. Comparison of four-probe thermal and thermoelectric transport measurements of thin films and nanostructures with microfabricated electro-thermal transducers

    Science.gov (United States)

    Kim, Jaehyun; Fleming, Evan; Zhou, Yuanyuan; Shi, Li

    2018-03-01

    Two different four-probe thermal and thermoelectric measurement methods have been reported for measuring the thermal conductivity, Seebeck coefficient, and electrical conductivity of suspended thin films and nanostructures with microfabricated electro-thermal transducers. The thermal contact resistance was extracted from the measured thermoelectric voltage drop at the contacts in the earlier four-probe method based on the assumption of constant thermal and thermoelectric properties along the sample. In comparison, the latter four-probe method can directly obtain the contact thermal resistance together with the intrinsic sample thermal resistance without making this assumption. Here, the measurement theory and data reduction processes of the latter four-probe measurement method are re-examined and improved. The measured thermal conductivity result of this improved method on representative thin film samples are found to agree with those obtained from the earlier four-probe method, which has obtained similar Seebeck coefficient and electrical conductivity as those measured with a different method for a supported thin film. The agreement provides further validation of the latest four-probe thermal transport measurement method of thin films and nanostructures.

  1. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  2. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials

    International Nuclear Information System (INIS)

    Jiang Xiuming; Wen Shengping; Xiang Guoqiang

    2010-01-01

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1 M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3σ) of the proposed method was 0.02 ng mL -1 for antimony(III), and the relative standard deviation was 7.8% (c = 1.0 ng mL -1 , n = 7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  3. Speciation and determination of inorganic mercury and methylmercury by headspace single drop microextraction and electrothermal atomic absorption spectrometry in water and fish

    Energy Technology Data Exchange (ETDEWEB)

    Sarica, Deniz Yurtsever [Scientific and Technological Research Council of Turkey, Ankara Test and Analysis Laboratory, TUeBITAK/ATAL, Besevler, Ankara (Turkey); Tuerker, Ali Rehber [Science Faculty, Department of Chemistry, Gazi University, Ankara (Turkey)

    2012-05-15

    In this study, headspace single drop microextraction (HS-SDME) method in combination with electrothermal atomic absorption spectrometry (ETAAS) method was developed and validated for the speciation and determination of inorganic mercury (iHg) and methylmercury (MeHg). MeHg and iHg species were reduced to volatile methylmercury hydride (CH{sub 3}HgH) and elemental mercury, respectively, in the presence of NaBH{sub 4} and trapped onto a drop of acceptor phase in the tip of a microsyringe. Thiourea and ammonium pyrrolydinedithiocarbamate (APDC) were tested as the acceptor phase. The experimental parameters of the method such as microextraction time, temperature, NaBH{sub 4} concentration, acceptor phase concentration, and pH of the medium were investigated to obtain distinctive conditions for mercury species. Possible interference effects have also been investigated. In order to validation of the method, analytical figures of merits such as accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), and linear working range have been evaluated. Accuracy of the method has been verified by analyzing certified reference materials (BCR 453 Tuna fish) and spiked samples. The proposed method was applied for the speciation and determination of mercury species in water and fish samples. Mercury species (MeHg and iHg) have been determined in the real samples with a relative error less than 10%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Evaluation of cadmium, lead, copper, iron and zinc in Turkish dietary vegetable oils and olives using electrothermal and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Acar, O.

    2012-07-01

    The Cd, Pb, Cu, Fe and Zn contents of some edible vegetable oils (soybean, sunflower, flower, nut, corn and olive) and of olives (olive-1, black, green, black crushed with seeds and green crushed with seeds) were determined and evaluated by an electrothermal atomic absorption spectrometer (ETAAS) using an Sc + Ir + NH{sub 4}H{sub 2}PO{sub 4} chemical modifier mixture and flame atomic absorption spectrometer (FAAS) after microwave digestion. The pyrolysis and atomization temperatures of Cd, Pb and Cu in sample solutions with and without the modifier mixture were investigated. The limits of detection (LOD) for analytes found are 0.1, 0.6, 0.9, 15.0 and 12.0 {mu}g L{sup -}1 for Cd, Cu, Pb, Fe and Zn, respectively. The accuracy of the procedure proposed was confirmed by analyzing bovine liver 1577b standard reference material (SRM) and a spiked sample solution. The results of the analytes found were compared with certified and added values. The relative standard deviations of the analytes found were lower than 7% and the percent of recoveries obtained ranges from 96 to 101%. The Sc + Ir + NH{sub 4}H{sub 2}PO{sub 4} mixture proposed was applied for the determination of Cd, Pb and Cu in oils and olives. The results of analytes found in the samples were compared with international and national food quality guidelines as well as with literature values. (Author) 48 refs.

  5. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  6. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    Science.gov (United States)

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pena, Francisco; Lavilla, Isela; Bendicho, Carlos

    2008-01-01

    Single-drop microextraction (SDME) and sequential injection analysis have been hyphenated for ultratrace metal determination by Electrothermal-Atomic Absorption Spectrometry (ETAAS). The novel method was targeted on extraction of the Cr(VI)-APDC chelate and encompasses the potential of SDME as a miniaturized and virtually solvent-free preconcentration technique, the ability of sequential injection analysis to handle samples and the versatility of furnace autosamplers for introducing microliter samples in ETAAS. The variables influencing the microextraction of Cr(VI) onto an organic solvent drop, i.e., type of organic solvent, microextraction time, stirring rate of the sample solution, drop volume, immersion depth of the drop, salting-out effect, temperature of the sample, concentration of the complexing agent and pH of the sample solution were fully investigated. For a 5 and 20 min microextraction time, the preconcentration factors were 20 and 70, respectively. The detection limit was 0.02 μg/L of Cr(VI) and the repeatability expressed as relative standard deviation was 7%. The SDME-SIA-ETAAS technique was validated against BCR CRM 544 (lyophilized solution) and applied to ultrasensitive determination of Cr(VI) in natural waters

  8. Simultaneous determination of Cr, Ni and V in urine by electrothermal atomic absorption spectrometry (ET AAS); Determinacion simultanea de Cr, Ni y V en orina mediante et aas

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Maria A.; Hermida, Jeymi [Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of). Escuela de Quimica. Centro de Quimica Analitica

    2011-07-01

    A procedure for the simultaneous determination of Cr, Ni, and V in urine by electrothermal atomic absorption spectrometry (ET AAS) was optimized by factorial design, and performed at a pyrolysis and atomization temperatures of 1300 and 2500 deg C, respectively, using 15 {mu}g de Mg(NO{sub 3}){sub 2} as chemical modifier. Characteristics mass of 14, 6 and 220 {rho}g and detection limits of the method of 0.07, 0.38 and 0.75 {mu}g L{sup -1} were obtained for Cr, Ni and V respectively. The methodology was validated using a Liphochek Urine Metals Control sample (Bio-Rad) (P=0.05). The methodology was applied to samples of voluntary Venezuelan people, not environmentally exposed to specific emissions, and results ranging from < LOD-1.1 and 1.3-3.3 {mu}g L{sup -1} was observed for Cr and V, respectively, and not detectable levels for Ni. (author)

  9. Monitoring content of cadmium, calcium, copper, iron, lead, magnesium and manganese in tea leaves by electrothermal and flame atomizer atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Prkić Ante

    2017-08-01

    Full Text Available Due to the simplicity of tea preparation (pouring hot water onto different dried herbs and its high popularity as a beverage, monitoring and developing a screening methodology for detecting the metal content is very important. The concentrations of Cd, Ca, Cu, Fe, Pb, Mg and Mn in 11 different samples of sage (Salvia officinalis L., linden (Tilia L. and chamomile (Matricaria chamomilla L. purchased at local herbal pharmacy were determined using electrothermal atomizer atomic absorption spectrometry (ETAAS and flame atomizer atomic absorption spectrometry (FAAS. The concentrations determined were: Cd (0.012 – 0.470 mg kg−1, Ca (5209 – 16340 mg kg−1, Cu (22.01 – 33.05 mg kg−1, Fe (114.2 – 440.3 mg kg−1, Pb (0.545 – 2.538 mg kg−1, Mg (2649 – 4325 mg kg−1 and Mn (34.00 – 189.6 mg kg−1. Principal Component Analysis (PCA was applied to identify factors (soil and climate influencing the content of the measured elements in herbal samples. The proposed methodology developed in this work was successfully applied to the detection of metals in herbal samples. The analysis showed that the content of toxic metals in herbal teas was below the maximum dose recommended by the World Health Organization (WHO.

  10. Liquid-phase microextraction with solidification of the organic floating drop for the preconcentration and determination of mercury traces by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, I.; Rivas, R.E.; Hernandez-Cordoba, M. [Faculty of Chemistry, University of Murcia, Department of Analytical Chemistry, Murcia (Spain)

    2010-04-15

    A procedure for the determination of traces of mercury by liquid-phase microextraction based on solidification of a floating organic droplet for separation and electrothermal atomic absorption spectrometry for final measurement has been developed. For this purpose, 50 {mu}L of pre-heated (50 C) undecanoic acid (UA), are added to 25 mL of aqueous sample solution at pH 5. The mixture, maintained at 50 C, is stirred for 10 min using a high stirring rate in order to fragment the UA drop into droplets, thus favoring the extraction process. Next, the vial is immersed in an ice bath, which results in the solidification of the UA drop that is easily separated. Injection into the atomizer is carried out after gentle heating. The pyrolytic atomizers are coated with electrolytically reduced palladium that acts as an effective chemical modifier for more than 500 firings. Under the optimized conditions, the detection limit was 70 ng L{sup -1} mercury with an enrichment factor of 430. The relative standard deviation of the measurements was in the 2.1-3.5% range. Recovery studies applied to the determination of mercuric ions in bottled and tap water samples were in the 92-104% range. (orig.)

  11. Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Olmedo, P.; Pla, A.; Hernandez, A.F.; Lopez-Guarnido, O.; Rodrigo, L.; Gil, F.

    2010-01-01

    For biological monitoring of heavy metal exposure in occupational toxicology, usually whole blood and urine samples are the most widely used and accepted matrix to assess internal xenobiotic exposure. Hair samples and saliva are also of interest in occupational and environmental health surveys but procedures for the determination of metals in saliva and hair are very scarce and to our knowledge there is no validation of a method to quantify Cr, Cd, Mn, Ni and Pb in four different human biological materials (whole blood, urine, saliva and axilary hair) by electrothermal atomization atomic absorption spectrometry (ETAAS). In the present study, quantification methods for the determination of Cr, Cd, Mn, Ni and Pb in whole blood, urine, saliva and axilary hair were validated according to the EU common standards. Pyrolisis and atomization temperatures have been determined. The main parameters evaluated were: detection and quantification limits, linearity range, repeatability, reproducibility, recovery and uncertainty. Accuracy of the methods was tested with the whole blood, urine and hair certified reference materials and recoveries of the spiked samples were acceptable ranged from 96.3 to 107.8%.

  12. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Francisco; Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende, s/n, 36310 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende, s/n, 36310 Vigo (Spain)], E-mail: bendicho@uvigo.es

    2008-04-15

    Single-drop microextraction (SDME) and sequential injection analysis have been hyphenated for ultratrace metal determination by Electrothermal-Atomic Absorption Spectrometry (ETAAS). The novel method was targeted on extraction of the Cr(VI)-APDC chelate and encompasses the potential of SDME as a miniaturized and virtually solvent-free preconcentration technique, the ability of sequential injection analysis to handle samples and the versatility of furnace autosamplers for introducing microliter samples in ETAAS. The variables influencing the microextraction of Cr(VI) onto an organic solvent drop, i.e., type of organic solvent, microextraction time, stirring rate of the sample solution, drop volume, immersion depth of the drop, salting-out effect, temperature of the sample, concentration of the complexing agent and pH of the sample solution were fully investigated. For a 5 and 20 min microextraction time, the preconcentration factors were 20 and 70, respectively. The detection limit was 0.02 {mu}g/L of Cr(VI) and the repeatability expressed as relative standard deviation was 7%. The SDME-SIA-ETAAS technique was validated against BCR CRM 544 (lyophilized solution) and applied to ultrasensitive determination of Cr(VI) in natural waters.

  13. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    Science.gov (United States)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  14. Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Olmedo, P.; Pla, A.; Hernandez, A.F.; Lopez-Guarnido, O.; Rodrigo, L. [Department of Legal Medicine and Toxicology, University of Granada, School of Medicine (Spain); Gil, F., E-mail: fgil@ugr.es [Department of Legal Medicine and Toxicology, University of Granada, School of Medicine (Spain)

    2010-02-05

    For biological monitoring of heavy metal exposure in occupational toxicology, usually whole blood and urine samples are the most widely used and accepted matrix to assess internal xenobiotic exposure. Hair samples and saliva are also of interest in occupational and environmental health surveys but procedures for the determination of metals in saliva and hair are very scarce and to our knowledge there is no validation of a method to quantify Cr, Cd, Mn, Ni and Pb in four different human biological materials (whole blood, urine, saliva and axilary hair) by electrothermal atomization atomic absorption spectrometry (ETAAS). In the present study, quantification methods for the determination of Cr, Cd, Mn, Ni and Pb in whole blood, urine, saliva and axilary hair were validated according to the EU common standards. Pyrolisis and atomization temperatures have been determined. The main parameters evaluated were: detection and quantification limits, linearity range, repeatability, reproducibility, recovery and uncertainty. Accuracy of the methods was tested with the whole blood, urine and hair certified reference materials and recoveries of the spiked samples were acceptable ranged from 96.3 to 107.8%.

  15. Evaluation of cadmium, lead, copper, iron and zinc in Turkish dietary vegetable oils and olives using electrothermal and flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Acar, O.

    2012-01-01

    The Cd, Pb, Cu, Fe and Zn contents of some edible vegetable oils (soybean, sunflower, flower, nut, corn and olive) and of olives (olive-1, black, green, black crushed with seeds and green crushed with seeds) were determined and evaluated by an electrothermal atomic absorption spectrometer (ETAAS) using an Sc + Ir + NH 4 H 2 PO 4 chemical modifier mixture and flame atomic absorption spectrometer (FAAS) after microwave digestion. The pyrolysis and atomization temperatures of Cd, Pb and Cu in sample solutions with and without the modifier mixture were investigated. The limits of detection (LOD) for analytes found are 0.1, 0.6, 0.9, 15.0 and 12.0 μg L - 1 for Cd, Cu, Pb, Fe and Zn, respectively. The accuracy of the procedure proposed was confirmed by analyzing bovine liver 1577b standard reference material (SRM) and a spiked sample solution. The results of the analytes found were compared with certified and added values. The relative standard deviations of the analytes found were lower than 7% and the percent of recoveries obtained ranges from 96 to 101%. The Sc + Ir + NH 4 H 2 PO 4 mixture proposed was applied for the determination of Cd, Pb and Cu in oils and olives. The results of analytes found in the samples were compared with international and national food quality guidelines as well as with literature values. (Author) 48 refs.

  16. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  17. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    Science.gov (United States)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-07

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.

