WorldWideScience

Sample records for electrostatic wave generation

  1. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    Science.gov (United States)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  2. Novel miniature electrostatic generator

    Science.gov (United States)

    Bakhoum, Ezzat G.

    2008-01-01

    A new and unusual design for an electrostatic high voltage generator is introduced. The prototype device built by the author can generate a voltage up to approximately 180kV; yet, its physical size is only a fraction of the size of a comparable Van de Graaff generator. In recent years there has been increasing demand for high voltage generators that are also very compact and lightweight. The new design introduced here fulfills that requirement.

  3. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

    Science.gov (United States)

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.

    2017-06-01

    Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7-5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both events is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV-1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1-10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. The current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.

  4. A Model Kelvin Electrostatic Generator.

    Science.gov (United States)

    Hill, M.; Jacobs, D. J.

    1997-01-01

    Describes how to construct a form of a Kelvin Electrostatics Generator from readily available components and provides an explanation of how it works. The device can generate 10-12 mm long sparks in the air. (DDR)

  5. Collapse of Electrostatic Waves in Magnetoplasmas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens

    1984-01-01

    The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....

  6. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  7. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  8. Dynamical chaos of plasma ions in electrostatic waves

    International Nuclear Information System (INIS)

    Fasoli, A.; Kleiber, R.; Tran, M.Q.; Paris, P.J.; Skiff, F.

    1992-09-01

    Chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric response and the microscopic heating mechanisms have been investigated via optical diagnostic techniques based on laser induced fluorescence. Observations of test-particle dynamical evolution indicate an exponential separation of initially close ion trajectories. (author) 5 figs., 20 refs

  9. Characterization of zonal flow generation in weak electrostatic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova (Romania); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)], E-mail: mnegrea@yahoo.com

    2008-05-15

    The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted.

  10. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Cartier, S.L.; D'Angelo, N.; Merlino, R.L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f> or approx. =f/sub c/i, where f/sub c/i is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism

  11. Laboratory Measurements of Electrostatic Solitary Structures Generated by Beam Injection

    International Nuclear Information System (INIS)

    Lefebvre, Bertrand; Chen, Li-Jen; Gekelman, Walter; Pribyl, Patrick; Vincena, Stephen; Kintner, Paul; Pickett, Jolene; Chiang, Franklin; Judy, Jack

    2010-01-01

    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λ De ) enabled the measurement of positive potential pulses with half-widths 4 to 25λ De and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

  12. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  13. Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2010-01-01

    A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.

  14. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  15. Embedding beyond electrostatics-The role of wave function confinement.

    Science.gov (United States)

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob

    2016-09-14

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.

  16. Investigations of electrostatic ion waves in a collisionless plasma

    International Nuclear Information System (INIS)

    Michelsen, P.

    1980-06-01

    The author reviews a series of publications concerning theoretical and experimental investigations of electrostatic ion waves in a collisionless plasma. The experimental work was performed in the Risoe Q-machine under various operational conditions. Besides a description of this machine and the diagnostic techniques used for the measurements, two kinds of electrostatic waves are treated, namely, ion-acoustic waves and ion-cyclotron waves. Due to the relative simplicity of the ion-acoustic waves, these were treated in detail in order to get a more general understanding of the behaviour of the propagation properties of electrostatic waves. The problem concerning the difficulties in describing waves excited at a certain position and propagating in space by a proper mathematical model was especially considered in depth. Furthermore, ion-acoustic waves were investigated which propagated in a plasma with a density gradient, and afterwards in a plasma with an ion beam. Finally, a study of the electrostatic ion-cyclotron waves was undertaken, and it was shown that these waves were unstable in a plasma traversed by an ion beam. (Auth.)

  17. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  18. Observation of the backward electrostatic ion cyclotron wave

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Wong, K.L.

    1984-12-01

    The backward branch of the electrostatic ion cyclotron wave has been observed, we believe, for the first time. The wave, which was driven by a phased antenna structure inserted in a neon plasma, exists in the parameter ranges 2T/sub i//m/sub i/ 2 Ω/sub i/. Double-tip probe interferomety data agree with the theoretical dispersion relation

  19. Electrode geometry for electrostatic generators and motors

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    An electrostatic (ES) device is described with electrodes that improve its performance metrics. Devices include ES generators and ES motors, which are comprised of one or more stators (stationary members) and one or more rotors (rotatable members). The stator and rotors are configured as a pair of concentric cylindrical structures and aligned about a common axis. The stator and rotor are comprised of an ensemble of discrete, longitudinal electrodes, which are axially oriented in an annular arrangement. The shape of the electrodes described herein enables the ES device to function at voltages significantly greater than that of the existing art, resulting in devices with greater power-handling capability and overall efficiency. Electrode shapes include, but are not limited to, rods, corrugated sheets and emulations thereof.

  20. Roles Played by Electrostatic Waves in Producing Radio Emissions

    Science.gov (United States)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  1. Non linear response of plasma ions in linear electrostatic waves

    International Nuclear Information System (INIS)

    Anderegg, F.; Skiff, F.; Paris, P.J.; Good, T.N.; Tran, M.Q.; Rynn, N.; Stern, R.

    1988-11-01

    We present experiments which test the applicability of the Hamiltonian single particle theory to wave-particle interactions. This theory describes the chaotic acceleration of plasmas ions by electrostatic waves. The Hamiltonian description gives predictions about the threshold, fast time scale, details of the distribution function and conservation of three integrals of the motion while some of the integrals have been broken by the overlap of resonances. Both electrostatic ion cyclotron and Bernstein waves are launched from antennae at the plasma boundary. Ion motions are observed by Laser Induced Fluorescence (LIF) and optical tagging. The linear response of the ion to the wave is distinguished from the chaotic response. Several predictions of the single particle theory are observed in the experiments. In addition, evidence of self-consistent effects have been observed. (author) 14 figs., 22 refs

  2. The Electrostatic Actuated Next Generation Microshutter Arrays

    Data.gov (United States)

    National Aeronautics and Space Administration — The field of view required for future missions is much larger than James Webb Space Telescope (JWST). We need to use electrostatic actuation to replace magnetic...

  3. Observation of the backward electrostatic ion-cyclotron wave

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Wong, K.L.

    1985-01-01

    The backward branch of the electrostatic ion-cyclotron wave has been observed for the first time. The wave, which was driven by a phased antenna structure inserted in a neon plasma, exists in the parameter ranges 2T/sub i//m/sub i/ 2 or approx. =T/sub i/, and ω/sub p/i > Ω/sub i/. Double-tip probe interferometry data agree with the theoretical dispersion relation. The antenna couples into the wave more readily on the side of the antenna where it has its smallest wavenumber

  4. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  5. Collaborative Research: Dynamics of Electrostatic Solitary Waves on Current Layers

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, Jolene S.

    2012-10-31

    The research carried out under the subject grant has provided insight into the generation of Electrostatic Solitary Waves (ESWs), which are nonlinear structures observed in space plasma data. These ESWs, appearing as pulses in the electric field time series data, represent the presence of several hundred meters to kilometer size positive potential structures, similar to champagne bubbles, where the electrons have been depleted, and which travel along Earth's magnetic field lines. The laboratory experiments carried out at the UCLA LAPD under the grant allowed us the opportunity to change various plasma and field conditions within the plasma device, and experiment with injection of suprathermal electron beams, in order to create ESWs. This then allowed us to determine the most likely method of generation of the ESWs. By comparing the properties of the ESWs observed in the LAPD to those observed in space and the plasma and field conditions under which those ESWs were observed in both locations, we were able to evaluate various ESW generation mechanisms. The findings of the laboratory experiments are that ESWs are generated through a lower hybrid instability. The ESWs observed in Earth's auroral current regions have similar characteristics to those generated by the laboratory when referenced to basic plasma and field characteristics, leading us to the conclusion that the lower hybrid drift instability is certainly a possibility for generation of the ESWs, at least in the auroral (northern/southern lights) regions. Due to space instrumentation insufficiencies and the limitations on telemetry, and thus poor time resolution, it is not possible to determine absolutely what generates these bubbles in space, but the laboratory experiments and supporting simulations have helped us to further our understanding of the processes under which they are generated. The public benefits from the findings of this research because the research is focused on current layers

  6. Electrostatic solitary waves in dusty pair-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A. P. [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731 235, West Bengal (India); Adhikary, N. C. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam (India)

    2013-10-15

    The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.

  7. Existence domain of electrostatic solitary waves in the lunar wake

    Science.gov (United States)

    Rubia, R.; Singh, S. V.; Lakhina, G. S.

    2018-03-01

    Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a "forbidden gap," the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.

  8. Low Frequency Electrostatic Waves in Weakly Inhomogeneous Magnetoplasma Modeled by Lorentzian (kappa) Distributions

    National Research Council Canada - National Science Library

    Basu, Bamandas

    2008-01-01

    Linear dispersion relations for electrostatic waves in spatially inhomogeneous, current-carrying anisotropic plasma, where the equilibrium particle velocity distributions are modeled by various Lorentzian (kappa...

  9. Electrostatic mode coupling at 2ω/sub UH/: a generation mechanism for auroral kilometric radiation

    International Nuclear Information System (INIS)

    Barbosa, D.D.

    1976-01-01

    The instability of a low density, electron beam drifting along a magnetic field to nearly perpendicular propagating electrostatic waves near the upper hybrid frequency is investigated for application to an auroral environment. It was found that 4 to 10 KeV beams can interact significantly with the background plasma through anomalous cyclotron resonances which extend the range of unstable parallel wave numbers over a large region of wave number space. This region can include a nonconvective hot spot where the group velocity of the unstable waves approaches zero. Positive slope in the total distribution function is not a necessary requirement for instability; the broken symmetry along the field can allow the transfer of beam drift energy to electrostatic wave turbulence. Using Gurnett's (1974) polar ionospheric model for a representative auroral field line modeled as dipolar (L = 8), one infers that certain heights favor generation of enhanced, beamdriven electrostatic turbulence. Those regions are in the vicinity of where ω/sub UH//Ω/sub c/ approx. 3/2 with an excursion from this value depending on beam parameters. We speculate that electrostatic turbulence will heat the background electrons to a limiting temperature such that the instability becomes marginally effective. This limiting temperature is estimated for auroral beam-plasma conditions as 1 to 6 eV. Quasi-linear beam moment equations are developed to compute an upper bound to electrostatic wave amplitudes that can be maintained by the beam. We find that energy densities approaching E 2 /8πnT approx. 1 over auroral scale lengths can result in effective energy transfer from the beam to the plasma

  10. DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R. P.; Tripathi, A. K.; Halder, S.; II, O. N. Singh, E-mail: rpsiitbhu@yahoo.com, E-mail: aktrip2001@yahoo.co.in, E-mail: h.santanu5791@gmail.com, E-mail: ons_onkaritapd@yahoo.co.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (UP) (India)

    2016-12-01

    The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earlier works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.

  11. Out-of-Plane Continuous Electrostatic Micro-Power Generators

    Science.gov (United States)

    Mahmoud, M. A. E.; Abdel-Rahman, E. M.; Mansour, R. R.; El-Saadany, E. F.

    2017-01-01

    This paper presents an out-of-plane electrostatic micro-power generator (MPG). Electret-based continuous MPGs with different gaps and masses are fabricated to demonstrate the merits of this topology. Experimental results of the MPG demonstrate output power of 1 mW for a base acceleration amplitude and frequency of 0.08 g and 86 Hz. The MPGs also demonstrate a wideband harvesting bandwidth reaching up to 9 Hz. A free-flight and an impact mode model of electrostatic MPGs are also derived and validated by comparison to experimental results. PMID:28420151

  12. Out-of-Plane Continuous Electrostatic Micro-Power Generators

    OpenAIRE

    Mahmoud, M. A. E.; Abdel-Rahman, E. M.; Mansour, R. R.; El-Saadany, E. F.

    2017-01-01

    This paper presents an out-of-plane electrostatic micro-power generator (MPG). Electret-based continuous MPGs with different gaps and masses are fabricated to demonstrate the merits of this topology. Experimental results of the MPG demonstrate output power of 1 mW for a base acceleration amplitude and frequency of 0.08 g and 86 Hz. The MPGs also demonstrate a wideband harvesting bandwidth reaching up to 9 Hz. A free-flight and an impact mode model of electrostatic MPGs are also derived and va...

  13. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  14. Electromechanical coupling in electrostatic micro-power generators

    International Nuclear Information System (INIS)

    Mahmoud, M A E; El-Saadany, E F; Mansour, R R; Abdel-Rahman, E M

    2010-01-01

    Electrostatic micro-power generators (MPGs) are modeled and analyzed with particular emphasis on electromechanical coupling and its impact on the system dynamics. We identify two qualitatively different regimes in the MPG response, dubbed slow and fast. A linearized electromechanically coupled model of an electrostatic MPG and two simplified linear models are used to study the response of the MPG. Linear models are found adequate to represent the dynamic response of fast MPGs but inadequate to represent the response of slow and mixed domain MPGs. A nonlinear model is developed and validated to describe the response of those MPGs under moderately large excitations. On the basis of this analysis, we describe a method and provide design rules for realizing wideband electrostatic MPGs, and develop closed-form formulae for the extracted power for MPGs under moderately large excitations

  15. Heating of charged particles by electrostatic wave propagating perpendicularly to uniform magnetic field

    International Nuclear Information System (INIS)

    Niu, Keishiro; Shimojo, Takashi.

    1978-02-01

    Increase in kinetic energy of a charged particle, affected by an electrostatic wave propagating perpendicularly to a uniform magnetic field, is obtained for both the initial and later stages. Detrapping time of the particle from the potential dent of the electrostatic wave and energy increase during trapping of the particle is analytically derived. Numerical simulations are carried out to support theoretical results. (auth.)

  16. Energy of linear quasi-neutral electrostatic drift waves

    International Nuclear Information System (INIS)

    Pfirsch, D.; Correa-Restrepo, D.

    1992-01-01

    An exact energy expression for linear quasi-neutral electrostatic perturbations is derived within the framework of dissipationless multi-fluid theory, valid for any geometry. Taking the mass as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat the full dynamics and also to restrict consideration to parallel dynamics or to the completely adiabatic case. Application to slab configurations yields the result that in plane geometry the adiabatic approximation does not allow negative-energy perturbations, whereas inclusion of the parallel dynamics does. This is in agreement with a numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott. Unlike Scott, we consider a dissipationless theory. Whereas the nonlinear energy is just kinetic plus potential plus thermal energy, the energy of perturbations depends on constraints. In a multi-fluid quasi-neutral electrostatic theory, from which we start, such constraints are mass conservation and entropy conservation. The latter is violated if heat conduction, heat sources (e.g. Joule heating) and heat sinks play a role. Hence, the energy expressions obtained are, valid only when situations where this is not the case or where these phenomena do not influence the entropy constraint. The latter is the case if the heat conduction is infinitely large such that the equilibrium temperature profiles T ν (x) of the various particle species ν are independent of x and δT ν =0. A vanishing temperature perturbation results in an entropy-conserving theory if one takes the adiabatic coefficients γ ν =1. This is possible, however, only for the perturbations; the equilibrium energy would diverge. When we consider this case, we do it in the way that the γs are put equal to 1 only after having obtained the perturbed energy for general γs. (author) 7 refs

  17. A statistical survey of electrostatic electron cyclotron harmonic waves based on THEMIS FFF wave data

    Science.gov (United States)

    Ni, Binbin; Gu, Xudong; Fu, Song; Xiang, Zheng; Lou, Yuequn

    2017-03-01

    Based on the high-resolution FFF wave spectral data obtained from the three innermost Time History of Events and Macroscale Interactions during Substorms spacecraft, electrostatic electron cyclotron harmonic (ECH) emissions are identified, using automatic selection criteria, for the period from May 2010 to December 2015. A statistical analysis of wave spectral intensity, peak wave frequency, and wave occurrence rate is performed for the first harmonic ECH waves that are predominantly strongest among all harmonic bands, in terms of dependence on L shell, magnetic local time (MLT), magnetic latitude, and the level of geomagnetic activity. Our results indicate that ECH emissions are preferentially a nightside phenomenon primarily confined to the MLT interval of 21-06 and that the most intense ECH waves are commonly present at L = 5-9 and MLT = 23-03 within 3° of the magnetic equator. As the geomagnetic activity intensifies, averaged nightside ECH wave amplitude can increase from a few tenth mV/m to well above 1 mV/m. The presence of >0.1 mV/m ECH emissions extends from L 12 with a broad MLT coverage from the evening to postdawnside at the occurrence rate above 20% for the equatorial emissions and at a rate up to 7% for higher-latitude waves. Overall, the average peak wave frequency of the first harmonic ECH waves is located 1.5 fce (where fce is the electron gyrofrequency) for L statistically average values of wave amplitude and peak wave frequency for different ranges of L shell, MLT, and geomagnetic activity level, our detailed investigation provides an improved statistical model of ECH wave global distribution in the Earth's inner and outer magnetosphere, which can be readily adopted as critical inputs in diffusion codes to evaluate the rates of ECH wave-driven pitch angle scattering and to determine the precise contributions of ECH waves to the plasma sheet electron dynamics and diffuse auroral electron precipitation.

  18. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  19. Short-wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1985-01-01

    Recent observations with the ISEE 1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emission has a characteristic parabola shape or ''festoon'' shape. The low-frequency cutoff ranges from 100 to 400 Hz, while the high-frequency limit ranges from about 1 to 4 kHz. The bandwidth is found to minimize for antenna orientations parallel to the wave vectors. The wave vector does not appear to be related to the local magnetic field, the plasma flow velocity, or the spacecraft-sun directions. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler-shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest frame wave vectors and frequencies indicate that emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 40 and 600 m. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  20. Laboratory generation of gravitational waves

    International Nuclear Information System (INIS)

    Pinto, I.M.; Rotoli, G.

    1988-01-01

    The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation

  1. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  2. Wave Generation in Physical Models

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...

  3. Rippled disc electrostatic generator/motor configurations utilizing magnetic insulation

    Science.gov (United States)

    Post, Richard F

    2017-04-04

    Electrostatic generators/motors designs are provided that generally may include a first rippled stator centered about a longitudinal axis; a second rippled stator centered about the axis, a first rippled rotor centered about the axis and located between the first rippled stator and the second rippled stator. A magnetic field having field lines about parallel with the average plane of at least one of the first rippled stator or the second rippled stator is provided with either a Halbach array configuration or a conductor array configuration.

  4. Excitation of electrostatic wave instability by dc electric field in earth's magnetoplasma

    International Nuclear Information System (INIS)

    Mishra, S.P.; Misra, K.D.; Pandey, R.P.; Singh, K.M.

    1992-01-01

    The dispersion relation for electrostatic wave propagation in an anisotropic warm collisionless magnetoplasma, in the presence of weak parallel (d c) electric field, has been derived analytically. An expression for the growth rate of the electrostatic wave and the marginal stability condition are also derived. The modifications introduced in the growth rate by the electric field and the temperature anisotropy are discussed using plasma parameters observed in the magnetospheric region (4 < L < 10). The effect of the electric field is to increase the growth rate of electrostatic waves at different electron cyclotron harmonics, whereas the effect of the temperature anisotropy is to decrease the growth rate. The presence of parallel electric field may excite the electrostatic emissions at different electron cyclotron harmonics. The most unstable band of wave frequencies obtained with the aid of computations lies between 5 kHz and 10 kHz. These wave frequencies are well within the experimentally observed frequencies of electrostatic emissions. Therefore such a study would not only explain the observed satellite features of the electrostatic wave emissions but would also account for the diagnostics of the magnetospheric plasma parameters

  5. Hazard of electrostatic generation in a pneumatic conveying system: electrostatic effects on the accuracy of electrical capacitance tomography measurements and generation of spark

    International Nuclear Information System (INIS)

    Zhang, Yan; Wang, Chi-Hwa; Liang, Yung Chii

    2008-01-01

    The study of the hazard of electrostatic generation in pneumatic conveying systems was attempted by examining the sensitivity of electrical capacitance tomography (ECT) and the phenomena of spark generation due to strong electrostatics. The influence on ECT measurement accuracy of an electrostatic charge was analysed with reference to a switch capacitor configuration model. Consequently, it was found that the electrostatic charge introduced at the bend with sharp angles influenced the ECT results most significantly in pneumatic conveying systems, especially for the cases where a spark was generated. The investigation of spark generation indicated that a strong electrostatic charge can cause major discharges inside or outside the pipeline to damage the experimental instrument in severe cases

  6. Experimental observations of surface electrostatic wave on KT-5B tokamak

    International Nuclear Information System (INIS)

    Zhu Shiyao; Han Shensheng

    1991-01-01

    Shear Alfven waves have been successfully excited in KT-5B small tokamak by means of the one turn longitudinal loop antenna located in the shadow area. The measured antenna loadings show their rich structure, and the loadings are also found to be sensitive to the plasma current. Preliminary evidence of surface electrostatic wave was observed

  7. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  8. Internal Wave Generation by Convection

    Science.gov (United States)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  9. Electrostatic upper-hybrid waves and energetic electrons in the Earth's radiation belt

    Science.gov (United States)

    Hwang, J.; Shin, D. K.; Yoon, P. H.

    2016-12-01

    Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequencies above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through Van Allen Probe observations. Such a feature is analogous to the quasi-thermal noise, or enhanced Langmuir frequency fluctuations, detected in the solar wind. Generally upper-hybrid emissions are used for estimating the background electron density, but the physical mechanism for generating such fluctuations or their possible influence on the energetic electrons has not been discussed in detail. The present paper carries out detailed analyses of data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) suite onboard Van Allen Probes, as well as theoretical calculation of spontaneous thermal emission. It is found that peak intensity associated with the upper-hybrid fluctuations is determined largely by tenuous energetic electrons, and that dense background electrons do not contribute much to the peak intensity. This finding implies that upper-hybrid fluctuations may not only be useful for electron density measurement, but also such a spectrum of electrostatic fluctuations may contribute to the steady-state energy spectrum of radiation belt electrons via wave-particle resonant interaction.

  10. Nonplanar electrostatic shock waves in an opposite polarity dust ...

    Indian Academy of Sciences (India)

    M Amina

    2017-05-30

    May 30, 2017 ... The coexistence of positively and negatively charged dust grains has been observed in the Earth's mesosphere [11,12] as well as in cometary tails and comae [6]. The propagation of various types of nonlinear waves in dusty plasmas, viz., dust-acoustic (DA) waves [13], dust-ion-acoustic (DIA) waves [14,15] ...

  11. Formation and dynamics of electrostatic solitary waves associated with relativistic electron beam

    Science.gov (United States)

    Moslem, W. M.; Bencheriet, F.; Sabry, R.; Djebli, M.

    2012-04-01

    Properties of nonlinear electrostatic solitary waves in a plasma are analyzed by using the hydrodynamic model for electrons, positrons, and relativistic electron beam. For this purpose, the Kadomtsev-Petviashvili (KP) equation has been derived and its analytical solution is presented. It is found that the nonlinear solitary structures can propagate as slow and fast modes. The dependence of these modes on the plasma parameters is defined numerically. Furthermore, positive and negative electrostatic solitary structures can exist. In order to show that the characteristics of the solitary wave profile are influenced by the plasma parameters, the relevant numerical analysis of the KP equation is obtained. The electrostatic solitary waves, as predicted here, may be associated with the nonlinear structures caused by the interaction of relativistic jets with plasma medium, such as in the active galactic nuclei and in the magnetosphere of collapsing stars.

  12. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  13. Large Amplitude Electrostatic Waves and Anomalous Resistivity Near the Electron Diffusion Region

    Science.gov (United States)

    Webster, J.; Burch, J. L.; Reiff, P. H.; Genestreti, K.; Dorelli, J.; Rager, A. C.; Daou, A.; Sazykin, S. Y.; Marshall, A.; Graham, D. B.; Chen, L. J.; Wang, S.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission explores the electron-scale physics of magnetic reconnection. During the asymmetric reconnection process at the dayside magnetopause, MMS has repeatedly observed electrostatic waves with amplitudes significantly larger than those predicted by particle-in-cell (PIC) simulations. We fit Maxwellian distributions to each spacecraft's measured particle data and employ an established model (Waves in Homogenous Anisotropic Magnetized Plasma, or "WHAMP") in an effort to study possible temporal evolutions of the predicted dispersion relations for several short durations of time. A comparison between the dispersion relation and the recorded waves is provided, along with a polarization analysis. We utilize both standard resolution (30 ms) electron moments data and newly available 7.5 ms electron moments data. An Ohm's Law analysis is also conducted to check for possible evidence of significant anomalous resistivity simultaneous with the large amplitude electrostatic waves.

  14. Experimental study of electronic electrostatic waves detected in the terrestrial magnetosphere by the satellite GEOS 2

    International Nuclear Information System (INIS)

    Canu, P.

    1982-09-01

    After reviewing the general characteristics of electrostator waves a brief resume is given of the observations made up to the present moment. The GEOS satellite and the ''wave'' experiment are described, as well as the method and results of the statistical study of the strong electrostatic wave observed. Creating mechanisms of diffuse auroras are discussed. In a later chapter a new method of using the relaxation probe is presented as well as the results it gives on the mode of propagation of waves in the neighbourhood of the FUH frequency [fr

  15. Electrostatic surface waves on a magnetized quantum plasma half-space

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2016-03-15

    A theory of electrostatic surface waves on a quantum plasma half-space is developed with the inclusion of external magnetic field effects for the geometry in which the magnetic field is parallel to the surface and the direction of propagation is perpendicular to the magnetic field. A general analytical expression for dispersion relation of surface waves is obtained by solving Poisson and quantum magnetohydrodynamic equations with appropriate quantum boundary conditions.

  16. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q. [Theoretical Physics Division, PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); Ali, Munazza Z. [Department of Physics, University of the Punjab, Lahore 54590 (Pakistan)

    2016-06-15

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  17. Furthering our understanding of electrostatic solitary waves through Cluster multispacecraft observations and theory

    Czech Academy of Sciences Publication Activity Database

    Pickett, J. S.; Chen, L. J.; Mutel, R. L.; Christopher, I. W.; Santolík, Ondřej; Lakhina, G. S.; Singh, S. V.; Reddy, R. V.; Gurnett, D. A.; Tsurutani, B. T.; Lucek, E.; Lavraud, B.

    2008-01-01

    Roč. 41, č. 10 (2008), s. 1666-1676 ISSN 0273-1177 Institutional research plan: CEZ:AV0Z30420517 Keywords : Electrostatic solitary waves * ESW propagation * Cluster * Magnetosheath * Auroral acceleration region * Cluster wideband data Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.860, year: 2008

  18. Stability of electrostatic ion cyclotron waves in a multi-ion plasma†

    Indian Academy of Sciences (India)

    Abstract. We have studied the stability of the electrostatic ion cyclotron wave in a plasma consisting of isotropic hydrogen ions (H+) and temperature-anisotropic positively. (O+) and negatively (O−) charged oxygen ions, with the electrons drifting parallel to the magnetic field. Analytical expressions have been derived for the ...

  19. Electrostatic solitary waves observed at Saturn by Cassini inside 10 Rs and near Enceladus

    Czech Academy of Sciences Publication Activity Database

    Pickett, J. S.; Kurth, W. S.; Gurnett, D. A.; Huff, R. L.; Faden, J. B.; Averkamp, T. F.; Píša, David; Jones, G. H.

    2015-01-01

    Roč. 120, č. 8 (2015), s. 6569-6580 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : electrostatic solitary waves * Saturn * Enceladus * plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2015JA021305/full

  20. Spacecraft Observations of Quasi-Electrostatic Chorus Waves: Effective Length of a Receiving Antenna

    Science.gov (United States)

    Shirokov, Evgenii; Demekhov, Andrei; Chugunov, Yury; Larchenko, Alexey

    2017-04-01

    Whistler-mode chorus is a typical example of very low frequency electromagnetic emission in the Earth's and planetary magnetospheres. Chorus emissions typically propagate quasi-parallel to the ambient magnetic field in their source region but can also propagate in the quasi-electrostatic mode close to the lower oblique resonance cone. However, the quasi-electrostatic wave field measurements by electric receiving antennas in a magnetoplasma are nontrivial. Indeed, the incident wave electric field amplitude E should be obtained from voltage U = Eleff induced on the receiving antenna, where leff is the so-called antenna effective length. The value of leff can be greater and even much greater than the antenna geometric length lgeom in case of the short (as compared to the electromagnetic wavelength in a plasma) antennas. This is because such antennas effectively re-radiate quasi-electrostatic waves in plasmas. Length leff should be calculated considering the plasma and wave characteristics, and, in general, this is quite a difficult problem. In this work, we propose a method of calculating the effective length of a short receiving antenna for the case of spacecraft observations of quasi-electrostatic chorus emissions, and an analytical expression for this parameter is obtained. This method is based on the reciprocity theorem for quasi-electrostatic waves, which is also correct in gyrotropic and dispersive media such as magnetoplasmas, and requires an appropriate choice of the radiation source model. Such a choice is possible on the basis of the measured emission parameters if a quasi-monochromatic wave packet with wave normal angles near the resonance cone is detected. We calculate the receiver effective length for some measurements of chorus wave quasi-electrostatic fields onboard THEMIS spacecraft using the proposed method. The emission parameters such as the wave normal angle have been found using the singular value decomposition method applied to the magnetic field

  1. Induced scattering due to nonlinear Landau and cyclotron damping of electromagnetic and electrostatic waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Sugaya, Reiji

    1989-01-01

    General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)

  2. Nonplanar electrostatic shock waves in an opposite polarity dust ...

    Indian Academy of Sciences (India)

    A rigorous theoretical investigation has been carried out on the propagation of nonplanar (cylindrical and spherical) dust-acoustic shock waves (DASHWs) in a collisionless four-component unmagnetized dusty plasmasystem containing massive, micron-sized, positively and negatively charged inertial dust grains along with ...

  3. Drift-wave turbulence and zonal flow generation

    International Nuclear Information System (INIS)

    Balescu, R.

    2003-01-01

    Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows

  4. Volcanoes can generate devastating waves

    Science.gov (United States)

    1988-01-01

    Explosions. Noxious gases. Lava fountains and flows. Avalanches of superheated pyroclastics. Although volcanic eruptions can cause all these frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. this destruction comes from tsunamis (huge volcano-generated waves) Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. 

  5. A Gordeyev integral for electrostatic waves in a magnetized plasma with a kappa velocity distribution

    International Nuclear Information System (INIS)

    Mace, R.L.

    2003-01-01

    A Gordeyev-type integral for the investigation of electrostatic waves in magnetized plasma having a kappa or generalized Lorentzian velocity distribution is derived. The integral readily reduces, in the unmagnetized and parallel propagation limits, to simple expressions involving the Z κ function. For propagation perpendicular to the magnetic field, it is shown that the Gordeyev integral can be written in closed form as a sum of two generalized hypergeometric functions, which permits easy analysis of the dispersion relation for electrostatic waves. Employing the same analytical techniques used for the kappa distribution, it is further shown that the well-known Gordeyev integral for a Maxwellian distribution can be written very concisely as a generalized hypergeometric function in the limit of perpendicular propagation. This expression, in addition to its mathematical conciseness, has other advantages over the traditional sum over modified Bessel functions form. Examples of the utility of these generalized hypergeometric series, especially how they simplify analyses of electrostatic waves propagating perpendicular to the magnetic field, are given. The new expression for the Gordeyev integral for perpendicular propagation is solved numerically to obtain the dispersion relations for the electrostatic Bernstein modes in a plasma with a kappa distribution

  6. Chaotic diffusion across a magnetic island due to a single electrostatic drift wave

    International Nuclear Information System (INIS)

    Misguich, J.H.

    1990-05-01

    It is shown that the guiding center motion around a single chain of magnetic islands in a Tokamak can become chaotic in the presence of a single electrostatic drift wave. This process leads to radial diffusion across the islands without magnetic braiding. The chaotic diffusion appears to be selective in velocity space. Realistic values of the physical parameters are considered to deduce that this process can be effective in usual conditions: with the observed islands, and electrostatic field values corresponding to measured density fluctuations, this diffusion concerns ions with velocities higher than thermal, and almost all of the electron population. The consequences for radial diffusion are discussed

  7. Nonlinear features of electrostatic waves in a plasma with nonthermal-Tsallis distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debjit [Department of Mathematics, National Institute of Technology, Agartala, Jiraniya 799046 (India); Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India)

    2016-06-15

    Linear and nonlinear properties of electrostatic waves are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons obeying nonthermal-Tsallis distribution and warm ions using the Sagdeev pseudopotential technique. It is found that such a plasma supports soliton, supersoliton, and double layer structures. Also, the present plasma system supports the coexistence of arbitrary amplitude compressive and rarefactive solitons in a certain region of parameter space. Furthermore, numerical results reveal that the nonthermal-Tsallis distribution of electrons may affect the spatial profiles as well as the nature of the electrostatic nonlinear structures.

  8. Collaborative research: Dynamics of electrostatic solitary waves and their effects on current layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li-Jen

    2014-04-18

    The project has accomplished the following achievements including the goals outlined in the original proposal. Generation and measurements of Debye-scale electron holes in laboratory: We have generated by beam injections electron solitary waves in the LAPD experiments. The measurements were made possible by the fabrication of the state-of-the-art microprobes at UCLA to measure Debye-scale electric fields [Chiang et al., 2011]. We obtained a result that challenged the state of knowledge about electron hole generation. We found that the electron holes were not due to two-stream instability, but generated by a current-driven instability that also generated whistler-mode waves [Lefebvre et al., 2011, 2010b]. Most of the grant supported a young research scientist Bertrand Lefebvre who led the dissemination of the laboratory experimental results. In addition to two publications, our work relevant to the laboratory experiments on electron holes has resulted in 7 invited talks [Chen, 2007, 2009; Pickett et al., 2009a; Lefebvre et al., 2010a; Pickett et al., 2010; Chen et al., 2011c, b] (including those given by the co-I Jolene Pickett) and 2 contributed talks [Lefebvre et al., 2009b, a]. Discovery of elecctron phase-space-hole structure in the reconnection electron layer: Our theoretical analyses and simulations under this project led to the discovery of an inversion electric field layer whose phase-space signature is an electron hole within the electron diffusion layer in 2D anti-parallel reconnection [Chen et al., 2011a]. We carried out particle tracing studies to understand the electron orbits that result in the phase-space hole structure. Most importantly, we showed that the current density in the electron layer is limited in collisionless reconnection with negligible guide field by the cyclotron turning of meandering electrons. Comparison of electrostatic solitary waves in current layers observed by Cluster and in LAPD: We compared the ESWs observed in a supersubstorm

  9. Effect of longitudinal electric fields on electrostatic electron cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Brinca, A.L.; Dysthe, K.B. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Electrodinamica)

    1983-02-01

    The influence of static parallel electric fields on the characteristics of obliquely propagating electron Bernstein waves is studied. Analysis of the equilibrium state defines the range of validity of the adopted model, (a collisionless, locally homogeneous medium described by the Vlasov and Poisson equations). An iterative method yields the modified dispersion relation whose numerical solution, for an idealized medium, suggests the relevance of the effects induced by static parallel electric fields in natural plasmas.

  10. Effect of squeeze on electrostatic Trivelpiece-Gould wave damping

    Science.gov (United States)

    Ashourvan, Arash; Dubin, Daniel H. E.

    2014-05-01

    We present a theory for increased damping of Trivelpiece-Gouid plasma modes on a nonneutral plasma column, due to application of a Debye shielded cylindrically symmetric squeeze potential φ1. We present two models of the effect this has on the plasma modes: a 1D model with only axial dependence, and a 2D model that also keeps radial dependence in the squeezed equilibrium and the mode. We study the models using both analytical and numerical methods. For our analytical studies, we assume that φ1/T≪1, and we treat the Debye shielded squeeze potential as a perturbation in the equilibrium Hamiltonian. Our numerical simulations solve the 1D Vlasov-Poisson system and obtain the frequency and damping rate for a self-consistent plasma mode, making no assumptions as to the size of the squeeze. In both the 1D and 2D models, damping of the mode is caused by Landau resonances at energies En for which the particle bounce frequency ωb(En) and the wave frequency ω satisfy ω =nωb(En). Particles experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As a result, the squeeze induces bounce harmonics with n > 1 in the perturbed distribution. The harmonics allow resonances at energies En≤T that cause substantial damping, even when wave phase velocities are much larger than the thermal velocity. In the regime ω /k≫√T /m (k is the wave number) and T ≫φ1, the resonance damping rate has a |φ1|2 dependence. This dependence agrees with the simulations and experimental results.

  11. Effect of squeeze on electrostatic Trivelpiece-Gould wave damping

    Energy Technology Data Exchange (ETDEWEB)

    Ashourvan, Arash; Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2014-05-15

    We present a theory for increased damping of Trivelpiece-Gouid plasma modes on a nonneutral plasma column, due to application of a Debye shielded cylindrically symmetric squeeze potential φ{sub 1}. We present two models of the effect this has on the plasma modes: a 1D model with only axial dependence, and a 2D model that also keeps radial dependence in the squeezed equilibrium and the mode. We study the models using both analytical and numerical methods. For our analytical studies, we assume that φ{sub 1}/T≪1, and we treat the Debye shielded squeeze potential as a perturbation in the equilibrium Hamiltonian. Our numerical simulations solve the 1D Vlasov-Poisson system and obtain the frequency and damping rate for a self-consistent plasma mode, making no assumptions as to the size of the squeeze. In both the 1D and 2D models, damping of the mode is caused by Landau resonances at energies E{sub n} for which the particle bounce frequency ω{sub b}(E{sub n}) and the wave frequency ω satisfy ω=nω{sub b}(E{sub n}). Particles experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As a result, the squeeze induces bounce harmonics with n > 1 in the perturbed distribution. The harmonics allow resonances at energies E{sub n}≤T that cause substantial damping, even when wave phase velocities are much larger than the thermal velocity. In the regime ω/k≫√(T/m) (k is the wave number) and T≫φ{sub 1}, the resonance damping rate has a |φ{sub 1}|{sup 2} dependence. This dependence agrees with the simulations and experimental results.

  12. Experimental Confirmation of the Persistence of Ponderomotively Driven Kinetic Electrostatic Electron Nonlinear (KEEN) Waves in Laser Produced Plasmas

    Science.gov (United States)

    Kline, J.; Afeyan, B.; Bertsche, W.; Kurnit, N.; Montgomery, D.; Savchenko, V.; Won, K.

    2004-11-01

    Vlasov-Poisson simulations using ponderomotively driven excitations have discovered the existence of stable, nonlinear, multimode coherent structures in plasmas named Kinetic Electrostatic Electron Nonlinear (KEEN) waves.^1 For a given wave number drive, they seem to form and persist for any drive frequency in a band around the electron acoustic^2 frequency. An experiment was recently conducted on Trident jointly by Polymath Research Inc. and LANL to verify these findings. The two lasers used had 527 and 600 nm wavelengths which is predicted to drive waves in the proper KEEN wave excitation band.^1 A Raman cell was developed and fielded on the TRIDENT Laser to convert a 527 nm laser beam to 600 or 697 nm as needed via first or second Stokes emission in N2 gas. Using two beams at these wavelengths, KEEN waves were driven and detected with 263 nm Thomson scattering in a Nitrogen plus Hydrogen gas jet plasma. This presentation will cover experimental conditions and diagnostic attributes associated with the detection of KEEN waves. **Supported by DOE Academic Alliance Grant DE-FG03-03NA00059 and LANL ^1Afeyan et al., Optical Mixing Generated KEEN Waves, IFSA Conference Proceedings, 2003; Invited paper at this conference and to be published. ^2Montgomery et al., PRL 87, 155001 (2001)

  13. Fundamental investigation on electrostatic travelling-wave transport of a liquid drop

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki; Hayashi, Satoshi

    2006-01-01

    Basic research has been carried out on the transport of a liquid drop and a soft body in an electrostatic travelling field. A conveyer consisting of parallel electrodes was constructed and a four-phase electrostatic travelling wave was applied to the electrodes to transport the drop on the conveyer. The following were clarified by the experiment. (1) Drops and soft bodies can be transported by virtue of the travelling wave in an insulative liquid that is insoluble to the drop, because the drop was charged on the conveyer by friction and driven by the Coulomb force. (2) A drop that covered less than three arrays of the parallel electrode can be transported in the travelling wave field. (3) A threshold voltage exists for the transport. (4) Although the transport was possible not only for insulative but also for conductive drops, the insulative drop can be transported efficiently. (5) The modes of transport can be classified into three categories, namely, a synchronous region where the motion of the liquid drop is in synchrony with the travelling wave, a delayed response regime, and a regime where transport does not occur. (6) Mixing of drops for a chemical reaction was demonstrated on the conveyer with scroll electrodes. A simple model was proposed to simulate the dynamics of the drop in the electrostatic travelling field

  14. High power millimeter-wave free electron laser based on recirculating electrostatic accelerator

    International Nuclear Information System (INIS)

    Lee, Byung-Cheol; Kim, Sun-Kook; Jeong, Young-Uk; Cho, Sung-Oh; Lee, Jongmin

    1995-01-01

    Progress in the development of a high power, millimeter-wave free electron laser driven by a recirculating electrostatic accelerator is reported. The energy and the current of electron beam are 430 keV and 2 A, respectively. The expected average output power is above 10 kW at the wavelength of 3-10 mm. Minimizing of the beam loss is a key issue for CW operation of the FEL with high efficiency. (author)

  15. Transport of energy and momentum due to spatial Landau damping and growth of electrostatic waves

    International Nuclear Information System (INIS)

    Lacina, J.

    1994-01-01

    It is shown that Landau damping in space (LDS), occuring for time-periodic electrostatic waves, does not lead to any deposition of energy in plasmas. A steady-state balance and a steady-state transport of energy, momentum and particles take place both for damped and growing waves. Because of the phase interference of coherent free and forced particle oscillations, the oscillatory energy of particles increases in the direction of wave propagation; the time-averaged flow of plasma kinetic energy being constant in space for these waves, the LDS must take place for a Maxwellian plasma in order to compensate for the growth of the particle oscillatory energy in space. (Author)

  16. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  17. High-power high-voltage pulse generator for supplying electrostatic precipitators of dust

    International Nuclear Information System (INIS)

    Radu, A.; Martin, D.

    1992-01-01

    The study and development of an experimental high voltage generator specialized in the supply of electrostatic precipitators are presented. The main parameters of the pulse generator are: U = -30 kV, I = 8.8 A, τ = 120μs, f r = 150 Hz. The pulse generator was tested on a laboratory electrostatic precipitator with nominal capacitance C = 25 nF, biased at -40 kV by means of a separate high voltage rectifier. The experimental results will be used for the creation of a more powerful pulse generator, a prototype for the supply of a real industrial electrostatic precipitator: U = -50 kV, I = 313 A, τ = 100μs, f r = 300 Hz, C = 100 nF. (Author)

  18. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    1997-07-01

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  19. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2016-08-15

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.

  20. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  1. Observation of High-Frequency Electrostatic Waves in the Vicinity of the Reconnection Ion Diffusion Region by the Spacecraft of the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.

  2. Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas

    Science.gov (United States)

    Arshad, K.; Poedts, S.; Lazar, M.

    2017-12-01

    The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and

  3. Apparatus and method for generating mechanical waves

    Science.gov (United States)

    Allensworth, D.L.; Chen, P.J.

    1982-10-25

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  4. Electrostatic potential generated by perpendicular neutral-beam injection to a tokamak plasma

    Science.gov (United States)

    Yamaguchi, H.; Murakami, S.

    2018-01-01

    The electrostatic potential generated by neutral-beam-injection (NBI) heating in a tokamak plasma is investigated using numerical simulations. The density distribution of the NBI fast ions in an assumed tokamak is evaluated using the GNET drift-kinetic-equation solver which is based on the Monte Carlo method. The electrostatic potential is evaluated assuming an adiabatic response of the electrons to the fast-ion density distribution in the plasma. It is found that an electrostatic potential peak is generated near the beam-injection point owing to the trapped fast ions satisfying the zero-precession condition. An analytic model expressing the expected potential except for the peak is derived and shows a good agreement with the radial distribution and linear dependence on the electron temperature predicted by the simulation within a factor of 1–2. The existence of three-dimensional electrostatic trapping may break the poloidally-closed particle orbits, and may change the spatial distribution and transport of high-Z impurity ions.

  5. A nonlocal analysis of electrostatic waves in hot inhomogeneous bounded plasmas

    International Nuclear Information System (INIS)

    Sauter, O.; Vaclavik, J.; Skiff, F.

    1989-05-01

    A second order integro-differential equation that describes electrostatic waves in a slab plasma is solved in its full form. No expansion in the smallness of the ion Larmor radius is made. The plasma may have arbitrary density and temperature profiles and is immersed in a non-uniform field. Only small magnetic field gradients, Maxwellian equilibrium distribution functions, and k y = 0 are assumed. First the integral equation is derived in Fourier space using the linearized Vlasov and Poisson equations, then it is transformed back into real space, which enables us to treat the case of bounded plasmas. The two boundary conditions specified simulate an antenna at one end of the plasma and wave-reflecting walls. Solutions having wavelengths smaller than the ion Larmor radius have been found. Comparison with experiments where ion Bernstein waves are launched in argon and barium plasmas shows very good agreement with the solution of our code SEAL. We also derive and compute a positive-definite formula for the local power absorption. (author) 15 figs., 21 refs

  6. Mapping Electrostatic Solitary Wave Activity in the Bursty Bulk Flow Braking Region

    Science.gov (United States)

    Hansel, P. J.; Wilder, F. D.; Malaspina, D.; Ergun, R.; Holmes, J.; Ahmadi, N.; Goodrich, K.; Burch, J.; Torbert, R. B.; Giles, B. L.; Fuselier, S. A.; Russell, C. T.; Strangeway, R. J.; Lindqvist, P. A.; Khotyaintsev, Y. V.

    2017-12-01

    Electrostatic solitary waves (ESWs) are plasma structures generally defined by their uniquely bipolar electric fields and propagation parallel to the local magnetic field at approximately the electron thermal velocity. Formation mechanisms for ESWs in the magnetotail have been studied extensively in the past, and are associated with the braking and diversion of bursty bulk flows (BBFs) arising from reconnection at the distant tail region X-line (>25 Re). However, the brief timescales over which ESWs occur (braking region. Proton bulk velocities from the Hot Plasma Composition Analyzer (HPCA) appear to agree with these results. Preliminary analysis additionally shows an unexpectedly high ESW occurrence rate on the dawn side, for which the mechanism is less well-understood.

  7. Protective, Modular Wave Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  8. An axisymmetric inertia-gravity wave generator

    Science.gov (United States)

    Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.

    2017-10-01

    There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.

  9. Surface wave generation due to glacier calving

    Directory of Open Access Journals (Sweden)

    Stanisław R. Massel

    2013-02-01

    Full Text Available Coastal glaciers reach the ocean in a spectacular process called "calving". Immediately after calving, the impulsive surface waves are generated, sometimes of large height. These waves are particularly dangerous for vessels sailing close to the glacier fronts. The paper presents a theoretical model of surface wave generation due to glacier calving. To explain the wave generation process, four case studies of ice blocks falling into water are discussed: a cylindrical ice block of small thickness impacting on water, an ice column sliding into water without impact, a large ice block falling on to water with a pressure impulse, and an ice column becoming detached from the glacier wall and falling on to the sea surface. These case studies encompass simplified, selected modes of the glacier calving, which can be treated in a theoretical way. Example calculations illustrate the predicted time series of surface elevations for each mode of glacier calving.

  10. Stochastic plasma heating by electrostatic waves: a comparison between a particle-in-cell simulation and a laboratory experiment

    International Nuclear Information System (INIS)

    Fivaz, M.; Fasoli, A.; Appert, K.; Trans, T.M.; Tran, M.Q.; Skiff, F.

    1993-08-01

    Dynamical chaos is produced by the interaction between plasma particles and two electrostatic waves. Experiments performed in a linear magnetized plasma and a 1D particle-in-cell simulation agree qualitatively: above a threshold wave amplitude, ion stochastic diffusion and heating occur on a fast time scale. Self-consistency appears to limit the extent of the heating process. (author) 5 figs., 18 refs

  11. Electrostatic shock waves in the laboratory and astrophysics: similarities and differences

    Science.gov (United States)

    Dieckmann, M. E.; Doria, D.; Sarri, G.; Romagnani, L.; Ahmed, H.; Folini, D.; Walder, R.; Bret, A.; Borghesi, M.

    2018-01-01

    Contemporary lasers allow us to create shocks in the laboratory that propagate at a speed that matches that of energetic astrophysical shocks like those that ensheath supernova blast shells. The rapid growth time of the shocks and the spatio-temporal resolution, with which they can be sampled, allow us to identify the processes that are involved in their formation and evolution. Some laser-generated unmagnetized shocks are mediated by collective electrostatic forces and effects caused by binary collisions between particles can be neglected. Hydrodynamic models, which are valid for many large-scale astrophysical shocks, assume that collisions enforce a local thermodynamic equilibrium in the medium; laser-generated shocks are thus not always representative for astrophysical shocks. Laboratory studies of shocks can improve the understanding of their astrophysical counterparts if we can identify processes that affect electrostatic shocks and hydrodynamic shocks alike. An example is the nonlinear thin-shell instability (NTSI). We show that the NTSI destabilises collisionless and collisional shocks by the same physical mechanism.

  12. About of the Electrostatic fields excitation theory by a RF wave in a plasma

    International Nuclear Information System (INIS)

    Gutierrez T, C.R.

    1991-01-01

    In an unidimensional model is shown in the cases of a semi limited plasma and a layer of plasma the excitement mechanism of electrostatic fields for a radiofrequency wave (RF) polarized lineally. This phenomenon depends strongly on the combined action of the Miller force and that of impulsion. It is shown that the action of these forces is carried out in different characteristic times when the front of wave crosses through the plasma. The cases of a semi limited plasma and of a layer of plasma without and with current are analyzed. It is shown that near the frontiers of the plasma where the field is sufficiently big arise oscillations of the width of the field that are slowly muffled in the space in an exponential way. In the cases of a plasma layer its are shown that the processes that arise near the frontier x = L are similar to the processes that arise near the frontier x = 0. The existence of current in the plasma layer leads to the blockade of the excited perturbations in the frontier x = L. (Author)

  13. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  14. Intersecting circuits generate precisely patterned retinal waves.

    Science.gov (United States)

    Akrouh, Alejandro; Kerschensteiner, Daniel

    2013-07-24

    The developing retina generates spontaneous glutamatergic (stage III) waves of activity that sequentially recruit neighboring ganglion cells with opposite light responses (ON and OFF RGCs). This activity pattern is thought to help establish parallel ON and OFF pathways in downstream visual areas. The circuits that produce stage III waves and desynchronize ON and OFF RGC firing remain obscure. Using dual patch-clamp recordings, we find that ON and OFF RGCs receive sequential excitatory input from ON and OFF cone bipolar cells (CBCs), respectively. This input sequence is generated by crossover circuits, in which ON CBCs control glutamate release from OFF CBCs via diffusely stratified inhibitory amacrine cells. In addition, neighboring ON CBCs communicate directly and indirectly through lateral glutamatergic transmission and gap junctions, both of which are required for wave initiation and propagation. Thus, intersecting lateral excitatory and vertical inhibitory circuits give rise to precisely patterned stage III retinal waves. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Theory of sheared flow generation by applied radio frequency waves

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    1999-01-01

    The possibility of employing rf to generate sheared flows in the edge plasma is of great interest as a means of accessing improved regimes of tokamak confinement. Here, we develop an electromagnetic nonlinear eikonal theory (with k perpendicular ρ∼1 and k/k unrestricted) of the rf force terms which drive poloidal flow. Various cancellations, e.g., amongst parts of the electromagnetic and Reynolds stress terms, are exhibited analytically. At the heart of our calculation is the derivation of the nonlinear kinetic pressure tensor Π. A general expression for Π is obtained in terms of simple moments of the linear distribution function. In the electrostatic limit, the resulting nonlinear forces are expressible entirely in terms of the linear dielectric susceptibility tensor χ. Application to the ion Bernstein wave case, with retention of all Bessel function sums, is presented. Comparison is made to simpler approximate calculations

  16. Topographic Rossby Waves Generated by Tropical Cyclones

    Science.gov (United States)

    Dukhovskoy, D. S.; Morey, S. L.

    2013-05-01

    Analytical and numerical studies suggest that given appropriate slope, the ocean responds to a tropical storm with low-frequency motions trapped over a continental slope, the Coastal Trapped Waves. The presented study is focused on Topographic Rossby Waves (TRW), sub-inertial oscillations propagating over a sloping bottom. Generation and propagation of TRW under barotropic (Continental Shelf Waves or Shelf Waves) and baroclinic (Bottom Trapped Waves) approximations are discussed. A real-case model study of a storm surge in Apalachee Bay, northeastern Gulf of Mexico during Hurricane Dennis (July, 2005) is presented to demonstrate the role of the shelf waves in coastal inundation. The presentation also discusses excitation of baroclinic bottom-intensified wave motions on the continental slope by a tropical cyclone. An idealized model experiment demonstrates that a continental shelf that (1) responds to a storm as a baroclinic ocean and (2) has a slope steep enough to dominate the planetary β-effect (but small enough to prevent internal Kelvin-type modes) can support baroclinic topographic waves.

  17. Pitch-angle diffusion coefficients from resonant interactions with electrostatic electron cyclotron harmonic waves in planetary magnetospheres

    Directory of Open Access Journals (Sweden)

    A. K. Tripathi

    2011-02-01

    Full Text Available Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH waves in the magnetospheres of Earth, Jupiter, Saturn, Uranus and Neptune. Calculations have been performed at two radial distances of each planet. It is found that observed wave electric field amplitudes in the magnetospheres of Earth and Jupiter are sufficient to put electrons on strong diffusion in the energy range of less than 100 eV. However, for Saturn, Uranus and Neptune, the observed ECH wave amplitude are insufficient to put electrons on strong diffusion at any radial distance.

  18. Current generation by the Kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S.

    1987-01-01

    The current generated and the efficiency of the shear Kinetic Alfven wave are obtained using a self-consistent quasilinear formulation. Also, the current generation by the monochromatic shear Kinetic Alfven wave introduced by Hasegawa is re-examined taking into account the nonresonant electrons. To obtain the RF current density at the level of the ohmic heating current density in a tokamak, the required external magnetic field is smaller than 0.1% of the DC magnetic field, and the parallel electric field (E 2 ), using the Lausanne-TCA-Tokamak parameters is of the order of 0.01 V cm -1 . (author) [pt

  19. Manual for wave generation and analysis

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller

    This Manual is for the included wave generation and analysis software and graphical user interface. The package is made for Matlab and is meant for educational purposes. The code is free to use under the GNU Public License (GPL). It is still in development and should be considered as such. If you...

  20. 'Generations' and 'waves' in Nordic Feminism

    DEFF Research Database (Denmark)

    Stormhøj, Christel; Halsaa, Beatrice; Stoltz, Pauline

    This paper explores whether the concept of generations of feminisms is meaningful in relation to the development of Nordic feminist activism since the 1980s. The paper critically discusses the notions of “generation of feminisms” and “waves of feminism” as theoretical, descriptive and normative c...... (and some men). Examining the issue of generations of feminisms, we will look into empirical dimensions, such as type and strategy of mobilization, problem-representation and causes producing social bads, demands and strategies, goals and aims.......This paper explores whether the concept of generations of feminisms is meaningful in relation to the development of Nordic feminist activism since the 1980s. The paper critically discusses the notions of “generation of feminisms” and “waves of feminism” as theoretical, descriptive and normative...... constructs in feminist theory (Evans 2015, Nielsen 1991, Walby 2011); their interrelations and their usefulness as frameworks for understanding changes and continuities, conflicts and consensus in Nordic feminist activism. We explore the contradictory claims that third wave feminism alludes to a generational...

  1. Electrostatic instabilities and nonlinear structures of low-frequency waves in nonuniform electron-positron-ion plasmas with shear flow

    International Nuclear Information System (INIS)

    Mirza, Arshad M.; Hasan, Asma; Azeem, M.; Saleem, H.

    2003-01-01

    It is found that the low-frequency ion acoustic and electrostatic drift waves can become unstable in uniform electron-ion and electron-positron-ion plasmas due to the ion shear flow. In a collisional plasma a drift-dissipative instability can also take place. In the presence of collisions the temporal behavior of nonlinear drift-dissipative mode can be represented in the form of well-known Lorenz and Stenflo type equations that admit chaotic trajectories. On the other hand, a quasi-stationary solution of the mode coupling equations can be represented in the form of monopolar vortex. The results of the present investigation can be helpful in understanding electrostatic turbulence and wave phenomena in laboratory and astrophysical plasmas

  2. Electrostatic Energy Harvesting Circuit with DC-DC Convertor for Vibration Power Generation System

    Science.gov (United States)

    Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F.

    2016-11-01

    This paper presents an interface circuit with power control features for electrostatic vibration energy harvesting. A DC-DC convertor is used to control the output voltage of a diode-based charge pump circuit. Therefore, the maximum and minimum voltage across the variable capacitor of the energy harvester may be adjusted to track the maximum power point of the system. The power conversion function of the DC-DC convertor depends on the switches configuration. An example of Maximum Power Point Tracking (MPPT) for different conversion function is presented in this paper. Simulation results show that at least 10 μW is generated.

  3. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  4. Water waves generated by impulsively moving obstacle

    Science.gov (United States)

    Makarenko, Nikolay; Kostikov, Vasily

    2017-04-01

    There are several mechanisms of tsunami-type wave formation such as piston displacement of the ocean floor due to a submarine earthquake, landslides, etc. We consider simplified mathematical formulation which involves non-stationary Euler equations of infinitely deep ideal fluid with submerged compact wave-maker. We apply semi-analytical method [1] based on the reduction of fully nonlinear water wave problem to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Recently, small-time asymptotic solutions were constructed by this method for submerged piston modeled by thin elliptic cylinder which starts with constant acceleration from rest [2,3]. By that, the leading-order solution terms describe several regimes of non-stationary free surface flow such as formation of inertial fluid layer, splash jets and diverging waves over the obstacle. Now we construct asymptotic solution taking into account higher-order nonlinear terms in the case of submerged circular cylinder. The role of non-linearity in the formation mechanism of surface waves is clarified in comparison with linear approximations. This work was supported by RFBR (grant No 15-01-03942). References [1] Makarenko N.I. Nonlinear interaction of submerged cylinder with free surface, JOMAE Trans. ASME, 2003, 125(1), 75-78. [2] Makarenko N.I., Kostikov V.K. Unsteady motion of an elliptic cylinder under a free surface, J. Appl. Mech. Techn. Phys., 2013, 54(3), 367-376. [3] Makarenko N.I., Kostikov V.K. Non-linear water waves generated by impulsive motion of submerged obstacle, NHESS, 2014, 14(4), 751-756.

  5. Nonlinear electrostatic ion cyclotron waves in an rf-plugged inhomogeneous plasma slab

    International Nuclear Information System (INIS)

    Ikemura, Tsutomu.

    1977-01-01

    A theory based on the fluid and perturbation theories is developed to analytically study a nonlinear electrostatic ion cyclotron wave excited in an rf-plugged inhomogeneous plasma slab by applying a pair of external potentials phi sub(ext)(x,z) = +-PHI 0 cos ω 0 t.exp(-z 2 /2h 2 ) at its boundaries x = +-L. Here, B 0 is applied along the z-axis. The potential forms of the fundamental and the nonlinear second harmonic are found as functions of x, z and t provided the field-free densities vary as exp(-x 2 /2d 2 )(d 2 /h 2 0 ) created by the fundamental potential can approximately be regarded as a dipole field, provided that /1-μ/ 0 2 -ω sub(cl)sup(2))m sub(i)d 2 /(γ sub(i)T sub(i)+Z γ sub(e)T sub(e)). Under the stricter condition μ asymptotically equals 1, a dipole-like electric field can also be excited in the entire region for the case of high density and weak nonlinearity. It is shown that the assumption ω 0 -1 √ γ sub(e)T sub(e)/m sub(e) can lead to the Boltzmann relation for the electron fluid even in inhomogeneous plasmas. Moreover, the density depletion delta N sub(i) obtained here contains a new considerable term proportional to /phi/ 2 , in addition to the usual term proportional to -/delta phi/delta x/ 2 which originates from the ponderomotive force. (auth.)

  6. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  7. A method for generating highly nonlinear periodic waves in physical wave basins

    DEFF Research Database (Denmark)

    Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.

    2006-01-01

    This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the method...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....

  8. Observations of Large-Amplitude, Parallel, Electrostatic Waves Associated with the Kelvin-Helmholtz Instability by the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Newman, D. L.; Eriksson, S.; Stawarz, J. E.; Goldman, M. V.; Goodrich, K. A.; Gershman, D. J.; Malaspina, D.; hide

    2016-01-01

    On 8 September 2015, the four Magnetospheric Multiscale spacecraft encountered a Kelvin-Helmholtz unstable magnetopause near the dusk flank. The spacecraft observed periodic compressed current sheets, between which the plasma was turbulent. We present observations of large-amplitude (up to 100 mVm) oscillations in the electric field. Because these oscillations are purely parallel to the background magnetic field, electrostatic, and below the ion plasma frequency, they are likely to be ion acoustic-like waves. These waves are observed in a turbulent plasma where multiple particle populations are intermittently mixed, including cold electrons with energies less than 10 eV. Stability analysis suggests a cold electron component is necessary for wave growth.

  9. Radiation safety guides for the Inshas electrostatic generator under proton acceleration

    International Nuclear Information System (INIS)

    Eid, A.M.; Morsy, S.M.

    1980-01-01

    The photon dose distribution along the beam direction of the 2.5 MeV electrostatic generator of the Nuclear Physics Department, AEE of Egypt has been measured by different type of detectors. The experiments were carried out under different machine operating conditions while the (p,α) reaction on a Co 59 target takes place. In this case, detectors of high sensitivity and known energy dependence are required to measure only one sort of radiation (photons). The detectors were located at sites where personnel might possibly be exposed to an adverse amount of radiation. The results affored, give useful estimate of the photon dose distribution at the different Van De Graaff areas. (author)

  10. Multi-parameter optimization of electrostatic micro-generators using design optimization algorithms

    International Nuclear Information System (INIS)

    Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2010-01-01

    In this paper, the design of an electrostatic micro-generator with an in-plane area-overlap architecture is optimized in a six-dimensional parameter space using multi-parameter optimization algorithms. A parametric model is presented including four geometric and two electrical parameters. The constraints of the design parameters are discussed. The design optimization is carried out in modeFRONTIER using a genetic algorithm. The results show that the displacement limit and the number of electrode elements are essential parameters, which require optimization in the design process. The other parameters take values at the upper or lower bound of their design space. The results also demonstrate that a maximized power output will not be achieved by maximizing the capacitance change per unit displacement

  11. On-Line Generation of 3D-Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    1992-01-01

    The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg.......The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg....

  12. Initial commissioning of the HV electrostatic generator for the Vivitron project

    International Nuclear Information System (INIS)

    Helleboid, J.M.

    1993-01-01

    Soon after the complete assembly of the Vivitron as an electrostatic generator at the end of October 1990, initial commissioning began. Voltage tests were carried out at 7 bar SF 6 from December 1990 to March 1991. An intermediate level of 17.6 MV was reached but with high parasitic currents from the rollers in the dead sections and with flashovers along the column and related damage to the insulating plates. A high level of humidity, which was diagnosed at a later stage, was the cause of those difficulties. In addition, major problems connected with the gas handling system stopped the tests for the rest of the year and up to the end of March 1992 when the generator was made ready for tests after carrying out repairs and cleaning which were completed by the end of January and then implementing some improvements and reassembly. A very encouraging level of 18.9 MV at 4 bar half pressure was reached in April, but this has not been reproduced since then due to various problems and damage from sparking. (orig.)