  18. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Borges, Daniel L.G.; Welz, Bernhard; Silva, Marcia M.; Heitmann, Uwe

    2008-01-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS

  19. Study on the application of electrothermal atomization atomic absorption spectrometry for the determination of metallic Cu, Pb, Zn, Cd traces in sea water samples

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Dung; Doan Thanh Son; Tran Thi Ngoc Diep

    2004-01-01

    The trace amount of some heavy metallic elements (Cu, Zn, Pb, Cd) in sea water samples were determined directly (without separation) and quantitatively by using Electro-Thermal Atomization Atomic Absorption Spectrometry (ETA-AAS). The effect of mainly major constituents such as Na, Mg, Ca, K, and the mutual effect of the trace elements, which were present in the matrix on the absorption intensity of each analyzed element was studied. The adding of a certain chemical modification for each trace element was also investigated in order to eliminate the overall effect of the background during the pyrolysis and atomization. The sea water sample after fitrating through a membrane with 0.45 μm-hole size was injected in to the graphite tube via an autosampler (MPE50). The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for graphite furnace such as dry temperature, pyrolysis temperature, atomization temperature, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  20. Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction

    International Nuclear Information System (INIS)

    Figueroa, Raul; Garcia, Monica; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A method is described for the determination of selenium at the pg/mL level by electrothermal-atomic absorption spectrometry using in situ photogeneration of Se vapors, headspace sequestration onto an aqueous microdrop containing Pd(II) and subsequent injection in a graphite tube. Several organic acids (formic, oxalic, acetic, citric and ethylenediaminetetraacetic) have been tried for photoreduction of Se(IV) into volatile Se compounds under UV irradiation. Experimental variables such as UV irradiation time, organic acid concentration, Pd(II) concentration in the drop, sample and drop volumes, extraction time and pH were fully optimized. Low-molecular weight acids such as formic and acetic provided optimal photogeneration of volatile Se species at a 0.6 mol/L concentration. Citric and ethylenediaminetetraacetic acid allowed to use a concentration as low as 1 mmol/L, but extraction times were longer than for formic and acetic acids. Photogeneration of (CH 3 ) 2 Se from Se(IV) in the presence of acetic acid provided a detection limit of 20 pg/mL, a preconcentration factor of nearly 285 and a precision, expressed as relative standard deviation, of 4%. Analytical performance seemed to depend not only on the photogeneration efficiency obtained with each acid but also on the stability of the vapors in the headspace. The method showed a high freedom from interferences caused by saline matrices, but interferences were observed for transition metals at a relatively low concentration

  1. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Validation of electro-thermal simulation with experimental data to prepare online operation of a molten salt target at ISOLDE for the Beta Beams

    CERN Document Server

    Cimmino, S; Marzari, S; Stora, T

    2013-01-01

    The main objective of the Beta Beams is to study oscillation property of pure electrons neutrinos. It produces high energy beams of pure electron neutrinos and anti-neutrinos for oscillation experiments by beta decay of He-6 and Ne-18 radioactive ion beams, stored in a decay ring at gamma = 100. The production of He-6 beam has already been accomplished using a thick beryllium oxide target. However, the production of the needed rate of Ne-18 has proven to be more challenging. In order to achieve the requested yield for Ne-18 a new high power target design based on a circulating molten salt loop has been proposed. To verify some elements of the design, a static molten salt target prototype has been developed at ISOLDE and operated successfully. This paper describes the electro-thermal study of the molten salt target taking into account the heat produced by Joule effect, radiative heat exchange, active water cooling due to forced convection and air passive cooling due to natural convection. The numerical results...

  3. The use of electrothermal vaporizer coupled to the inductively coupled plasma mass spectrometry for the determination of arsenic, selenium and transition metals in biological samples treated with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tormen, Luciano, E-mail: lucianotormen@hotmail.com [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil); Universidade Federal da Fronteira Sul - UFFS, Campus Laranjeiras do Sul, 85303-775 Laranjeiras do Sul, PR (Brazil); Gil, Raul A. [Instituto de Quimica de San Luis (UNSL-CONICET), Chacabuco y Pedernera, D5700BWQ San Luis (Argentina); Frescura, Vera L.A. [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil); Martinez, Luis Dante [Instituto de Quimica de San Luis (UNSL-CONICET), Chacabuco y Pedernera, D5700BWQ San Luis (Argentina); Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Simple sample treatment of biologic samples with formic acid is proposed. Black-Right-Pointing-Pointer The treatment with formic acid is easy, rapid, less expensive and environmental friendly allowing a high sample throughput. Black-Right-Pointing-Pointer External calibration with aqueous standard allows the simultaneous determination of As, Co, Cu, Fe, Mn, Ni, Se and V. Black-Right-Pointing-Pointer The use of ETV avoids plasma instability, carbon deposit on the cones and does not require sample digestion. - Abstract: A fast method for the determination of As, Co, Cu, Fe, Mn, Ni, Se and V in biological samples by ETV-ICP-MS, after a simple sample treatment with formic acid, is proposed. Approximately 75 mg of each sample is mixed with 5 mL of formic acid, kept at 90 Degree-Sign C for 1 h and then diluted with nitric acid aqueous solution to a 5% (v/v) formic acid and 1% (v/v) nitric acid final concentrations. A palladium solution was used as a chemical modifier. The instrumental conditions, such as carrier gas flow rate, RF power, pyrolysis and vaporization temperatures and argon internal flow rate during vaporization were optimized. The formic acid causes a slight decrease of the analytes signal intensities, but does not increase the signal of the mainly polyatomic ions ({sup 14}N{sup 35}Cl{sup +}, {sup 14}N{sup 12}C{sup +}, {sup 40}Ar{sup 12}C{sup +}, {sup 13}C{sup 37}Cl{sup +}, {sup 40}Ar{sup 36}Ar{sup +}, {sup 40}Ar{sup 35}Cl{sup +}, {sup 35}Cl{sup 16}O{sup +}, {sup 40}Ar{sup 18}O{sup +}) that affect the analytes signals. The effect of charge transfer reactions, that could increase the ionization efficiency of some elements with high ionization potentials was not observed due to the elimination of most of the organic compounds during the pyrolysis step. External calibration with aqueous standard solutions containing 5% (v/v) formic acid allows the simultaneous determination of all analytes with high accuracy. The detection limits in the samples were between 0.01 (Co) and 850 {mu}g kg{sup -1} (Fe and Se) and the precision expressed by the relative standard deviations (RSD) were between 0.1% (Mn) and 10% (Ni). Accuracy was validated by the analysis of four certified reference biological materials of animal tissues (lobster hepatopancreas, dogfish muscle, oyster tissue and bovine liver). The recommended procedure avoids plasma instability, carbon deposit on the cones and does not require sample digestion.

  4. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  5. Electrothermal atomisation atomic absorption conditions and matrix modifications for determining antimony, arsenic, bismuth, cadmium, gallium, gold, indium, lead, molybdenum, palladium, platinum, selenium, silver, tellurium, thallium and tin following back-extraction of organic aminohalide extracts

    Science.gov (United States)

    Clark, J.R.

    1986-01-01

    A multi-element organic-extraction and back-extraction procedure, that had been developed previously to eliminate matrix interferences in the determination of a large number of trace elements in complex materials such as geological samples, produced organic and aqueous solutions that were complex. Electrothermal atomisation atomic absorption conditions and matrix modifications have been developed for 13 of the extracted elements (Ag, As, Au, Bi, Cd, Ga, In, Pb, Sb, Se, Sn, Te and Tl) that enhance sensitivity, alleviate problems resulting from the complex solutions and produce acceptable precision. Platinum, Pd and Mo can be determined without matrix modification directly on the original unstripped extracts.

  6. Standard test method for analysis of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of total uranium (U) and thorium (Th) concentrations in soils, as well as the determination of the isotopic weight percentages of 234U, 235U, 236U, and 238U, thereby allowing for the calculation of individual isotopic uranium activity or total uranium activity. This inductively coupled plasma-mass spectroscopy (ICP-MS) method is intended as an alternative analysis to methods such as alpha spectroscopy or thermal ionization mass spectroscopy (TIMS). Also, while this test method covers only those isotopes listed above, the instrumental technique may be expanded to cover other long-lived radioisotopes since the preparation technique includes the preconcentration of the actinide series of elements. The resultant sample volume can be further reduced for introduction into the ICP-MS via an electrothermal vaporization (ETV) unit or other sample introduction device, even though the standard peristaltic pump introduction is applied for this test method. The sample preparatio...

  7. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    Science.gov (United States)

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero, E-mail: carlos.herrero@usc.es

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption–elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L{sup −1}, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64–22.9 μg Pb L{sup −1}). - Highlights: • Lead determination in urine using a solid phase extraction procedure followed by ETAAS • Carbon nanotubes as SPE adsorbent for Pb in urine • Matrix elimination for the Pb determination in urine by using SPE based on carbon nanotubes • The detection limit was 0.08 μg Pb L{sup −1}.

  9. Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Berton, Paula; Martinis, Estefanía M.; Martinez, Luis D.; Wuilloud, Rodolfo G.

    2012-01-01

    Highlights: ► Synergy of ultrasound energy and TILDLME technique for improved metal extraction. ► Highly selective determination of inorganic Co species at trace levels. ► Speciation analysis of Co in several nutritional supplements with highly complex matrices. ► Development of an environmentally friendly microextraction technique with minimal waste production and sample consumption. - Abstract: In the present work, a simple and rapid analytical method based on application of ionic liquids (ILs) for inorganic Co(II) species (iCo) microextraction in a variety of nutrient supplements was developed. Inorganic Co was initially chelated with 1-nitroso-2-naphtol (1N2N) reagent followed by a modern technique named ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction (USA-TILDLME). The extraction was performed with 1-hexyl-3-methylimidazolium hexafluorophosphate [C 6 mim][PF 6 ] with the aid of ultrasound to improve iCo recovery. Finally, the iCo-enriched IL phase was solubilized in methanol and directly injected into an electrothermal atomic absorption spectrometer (ETAAS). Several parameters that could influence iCo microextraction and detection were carefully studied. Since the main difficulty in these samples is caused by high concentrations of potential interfering ions, different approaches were evaluated to eliminate interferences. The limit of detection (LOD) was 5.4 ng L −1 , while the relative standard deviation (RSD) was 4.7% (at 0.5 μg L −1 Co level and n = 10), calculated from the peak height of absorbance signals. Selective microextraction of iCo species was achieved only by controlling the pH value during the procedure. The method was thus successfully applied for determination of iCo species in nutritional supplements.

  10. Determination of cadmium in whole blood and scalp hair samples of Pakistani male lung cancer patients by electrothermal atomic absorption spectrometer

    International Nuclear Information System (INIS)

    Kazi, T.G.; Memon, A.R.; Afridi, H.I.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Sarfraz, R.A.

    2008-01-01

    A large number of epidemiologic studies have been undertaken to identify potential risk factors for cancer, amongst which the association with cadmium has received considerable attention. There is compelling evidence in support of positive associations between cadmium and risk of lung cancer. In present study we measured the concentration of Cd in whole blood and scalp hair samples of 120 male lung cancer patients (smokers) and 150 controls or referents (smokers and nonsmokers) from different cities of Pakistan. Both referents and patients were of same age group (ranged 40-70 years), socio-economic status, localities and dietary habits. The scalp hair and whole blood samples were oxidized by 65% nitric acid: 30% hydrogen peroxide (2:1) ratio in microwave oven. To check the validity of the proposed method, a conventional wet acid digestion method was used to obtain total Cd concentration in certified samples of human hair BCR 397 and Clincheck control-lyophilized human whole blood. All digests were analyzed for Cd concentration by electrothermal atomic absorption spectrometer (ETAAS). The results of this study showed that the average Cd concentration was higher in the blood and scalp hair of lung cancer patients at different stages as compared to controls (p < 001). The smoker referents have high level of Cd in both biological samples as compared to nonsmoker subjects. These results illustrate that the patients who continued smoking after confirmed diagnosis of lung cancer have 34.2-67.26 and 22.4-57.3% more Cd in blood samples and scalp hair than lung cancer patients who cease smoking. This study is compelling evidence in support of positive associations between cadmium, cigarette smoking and lung cancer risk

  11. Use of cetyltrimethylammonium bromide as surfactant for the determination of copper and chromium in gasoline emulsions by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Santos, Denilson S.S. dos; Teixeira, Alete P.; Barbosa, Jose T.P.; Ferreira, Sergio L.C.; Korn, Maria das Gracas A; Teixeira, Leonardo S.G.

    2007-01-01

    In this work, the use of cetyltrimethylammonium bromide as surfactant for the preparation of oil-in-water emulsions for the determination of Cu and Cr in gasoline by electrothermal atomic absorption spectrometry (ET AAS) was evaluated. The surfactant amount was tested in the range of 25 to 300 mg, added to 2 ml of gasoline, and completed to 10 mL with 0.1% (v/v) nitric acid solution. 150 mg of surfactant was found optimum, and a sonication time of 10 min sufficient to form an oil-in-water emulsion that was stable for several hours. The ET AAS temperature program was established based on pyrolysis and atomization curves. The pyrolysis temperatures were set at 700 and 1300 deg. C for Cu and Cr, respectively and the selected atomization temperatures were 2400 and 2500 deg. C. The time and temperature of the drying stage and the atomization time were experimentally tested to provide optimum conditions. The limits of detection were found to be 5 μg L -1 and 1.5 μg L -1 for Cu and Cr, respectively in the original gasoline samples. The relative standard deviation (RSD) ranged from 4 to 9% in oil-in-water emulsions spiked with 5 μg L -1 and 15 μg L -1 of each metal, respectively. Recoveries varied from 90 to 98%. The accuracy of the proposed method was tested by an alternate procedure using complete evaporation of the gasoline sample. The method was adequate for the determination of Cu and Cr in gasoline samples collected from different gas stations in Salvador, BA, Brazil

  12. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2007-01-01

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO 2 , H 2 and H 2 O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L -1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L -1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  13. Hollow fiber based liquid-phase microextraction for the determination of mercury traces in water samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Rivas, Ricardo E. [Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence ' Campus Mare Nostrum' , University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel, E-mail: hcordoba@um.es [Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence ' Campus Mare Nostrum' , University of Murcia, E-30071 Murcia (Spain)

    2012-09-19

    Highlight: Black-Right-Pointing-Pointer Hg (II) traces are preconcentrated by means of a three-phase liquid microextraction system. Black-Right-Pointing-Pointer PAN and ammonium iodide are used in the donor and acceptor phase, respectively. Black-Right-Pointing-Pointer Hollow-fiber pores are continuously fed with toluene placed in the lumen. Black-Right-Pointing-Pointer Mercuric ions can be measured in waters below the {mu}g L{sup -1} level. - Abstract: A three-phase liquid microextraction procedure for the determination of mercury at low concentrations is discussed. To the aqueous sample placed at pH 7 by means of a phosphate buffer, 0.002% (m/v) 1-(2-pyridylazo)-2-naphthol (PAN) is incorporated, and the mixture submitted to microextraction with a hollow-fiber impregnated with toluene and whose lumen contains a 0.05 mol L{sup -1} ammonium iodide solution. The final measurement of the extract is carried out by electrothermal atomic absorption spectrometry (300 Degree-Sign C and 1100 Degree-Sign C for the calcination and atomization temperatures, respectively). The pyrolytic graphite atomizer is coated electrolytically with palladium. An enrichment factor of 270, which results in a 0.06 {mu}g L{sup -1} mercury for the detection limit is obtained. The relative standard deviation at the 1 {mu}g L{sup -1} mercury level is 3.2% (n = 5). The reliability of the procedure is verified by analyzing waters as well as six certified reference materials.

  14. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Briceno, Marisol [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel, E-mail: hcordoba@um.es [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)

    2011-08-05

    Highlights: {yields} Arsenic in fish-based food samples can be determined without the need of a dissolution stage. {yields} Speciation of the main forms of arsenic in fish-based baby foods does not require chromatography. {yields} The behavior of arsenic compounds in ETAAS strongly depends on the chemical modifier used. - Abstract: A procedure for the speciation analysis of arsenic in fish-based baby foods is presented. Inorganic arsenic, methylarsonic acid (MA), dimethylarsinic acid (DMA) and arsenobetaine (AB) were determined by electrothermal atomic absorption spectrometry (ETAAS) using suspensions prepared in a 0.01 mol L{sup -1} tetramethylammonium hydroxide (TMAH) solution. Speciation is based on the use of three different chemically modified ETAAS atomizers to obtain the analytical signals. Using a palladium salt as the chemical modifier, the signal corresponding to the total arsenic concentration is obtained. When palladium is replaced by Ce(IV), the signal is solely due to inorganic arsenic (III and V) + MA. If no signal is obtained in this latter case, it is possible to distinguish between DMA and AB using a zirconium coated atomizer. The signal obtained in this way is due solely to DMA, and the concentration of AB can be obtained by the difference with the total arsenic content. Determinations by ETAAS require the use of the standard additions method. The limits of detection for the determination of AB, DMA and inorganic arsenic (+MA) are 15, 25 and 50 ng g{sup -1} expressed as arsenic, respectively. These detection limits are good enough for the procedure to be appropriate for the rapid determination of these compounds, avoiding extraction processes and/or chromatographic separations. Data for commercial samples, as well as for four standard reference materials, are given.

  15. Preconcentration and determination of boron in milk, infant formula, and honey samples by solid phase extraction-electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, I.; Vinas, P.; Romero-Romero, R. [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, M. [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)], E-mail: hcordoba@um.es

    2009-02-15

    This work presents alternative procedures for the electrothermal atomic absorption spectrometric determination of boron in milk, infant formulas, and honey samples. Honey samples (10% m/v) were diluted in a medium containing 1% v/v HNO{sub 3} and 50% v/v H{sub 2}O{sub 2} and introduced in the atomizer. A mixture of 20 {mu}g Pd and 0.5 {mu}g Mg was used for chemical modification. Calibration was carried out using aqueous solutions prepared in the same medium, in the presence of 10% m/v sucrose. The detection limit was 2 {mu}g g{sup -1}, equivalent to three times the standard error of the estimate (s{sub y/x}) of the regression line. For both infant formulas and milk samples, due to their very low boron content, we used a procedure based on preconcentration by solid phase extraction (Amberlite IRA 743), followed by elution with 2 mol L{sup -1} hydrochloric acid. Detection limits were 0.03 {mu}g g{sup -1} for 4% m/v honey, 0.04 {mu}g g{sup -1} for 5% m/v infant formula and 0.08 {mu}g mL{sup -1} for 15% v/v cow milk. We confirmed the accuracy of the procedure by comparing the obtained results with those found via a comparable independent procedure, as well by the analysis of four certified reference materials.

  16. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lopez-Garcia, Ignacio; Briceno, Marisol; Hernandez-Cordoba, Manuel

    2011-01-01

    Highlights: → Arsenic in fish-based food samples can be determined without the need of a dissolution stage. → Speciation of the main forms of arsenic in fish-based baby foods does not require chromatography. → The behavior of arsenic compounds in ETAAS strongly depends on the chemical modifier used. - Abstract: A procedure for the speciation analysis of arsenic in fish-based baby foods is presented. Inorganic arsenic, methylarsonic acid (MA), dimethylarsinic acid (DMA) and arsenobetaine (AB) were determined by electrothermal atomic absorption spectrometry (ETAAS) using suspensions prepared in a 0.01 mol L -1 tetramethylammonium hydroxide (TMAH) solution. Speciation is based on the use of three different chemically modified ETAAS atomizers to obtain the analytical signals. Using a palladium salt as the chemical modifier, the signal corresponding to the total arsenic concentration is obtained. When palladium is replaced by Ce(IV), the signal is solely due to inorganic arsenic (III and V) + MA. If no signal is obtained in this latter case, it is possible to distinguish between DMA and AB using a zirconium coated atomizer. The signal obtained in this way is due solely to DMA, and the concentration of AB can be obtained by the difference with the total arsenic content. Determinations by ETAAS require the use of the standard additions method. The limits of detection for the determination of AB, DMA and inorganic arsenic (+MA) are 15, 25 and 50 ng g -1 expressed as arsenic, respectively. These detection limits are good enough for the procedure to be appropriate for the rapid determination of these compounds, avoiding extraction processes and/or chromatographic separations. Data for commercial samples, as well as for four standard reference materials, are given.

  17. Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil

    International Nuclear Information System (INIS)

    Liu Rui; Wu Peng; Xu Kailai; Lv Yi; Hou Xiandeng

    2008-01-01

    Bismuthine was on-line trapped on tungsten coil and subsequently electrothermally vaporized for the determination by atomic fluorescence spectrometry (AFS). Several noble metals, including Pd, Rh, Pt, and Ir, were explored as permanent chemical modifier for tungsten coil on-line trapping. Investigation showed that Ir gave the best performance, in which bismuthine was on-line trapped on Ir-coated tungsten coil at 560 o C, and then released at 1550 o C for subsequent transfer to AFS by a mixture of Ar and H 2 . Under optimum instrumental conditions, the trapping efficiency was found to be 73 ± 3%. With 120 s (12 mL sample volume) trapping time, a limit of detection (LOD) of 4 ng L -1 was obtained, compared to conventional hydride generation AFS (0.09 μg L -1 ); the LOD can be lowered down to 1 ng L -1 by increasing the trapping time to 480 s. The LOD was found to be better or at least comparable to literature levels involving on-line trapping and some other sophisticated instrumental methods such as ICP-MS and GF-AAS. A comprehensive interference study involving conventional hydride-forming elements and some transition metals was carried out, and the result showed that the gas phase interference from other hydride-forming elements was largely reduced, thanks to the use of on-line tungsten coil trapping. Finally, the proposed method was applied to the determination of bismuth in several biological and environmental standard reference materials, and a t-test shows that the analytical results by the proposed method have no significant difference from the certified values at the confidence level of 95%

  18. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Directory of Open Access Journals (Sweden)

    Soydemir E.

    2014-07-01

    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  19. L-tyrosine immobilized on multiwalled carbon nanotubes: a new substrate for thallium separation and speciation using stabilized temperature platform furnace-electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Pacheco, Pablo H; Gil, Raúl A; Smichowski, Patricia; Polla, Griselda; Martinez, Luis D

    2009-12-10

    An approach for the separation and determination of inorganic thallium species is described. A new sorbent, L-tyrosine-carbon nanotubes (L-tyr-CNTs), was used and applied to the analysis of tap water samples. At pH 5.0, L-tyr was selective only towards Tl(III), while total thallium was determined directly by stabilized temperature platform furnace-electrothermal atomic absorption spectrometry (STPF-ETAAS). The Tl(III) specie, which was retained by L-tyrosine, was quantitatively eluted from the column with 10% of nitric acid. An on-line breakthrough curve was used to determine the column capacity, which resulted to be 9.00 micromol of Tl(III) g(-1) of L-tyr-CNTs with a molar ratio of 0.14 (moles of Tl bound to moles of L-tyr at pH 5). Transient peak areas revealed that Tl stripping from the column occurred instantaneously. Effects of sample flow rate, concentration and flow rate of the eluent, and interfering ions on the recovery of the analyte were systematically investigated. The detection limit for the determination of total thallium (3sigma) by STPF-ETAAS was 150 ng L(-1). The detection limit (3sigma) for Tl(III) employing the separation system was 3 ng L(-1), with an enrichment factor of 40. The precision of the method expressed as the relative standard deviation (RSD) resulted to be 3.4%. The proposed method was applied to the speciation and determination of inorganic thallium in tap water samples. The found concentrations were in the range of 0.88-0.91 microg L(-1) of Tl(III), and 3.69-3.91 microg L(-1) of total thallium.

  20. Spatial discrimination against background with different optical systems for collection of fluorescence in laser-excited atomic fluorescence spectrometry with a graphite tube electrothermal atomizer.

    Science.gov (United States)

    Yuzefovsky, A I; Lonardo, R F; Michel, R G

    1995-07-01

    A single 90 degrees off-axis ellipsoidal mirror fragment was used in a dispersive detection system for electrothermal atomization laser-excited atomic fluorescence spectrometry. The performance of the new optical arrangement was compared with those of optical arrangements that employed a plane mirror in combination with biconvex or plano-convex lenses. All the optical arrangements collected fluorescence in a scheme called front surface illustration. BEAM-4, an optical ray tracing program, was used for calculations of spatial ray distributions and optical collection efficiency for the various optical configurations. Experimentally, the best collection efficiency was obtained by use of the ellipsoidal mirror, in qualitative agreement with simulations done by use of the BEAM-4 software. The best detection limit for cobalt with the new optical arrangement was 20 fg, which was a factor of 5 better than that obtained with conventional optical arrangements with otherwise the same instrumentation. The signal-to-background ratio and the fluorescence collection efficiency were also studied as a function of position of the optical components for the various optical arrangements. For both cobalt and phosphorus, the signal-to-background ratio with the new optical arrangement remained stable within 10-20% during +/- 8 mm shifts in the position of the detection system from the focal plane of the optics. Overall, the new optical arrangement offered high collection efficiency, excellent sensitivity, and facile optical alignment due to efficient spatial separation between the fluorescence signal and the background radiation. The advantages of the new optical arrangement were particularly important during measurements in the presence of high levels of blackbody radiation.

  1. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.

    2015-01-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO 3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L −1 HNO 3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg −1 . Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and samples

  2. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  3. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  4. L-Tyrosine immobilized on multiwalled carbon nanotubes: A new substrate for thallium separation and speciation using stabilized temperature platform furnace-electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pacheco, Pablo H.; Gil, Raul A.; Smichowski, Patricia; Polla, Griselda; Martinez, Luis D.

    2009-01-01

    An approach for the separation and determination of inorganic thallium species is described. A new sorbent, L-tyrosine-carbon nanotubes (L-tyr-CNTs), was used and applied to the analysis of tap water samples. At pH 5.0, L-tyr was selective only towards Tl(III), while total thallium was determined directly by stabilized temperature platform furnace-electrothermal atomic absorption spectrometry (STPF-ETAAS). The Tl(III) specie, which was retained by L-tyrosine, was quantitatively eluted from the column with 10% of nitric acid. An on-line breakthrough curve was used to determine the column capacity, which resulted to be 9.00 μmol of Tl(III) g -1 of L-tyr-CNTs with a molar ratio of 0.14 (moles of Tl bound to moles of L-tyr at pH 5). Transient peak areas revealed that Tl stripping from the column occurred instantaneously. Effects of sample flow rate, concentration and flow rate of the eluent, and interfering ions on the recovery of the analyte were systematically investigated. The detection limit for the determination of total thallium (3σ) by STPF-ETAAS was 150 ng L -1 . The detection limit (3σ) for Tl(III) employing the separation system was 3 ng L -1 , with an enrichment factor of 40. The precision of the method expressed as the relative standard deviation (RSD) resulted to be 3.4%. The proposed method was applied to the speciation and determination of inorganic thallium in tap water samples. The found concentrations were in the range of 0.88-0.91 μg L -1 of Tl(III), and 3.69-3.91 μg L -1 of total thallium.

  5. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.; Teixeira, Leonardo S. G.

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box-Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L- 1 HNO3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg- 1. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method.

  6. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    International Nuclear Information System (INIS)

    Li Shengqing; Cai Shun; Hu Wei; Chen Hao; Liu Hanlan

    2009-01-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6 . After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 μL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass (m 0 , 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  7. Spectral and non-spectral interferences in the determination of thallium in environmental materials using electrothermal atomization and vaporization techniques--a case study

    International Nuclear Information System (INIS)

    Vale, Maria Goreti R.; Welz, Bernhard

    2002-01-01

    The literature on the determination of Tl in environmental samples using electrothermal atomization (ETA) and vaporization (ETV) techniques has been reviewed with special attention devoted to potential interferences and their control. Chloride interference, which is due to the formation of the volatile monochloride in the condensed phase, is the most frequently observed problem. Due to its high dissociation energy (88 kcal/mol), TlCl is difficult to dissociate in the gas phase and is easily lost. The best means of controlling this interference in ETA is atomization under isothermal conditions according to the stabilized temperature platform furnace concept, and the use of reduced palladium as a modifier. An alternative approach appears to be the 'fast furnace' concept, wherein both the use of a modifier and the pyrolysis stage are omitted. This concept requires an efficient background correction system, and high-resolution continuum-source atomic absorption spectrometry (HR-CS AAS) appears to offer the best results. This chloride interference can also cause significant problems when ETV techniques are used. Among the spectral interferences found in the determination of thallium are those due to Pd, the most efficient modifier, and Fe, which is frequently found at high concentrations in environmental samples. Both interferences are due to nearby atomic lines, and are observed only when deuterium background correction and relatively high atomization temperatures are used. A more serious spectral interference is that due to the molecular absorption spectrum of SO 2 , which has a maximum around the Tl line and exhibits a pronounced rotational fine structure. HR-CS AAS again showed the best performance in coping with this interference

  8. Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Paula; Martinis, Estefania M. [Analytical Chemistry Research and Development Group (QUIANID), (LISAMEN-CCT-CONICET-Mendoza), Av. Ruiz Leal S/N Parque General San Martin, M 5502 IRA Mendoza (Argentina); Martinez, Luis D. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar [Analytical Chemistry Research and Development Group (QUIANID), (LISAMEN-CCT-CONICET-Mendoza), Av. Ruiz Leal S/N Parque General San Martin, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Synergy of ultrasound energy and TILDLME technique for improved metal extraction. Black-Right-Pointing-Pointer Highly selective determination of inorganic Co species at trace levels. Black-Right-Pointing-Pointer Speciation analysis of Co in several nutritional supplements with highly complex matrices. Black-Right-Pointing-Pointer Development of an environmentally friendly microextraction technique with minimal waste production and sample consumption. - Abstract: In the present work, a simple and rapid analytical method based on application of ionic liquids (ILs) for inorganic Co(II) species (iCo) microextraction in a variety of nutrient supplements was developed. Inorganic Co was initially chelated with 1-nitroso-2-naphtol (1N2N) reagent followed by a modern technique named ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction (USA-TILDLME). The extraction was performed with 1-hexyl-3-methylimidazolium hexafluorophosphate [C{sub 6}mim][PF{sub 6}] with the aid of ultrasound to improve iCo recovery. Finally, the iCo-enriched IL phase was solubilized in methanol and directly injected into an electrothermal atomic absorption spectrometer (ETAAS). Several parameters that could influence iCo microextraction and detection were carefully studied. Since the main difficulty in these samples is caused by high concentrations of potential interfering ions, different approaches were evaluated to eliminate interferences. The limit of detection (LOD) was 5.4 ng L{sup -1}, while the relative standard deviation (RSD) was 4.7% (at 0.5 {mu}g L{sup -1} Co level and n = 10), calculated from the peak height of absorbance signals. Selective microextraction of iCo species was achieved only by controlling the pH value during the procedure. The method was thus successfully applied for determination of iCo species in nutritional supplements.