  13. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2013-01-01

    Full Text Available Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by series expansions in terms of solutions of the Laplace function. Based on this model, the electrostatic adhesion force was calculated using the Maxwell stress tensor formulation. Several important factors which may influence the electrostatic adhesion force were analysed and discussed by both FEM simulation and theoretical calculation. In addition, experiments on the adhesion performance of the electrode panel and the climbing performance of the robot on various wall materials were carried out. Both the simulation and experiment results verify the feasibility of electrostatic adhesion technology being applied on wall climbing robots. The theoretical model and calculation method for the electrostatic adhesion force proposed in this paper are also justified.

  14. Solitary Wave Generation from Constant Continuous Wave in Asymmetric Oppositely Directed Waveguide Coupler

    Directory of Open Access Journals (Sweden)

    Kazantseva E.V.

    2015-01-01

    Full Text Available In a model which describes asymmetric oppositely directed nonlinear coupler it was observed in numerical simulations a phenomenon of solitary wave generation from the input constant continuous wave set at the entrance of a waveguide with negative refraction. The period of solitary wave formation decreases with increase of the continuum wave amplitude.

  15. Rogue waves generated through quantum chaos

    KAUST Repository

    Liu, Changxu

    2013-05-01

    Rouge waves, or freak waves, are extreme events that manifest themselves with the formation of waves with giant amplitude. One of the distinctive features of their appearance is an anomalous amplitude probability distribution, which shows significant deviations from the classical Rayleigh statistics [1]. Initially observed in the context of oceanography, rogue waves have been extensively studied in Optics where their observation has been reported in nonlinear optical fibers [2] and laser systems [3]. © 2013 IEEE.

  16. Generation of Modified Sinusoidal Waves Using Operational ...

    African Journals Online (AJOL)

    The production of modified sinusoidal waves is currently a field of active research even in already developed countries as it combines the ease of production associated with square waves and avoids the low energy efficiency associated with true sinusoidal waves. This paper discusses the production of Modified Sinusoidal ...

  17. Generation and Analysis of Random Waves

    DEFF Research Database (Denmark)

    Liu, Zhou; Frigaard, Peter

    Sea waves are the most important phenomenon to be considered in the design of coastal and offshore structures. It should be stressed that, even though all contents in the book are related to sea waves, they have a broader application in practice. For example, the extreme theory has also been......-requirement for the book is the knowledge of linear wave theory....

  18. Stochastic generation of continuous wave spectra

    DEFF Research Database (Denmark)

    Trulsen, J.; Dysthe, K. B.; Pécseli, Hans

    1983-01-01

    Wave packets of electromagnetic or Langmuir waves trapped in a well between oscillating reflectors are considered. An equation for the temporal evolution of the probability distribution for the carrier wave number is derived, and solved analytically in terms of moments in the limits of long...

  19. Numerically generated black-hole spacetimes: Interaction with gravitational waves

    International Nuclear Information System (INIS)

    Abrahams, A.; Bernstein, D.; Hobill, D.; Seidel, E.; Smarr, L.

    1992-01-01

    In this paper we present results from a new two-dimensional numerical relativity code used to study the interaction of gravitational waves with a black hole. The initial data correspond to a single black hole superimposed with time-symmetric gravitational waves (Brill waves). A gauge-invariant method is presented for extracting the gravitational waves from the numerically generated spacetime. We show that the interaction between the gravitational wave and the black hole excites the quasinormal modes of the black hole. An extensive comparison of these results is made to black-hole perturbation theory. For low-amplitude initial gravitational waves, we find excellent agreement between the theoretically predicted scrl=2 and scrl=4 wave forms and the wave forms generated by the code. Additionally, a code test is performed wherein the propagation of the wave on the black-hole background is compared to the evolution predicted by perturbation theory

  20. Heat wave generates questions about Ontario's generation capacity

    International Nuclear Information System (INIS)

    Horne, D.

    2005-01-01

    Concerns regarding Ontario's power generation capacity were raised following a major blackout which occurred in August 2003. Power demand reached 26,170 MW during the weeks leading to the blackout, forcing the Independent Electricity System Operator (IESO) to ask residents to reduce electricity use during the day. The grid operator had also issued a forecast that Toronto could face rolling blackouts during times of heavy power demand. Ontario power consumption records were set in June and July of 2003 due to a heat wave, with hourly demand exceeding 25,000 MW on 53 occasions. Ontario was forced to import up to 3,400 MW (13 per cent of its power needs) from neighbouring provinces and the United States. During that period, the price of power had risen sharply to over 30 cents a kilowatt hour, although household consumers were still charged in the 5 to 10 cent range per kilowatt hour. However, it was noted that taxpayers will eventually bear the cost of importing power. The IESO noted that importing electricity is cheaper than the generation available in Ontario and that it is more economical to import, based on the market clearing price of all generators. In 2004, the IESO purchased 6 per cent of their electricity from the United States. That figure is expected to increase for 2005. Ontario generators produced 26.9 million MWh more in the summer of 2005 than during the same period in 2004 to meet electricity demand levels. It was noted that although importing power presently meets peak demand, the IESO agrees there is a need for new generation within Ontario. In addition to restarting Ontario's Pickering and Bruce nuclear facilities, more than 3,300 MW of new gas-fired generation is under construction or approved, and more than 9,000 MW are in various stages of approval. This paper discussed the effect of high energy costs on industry and Ontario's ability to meet future electricity demand in comparison to neighbouring jurisdictions. Issues regarding grid maintenance

  1. Directional Spectral Wave Generator Basin Response to Monochromatic Waves.

    Science.gov (United States)

    1987-04-01

    harmonic BHW to the fundamental wave. In the process, an FHW is liberated which dis- torts the wave profile as described above (Sand and Mansard 1985...and partly con- verted to FIW waves ( Mansard , Sand, and Funke 1985). 28. Energy can be diffracted from the ends of a wavemaker that is not sealed at...and Applica- tion," Journal of Hydraulic Research, Vol 12, No. 2, pp 205-222. Mansard , E. P. D., Sand, S. E., and Funke, E. R. 1985. "Reflection

  2. An innovative approach for energy generation from waves

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habaibeh, A. [Advanced Design and Manufacturing Engineering Centre, School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); Su, D. [School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); McCague, J. [Technical Director, Ocean Navitas Ltd., Lincolnshire (United Kingdom); Knight, A. [Marketing and Communications Manager, Ocean Navitas Ltd., Lincolnshire (United Kingdom)

    2010-08-15

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a {+-}0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves. (author)

  3. An innovative approach for energy generation from waves

    International Nuclear Information System (INIS)

    Al-Habaibeh, A.; Su, D.; McCague, J.; Knight, A.

    2010-01-01

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a ±0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves.

  4. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  5. Electrostatic ion cyclotron waves and ion energy diffusion in a mirror machine. [2XIIb machine

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.C.

    1977-08-01

    Measurements of ion cyclotron fluctuations and ion energy diffusion in the neutral beam injected 2XIIB mirror machine are presented. A narrow band single mode spectrum is always observed. When the plasma is de-stabilized by turning off axially injected streaming plasma, the wave amplitude increases and a simultaneous increase in ion-energy diffusion is observed. The spectral properties of the wave do not change. The data are in accord with a wave particle saturation of the drift cyclotron loss cone (DCLC) mode.

  6. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  7. Exact generator coordinate wave functions for some simple Hamiltonians

    International Nuclear Information System (INIS)

    Ullah, Nazakat

    1988-01-01

    A Gaussian form of the generator coordinate wave function is used to find the exact weight function for the ground state of H-atom using HWG integral equation. Exact pairs of GC wave functions and weight functions are then constructed for other simple Hamiltonians using a simple integral which converts an exponential into a Gaussian. A discussion as to how a GC wave function can be used as a trial variational wave function is also presented. (author). 10 refs

  8. Kelvin-Helmholtz wave generation beneath hovercraft skirts

    Science.gov (United States)

    Sullivan, P. A.; Walsh, C.; Hinchey, M. J.

    1993-05-01

    When a hovercraft is hovering over water, the air flow beneath its skirts can interact with the water surface and generate waves. These, in turn, can cause the hovercraft to undergo violent self-excited heave motions. This note shows that the wave generation is due to the classical Kelvin-Helmholtz mechanism where, beyond a certain air flow rate, small waves at the air water interface extract energy from the air stream and grow.

  9. Beat-wave generation of plasmons in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-08-01

    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap seimconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas

  10. Beat-wave generation of plasmons in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-08-01

    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductor (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas. (author). 7 refs

  11. Dispersive waves in fs cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2009-01-01

    Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....

  12. Laboratory study of peculiarities of the freak-wave generation

    Science.gov (United States)

    Rodin, Artem; Tyugin, Dmitry; Kurkin, Andrey; Kurkina, Oxana; Didenkulova, Ira

    2017-04-01

    A new wave tank for wave measurements in experimental conditions is installed in the year of 2015 in the Nizhny Novgorod State Technical University n.a. R.E. Alekseev, which is now beginning to run. In recent study series of experiments were conducted in order to reproduce analytic solutions of approximate theories in the case of strong nonlinearity. In particular experimental work is aiming to test methods of extreme wave forecasting on the background of the irregular wave field. The statistics of rogue wave heights is studied together with the statistics of rogue wave crests and rogue wave troughs. The full length of the wave tank is 7 meters, which includes the size of the working area of 6.5 m and the rest occupies the hinged-type wavemaker. Width of the wave tank is 0.5 m and height is 1 m. The wavemaker has the amplitude in the range of 0-15 degrees and frequency in the range of 0.1 - 10 Hz. The wave tank set up contains also the basic instrumentation and video fixation system including a high-speed camera. The height of waves generated during strongly nonlinear regimes is comparable to the unperturbed depth of the water in the wave tank. In order to prevent the wave reflection from the walls laboratory facility is equipped with an effective removable louvered wave absorber, mounted on opposite end of the wave tank. Construction of wave absorber has adjustable height and tilt in order to select the most effective way of wave absorption. With this equipment conditions for different wave modes can be arranged: breaking waves, full absorbtion, as well as partial reflection that corresponds to different modes of wave field in the coastal zone. The research was supported within the framework of the Russian Science Foundation grant Nr 16-17-00041.

  13. Studies on Laser Generated Ultrasonic Waves in Inconel Super Alloy

    International Nuclear Information System (INIS)

    Pramila, T.; Shukla, Anita; Raghuram, V.

    2010-01-01

    This paper deals with the generation, characterization and analysis of ultrasonic waves generated in a thick stepped sample of inconel super alloy using Laser Based Ultrasonic Technique. Nd-YAG pulsed laser is used for ultrasonic generation while He-Ne laser is used for heterodyne detection. Ultrasonic signals are analyzed using Fourier and wavelet transforms. Here the identification and estimation of velocity of pressure waves is presented. The mechanism of pressure wave generation is discussed in brief. Laser ultrasonics studies of inconel are being reported for the first time.

  14. Stability of electrostatic ion cyclotron waves in a multi-ion plasma

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... We find that the frequencies and growth/damping rates are dependent on the densities and temperatures of all species of ions. A detailed numerical study, for parameters relevant to comet Halley, shows that the growth rate is dependent on the magnitude of the frequency. The ion cyclotron waves are driven ...

  15. Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.

    2004-01-01

    In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...

  16. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van De Graaff Generator

    Science.gov (United States)

    Slisko, Josip; García-Molina, Rafael; Abril, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, comb, or rod as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water…

  17. Magnetic field generation by sound waves in the solar atmosphere

    International Nuclear Information System (INIS)

    Rytuov, D.D.; Ryutova, M.P.

    1989-01-01

    The authors show that sound waves which are generated in the convective zone of the Sun excite an electric current (and a magnetic field) in the transition region from the chromosphere to the corona. The excitation of the current is connected with the absorption of part of the momentum of the waves by electrons as a result of the electron thermal conductivity. When sound waves propagate in the direction of decreasing density their leading front becomes steeper. This leads to the formation of weak shock waves and - thanks to the fast energy dissipation at the front - to a stronger magnetic field generation

  18. Study on generation mechanisms of second-order nonlinear signals in surface acoustic wave devices and their suppression

    Science.gov (United States)

    Nakagawa, Ryo; Kyoya, Haruki; Shimizu, Hiroshi; Kihara, Takashi; Hashimoto, Ken-ya

    2015-07-01

    In this study, we examine the generation mechanisms of the second-order nonlinear signals in surface acoustic wave resonators/duplexers fabricated on a 42°YX-LiTaO3 substrate. It is shown that the crystal asymmetry of the substrate can generate the second-order nonlinear signals. The following two mechanisms mainly contribute to their generation: (a) self-mixing of the electrostatic field and (b) mixing of the electrostatic field with the strain field associated with laterally propagating modes. Both of them occur at the gaps between the electrode tip and the dummy electrode. In addition, an interdigital transducer design that cancels this asymmetry is proposed. The design is applied to a one-port resonator and a duplexer, and the effectiveness of this technique is demonstrated.

  19. Generation of proton aurora by magnetosonic waves.

    Science.gov (United States)

    Xiao, Fuliang; Zong, Qiugang; Wang, Yongfu; He, Zhaoguo; Su, Zhenpeng; Yang, Chang; Zhou, Qinghua

    2014-06-05

    Earth's proton aurora occurs over a broad MLT region and is produced by the precipitation of low-energy (2-10 keV) plasmasheet protons. Proton precipitation can alter chemical compositions of the atmosphere, linking solar activity with global climate variability. Previous studies proposed that electromagnetic ion cyclotron waves can resonate with protons, producing proton scattering precipitation. A long-outstanding question still remains whether there is another mechanism responsible for the proton aurora. Here, by performing satellite data analysis and diffusion equation calculations, we show that fast magnetosonic waves can produce trapped proton scattering that yields proton aurora. This provides a new insight into the mechanism of proton aurora. Furthermore, a ray-tracing study demonstrates that magnetosonic wave propagates over a broad MLT region, consistent with the global distribution of proton aurora.

  20. A new pressure wave generator for extracorporeal lithotripsy.

    Science.gov (United States)

    Marlinghaus, E H; Wess, O J; Katona, J

    1990-01-01

    A new pressure wave generator has been designed for the Storz Modulith extracorporeal lithotripter. It consists of an electromagnetic cylindrical pressure wave source and a focusing parabolic reflector. Focus size has been designed using electro-acoustic puls forming network (EA-PFN) techniques. Schlieren photographs of the pressure wave are shown. Pressure in the focus is given as a function of PFN charging voltage.

  1. Pc5 waves generated by substorm injection: a case study

    Directory of Open Access Journals (Sweden)

    N. A. Zolotukhina

    2008-07-01

    Full Text Available We analyzed the spectral-polarized characteristics of Pc5 ULF waves observed on 17 September 2000 after the 03:20:25 UT substorm onset with the satellites GOES 8 and 10 located east and west of the onset location. In the course of the event, the wave polarization changed from mixed (between toroidal and poloidal to poloidal, and then to mixed again. The hodogram of magnetic field oscillations rotated counterclockwise at GOES 8, and clockwise at GOES 10. It is suggested that the satellites detected the waves generated by the substorm injected clouds of the charged particles drifting in the magnetosphere in the opposite azimuthal directions: GOES 8 (located east of the substorm onset detected the wave generated by an electron cloud, and GOES 10 (west of the onset detected the wave generated by a positive ion cloud. This interpretation is confirmed by the energetic particles data recorded by LANL satellites.

  2. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    International Nuclear Information System (INIS)

    Chen Teng; Central Florida Univ., Orlando, FL; Elias, L.R. R.; Central Florida Univ., Orlando, FL

    1995-01-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  3. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  4. Mathematical modelling of generation and forward propagation of dispersive waves

    NARCIS (Netherlands)

    Lie She Liam, L.S.L.

    2013-01-01

    This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based

  5. Wave and tidal generation devices reliability and availability

    CERN Document Server

    Tavner, Peter John

    2017-01-01

    To some extent the wave and tidal generation industry is following in the wake of the wind industry, learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry.

  6. Generating electricity at a breakwater in a moderate wave climate

    NARCIS (Netherlands)

    Schoolderman, J.; Reedijk, B.; Vrijling, J.K.; Molenaar, W.F.; Ten Oever, E.; Zijlema, M.

    2011-01-01

    A new concept for wave energy conversion is examined as a proof of concept for generating electricity in a moderate wave climate while being integrated in a caisson breakwater. Physical model testing is performed to analyse the preliminary efficiency of the device and to identify areas of

  7. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  8. Non-inductive electric current generation with the Alfven waves

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1988-01-01

    Non-inductive current generation by means of radio frequency waves is studied using one-dimensional (1D) quasilinear equations. The main results obtained in this thesis are the general expressions for the current generated, for the efficiency of current generation and for the critical power - the lowest power required for current saturation. (M.W.O.) [pt

  9. The generation of a Tollmien-Schlichting wave by a sound wave

    International Nuclear Information System (INIS)

    Murdock, J.W.

    1980-01-01

    A spectral numerical method is used to study the two-dimensional unsteady flow over a flat plate in the presence of a plane sound wave propagating parallel to the flow. For s = ωx/Uinfinite > 0(1), no observable interaction or energy interchange between the sound wave and the Tollmien-Schlichting wave is present. In the region s 2 infinite = 56 x 10 -6 generates a Tollmien-Schlichting wave of the same frequency and an amplitude at the first neutral point 10 -4 times the sound-wave amplitude. (orig.)

  10. Nonlinear mechanism of tsunami wave generation by atmospheric disturbances

    OpenAIRE

    Pelinovsky, E.; Talipova, T.; Kurkin, A.; Kharif, C.

    2001-01-01

    The problem of tsunami wave generation by variable meteo-conditions is discussed. The simplified linear and nonlinear shallow water models are derived, and their analytical solutions for a basin of constant depth are discussed. The shallow-water model describes well the properties of the generated tsunami waves for all regimes, except the resonance case. The nonlinear-dispersive model based on the forced Korteweg-de Vries equation ...

  11. Air-borne sound generated by sea waves.

    Science.gov (United States)

    Bolin, Karl; Åbom, Mats

    2010-05-01

    This paper describes a semi-empiric model and measurements of air-borne sound generated by breaking sea waves. Measurements have been performed at the Baltic Sea. Shores with different slopes and sediment types have been investigated. Results showed that the sound pressure level increased from 60 dB at 0.4 m wave height to 78 dB at 2.0 m wave height. The 1/3 octave spectrum was dependent on the surf type. A scaling model based on the dissipated wave power and a surf similarity parameter is proposed and compared to measurements. The predictions show satisfactory agreement to the measurements.

  12. Generation of intermittent gravitocapillary waves via parametric forcing

    Science.gov (United States)

    Castillo, Gustavo; Falcón, Claudio

    2018-04-01

    We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.

  13. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van de Graaff Generator

    OpenAIRE

    Slisko, Josip; García Molina, Rafael; Abril Sánchez, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, 1–3 comb, 4–6 or rod 7–9 as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water surface. That being so, we were quite surprised when we discovered that a 19th-century French book 10 contained a drawing showing an ap...

  14. Observations of intense velocity shear and associated electrostatic waves near an auroral arc

    International Nuclear Information System (INIS)

    Kelley, M.C.; Carlson, C.W.

    1977-01-01

    An intense shear in plasma flow velocity of magnitude 20 (m/s)m -1 has been detected at the edge of an auroral arc. The region of shear appears to display structure with two characteristic scale sizes. The larger structures were of the order of a few kilometers in size and were identified by a deviation of the direction of the charge sheets crossed by the rocket from a direction parallel to the visible arc. As is shown in the companion paper (Carlson and Kelley, 1977), the average (undisturbed) charge sheet was parallel to the arc. These observations are consistent with television studies which often display such structures propagating along the edges of auroral forms. Additional intense irregularities were detected with characteristic wavelengths smaller than the scale size of the shear. The irregularities are discussed in light of the branches of a velocity shear driven instability suggested by several workers: the Kelvin-Helmholtz instability operating at the longest wavelengths and the drift shear instability at the shorter. Neither mode has wavelengths as short as those observed however. A velocity shear mechanism operating at wavelengths short in comparison with the shear scale length, such as those observed here, would be of significant geophysical importance. For example, it could be responsible for production of high-latitude irregularities which exist throughout the polar cap and for the short-wavelength waves responsible for intense 3-m backscatter during equatorial spread F conditions. Since the wavelengths produced by the short-wavelength mode are in the range of typical auroral E region radars, such data must be carefully checked for F region contamination

  15. Generation of Caustics and Rogue Waves from Nonlinear Instability.

    Science.gov (United States)

    Safari, Akbar; Fickler, Robert; Padgett, Miles J; Boyd, Robert W

    2017-11-17

    Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.

  16. Conjugate ionospheric signatures of tsunami-generated gravity waves

    Science.gov (United States)

    Makela, J. J.; Grawe, M.; Coisson, P.; Lognonne, P. H.

    2015-12-01

    Over the past decade, it has been shown that gravity waves generated by earthquakes and tsunamis can reach the upper atmosphere, where they can have a measureable effect on the ionosphere. Observations made with networks of Global Positioning System (GPS) receivers as well as airglow imaging systems have been used to study the properties of these waves through the signatures they leave in the electron density and airglow layers, respectively. Using the Naval Research Laboratory first-principles model, SAMI3, coupled to a model of the tsunami-generated gravity waves, it has been suggested that in addition to generating perturbations in the ionospheric electron density, the neutral winds associated with the gravity waves should produce perturbations in the electric field. These electric field perturbations would map along the Earth's magnetic field where they would drive disturbances in the ionosphere, generating a signature in the conjugate hemisphere. We present GPS-derived total electron content data from several tsunami events demonstrating that this effect is, indeed, measurable. Being able to observe the effects of tsunami-generated gravity waves in the conjugate hemisphere increases the number of observations that can be used to study this ion-neutral coupling phenomenon.

  17. Oscillon dynamics and rogue wave generation in Faraday surface ripples.

    Science.gov (United States)

    Xia, H; Maimbourg, T; Punzmann, H; Shats, M

    2012-09-14

    We report new experimental results which suggest that the generation of extreme wave events in the Faraday surface ripples is related to the increase in the horizontal mobility of oscillating solitons (oscillons). The analysis of the oscillon trajectories in a horizontal plane shows that at higher vertical acceleration, oscillons move chaotically, merge and form enclosed areas on the water surface. The probability of the formation of such craters, which precede large wave events, increases with the increase in horizontal mobility.

  18. LATERAL FLOODING ASSOCIATED TO WAVE FLOOD GENERATION ON RIVER SURFACE

    Directory of Open Access Journals (Sweden)

    C. Ramírez-Núñez

    2016-06-01

    Full Text Available This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico defining the successive areas where lateral flooding occurs on its downstream movement.

  19. Lateral Flooding Associated to Wave Flood Generation on River Surface

    Science.gov (United States)

    Ramírez-Núñez, C.; Parrot, J.-F.

    2016-06-01

    This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico) defining the successive areas where lateral flooding occurs on its downstream movement.

  20. Effects of explosion-generated shock waves in ducts

    International Nuclear Information System (INIS)

    Busby, M.R.; Kahn, J.E.; Belk, J.P.

    1976-01-01

    An explosion in a space causes an increase in temperature and pressure. To quantify the challenge that will be presented to essential components in a ventilation system, it is necessary to analyze the dynamics of a shock wave generated by an explosion, with attention directed to the propagation of such a wave in a duct. Using the equations of unsteady flow and shock tube theory, a theoretical model has been formulated to provide flow properties behind moving shock waves that have interacted with various changes in duct geometry. Empirical equations have been derived to calculate air pressure, temperature, Mach number, and velocity in a duct following an explosion

  1. Origin of spontaneous wave generation in an oscillatory chemical system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi-Xue; Foerster, P.; Ross, J. [Stanford Univ., CA (United States)

    1992-10-29

    The origin of spontaneously generated chemical waves in an oscillatory Belousov-Zhabotinskii reaction has been investigated by numerical calculations of the deterministic reaction-diffusion equations of a modified Oregonator model and by equilibrium stochastic calculations. From numerical calculations, we obtain threshold perturbations in the phase of oscillations and in the concentrations of HBrO{sub 2} and Br{sup {minus}} within areas of space with varying radii necessary to initiate trigger waves. Inward propagating trigger waves initiated by a phase shift in the perturbed region with respect to the bulk solution have been observed in the calculations for the first time. Perturbations smaller than the threshold perturbations or in regions with smaller radii lead to phase-diffusion waves. Our equilibrium stochastic calculations show that the recurrence time for a thermal fluctuation to induce a change in the HBrO{sub 2} concentration of sufficient magnitude within a sufficient volume for a trigger wave to propagate is many orders of magnitude larger than the observation time of traveling wave experiments. We concluded that an internal thermal fluctuation is highly unlikely to generate a trigger wave in an oscillatory chemical solution. 22 refs., 5 figs., 7 tabs.

  2. Terahertz generation by beating two Langmuir waves in a warm and collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2015-09-15

    Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.

  3. Self-Powered Random Number Generator Based on Coupled Triboelectric and Electrostatic Induction Effects at the Liquid-Dielectric Interface.

    Science.gov (United States)

    Yu, Aifang; Chen, Xiangyu; Cui, Haotian; Chen, Libo; Luo, Jianjun; Tang, Wei; Peng, Mingzeng; Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2016-12-27

    Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.

  4. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  5. Symmetry properties of second harmonics generated by antisymmetric Lamb waves

    Science.gov (United States)

    Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen

    2018-03-01

    Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.

  6. Laser generated Ge ions accelerated by additional electrostatic field for implantation technology

    Science.gov (United States)

    Rosinski, M.; Gasior, P.; Fazio, E.; Ando, L.; Giuffrida, L.; Torrisi, L.; Parys, P.; Mezzasalma, A. M.; Wolowski, J.

    2013-05-01

    The paper presents research on the optimization of the laser ion implantation method with electrostatic acceleration/deflection including numerical simulations by the means of the Opera 3D code and experimental tests at the IPPLM, Warsaw. To introduce the ablation process an Nd:YAG laser system with repetition rate of 10 Hz, pulse duration of 3.5 ns and pulse energy of 0.5 J has been applied. Ion time of flight diagnostics has been used in situ to characterize concentration and energy distribution in the obtained ion streams while the postmortem analysis of the implanted samples was conducted by the means of XRD, FTIR and Raman Spectroscopy. In the paper the predictions of the Opera 3D code are compared with the results of the ion diagnostics in the real experiment. To give the whole picture of the method, the postmortem results of the XRD, FTIR and Raman characterization techniques are discussed. Experimental results show that it is possible to achieve the development of a micrometer-sized crystalline Ge phase and/or an amorphous one only after a thermal annealing treatment.

  7. Magnetosheath electrostatic turbulence

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1979-01-01

    By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath

  8. Spiral actin-polymerization waves can generate amoeboidal cell crawling

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, A.; Aranson, I. S.; Kruse, K.

    2014-05-01

    Amoeboidal cell crawling on solid substrates is characterized by protrusions that seemingly appear randomly along the cell periphery and drive the cell forward. For many cell types, it is known that the protrusions result from polymerization of the actin cytoskeleton. However, little is known about how the formation of protrusions is triggered and whether the appearance of subsequent protrusions is coordinated. Recently, the spontaneous formation of actin-polymerization waves was observed. These waves have been proposed to orchestrate the cytoskeletal dynamics during cell crawling. Here, we study the impact of cytoskeletal polymerization waves on cell migration using a phase-field approach. In addition to directionally moving cells, we find states reminiscent of amoeboidal cell crawling. In this framework, new protrusions are seen to emerge from a nucleation process, generating spiral actin waves in the cell interior. Nucleation of new spirals does not require noise, but occurs in a state that is apparently displaying spatio-temporal chaos.

  9. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatic Potentials of Atoms, Ions and Molecules. Shridhar R Gadre and Pravin K Bhadane. 1 Part 1 - Basic Principles,. Resonance, Vol.4, No.2, 11-19,. 1999. Electrostatic Potential (ESP) generated by a chemical species is widely used as a tool for exploring its properties and locating potential sites for interaction with ...

  10. Continuous-wave laser generated jets for needle free applications

    NARCIS (Netherlands)

    Berrospe-Rodriguez, Carla; Visser, C.W.; Schlautmann, Stefan; Ramos-Garcia, Ruben; Fernandez Rivas, David

    2016-01-01

    We designed and built a microfluidic device for the generation of liquid jets produced by thermocavitation. A continuous wave (CW) laser was focused inside a micro-chamber filled with a light-absorbing solution to create a rapidly expanding vapor bubble. The chamber is connected to a micro-channel

  11. Cylindrical sound wave generated by shock-vortex interaction

    Science.gov (United States)

    Ribner, H. S.

    1985-01-01

    The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.

  12. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    Directory of Open Access Journals (Sweden)

    Hongyin Li

    2016-12-01

    Full Text Available The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 − 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  13. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex

    DEFF Research Database (Denmark)

    Dohn, A. O.; Jónsson, E. Ö.; Levi, Gianluca

    2017-01-01

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory...... and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H2O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds...

  14. Mechanisms of elastic wave generation in solids by ion impact

    International Nuclear Information System (INIS)

    Deemer, B.; Murphy, J.; Claytor, T.

    1990-01-01

    This study is directed at understanding the mechanisms of acoustic signal generation by modulated beams of energetic ions as a function of ion energy. Interaction of ions with solids initiates a range of processes including sputtering, ion implantation, ionization, both internal and external, as well as thermal deposition in the solid. Accumulated internal stress also occurs by generation of dislocations resulting from, inelastic nuclear scattering of the incident ion beam. With respect to elastic wave generation, two potential mechanisms are thermoelastic induced stress and momentum transfer. The latter process includes contributions of momentum transfer from the incident beam and from ions ejected via sputtering. Other aspects of the generation process include the potential for shock wave generation since the mean particle velocity for a wide range of ion energies exceeds the velocity of sound in solids. This study seeks to distinguish the contribution of these mechanisms by studying the signature, angular distribution and energy dependence of the elastic wave response in the time domain and to use this information to understand technologically important processes such as implantation and sputtering

  15. Laser-generated acoustic wave studies on tattoo pigment

    Science.gov (United States)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  16. Interferometric detectors of gravitational waves on Earth: the next generations

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, G [INFN Firenze - Via G.Sansone 1, 50019 - Sesto F., Firenze (Italy)], E-mail: losurdo@fi.infn.it

    2008-05-15

    First generation long-baseline interferometric detectors of gravitational waves are now taking data. A first detection might be possible with these instruments, but more sensitive detectors will be needed to start the field of gravitational wave astronomy. Second generation interferometers will improve the sensitivity by a factor ten, allowing to explore a universe volume 1000 times larger. The technology is almost ready and the construction will start at the beginning of the next decade. The community of the physicists involved in the field has also started to make plans for third generation detectors, for which a long term technology development program will be required. The plans for the upgrades of the existing detectors and the scenario for the evolution of the field will be reviewed in this paper.

  17. Effect of externally generated turbulence on wave boundary layer

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel w...... the friction coefficient. Other features related to the bed shear stress, such as transition, the friction factor and phase lead are discussed. The range of the Reynolds number studied is 10.000 - 2.000.000...

  18. Atmosphere-ionosphere coupling from convectively generated gravity waves

    Science.gov (United States)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  19. Detection of Laser Generated Ultrasonic Wave Using Michelson Interferometer

    International Nuclear Information System (INIS)

    Kim, Kyung Cho; Yamawaki, Hisashi; Jhang, Kyung Young

    2000-01-01

    In this paper, ultrasonic wave in the thermoelastic regime was generated in a steel disk by illuminating a pulse laser (Q-switched Nd:YAG) on the surface of the sample and was detected on the other side by Michelson interferometer which was stabilized by feed back control. The experimentally detected displacement waveform of the ultrasonic wave showed good agreement with the theoretically expected one. Also it was shown that sound speeds of longitudinal and shear wave were similar to ones measured by pulse-echo method using a contact transducer. As an application of the noncontact ultrasonic measurement by using laser based ultrasonics, the sound speed in the sample was monitored while the sample was heated in a furnace, and the result showed that it decreased according to the increase of sample temperature

  20. Peculiarities of evolution of shock waves generated by boiling coolant

    Science.gov (United States)

    Alekseev, M. V.; Vozhakov, I. S.; Lezhnin, S. I.; Pribaturin, N. A.

    2016-11-01

    Simulation of compression wave generation and evolution at the disk target was performed for the case of explosive-type boiling of coolant; the boiling is initiated by endwall rupture of a high-pressure pipeline. The calculations were performed for shock wave amplitude at different times and modes of pipe rupture. The simulated pressure of a target-reflected shock wave is different from the theoretical value for ideal gas; this discrepancy between simulation and theory becomes lower at higher distances of flow from the nozzle exit. Comparative simulation study was performed for flow of two-phase coolant with account for slip flow effect and for different sizes of droplets. Simulation gave the limiting droplet size when the single-velocity homogeneous flow model is valid, i.e., the slip flow effect is insignificant.

  1. Electrostatic electron cyclotron waves generated by low-energy electron beams

    Czech Academy of Sciences Publication Activity Database

    Menietti, J. D.; Santolík, Ondřej; Scudder, J. D.; Pickett, J. S.; Gurnett, D. A.

    2002-01-01

    Roč. 107, A10, 1285 (2002), s. SMP 8-1-8-11, doi: 10.1029/2001JA009223 ISSN 0148-0227 R&D Projects: GA ČR GA205/01/1064 Grant - others:NASA(US) NAG5-7943; NASA(US) NAG5-9561; NASA(US) NAG5-8119 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : low-energy electron beams * cyclotron frequency Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.245, year: 2002

  2. Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser

    Science.gov (United States)

    Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.

    Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.

  3. Tailored ramp wave generation in gas gun experiments

    Directory of Open Access Journals (Sweden)

    Cotton Matthew

    2015-01-01

    Full Text Available Gas guns are traditionally used as platforms to introduce a planar shock wave to a material using plate impact methods, generating states on the Hugoniot. The ability to deliver a ramp wave to a target during a gas gun experiment enables access to different regions of the equation-of-state surface, making it a valuable technique for characterising material behaviour. Previous techniques have relied on the use of multi-material impactors to generate a density gradient, which can be complex to manufacture. In this paper we describe the use of an additively manufactured steel component consisting of an array of tapered spikes which can deliver a ramp wave over ∼ 2 μs. The ability to tailor the input wave by varying the component design is discussed, an approach which makes use of the design freedom offered by additive manufacturing techniques to rapidly iterate the spike profile. Results from gas gun experiments are presented to evaluate the technique, and compared with 3D hydrodynamic simulations.

  4. Persistent gravity wave coupling from the stratosphere to the MLT versus secondary wave generation in Antarctica

    Science.gov (United States)

    Zhao, J.; Geraghty, I.; Chu, X.; Vadas, S.; Becker, E.; Harvey, V. L.; Jones, R. M.; Chen, C.; Lu, X.

    2017-12-01

    After Antarctic persistent gravity waves (GWs) in the Mesosphere and Lower Thermosphere (MLT) were discovered from lidar observations [Chen et al., 2013, 2016], secondary wave generation theory was proposed to explain the source. Here we perform a source investigation of such persistent GWs through analyzing both stratospheric and MLT GWs at McMurdo using temperature measurements (30 - 50 km, year 2011 - 2015) obtained by Fe Boltzmann lidar. In the stratosphere, GW vertical wavelengths (λ) and periods exhibit seasonal cycles with winter maxima and summer minima, which linearly correlated with mean zonal wind velocities. GWs dissipate more in winter than in summer due to larger wave amplitudes. The potential energy density (Ep) are anti-correlated with wind rotation angles but positively correlated with surface and stratospheric winds. Critical level filtering, in-situ generation of GWs, and wave saturation changes play roles in Ep seasonal variations (winter maxima and summer minima). The large increase of Ep from summer to winter possibly results from the decrease in critical level filtering. The gradual variations of Ep from Mar to Oct are likely related both to the increased λ towards winter, allowing larger wave amplitudes before saturation, and to in-situ GW generation via geostrophic adjustment, secondary GW generation. Large Ep occur when McMurdo is inside the jet stream core 5-24º poleward from vortex edge. In winter MLT, the persistent GWs cause larger temperature perturbations (± 30 K, compared to ± 10 K in the stratosphere) with longer λ (23.5 km) and larger vertical phase speeds (1.8 m/s). More waves (95.4%) show downward phase progression compared to the stratospheric GWs (70.4%). Since the inferred horizontal wavelength of stratospheric GWs (350 - 450 km) are much shorter than those of the persistent GWs in the MLT (1000 - 2000 km), the dominant stratospheric GWs are not the direct source of the MLT persistent GWs. Secondary wave generation

  5. Detection of laser generated ultrasonic wave using Michelson interferometer

    International Nuclear Information System (INIS)

    Kim, Kyung Cho; Nakano, Hidetoshi; Jhang, Kyung Young

    1999-01-01

    A stabilized Michelson Interferometer is proposed in order to detect the laser-generated ultrasonic waves in fee from the external noise such as low frequency mechanical vibration. In order to confirm the performance, theoretically expected waveforms were compared with experimentally detected ones in thermo-elastic region, where we generated ultrasonic wave in steel disk by using a Q-switched Nd:YAG laser. Also sound velocities of longitudinal and shear components were measured and they showed good agreement with the typical values in steel. Finally, the change of sound velocity according to the temperature change was measured to show that the proposed technique could be applied to the characterization of high temperature materials.

  6. Ionospheric Responses to Nonlinear Acoustic Waves Generated by Natural Hazard Events

    Science.gov (United States)

    Zettergren, M. D.; Snively, J. B.

    2015-12-01

    Ionospheric total electron content (TEC) fluctuations following large-magnitude earthquakes and resulting tsunamis, e.g. Tohoku in 2011, have been noted in many recent investigations [e.g., Galvan et al., Radio Science, 47(4), 2012]. Earthquakes impact the atmosphere through vertical displacements of the Earth's crust or ocean surfaces producing, as one effect, low-frequency acoustic waves. These waves can achieve significant amplitudes during propagation through the rarefied upper atmosphere, and are capable of driving sizable ionospheric electron density (TEC) fluctuations and electrical currents. Earthquake-generated acoustic waves are readily identifiable in GPS observations as 0.1-2 TECU, 3-5 mHz, oscillations, which are delayed from the quake occurrence by roughly the sound travel time between the ground and ionosphere. In some extreme cases, the onset of acoustic oscillations is concurrent with a persistent, sharp decrease in TEC (~5 TECU) above the epicenter [e.g., Kakinami et al., GRL, 39(13), 2012]. Ionospheric responses to large amplitude acoustic waves are investigated using a coupled atmosphere-ionosphere model [Zettergren and Snively, GRL, 40(20), 2013]. Of particular interest are effects of acoustic wave amplitude and nonlinearity on ionospheric responses, including production of detectable TEC oscillations and longer-lived responses like TEC depletions. The atmospheric dynamics model solves a Navier-Stokes' system of equations and incorporates generation of acoustic waves through acceleration source terms at ground-level. The ionospheric model solves a fluid system of equations for each of the major ionospheric species, and includes an electrostatic description of dynamo currents. The coupled model enables direct computation of observable quantities, such as vertical TEC and magnetic field fluctuations. Here we construct simulation case studies for realistic earthquake events and compare results against published TEC and magnetic field data. This

  7. Miniature electrostatic lens for generation of a low-voltage high current electron probe

    International Nuclear Information System (INIS)

    Bubeck, C.-D.; Fleischmann, A.; Knell, G.; Lutsch, R.Y.; Plies, E.; Winkler, D.

    1999-01-01

    A miniature tetrode system, according to F. Burstert, D. Winkler and B. Lischke [Microelectron. Eng. 31 (1996) 95], for the generation of a low-voltage electron probe was investigated and further developed. The tetrode system consists of a Schottky cathode and a miniaturized lens, composed of three conventional electron microscopical apertures, which are used as electrodes. We tested two configurations with different aperture thicknesses and bore diameters experimentally and also made simulations of these lenses. Two kinds of middle electrodes, a flat and a top-hat aperture, were used. In most cases the experimental data show a good agreement with the theoretically predicted values of the examined tetrode system

  8. Impact of boat-generated waves on intertidal estuarine sediments

    Science.gov (United States)

    Blanpain, O.; Deloffre, J.; Lafite, R.; Gomit, G.; Calluaud, D.; David, L.

    2010-12-01

    Hydrodynamics in the macrotidal Seine estuary (France) are controlled by the semi-diurnal tidal regime modulated seasonally by the fluvial discharge. Wind effect on sediment transport (through wind waves and swell) is observed at the mouth of the estuary. Over the last century, authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity. These developments led to allow and secure sea vessel traffic in the Seine estuary (from its mouth to the port of Rouen, 125 km upstream) but they also resulted in a change of estuarine hydrodynamics and sediment transport features. A riversides restoration policy has been recently started by port authorities. In this context, the objective of the field-based study presented is to connect vessel characteristics (i.e. speed, draft...), boat-generated waves and their sedimentary impacts. Such information will be used by stakeholders to manage riverside. The natural intertidal site of interest is located in the fluvial freshwater part of the Seine estuary characterized by a 4.5 m maximum tidal range. The foreshore slope is gently decreasing and surface sediments are composed of fine to coarse sand with occasional mud drapes. In order to decipher boat-generated events, the sampling strategy is based on continuous ADV measurements coupled with a turbidimeter and an altimeter to study sediment dynamics. These instruments are settled in the lower part of the foreshore (i) to obtain a significant dataset (i.e. oceanic instruments are not measuring in air) on a zone statically affected by boat waves and (ii) because most of boat traffic occurs during early flood or late ebb period. Spatial variations are assessed along a cross-section through grain-size analysis of surface sediments and topography measurements using pole technique. Results enhance hydrodynamic and sedimentary impacts of boat-generated waves compared respectively to tidal and wind effects. Long

  9. What a Sudden Downpour Reveals About Wind Wave Generation

    KAUST Repository

    Cavaleri, Luigi

    2018-04-12

    We use our previous numerical and measuring experience and the evidence from a rather unique episode at sea to summarise our doubts on the present physical approach in wave modelling. The evidence strongly suggests that generation by wind and dissipation by white-capping have a different physics than presently considered. Most of all they should be viewed as part of a single physical process.

  10. Ultrabright continuously tunable terahertz-wave generation at room temperature.

    Science.gov (United States)

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-06-05

    The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.

  11. Optimization of VLf/ELF Wave Generation using Beam Painting

    Science.gov (United States)

    Robinson, A.; Moore, R. C.

    2017-12-01

    A novel optimized beam painting algorithm (OBP) is used to generate high amplitude very low frequency (VLF) and extremely low frequency (ELF) waves in the D-region of the ionosphere above the High-frequency Active Auroral Research Program (HAARP) observatory. The OBP method creates a phased array of sources in the ionosphere by varying the azimuth and zenith angles of the high frequency (HF) transmitter to capitalize on the constructive interference of propagating VLF/ELF waves. OBP generates higher amplitude VLF/ELF signals than any other previously proposed method. From April through June during 2014, OBP was performed at HAARP over 1200 times. We compare the BP generated signals against vertical amplitude modulated transmissions at 50 % duty cycle (V), oblique amplitude modulated transmissions at 15 degrees zenith and 81 degrees azimuth at 50 % duty cycle (O), and geometric (circle-sweep) modulation at 15 degrees off-zenith angle at 1562.5 Hz, 3125 Hz, and 5000 Hz. We present an analysis of the directional dependence of each signal, its polarization, and its dependence on the properties of the different source region elements. We find that BP increases the received signal amplitudes of VLF and ELF waves when compared to V, O, and GM methods over a statistically significant number of trials.

  12. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  13. An Electrostatic Free-Electron Maser for Fusion - Design Considerations

    NARCIS (Netherlands)

    van Amersfoort, P. W.; Urbanus, W. H.; Verhoeven, A. G. A.; Verheul, A.; Sterk, A. B.; Vaningen, A. M.; van der Wiel, M. J.

    1991-01-01

    For the next generation of large tokamaks, efficient mm-wave sources at frequencies of up to 300 GHz and unit size of 1 MW cw will be required. The design of a free electron maser for this application, based on a dc electrostatic accelerator, is discussed.

  14. The environmental interactions of tidal and wave energy generation devices

    International Nuclear Information System (INIS)

    Frid, Chris; Andonegi, Eider; Depestele, Jochen; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: ► We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. ► Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. ► Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. ► Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  15. E-wave generated intraventricular diastolic vortex to L-wave relation: model-based prediction with in vivo validation.

    Science.gov (United States)

    Ghosh, Erina; Caruthers, Shelton D; Kovács, Sándor J

    2014-08-01

    The Doppler echocardiographic E-wave is generated when the left ventricle's suction pump attribute initiates transmitral flow. In some subjects E-waves are accompanied by L-waves, the occurrence of which has been correlated with diastolic dysfunction. The mechanisms for L-wave generation have not been fully elucidated. We propose that the recirculating diastolic intraventricular vortex ring generates L-waves and based on this mechanism, we predict the presence of L-waves in the right ventricle (RV). We imaged intraventricular flow using Doppler echocardiography and phase-contrast magnetic resonance imaging (PC-MRI) in 10 healthy volunteers. L-waves were recorded in all subjects, with highest velocities measured typically 2 cm below the annulus. Fifty-five percent of cardiac cycles (189 of 345) had L-waves. Color M-mode images eliminated mid-diastolic transmitral flow as the cause of the observed L-waves. Three-dimensional intraventricular flow patterns were imaged via PC-MRI and independently validated our hypothesis. Additionally as predicted, L-waves were observed in the RV, by both echocardiography and PC-MRI. The re-entry of the E-wave-generated vortex ring flow through a suitably located echo sample volume can be imaged as the L-wave. These waves are a general feature and a direct consequence of LV and RV diastolic fluid mechanics. Copyright © 2014 the American Physiological Society.

  16. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    Methods for mechanical generation of 2-dimensional (2-D) and 3-dimensional (3-D) linear water waves in physical models are presented. The results of a series of laboratory 3-D wave generation tests are presented and discussed. The tests preformed involve reproduction of wave fields characterised...... is based on a new principle for active absorption of reflected waves: the wave generator displacement correction signal corresponding to absorption of the reflected wave train is determined by means of linear filtering and subsequent superposition of surface elevation signals measured in two positions...... in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...

  17. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs

  18. Advanced LIGO: the next generation of gravitational wave detectors

    International Nuclear Information System (INIS)

    Harry, Gregory M

    2010-01-01

    The Advanced LIGO gravitational wave detectors are next generation instruments which will replace the existing initial LIGO detectors. They are currently being constructed and installed. Advanced LIGO strain sensitivity is designed to be about a factor 10 better than initial LIGO over a broad band and usable to 10 Hz, in contrast to 40 Hz for initial LIGO. This is expected to allow for detections and significant astrophysics in most categories of gravitational waves. To achieve this sensitivity, all hardware subsystems are being replaced with improvements. Designs and expected performance are presented for the seismic isolation, suspensions, optics and laser subsystems. Possible enhancements to Advanced LIGO, either to resolve problems that may arise and/or to allow for improved performance, are now being researched. Some of these enhancements are discussed along with some potential technology being considered for detectors beyond Advanced LIGO.

  19. FREAK WAVE: prediction and its generation from phase coherence

    NARCIS (Netherlands)

    Latifah, A.L.

    2016-01-01

    The processes that lead to the appearance of an extreme wave are not unique: one extreme wave may occur due to different mechanisms than another extreme wave. This gives challenges in the study of extreme waves, which are also called ’freak’ waves, or ’rogue’ waves when they satisfy certain

  20. Modeling whistler wave generation regimes in magnetospheric cyclotron maser

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2004-11-01

    Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles. It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies. On the basis of the results obtained, the model for explanation of quasi-periodic whistler wave emissions is verified.

  1. Modeling whistler wave generation regimes in magnetospheric cyclotron maser

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2004-11-01

    Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles.

    It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies.

    On the basis of the results obtained, the model for explanation of

  2. Modelling the spatial shape of nondiffracting beams: Experimental generation of Frozen Waves via computer generated holograms

    OpenAIRE

    Vieira, Tárcio A.; Zamboni-Rached, Michel; Gesualdi, Marcos R. R.

    2013-01-01

    In this paper we implement experimentally the spatial shape modelling of nondiffracting optical beams via computer generated holograms. The results reported here are the experimental confirmation of the so called Frozen Wave method, developed few years ago. Optical beams of this type can possess potential applications in optical tweezers, medicine, atom guiding, remote sensing, etc..

  3. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    Science.gov (United States)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  4. The 'CETO' wave power generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Profitt, Michael

    2007-07-01

    Renewable Energy Holdings plc (REH) is an international company established to be an operator of, and undertake active investments in both proven and innovative renewable energy technologies. The CETO devices have been developed in Western Australia by Seapower Pacific PTY Ltd (SPPL), a subsidiary of Renewable Energy Holdings Plc (REH). This paper reports on the technology and also includes the findings from an independent technical appraisal undertaken by PB Power. The CETO device consists primarily of a novel pump anchored to the seabed and driven by a spherical buoyant actuator that collects wave energy and transmits it to the pump. High pressure seawater is delivered ashore where it can be used to drive a turbine to generate electricity or passed through a reverse osmosis desalination unit to produce fresh water. The competitive edge of CETO against other current wave and tidal generation devices: Electricity generated onshore (using well-proven hydro-power technology); Low cost mass produced device; Simplified infrastructure from pumping pressurised sea water ashore rather than electricity; Allows shore-based desalination; Modular design and self deployment; and, Transport in standard containers.

  5. A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions

    Science.gov (United States)

    Christophe, B.; Boulanger, D.; Foulon, B.; Huynh, P.-A.; Lebat, V.; Liorzou, F.; Perrot, E.

    2015-12-01

    The sensor core configuration of the electrostatic accelerometers of the CHAMP, GRACE and GOCE missions has been especially designed for space applications and so optimized in regard to the weak level of acceleration to sustain and measure in orbit. The return of experience of these three gravity space missions which demonstrate the robustness and the performances of this family of space instruments, allows a better optimization of the design of the accelerometer in terms of thermal stability and operation reliability for the near future missions as GRACE follow-on. The paper presents the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development. Nevertheless because the next generation of low-low satellite to satellite tracking missions will take advantage of interferometer laser ranging methods to improve their performance, the noise level of the accelerometer has also to be lowered, especially in the low frequency bandwidth. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag, by the Sun radiation and by the Earths albedo and infrared pressures, the accelerometer instrument becomes a major part of the attitude and orbit control system by acting as a drag free sensor and by accurately measuring the angular accelerations. Onera proposes a new configuration much more compact with performances in a better adequacy with a next generation of small but drag compensated micro-satellites or geodesy missions.

  6. Impact-driven shock waves and thermonuclear neutron generation

    Energy Technology Data Exchange (ETDEWEB)

    Gus' kov, S Yu; Demchenko, N N; Doskoch, I Ya; Rozanov, V B [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); Azechi, H; Murakami, M; Sakaiya, T; Watari, T [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Zmitrenko, N V, E-mail: guskov@sci.lebedev.r [Institute for Mathematical Modeling of Russian Academy of Sciences, Moscow (Russian Federation)

    2009-09-15

    Impact-driven shock waves, thermonuclear plasma and neutron yield were investigated. The results of 2D numerical simulations and Gekko/HIPER laser experiments on the collision of a laser-accelerated disk-projectile with a massive target, both containing (CD){sub n}-material, are discussed. A two-temperature model of the non-equilibrium plasma created by impact-driven shock waves due to the collision of a laser-accelerated planar projectile with a massive target was developed and used for analysis of the numerical and experimental results. The model defines the characteristics of shock waves and plasmas (including their lifetime) as well as neutron yields in both the colliding objects as functions of velocity, density and mass of the projectile-impactor just before collision. The neutron yield generated during the period of laser-driven acceleration of the impactor was also determined. Two effects were discovered that exert a substantial influence on the plasma parameters and neutron yield. The first of them relates to the formation of the pre-impact state of the impactor. It decreases the projectile density due to thermal expansion of its matter through a free boundary during the period of laser-driven acceleration. The other relates to the formation of impact-produced plasma. Predominant heating of the ion component of plasma leads to the existence of a non-equilibrium two-temperature plasma during the period of electron-ion relaxation.

  7. Microwave and Millimeter-Wave Signal Power Generation

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan

    concentrate on single-tone performance, this study also encompasses two-tone intermodulation distortion measurements. An 8GHz two-stage power amplifier (PA) MMIC was developed. Harmonic tuning was performed to enhance the power-added efficiency (PAE). The transistors were biased in deep class-AB where low......Among the major limitations in high-speed communications and highresolution radars is the lack of efficient and powerful signal sources with low distortion. Microwave and millimeter-wave (mm-wave) signal power is needed for signal transmission. Progress in signal generation stems largely from...... distortion and high PAE were observed. The estimated output power of 42.5 dBm and PAE of 31.3% are comparable to the state-of-the-art results reported for GaN HEMT amplifiers. Wireless communication systems planned in the near future will operate at E-band, around 71-86 GHz, and require mm-wave-PAs to boost...

  8. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  9. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  10. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  11. Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt

    Science.gov (United States)

    Hwang, J.; Shin, D. K.; Yoon, P. H.; Kurth, W. S.; Larsen, B. A.; Reeves, G. D.; Lee, D. Y.

    2017-06-01

    Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magnetic Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical calculation, it is shown that the peak intensity associated with the upper-hybrid fluctuations might be predominantly determined by tenuous but hot electrons and that denser cold background electrons do not seem to contribute much to the peak intensity. This finding shows that upper-hybrid fluctuations detected during quiet time are not only useful for the determination of the background cold electron density but also contain information on the ambient hot electrons population as well.

  12. Harmonic Wave Generated by Contact Acoustic Nonlinearity in Obliquely Incident Ultrasonic Wave

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Dong Seok; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hangyang University, Seoul (Korea, Republic of)

    2012-08-15

    The objective of this study is to image the harmonic wave generated by contact acoustic nonlinearity in obliquely incident ultrasonic wave for early detection of closed cracks. A closed crack has been simulated by contacting two aluminum block specimens producing solid-solid contact interfaces and then acoustic nonlinearity has been imaged with contact pressure. Sampling phased array(SPA) and synthetic aperture focusing technique(SAFT) are used for imaging techniques. The amplitude of the fundamental frequency decreased with applying pressure. But, the amplitude of second harmonic increased with pressure and was a maximum amplitude at the simulation point of closed crack. Then, the amplitude of second harmonic decreased. As a result, harmonic imaging of contact acoustic nonlinearity is possible and it is expected to be apply for early detection of initial cracks.

  13. Continuous-wave laser-induced glass fiber generation

    Science.gov (United States)

    Nishioka, Nobuyasu; Hidai, Hirofumi; Matsusaka, Souta; Chiba, Akira; Morita, Noboru

    2017-09-01

    Pulsed-laser-induced glass fiber generation has been reported. We demonstrate a novel glass fiber generation technique by continuous-wave laser illumination and reveal the generation mechanism. In this technique, borosilicate glass, metal foil, and a heat insulator are stacked and clamped by a jig as the sample. Glass fibers are ejected from the side surface of the borosilicate glass by laser illumination of the sample from the borosilicate glass side. SEM observation shows that nanoparticles are attached on the glass fibers. High-speed imaging reveals that small bubbles are formed at the side surface of the borosilicate glass and the bursting of the bubble ejects the fibers. The temperature at the fiber ejection point is estimated to be 1220 K. The mechanism of the fiber ejection includes the following steps: the metal thin foil heated by the laser increases the temperature of the surrounding glass by heat conduction. Since the absorption coefficient of the glass is increased by increasing the temperature, the glass starts to absorb the laser irradiation. The heated glass softens and bubbles form. When the bubble bursts, molten glass and gas inside the bubble scatter into the air to generate the glass fibers.

  14. Wave Loadings on Seawave Slot-Cone Generator (SSG) at Kvitsøy Island

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Frigaard, Peter; Kofoed, Jens Peter

    This report presents results from a new research study performed to derive information on wave loadings acting on Wave Energy Convert (WEC) Seawave Slot-Cone Generator (SSG) exposed to extreme wave conditions. The SSG concept is based on the principle of overtopping and stores the wave energy...

  15. Experimental Research on the Characteristic of a Generator Used in Wave Energy Conversion

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Wu, Guoheng

    2018-01-01

    Due to the environmental issues like global warming and pollution, the exploration for ocean energy becomes important. Selecting the suitable generator for wave energy generation system is essential to improve the efficiency of power generation system. Thus, the object of the research is the generator of a self-adaptation inversion type wave energy absorption device. The major focus of this paper is the characteristics and the technique of the generator used in prototype. By setting up the generator performance test platform, the output voltage, efficiency and performance of the generator are tested to select the suitable generator for the wave energy generating system.

  16. Gravitational wave generation by interaction of high power lasers with matter using shock waves

    Czech Academy of Sciences Publication Activity Database

    Kadlecová, Hedvika; Klimo, Ondřej; Weber, Stefan A.; Korn, Georg

    2017-01-01

    Roč. 71, č. 4 (2017), 1-10, č. článku 89. ISSN 1434-6060 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : plasma physics * gravitational wave generation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.288, year: 2016

  17. Inelastic processes in seismic wave generation by underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Rodean, H.C.

    1980-08-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations.

  18. Inelastic processes in seismic wave generation by underground explosions

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1980-01-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations

  19. Study of an ultrasonic generation by the electromagnetic waves

    International Nuclear Information System (INIS)

    Juillard, J.

    2000-01-01

    The main subject of this work is the development of a bulk-wave EMAT (Electro-Magnetic Acoustic Transducer) semi-analytical model. At first, we consider the general theory behind this type of transduction, especially in the case of P-Waves; this is followed by an experimental study which points out the need of modelling for the design of EMAT probes. Under certain hypotheses, this modelling can be reduced to three separate models: one model giving the eddy currents, another one the permanent magnetic field and one for the acoustic field generated by a surface density of forces. For each of these phenomena, 3-D semi-analytical models are built: they are based on a decomposition of the source terms into elementary sources. The final solutions are obtained through a convolution of the elementary solutions and of the sources. The implementation of these models is then given, as well as some applications to the field of EC and of EMAT. (author)

  20. Design and analysis of tubular permanent magnet linear wave generator.

    Science.gov (United States)

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  1. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    Directory of Open Access Journals (Sweden)

    Jikai Si

    2014-01-01

    Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  2. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    Science.gov (United States)

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG. PMID:25050388

  3. A Lagrangian model for laser-induced fluorescence and its application to measurements of plasma ion temperature and electrostatic waves

    Science.gov (United States)

    Chu, F.; Skiff, F.

    2018-01-01

    Extensive information can be obtained on wave-particle interactions and wave fields by a direct measurement of perturbed ion distribution functions using laser-induced fluorescence (LIF). For practical purposes, LIF is frequently performed on metastable states that are produced from neutral gas particles and ions in other electronic states. If the laser intensity is increased to obtain a better LIF signal, then optical pumping can produce systematic effects depending on the collision rates which control metastable population and lifetime. We numerically simulate the ion velocity distribution measurement and wave-detection process using a Lagrangian model for the LIF signal for the case where metastables are produced directly from neutrals. This case requires more strict precautions and is important for discharges with energetic primary electrons and a high density of neutrals. Some of the results also apply to metastables produced from pre-existing ions. The simulations show that optical pumping broadening affects the ion velocity distribution function f0(v) and its first-order perturbation f1(v,t) when the laser intensity is increased above a certain level. The results also suggest that ion temperature measurements are only accurate when the metastable ions can live longer than the ion-ion collision mean free time. For the purposes of wave detection, the wave period has to be significantly shorter than the lifetime of metastable ions for a direct interpretation. It is more generally true that metastable ions may be viewed as test-particles. As long as an appropriate model is available, LIF can be extended to a range of environments.

  4. Dust acoustic shock wave generation due to dust charge variation in ...

    Indian Academy of Sciences (India)

    pp. 1197–1201. Dust acoustic shock wave generation due to dust charge ... to generation of shock wave in the dusty plasma described as collisionless shock wave. ... Φ -(δ -1)(1+∆Qd)(1+∆Nd). ] (7) while the dust charging equation in the wave frame is d∆Qd dζ. =(1+∆Nd). µ. [ exp(Φ-z∆Qd)-exp. (-Φ σ. )( 1+ z σ +z. ∆Qd. )] σd =.

  5. Blowing Dust Away With Electrostatic Wind

    Science.gov (United States)

    Utter, M. G.

    1984-01-01

    Ionized air molecules drive away contaminants. Electrostatic wind prevents dust buildup and subsequent electrical breakdown in powerlines, transformers, switchgears, Van de Graaff generators, electrostatic precipitators, and other high-voltage equipment. Makes periodic cleaning or airblasting unnecessary.

  6. Mathematical model of snake-type multi-directional wave generation

    Science.gov (United States)

    Muarif; Halfiani, Vera; Rusdiana, Siti; Munzir, Said; Ramli, Marwan

    2018-01-01

    Research on extreme wave generation is one intensive research on water wave study because the fact that the occurrence of this wave in the ocean can cause serious damage to the ships and offshore structures. One method to be used to generate the wave is self-correcting. This method controls the signal on the wavemakers in a wave tank. Some studies also consider the nonlinear wave generation in a wave tank by using numerical approach. Study on wave generation is essential in the effectiveness and efficiency of offshore structure model testing before it can be operated in the ocean. Generally, there are two types of wavemakers implemented in the hydrodynamic laboratory, piston-type and flap-type. The flap-type is preferred to conduct a testing to a ship in deep water. Single flap wavemaker has been explained in many studies yet snake-type wavemaker (has more than one flap) is still a case needed to be examined. Hence, the formulation in controlling the wavemaker need to be precisely analyzed such that the given input can generate the desired wave in the space-limited wave tank. By applying the same analogy and methodhology as the previous study, this article represents multi-directional wave generation by implementing snake-type wavemakers.

  7. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces.

    Science.gov (United States)

    Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard

    2015-03-15

    Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Multipolar electrostatics.

    Science.gov (United States)

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  9. Technical Background Material for the Wave Generation Software AwaSys 5

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke

    "Les Appareils Generateurs de Houle en Laboratorie" presented by Bi¶esel and Suquet in 1951 discussed and solved the analytical problems concerning a number of di®erent wave generator types. For each wave maker type the paper presented the transfer function between wave maker displacement and wav...

  10. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

    Science.gov (United States)

    Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H

    2017-12-12

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

  11. Generation of dispersion in nondispersive nonlinear waves in thermal equilibrium.

    Science.gov (United States)

    Lee, Wonjung; Kovačič, Gregor; Cai, David

    2013-02-26

    In this work, we examine the important theoretical question of whether dispersion relations can arise from purely nonlinear interactions among waves that possess no linear dispersive characteristics. Using two prototypical examples of nondispersive waves, we demonstrate how nonlinear interactions can indeed give rise to effective dispersive-wave-like characteristics in thermal equilibrium. Physically, these example systems correspond to the strong nonlinear coupling limit in the theory of wave turbulence. We derive the form of the corresponding dispersion relation, which describes the effective dispersive structures, using the generalized Langevin equations obtained in the Zwanzig-Mori projection framework. We confirm the validity of this effective dispersion relation in our numerical study using the wavenumber-frequency spectral analysis. Our work may provide insight into an important connection between highly nonlinear turbulent wave systems, possibly with no discernible dispersive properties, and the dispersive nature of the corresponding renormalized waves.

  12. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  13. Langmuir wave turbulence generated by electromagnetic waves in the laboratory and the ionosphere

    International Nuclear Information System (INIS)

    Lee, M.C.; Riddolls, R.J.; Moriarty, D.T.; Dalrymple, N.E.; Rowlands, M.J.

    1996-01-01

    The authors will present some recent results of the laboratory experiments at MIT, using a large plasma device known as the Versatile Toroidal Facility (VTF). These experiments are aimed at cross-checking the ionospheric plasma heating experiments at Arecibo, Puerto Rico using an HF heating facility (heater). The plasma phenomenon under investigation is the spectral characteristic of Langmuir wave turbulence produced by ordinary (o-mode) electromagnetic pump waves. The Langmuir waves excited by o-mode heaters waves at Arecibo have both a frequency-upshifted spectrum and a frequency-downshifted (viz., cascading) spectrum. While the cascading spectrum can be well explained in terms of the parametric decay instability (PDI), the authors have interpreted the frequency-upshifted Langmuir waves to be anti-Stokes Langmuir waves produced by a nonlinear scattering process as follows. Lower hybrid waves creates presumably by lightning-induced whistler waves can scatter nonlinearly the PDI-excited mother langmuir waves, yielding obliquely propagating langmuir waves with frequencies as the summation of the mother Langmuir wave frequencies and the lower hybrid wave frequencies. This suggested process has been confirmed in the laboratory experiments, that can reproduce the characteristic spectra of Langmuir wave turbulence observed in the Arecibo experiments

  14. Model for a collimated spin wave beam generated by a single layer, spin torque nanocontact

    OpenAIRE

    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.