  9. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jorge S.; Anunciação, Taiana A. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Brandão, Geovani C. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); INCT de Energia e Ambiente, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Dantas, Alailson F. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Lemos, Valfredo A. [Laboratório de Química Analítica (LQA), Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Jequié, Bahia 45506-191 (Brazil); and others

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO{sub 3} gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L{sup −1} HNO{sub 3} as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg{sup −1}. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and

  10. Separation and preconcentration of ultratrace levels of cadmium(II) in a sequential injection (SI) system with a PTFE packed column as a mimic sequential injection lab-on-valve (SI-LOV) system with renewable column employing detection by electrothermal atomic absorption spectrometry (ETAAS)

    DEFF Research Database (Denmark)

    Long, Xiangbao; Chomchoei, Roongrat; Gała, Piotr

    of cadmium(II) by detection with electrothermal atomic absorption spectrometry (ETAAS). The non-charged complex formed between the analyste and the chelating reagent diethyldithiophosphate (DDPA) was selectively adsorbed on the surface of the PTFE beads and eluted by ethanol before being directed...

  11. Evaluation of a novel PTFE material for use as a means for separation and preconcentration of trace levels of metal ions in sequential injection (SI) and sequential injection lab-on-valve (SI-LOV) systems. Determination of cadmium (II) with detection by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Long, Xiangbao; Chomchoei, Roongrat; Hansen, Elo Harald

    2004-01-01

    with an external packed column and in a sequential injection lab-on-valve (SI-LOV) system. Employed for the determination of cadmium(II), complexed with diethyldithiophosphate (DDPA), and detection by electrothermal atomic absorption spectrometry (ETAAS), its performance was compared to that of a previously used...

  12. Working towards accreditation by the International Standards Organization 15189 Standard: how to validate an in-house developed method an example of lead determination in whole blood by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Garcia Hejl, Carine; Ramirez, Jose Manuel; Vest, Philippe; Chianea, Denis; Renard, Christophe

    2014-09-01

    Laboratories working towards accreditation by the International Standards Organization (ISO) 15189 standard are required to demonstrate the validity of their analytical methods. The different guidelines set by various accreditation organizations make it difficult to provide objective evidence that an in-house method is fit for the intended purpose. Besides, the required performance characteristics tests and acceptance criteria are not always detailed. The laboratory must choose the most suitable validation protocol and set the acceptance criteria. Therefore, we propose a validation protocol to evaluate the performance of an in-house method. As an example, we validated the process for the detection and quantification of lead in whole blood by electrothermal absorption spectrometry. The fundamental parameters tested were, selectivity, calibration model, precision, accuracy (and uncertainty of measurement), contamination, stability of the sample, reference interval, and analytical interference. We have developed a protocol that has been applied successfully to quantify lead in whole blood by electrothermal atomic absorption spectrometry (ETAAS). In particular, our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics.

  13. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  14. Multiscale coupling based on quasicontinuum method in nanowires at finite temperatures

    DEFF Research Database (Denmark)

    Esahani, Mohammad Nasr; Sonne, Mads Rostgaard; Hattel, Jesper Henri

    2015-01-01

    Nanoelectromechanical systems have been developed for ultra-high frequency oscillators because of their small sizeand excellent material properties. Using flexural modes and electrothermal features in nanowires for frequency tuning necessitates a sound modeling approach. The quasicontinuum method...

  15. Method development for the determination of fluorine in water samples via the molecular absorption of strontium monofluoride formed in an electrothermal atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Nil, E-mail: nil.ozbek@itu.edu.tr; Akman, Suleyman, E-mail: akmans@itu.edu.tr

    2012-03-15

    The presence of fluorine (F) was detected via the rotational molecular absorption line of diatomic strontium-monofluoride (SrF) generated in the gas phase at 651.187 nm using high-resolution continuum source electrothermal atomic absorption spectrometry. Upon the addition of excess strontium (Sr) as the nitrate, the fluorine in the sample was converted to SrF in the gas phase of a graphite furnace. The effects on the accuracy, precision and sensitivity of variables such as the SrF wavelength, graphite furnace program, amount of Sr, coating of the graphite tube and platform with Zr and Ir and the use of a modifier were investigated and optimized. It was determined that there was no need to use a modifier or to cover the platform/tubes with Zr or Ir. Fluorine concentrations in various water samples (certified waste water, tap water, drinking water and mineral water) were determined using 20 {mu}g of Sr as the molecule-forming reagent and applying a maximum pyrolysis temperature of 800 Degree-Sign C and a molecule-forming temperature of 2200 Degree-Sign C with a heating rate of 2000 Degree-Sign C s{sup -1}. Good linearity was maintained up to 0.1 {mu}g of F. The accuracy and precision of the method were tested by analyzing certified reference wastewater. The results were in good agreement with certified values, and the precision was satisfactory (RSD < 10%). The limit of detection and the characteristic mass for the method were 0.36 ng and 0.55 ng, respectively. Finally, the fluorine concentrations in several drinking water and mineral water samples taken from the market were determined. The results were in good agreement with the values supplied by the producers. No significant differences were found between the results from the linear calibration and standard addition techniques. The method was determined to be simple, fast, accurate and sensitive. - Highlights: Black-Right-Pointing-Pointer F is determined via MAS of SrF at 651.187 nm using HR-CS-ET AAS. Black

  16. Determination of cadmium and lead in urine samples after dispersive solid–liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.; Herrero Latorre, C., E-mail: carlos.herrero@usc.es

    2015-04-01

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L{sup −1}, respectively, and for Pb these limits were 0.13 and 0.43 μg L{sup −1}. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96–102% obtained for Cd and 97–101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE–SS–ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained. - Highlights: • Cd and Pb determination based on the combination of DSP, SS and ETAAS • Urine matrix was eliminated using DSPE based on multiwalled carbon nanotubes. • Slurry sampling technique permitted the direct injection of sample into the ETAAS atomizer.

  17. Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nomura, Cassiana S.; Silva, Cintia S.; Nogueira, Ana R.A.; Oliveira, Pedro V.

    2005-01-01

    This work describes a systematic study for the bovine liver sample preparation for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry. The main parameters investigated were sample drying, grinding process, particle size, sample size, microsample homogeneity, and their relationship with the precision and accuracy of the method. A bovine liver sample was prepared using different drying procedures: (1) freeze drying, and (2) drying in a household microwave oven followed by drying in a stove at 60 deg. C until constant mass. Ball and cryogenic mills were used for grinding. Less sensitive wavelengths for Cu (216.5 nm) and Zn (307.6 nm), and Zeeman-based three-field background correction for Cu were used to diminish the sensitivities. The pyrolysis and atomization temperatures adopted were 1000 deg. C and 2300 deg. C for Cu, and 700 deg. C and 1700 deg. C for Zn, respectively. For both elements, it was possible to calibrate the spectrometer with aqueous solutions. The use of 250 μg of W + 200 μg of Rh as permanent chemical modifier was imperative for Zn. Under these conditions, the characteristic mass and detection limit were 1.4 ng and 1.6 ng for Cu, and 2.8 ng and 1.3 ng for Zn, respectively. The results showed good agreement (95% confidence level) for homogeneity of the entire material (> 200 mg) when the sample was dried in microwave/stove and ground in a cryogenic mill. The microsample homogeneity study showed that Zn is more dependent on the sample pretreatment than Cu. The bovine liver sample prepared in microwave/stove and ground in a cryogenic mill presented results with the lowest relative standard deviation for Cu than Zn. Good accuracy and precision were observed for bovine liver masses higher than 40 μg for Cu and 30 μg for Zn. The concentrations of Cu and Zn in the prepared bovine liver sample were 223 mg kg - 1 and 128 mg kg - 1 , respectively. The relative standard deviations were lower than 6% (n = 5). The

  18. Recent advances in on-line coupling of capillary electrophoresis to atomic absorption and fluorescence spectrometry for speciation analysis and studies of metal-biomolecule interactions

    International Nuclear Information System (INIS)

    Li Yan; Yin Xuebo; Yan Xiuping

    2008-01-01

    Speciation information is vital for the understanding of the toxicity, mobility and bioavailability of elements in environmental or biological samples. Hyphenating high resolving power of separation techniques and element-selective detectors provides powerful tools for studying speciation of trace elements in environmental and biological systems. During the last five years several novel hybrid techniques based on capillary electrophoresis (CE) and atomic spectrometry have been developed for speciation analysis and metal-biomolecule interaction study in our laboratory. These techniques include CE on-line coupled with atomic fluorescence spectrometry (AFS), chip-CE on-line coupled with AFS, CE on-line coupled with flame heated quartz furnace atomic absorption spectrometry (FHF-AAS), and CE on-line coupled with electrothermal atomic absorption spectrometry (ETAAS). The necessity for the development of these techniques, their interface design, and applications in speciation analysis and metal-biomolecule interaction study are reviewed. The advantages and limitations of the developed hybrid techniques are critically discussed, and further development is also prospected

  19. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  20. Conversation, coupling and complexity

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Abney, Drew; Bahrami, Bahador

    We investigate the linguistic co-construction of interpersonal synergies. By applying a measure of coupling between complex systems to an experimentally elicited corpus of joint decision dialogues, we show that interlocutors’ linguistic behavior displays increasing signature of multi-scale coupling......, known as complexity matching, over the course of interaction. Furthermore, we show that stronger coupling corresponds with more effective interaction, as measured by collective task performance....

  1. Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lariviere, Dominic; Taylor, Vivien F.; Evans, R. Douglas; Cornett, R. Jack

    2006-01-01

    The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity). The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance

  2. Coupling Integrable Couplings of an Equation Hierarchy

    International Nuclear Information System (INIS)

    Wang Hui; Xia Tie-Cheng

    2013-01-01

    Based on a kind of Lie algebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy. (general)

  3. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  4. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous separation/preconcentration of nickel, cobalt and copper prior to determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mooud Amirkavei

    2013-01-01

    Full Text Available A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.

  5. Electrothermal and microstructural characterization of varistors ceramics used in high-voltage surge arresters; Caracterizacao eletrotermica e microestrutural de ceramicas varistoras utilizadas em para-raios de altas tensoes

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Flavio Bittencourt; Furtado, Jose G. de Melo [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Nobrega, Maria C. de S. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia

    2008-07-01

    In this work is studied the electrothermal behavior of varistor ceramic blocks used in high voltage surge arresters of transmission and distribution lines, relating this behavior to microstructural characteristics of the studied varistor ceramics. We studied blocks of zinc oxide varistors with nominal voltage of 4.0 kV, by and voltage-capacitance characterization curves, reference voltage test, impulse residual voltage, polarization tests and induced degradation tests. On the other hand, the microstructural characterization was made by scanning electron microscopy and energy-dispersive spectroscopy. The obtained results allow to correlate the behavior of the resistive component of the leakage current with the microstructural characteristics of the studied varistors, specially in pre-breakdown region. (author)

  6. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  7. Evaluation of cadmium, lead, copper, iron and zinc in Turkish dietary vegetable oils and olives using electrothermal and flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Acar, Orhan

    2012-10-01

    Full Text Available The Cd, Pb, Cu, Fe and Zn contents of some edible vegetable oils (soybean, sunflower, flower, nut, corn and olive and of olives (olive-1, black, green, black crushed with seeds and green crushed with seeds were determined and evaluated by an electrothermal atomic absorption spectrometer (ETAAS using an Sc + Ir + NH4H2PO4 chemical modifier mixture and flame atomic absorption spectrometer (FAAS after microwave digestion. The pyrolysis and atomization temperatures of Cd, Pb and Cu in sample solutions with and without the modifier mixture were investigated. The limits of detection (LOD for analytes found are 0.1, 0.6, 0.9, 15.0 and 12.0 μg L–1 for Cd, Cu, Pb, Fe and Zn, respectively. The accuracy of the procedure proposed was confirmed by analyzing bovine liver 1577b standard reference material (SRM and a spiked sample solution. The results of the analytes found were compared with certified and added values. The relative standard deviations of the analytes found were lower than 7% and the percent of recoveries obtained ranges from 96 to 101%. The Sc + Ir + NH4H2PO4 mixture proposed was applied for the determination of Cd, Pb and Cu in oils and olives. The results of analytes found in the samples were compared with international and national food quality guidelines as well as with literature values.

    Se han determinado los metales Cd, Cu, Pb, Fe y Zn en aceites vegetales comestibles (soja, girasol, flores, nueces, maíz y aceite de oliva y aceitunas (aceitunas-1, negra, verde, negra machacadas con semillas y verde machacadas con semillas mediante espectrometría de absorción atómica electrotérmica (ETAAS utilizando como modificador químico la mezcla Sc + Ir + NH4H2PO4 y mediante espectrometría de absorción atómica de llama (FAAS tras digestión con microondas. Se estudiaron las temperaturas de pirólisis y atomización para Cd

  8. Coupling in the Tevatron

    International Nuclear Information System (INIS)

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-β quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note

  9. Coupled transverse motion

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs

  10. Projected coupled cluster theory.

    Science.gov (United States)

    Qiu, Yiheng; Henderson, Thomas M; Zhao, Jinmo; Scuseria, Gustavo E

    2017-08-14

    Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.

  11. Tube coupling device

    Science.gov (United States)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  12. EMP coupling to ships

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Cabayan, H.S.; Kunz, K.F.; Bevensee, R.M.; Martin, L.C.; Egbert, R.W.

    1980-01-01

    Scale-model tests were conducted to establish the adequacy and limitations of model measurements as tools for predicting electromagnetic pulse (EMP) coupling voltages and currents to the critical antennas, cables, and metallic structures on ships. The scale-model predictions are compared with the results of the full-scale EMP simulation test of the Canadian ASW ship, HMCS Huron. (The EMP coupling predictions in this report were made without prior knowledge of the results of the data from the HMCS Huron tests.) This report establishes that the scale-model tests in conjunction with the data base from EMP coupling modules provides the necessary information for source model development and permits effective, low-cost study of particular system configurations. 184 figures, 9 tables

  13. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  14. Coupled moderator neutronics

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-01-01

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source

  15. Coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, J; Scott, A C

    1983-01-01

    Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.

  16. Apodized coupled resonator waveguides.

    Science.gov (United States)

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  17. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  18. Sequential injection-bead injection-lab-on-valve schemes for on-line solid phase extraction and preconcentration of ultra-trace levels of heavy metals with determination by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Wang Jianhua; Hansen, Elo Harald; Miro, Manuel

    2003-01-01

    This communication presents an overview of the state-of-the-art of the exploitation of sequential injection (SI)-bead injection (BI)-lab-on-valve (LOV) schemes for automatic on-line sample pre-treatments interfaced with ETAAS and ICPMS detection as conducted in the authors' group. The discussions are focused on the applications of SI-BI-LOV protocols for on-line microcolumn based solid phase extraction of ultra-trace levels of heavy metals, employing the so-called renewable surface separation and preconcentration manipulatory scheme. Two types of sorbents have been employed as packing material, that is, the hydrophilic SP Sephadex C-25 cation exchange and iminodiacetate based Muromac A-1 chelating resins, and the hydrophobic poly(tetrafluoroethylene) (PTFE) and poly(styrene-divinylbenzene) copolymer alkylated with octadecyl groups (C 18 -PS/DVB). Using ETAAS as detection device, the easy-to-handle hydrophilic renewable reactors hold the features of improved R.S.D.s and LODs as compared to those operated in the conventional, permanent mode, in addition to the elimination of flow resistance. The hydrophobic columns fall into two categories, that is, the renewable one packed with C 18 -PS/DVB beads entails analogous R.S.D.s and LODs with respect to the conventional approach, while those with PTFE beads result in slightly inferior R.S.D.s and LODs by similar comparison, yet offering a wider dynamic range than when using an external permanent column. Moreover, the hydrophilic materials result in much higher enrichment of the analyte than the hydrophobic ones, although PTFE is the packing material that exhibits the best retention efficiency

  19. Surfactant-assisted emulsification dispersive liquid-liquid microextraction using 2-thenoyltrifluoroacetone as a chelating agent coupled with electrothermal atomic absorption spectrometry for the speciation of chromium in water and rice samples.

    Science.gov (United States)

    Dokpikul, Nattawut; Chaiyasith, Wipharat Chuachuad; Sananmuang, Ratana; Ampiah-Bonney, Richmond J

    2018-04-25

    A novel method was developed by SAE-DLLME for chromium speciation in water and rice samples using 2-thenoyltrifluoroacetone (TTA) as a chelating reagent by ETAAS. The speciation of Cr(III) and Cr(VI) was achieved by complexation of Cr(III)-TTA and the total Cr was measured after reduction of Cr(VI) to Cr. The calibration graph was linear in the range of 0.02-2.50 µg L -1 , with a detection limit of 0.0052 µg L -1 . The %RSD was in range of 2.90-3.30% at 0.5, 1.5 and 2.5 µg L -1 of Cr(III), n = 5 and the EF was 54.47. The method was applied to chromium speciation and total chromium determination in real samples and gave recoveries in the range of 96.2-103.5% and 97.1-102.7% for Cr(III) and Cr(VI) in water samples and 93.7-103.5% of total Cr in rice samples. The accuracy of the method was evaluated by analysis of SRM 1573a with good agreement compared to the certified value. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. ElectroWeak Bosons Couplings

    CERN Document Server

    Ouraou, Ahmimed; The ATLAS collaboration

    2016-01-01

    Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.

  1. CALCULATION AND EXPERIMENTAL ESTIMATION OF RESULTS OF ELECTRO-THERMAL ACTION OF RATIONED BY THE INTERNATIONAL STANDARD IEC 62305-1-2010 IMPULSE CURRENT OF SHORT BLOW OF ARTIFICIAL LIGHTNING ON THE THIN-WALLED COVERAGE FROM STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2017-03-01

    Full Text Available Purpose. Calculation and experimental researches of electro-thermal resistibility of the pre-production thin-walled sheet models of outward roof of height technical buildings from stainless steel are easily soiled 12Х18Н10Т to direct action on them rationed by the International Standard IEC 62305-1-2010 aperiodic impulse of current of short bow of artificial lightning of temporal form 10/350 μs with the proper admittances on his peak-temporal parameters (PTP. Methodology. Electrophysics bases of technique of high voltage and large impulsive currents (LIC, and also scientific and technical bases of planning of high-voltage impulsive devices and measuring methods in them LIC with followings below extreme PTP: amplitude of impulse of current of ImL=200 кА (with admittance ±10 %; integral of action of impulse of current of JL=10·106 A2·s (with admittance ±35 %; %; duration of wavefront current of T1=10 μs (with admittance ±20 %; time, proper amplitude of impulse of current of ImL, tmL≤24 μs (with admittance ±20 %; duration of flowing of impulse of current of T2=350 μs (with admittance ±10 %. Results. The results of evaluation calculation and experimental researches of electro-thermal resistibility of the indicated pre-production sheet models are resulted measuring in the plan of 0,5 x 0,5 m from stainless steel are easily soiled the 12Х18Н10Т thickness of 1 mm to action on them of aperiodic impulse of current of short blow of artificial lightning with rationed PTP on the requirements of the International Standard IEC 62305-1-2010. In high current experiments amplitude of ImL of the aperiodic rationed impulse of current of artificial lightning of temporal form of T1/T2=15 μs/315 μs changed in the range of (100-184 кА. The integral of action of JL of impulse of current for I-IV of levels of protection of lightning of technical objects (TO numeral made from 2,32·106 А2·s to 7,88·106 А2·s, and the flowing through the

  2. Anomalous top magnetic couplings

    Indian Academy of Sciences (India)

    2012-11-09

    Nov 9, 2012 ... Corresponding author. E-mail: remartinezm@unal.edu.co. Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbW vertex in the Standard Model (SM) are computed. Keywords. Top; anomalous. PACS Nos 14.65.Ha; 12.15 ...

  3. HIV-discordant couples

    African Journals Online (AJOL)

    Winnie

    2006-06-02

    Jun 2, 2006 ... These may broadly be divided into factors that affect the transmissibility of HIV between couples per sex act and factors influencing the number of sex acts during which exposure may occur. Examples of the former include use of condoms or other barrier methods and certain sexual behaviours, such as sex.

  4. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  5. International Migration of Couples

    DEFF Research Database (Denmark)

    Junge, Martin; Munk, Martin D.; Nikolka, Till

    2018-01-01

    Migrant self-selection is important to labor markets and public finances in both origin and destination countries. We develop a theoretical model regarding the migration of dual-earner couples and test it using population-wide administrative data from Denmark. Our model predicts that the probabil...

  6. Measurements of {beta} or {alpha} emitter long lived radionuclides using inductively coupled plasma mass spectrometry; Dosage a tres bas niveau de radionucleides a longue periode emetteurs {beta} ou {alpha} par spectrometrie de masse a couplage plasma inductif

    Energy Technology Data Exchange (ETDEWEB)

    Provitina, O

    1993-10-18

    The measurement of long-lived radionuclides is highly important for characterizing nuclear wastes for their later storage. The main techniques are {alpha} spectrometry, {beta} counting and {gamma} spectrometry. The large period of these isotopes leads to low specific activity needing time consuming measurements. Moreover, the radiometric techniques are often limited by problems of interferences involving several steps of pretreatments. Among these steps, the specific extraction with crown ethers is highly selective for the separation of {sup 99}Tc, {sup 129}I and {sup 135}Cs. The radiometric techniques are here replaced by inductively coupled plasma mass spectroscopy (ICP-MS) the advantages of which are: few interferences, sensitivity which does not depend on the radiologic period as compared to radiochemistry. ICP-MS can then measure {sup 237}Np in enriched uranium matrix and reduce by a factor of 4 the sample pretreatment and the duration of the analysis usually performed by {alpha} spectrometry. Another technique, electrothermal vaporization (ETV), is consequently used. Crown ether extraction-ETV-ICP-MS is employed for measuring the long lived radionuclides {sup 99}Tc and {sup 129}I. The conditions of the extraction and the parameters of the ETV and the ICP-MS are studied and optimized. The methods optimized (extraction, electrothermal vaporization) are validated in the case of {sup 99}Tc, in real samples. The spike method is required to quantify technetium, the quantification with calibration leading to bad results. The results obtained are in good agreement with the expected values. Extraction of technetium on anionic resin and its measurement by the spike method with pneumatic nebulization-ICP-MS is also performed on other samples. Measured values are also in agreement with expected values, but the method of extraction is more time consuming (half a day) than the extraction with crown ether (one hour). (author). 54 figs., 38 tabs.

  7. Warthog: Coupling Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Shane W. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reardon, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-30

    The Warthog code was developed to couple codes that are developed in both the Multi-Physics Object-Oriented Simulation Environment (MOOSE) from Idaho National Laboratory (INL) and SHARP from Argonne National Laboratory (ANL). The initial phase of this work, focused on coupling the neutronics code PROTEUS with the fuel performance code BISON. The main technical challenge involves mapping the power density solution determined by PROTEUS to the fuel in BISON. This presents a challenge since PROTEUS uses the MOAB mesh format, but BISON, like all other MOOSE codes, uses the libMesh format. When coupling the different codes, one must consider that Warthog is a light-weight MOOSE-based program that uses the Data Transfer Kit (DTK) to transfer data between the various mesh types. Users set up inputs for the codes they want to run, and then Warthog transfers the data between them. Currently Warthog supports XSProc from SCALE or the Sub-Group Application Programming Interface (SGAPI) in PROTEUS for generating cross sections. It supports arbitrary geometries using PROTEUS and BISON. DTK will transfer power densities and temperatures between the codes where the domains overlap. In the past fiscal year (FY), much work has gone into demonstrating two-way coupling for simple pin cells of various materials. XSProc was used to calculate the cross sections, which were then passed to PROTEUS in an external file. PROTEUS calculates the fission/power density, and Warthog uses DTK to pass this information to BISON, where it is used as the heat source. BISON then calculates the temperature profile of the pin cell and sends it back to XSProc to obtain the temperature corrected cross sections. This process is repeated until the convergence criteria (tolerance on BISON solve, or number of time steps) is reached. Models have been constructed and run for both uranium oxide and uranium silicide fuels. These models demonstrate a clear difference in power shape that is not accounted for in a

  8. Optically coupled semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Kumagaya, Naoki

    1988-11-18

    This invention concerns an optically coupled semiconductor device using the light as input signal and a MOS transistor for the output side in order to control on-off of the output side by the input signal which is insulated from the output. Concerning this sort of element, when a MOS transistor and a load resistance are planned to be accumulated on the same chip, a resistor and control of impurity concentration of the channel, etc. become necessary despite that the only formation of a simple P-N junction is enough, for a solar cell, hence cost reduction thereof cannot be done. In order to remove this defect, this invention offers an optically coupled semiconductor device featuring that two solar cells are connected in reverse parallel between the gate sources of the output MOS transistors and an operational light emitting element is individually set facing a respective solar cell. 4 figs.

  9. Magnetic coupling device

    Science.gov (United States)

    Nance, Thomas A [Aiken, SC

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  10. Coupling of Hidden Sector

    OpenAIRE

    Królikowski, Wojciech

    2016-01-01

    A hypothetic Hidden Sector of the Universe, consisting of sterile fer\\-mions (``sterinos'') and sterile mediating bosons (``sterons'') of mass dimension 1 (not 2!) --- the last described by an antisymmetric tensor field --- requires to exist also a scalar isovector and scalar isoscalar in order to be able to construct electroweak invariant coupling (before spontaneously breaking its symmetry). The introduced scalar isoscalar might be a resonant source for the diphoton excess of 750 GeV, sugge...

  11. Quick torque coupling

    Science.gov (United States)

    Luft, Peter A [El Cerrito, CA

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  12. Coupling and decoupling

    International Nuclear Information System (INIS)

    Ravenal, E.C.

    1988-01-01

    This paper reports on the prospects of coupling and decoupling for extended deterrence. Thirty-eight years after the foundation of NATO, the defence of Western Europe still rests on the proposition that an American president will invite the destruction of US cities and the incineration of 100 million of its citizens to repel a Soviet incursion or resist a Soviet ultimatum in Western Europe. On its face, America's war plan---never denied by any president from Truman to Reagan, or by any Secretary of State from George Marshall to George Shultz---is the first use of nuclear weapons, if necessary, to defend Europe. Thus America threatens to turn local defeat into global holocaust. But under the surface, America's nuclear commitment to Europe is not so sure. The word that encapsulates this problem is coupling. Not the title of an Updike novel or an anthropological treatise by Margaret Mead, coupling is a term of art used by strategic analysts to connote the integrity of the chain of escalation, from conventional war in Europe, to theatre nuclear weapons, to the final use of America's ultimate strategic weapon

  13. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  14. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  15. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Dehghanpoor Frashah, Shahab

    2016-04-01

    A vanadium ion-imprinted polymer was synthesized in the presence of V(V) and N-benzoyl-N-phenyl hydroxyl amine using 4-vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2'-azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion-imprinted polymer was used as the sorbent in the development of the solid-phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar

    2018-07-01

    A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effect of Group Cognitive Behavioral Couples Therapy on Couple Burnout and Divorce Tendency in Couples

    Directory of Open Access Journals (Sweden)

    M Mohammadi

    2017-02-01

    Full Text Available Background & aim: Couple burnout is one of the phenomena which involve many couples, it is among the main causes of emotional divorce, and without proper management and treatment, and it can lay the ground for formal divorce among couples. Cognitive behavioral couple therapy is one of the existing approaches in the couple therapy field, the efficiency of which has been established for resolving many marital problems. The present study was designed by the aim of investigating the effect of group cognitive behavioral couple therapy on couple burnout and divorce tendency in couples.   Methods: The present research was of applied research type. The research method was semi-empirical with a pretest-posttest with control group design. The research population included all the couples with marital conflict and problems who, after a recall announcement of the researcher, visited the counseling and psychological services center located in Gorgan city in 2014. By using the available sampling method, 20 couples were selected among the volunteer and qualified couples for the research, and they were assigned into experiment and control groups (10 couples per group by random assignment. In the present research, the Pines burnout questionnaire (1996 and divorce tendency scale of Rouswelt, Johnson, and Mouro (1986 were used for gathering the data. After taking the pretest, the group cognitive behavioral couple therapy based on the couple therapy model of Baucom  and colleagues (2008 was held in 10 2-hour weekly sessions for the experiment group couples, while the control group couples received no intervention. The data were analyzed through descriptive statistics method and multivariate covariance analysis (MANCOVA in SPSS v.20. Results: The multivariate covariance analysis results for couple burnout (F= 28.80 and divorce tendency (F= 51.25 suggested that there was a significant difference between the couples of experiment and control groups (P< 0

  18. Loosely coupled class families

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    are expressed using virtual classes seem to be very tightly coupled internally. While clients have achieved the freedom to dynamically use one or the other family, it seems that any given family contains a xed set of classes and we will need to create an entire family of its own just in order to replace one...... of the members with another class. This paper shows how to express class families in such a manner that the classes in these families can be used in many dierent combinations, still enabling family polymorphism and ensuring type safety....

  19. LIA longitudinal coupling impedance

    International Nuclear Information System (INIS)

    Faltens, A.

    1980-01-01

    The beam generated fields enter into the problems of waveform generation and longitudinal stability. In the former, provision must be made for the longitudinally defocusing forces due to the space charge and the beam loading effects on the accelerating voltage due to the current of a presumably known bunch. In the latter, the concern is for the growth of unintentional perturbations to unacceptably large values through the interaction of the charge and current fluctuations with the rest of the beam and the surrounding structures. These beam generated electric fields may be related to the beam current through a coupling impedance

  20. Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet

    Science.gov (United States)

    Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo

    2013-05-01

    Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.

  1. Nonminimally coupled hybrid inflation

    International Nuclear Information System (INIS)

    Koh, Seoktae; Minamitsuji, Masato

    2011-01-01

    We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains φ 4 term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum-dominated region becomes either the type (I) or (II), resulting in a blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while around the local minimum it must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.

  2. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  3. How couples choose vasectomy.

    Science.gov (United States)

    Schehl, M

    1997-01-01

    A study conducted by AVSC International between 1992 and 1995 found that couples around the world go through a highly similar decision-making process when they choose vasectomy as their family planning methods. Study findings are based upon in-depth, qualitative interviews with couples using vasectomy in Bangladesh, Mexico, Kenya, and Rwanda, where the prevalence of vasectomy is relatively low, and Sri Lanka and the US, where it is relatively high. 218 separate interviews were conducted with male and female partners. Concerns about the woman's health were cited by respondents in each country as reasons to cease childbearing and to opt for vasectomy as the means to achieving that end. Also, almost all respondents mentioned varying degrees of financial hardship as contributing to their decision to end childbearing. These findings highlight the concept of partnership in relationships and family planning decision-making, and demonstrate the importance of going beyond traditional stereotypes about gender roles in decision-making. Social influences and the potential risks of using other forms of contraception also contributed to the choice of using vasectomy. The decision-making process and lessons learned are discussed.

  4. Magnetically Coupled Calorimeters

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  5. Using the Model Coupling Toolkit to couple earth system models

    Science.gov (United States)

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  6. Fluid structure coupling algorithm

    International Nuclear Information System (INIS)

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.