    2007-01-01

    A model of spin torque induced magnetization dynamics based upon semi-classical spin diffusion theory for a single layer nanocontact is presented. The model incorporates effects due to the current induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted fie...

  15. Seeded Supercontinuum Generation - Modulation Instability Gain, Coherent and Incoherent Rogue Waves

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech

    2012-01-01

    Deterministic supercontinuum can be generated by seeding the modulation instability-induced pulse break-up. We investigate the influence of the modulation instability gain on seeding and demonstrate the generation of coherent and incoherent rogue waves....

  16. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  17. The development of a very high stability electrostatic generator (1962); Etude et realisation d'un generateur electrostatique a tres haute stabilite (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jonckheere, R.E.L. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    This thesis deals with the study of an electrostatic high voltage generator having a voltage stability of the order of 10{sup -6} per minute. This equipment should be very useful in electron microscopy. The electrostatic generator is studied as a control system element: transfer function, parasitic signals and noise are determined and a mathematical model is proposed. A theoretical study of the open loop transfer function, stability, transient response, voltage stabilization of five different control systems shows which one should be able to fulfill the requirements There follows a detailed study of drift, a description of the actual system and performance data. (author) [French] Cette etude concerne un generateur electrostatique capable de fournir une tres haute tension continue dont la stabilite relative est de l'ordre de 10{sup -6} pendant une minute. Une telle performance rend cet appareillage tres utile en microscopie electronique. La generatrice electrostatique est etudiee en tant qu'element d'un systeme asservi: on determine successivement la fonction de transfert, les perturbations, le bruit de fond et le modele mathematique. L'etude de cinq differents circuits de regulation en ce qui concerne leur fonction de transfert, stabilite, reponse en regime transitoire, attenuation des perturbations, permettra de choisir le systeme qui semble le mieux repondre aux exigences. Viennent ensuite une etude detaillee de la derive, la description de la realisation pratique et les resultats de mesure. (auteur)

  18. Quantitative Understanding on the Amplitude Decay Characteristic of the Evanescent Electromagnetic Waves Generated by Seismoelectric Conversion

    Science.gov (United States)

    Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei

    2018-03-01

    We conduct numerical simulations and theoretical analyses to quantitatively study the amplitude decay characteristic of the evanescent electromagnetic (EM) waves, which has been neglected in previous studies on the seismoelectric conversion occurring at a porous-porous interface. Time slice snapshots of seismic and EM wave-fields generated by a vertical single force point source in a two-layer porous model show that evanescent EM waves can be induced at a porous-porous interface. The seismic and EM wave-fields computed for a receiver array located in a vertical line nearby the interface are investigated in detail. In addition to the direct and interface-response radiation EM waves, we identify three groups of coseismic EM fields and evanescent EM waves associated with the direct P, refracted SV-P and direct SV waves, respectively. Thereafter, we derive the mathematical expression of the amplitude decay factor of the evanescent EM waves. This mathematical expression is further validated by our numerical simulations. It turns out the amplitude decay of the evanescent EM waves generated by seismoelectric conversion is greatly dependent on the horizontal wavenumber of seismic waves. It is also found the evanescent EM waves have a higher detectability at a lower frequency range. This work provides a better understanding on the EM wave-fields generated by seismoelectric conversion, which probably will help improve the interpretation of the seismoelectric coupling phenomena associated with natural earthquakes or possibly will inspire some new ideas on the application of the seismoelectric coupling effect.

  19. Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave-mixing

    DEFF Research Database (Denmark)

    Nikolov, N.I.; Bang, O.; Bjarklev, A.

    2002-01-01

    The efficiency of supercontinuum generation in photonic crystal fibers is significantly improved by designing the dispersion to allow widely separated spectral lines generated by degenerate four-wave-mixing directly from the pump to broaden and merge.......The efficiency of supercontinuum generation in photonic crystal fibers is significantly improved by designing the dispersion to allow widely separated spectral lines generated by degenerate four-wave-mixing directly from the pump to broaden and merge....

  20. Observation of wave generation and non-local perturbations in the ...

    Indian Academy of Sciences (India)

    11 E) was continuously operated. The data collected from profiler radar was used to investigate the impact of typhoon on generating waves and other atmospheric disturbances. Result showed that the typhoon and the associated wind disturbances can generate atmospheric waves with varied periodicity even when the core ...

  1. Current status of the driver laser system for intense terahertz wave generation

    International Nuclear Information System (INIS)

    Tanaka, Momoko; Ochi, Yoshihiro; Kosuge, Atsushi; Okada, Hajime; Kiriyama, Hiromitsu; Mori, Michiaki; Tsubouchi, Masaaki; Nagashima, Keisuke

    2014-01-01

    We have constructed a high power kHz laser system using Yb:YAG thin-disk as a gain medium for a driver laser of THz wave generation. A 4-bounce regenerative amplifier is constructed and output energy up to 10 mJ is obtained. Using compressed pulse, we demonstrated THz wave generation with LiNbO 3 crystal. (author)

  2. Observation of wave generation and non-local perturbations in the ...

    Indian Academy of Sciences (India)

    The data collected from profiler radar was used to investigate the impact of typhoon on generating waves and other atmospheric disturbances. Result showed that the typhoon and the associated wind disturbances can generate atmospheric waves with varied periodicity even when the core was far away from the land.

  3. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  4. The generation of internal waves on the continental shelf by Hurricane Andrew

    Science.gov (United States)

    Keen, Timothy R.; Allen, Susan E.

    2000-11-01

    Observed currents, temperature, and salinity from moored instruments on the Louisiana continental slope and shelf reveal multiple baroclinic oscillations during Hurricane Andrew in August 1992. These measurements are supplemented by numerical models in order to identify possible internal wave generation mechanisms. The Princeton Ocean Model is run with realistic topography, stratification, and wind forcing to extend the observations to Mississippi Canyon and other areas on the shelf. A two-layer isopycnal model is used with idealized topography and spatially uniform winds to isolate internal waves generated in and around the canyon. The combination of the observations and the results from the numerical models indicates several possible mechanisms for generating long internal waves: (1) near-inertial internal waves were generated across the slope and shelf by dislocation of the thermocline by the wind stress; (2) interaction of inertial flow with topography generated internal waves along the shelf break, which bifurcated into landward and seaward propagating phases; (3) downwelling along the coast depressed the thermocline; after downwelling relaxes, an internal wave front propagates as a Kelvin wave; and (4) Poincaré waves generated within Mississippi Canyon propagate seaward while being advected westward over the continental slope. These processes interact to produce a three-dimensional internal wave field, which was only partly captured by the observations.

  5. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation

    Science.gov (United States)

    Amador, Carolina; Aristizabal, Sara; Greenleaf, James F.; Urban, Matthew W.

    2016-01-01

    Tissue elasticity is measured by shear wave elasticity imaging methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using FOCUS and shear wave simulations using Finite Element Model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40% to 90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, the resulting Pearson’s correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (Phase Aberration and Attenuation case), measured phase screen (Only Phase Aberration case) and FOCUS/FEM model (Only Attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation. PMID:26742131

  6. Harmonic generation by internal waves in a thermohaline staircase with rotation

    Science.gov (United States)

    Wunsch, Scott

    2017-11-01

    Thermohaline staircases, generated by double-diffusive convection, are found in many regions of the ocean. Oceanic internal waves interact with these staircases. Recent results show that, in linear theory, internal waves with sufficiently long wavelengths are transmitted through the staircase, while short wavelengths may be reflected. However, nonlinear self-interaction of internal waves with the sharp density jumps within the staircase is expected to generate double-wavenumber harmonics of the incident waves. This effect removes energy from the incident waves, reducing the transmitted energy in some cases. Energy transferred to the harmonic waves may also impact the stability of the staircase. Here, weakly nonlinear theory is used to explore the implications of this nonlinear effect on the dynamics of internal waves in oceanic thermohaline staircases. Rotation is included, and variations with latitude are considered.

  7. Generation and propagation of elastic waves on a pipe by open-shell transducers

    International Nuclear Information System (INIS)

    Kim, Dae Seung; Kim, Jin Oh

    2011-01-01

    This paper deals with the generation and propagation of elastic waves on an empty pipe and on a water-filled pipe by open-shell transducers theoretically, numerically, and experimentally. The dispersion equations relating wave speed to frequency were derived by using the cylindrical shell theory. The theoretical analysis was verified by comparing the calculated dispersion curves with the frequency wavenumber spectrums obtained from the finite-element analysis and by comparing the calculated wave speeds with the results measured by using open-shell transducers as transmitters and receivers. The finite-element analysis revealed that the waves of only even numbered wave modes were generated by the open-shell transducers symmetrically located along the circumference of the pipe and that the axisymmetric wave propagates faster than non-axisymmetric waves

  8. Water wave generation with source function in the level set finite element framework

    International Nuclear Information System (INIS)

    Lee, Hae Gyun

    2015-01-01

    Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full three-dimensional Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation and propagation of water waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the wave generation and the problem of wave force evaluation on the vertical wall. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problems. The results of numerical simulations are compared with theoretical values and good agreements are observed.

  9. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  10. Extreme Hurricane-Generated Waves in Gulf of Mexico

    National Research Council Canada - National Science Library

    Alberto, Carlos; Fernandes, Santos

    2005-01-01

    .... Although WaveWatchIII (WW3) is used by many operational forecasting centers around the world, there is a lack of field studies to evaluate its accuracy in regional applications and under extreme conditions, such as Hurricanes...

  11. Numerical investigation of wake-collapse internal waves generated by a submerged moving body

    Science.gov (United States)

    Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia

    2017-07-01

    The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.

  12. Design and verification of monopole patch antenna systems to generate orbital angular momentum waves

    Directory of Open Access Journals (Sweden)

    Dandan Liu

    2017-09-01

    Full Text Available Monopole patch antenna systems, which can generate orbital angular momentum (OAM waves at 2.4GHz, are proposed in this paper. The proposed antenna systems have advantages of simple planar structure and small size of antenna element. Design, simulation, fabrication and measurement of the proposed antenna systems are presented. Two feeding networks, which constitute the proposed antenna systems with monopole patch antenna array, are designed to generate modes 1 and 2 of OAM waves. The antenna systems for both modes are shown to be effective in generating OAM waves of modes 1 and 2 from both simulation and three types of measurement: radiation pattern, phase distribution and phase gradient. Simulation and measurement results of radiation pattern and phase distribution have shown very close results. Phase gradient measurement results has verified that the generated waves from the antenna systems are indeed OAM waves.

  13. Design and verification of monopole patch antenna systems to generate orbital angular momentum waves

    Science.gov (United States)

    Liu, Dandan; Gui, Liangqi; Zhou, Cong; Zhang, Zixiao; Chen, Han; Jiang, Tao

    2017-09-01

    Monopole patch antenna systems, which can generate orbital angular momentum (OAM) waves at 2.4GHz, are proposed in this paper. The proposed antenna systems have advantages of simple planar structure and small size of antenna element. Design, simulation, fabrication and measurement of the proposed antenna systems are presented. Two feeding networks, which constitute the proposed antenna systems with monopole patch antenna array, are designed to generate modes 1 and 2 of OAM waves. The antenna systems for both modes are shown to be effective in generating OAM waves of modes 1 and 2 from both simulation and three types of measurement: radiation pattern, phase distribution and phase gradient. Simulation and measurement results of radiation pattern and phase distribution have shown very close results. Phase gradient measurement results has verified that the generated waves from the antenna systems are indeed OAM waves.

  14. Phase study of the generated surface plasmon waves in light transmission through a subwavelength aperture

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini

    2014-01-01

    Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite...... difference time domain simulations. In a structure with only one groove, constructive interference of the generated SP waves will enhance transmitted light by a factor of 5.4 compared with that of a single hole. Increasing the groove number to 3 in the design, which supports constructive interference of SP...... waves, will enhance the transmission coefficient to 10.5 times that for the single-hole transmission coefficient....

  15. Chorus Wave Modulation of Langmuir Waves in the Radiation Belts

    Science.gov (United States)

    Li, Jinxing; Bortnik, Jacob; An, Xin; Li, Wen; Thorne, Richard M.; Zhou, Meng; Kurth, William S.; Hospodarsky, George B.; Funsten, Herbert O.; Spence, Harlan E.

    2017-12-01

    Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. This microscale interaction between chorus waves and high-frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.

  16. The Generation Mechanism of Airy—Bessel Wave Packets in Free Space

    International Nuclear Information System (INIS)

    Ren Zhi-Jun; Ying Chao-Fu; Fan Chang-Jiang; Wu Qiong

    2012-01-01

    Localized optical Airy—Bessel configuration wave packets were first generated on the basis of a grating-telescope combination [Nat. Photon. 4(2010) 103]. By studying the spatially induced group velocity dispersion effect of ultrashort pulsed Bessel beams during propagation, we find the universal physical foundation of generating Airy—Bessel wave packets (ABWs) in free space. The research results are expected to open up more common channels for generating stable linear localized ABWs

  17. Study of Wave Conditions at Kvitsøy Prototype Location of Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Guinot, Florent

    This report presents the results of a study of the wave conditions at the planned location of the prototype of the wave energy converter (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs.......This report presents the results of a study of the wave conditions at the planned location of the prototype of the wave energy converter (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs....

  18. Stochastic background of gravitational waves generated by compact binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Evangelista, Edgard F.D.; Araujo, Jose C.N. de, E-mail: jcarlos.dearaujo@inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2014-07-01

    Binary systems are the most studied sources of gravitational waves. The mechanisms of emission and the behavior of the orbital parameters are well known and can be written in analytic form in several cases. Besides, the strongest indication of the existence of gravitational waves has arisen from the observation of binary systems. On the other hand, when the detection of gravitational radiation becomes a reality, one of the observed pattern of the signals will be probably of stochastic background nature, which are characterized by a superposition of signals emitted by many sources around the universe. Our aim here is to develop an alternative method of calculating such backgrounds emitted by cosmological compact binary systems during their periodic or quasiperiodic phases. We use an analogy with a problem of statistical mechanics in order to perform this sum as well as taking into account the temporal variation of the orbital parameters of the systems. Such a kind of background is of particular importance since it could well form an important foreground for the planned gravitational wave interferometers DECI-Hertz Interferometer Gravitational wave Observatory (DECIGO), Big Bang Observer (BBO), Laser Interferometer Space Antenna (LISA) or Evolved LISA (eLISA), Advanced Laser Interferometer Gravitational-Wave Observatory (ALIGO), and Einstein Telescope (ET). (author)

  19. Wave-filter-based approach for generation of a quiet space in a rectangular cavity

    Science.gov (United States)

    Iwamoto, Hiroyuki; Tanaka, Nobuo; Sanada, Akira

    2018-02-01

    This paper is concerned with the generation of a quiet space in a rectangular cavity using active wave control methodology. It is the purpose of this paper to present the wave filtering method for a rectangular cavity using multiple microphones and its application to an adaptive feedforward control system. Firstly, the transfer matrix method is introduced for describing the wave dynamics of the sound field, and then feedforward control laws for eliminating transmitted waves is derived. Furthermore, some numerical simulations are conducted that show the best possible result of active wave control. This is followed by the derivation of the wave filtering equations that indicates the structure of the wave filter. It is clarified that the wave filter consists of three portions; modal group filter, rearrangement filter and wave decomposition filter. Next, from a numerical point of view, the accuracy of the wave decomposition filter which is expressed as a function of frequency is investigated using condition numbers. Finally, an experiment on the adaptive feedforward control system using the wave filter is carried out, demonstrating that a quiet space is generated in the target space by the proposed method.

  20. Numerical Study on the Generation and Transport of Spume Droplets in Wind over Breaking Waves

    Directory of Open Access Journals (Sweden)

    Shuai Tang

    2017-12-01

    Full Text Available Sea spray droplets play an important role in the momentum, heat and mass transfer in the marine atmospheric boundary layer. We have developed a new direct numerical simulation method to study the generation and transport mechanisms of spume droplets by wind blowing over breaking waves, with the wave breaking process taken into account explicitly. In this new computational framework, the air and water are simulated as a coherent system on fixed Eulerian grid with the density and viscosity varying with the fluid phase. The air-water interface is captured accurately using a coupled level-set and volume-of-fluid method. The trajectories of sea spray droplets are tracked using a Lagrangian particle-tracking method. The generation of droplets is captured by comparing the fluid particle velocity of water and the phase speed of the wave surface. From the simulation data, we obtain for the first time a detailed description of the instantaneous distribution of droplets at different stages of wave breaking. Furthermore, the time histories of the droplet number and its generation and disappearance rates are analyzed. Simulation cases with different parameters are performed to study the effects of wave age and wave steepness. The flow and droplet fields obtained from simulation provided a detailed physical picture of the problem of interest. It is found that plunging breakers generate more droplets than spilling breakers. Droplets are generated near the wave crest at young and intermediate wave ages, but at old wave ages, droplets are generated both near and behind the wave crest. It is also elucidated that the large-scale spanwise vortex induced by the wave plunging event plays an important role in suspending droplets. Our simulation result of the vertical profile of sea spray concentration is consistent with laboratory measurement reported in the literature.

  1. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs

  2. Advanced Virgo: a second-generation interferometric gravitational wave detector

    NARCIS (Netherlands)

    Acernese, F.; Bulten, H.J.; Rabeling, D.S.; van den Brand, J.F.J.

    2015-01-01

    Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and

  3. A Method and an Apparatus for Generating a Phase-Modulated Wave Front of Electromagnetic Radiation

    DEFF Research Database (Denmark)

    2002-01-01

    The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase-modulation of the...

  4. Experimental Hydraulic Optimization of the Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    This report presents the results of a experimental hydraulic optimization of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed...

  5. Model Testing of the Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    This report presents the results of a preliminary experimental study of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed using...

  6. Generation of DC toroidal current by a travelling wave

    International Nuclear Information System (INIS)

    Matsuura, K.; Fukuda, M.; Hirano, K.; Mohri, A.; Fukao, M.; Midzuno, Y.

    1974-01-01

    An rf field travelling along the torus is observed to induce a dc toroidal current in a magnetized plasma. The travelling field is applied to the plasma by employing a delay-line wound around the toroidal glass discharge tube. The phase velocity of the field is approximately equal to the electron thermal velocity. The direction of the current is opposite to that of the wave, indicating that the electrons are trapped in the magnetic mirrors composed of the travelling wave. The density of the trapped electrons reaches 10 percent of the background plasma density at an optimum condition. On the basis of the electron trapping model, the required rf power for current sustaining in a Tokamak fusion reactor is estimated and found to be reasonably small in comparison with the output power of the reactor

  7. Attenuation of earthquake generated P waves in Iraq

    International Nuclear Information System (INIS)

    Alsinawi, A. S.; Al-Tikriti, K. S.

    2000-01-01

    This work is the first attempt to investigate seismic wave attenuation in Iraq. it studies longitudinal waves recorded at Baghdad (BHD) and Musul (MSL) observatories from earthquakes originated in Turkey and in Iran. Thirty seven earthquakes were chosen for this investigation, twenty three of them were recorded at Baghdad observatory, and fourteen were recorded at Mousul observatory. The epicenters of some of these earthquakes are located within the Iraqi territory; the rest of the events have their epicenters on the Iraqi-Iran borders or on the Turkish and Iranian sides of the boeder. The path of the investigated earthquakes cover the central, north and eastern regions of Iraq; with magnitudes (mb) varying between (4.1-5.7). The amplitude-distance curve method was utilized in this investigation. The mean attenuation value obtained for the study area was 0.0035 km -1 . (authors). 19 refs., 7 tabs., 9 figs

  8. Advanced Virgo: a second-generation interferometric gravitational wave detector

    International Nuclear Information System (INIS)

    Acernese, F; Barone, F; Agathos, M; Agatsuma, K; Bauer, Th S; Beker, M G; Aisa, D; Allemandou, N; Allocca, A; Amarni, J; Baronick, J-P; Barsuglia, M; Astone, P; Basti, F; Balestri, G; Ballardin, G; Bavigadda, V; Basti, A; Bejger, M; Belczynski, C

    2015-01-01

    Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network, alongside the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detection of gravitational waves and to opening a new window of observation on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction. (paper)

  9. Current generation by unidirectional lower hybrid waves in the ACT-1 toroidal device

    International Nuclear Information System (INIS)

    Wong, K.L.; Horton, R.; Ono, M.

    1980-05-01

    An unambiguious experimental observation of current generation by unidirectional lower hybrid waves in a toroidal plasma is reported. Up to 10 amperes of current was driven by 500 watts of rf power at 160 MHz

  10. Hardware system of X-wave generator with simple driving pulses

    Science.gov (United States)

    Li, Xu; Li, Yaqin; Xiao, Feng; Ding, Mingyue; Yuchi, Ming

    2013-03-01

    The limited diffraction beams such as X-wave have the properties of larger depth of field. Thus, it has the potential to generate ultra-high frame rate ultrasound images. However, in practice, the real-time generation of X-wave ultrasonic field requires complex and high-cost system, especially the precise and specific voltage time distribution part for the excitation of each distinct array element. In order to simplify the hardware realization of X-wave, based on the previous works, X-wave excitation signals were decomposed and expressed as the superposition of a group of simple driving pulses, such as rectangular and triangular waves. The hardware system for the X-wave generator was also designed. The generator consists of a computer for communication with the circuit, universal serial bus (USB) based micro-controller unit (MCU) for data transmission, field programmable gate array (FPGA) based Direct Digital Synthesizer(DDS), 12-bit digital-to-analog (D/A) converter and a two stage amplifier.The hardware simulation results show that the designed system can generate the waveforms at different radius approximating the theoretical X-wave excitations with a maximum error of 0.49% triggered by the quantification of amplitude data.

  11. Hypersonic evanescent waves generated with a planar spiral coil.

    Science.gov (United States)

    Stevenson, A C; Araya-Kleinsteuber, B; Sethi, R S; Mehta, H M; Lowe, C R

    2003-09-01

    A planar spiral coil has been used to induce hypersonic evanescent waves in a quartz substrate with the unique ability to focus the acoustic wave down onto the chemical recognition layer. These special sensing conditions were achieved by investigating the application of a radio frequency current to a coaxial waveguide and spiral coil, so that wideband repeating electrical resonance conditions could be established over the MHz to GHz frequency range. At a selected operating frequency of 1.09 GHz, the evanescent wave depth of a quartz crystal hypersonic resonance is reduced to 17 nm, minimising unwanted coupling to the bulk fluid. Verification of the validity of the hypersonic resonance was carried out by characterising the system electrically and acoustically: Impedance calculations of the combined coil and coaxial waveguide demonstrated an excellent fit to the measured data, although above 400 MHz a transition zone was identified where unwanted impedance is parasitic of the coil influence efficiency, so the signal-to-noise ratio is reduced from 3000 to 300. Acoustic quartz crystal resonances at intervals of precisely 13.2138 MHz spacing, from the 6.6 MHz ultrasonic range and onto the desired hypersonic range above 1 GHz, were incrementally detected. Q factor measurements demonstrated that reductions in energy lost from the resonator to the fluid interface were consistent with the anticipated shrinkage of the evanescent wave with increasing operating frequency. Amplitude and frequency reduction in contact with a glucose solution was demonstrated at 1.09 GHz. The complex physical conditions arising at the solid-liquid interface under hypersonic entrainment are discussed with respect to acceleration induced slippage, rupture, longitudinal and shear radiation and multiphase relaxation affects.

  12. Infrasonic waves in the ionosphere generated by a weak earthquake

    Czech Academy of Sciences Publication Activity Database

    Krasnov, V. M.; Drobzheva, Ya. V.; Chum, Jaroslav

    2011-01-01

    Roč. 73, č. 13 (2011), s. 1930-1939 ISSN 1364-6826 R&D Projects: GA ČR GA205/07/1367; GA ČR GA205/09/1253 Institutional research plan: CEZ:AV0Z30420517 Keywords : Earthquake * Infrasonic waves * Ionospheric disturbances Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.596, year: 2011 http://www.sciencedirect.com/science/article/pii/S1364682611001374

  13. Shock drift electron acceleration and generation of waves

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian; Vandas, Marek

    2007-01-01

    Roč. 55, č. 15 (2007), s. 2336-2339 ISSN 0032-0633 R&D Projects: GA AV ČR 1QS300120506; GA AV ČR IAA300030701; GA ČR GA205/04/0358; GA ČR GA205/06/0875 Institutional research plan: CEZ:AV0Z10030501 Keywords : electrons beam * electromagnetic waves * solar radio bursts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.842, year: 2007

  14. Generation of baroclinic topographic waves by a tropical cyclone impacting a low-latitude continental shelf

    Science.gov (United States)

    Dukhovskoy, Dmitry S.; Morey, Steven L.; O'Brien, James J.

    2009-01-01

    Numerical model experiments have been performed to analyze the low-latitude baroclinic continental shelf response to a tropical cyclone. The theory of coastally trapped waves suggests that, provided appropriate slope, latitude, stratification and wind stress, bottom-intensified topographic Rossby waves can be generated by the storm. Based on a scale analysis, the Nicaragua Shelf is chosen to study propagating topographic waves excited by a storm, and a model domain is configured with simplified but similar geometry. The model is forced with wind stress representative of a hurricane translating slowly over the region at 6 km h -1. Scale analysis leads to the assumption that baroclinic Kelvin wave modes have minimal effect on the low-frequency wave motions along the slope, and coastal-trapped waves are restricted to topographic Rossby waves. Analysis of the simulated motions suggests that the shallow part of the continental slope is under the influence of barotropic topographic wave motions and at the deeper part of the slope baroclinic topographic Rossby waves dominate the low-frequency motions. Numerical solutions are in a good agreement with theoretical scale analysis. Characteristics of the simulated baroclinic waves are calculated based on linear theory of bottom-intensified topographic Rossby waves. Simulated waves have periods ranging from 153 to 203 h. The length scale of the waves is from 59 to 87 km. Analysis of energy fluxes for a fixed volume on the slope reveals predominantly along-isobath energy propagation in the direction of the group velocity of a topographic Rossby wave. Another model experiment forced with a faster translating hurricane demonstrates that fast moving tropical cyclones do not excite energetic baroclinic topographic Rossby waves. Instead, robust inertial oscillations are identified over the slope.

  15. Electrostatically Induced Voltage Generated in a Metal Box When a Charged Body Moves—Relation Between the Ratio of Conducting Parts in the Box and the Induced Voltage—

    Science.gov (United States)

    Ichikawa, Norimitsu

    When charged bodies such as a human body and a tool wagon etc. move near an electronic equipment of a partially opened metal box, an electrostatically induced voltage appears in the metal box. The induced voltage causes a breakdown of a device or a malfunction of the equipment. In this study, the author measured the induced voltage in the box using a sphere gap and an electromagnetic wave sensor. This paper presents that the author measures the induced voltage with changing the area of two metal foils in the box. As the results, the author clears that the induced voltage increases up to 1.6 times when the area of induction electrode is 10 times (100cm2) larger than that of 10cm2, and the induced voltage doesn't change so far as the area of an ungrounded metal foil is not changed. The fruit will be useful for designing the printed circuit board as a basic study for preventing the malfunction or the failure of the electronic equipment of the partially opened metal box.

  16. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    Science.gov (United States)

    2015-10-08

    Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6... perturbations caused by the GWs) as a function of space and time at the altitudes z=200-300 km. These perturbations will then be given to Dr. Makela to...for public release; distribution is unlimited. Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere Sharon

  17. Design and verification of monopole patch antenna systems to generate orbital angular momentum waves

    OpenAIRE

    Dandan Liu; Liangqi Gui; Cong Zhou; Zixiao Zhang; Han Chen; Tao Jiang

    2017-01-01

    Monopole patch antenna systems, which can generate orbital angular momentum (OAM) waves at 2.4GHz, are proposed in this paper. The proposed antenna systems have advantages of simple planar structure and small size of antenna element. Design, simulation, fabrication and measurement of the proposed antenna systems are presented. Two feeding networks, which constitute the proposed antenna systems with monopole patch antenna array, are designed to generate modes 1 and 2 of OAM waves. The antenna ...

  18. Higher-Order Moment Characterisation of Rogue Wave Statistics in Supercontinuum Generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Bang, Ole; Wetzel, Benjamin

    2012-01-01

    The noise characteristics of supercontinuum generation are characterized using higherorder statistical moments. Measures of skew and kurtosis, and the coefficient of variation allow quantitative identification of spectral regions dominated by rogue wave like behaviour.......The noise characteristics of supercontinuum generation are characterized using higherorder statistical moments. Measures of skew and kurtosis, and the coefficient of variation allow quantitative identification of spectral regions dominated by rogue wave like behaviour....

  19. Sound generation and upstream influence due to instability waves interacting with non-uniform mean flows

    Science.gov (United States)

    Goldstein, M. E.

    1984-01-01

    Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.

  20. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    Energy Technology Data Exchange (ETDEWEB)

    Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  1. Harnessing Alternative Energy Sources to Enhance the Design of a Wave Generator

    Science.gov (United States)

    Bravo, A.

    2017-12-01

    Wave energy has the power to replace a non-renewable source of electricity for a home near the ocean. I built a small-scale wave generator capable of producing approximately 5 volts of electricity. The generator is an array of 16 small generators, each consisting of 200 feet of copper wire, 12 magnets, and a buoy. I tested my design in the Pacific Ocean and was able to power a string of lights I had attached to the generator. While the waves in the ocean moved my buoys, my design was powered by the vertical motion of the waves. My generator was hit with significant horizontal wave motion, and I realized I wasn't taking advantage of that direction of motion. To make my generator produce more electricity, I experimented with capturing the energy of the horizontal motion of water and incorporated that into my generator design. My generator, installed in the ocean, is also exposed to sun and wind, and I am exploring the potential of solar and wind energy collection in my design to increase the electricity output. Once I have maximized my electricity output, I would like to explore scaling up my design.

  2. Non linear dynamic of Langmuir and electromagnetic waves in space plasmas

    International Nuclear Information System (INIS)

    Guede, Jose Ricardo Abalde

    1995-11-01

    The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the

  3. On the spectrum of vertically propagating gravity waves generated by a transient heat source

    Directory of Open Access Journals (Sweden)

    M. J. Alexander

    2004-01-01

    Full Text Available It is commonly believed that cumulus convection preferentially generates gravity waves with tropospheric vertical wavelengths approximately twice the depth of the convective heating. Individual cumulonimbus, however, act as short term transient heat sources (duration 10 to 30min. Gravity waves generated by such sources have broad frequency spectra and a wide range of vertical scales. The high-frequency components tend to have vertical wavelengths much greater than twice the depth of the heating. Such waves have large vertical group velocities, and are only observed for a short duration and at short horizontal distances from the convective source. At longer times and longer distances from the source the dominant wave components have short vertical wavelengths and much slower group velocities, and thus are more likely to be observed even though their contribution to the momentum flux in the upper stratosphere and mesosphere may be less than that of the high frequency waves. These properties of convectively generated waves are illustrated by a linear numerical model for the wave response to a specified transient heat source. The wave characteristics are documented through Fourier and Wavelet analysis, and implications for observing systems are discussed.

  4. Self-generation and management of spin-electromagnetic wave solitons and chaos

    International Nuclear Information System (INIS)

    Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.

    2014-01-01

    Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.

  5. Time-of-arrival analysis applied to ELF/VLF wave generation experiments at HAARP

    Science.gov (United States)

    Moore, R. C.; Fujimaru, S.

    2012-12-01

    Time-of-arrival (TOA) analysis is applied to observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska. In 2012, a variety of ELF/VLF wave generation techniques were employed to identify the dominant source altitude for each case. Observations were performed for beat-wave modulation, AM modulation, STF modulation, ICD modulation, and cubic frequency modulation, among others. For each of these cases, we identify the dominant ELF/VLF source altitude and compare the experimental results with theoretical HF heating predictions.

  6. Generation of ULF waves by the Drift-Mirror plasma instability.

    Science.gov (United States)

    Soto-chavez, A. R.; Lanzerotti, L. J.; Cohen, R. J.; Gerrard, A. J.; Manweiler, J. W.; Xia, Z.; Chen, L.; Kim, H.

    2017-12-01

    We present conclusive evidence of a ULF (Pc5 range) wave generated by the Drift-Mirror plasma instability in Earth's inner magnetosphere. Although seldom discussed, we show that the drift-mirror instability can play an important role in the generation of ultra-low frequency (ULF) waves in Earth's inner magnetosphere. The drift-mirror instability is a high-beta plasma instability, and so we present two year measurements of high-beta events taken by the RBSPICE instrument onboard Van Allen Probes. Thus, we discuss the implications of these new measurements and their role on wave-particle interactions in Earth's inner magnetosphere.

  7. THz wave generation and imaging for industrial applications

    Science.gov (United States)

    Kawase, K.; Shibuya, T.; Suizu, K.; Hayashi, S.

    2010-04-01

    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also describe a non-destructive inspection system that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. Further we report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. These techniques are directly applicable to the non-destructive testing in industries.

  8. Generation of Long Waves using Non-Linear Digital Filters

    DEFF Research Database (Denmark)

    Høgedal, Michael; Frigaard, Peter; Christensen, Morten

    1994-01-01

    transform of the 1st order surface elevation and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for real-time applications, for example where white noise are filtered digitally to obtain a wave spectrum with built-in stochastic variabillity. In the present paper an approximative...... method for including the correct 2nd order bound terms in such applications is presented. The technique utilizes non-liner digital filters fitted to the appropriate transfer function is derived only for bounded 2nd order subharmonics, as they laboratory experiments generally are considered the most...

  9. Kuznetsov-Ma waves train generation in a left-handed material

    Science.gov (United States)

    Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon

    2015-03-01

    We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.

  10. Implementation of viscoelastic mud-induced energy attenuation in the third-generation wave model, SWAN

    Science.gov (United States)

    Beyramzade, Mostafa; Siadatmousavi, Seyed Mostafa

    2018-01-01

    The interaction of waves with fluid mud can dissipate the wave energy significantly over few wavelengths. In this study, the third-generation wave model, SWAN, was advanced to include attenuation of wave energy due to interaction with a viscoelastic fluid mud layer. The performances of implemented viscoelastic models were verified against an analytical solution and viscous formulations for simple one-dimensional propagation cases. Stationary and non-stationary test cases in the Surinam coast and the Atchafalaya Shelf showed that the inclusion of the mud-wave interaction term in the third-generation wave model enhances the model performance in real applications. A high value of mud viscosity (of the order of 0.1 m2/s) was required in both field cases to remedy model overestimation at high frequency ranges of the wave spectrum. The use of frequency-dependent mud viscosity value improved the performance of model, especially in the frequency range of 0.2-0.35 Hz in the wave spectrum. In addition, the mud-wave interaction might affect the high frequency part of the spectrum, and this part of the wave spectrum is also affected by energy transfer from wind to waves, even for the fetch lengths of the order of 10 km. It is shown that exclusion of the wind input term in such cases might result in different values for parameters of mud layer when inverse modeling procedure was employed. Unlike viscous models for wave-mud interaction, the inverse modeling results to a set of mud parameters with the same performance when the viscoelastic model is used. It provides an opportunity to select realistic mud parameters which are in more agreement with in situ measurements.

  11. RF generated currents in a magnetized plasma using a slow wave structure

    International Nuclear Information System (INIS)

    Poole, B.R.; Cheo, B.R.; Kuo, S.P.; Tang, M.G.

    1983-01-01

    The generation of a dc current in a plasma by using RF waves is of importance for the operation of steadystate toroidal devices. An experimental investigation in the use of unidirectional, low frequency RF waves to drive currents has been made. Instead of using a natural plasma wave a slow wave guiding structure is used along the entire length of the plasma. When the RF wave is injected an increase in ionization and T/sub e/, and hence the background current is observed. However, the change depends on wave direction: The +k/sub z/ excitation yields a much larger electron current compared with the -k/sub z/ excitation indicating a net wave driven current. The measured modification in electron density and T/sub e/ is independent of wave direction. The current with a standing wave excitation generally falls at the average of the travelling wave (+ or - k/sub z/) driven currents. The net wave driven current is proportional to the feed power at approx. = 10 mA/kW. No saturation of the current is observed with feed powers up to 1 kW. Since the exciting structure is only 1 wavelength long, its k/sub z/ spectrum is relatively broad and hence no sharp resonances are observed as various plasma parameters and B/sub O/ are changed. There is no measurable difference between the power absorbed by the load resistors and the input power to the slow wave structure. Thus the current is driven by the wave field exclamation E exclamation 2 rather than the power absorbed in the plasma. The theoretical background and the physical mechanism is presented

  12. Impulsively Generated Wave Trains in Coronal Structures. II. Effects of Transverse Structuring on Sausage Waves in Pressurelesss Slabs

    Science.gov (United States)

    Li, Bo; Guo, Ming-Zhe; Yu, Hui; Chen, Shao-Xia

    2018-03-01

    Impulsively generated sausage wave trains in coronal structures are important for interpreting a substantial number of observations of quasi-periodic signals with quasi-periods of order seconds. We have previously shown that the Morlet spectra of these wave trains in coronal tubes depend crucially on the dispersive properties of trapped sausage waves, the existence of cutoff axial wavenumbers, and the monotonicity of the dependence of the axial group speed on the axial wavenumber in particular. This study examines the difference a slab geometry may introduce, for which purpose we conduct a comprehensive eigenmode analysis, both analytically and numerically, on trapped sausage modes in coronal slabs with a considerable number of density profiles. For the profile descriptions examined, coronal slabs can trap sausage waves with longer axial wavelengths, and the group speed approaches the internal Alfvén speed more rapidly at large wavenumbers in the cylindrical case. However, common to both geometries, cutoff wavenumbers exist only when the density profile falls sufficiently rapidly at distances far from coronal structures. Likewise, the monotonicity of the group speed curves depends critically on the profile steepness right at the structure axis. Furthermore, the Morlet spectra of the wave trains are shaped by the group speed curves for coronal slabs and tubes alike. Consequently, we conclude that these spectra have the potential for inferring the subresolution density structuring inside coronal structures, although their detection requires an instrumental cadence of better than ∼1 s.

  13. A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island

    Science.gov (United States)

    Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun

    2017-01-01

    A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.

  14. Modeling linear Rayleigh wave sound fields generated by angle beam wedge transducers

    Directory of Open Access Journals (Sweden)

    Shuzeng Zhang

    2017-01-01

    Full Text Available In this study, the reciprocity theorem for elastodynamics is transformed into integral representations, and the fundamental solutions of wave motion equations are obtained using Green’s function method that yields the integral expressions of sound beams of both bulk and Rayleigh waves. In addition to this, a novel surface integral expression for propagating Rayleigh waves generated by angle beam wedge transducers along the surface is developed. Simulation results show that the magnitudes of Rayleigh wave displacements predicted by this model are not dependent on the frequencies and sizes of transducers. Moreover, they are more numerically stable than those obtained by the 3-D Rayleigh wave model. This model is also applicable to calculation of Rayleigh wave beams under the wedge when sound sources are assumed to radiate waves in the forward direction. Because the proposed model takes into account the actual calculated sound sources under the wedge, it can be applied to Rayleigh wave transducers with different wedge geometries. This work provides an effective and general tool to calculate linear Rayleigh sound fields generated by angle beam wedge transducers.

  15. Generation and effects of EMIC waves observed by the Van Allen Probes on 18 March 2013

    Science.gov (United States)

    Zhang, J.; Saikin, A.; Gamayunov, K. V.; Spence, H. E.; Larsen, B.; Geoffrey, R.; Smith, C. W.; Torbert, R. B.; Kurth, W. S.; Kletzing, C.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves play a crucial role in particle dynamics in the Earth's magnetosphere. The free energy for EMIC wave generation is usually provided by the temperature anisotropy of the energetic ring current ions. EMIC waves can in turn cause particle energization and losses through resonant wave-particle interactions. Using measurements from the Van Allen Probes, we perform a case study of EMIC waves and associated plasma conditions observed on 18 March 2013. From 0204 to 0211 UT, the Van Allen Probe-B detected He+-band EMIC wave activity in the post-midnight sector (MLT=4.6-4.9) at very low L-shells (L=2.6-2.9). The event occurred right outside the inward-pushed plasmapause in the early recovery phase of an intense geomagnetic storm - min. Dst = -132 nT at 2100 UT on 17 March 2013. During this event, the fluxes of energetic (> 1 keV), anisotropic O+ dominate both the H+ and He+ fluxes in this energy range. Meanwhile, O+ fluxes at low energies (magnetic field. EMIC wave growth rates are also calculated to evaluate the role of loss-cone distributed ring current ions in the EMIC wave generation.

  16. A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.

    Science.gov (United States)

    Harb, M S; Yuan, F G

    2015-08-01

    A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Seismic wave generation systems and methods for cased wells

    Science.gov (United States)

    Minto, James [Houston, TX; Sorrells, Martin H [Huffman, TX; Owen, Thomas E [Helotes, TX; Schroeder, Edgar C [San Antonio, TX

    2011-03-29

    A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.

  18. Numerical Study of Balearic Meteotsunami Generation and Propagation under Synthetic Gravity Wave Forcing

    Science.gov (United States)

    Licer, Matjaz; Mourre, Baptiste; Troupin, Charles; Krietemeyer, Andreas; Tintoré, Joaquín

    2017-04-01

    A high resolution nested ocean modelling system forced by synthetic atmospheric gravity waves is used to investigate meteotsunami generation, amplification and propagation properties over the Mallorca-Menorca shelf (Balearic Islands, Western Mediterranean Sea). We determine how meteotsunami amplitude outside and inside of the Balearic port of Ciutadella depends on forcing gravity wave direction, speed and trajectory. Contributions of Mallorca shelves and Menorca Channel are quantified for different gravity wave forcing angles and speeds. Results indicate that the Channel is the key build-up region and that Northern and Southern Mallorca shelves do not significantly contribute to the amplitude of substantial harbour oscillations in Ciutadella. This fact seriously reduces early-warning alert times in cases of locally generated pressure perturbations. Tracking meteotsunami propagation paths in the Menorca Channel for several forcing velocities, we show that the Channel bathymetry serves as a focusing lens for meteotsunami waves whose paths are constrained by the forcing direction. Faster meteotsunamis are shown to propagate over deeper ocean regions, as required by the Proudman resonance. Meteotsunami speed under sub- and supercritical forcing is estimated and a first order estimate of its magnitude is derived. Meteotsunamis generated by the supercritical gravity waves are found to propagate with a velocity which is equal to an arithmetic mean of the gravity wave speed and local ocean barotropic wave speed.

  19. Plasma loading and wave generation for ICRH in the ST Tokamak

    International Nuclear Information System (INIS)

    Adam, J.; Getty, W.D.; Hooke, W.M.; Hosea, J.C.; Sinclair, R.M.

    1974-01-01

    Plasma loading and wave generation for two half-turn loops operating at 25 MHz are being investigated on the ST Tokamak at power levels up to 1 MW. The equivalent series resistance R/sub s/ = P/sub rf//I 2 /sub rf/, measured as a function of Ω = ω/ω/sub ci/(r = 0) and plasma density, is found to be in good agreement with the predictions of the cylindrical theory. R/sub s/ values as high as several ohms are obtained at high densities giving wave generation efficiencies well above 90 percent. Loading near Ω = 1 and 2 is apparently independent of power level. Measurements of B/sub zrf/ at 20 locations about the torus reveal the predicted wave generation; m = 0, +1 slow waves in the vicinity of Ω = 1, m = -1 fast waves after the expected onset (usually Ω greater than or equal to 1), and m = 0, +1 fast waves for higher Ω. Toroidal eigenmodes accompanied by large loading are detected for the fast waves when the damping lengths are long

  20. Generation and detection of ultrabroadband infrared wave exceeding 200 THz

    Directory of Open Access Journals (Sweden)

    Ashida Masaaki

    2013-03-01

    Full Text Available By focusing a hollow-fiber compressed intense 10–fs pulse and its second harmonic in air, an ultrabroadband infrared pulse with a spectral range of 1–200 THz is generated through a plasma. Coherent detection of the signal up to 100 THz is achieved with electro–optic sampling and THz air-breakdown-coherent-detection. The drastic dependence on the orientation of the second harmonic crystal is clarified in a range of 100–200 THz. From these, the whole frequency components are confirmed to be generated from the AC biased plasma and phase-locked.

  1. Second generation diffusion model of interacting gravity waves on the surface of deep fluid

    Directory of Open Access Journals (Sweden)

    A. Pushkarev

    2004-01-01

    Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.

  2. Numerical studies of current generation by radio-frequency traveling waves

    International Nuclear Information System (INIS)

    Karney, C.F.F.; Fisch, N.J.

    1979-01-01

    By injecting radio-frequency traveling waves into a tokamak, continuous toroidal electron currents may be generated. This process is studied by numerically solving the two-dimensional Fokker-Planck equation with an added quasilinear term. The results are compared with the one-dimensional analytic treatment of Fisch, which predicted a reduced plasma resistivity when high-phase-velocity waves are employed. It is shown here that two-dimensional velocity space effects, while retaining the predicted scaling, further reduce the ratio of power dissipated to current generated by about 40%. These effects enhance the attractiveness of steady-state tokamak reactors utilizing this method of current generation

  3. Measurements on a shock wave generated by a solar flare

    International Nuclear Information System (INIS)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Having reviewed data obtained on a high-velocity shock generated by a solar flare on 18 August 1979, 1400 UT and commented on some previously deduced velocities for the shock, a model, based on current computer programs to account for the overall characteristics of the shock as it propagated through the corona and the interplanetary plasma, is presented. (U.K.)

  4. Coherent and Incoherent Rogue Waves in Seeded Supercontinuum Generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech

    2013-01-01

    The shot-to-shot stability of a supercontiuum (SC) can be controlled both in terms of coherence and intensity stability by modulating the input pulse with a weak seed [1-3]. In the long-pulse regime, the SC generation is initiated by noise-seeded modulation instability (MI), which breaks the pump...

  5. Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations

    Science.gov (United States)

    Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael

    2014-01-01

    Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.

  6. Electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 μm) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters

  7. Generation and propagation of shock waves in the exhaust pipe of a 4 cycle automobile engine

    Science.gov (United States)

    Sekine, N.; Matsumura, S.; Aoki, K.; Takayama, K.

    1990-07-01

    An experimental investigation was made of reduction of noise generated in the exhaust pipe of a half liter 4-cycle water-cooled automobile gasoline engine. The pressure measurement along the exhaust pipe showed the nonlinear transition of compression waves discharged from the exhaust port of the engine into shock waves. In order to obtain a direct evidence of shock waves in the exhaust pipe, a flow visualization study was also conducted using a double exposure holographic interferometry. Weak shock waves of Mach number 1.09 exist in the exhaust pipe. For the purpose of collecting the data for designing optimum muffler configurations, additional shock tube experiments were carried out. The results indicates that the study of the non-linear wave interaction and propagation is important for the design of muffler.

  8. Status and plans for future generations of ground-based interferometric gravitational wave antennas

    International Nuclear Information System (INIS)

    Kawamura, Seiji

    2003-01-01

    Several medium- to large-scale ground-based interferometric gravitational-wave antennas have been constructed around the world. Although these antennas of the first generation could detect gravitational waves within a few years, it is necessary to improve the sensitivity of the detectors significantly with advanced technologies to ensure more frequent detection of gravitational waves. Stronger seismic isolation and reduction of thermal noise, especially using cryogenic mirrors, are among the most important technologies that can lead us to the realization of advanced detectors. Some of the advanced technologies are already implemented in some of the existing detectors and others are currently being investigated for the future-generation detectors such as advanced LIGO, LCGT, upgrade of GEO600, AIGO, and EURO. We expect that such advanced detectors will eventually open a new window to the universe and establish a new field, 'gravitational wave astronomy'

  9. Finite element simulation of laser generated ultrasound waves in aluminum plates

    Directory of Open Access Journals (Sweden)

    Peyman Soltani

    Full Text Available The Laser-Ultrasonic technique uses laser energy to generate ultrasound waves in various solids. This technique allows inspecting large structures. The generated ultrasound wave form is affected by features of laser pulse (wavelength, pulse duration, power density. The goal of this paper is to study the effects of laser parameters (rise time and beam radius of laser on the laser generated surface acoustic waves in an aluminum plate. The results obtained from the finite element model of laser generated ultrasound are presented in terms of temperature and displacement. At first, the transient temperature field can be precisely calculated by using the finite element method. Then, laser generated surface acoustic wave forms are calculated in aluminum plate. Results from numerical simulation are compared with other references; the accuracy of the method is proved accordingly. In this simulation the sequential field coupling is used. Simulation results show that the laser parameters have a significant influence on the ultrasound waves and will be able to be utilized to choose best experimental parameters of laser.

  10. Electrostatic Climber for Space Elevator and Launcher

    OpenAIRE

    Bolonkin, A.

    2007-01-01

    Author details research on the new, very prospective, electrostatic Space Elevator climber based on a new electrostatic linear engine previously offered at the 42nd Joint Propulsion Conference (AIAA-2006-5229) and published in AEAT, Vol.78, No.6, 2006, pp. 502-508. The electrostatic climber discussed can have any speed (and braking), the energy for climber movement is delivered by a lightweight high-voltage line into a Space Elevator-holding cable from Earth electric generator. This electric ...

  11. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  12. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  13. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  14. Study on Dissipation of Landslide Generated Waves in Different Shape of Reservoirs

    Science.gov (United States)

    An, Y.; Liu, Q.

    2017-12-01

    The landslide generated waves are major risks for many reservoirs located in mountainous areas. As the initial wave is often very huge (e.g. 30m of the height in Xiaowan event, 2009, China), the dissipation of the wave, which is closely connected with the shape of the reservoir (e.g. channel type vs. lake type), is a crucial factor in risk estimation and prevention. While even for channel type reservoir, the wave damping also varies a lot due to details of the shape such as branches and turnings. Focusing on the influence of this shape details on the wave damping in channel type reservoir, we numerically studied two landslide generated wave events with both a triangle shape of the cross section but different longitudinal shape configurations (Xiaowan event in 2009 and an assuming event in real topography). The two-dimensional Saint-Venant equation and dry-wet boundary treatment method are used to simulate the wave generation and propagation processes. The simulation is based on an open source code called `Basilisk' and the adaptive mesh refinement technique is used to achieve enough precision with affordable computational resources. The sensitivity of the parameters representing bed drag and the vortex viscosity is discussed. We found that the damping is relatively not sensitive to the bed drag coefficient, which is natural as the water depth is large compared with wave height. While the vortex viscosity needs to be chosen carefully as it is related to cross sectional velocity distribution. It is also found that the longitudinal shape, i.e. the number of turning points and branches, is the key factor influencing the wave damping. The wave height at the far field could be only one seventh comparing with the initial wave in the case with complex longitudinal shape, while the damping is much weaker in the straight channel case. We guess that this phenomenon is due to the increasing sloshing at these abruptly changed positions. This work could provide a deeper

  15. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    Science.gov (United States)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  16. 3D Numerical Simulations of Impulsively Generated MHD Waves in Solar Coronal Loops

    Science.gov (United States)

    Selwa, M.; Murawski, K.; Kowal, G.; Nakariakov, V.; Aschwanden, M.; Oliver, R.; Ballester, J. L.

    2004-01-01

    Impulsively generated magnetohydrodynamic waves in a typical EUV solar coronal loop are studied numerically with a use of the three-dimensional FLASH code. Our results reveal several 3D effects such as distinctive time signatures which are collected at a detection point inside the loop. A slow magnetosonic wave generates a significant variation in a mass density profile with a time-scale of the order of s. A fast kink wave affects a mass density too but its magnitude is much lower than in the case of a slow wave. Time-scales which are associated with the fast kink wave are generally lower than in the case of a slow wave; they are in the range of a dozen or so seconds. Temporal signatures of a fast sausage wave reveal s oscillations in the quasi-periodic phase. Impulses which are launched outside the loop excite few seconds oscillations in the mass density. Time-signatures depend on a position of the detection point; they are usually more complex further out from the exciter.

  17. Bedforms induced by solitary waves: laboratory studies on generation and migration rate

    Science.gov (United States)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico; Paola, Chris

    2017-04-01

    This study presents experiments on the formation of sandy bedforms, produced by surface solitary waves (SSWs) in shallow water conditions. The experiments were carried out in a 12.0 m long, 0.15 m wide and 0.5 m high flume, at Saint Anthony Falls Laboratory in Minneapolis. The tank is filled by fresh water and a removable gate, placed at the left hand-side of the tank, divides the flume in two regions: the lock region and the ambient fluid region. The standard lock-release method generates SSWs by producing a displacement between the free surfaces that are divided by the gate. Wave amplitude, wavelength, and celerity depend on the lock length and on the water level difference between the two regions. Natural sand particles (D50=0.64) are arranged on the bottom in order to form a horizontal flat layer with a thickness of 2 cm. A digital pressure gauge and a high-resolution acoustic velocimeter allowed us to measure, locally, both pressure and 3D water velocity induced on the bottom by each wave. Image analysis technique is then used to obtain the main wave features: amplitude, wavelength, and celerity. Dye is finally used as vertical tracer to mark the horizontal speed induced by the wave. For each experiment we generated 400 waves, having the same features and we analyzed their action on sand particles placed on the bottom. The stroke, induced by each wave, entails a shear stress on the sand particles, causing sediment transport in the direction of wave propagation. Immediately after the wave passage, a back flow occurs near the bottom. The horizontal pressure gradient and the velocity field induced by the wave cause the boundary layer separation and the consequent reverse flow. Depending on the wave features and on the water depth, the boundary shear stress induced by the reverse flow can exceed the critical value inducing the back motion of the sand particles. The experiments show that the particle back motion is localized at particular cross sections along the

  18. Generation of coincedent EMIC and whistler mode waves by an ICME-shock.

    Science.gov (United States)

    Halford, A. J.; Mann, I. R.

    2016-12-01

    Radiation belt dynamics are controlled by the competition of multiple acceleration and loss mechanisms. Electromagnetic ion cyclotron (EMIC), chorus, and hiss waves have all been implicated as potential loss mechanisms of radiation belt electrons. Chorus waves are also proposed as a mechanism for accelerating the lower energy source population to MeV energies. Understanding the relative importance of these waves as well as where and under what conditions they are generated is vital to predicting radiation belt dynamics. Although the size of the solar wind compression on 9 Jan. 2014 event discussed here was modest, it gave us an opportunity to clearly observe how a magnetospheric compression can lead to the generation of EMIC, chorus, and hiss waves. The ICME generated shock encountered the Earth's magnetosphere at 20:11 UT on 9 Jan. 2014, and the Van Allen Probes observe the coincident excitation of EMIC and Chorus waves outside the plasmasphere, and hiss waves inside the plasmasphere. As the shock encountered the magnetosphere, an electric field impulse was observed to generate an increase in temperature anisotropy for both ions and electrons. This increased temperature anisotropy led to increased wave growth on both the ion and electron cyclotron branches. The simultaneous generation of multiple wave types may lead to significant impacts on the acceleration and loss of radiation belt electrons, especially during geomagnetic compressions observed during storms and substorms, as well as during quiet time sudden impulse events. For example, the excitation of both EMIC and chorus waves at the same place and time, may complicate studies seeking a causal connection between specific individual plasma wave bursts and observations of particle loss to the atmosphere. During this relatively small event, BARREL had three payloads in conjunction with the Van Allen Probes, two of the payloads inferred electron precipitation within the energy range typically associated with

  19. Generation of Shock-Wave Disturbances at Plasma-Vapor Bubble Oscillation

    Science.gov (United States)

    Kuznetsova, N. S.; Yudin, A. S.; Voitenko, N. V.

    2015-11-01

    The complex physical and mathematical model describing all steps of plasma-vapor bubble evolution in the system of the water-ground condensed media is presented. Discharge circuit operation, discharge plasma channel expansion, its transformation into the vapor-plasma bubble and its pulsation, pressure wave generation and propagation of the mechanical stress waves in the ground are self-consistently considered in the model. The model allows investigation of the basic laws of stored energy transformation into the discharge plasma channel, next to the plasma-vapor bubble and transformation of this energy to the energy of pressure wave compressing the surrounding ground. Power characteristics of wave disturbances generated by gas-vapor bubble oscillation in liquid depending on the circuit parameters are analyzed for the prediction of the ground boundary displacement. The dynamics of the shock-wave propagation in water-ground condensed media depending on the rate of the plasma channel energy release is investigated. Simulation of the shock-wave phenomena at a plasma-vapor bubble oscillation in condensed media consecutively describes the physical processes underlying technology for producing piles by electro-discharge stuffing. The quantitative model verified by physical experimental tests will allow optimization of pulse generator parameters and electrode system construction of high-voltage equipment.

  20. Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan.

    Science.gov (United States)

    Roeber, Volker; Bricker, Jeremy D

    2015-08-06

    Storm surges cause coastal inundation due to setup of the water surface resulting from atmospheric pressure, surface winds and breaking waves. Here we show that during Typhoon Haiyan, the setup generated by breaking waves near the fringing-reef-protected town of Hernani, the Philippines, oscillated with the incidence of large and small wave groups, and steepened into a tsunami-like wave that caused extensive damage and casualties. Though fringing reefs usually protect coastal communities from moderate storms, they can exacerbate flooding during strong events with energetic waves. Typical for reef-type bathymetries, a very short wave-breaking zone over the steep reef face facilitates the freeing of infragravity-period fluctuations (surf beat) with little energy loss. Since coastal flood planning relies on phase-averaged wave modelling, infragravity surges are not being accounted for. This highlights the necessity for a policy change and the adoption of phase-resolving wave models for hazard assessment in regions with fringing reefs.

  1. Performance of a direct drive hydro turbine for wave power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y-H; Kim, C-G [Division of Mechanical and Information Engineering, Korea Maritime University Dongsam-dong 1, Youngdo-ku, Busan, 606-791 (Korea, Republic of); Choi, Y-D; Kim, I-S [Department of Mechanical Engineering, Mokpo National University Muan-ro 560, Chunggye-myun, Jeonnam, 534-729 (Korea, Republic of); Hwang, Y-C, E-mail: lyh@hhu.ac.k [R and D Institute, Shinhan Precision Co. Ltd. Gomo-ri 313, Jinle-myun, Kimhae, 621-881 (Korea, Republic of)

    2010-08-15

    Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil-fueled power plants as a countermeasure against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for wave power plant. Experiment and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that the DDT obtains fairly good turbine efficiency in both cases of with wave and no wave conditions. As the turbine performance is influenced considerably by the wave condition, designed point of the turbine should be determined according to the wave condition at an expected installation site. Most of the output power generates at the runner passage of the Stage 2.

  2. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  3. A hybrid DEM-SPH model for deformable landslide and its generated surge waves

    Science.gov (United States)

    Tan, Hai; Chen, Shenghong

    2017-10-01

    Reservoir bank landslide and its generated surge waves are catastrophic hazards which may give rise to additional sedimentation, destroy hydraulic structures, and even cause fatalities. Since this process is very complex involving landslide impact, wave generation and propagation, it cannot be well captured with traditional numerical approaches. In this paper, a hybrid DEM-SPH model is presented to simulate landslide and to reproduce its generated surge waves. This model consists of discrete element method (DEM) for solid phase and smoothed particle hydrodynamics (SPH) for fluid phase as well as drag force and buoyancy for solid-fluid interaction. Meanwhile, the δ-SPH algorithm is employed to eliminate spurious numerical noise on the pressure field. Submarine rigid block slide is numerically tested to validate the proposed hybrid model, and the computed wave profiles exhibit a satisfactory agreement with the experiment. The hybrid model is further extended towards the submarine granular deformable slide which generates smaller and less violent surge waves. Kinetic and potential energy of both solid and fluid particle system are extracted to throw a light upon the process of landslide water interaction from an energy perspective. Finally, a sensitivity analysis on particle friction coefficient indicates that the lubrication of the solid particles is another important effect influencing the underwater landslide movement in addition to the drag effect.

  4. On the generation and evolution of internal solitary waves in the southern Red Sea

    KAUST Repository

    Guo, Daquan

    2015-04-01

    Satellite observations recently revealed the existence of trains of internal solitary waves in the southern Red Sea between 16.0°N and 16.5°N, propagating from the centre of the domain toward the continental shelf [Da silva et al., 2012]. Given the relatively weak tidal velocity in this area and their generation in the central of the domain, Da Silva suggested three possible mechanisms behind the generation of the waves, namely Resonance and disintegration of interfacial tides, Generation of interfacial tides by impinging, remotely generated internal tidal beams and for geometrically focused and amplified internal tidal beams. Tide analysis based on tide stations data and barotropic tide model in the Red Sea shows that tide is indeed very weak in the centre part of the Red Sea, but it is relatively strong in the northern and southern parts (reaching up to 66 cm/s). Together with extreme steep slopes along the deep trench, it provides favourable conditions for the generation of internal solitary in the southern Red Sea. To investigate the generation mechanisms and study the evolution of the internal waves in the off-shelf region of the southern Red Sea we have implemented a 2-D, high-resolution and non-hydrostatic configuration of the MIT general circulation model (MITgcm). Our simulations reproduce well that the generation process of the internal solitary waves. Analysis of the model\\'s output suggests that the interaction between the topography and tidal flow with the nonlinear effect is the main mechanism behind the generation of the internal solitary waves. Sensitivity experiments suggest that neither tidal beam nor the resonance effect of the topography is important factor in this process.

  5. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  6. Spatial localization and azimuthal wave numbers of Alfvén waves generated by drift-bounce resonance in the magnetosphere

    Directory of Open Access Journals (Sweden)

    P. N. Mager

    2005-12-01

    Full Text Available Spatial localization and azimuthal wave numbers m of poloidal Alfvén waves generated by energetic particles in the magnetosphere are studied in the paper. There are two factors that cause the wave localization across magnetic shells. First, the instability growth rate is proportional to the distribution function of the energetic particles, hence waves must be predominantly generated on magnetic shells where the particles are located. Second, the frequency of the generated poloidal wave must coincide with the poloidal eigenfrequency, which is a function of the radial coordinate. The combined impact of these two factors also determines the azimuthal wave number of the generated oscillations. The beams with energies about 10 keV and 150 keV are considered. As a result, the waves are shown to be strongly localized across magnetic shells; for the most often observed second longitudinal harmonic of poloidal Alfvén wave (N=2, the localization region is about one Earth radius across the magnetic shells. It is shown that the drift-bounce resonance condition does not select the m value for this harmonic. For 10 keV particles (most often involved in the explanation of poloidal pulsations, the azimuthal wave number was shown to be determined with a rather low accuracy, -100wave number is determined with a better accuracy, but both of these numbers are too small (if the waves are generated by 150 keV particles, or the waves are generated on magnetic shells (in 10 keV case which are too far away. The calculated values of γ/ω are not large enough to overcome the damping on the ionosphere. All these have cast some suspicion on the possibility of the drift-bounce instability to generate poloidal pulsations in the magnetosphere.

  7. R&D Towards Commercialization of Sea Wave Slot Cone Generator (SSG) Overtopping Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    there are significant gaps between what the ventures are offering to investors and what the potential investors are seeking (Murphy and Edwards 2003). When risks associated to the investment is high, simply the deals often don’t look very attractive. It is indeed necessary to reduce information gaps or asymmetries...... a fruitful decade. Improvement of technologies together with financial support at different levels gave space to new ideas, bringing the research to gamble on different concepts. While innumerable projects went through an initial testing phase that lasts 5-10 years, only few of them reached the sea prototype......”. This is the stage where the wave energy sector is. The limited ability of many ventures to attract private financing is certainly one of the major barriers. However, it is also very often a symptom of other underlying, and more fundamental issues. In reality, ventures fail to obtain funding because...