    1980-01-01

    A fluid-structure-interaction algorithm has been developed and incorporated into the two-dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed have been extended to three dimensions and implemented in the computer code PELE-3D

  7. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  8. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  9. Structural Coupling and Translation

    DEFF Research Database (Denmark)

    Tække, Jesper

    formations. After presenting the two theories the article put forward Twitter as an example making it possible to compare the two theories. Hereby the article also provides two analysis of how Twitter changes the communication milieu of modern society. In systems theory media can be seen as the mechanisms...... and translations the social medium of Twitter opens for. The second, but most prioritized, aim of the paper is to present, compare and discuss the two theories: How do they understand what becomes visible in their different optics, which observations become possible in the one or the other – and is it possible...... creating networks consisting in both humans and non-humans. Then the two appearing frameworks are used to observe Twitter and discuss which structural couplings and translations are made possible by this medium. In the end of the paper the two theories are discussed and compared....

  10. Gay and lesbian couples in Italy: comparisons with heterosexual couples.

    Science.gov (United States)

    Antonelli, Paolo; Dèttore, Davide; Lasagni, Irene; Snyder, Douglas K; Balderrama-Durbin, Christina

    2014-12-01

    Assessing couple relationships across diverse languages and cultures has important implications for both clinical intervention and prevention. This is especially true for nontraditional relationships potentially subject to various expressions of negative societal evaluation or bias. Few empirically validated measures of relationship functioning have been developed for cross-cultural applications, and none have been examined for their psychometric sufficiency for evaluating same-sex couples across different languages and cultures. The current study examined the psychometric properties of an Italian translation of the Marital Satisfaction Inventory - Revised (MSI-R), a 150-item 13-scale measure of couple relationship functioning, for its use in assessing the intimate relationships of gay and lesbian couples in Italy. Results for these couples were compared to data from heterosexual married and unmarried cohabiting couples from the same geographical region, as well as to previously published data for gay, lesbian, and unmarried heterosexual couples from the United States. Findings suggest that, despite unique societal pressures confronting Italian same-sex couples, these relationships appear resilient and fare well both overall and in specific domains of functioning compared to heterosexual couples both in Italy and the United States. © 2014 Family Process Institute.

  11. Synchronizability of coupled PWL maps

    International Nuclear Information System (INIS)

    Polynikis, A.; Di Bernardo, M.; Hogan, S.J.

    2009-01-01

    In this paper we discuss the phenomenon of synchronization of chaotic systems in the case of coupled piecewise linear (PWL) continuous and discontinuous one-dimensional maps. We present numerical results for two examples of coupled systems consisting of two PWL maps. We illustrate how the coupled system can achieve synchronization and discuss the nature of the bifurcation that occurs at a critical value of the coupling strength. We then determine this critical coupling using linear stability analysis. We discuss the effects of variation of the parameters of the PWL maps on the critical coupling and present different bifurcation scenarios obtained for different sets of values of these parameters. Finally, we discuss an extension of our work to the synchronizability of networks consisting of two or more PWL maps. We show how the synchronizability of a network of PWL maps can be improved by tuning the map parameters.

  12. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-01-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L −1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L −1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract. - Highlights: • Efficient retention and preconcentration of As by combining an IL with MWCNTs • Determination of As by ETAAS with direct injection of MWCNTs • Thermal degradation of MWCNTs in the graphite furnace of ETAAS • Highly sensitive speciation and determination of As in garlic

  13. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-07-01

    Full Text Available We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1 were used as a model system. Thin-film platinum (Pt sensors for respiration (amperometric oxygen electrode, acidification (potentiometric pH electrodes and cell adhesion (interdigitated-electrodes structures, IDES allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4. Thin Si3N4 layers (20 nm or 60 nm were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated. Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  14. Highly selective micro-sequential injection lab-on-valve (muSI-LOV) method for the determination of ultra-trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Long, Xiangbao; Miró, Manuel; Jensen, Rikard; Hansen, Elo Harald

    2006-10-01

    A highly selective procedure is proposed for the determination of ultra-trace level concentrations of nickel in saline aqueous matrices exploiting a micro-sequential injection Lab-On-Valve (muSI-LOV) sample pretreatment protocol comprising bead injection separation/pre-concentration and detection by electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) reaction used for nickel analysis, the sample, as contained in a pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the LOV to assure sufficient reaction time for the formation of Ni(DMG)(2) chelate. The non-ionic coordination compound is then collected in a renewable micro-column packed with a reversed-phase copolymeric sorbent [namely, poly(divinylbenzene-co-N-vinylpyrrolidone)] containing a balanced ratio of hydrophilic and lipophilic monomers. Following elution by a 50-muL methanol plug in an air-segmented modality, the nickel is finally quantified by ETAAS. Under the optimized conditions and for a sample volume of 1.8 mL, a retention efficiency of 70 % and an enrichment factor of 25 were obtained. The proposed methodology showed a high tolerance to the commonly encountered alkaline earth matrix elements in environmental waters, that is, calcium and magnesium, and was successfully applied for the determination of nickel in an NIST standard reference material (NIST 1640-Trace elements in natural water), household tap water of high hardness and local seawater. Satisfying recoveries were achieved for all spiked environmental water samples with maximum deviations of 6 %. The experimental results for the standard reference material were not statistically different to the certified value at a significance level of 0.05.

  15. EXPERIMENTAL RESEARCHES OF ELECTRO-THERMAL RESISTIBILITY OF SEND-OFFS AND CABLES TO ACTION RATIONED ON THE INTERNATIONAL STANDARD OF IEC 62305-1-2010 OF APERIODIC IMPULSE OF CURRENT OF ARTIFICIAL LIGHTNING

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2016-03-01

    Full Text Available Purpose. Experimental researches of electro-thermal resistibility of cable-explorer products, applied in the power electric circuits of objects of electric-power industry, to action on its copper and aluminum parts bearings a current rationed on the International Standard of IEC 62305-1-2010 aperiodic impulse 10/350 μs of current of artificial lightning. Methodology. Electrophysics bases of technique of high tensions and high pulsed currents (HPC, and also scientific and technical bases of planning of devices of high-voltage impulsive technique and measuring HPC in them. Results. Experimental a way the quantitative levels of maximal values maximum of possible and critical closenesses of aperiodic impulse 10/350 μs of current of artificial lightning with rationed on the international standard of IEC 62305-1-2010 peak-temporal parameters and admittances on them in copper (aluminum parts bearings a current of send-offs and cables with a polyethylene (PET and polyvinylchloride (PVCH isolation. Originality. First in world practice on the unique powerful high-voltage generator of HPC of artificial lightning experimental researches of resistibility to lightning of pre-production models of send-offs (cables are conducted with copper (aluminum tendons, PET and PVCH by an isolation, in-use in power electric circuits of electric-power industry objects. Practical value. The use in practice of protecting from lightning of the got results will allow substantially to promote functional and fire-prevention safety of engineering communications of objects of industrial electroenergy in the conditions of action on them of short shots of linear lightning.

  16. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L{sup −1} and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L{sup −1} of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract. - Highlights: • Efficient retention and preconcentration of As by combining an IL with MWCNTs • Determination of As by ETAAS with direct injection of MWCNTs • Thermal degradation of MWCNTs in the graphite furnace of ETAAS • Highly sensitive speciation and determination of As in garlic.

  17. Development of an electro-thermal model for ZnO surge arrester under contamination; Desarrollo de un modelo electro-termico para apartarrayos de ZnO bajo contaminacion

    Energy Technology Data Exchange (ETDEWEB)

    Guardado Zavala, J.L.; Moreno Barraza, M.; Zazueta Pena, H.; Venegas Rebollar, V.; Melgoza Vazquez, E. [Instituto Tecnologico de Morelia, Morelia, Michoacan (Mexico)]. E-mail: lguarda@prodigy.net.mx; hzazuetapea@yahoo.com; vvenegas@yahoo.com; emelgoza@iimorelia.edu.mx

    2010-01-15

    An electro-thermal model for a Zinc Oxide (ZnO) surge arrester under contamination test is presented. The model is based in three sub-models: electrical, thermal and contamination, which interact in order to obtain the surge arrester performance under contamination tests. The electrical model is obtained from measurements and is based on a capacitance and a non-linear resistor. The thermal model takes into account the heat generated and dissipated by the column of varistors and its surroundings. The contamination is represented by dynamic impedance obtained from measurements in the arrester column during contamination tests. The full model is validated by calculating the temperature increase during contamination tests carried out in a two units ZnO surge arrester, class 190 kV. Finally, the results of the effect of several design and construction parameters in the voltage and temperature distribution in the arrester column during contamination tests are presented. [Spanish] Se presenta el modelo electro-termico para un apartarrayos de Oxido de Zinc (ZnO) durante pruebas de contaminacion. El modelo esta compuesto de tres sub-modelos: electrico, termico y de contaminacion, los cuales interactuan armonicamente para obtener el comportamiento del apartarrayos durante pruebas de contaminacion. El modelo electrico se obtiene de mediciones y esta compuesto de una capacitancia y una resistencia no-lineal. El modelo termico considera el calor generado y disipado en la columna de varistores y su entorno. La contaminacion se representa como una impedancia dinamica, cuyos valores se obtienen de mediciones en la columna del apartarrayos durante pruebas de contaminacion. El modelo se valida determinando el incremento de temperatura durante pruebas de contaminacion en un apartarrayos de ZnO de dos unidades clase 1990 kV. Finalmente, se presentan los resultados del impacto de diversos parametros de diseno y construccion en la distribucion de voltaje y temperatura en el apartarrayos

  18. Selective and sensitive speciation analysis of Cr(VI) and Cr(III), at sub-μgL-1 levels in water samples by electrothermal atomic absorption spectrometry after electromembrane extraction.

    Science.gov (United States)

    Tahmasebi, Zeinab; Davarani, Saied Saeed Hosseiny

    2016-12-01

    In this work, electromembrane extraction in combination with electrothermal atomic absorption spectrometry (ET-AAS) was investigated for speciation, preconcentration and quantification of Cr(VI) and Cr(III) in water samples through the selective complexation of Cr(VI) with 1,5-diphenylcarbazide (DPC) as a complexing agent. DPC reduces Cr(VI) to Cr(III) ions and then Cr(III) species are extracted based on electrokinetic migration of their cationic complex (Cr(III)-DPC) toward the negative electrode placed in the hollow fiber. Also, once oxidized to Cr(VI), Cr(III) ions in initial sample were determined by this procedure. The influence of extraction parameters such as pH, type of organic solvent, chelating agent concentration, stirring rate, extraction time and applied voltage were evaluated following a one-at-a-time optimization approach. Under optimized conditions, the extracted analyte was quantified by ETAAS, with an acceptable linearity in the range of 0.05-5ngmL -1 (R 2 value=0.996), and a repeatability (%RSD) between 3.7% and 12.2% (n=4) for 5.0 and 1.0ngmL -1 of Cr(VI), respectively. Also, we obtained an enrichment factor of 110 that corresponded to the recovery of 66%. The detection limit (S/N ratio of 3:1) was 0.02ngmL -1 . Finally, this new method was successfully employed to determine Cr(III) and Cr(VI) species in real water samples. Copyright © 2016. Published by Elsevier B.V.

  19. ESPC Coupled Global Prediction System

    Science.gov (United States)

    2015-09-30

    through an improvement to the sea ice albedo . Fig. 3: 2-m Temperature bias (deg C) of 120-h forecasts for the month of May 2014 for the Arctic...forecast system (NAVGEM) and ocean- sea ice forecast system (HYCOM/CICE) have never been coupled at high resolution. The coupled processes will be...winds and currents across the interface. The sea - ice component of this project requires modification of CICE versions 4 and 5 to run in the coupled

  20. Development of a electrothermal model to scale to determine the energy behavior in buildings with air conditioning; Desarrollo de un modelo electrotermico a escala para determinar el comportamiento energetico en edificaciones con aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Acoltzi, Higinio [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    This work presents the development of an electrothermal model and its experimental verification to determine the energetic behavior of test modules at scale of buildings. The model determines the history of the consumption of electrical energy to maintain the comfort conditions in the interior of the modules, with respect to the variation of the materials of the ceilings and windows; all this with the intention of establishing criteria for the application of these materials in the construction industry. The electrical energy consumption for the modules with ceilings of monolithic slab, joist and small vault and windows with reflectasol, filtrasol and clear glasses is presented. Finally, the preliminary results of the application of the proposed model for a building of normal scale are presented. The field measurements and the developed theoretical electrothermal model, present average differences of 16%. The electrical energy savings observed with the application of the theoretical electrothermal model are: 1) if clear glass is changed for filtrasol, energy savings of up to 14,5% are obtained for the slab of joist and small vault and of 12.4% for the monolithic slab; or 2) if clear glass is changed for reflectasol energy savings can be obtained of up to 28.1% for the case of joist and small vault slab and 16.8% for the monolithic slab. The best option is to replace the monolithic slab and clear glass for the joist and small vault slab and reflectasol glass to obtain up to a 37% of savings. The adjustment of experimental device with the 3 connected modules to the air conditioning, and one graphical comparison between the consumption of theoretical and experimental accumulated energy of the module with joist and small vault for the reflectasol, filtrasol and clear glasses are presented. A summary of the total consumption of electrical energy is given. [Spanish] En este trabajo se presenta el desarrollo de un modelo electrotermico y su verificacion experimental para

  1. Cosmological tests of coupled Galileons

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Gubitosi, Giulia

    2015-01-01

    We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM

  2. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  3. Spin reorientation via antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, M., E-mail: mojtaba.ranjbar@physics.gu.se [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Sbiaa, R. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden); Piramanayagam, S. N. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.

  4. Performance assessment of coupled processes

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    The author considers all processes to be coupled. For example, a waste package heats the surrounding rock and its pore water, creating gradients in density and pressure that result in increased water flow. That process can be described as coupled, in that the flow is a consequence of heating. In a narrower sense, one speaks also of the more weakly coupled transport processes, expressed by the Onsager reciprocal relations, that state that a transport current, i.e., flux, of heat is accompanied by a small transport current of material, as evidenced in isotope separation by thermal diffusion, the Thompson effect in thermoelectricity, etc. This paper presents a performance assessment of coupled processes

  5. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2017-01-01

    the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature

  6. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  7. Coupling detrended fluctuation analysis for analyzing coupled nonstationary signals

    Science.gov (United States)

    Hedayatifar, L.; Vahabi, M.; Jafari, G. R.

    2011-08-01

    When many variables are coupled to each other, a single case study could not give us thorough and precise information. When these time series are stationary, different methods of random matrix analysis and complex networks can be used. But, in nonstationary cases, the multifractal-detrended-cross-correlation-analysis (MF-DXA) method was introduced for just two coupled time series. In this article, we have extended the MF-DXA to the method of coupling detrended fluctuation analysis (CDFA) for the case when more than two series are correlated to each other. Here, we have calculated the multifractal properties of the coupled time series, and by comparing CDFA results of the original series with those of the shuffled and surrogate series, we can estimate the source of multifractality and the extent to which our series are coupled to each other. We illustrate the method by selected examples from air pollution and foreign exchange rates.

  8. Coupled assimilation for an intermediated coupled ENSO prediction model

    Science.gov (United States)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  9. Belpex and trilateral market coupling

    International Nuclear Information System (INIS)

    2006-01-01

    This document describes the operation of Belpex, the Belgian power transmission spot market, and its linking with the French (Powernext) and Dutch (APX) auction-style day-ahead spot markets. A last part deals with the extension of this trilateral market to other European countries. Content: Belpex day-ahead market (DAM) (Goals of the DAM: Provide consumers with a wider choice of electrical energy sources, Enable the ARP's to optimize their portfolio in terms of imbalance costs, Reduce trade and credit risks for market players compared with the risks involved in concluding bilateral contracts, Provide economic players with a transparent price benchmark, Stimulate the opening of the electricity market); Market model Product (description, Contracts, Collateral calculation, From 12 January to launch date Corporate and Legal Aspects, Next developments); Trilateral Market Coupling (What is market coupling and what are the benefits?, Implementation of trilateral market coupling ('TLC') in France/Belgium/Netherlands, From Trilateral to Multilateral, Implementation of Trilateral Market Coupling (TLC) in France/Belgium/Netherlands, Decentralized market coupling mechanism, influence of import and export on area prices); Decentralized market coupling (2 countries Situations: unconstrained/constrained, Decentralized market coupling: 3 countries, High Level Properties of Market Coupling, Maximize flow until prices across link converge (or ATC limit reached), Power flows from low price area to high price area, Implementing a decentralized technical approach, Market Coupling Daily Process, Impact on Existing Exchange Arrangements, Implementing a decentralized contractual approach, TLC Project Process); From Trilateral to Multilateral (Geographic extensions, Towards an Open and Multilateral Market Coupling, Management of Interconnection Capacities, Interconnection Capacities: current situation, TSO Roles and Responsibilities in the TLC, Other Import/Export products on the

  10. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  11. Linear analysis of coupled lattices

    Directory of Open Access Journals (Sweden)

    D. Sagan

    1999-07-01

    Full Text Available A formalism for describing the coupled two-dimensional motion of high energy particle beams in a storage ring is developed and extended to circumstances where the coupling is very strong, such as for the Möbius twist accelerator.

  12. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  13. Older Couple Relationships and Loneliness

    NARCIS (Netherlands)

    de Jong Gierveld, J.; Broese van Groenou, M.; Bookwala, Jamila

    2016-01-01

    The couple relationship is a major factor in alleviating loneliness. Midlife and older adults without a couple relationship, especially after widowhood or divorce, are at serious risk of loneliness. Outcomes of empirical research, both dating back to the former century (Lopata, 1980, 1996), as well

  14. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  15. Anisotropic inflation with derivative couplings

    Science.gov (United States)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  16. In-situ pre-concentration through repeated sampling and pyrolysis for ultrasensitive determination of thallium in drinking water by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan

    2018-03-01

    In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.

  17. Couple Discord and Depression in Couples during Couple Therapy and in Depressed Individuals during Depression Treatment

    Science.gov (United States)

    Atkins, David C.; Dimidjian, Sona; Bedics, Jamie D.; Christensen, Andrew

    2009-01-01

    The association between depression and relationship distress as well as the impact of treatment for the one on the other was examined across 2 treatment-seeking samples: individuals seeking treatment for depression (N = 120) and couples seeking marital therapy (N = 134 couples). Although there was a baseline association between depression and…

  18. Improved fluid-structure coupling

    International Nuclear Information System (INIS)

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.

    1981-01-01

    In the computer code PELE-IC, an incompressible Eulerian hydrodynamic algorithm was coupled to a Lagrangian finite element shell algorithm for the analysis of pressure suppression in boiling water reactors. This effort also required the development of a free surface algorithm capable of handling expanding gas bubbles. These algorithms have been improved to strengthen the coupling and to add the capability for following the more complex free surfaces resulting from steam condensation. These improvements have also permitted more economical 2D calculations and have made it feasible to develop a 3D version. A compressible option using the acoustic approximation has also been added, furthering the usefulness of the code. The coupling improvements were made in three areas which are identified as (1) preferential coupling, (2) merged cell coupling, and (3) free surface-structure coupling, and are described. These algorithms have been additionally implemented in a three dimensional version of the code called PELE3D. This version has a free surface capability to follow expanding and contracting bubbles and is coupled to a curved rigid surface

  19. Gestural coupling and social cognition

    DEFF Research Database (Denmark)

    Michael, John; Krueger, Joel William

    2012-01-01

    Social cognition researchers have become increasingly interested in the ways that behavioral, physiological, and neural coupling facilitate social interaction and interpersonal understanding. We distinguish two ways of conceptualizing the role of such coupling processes in social cognition: strong...... an essential enabling feature for social interaction and interpersonal understanding more generally and thus ought to exhibit severe deficits in these areas. We challenge SI's prediction and show how MS cases offer compelling reasons for instead adopting MI's pluralistic model of social interaction...... and interpersonal understanding. We conclude that investigations of coupling processes within social interaction should inform rather than marginalize or eliminate investigation of higher-level individual cognition...

  20. Overprotection in couples with aphasia.

    Science.gov (United States)

    Croteau, C; Le Dorze, G

    1999-09-01

    The study aimed to measure the perception of overprotection in 21 couples living with aphasia, relative to controls. The 'Questionnaire on Resources and Stress' assessed the spouses' perception and the 'Overprotection Scale for Adults' measured the perception of persons with aphasia. Husbands of women with aphasia did not differ from husbands of women without aphasia. Wives of men with aphasia reported more overprotection than wives of men without aphasia, even when functional impairment was controlled. The men with aphasia did not report feeling overprotected. No significant relationship was uncovered between the report of overprotection and feeling overprotected in couples with aphasia. Overprotection is present in some couples coping with aphasia.

  1. Anomalous couplings at LEP2

    International Nuclear Information System (INIS)

    Fayolle, D.

    2002-01-01

    In its second phase, LEP has allowed to study four fermion processes never observed before. Results are presented on the charged triple gauge boson couplings (TGC) from the W-pair, Single W and Single γ production. The anomalous quartic gauge couplings (QGC) are constrained using production of WWγ, νν-barγγ and Z γγ final states. Finally, limits on the neutral anomalous gauge couplings (NGC) using the Z γ and ZZ production processes are also reported. All results are consistent with the Standard Model expectations. (authors)

  2. Spatial coupling in heterogeneous catalysis

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1995-11-01

    Spatial coupling mechanisms are studied in the heterogeneous catalytic oxidation of carbon monoxide over platinum at atmospheric pressure under oscillatory conditions. Experiments are conducted in a continuous flow reactor, and the reaction rate is monitored using both infrared imaging and thermocouples. The catalysts are in the form of platinum annular thin films on washer-shaped quartz substrates, and they provide highly repeatable oscillatory behavior. Oscillations are typically spatially synchronized with the entire catalyst ``flashing'' on and off uniformly. Spatial coupling is investigated by introducing various barriers which split the annular ring in half. Infrared images show that coupling through the gas phase dominates coupling via the diffusion of CO on the surface or heat diffusion through the substrate. The introduction of a localized heat perturbation to the catalyst surface does not induce a transition in the reaction rate. Thus, it is likely that the primary mode of communication is through the gas-phase diffusion of reactants.

  3. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  4. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  5. Cognitive-behavioral couple therapy.

    Science.gov (United States)

    Epstein, Norman B; Zheng, Le

    2017-02-01

    This article describes how cognitive-behavioral couple therapy (CBCT) provides a good fit for intervening with a range of stressors that couples experience from within and outside their relationship. It takes an ecological perspective in which a couple is influenced by multiple systemic levels. We provide an overview of assessment and intervention strategies used to modify negative behavioral interaction patterns, inappropriate or distorted cognitions, and problems with the experience and regulation of emotions. Next, we describe how CBCT can assist couples in coping with stressors involving (a) a partner's psychological disorder (e.g. depression), (b) physical health problems (e.g. cancer), (c) external stressors (e.g. financial strain), and (d) severe relational problems (e.g. partner aggression). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Common mode and coupled failure

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1975-10-01

    Based on examples and data from Abnormal Occurence Reports for nuclear reactors, a classification of common mode or coupled failures is given, and some simple statistical models are investigated. (author)

  7. Evaluation of Coupled Precipitator Two

    International Nuclear Information System (INIS)

    Stone, M.E.

    1999-01-01

    The offline testing of the Coupled Precipitator Two (CP-2) has been completed. The tests were conducted and are documented. The tests were conducted at an offline test rack near the Drain Tube Test Stand facility in 672-T

  8. Evaluation of V, Ir, Ru, V-Ir, V-Ru, and W-V as permanent chemical modifiers for the determination of cadmium, lead, and zinc in botanic and biological slurries by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Acar, Orhan

    2005-01-01

    Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO 3 ) 2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO 3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO 3 ) 2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO 3 ) 2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g -1 ) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g -1 for Cd, 18 pg and 17 ng g -1 for Pb, and 0.7 pg and 4 ng g -1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials

  9. Survey of content of cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, sodium and zinc in chamomile and green tea leaves by electrothermal or flame atomizer atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Prkić Ante

    2018-03-01

    Full Text Available Due to the simplicity of tea preparation (pouring hot water onto different dried herbs and its high popularity as a beverage, monitoring and developing a screening methodology for detecting the metal content is very important. The concentrations of Cd, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Hg, Na and Zn in 8 samples of green tea (Camellia sinesis and in 11 samples chamomile (Matricaria chamomilla L. purchased both at local herbal pharmacies and supermarkets were determined using electrothermal atomizer atomic absorption spectrometry (ETAAS and flame atomizer atomic absorption spectrometry (FAAS. The found concentrations in chamomile were: Cd (0.008 – 284 mg kg−1, Ca (2.42 – 6.29%, Cr (0.91 – 6.92 mg kg−1, Cu (6.27 – 11.39 mg kg−1, Fe (133.5 – 534 mg kg−1, Pb (0.561 – 1.277 mg kg−1, Mg (2.27 – 3.73%, Mn (62.2 – 165.6 mg kg−1, Hg (0.660 – 1.346 μg kg−1, Na (0.91 – 1.28% and Zn (63.37 – 108.5 mg kg−1, in green tea Cd (36.29 – 202.1 mg kg−1, Ca (2.77 – 6.40%, Cr (1.520 – 5.278 mg kg−1, Cu (9.354 – 22.56 mg kg−1, Fe (162.6 – 513.3 mg kg−1, Pb (1.808 – 4.770 mg kg−1, Mg (1.41 – 2.62 %, Mn (1.147 – 1.729 g kg−1, Hg (1.045 – 2.802 μg kg−1, Na (0.44 – 0.98% and Zn (30.65 – 115.6 mg kg−1, respectively. Principal Component Analysis (PCA was applied to identify factors (soil, climate and country of origin influencing the content of the measured elements in herbal samples. The proposed methodology developed in this work was successfully applied to the detection of metals in herbal samples. The analysis showed that the content of toxic metals in green tea samples was significantly higher and very close to the maximum dose recommended by the World Health Organization (WHO.

  10. Belpex and trilateral market coupling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    This document describes the operation of Belpex, the Belgian power transmission spot market, and its linking with the French (Powernext) and Dutch (APX) auction-style day-ahead spot markets. A last part deals with the extension of this trilateral market to other European countries. Content: Belpex day-ahead market (DAM) (Goals of the DAM: Provide consumers with a wider choice of electrical energy sources, Enable the ARP's to optimize their portfolio in terms of imbalance costs, Reduce trade and credit risks for market players compared with the risks involved in concluding bilateral contracts, Provide economic players with a transparent price benchmark, Stimulate the opening of the electricity market); Market model Product (description, Contracts, Collateral calculation, From 12 January to launch date Corporate and Legal Aspects, Next developments); Trilateral Market Coupling (What is market coupling and what are the benefits?, Implementation of trilateral market coupling ('TLC') in France/Belgium/Netherlands, From Trilateral to Multilateral, Implementation of Trilateral Market Coupling (TLC) in France/Belgium/Netherlands, Decentralized market coupling mechanism, influence of import and export on area prices); Decentralized market coupling (2 countries Situations: unconstrained/constrained, Decentralized market coupling: 3 countries, High Level Properties of Market Coupling, Maximize flow until prices across link converge (or ATC limit reached), Power flows from low price area to high price area, Implementing a decentralized technical approach, Market Coupling Daily Process, Impact on Existing Exchange Arrangements, Implementing a decentralized contractual approach, TLC Project Process); From Trilateral to Multilateral (Geographic extensions, Towards an Open and Multilateral Market Coupling, Management of Interconnection Capacities, Interconnection Capacities: current situation, TSO Roles and Responsibilities in the TLC, Other Import/Export products

  11. Lens Coupled Quantum Cascade Laser

    Science.gov (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  12. Marital Dissolution Among Interracial Couples

    OpenAIRE

    Zhang, Yuanting; Van Hook, Jennifer

    2009-01-01

    Increases in interracial marriage have been interpreted as reflecting reduced social distance among racial and ethnic groups, but little is known about the stability of interracial marriages. Using six panels of Survey of Income and Program Participation (N = 23,139 married couples), we found that interracial marriages are less stable than endogamous marriages, but these findings did not hold up consistently. After controlling for couple characteristics, the risk of divorce or separation amon...

  13. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan

    2016-01-01

    medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  14. Development of annular coupled structure

    International Nuclear Information System (INIS)

    Kageyama, T.; Morozumi, Y.; Yoshino, K.; Yamazaki, Y.

    1992-01-01

    A π/2-mode standing-wave linac of an Annular Coupled Structure (ACS) has been developed for the 1-GeV proton linac of the Japanese Hadron Project (JHP). This ACS has four coupling slots between accelerating and coupling cells in order to overcome difficulties in putting the ACS to practical use. Two prototypes of a four-slot ACS (f = 1296 MHz, β = v/c = 0.8) have been constructed and tested: one with a staggered slot-orientation from cell to cell; and the other with a uniform one. The staggered configuration gives a larger coupling constant and a larger shunt impedance than the uniform one with the same size of coupling slot. Both models have been conditioned up to the design input RF power. The four-slot ACS gives a distortion-free accelerating field around the beam axis, while a Side-Coupled Structure cavity gives an accelerating field mixed with a TE111-like mode. (Author) 7 figs., 2 tabs., 9 refs

  15. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    Science.gov (United States)

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Communication and Contraceptive Practices in Adolescent Couples.

    Science.gov (United States)

    Polit-O'Hara, Denise; Kahn, Janet R.

    1985-01-01

    Presents a descriptive analysis of couple communication among stable, sexually active adolescent couples (N=83) and the effect of communication on actual contraceptive practices. Results showed couples with good communication were more likely to practice effective contraception. (BH)

  17. Vibronic coupling density and related concepts

    International Nuclear Information System (INIS)

    Sato, Tohru; Uejima, Motoyuki; Iwahara, Naoya; Haruta, Naoki; Shizu, Katsuyuki; Tanaka, Kazuyoshi

    2013-01-01

    Vibronic coupling density is derived from a general point of view as a one-electron property density. Related concepts as well as their applications are presented. Linear and nonlinear vibronic coupling density and related concepts, orbital vibronic coupling density, reduced vibronic coupling density, atomic vibronic coupling constant, and effective vibronic coupling density, illustrate the origin of vibronic couplings and enable us to design novel functional molecules or to elucidate chemical reactions. Transition dipole moment density is defined as an example of the one-electron property density. Vibronic coupling density and transition dipole moment density open a way to design light-emitting molecules with high efficiency.

  18. Center vortices at strong couplings and all couplings

    International Nuclear Information System (INIS)

    Greensite, J.