  8. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    CERN Document Server

    Tanabé, T; Nishizawa, J I; Saitô, K; Kimura, T

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source.

  9. Secondary current properties generated by wind-induced water waves in experimental conditions

    Directory of Open Access Journals (Sweden)

    Michio Sanjou

    2014-06-01

    Full Text Available Secondary currents such as the Langmuir circulation are of high interest in natural rivers and the ocean because they have striking impacts on scour, sedimentation, and mass transport. Basic characteristics have been well-studied in straight open-channel flows. However, little is known regarding secondary circulation induced by wind waves. The presented study describes the generation properties of wind waves observed in the laboratory tank. Wind-induced water waves are known to produce large scale circulations. The phenomenon is observed together with high-speed and low-speed streaks, convergence and divergence zones, respectively. Therefore, it is important to determine the hydrodynamic properties of secondary currents for wind-induced water waves within rivers and lakes. In this study, using two high-speed CMOS cameras, stereoscopic particle image velocimetry (PIV measurements were conducted in order to reveal the distribution of all three components of velocity vectors. The experiments allowed us to investigate the three-dimensional turbulent structure under water waves and the generation mechanism of large-scale circulations. Additionally, a third CMOS camera was used to measure the spanwise profile of thefree-surface elevation. The time-series of velocity components and the free-surface were obtained simultaneously. From our experiments, free-surface variations were found to influence the instantaneous velocity distributions of the cross-sectional plane. We also considered thegeneration process by the phase analysis related to gravity waves and compared the contribution of the apparent stress.

  10. Inductive and electrostatic acceleration in relativistic jet-plasma interactions.

    Science.gov (United States)

    Ng, Johnny S T; Noble, Robert J

    2006-03-24

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma-wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.

  11. Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks.

    Science.gov (United States)

    Zhao, Youxuan; Li, Feilong; Cao, Peng; Liu, Yaolu; Zhang, Jianyu; Fu, Shaoyun; Zhang, Jun; Hu, Ning

    2017-08-01

    Since the identification of micro-cracks in engineering materials is very valuable in understanding the initial and slight changes in mechanical properties of materials under complex working environments, numerical simulations on the propagation of the low frequency S 0 Lamb wave in thin plates with randomly distributed micro-cracks were performed to study the behavior of nonlinear Lamb waves. The results showed that while the influence of the randomly distributed micro-cracks on the phase velocity of the low frequency S 0 fundamental waves could be neglected, significant ultrasonic nonlinear effects caused by the randomly distributed micro-cracks was discovered, which mainly presented as a second harmonic generation. By using a Monte Carlo simulation method, we found that the acoustic nonlinear parameter increased linearly with the micro-crack density and the size of micro-crack zone, and it was also related to the excitation frequency and friction coefficient of the micro-crack surfaces. In addition, it was found that the nonlinear effect of waves reflected by the micro-cracks was more noticeable than that of the transmitted waves. This study theoretically reveals that the low frequency S 0 mode of Lamb waves can be used as the fundamental waves to quantitatively identify micro-cracks in thin plates. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  13. Spatial quantum correlations in the fluorescence of traveling-wave second-harmonic generation

    International Nuclear Information System (INIS)

    Scotto, Pierre

    2003-01-01

    We investigate theoretically the spatial quantum correlations of the light produced by spontaneous emission in type-I second-harmonic generation in the traveling-wave configuration. It is first shown that spontaneous emission occurs at both fundamental and second-harmonic frequency. Considering the quantum fluctuations of the intensities collected in symmetrical parts of the far-field plane, nonclassical correlations below the shot noise are predicted not only at fundamental frequency, but also at second-harmonic frequency. The latter cannot be traced back to any twin-photon emission mechanism, but are generated by a secondary process acting on twin photons. This mechanism also creates correlations between fundamental and second-harmonic field, at a given transverse wave number, and at opposite wave numbers. The analysis of a simplified few-mode model, on a quantum level, provides a good qualitative understanding of these correlations

  14. Generation and growth rates of nonlinear distortions in a traveling wave tube.

    Science.gov (United States)

    Wöhlbier, John G; Dobson, Ian; Booske, And John H

    2002-11-01

    The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results.

  15. Generation and growth rates of nonlinear distortions in a traveling wave tube

    International Nuclear Information System (INIS)

    Woehlbier, John G.; Dobson, Ian; Booske, John H.

    2002-01-01

    The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results

  16. Radio data and computer simulations for shock waves generated by solar flares

    International Nuclear Information System (INIS)

    Maxwell, A.; Dryer, M.

    1980-01-01

    Solar radio bursts of spectral type II provide a prime diagnostic for the passage of shock waves, generated by solar flares, through the solar corona. In this investigation the authors compare radio data on the shocks with computer simulations for the propagation of fast-mode MHD shocks through the solar corona. (Auth.)

  17. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2013-01-01

    Abstract—Sea-surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate

  18. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Ainslie, M.A.; Colin, M.E.G.D.; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform-related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modelling

  19. Effect of air jet vortex generators on a shock wave boundary layer interaction

    NARCIS (Netherlands)

    Souverein, L.J.; Debiève, J.F.

    2010-01-01

    The effect of upstream injection by means of continuous air jet vortex generators (AJVGs) on a shock wave turbulent boundary layer interaction is experimentally investigated. The baseline interaction is of the impinging type, with a flow deflection angle of 9.5degrees and a Mach number Me = 2.3.

  20. Partial Stator Overlap in a Linear Generator for Wave Power: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Anna E. Frost

    2017-11-01

    Full Text Available This paper presents a study on how the power absorption and damping in a linear generator for wave energy conversion are affected by partial overlap between stator and translator. The theoretical study shows that the electrical power as well as the damping coefficient change quadratically with partial stator overlap, if inductance, friction and iron losses are assumed independent of partial stator overlap or can be neglected. Results from onshore experiments on a linear generator for wave energy conversion cannot reject the quadratic relationship. Measurements were done on the inductance of the linear generator and no dependence on partial stator overlap could be found. Simulations of the wave energy converter’s operation in high waves show that entirely neglecting partial stator overlap will overestimate the energy yield and underestimate the peak forces in the line between the buoy and the generator. The difference between assuming a linear relationship instead of a quadratic relationship is visible but small in the energy yield in the simulation. Since the theoretical deduction suggests a quadratic relationship, this is advisable to use during modeling. However, a linear assumption could be seen as an acceptable simplification when modeling since other relationships can be computationally costly.

  1. A wave generation toolbox for the open‐source CFD library: OpenFoam

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; Fuhrman, David R.; Fredsøe, Jørgen

    2012-01-01

    The open‐source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorption...

  2. Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation.

    Science.gov (United States)

    Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil

    2017-08-01

    Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation

    International Nuclear Information System (INIS)

    Olsen, M.K.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal

  4. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (cyanide poisoning are presented.

  5. TUMOR-GROWTH DELAY BY LASER-GENERATED SHOCK-WAVES

    NARCIS (Netherlands)

    de Reijke, T. M.; Schamhart, D. H.; Kurth, K. H.; Löwik, C. W.; Donkers, L. H.; Sterenborg, H. J.

    1994-01-01

    The antiproliferative effect of laser-generated shock waves (L-SW) was investigated on a human renal cell carcinoma, RC-8, grown subcutaneously in the nu/nu mouse. The RC-8 is characterized by the syndrome of humoral hypercalcemia of malignancy (HHM) associated with profound cachexia, increase of

  6. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    International Nuclear Information System (INIS)

    Prokopov, P A; Zakharov, Yu P; Tishchenko, V N; Shaikhislamov, I F; Boyarintsev, E L; Melekhov, A V; Ponomarenko, A G; Posukh, V G; Terekhin, V A

    2016-01-01

    Generation of Alfven waves propagating along external magnetic field B 0 and Collisionless Shock Waves propagating across B 0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field E φ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field B φ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B 0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number M A ∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*10 13 cm -3 is observed. At the same conditions but smaller M A ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B 0 ∼100÷500 G for a distance of ∼2.5 m is studied. (paper)

  7. Silicon Photonics Integrated Circuits for 5th Generation mm-Wave Wireless Communications

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applicability...

  8. Spontaneous generation of bending waves in isolated Milky Way-like discs

    Science.gov (United States)

    Chequers, Matthew H.; Widrow, Lawrence M.

    2017-12-01

    We study the spontaneous generation and evolution of bending waves in N-body simulations of two isolated Milky Way-like galaxy models. The models differ by their disc-to-halo mass ratios, and hence by their susceptibility to the formation of a bar and spiral structure. Seeded from shot noise in the particle distribution, bending waves rapidly form in both models and persist for many billions of years. Waves at intermediate radii manifest as corrugated structures in vertical position and velocity that are tightly wound, morphologically leading and dominated by the m = 1 azimuthal Fourier component. A spectral analysis of the waves suggests they are a superposition of modes from two continuous branches in the Galactocentric radius-rotational frequency plane. The lower frequency branch is dominant and is responsible for the corrugated, leading and warped structure. Over time, power in this branch migrates outward, lending credence to an inside-out formation scenario for the warp. Our power spectra qualitatively agree with results from linear perturbation theory and a WKB analysis, both of which include self-gravity. Thus, we conclude that the waves in our simulations are self-gravitating and not purely kinematic. These waves are reminiscent of the wave-like pattern recently found in Galactic star counts from the Sloan Digital Sky Survey and smoothly transition to a warp near the disc's edge. Velocity measurements from Gaia data will be instrumental in testing the true wave nature of the corrugations. We also compile a list of 'minimum requirements' needed to observe bending waves in external galaxies.

  9. Generation of lower hybrid and whistler waves by an ion velocity ring distribution

    International Nuclear Information System (INIS)

    Winske, D.; Daughton, W.

    2012-01-01

    Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant (∼15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small ( −4 ). The results are compared with relevant linear and nonlinear theory.

  10. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  11. Acoustic-wave generation in the process of CO2-TEA-laser-radiation interaction with metal targets in air

    Science.gov (United States)

    Apostol, Ileana; Teodorescu, G.; Serbanescu-Oasa, Anca; Dragulinescu, Dumitru; Chis, Ioan; Stoian, Razvan

    1995-03-01

    Laser radiation interaction with materials is a complex process in which creation of acoustic waves or stress waves is a part of it. As a function of the laser radiation energy and intensity incident on steel target surface ultrasound signals were registered and studied. Thermoelastic, ablation and breakdown mechanisms of generation of acoustic waves were analyzed.

  12. Origin of Foreshock Electron Waves Below the Local Plasma Frequency

    Science.gov (United States)

    Soucek, J.; Pisa, D.; Hajos, M.; Santolik, O.

    2017-12-01

    Electrostatic plasma waves near the plasma frequency are a typical feature of the foreshock region. These waves are known to be generated by electrons reflected by the shock, but the form of the electron distribution function varies greatly with local shock properties, distance to the shock and foreshock geometry. Far upstream in the electron foreshock, narrowband Langmuir and beam mode waves close to plasma frequency are generated by weak and fast electron beams. A more complex scenario appears deeper in the foreshock, in particular near the foot region of oblique and quasi-parallel shock, where electrostatic waves are observed well below the plasma frequency. We use Cluster data to investigate the properties of such waves and the associated electron distribution function. Cluster consistently observes electron beams at weakly suprathermal energies and loss-cone features associated with generation of the waves. We investigate a dependence of beam energy on the location within the foreshock and compare the results with an existing shock acceleration model. We perform a statistical comparison between electric field spectrum and observed electron distributions showing a correlation between beam energy and frequency of the wave emission relative to the local plasma frequency. We show that the origin of low frequency waves can in most cases be interpreted in terms of beam mode instability, but in some very low frequency cases, other physical mechanism is needed to explain the observations, such as generation of electron-acoustic waves or electrostatic electron-cyclotron instability.

  13. Technical and economic feasibility study of a Frond type wave power generator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This report describes the first stage of the development of a Frond type wave generator by the Engineering Business (EB) in collaboration with the University of Lancaster Engineering Department. The EB Frond concept is a sea-bed reacting, surging machine consisting of a near-surface collector mounted on an arm pivoted near the seabed. The study had six main elements (investigation, physical and mathematical modelling, site characterisation, design review and cost study). The investigation phase involved a study of wave properties and behaviour, while physical models were tested in a wave tank. A mathematical model was developed and used to assess the design's power output. The characteristics of a suitable site for EB Frond generators were determined and the process of identifying possible sites for a demonstrator machine was begun. The mechanical and system arrangement of the design were evaluated and modified. The effects of varying the installation's input parameters (e.g. wave environment factors) were examined using an energy cost model whose output is energy production and cost. It was concluded that the Frond principle was technically viable though there were some remaining engineering and other application problems. Cost modelling suggested that the EB Frond system had potential for long-term commercial prospects. The report recommends the construction and testing of an intermediate scale model with more realistic wave conditions.

  14. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  15. Analysis of Floating Buoy of a Wave Power Generating Jack-Up Platform Haiyuan 1

    Directory of Open Access Journals (Sweden)

    Date Li

    2013-01-01

    Full Text Available The paper focuses on the performance of floating buoys of a wave power generating jack-up platform called Haiyuan 1, in order to work out the optimum designed draft and hydraulic pressure. The performance of the buoy, especially its delivered power, is an important issue in designing oscillating buoy wave energy converter. In this case, major factors affect the performance including incident wave, designed draft, and hydraulic pressure on the buoy. To find out the relationship among design draft, hydraulic pressure, and delivered power, the key point is to precisely estimate wave induced motion of the buoy. Three-dimensional theory and time domain method based on potential theory were adopted in the paper. Unlike ship and other floating structures, motion of wave energy converter (WEC buoy in wave will be weakened because of energy take-off, which will cause significant draft changing with time. Thus, draft changing should be taken into consideration as well. In addition, green water problem occurs more frequently than that in ship and other floating structures and also might the reduce delivered power. Therefore, green water problem will also be taken into account when choosing the optimum designed draft and hydraulic pressure. The calculation indicates that the optimum designed draft is 0.935 m, while the optimum designed hydraulic pressure is 30 kN.

  16. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. I. FE analysis of surface wave generation.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2013-07-01

    A numerical study is carried out of the surface acoustic wave generation by a bulk acoustic wave in a half-infinite anisotropic half-space without piezoeffect. The efficient conversion of bulk waves into surface waves occurs due to a grating area created on the surface of the substrate. Our simulations are fully based on the finite element method. Given the incident bulk wave, we directly determine the amplitude of the surface wave and investigate its dependence on various parameters specifying the situation under consideration, such as the frequency and the polarization of the bulk wave, the length of the grating, the geometrical size of grooves or strips forming the grating. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact

    Science.gov (United States)

    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.

    2008-04-01

    A model of spin-torque-induced magnetization dynamics based on semiclassical spin diffusion theory for a single-layer nanocontact is presented. The model incorporates effects due to the current-induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin-wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted field and the orientation of an applied field. These fields act as a spin-wave “corral” around the nanocontact that controls the propagation of spin waves in certain directions.

  18. Landslide-Generated Waves in a Dam Reservoir: The Effects of Landslide Rheology and Initial Submergence

    Science.gov (United States)

    Yavari Ramsheh, S.; Ataie-Ashtiani, B.

    2017-12-01

    Recent studies revealed that landslide-generated waves (LGWs) impose the largest tsunami hazard to our shorelines although earthquake-generated waves (EGWs) occur more often. Also, EGWs are commonly followed by a large number of landslide hazards. Dam reservoirs are more vulnerable to landslide events due to being located in mountainous areas. Accurate estimation of such hazards and their destructive consequences help authorities to reduce their risks by constructive measures. In this regard, a two-layer two-phase Coulomb mixture flow (2LCMFlow) model is applied to investigate the effects of landslide characteristics on LGWs for a real-sized simplification of the Maku dam reservoir, located in the North of Iran. A sensitivity analysis is performed on the role of landslide rheological and constitutive parameters and its initial submergence in LGW characteristics and formation patterns. The numerical results show that for a subaerial (SAL), a semi-submerged (SSL), and a submarine landslide (SML) with the same initial geometry, the SSLs can create the largest wave crest, up to 60% larger than SALs, for dense material. However, SMLs generally create the largest wave troughs and SALs travel the maximum runout distances beneath the water. Regarding the two-phase (solid-liquid) nature of the landslide, when interestial water is isolated from the water layer along the water/landslide interface, a LGW with up to 30% higher wave crest can be created. In this condition, increasing the pore water pressure within the granular layer results in up to 35% higher wave trough and 40% lower wave crest at the same time. These results signify the importance of appropriate description of two-phase nature and rheological behavior of landslides in accurate estimation of LGWs which demands further numerical, physical, and field studies about such phenomena.

  19. A collision-based model for measuring bedload transport from the seismic waves generated by rivers

    Science.gov (United States)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Stark, C. P.

    2011-12-01

    Accurately predicting rates of coarse sediment transport in river channels is a central goal of fluvial geomorphology and civil engineering. However, it is difficult to evaluate sediment transport and bedrock abrasion models in large rivers because quantitative measures of bedload transport are labor intensive and often dangerous to obtain in floods. Two recent studies show that the amplitude of seismic waves near rivers may record bedload flux, indicating that seismometers near rivers provide a potential means of monitoring bedload transport. In an effort to better interpret seismic waves generated by rivers, we seek a relationship between the variables governing bedload transport and seismic waves. Our approach relies on the fact that elastic waves are generated when momentum is transferred to the bed during a bedload particle impact. For an impacting particle of known mass and velocity, the momentum transfer can be computed from Hertzian impact theory. Here we combine analytic results based on Hertzian and elastic wave theories with empirical equations developed to describe the ballistics of bedload particles in terms of fluid shear stress and grain size. From this synthesis we arrive at a semi-analytic expression that predicts how the characteristic frequencies and amplitudes of seismic waves generated from saltating bedload particles should scale with fluid shear stress, grain size, and coarse sediment flux. Preliminary tests of our predictions using previously published and newly acquired laboratory data indicate that seismic signals near rivers can record information about the size, velocity and number of particles impacting the bed. Additionally, our analytical results help identify bedload transport events in seismic data collected along the Chijiawan River in Taiwan. Here the river is evolving rapidly in response to a dam removal - resulting in predictable changes in bedload transport efficiency in time and space that we can compare to local seismic data.

  20. Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.

    Science.gov (United States)

    Yang, S-H; Watts, R; Li, X; Wang, N; Cojocaru, V; O'Gorman, J; Barry, L P; Jarrahi, M

    2015-11-30

    We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.

  1. Low frequency electrostatic instabilities excited by injection of an electron beam in space

    International Nuclear Information System (INIS)

    Hwang, Y.S.; Okuda, H.

    1989-02-01

    One-dimensional particle simulations have been carried out to study the low frequency broadband electrostatic noise that propagates almost perpendicularly from the magnetic field line when a nonrelativistic electron beam is injected into space from a spacecraft. For T/sub e/ = T/sub i/ the electrostatic ion cyclotron waves appear as well as the waves near the lower hybrid frequency. When the magnetic field is reduced so that Ω/sub e/ T/sub i/, oblique ion acoustic instabilities appear to propagate almost perpendicular to the magnetic field. In addition, a very low frequency mode at ω << Ω/sub i/ is found to be generated by the electrons flowing into the conductor. Both the ion injected beam electrons as well as the ambient electrons flowing into the spacecraft are responsible for generating those instabilities, which accelerate ions perpendicular to the magnetic field. 11 refs., 9 figs

  2. Experimental study of compact FEL with micro wiggler and electrostatic accelerator

    International Nuclear Information System (INIS)

    Fujii, S.; Fujita, T.; Mizuno, T.; Ohshima, T.; Kawai, M.; Saito, H.; Kuroki, S.; Koshiji, K.

    2001-01-01

    A compact FEL for submillimeter and far infrared regions is studied at the Institute of Space and Astronautical Science. The FEL can be compact by using an electrostatic accelerator and a micro wiggler. The electrostatic accelerator (DISKTRON) with a diameter of 1 m can generate up to 1 MV continuously. The micro wiggler is fabricated using permanent magnets made from Nd-Fe-B. (period: 8 mm, total length: 248 mm, gap: 2-10 mm, K parameter: 0.07-0.7) An electron beam of high quality is generated by means of a photo cathode. (731 kV, 1.5 A, 25 ns, 2 mmphi, ΔE/E:0.18%) In the preliminary phase, detection of the FEL at the millimeter wave region of 96 GHz is conducted. The electron beam is injected into a resonator with Distributed Bragg Reflector. A small millimeter wave signal has been detected

  3. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength

    OpenAIRE

    Savochkin, I. V.; J?ckl, M.; Belotelov, V. I.; Akimov, I. A.; Kozhaev, M. A.; Sylgacheva, D. A.; Chernov, A. I.; Shaposhnikov, A. N.; Prokopov, A. R.; Berzhansky, V. N.; Yakovlev, D. R.; Zvezdin, A. K.; Bayer, M.

    2017-01-01

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with ...

  4. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  5. Efficient heat generation in large-area graphene films by electromagnetic wave absorption

    Science.gov (United States)

    Kang, Sangmin; Choi, Haehyun; Lee, Soo Bin; Park, Seong Chae; Park, Jong Bo; Lee, Sangkyu; Kim, Youngsoo; Hong, Byung Hee

    2017-06-01

    Graphene has been intensively studied due to its outstanding electrical and thermal properties. Recently, it was found that the heat generation by Joule heating of graphene is limited by the conductivity of graphene. Here we suggest an alternative method to generate heat on a large-area graphene film more efficiently by utilizing the unique electromagnetic (EM) wave absorption property of graphene. The EM wave induces an oscillating magnetic moment generated by the orbital motion of moving electrons, which efficiently absorbs the EM energy and dissipate it as a thermal energy. In this case, the mobility of electron is more important than the conductivity, because the EM-induced diamagnetic moment is directly proportional to the speed of electron in an orbital motion. To control the charge carrier mobility of graphene we functionalized substrates with self-assembled monolayers (SAM). As the result, we find that the graphene showing the Dirac voltage close to zero can be more efficiently heated by EM waves. In addition, the temperature gradient also depends on the number of graphene. We expect that the efficient and fast heating of graphene films by EM waves can be utilized for smart heating windows and defogging windshields.

  6. Numerical modelling of the structure of electromagnetic disturbances generated by acoustic-gravity waves

    International Nuclear Information System (INIS)

    Pogorel'tsev, A.I.; Bidlingmajer, E.R.

    1992-01-01

    A numeric model of electromagnetic field disturbances generated under the interaction of acoustic-gravitational waves with ionospheric plasma is elaborated and vertical structure of the above disturbances is calculated. The estimates shown that electromagnetic disturbances can penetrate into neutral atmosphere and can be recorded through measurements of the variation of magnetic field and electron field vertical component near the earth is surface. A conclusion is made on a feasibility of monitoring of acoustic-gravitational wave activity in the lower thermosphere through land measurements of magnetic and electric field variations

  7. Surface plasma wave assisted second harmonic generation of laser over a metal film

    International Nuclear Information System (INIS)

    Chauhan, Santosh; Parashar, J.

    2015-01-01

    Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metal–vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave

  8. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes

    International Nuclear Information System (INIS)

    Han Ying; Hou Lan-Tian; Zhou Gui-Yao; Xia Chang-Ming; Wang Wei; Wang Chao; Hou Zhi-Yun; Yuan Jin-Hui

    2012-01-01

    Flat supercontinuum in the telecommunication wave bands of E+S+C is generated by coupling a train of femtosecond pulses generated by a mode-locked Ti:sapphire laser into the fundamental mode of a photonic crystal fiber with central holes fabricated in our lab. The pulse experiences the anomalous dispersion regime, and the soliton dynamic effect plays an important role in supercontinuum generation. The output spectrum in the wavelength range of 1360–1565 nm does not include significant ripples due to higher pump peak power, and the normalized intensity shows less fluctuation. (fundamental areas of phenomenology(including applications))

  9. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  10. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers.

    Science.gov (United States)

    Zajnulina, M; Böhm, M; Blow, K; Rieznik, A A; Giannone, D; Haynes, R; Roth, M M

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  11. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  12. PREFACE: Electrostatics 2015

    Science.gov (United States)

    Matthews, James

    2015-10-01

    presentation related to their work. Chilworth Technology and Infolytica both took advantage of this opportunity. David Firth from Chilworth Technology delivered some case studies related to process safety and Chris Emson from Infolytica compared the different types of modelling software used in industry and academia. For two days of the conference, an exhibition was held for delegates to meet and discuss their work with interested companies. Sessions on Modelling and Simulation and on Measurement and Instrumentation were included. Recent successful IOP meetings on Electrospinning and Electrospray prove that this is an important topic, and were the subject of a session in the conference, including an invited talk by Dr Horst von Recum on Electrospun materials for affinity based drug delivery. The conference finished with a session on Environmental and Space Applications. The Southampton Yacht Club provided a fitting venue for the conference dinner on the Wednesday evening. Meal times, and conference dinners in particular, are always a great opportunity to meet with other workers in related fields, and there were many conversations started in question and answer sessions that continued over a plate of food. Within the conference dinner, prizes were awarded for the best student work. Ladislav Konopka's talk in the modelling and simulation session discussed how different particle sizes can be shown to transfer charge in a modelled system. Matthias Perez's poster presented early work on the use of a small-scale wind turbine to generate wind power. The discussions both within the lecture theatre and the ongoing discussions that occur over coffee and tea in between sessions are often a place where new ideas are shared. In fact, the presentation submitted by Dr Atsushi Ohsawa, Charge neutralisation from the side surface of an insulating plate, acknowledged an inspiration from a question raised at a previous Electrostatics conference in Budapest in 2013. In these proceedings the

  13. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  14. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    Science.gov (United States)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; hide

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  15. Triple Michelson interferometer for a third-generation gravitational wave detector

    International Nuclear Information System (INIS)

    Freise, A; Chelkowski, S; Hild, S; Pozzo, W Del; Perreca, A; Vecchio, A

    2009-01-01

    The upcoming European design study 'Einstein gravitational-wave Telescope' represents the first step towards a substantial, international effort for the design of a third-generation interferometric gravitational wave detector. It is generally believed that third-generation instruments might not be installed into existing infrastructures but will provoke a new search for optimal detector sites. Consequently, the detector design could be subject to fewer constraints than the on-going design of the second-generation instruments. In particular, it will be prudent to investigate alternatives to the traditional L-shaped Michelson interferometer. In this paper, we review an old proposal to use three Michelson interferometers in a triangular configuration. We use this example of a triple Michelson interferometer to clarify the terminology and will put this idea into the context of more recent research on interferometer technologies. Furthermore, the benefits of a triangular detector will be used to motivate this design as a good starting point for a more detailed research effort towards a third-generation gravitational-wave detector.

  16. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

    Science.gov (United States)

    Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio

    2017-09-20

    During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated. SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the

  17. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    Science.gov (United States)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  18. On the generation and evolution of internal solitary waves in the southern Red Sea

    KAUST Repository

    Guo, Daquan

    2016-11-28

    Satellite observations recently revealed trains of internal solitary waves (ISWs) in the off-shelf region between 16.0 degrees N and 16.5 degrees N in the southern Red Sea. The generation mechanism of these waves is not entirely clear, though, as the observed generation sites are far away (50 km) from the shelf break and tidal currents are considered relatively weak in the Red Sea. Upon closer examination of the tide properties in the Red Sea and the unique geometry of the basin, it is argued that the steep bathymetry and a relatively strong tidal current in the southern Red Sea provide favorable conditions for the generation of ISWs. To test this hypothesis and further explore the evolution of ISWs in the basin, 2-D numerical simulations with the nonhydrostatic MIT general circulation model (MITgcm) were conducted. The results are consistent with the satellite observations in regard to the generation sites, peak amplitudes and the speeds of first-mode ISWs. Moreover, our simulations suggest that the generation process of ISWs in the southern Red Sea is similar to the tide-topography interaction mechanism seen in the South China Sea. Specifically, instead of ISWs arising in the immediate vicinity of the shelf break via a hydraulic lee wave mechanism, a broad, energetic internal tide is first generated, which subsequently travels away from the shelf break and eventually breaks down into ISWs. Sensitivity runs suggest that ISW generation may also be possible under summer stratification conditions, characterized by an intermediate water intrusion from the strait of Bab el Mandeb.

  19. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  20. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  1. Stochastic generation of MAC waves and implications for convection in Earth's core

    Science.gov (United States)

    Buffett, Bruce; Knezek, Nicholas

    2018-03-01

    Convection in Earth's core can sustain magnetic-Archemedes-Coriolis (MAC) waves through a variety of mechanisms. Buoyancy and Lorentz forces are viable sources for wave motion, together with the effects of magnetic induction. We develop a quantitative description for zonal MAC waves and assess the source mechanisms using a numerical dynamo model. The largest sources at conditions accessible to the dynamo model are due to buoyancy forces and magnetic induction. However, when these sources are extrapolated to conditions expected in Earth's core, the Lorentz force emerges as the dominant generation mechanism. This source is expected to produce wave velocities of roughly 2 km yr-1 when the internal magnetic field is characterized by a dimensionless Elsasser number of roughly Λ ≈ 10 and the root-mean-square convective velocity defines a magnetic Reynolds number of Rm ≈ 103. Our preferred model has a radially varying stratification and a constant (radial) background magnetic field. It predicts a broad power spectrum for the wave velocity with most power distributed across periods from 30 to 100 yr.

  2. AN APPROACH TO WAVE ENERGY CONVERTER APPLICATIONS ON TURKEY AND THEIR ELECTRICITY GENERATION CAPACITY

    Directory of Open Access Journals (Sweden)

    ABDI KUKNER

    2016-06-01

    Full Text Available Increasing the amount of research on renewable wave energy in Turkey has been getting crucial recently to reduce its energy dependence on exhaustible natural energy resources. The purpose of this study is to determine the electrical energy potential obtainable from the wave energy converters in Turkey. Firstly, different type of wave energy conversion systems have been investigated and as a result of the review, the Oscillating Water Column (OWC is considered to be most effective energy converter due to a suitable power generation system. The scope of the study is to evaluate and compare the wave energy potential between different regions of Turkey by using available wind and wave data. Five different coastal regions selected along the coastline of Black and Mediterranean Sea and Iğneada is considered to be most effective region because of their highest wavelength. In addition, OWC is modeled as a system using the pressed air in a column and it is mathematically described as a difference in pressure and expressed by the Bernoulli equation. General equations of motion of a system subject to forced oscillation are derived, and then, the components of the damping coefficient are investigated by using the optimization theory. After that, the theory developed in the previous part has been applied to Iğneada Region in Black Sea. It is finally shown that how much electricity needs to be met by using OWC system.

  3. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    Directory of Open Access Journals (Sweden)

    Antonio Arnau-Vives

    2009-07-01

    Full Text Available This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW, Surface Transverse Wave (STW, Love Wave (LW, Flexural Plate Wave (FPW, Shear Horizontal Acoustic Plate Mode (SH-APM and Layered Guided Acoustic Plate Mode (LG-APM - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications.

  4. Experimental Investigation of the Interaction of Blast Waves Generated by Exploding Wires using Background Oriented Schlieren

    Science.gov (United States)

    Gross, Jonathan; Eliasson, Veronica

    2015-11-01

    Work has been performed to experimentally characterize the interaction of a multiple blast waves. The blast waves were generated using an exploding wire system. This system can store up to 400 J of energy in a high voltage capacitor bank. By discharging the capacitors through wires of a diameter of 150 μm it was possible to produce blast waves with Mach numbers as high as 2.3 at a distance of 40 mm from the center of the blast. A parametric study was performed to measure the behavior of the shocks for a variety of wire thicknesses, voltages, and separation distances. Additionally a background oriented schlieren system was used to quantify the flowfield behind the shocks. The interaction of the shocks featured expected nonlinear phenomena such as the presence of Mach stems, and showed good agreement with results in the shock wave literature. This investigation lays the groundwork for subsequent research that will use exploding wires to experimentally reproduce conditions investigated numerically, in which the effects of multiple converging blast waves on a central target were investigated.