    2001-01-01

    Motivations for the center vortex theory of confinement are discussed. In particular, it is noted that the abelian dual Meissner effect, which is the signature of dual superconductivity, cannot adequately describe the confining force at large distance scales. A long-range effective action is derived from strong-coupling lattice gauge theory in D=3 dimensions, and it is shown that center vortices emerge as the stable saddlepoints of this action. Thus, in the case of strong couplings, the vortex picture is arrived at analytically. I also respond briefly to a recent criticism regarding maximal center gauge. (author)

  19. Miscarriage experiences of lesbian couples.

    Science.gov (United States)

    Wojnar, Danuta

    2007-01-01

    This was a descriptive phenomenological study of 10 self-identified lesbian couples who had experienced miscarriage in the context of a committed relationship. Analysis of individual and joint open-ended interviews revealed that the experience of miscarriage for lesbian couples must be viewed from the perspective of the difficulties surrounding conception as well as the actual pregnancy loss. The overarching theme, "We are not in control," captures the struggles lesbian couples faced in conceiving their pregnancies and the sense of loss that accompanied miscarrying. These experiences constituted two sub-themes: "We work so hard to get a baby" and "It hurts so bad: The sorrow of miscarriage." Our results indicate that the experience of miscarriage is compounded by the complexities of planning and achieving pregnancy. Practitioners need to be aware of the unique perspectives lesbian couples have on pregnancy and miscarriage and remain sensitive to their unique needs. Findings may serve as an intervention framework for nurse midwives and others caring for lesbian couples after miscarriage.

  20. Systemic couple therapy for dysthymia.

    Science.gov (United States)

    Montesano, Adrián; Feixas, Guillem; Muñoz, Dámaris; Compañ, Victoria

    2014-03-01

    We examined the effect of Systemic Couple Therapy on a patient diagnosed with dysthymic disorder and her partner. Marge and Peter, a middle-aged married couple, showed significant and meaningful changes in their pattern of interaction over the course of the therapy and, by the end of it, Marge no longer met the diagnostic criteria for dysthymic disorder. Her scores on the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and Beck Depression Inventory, Second Edition (BDI-II) were in the clinical range before treatment and in the nonclinical one at the end of therapy. Although scores on Dyadic Adjustment Scale showed different patterns, both members reported significant improvement. The analysis of change in the alliance-related behaviors throughout the process concurred with change in couple's pattern of interaction. Treatment effects were maintained at 12-month follow-up. Highlights in the therapy process showed the importance of relational mechanisms of change, such as broadening the therapeutic focus into the couple's pattern of interaction, reducing expressed emotion and resentment, as well as increasing positive exchanges. The results of this evidence-based case study should prompt further investigation of couple therapy for dysthymia disorder. Randomized clinical trial design is needed to reach an evidence-based treatment status. (c) 2014 APA, all rights reserved.

  1. Matter couplings in supergravity theories

    International Nuclear Information System (INIS)

    Bagger, J.A.

    1983-01-01

    The N = 1 supersymmetric nonlinear sigma model is coupled to supergravity. The results are expressed in the language of Kahler geometry. Topological considerations constrain the scalar fields to lie on a Kahler manifold of restricted type, or a Hodge manifold. For topologically nontrivial manifolds, this leads to the quantization of Newton's constant in terms of the scalar self-coupling. The isometries of the N = 1 model are gauged. This gives a geometrical picture of what might be called the gauge invariant supersymmetric nonlinear sigma model. It also provides a new interpretation of the Fayet-Iliopoulos D-term. The gauge invariant supersymmetric nonlinear sigma model is coupled to N = 1 supergravity. This leads to a deeper understanding of the connections between supergravity, R-invariance and the Fayet-Iliopoulos D-term. It also provides a foundation for phenomenological studies of supergravity theories. Finally, the N = 2 supersymmetric nonlinear sigma model is coupled to supergravity. The scalar fields are found to lie on a negatively curved quaternionic manifold. This implies that matter self-couplings that are allowed in N = 2 supersymmetry are forbidden in N = 2 supergravity, and vice versa

  2. String dynamics at strong coupling

    International Nuclear Information System (INIS)

    Hull, C.M.

    1996-01-01

    The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)

  3. Trilateral market coupling. Algorithm appendix

    International Nuclear Information System (INIS)

    2006-03-01

    Market Coupling is both a mechanism for matching orders on the exchange and an implicit cross-border capacity allocation mechanism. Market Coupling improves the economic surplus of the coupled markets: the highest purchase orders and the lowest sale orders of the coupled power exchanges are matched, regardless of the area where they have been submitted; matching results depend however on the Available Transfer Capacity (ATC) between the coupled hubs. Market prices and schedules of the day-ahead power exchanges of the several connected markets are simultaneously determined with the use of the Available Transfer Capacity defined by the relevant Transmission System Operators. The transmission capacity is thereby implicitly auctioned and the implicit cost of the transmission capacity from one market to the other is the price difference between the two markets. In particular, if the transmission capacity between two markets is not fully used, there is no price difference between the markets and the implicit cost of the transmission capacity is null. Market coupling relies on the principle that the market with the lowest price exports electricity to the market with the highest price. Two situations may appear: either the Available Transfer Capacity (ATC) is large enough and the prices of both markets are equalized (price convergence), or the ATC is too small and the prices cannot be equalized. The Market Coupling algorithm takes as an input: 1 - The Available Transfer Capacity (ATC) between each area for each flow direction and each Settlement Period of the following day (i.e. for each hour of following day); 2 - The (Block Free) Net Export Curves (NEC) of each market for each hour of the following day, i.e., the difference between the total quantity of Divisible Hourly Bids and the total quantity of Divisible Hourly Offers for each price level. The NEC reflects a market's import or export volume sensitivity to price. 3 - The Block Orders submitted by the participants in

  4. Chameleons with Field Dependent Couplings

    CERN Document Server

    Brax, Philippe; Mota, David F; Nunes, Nelson J; Winther, Hans A

    2010-01-01

    Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power run-away potentials and field independent couplings to matter. In this paper we investigate field-theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for E\\"ot-Wash experiments, fifth-force searches and Casimir force experiments. Requiring that the scalar-field evades gravitational tests, we find that the coupling is sensitive to a mass-scale which is of order of the Hubble scale today.

  5. Coupled processes in repository sealing

    International Nuclear Information System (INIS)

    Case, J.B.; Kelsall, P.C.

    1985-01-01

    The significance of coupled processes in repository sealing is evaluated. In most repository designs, shaft seals will be located in areas of relatively low temperature perturbation, in which case the coupling of temperature with stress and permeability may be less significant than the coupling between stress and permeability that occurs during excavation. Constitutive relationships between stress and permeability are reviewed for crystalline rock and rocksalt. These provide a basis for predicting the development of disturbed zones near excavations. Field case histories of the degree of disturbance are presented for two contrasting rock types - Stripa granite and Southeastern New Mexico rocksalt. The results of field investigations in both rock types confirm that hydraulic conductivity or permeability is stress dependent, and that shaft seal performance may be related to the degree that stresses are perturbed and restored near the seal

  6. Coupling Functions Enable Secure Communications

    Science.gov (United States)

    Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2014-01-01

    Secure encryption is an essential feature of modern communications, but rapid progress in illicit decryption brings a continuing need for new schemes that are harder and harder to break. Inspired by the time-varying nature of the cardiorespiratory interaction, here we introduce a new class of secure communications that is highly resistant to conventional attacks. Unlike all earlier encryption procedures, this cipher makes use of the coupling functions between interacting dynamical systems. It results in an unbounded number of encryption key possibilities, allows the transmission or reception of more than one signal simultaneously, and is robust against external noise. Thus, the information signals are encrypted as the time variations of linearly independent coupling functions. Using predetermined forms of coupling function, we apply Bayesian inference on the receiver side to detect and separate the information signals while simultaneously eliminating the effect of external noise. The scheme is highly modular and is readily extendable to support different communications applications within the same general framework.

  7. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  8. Trilateral market coupling. Algorithm appendix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    Market Coupling is both a mechanism for matching orders on the exchange and an implicit cross-border capacity allocation mechanism. Market Coupling improves the economic surplus of the coupled markets: the highest purchase orders and the lowest sale orders of the coupled power exchanges are matched, regardless of the area where they have been submitted; matching results depend however on the Available Transfer Capacity (ATC) between the coupled hubs. Market prices and schedules of the day-ahead power exchanges of the several connected markets are simultaneously determined with the use of the Available Transfer Capacity defined by the relevant Transmission System Operators. The transmission capacity is thereby implicitly auctioned and the implicit cost of the transmission capacity from one market to the other is the price difference between the two markets. In particular, if the transmission capacity between two markets is not fully used, there is no price difference between the markets and the implicit cost of the transmission capacity is null. Market coupling relies on the principle that the market with the lowest price exports electricity to the market with the highest price. Two situations may appear: either the Available Transfer Capacity (ATC) is large enough and the prices of both markets are equalized (price convergence), or the ATC is too small and the prices cannot be equalized. The Market Coupling algorithm takes as an input: 1 - The Available Transfer Capacity (ATC) between each area for each flow direction and each Settlement Period of the following day (i.e. for each hour of following day); 2 - The (Block Free) Net Export Curves (NEC) of each market for each hour of the following day, i.e., the difference between the total quantity of Divisible Hourly Bids and the total quantity of Divisible Hourly Offers for each price level. The NEC reflects a market's import or export volume sensitivity to price. 3 - The Block Orders submitted by the

  9. Coupled-Beam and Coupled-Bunch Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Burov, Alexey [Fermilab

    2016-06-23

    A problem of coupled-beam instability is solved for two multibunch beams with slightly different revolution frequencies, as in the Fermilab Recycler Ring (RR). Sharing of the inter-bunch growth rates between the intra-bunch modes is described. The general analysis is applied to the RR; possibilities to stabilize the beams by means of chromaticity, feedback and Landau damping are considered.

  10. A utilização dos recursos eletrotermofototerapêuticos no tratamento da síndrome da fibromialgia: uma revisão sistemática The use of electrothermal and phototherapeutic methods for the treatment of fibromyalgia syndrome: a systematic review

    Directory of Open Access Journals (Sweden)

    Natalia A. Ricci

    2010-02-01

    Full Text Available OBJETIVO: Sistematizar as evidências científicas sobre os recursos eletrotermofototerapêuticos na síndrome da fibromialgia (SFM. MÉTODOS: A busca de publicações sobre as intervenções por eletrotermofototerapia na SFM foi realizada nas bases de dados Pubmed, Medline, Lilacs, Scielo, ISI Web of Knowledge, PEDro e Colaboração Cochrane. Foram selecionados ensaios clínicos aleatórios e controlados dos últimos dez anos em língua inglesa, portuguesa e espanhola. A qualidade metodológica dos estudos foi avaliada pela Escala de Jadad, e a análise dos resultados, por meio de revisão crítica dos conteúdos. RESULTADOS: Sete estudos foram revisados na íntegra, sendo identificadas intervenções com laser (n=4, estimulação elétrica transcutânea (TENS (n=1, corrente interferencial vetorial (CIV isolada (n=1 e CIV combinada com o ultrassom (n=1. Apenas dois estudos obtiveram boa qualidade metodológica pela Escala de Jadad. A maioria dos estudos (n=6 utilizou os critérios do American College of Rheumatology para o diagnóstico clínico da SFM. A dor foi o sintoma da SFM mais avaliado pelos estudos. O método e o tempo das intervenções variaram amplamente, além da falta de menção de parâmetros na utilização dos recursos eletrotermofototerapêuticos. Houve melhora significativa em todos os estudos quanto à dor. CONCLUSÃO: Generalizações dos resultados, reações adversas e doses de tratamento da SFM com eletrotermofototerapia ainda são restritas. Novos estudos são necessários para se estabelecer a efetividade da eletrotermofototerapia na SFM.OBJECTIVE: To systematically investigate the scientific evidence relating to electrothermal and phototherapeutic methods for the treatment of fibromyalgia syndrome (FMS. METHODS: The search for reports on interventions using electrothermal and phototherapy for FMS was carried out in the Pubmed, Medline, Lilacs, Scielo, ISI Web of Knowledge, PEDro and Cochrane Collaboration databases

  11. Cation-Coupled Bicarbonate Transporters

    OpenAIRE

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 ...

  12. Grating-Coupled Waveguide Cloaking

    International Nuclear Information System (INIS)

    Wang Jia-Fu; Qu Shao-Bo; Ma Hua; Wang Cong-Min; Wang Xin-Hua; Zhou Hang; Xu Zhuo; Xia Song

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect

  13. Tunable coupled surface acoustic cavities

    Science.gov (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.

    2012-06-01

    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  14. Flashing coupled density wave oscillation

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin; Zhang Youjie

    1997-07-01

    The experiment was performed on the test loop (HRTL-5), which simulates the geometry and system design of the 5 MW reactor. The phenomenon and mechanism of different kinds of two-phase flow instabilities, namely geyser instability, flashing instability and flashing coupled density wave instability are described. The especially interpreted flashing coupled density wave instability has never been studied well, it is analyzed by using a one-dimensional non-thermo equilibrium two-phase flow drift model computer code. Calculations are in good agreement with the experiment results. (5 refs.,5 figs., 1 tab.)

  15. Hydromechanical coupling in geologic processes

    Science.gov (United States)

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  16. Fertility prognosis for infertile couples

    DEFF Research Database (Denmark)

    Bostofte, E; Bagger, P; Michael, A

    1993-01-01

    OBJECTIVE: To develop a fertility prognosis model for infertile couples. DESIGN: Prospective follow-up study. PARTICIPANTS: In the period November 30, 1977 to June 1, 1985, 321 consecutive couples were investigated for infertility at Hvidovre University Hospital. Investigation of the female...... MEASURE: The Cox regression model was used to predict the time required to conceive based on informations provided by fertility investigations. RESULTS: Three of 16 prognostic variables (the period of infertility, the female infertility factor, and the P-test) possess significant prognostic information...

  17. Coupling to photonic crystal fibers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Bjarklev, Anders Overgaard; Knudsen, Erik

    2002-01-01

    In this work we have analyzed the correspondence between the fundamental mode of PCFs and Gaussian modes as a function of frequency, pitch, and air hole size. Such analysis provides insight into design space regions of PCFs, where low-loss coupling to standard fibers may be obtained.......In this work we have analyzed the correspondence between the fundamental mode of PCFs and Gaussian modes as a function of frequency, pitch, and air hole size. Such analysis provides insight into design space regions of PCFs, where low-loss coupling to standard fibers may be obtained....

  18. Dark coupling and gauge invariance

    International Nuclear Information System (INIS)

    Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2010-01-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data

  19. Dark Coupling and Gauge Invariance

    CERN Document Server

    Gavela, M B; Mena, O; Rigolin, S

    2010-01-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.

  20. Analysis of some coplanar transmission lines: coplanar coupled lines, coplanar coupled striplines, and coplanar coupled lines with rectangular microshield

    Science.gov (United States)

    Yuan, Naichang; He, Jianguo; Yao, Demiao; Dai, Qin; Lin, Weigan

    1995-06-01

    Two types of coplanar transmission lines, rectangular microshield coplanar coupled lines (RMCCL) and coplanar coupled rectangular microshield lines (CCRML), are proposed for MMIC applications. These are developed from coplanar coupled lines (CCL) and coplanar coupled strip lines (CCS). Analytic formulas are presented for calculating the quasistatic TEM parameters of these coupled lines by means of exact conformal mapping techniques. Numerical results are also presented to illustrate the properties of these coplanar transmission lines.