  5. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    Science.gov (United States)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  6. Theoretical and experimental investigation of electron beam acceleration and submillimeter wave generation in cyclotron resonant cavities

    Science.gov (United States)

    Luhmann, N. C., Jr.; McDermott, D. B.

    1991-06-01

    Many millimeter wave generation interactions have been under development. A prebunched high harmonic gyrotron has extended the power level of our previous high harmonic gyrotrons. Also, the instabilities in gyro traveling wave tube (TWT) amplifiers are now understood and methods have been formulated to stabilize them (multi severs). This work has led to the design of a very high power (500 kW) harmonic gyro-TWT using a conventional MIG, which we plan to build in the next few years. We have also been active in the development of an extremely high power millimeter wave source, the CARM: (1) we have designed and simulated a 300 MW, 17 GHz device for the next generation high gradient RF linac; (2) we actively participated in LLNL's 250 GHz CARM project; and (3) we are continuing to fabricate at UCLA a 400 kV, 10 MW proof of principle CARM, which will use Bragg reflectors for its requisite frequency selective cavity. We have advanced the state-of-the-art of Bragg reflectors by testing high mode purity Bragg reflectors. In addition, we have designed and are well into the construction of a very high power, wideband continuous tunability gyro backward wave oscillator (BWO) and a very efficient gyro-klystron amplifier.

  7. Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field

    Science.gov (United States)

    Takahashi, Masayuki

    2017-10-01

    A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.

  8. Experimental and numerical study of shock wave propagation in water generated by pulsed arc electrohydraulic discharges

    Science.gov (United States)

    Chen, Wen; Maurel, Olivier; La Borderie, Christian; Reess, Thierry; De Ferron, Antoine; Matallah, Mohammed; Pijaudier-Cabot, Gilles; Jacques, Antoine; Rey-Bethbeder, Frank

    2014-05-01

    The objective of this study is to simulate the propagation of the shock wave in water due to an explosion. The study is part of a global research program on the development of an alternative stimulation technique to conventional hydraulic fracturing in tight gas reservoirs aimed at inducing a distributed state of microcracking of rocks instead of localized fracture. We consider the possibility of increasing the permeability of rocks with dynamic blasts. The blast is a shock wave generated in water by pulsed arc electrohydraulic discharges. The amplitude of these shock waves is prescribed by the electrohydraulic discharges which generate high pressures of several kilobars within microseconds. A simplified method has been used to simulate the injected electrical energy as augmentation of enthalpy in water locally. The finite element code EUROPLEXUS is used to perform fluid fast dynamic computation. The predicted pressure is consistent with the experimental results. In addition, shock wave propagation characteristics predicted with simulation can be valuable reference for design of underwater structural elements and engineering of underwater explosion.

  9. Impact of Generator Stroke Length on Energy Production for a Direct Drive Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Yue Hong

    2016-09-01

    Full Text Available The Lysekil wave energy converter (WEC, developed by the wave energy research group of Uppsala University, has evolved through a variety of mechanical designs since the first prototype was installed in 2006. The hundreds of engineering decisions made throughout the design processes have been based on a combination of theory, know-how from previous experiments, and educated guesses. One key parameter in the design of the WECs linear generator is the stroke length. A long stroke requires a taller WEC with associated economical and mechanical challenges, but a short stroke limits the power production. The 2-m stroke of the current WECs has been an educated guess for the Swedish wave climate, though the consequences of this choice on energy absorption have not been studied. When the WEC technology is considered for international waters, with larger waves and challenges of energy absorption and survivability, the subject of stroke length becomes even more relevant. This paper studies the impact of generator stroke length on energy absorption for three sites off the coasts of Sweden, Chile and Scotland. 2-m, 4-m, and unlimited stroke are considered. Power matrices for the studied WEC prototype are presented for each of the studied stroke lengths. Presented results quantify the losses incurred by a limited stroke. The results indicate that a 2-m stroke length is likely to be a good choice for Sweden, but 4-m is likely to be necessary in more energetic international waters.

  10. GPS-TEC Observation of Gravity Waves Generated in the Ionosphere During 21 August 2017 Total Solar Eclipse

    Science.gov (United States)

    Nayak, Chinmaya; Yiǧit, Erdal

    2018-01-01

    The present work investigates ionospheric effects of the 21 August 2017 total solar eclipse, particularly targeting eclipse-generated gravity waves in the ionosphere. Ionospheric total electron content (TEC) derived from Global Positioning System (GPS) data obtained from a number of stations located both along and across the path of eclipse totality has been utilized for this purpose. Distinct gravity wave-like signatures with wave periods around 20-90 min (with dominant peak at 25-30 min wave period) have been observed at all locations both in the path of totality and away from it. The observed gravity waves are more intense at locations closer to the path of totality, and the wave amplitudes decrease gradually with increasing distance from the path of totality. Our result highlights the manifestation of eclipse-generated waves in the variability of the terrestrial ionosphere.

  11. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  12. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications

    Directory of Open Access Journals (Sweden)

    Chen S. Tsai

    2017-02-01

    Full Text Available An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  13. Acoustic nuclear magnetic resonance due to generation of sound waves in metals

    International Nuclear Information System (INIS)

    Solovarov, N.K.

    1975-01-01

    Nuclear magnetic resonance (NMR) in a metallic plate is considered taking account of acoustic waves (AW) generated by an outer electromagnetic field. In observing the NMR in a conducting media it is suggested that only nuclear spins in a thin skin-layer, participate in the energy resonance absorption. Electromagnetic wave penetration into a sample in the presence of a constant magnetic field is followed by a direct sound generation. Acoustic NMR can be observed during interaction of excited AW with nuclear spins. Energy absorption by nuclear spins occurs over the whole volume of the sample by means of helicons and AW. In this case the NMR signal is the summarized absorption one. It is necessary to analize every time carefully the nature of the observed signal . Relative values of contributions into the NMR signal of the following mechanisms of sound absorption by the nuclear spin-system are estimated in the present paper: 1) electromagnetic absorption taking no account of sound generation; 2) the mechanism of the magnetic dipole absorption of AW, generated in the sample; 3) the mechanism of absorption of AW different from that of the magnetic dipole mechanism. The results of numerical estimates are represented graphically. The conclusions are as follows: 1) in the majority of cases it is necessary to take into account sound generation in metals in observing NMR; 2) contributions due to mechanisms diferent from the magnetic dipole mechanism of absorption of the sound, generated in the sample by the spin-system, may be significant

  14. Competing processes of whistler and electrostatic instabilities in the magnetosphere

    International Nuclear Information System (INIS)

    Omura, Y.; Matsumoto, H.

    1987-01-01

    Competing processes of whistler mode and electrostatic mode instabilities induced by an electron beam are studied by a linear growth rate analysis and by an electromagnetic particle simulation. In addition to a background cold plasma we assumed an electron beam drifting along a static magnetic field. We studied excitation of whistler and electrostatic mode waves in the direction of the static magnetic field. We first calculated linear growth rates for the whistler mode and electrostatic mode instabilities, assuming various possible parameters in the equatorial magnetosphere. We found that the growth rate for the electrostatic instability is always larger than that of the whistler mode instability. A short simulation run with a monoenergetic electron beam demonstrates that a monoenergetic beam can hardly give energy to whistler mode waves as a result of competition with faster growing electrostatic waves, because the beam electrons are trapped and diffused by the electrostatic waves, and hence the growth rates for whistler mode waves become very small. A long simulation run starting with a warm electron beam demonstrates that whistler mode waves are excited in spite of the small growth rates and the coexisting quasi-linear electrostatic diffusion process

  15. Effect of localized microstructural evolution on higher harmonic generation of guided wave modes

    Science.gov (United States)

    Choi, Gloria; Liu, Yang; Yao, Xiaochu; Lissenden, Cliff J.

    2015-03-01

    Higher harmonic generation of ultrasonic waves has the potential to be used to detect precursors to macroscale damage of phenomenon like fatigue due to microstructural evolution contributing to nonlinear material behavior. Aluminum plates having various plastic zone sizes were plastically deformed to different levels. The fundamental shear horizontal mode was then generated in the plate samples via a magnetostrictive transducer. After propagating through the plastic zone the primary wave mode (SH0) and its third harmonic (sh0) were received by a second transducer. Results of a parallel numerical study using the S1-s2 Lamb mode pair, where sensitivity to changes in third order elastic constants were investigated, are described within the context of the experimental results. Specimens used within both studies are geometrically similar and have double edge notches for dog bone samples that introduce localized plastic deformation. Through both studies, the size of the plastic zone with respect to the propagation distance and damage intensity influence the higher harmonics.

  16. Optical single sideband millimeter-wave signal generation and transmission using 120° hybrid coupler

    Science.gov (United States)

    Zheng, Zhiwei; Peng, Miao; Zhou, Hui; Chen, Ming; Jiang, Leyong; Tan, Li; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-03-01

    We propose a novel 60 GHz optical single sideband (OSSB) millimeter-wave (mm-wave) signal generation scheme using 120° hybrid coupler based on external integrated Mach-Zehnder modulator (MZM). The proposed scheme shows that the bit error ratio (BER) performance is improved by suppressing the +2nd-order sideband. Meanwhile, the transmission distance is extended as only the optical +1st-order sideband is modulated by using 5 Gbit/s baseband signal while the carrier is blank, owing to the elimination of walk-off effect suffered from fiber dispersion. The simulation results demonstrated that the eye diagrams of the generated 60 GHz OSSB signal keep open and clear after 100 km standard single-mode fiber (SSMF). In addition, the proposed scheme can achieve 2 dB receiver sensitivity improvements than the conventional 90° hybrid coupler when transmitted over 100 km SSMF at a BER of 10-9.

  17. Frequency-dependent responses in third generation gravitational-wave detectors

    Science.gov (United States)

    Essick, Reed; Vitale, Salvatore; Evans, Matthew

    2017-10-01

    Interferometric gravitational-wave detectors are dynamic instruments. Changing gravitational-wave strains influence the trajectories of null geodesics and therefore modify the interferometric response. These effects will be important when the associated frequencies are comparable to the round-trip light travel time down the detector arms. The arms of advanced detectors currently in operation are short enough that the strain can be approximated as static, but planned 3rd generation detectors, with arms an order of magnitude longer, will need to account for these effects. We investigate the impact of neglecting the frequency-dependent detector response for compact binary coalescences and show that it can introduce large systematic biases in localization, larger than the statistical uncertainty for 1.4 -1.4 M⊙ neutron star coalescences at z ≲1.7 . Analysis of 3rd generation detectors therefore must account for these effects.

  18. Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances

    International Nuclear Information System (INIS)

    Villalon, E.

    1989-01-01

    Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency

  19. Continuous terahertz-wave generation using a monolithically integrated horn antenna

    Science.gov (United States)

    Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2008-09-01

    A transverse electromagnetic horn antenna is monolithically integrated with a standard ultrafast interdigitated electrode photodetector on low-temperature-grown GaAs. Continuous-wave terahertz radiation is generated at frequencies up to 2 THz with a maximum power of approximately 1 μW at 780 GHz. Experimental variations in the terahertz power as function of the frequency are explained by means of electromagnetic simulations of the antenna and the photomixer vicinity.

  20. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  1. Stress waves generated in thin metallic films by a Q-switched ruby laser

    Science.gov (United States)

    Yang, L. C.

    1974-01-01

    Investigation results on stress waves generated by Q-switched ruby laser irradiated thin metal films under confinement, studied over a wide range of film materials and film thicknesses, are reviewed. The results indicate that the dependence on these parameters is much weaker than is predicted by heat transfer estimations commonly used to describe the interaction of laser irradiation with unconfined bulk-solid surfaces.

  2. Analysis of Shear Wave Generation by Decoupled and Partially Coupled Explosions

    Science.gov (United States)

    2009-07-31

    The explosive source is on scale relative to the cavity size. Two factors suggest that both explosions m ight act as spherical seism ic sources...REFERENCES Baker, G. E., H. Xu, and J. L. Stevens (2009), Generation of Shear Waves from Explosions in Water-Filled Cavities, submitted to Bull. Seism ...I: Seismic Spectrum Scaling, Bull. Seism . Soc. Am., 61, 1675-1692 Murphy, J. (1969), Discussion of Paper by D. Springer, M. Denny, J. Healy, and W

  3. Crack Detection in Single-Crystalline Silicon Wafer Using Laser Generated Lamb Wave

    Directory of Open Access Journals (Sweden)

    Min-Kyoo Song

    2013-01-01

    Full Text Available In the semiconductor industry, with increasing requirements for high performance, high capacity, high reliability, and compact components, the crack has been one of the most critical issues in accordance with the growing requirement of the wafer-thinning in recent years. Previous researchers presented the crack detection on the silicon wafers with the air-coupled ultrasonic method successfully. However, the high impedance mismatching will be the problem in the industrial field. In this paper, in order to detect the crack, we propose a laser generated Lamb wave method which is not only noncontact, but also reliable for the measurement. The laser-ultrasonic generator and the laser-interferometer are used as a transmitter and a receiver, respectively. We firstly verified the identification of S0 and A0 lamb wave modes and then conducted the crack detection under the thermoelastic regime. The experimental results showed that S0 and A0 modes of lamb wave were clearly generated and detected, and in the case of the crack detection, the estimated crack size by 6 dB drop method was almost equal to the actual crack size. So, the proposed method is expected to make it possible to detect the crack in the silicon wafer in the industrial fields.

  4. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    International Nuclear Information System (INIS)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-01

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a “black out” phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm× 260 mm× 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  5. Surface acoustic wave opto-mechanical oscillator and frequency comb generator.

    Science.gov (United States)

    Savchenkov, A A; Matsko, A B; Ilchenko, V S; Seidel, D; Maleki, L

    2011-09-01

    We report on realization of an efficient triply resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyperparametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb by observing the modulation of the light escaping the resonator.

  6. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Michael [South Dakota School of Mines

    2017-07-25

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  7. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Abbas, Nikhar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Michael [South Dakota School of Mines and Technology

    2017-06-03

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  8. Control sideband generation for dual-recycled laser interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Barr, B W; Miyakawa, O; Kawamura, S; Weinstein, A J; Ward, R; Vass, S; Strain, K A

    2006-01-01

    We present a discussion of the problems associated with generation of multiple control sidebands for length sensing and control of dual-recycled, cavity-enhanced Michelson interferometers and the motivation behind more complicated sideband generation methods. We focus on the Mach-Zehnder interferometer as a topological solution to the problem and present results from tests carried out at the Caltech 40 m prototype gravitational wave detector. The consequences for sensing and control for advanced interferometry are discussed, as are the implications for future interferometers such as Advanced LIGO

  9. About of the Electrostatic fields excitation theory by a RF wave in a plasma; Acerca de la teoria de excitacion de campos electrostaticos por una onda de rf en un plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.R

    1991-01-15

    In an unidimensional model is shown in the cases of a semi limited plasma and a layer of plasma the excitement mechanism of electrostatic fields for a radiofrequency wave (RF) polarized lineally. This phenomenon depends strongly on the combined action of the Miller force and that of impulsion. It is shown that the action of these forces is carried out in different characteristic times when the front of wave crosses through the plasma. The cases of a semi limited plasma and of a layer of plasma without and with current are analyzed. It is shown that near the frontiers of the plasma where the field is sufficiently big arise oscillations of the width of the field that are slowly muffled in the space in an exponential way. In the cases of a plasma layer its are shown that the processes that arise near the frontier x = L are similar to the processes that arise near the frontier x = 0. The existence of current in the plasma layer leads to the blockade of the excited perturbations in the frontier x = L. (Author)

  10. A Bridge between Two Important Problems in Optics and Electrostatics

    Science.gov (United States)

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  11. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    Science.gov (United States)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  12. High-frequency Surface Wave Measurements of Micro-tunamis generated by Glacier Calving

    Science.gov (United States)

    Minowa, Masahiro; Sugiyama, Shin; Sakakibara, Daiki; Podolskiy, Evgeny; Ohashi, Yoshihiko; Skvarca, Pedro

    2016-04-01

    Calving plays a key role in recent rapid retreat of glaciers in Greenland, Alaska and Patagonia. However, processes related to calving are poorly understood since direct observations are difficult. When calving occurred at the glacier front, ice hits water surface and generates surface wave or micro-tsunami. Because characteristics of the micro-tsunami are dependent on the impact on water, it is expected that analysis of the wave provides useful information on the size and type of calving. To study the calving processes from surface wave, we performed field observations at Glaciar Perito Moreno, a freshwater calving glacier in the Southern Patagonia Icefield. We measured the surface level by recording water pressure every 2 s (0.5 Hz), using a sensor installed in a lake 300 m from the calving front. Spectral and statistical analyses were performed on the wave data. We also carried out time-lapse photography, ice speed and water temperature measurements. The time-lapse photographs were used to identify the types of observed calving events (1. Subaqueous, 2. Topple, 3. Drop, 4. Small serac failure). During summer (15 December 2013-4 January 2014) and spring (6-20 October 2014) field campaigns, 640 (30 events d-1) and 195 (12 events d-1) calving events were recorded by the pressure sensor, respectively. The number of calving events varied in time (from 0 to 6 events h-1) and this variation correlates well with lakewater temperature. Subaqueous calving account for only 2.4 % of calving events recorded during the field campaigns (7 out of 364 events). These results imply importance of melting at/under water surface as a triggering mechanism of calving. Waves generated by subaerial calving events (type 2, 3 and 4) showed similar frequency spectrums, whereas those by subaqueous calving had smaller power in frequency range between 0.12-0.25 Hz. The amplitude of the surface waves increased with size of calving, which was quantified by the time-lapse photographs. Our results

  13. Improving the realism of gravity waves generated by convection in numerical models

    Science.gov (United States)

    Stephan, Claudia Christine

    Small-scale gravity waves (GWs) with horizontal wavelengths of tens up to several hundred kilometers have demonstrated importance for driving the general circulation of the atmosphere, which affects many climate processes. GWs that propagate vertically from the troposphere into the middle atmosphere eventually dissipate and deposit momentum to the mean flow. Through this process they influence the timing of the transition in springtime from winter westerlies to summer easterlies in the stratosphere. They also play an important role in driving the mean-meridional transport circulation, the Brewer-Dobson circulation, and in the tropics help drive the Quasi-Biennial Oscillation and the Semi-Annual Oscillation. GWs with scales on the order of the size of a model grid box or smaller remain unresolved in Global Circulation Models (GCMs) and therefore need to be parameterized. GWs are generated by a variety of sources including orography, convection, and geostrophic adjustment in regions of baroclinic instability. We focus here in particular on convectively-generated GWs, which are prevalent in the tropics and summer mid-latitudes. Their parameterizations in climate models range in complexity from simple assumptions of uniform sources to more complex methods that relate the spectrum of GWs to properties of convection in the climate model. The parameter settings that must be chosen to apply these GW parameterizations are poorly constrained by observations, so they are instead based largely on cloud-resolving model results. Cloud-resolving model studies themselves use parameterized physics for the microphysics of precipitation particle formation. We first explore the sensitivity of the waves generated in cloud-resolving models to these physics parameterizations and show that knowledge of large-scale storm conditions is sufficient to predict the large-area and time-average spectrum of GW momentum flux above storms, irrespective of the convective details that coarse

  14. Size Effects on Surface Elastic Waves in a Semi-Infinite Medium with Atomic Defect Generation

    Directory of Open Access Journals (Sweden)

    F. Mirzade

    2013-01-01

    Full Text Available The paper investigates small-scale effects on the Rayleigh-type surface wave propagation in an isotopic elastic half-space upon laser irradiation. Based on Eringen’s theory of nonlocal continuum mechanics, the basic equations of wave motion and laser-induced atomic defect dynamics are derived. Dispersion equation that governs the Rayleigh surface waves in the considered medium is derived and analyzed. Explicit expressions for phase velocity and attenuation (amplification coefficients which characterize surface waves are obtained. It is shown that if the generation rate is above the critical value, due to concentration-elastic instability, nanometer sized ordered concentration-strain structures on the surface or volume of solids arise. The spatial scale of these structures is proportional to the characteristic length of defect-atom interaction and increases with the increase of the temperature of the medium. The critical value of the pump parameter is directly proportional to recombination rate and inversely proportional to deformational potentials of defects.

  15. Surface-wave generation by underground nuclear explosions releasing tectonic strain

    International Nuclear Information System (INIS)

    Patton, H.J.

    1980-01-01

    Seismic surface-wave generation by underground nuclear explosions releasing tectonic strain is studied through a series of synthetic radiation-pattern calculations based on the earthquake-trigger model. From amplitude and phase radiation patterns for 20-s Rayleigh waves, inferences are made about effects on surface-wave magnitude, M/sub s/, and waveform character. The focus of this study is a comparison between two mechanisms of tectonic strain release: strike-slip motion on vertical faults and thrust motion on 45 0 dipping faults. The results of our calculations show that Rayleigh-wave amplitudes of the dip-slip model at F values between 0.75 and 1.5 are significantly lower than amplitudes of the strike-slip model or of the explosion source alone. This effect translates into M/sub s/ values about 0.5 units lower than M/sub s/ of the explosion alone. Waveform polarity reversals occur in two of four azimuthal quadrants for the strike-slip model and in all azimuths of the dip-slip-thrust model for F values above about 3. A cursory examination of waveforms from presumed explosions in eastern Kazakhstan suggests that releases of tectonic strain are accompanying the detonation of many of these explosions. Qualitatively, the observations seem to favor the dip-slip-thrust model, which, in the case of a few explosions, must have F values above 3

  16. The Propagation of Tsunami Generated Acoustic-Gravity Waves in the Atmosphere

    Science.gov (United States)

    Wu, Y.; Llewellyn Smith, S.; Rottman, J.; Broutman, D.; Minster, J. B. H.

    2014-12-01

    Tsunami-generated acoustic-gravity waves propagate in the atmosphere up to the ionosphere, where they have been observed to have an impact on the total electron content (TEC). We simulate the propagation of 2D&3D linearized acoustic-gravity waves in the atmosphere by Fourier transforming in the horizontal and solving the vertical structure with a tsunami-perturbed lower boundary and an upper radiation boundary conditions. Starting from the algorithm of Broutman (2013) and the atmospheric profile of the 2004 Sumatra Tsunami, we add compressibility to the atmosphere and extend the calculation to three dimensions. Compressibility is an important feature of the real atmosphere, and we investigate its effect on wave propagation. We obtain the vertical wavenumber as a function of buoyancy frequency, density scale height, sound speed, and background wind velocity. Results show that wind shear and compressibility have a significant impact on wave transmission and reflection. We also investigate the 3D problem to allow variations in the bottom boundary condition and in the background wind profiles. Results are quite similar to the 2D case.

  17. Experimental Estimation for Beat-Wave Current Generation in an Unmagnetized Plasma and Preliminary Results

    Science.gov (United States)

    Liu, Fei; Horton, Robert; Hwang, David; Zhu, Ben; Evans, Russell

    2009-11-01

    Beat-wave current generation experiment in a high density compact torus (CT) is being conducted on CTIX using CO2 lasers. Tunability of the CO2 lasers provides many options for the wave-particle interaction experiment at a variety of plasma densities with plasma frequency in THz range. For example strong lines such as 9R(12) and 9R(30) could be chosen for an easily obtainable density of 1.28x10^15cm-3. After restoration, two Lumonics CO2 lasers are expected to produce approximately 100MW output power in a 50ns pulse. The amount of energy transfer from laser to plasma is determined by the laser power intensity, and by the CT density scale length [1]. The desired power density can be achieved by designing a suitable optical focusing system. In addition, the CT density can be matched to the beat-wave frequency by appropriately selecting the plasma operating conditions and timing. Extensive testing of the Marx banks and pre-ionization boards was done under a variety of operating conditions. Other preliminary results and plans for the wave-particle interaction experiment will also be reported. [1] A. N. Kaufman, B. I. Cohen, PRL, 30 1306 (1973)

  18. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

    International Nuclear Information System (INIS)

    Bugay, A. N.; Sazonov, S. V.

    2008-01-01

    A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible

  19. Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies

    Science.gov (United States)

    Popova, E.

    2017-12-01

    The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.

  20. Generation of EMIC Waves Observed by Van Allen Probes at Low L-shells of Earth's Magnetosphere

    Science.gov (United States)

    Gamayunov, K. V.; Zhang, J.; Saikin, A.; Rassoul, H.

    2017-12-01

    In a multi-ion magnetospheric plasma, where the major species are H+, He+, and O+, the He-band of electromagnetic ion cyclotron (EMIC) waves is the dominant band observed in the inner magnetosphere, and waves are generally quasi-field-aligned inside the geostationary orbit. Almost all the satellite-based studies of EMIC waves before Van Allen Probes, however, have not reported waves below L 3.5. There is probably only one exception from the Akebono satellite where both the H-band and He-band EMIC waves were observed at L 2. The situation has changed dramatically after two Van Allen Probes spacecraft were launched on 30 August, 2012, and many EMIC wave events have been observed below L=4. The Van Allen Probes observations confirm that the He-band of EMIC waves is a dominant band in the inner magnetosphere, but the observation of the He-band waves below L=4 is a new and quite unexpected result compared to our knowledge about EMIC waves before the Van Allen Probes era. In addition, observations show that almost all the He-band EMIC waves are linearly polarized in the region L field, and energetic ion distribution functions will be taken from the Van Allen Probes observations during the EMIC wave event to calculate growth rates of EMIC waves. We will then identify the energetic ions responsible for instability, frequencies and normals generated, and physical mechanism of instability.

  1. Voltage limitations of electrostatic accelerators

    International Nuclear Information System (INIS)

    Hyder, H. R. McK.

    1999-01-01

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine

  2. Voltage limitations of electrostatic accelerators

    International Nuclear Information System (INIS)

    Hyder, H.R.

    1999-01-01

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine. copyright 1999 American Institute of Physics

  3. Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser.

    Science.gov (United States)

    Peng, Junsong; Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry

    2016-09-19

    We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.

  4. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    Science.gov (United States)

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  5. Carrier-wave Rabi-flopping signatures in high-order harmonic generation for alkali atoms.

    Science.gov (United States)

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F

    2015-04-10

    We present a theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2π and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.

  6. Self-Similar Micron-Size and Nanosize Drops of Liquid Generated by Surface Acoustic Waves

    Science.gov (United States)

    Taller, Daniel; Go, David B.; Chang, Hsueh-Chia

    2012-11-01

    A planar surface acoustic wave on a solid substrate and its radiated sound into a static liquid drop produce time-averaged, exponentially decaying acoustic and electric Maxwell pressures near the contact line. These localized contact-line pressures are shown to generate two sequences of hemispherical satellite droplets at the tens of microns and submicron scales, both obeying self-similar exponential scaling but with distinct exponents that correspond to viscous dissipation and field leakage length scales, respectively. The acoustic pressure becomes dominant when the film thickness exceeds (1/4π) of the surface acoustic wave wavelength and it affects the shape and stability of the mother drop. The Maxwell pressure of the nanodrops, which exceeds ten atmospheres, is sensitive to the contact angle.

  7. Wave-actuated power take-off device for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Chertok, Allan

    2013-01-31

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME's power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels e.g., 10 to 100kW?

  8. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    Science.gov (United States)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-01

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  9. KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING

    Energy Technology Data Exchange (ETDEWEB)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036, Rende (CS) (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States)

    2015-12-10

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  10. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    International Nuclear Information System (INIS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius

  11. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    Science.gov (United States)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  12. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, S. J.; Fedun, V.; Erdélyi, R., E-mail: s.mumford@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH UK (United Kingdom)

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  13. Impulsively Generated Sausage Waves in Coronal Tubes with Transversally Continuous Structuring

    Science.gov (United States)

    Yu, Hui; Li, Bo; Chen, Shao-Xia; Xiong, Ming; Guo, Ming-Zhe

    2016-12-01

    The frequency dependence of the longitudinal group speeds of trapped sausage waves plays an important role in determining impulsively generated wave trains, which have often been invoked to account for quasi-periodic signals in coronal loops. We examine how the group speeds ({v}{gr}) depend on angular frequency (ω) for sausage modes in pressureless coronal tubes with continuous transverse density distributions by solving the dispersion relation pertinent to the case where the density inhomogeneity of arbitrary form occurs in a transition layer of arbitrary thickness. We find that in addition to the transverse lengthscale l and density contrast {ρ }{{I}}/{ρ }{{e}}, the group speed behavior also depends on the detailed form of the density inhomogeneity. For parabolic profiles, {v}{gr} always decreases with ω first before increasing again, as happens for the much studied top-hat profiles. For linear profiles, however, the behavior of the ω -{v}{gr} curves is more complex. When {ρ }{{I}}/{ρ }{{e}}≲ 6, the curves become monotonical for large values of l. On the other hand, for higher density contrasts, a local maximum {v}{gr}\\max exists in addition to a local minimum {v}{gr}\\min when coronal tubes are diffuse. With time-dependent computations, we show that the different behavior of group speed curves, the characteristic speeds {v}{gr}\\min and {v}{gr}\\max in particular, is reflected in the temporal evolution and Morlet spectra of impulsively generated wave trains. We conclude that the observed quasi-periodic wave trains not only can be employed to probe such key parameters as density contrasts and profile steepness, but also have the potential to discriminate between the unknown forms of the transverse density distribution.

  14. Tsunami-generated sediment wave channels at Lake Tahoe, California-Nevada, USA

    Science.gov (United States)

    Moore, James G.; Schweickert, Richard A.; Kitts, Christopher A.

    2014-01-01

    A gigantic ∼12 km3 landslide detached from the west wall of Lake Tahoe (California-Nevada, USA), and slid 15 km east across the lake. The splash, or tsunami, from this landslide eroded Tioga-age moraines dated as 21 ka. Lake-bottom short piston cores recovered sediment as old as 12 ka that did not reach landslide deposits, thereby constraining the landslide age as 21–12 ka.Movement of the landslide splashed copious water onto the countryside and lowered the lake level ∼10 m. The sheets of water that washed back into the lake dumped their sediment load at the lowered shoreline, producing deltas that merged into delta terraces. During rapid growth, these unstable delta terraces collapsed, disaggregated, and fed turbidity currents that generated 15 subaqueous sediment wave channel systems that ring the lake and descend to the lake floor at 500 m depth. Sheets of water commonly more than 2 km wide at the shoreline fed these systems. Channels of the systems contain sediment waves (giant ripple marks) with maximum wavelengths of 400 m. The lower depositional aprons of the system are surfaced by sediment waves with maximum wavelengths of 300 m.A remarkably similar, though smaller, contemporary sediment wave channel system operates at the mouth of the Squamish River in British Columbia. The system is generated by turbidity currents that are fed by repeated growth and collapse of the active river delta. The Tahoe splash-induced backwash was briefly equivalent to more than 15 Squamish Rivers in full flood and would have decimated life in low-lying areas of the Tahoe region.

  15. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    Science.gov (United States)

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  16. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    International Nuclear Information System (INIS)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.; Sharypov, K. A.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2016-01-01

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  17. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    Science.gov (United States)

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  18. Generation of type III solar radio bursts: the role of induced scattering of plasma waves by ions

    International Nuclear Information System (INIS)

    Levin, B.N.; Lerner, A.M.; Rapoport, V.O.

    1984-01-01

    The plasma waves in type III solar radio-burst sources might have a spectrum which can explain why, in the quasilinear burst generation model, nonlinear scattering of the waves by ions is so weak. The agent exciting a burst would travel through the corona at velocities limited to a definite range

  19. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter

    International Nuclear Information System (INIS)

    Montoya Andrade, Dan-El; Villa Jaén, Antonio de la; García Santana, Agustín

    2014-01-01

    Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power

  20. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  1. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture shows such an electrostatic septum in its tank. See 7501120X, 7501199 and 7501201 for more detailed pictures.

  2. Edutainment Science: Electrostatics

    Science.gov (United States)

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  3. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    This article presents the fundamental concepts of electrostatics as applied to atoms and molecules. The electric field and potential due to a set of discrete as well as continuous charge distributions are discussed along with their graphic visualization. Funda- mental theorems in electrostatics are also summarized. Introduction.

  4. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    For an excellent summary of the field of supramolecular chemistry, readers are referred to the article by J-M Lehn in Resonance, VaLl,. No.3, p.39, 1996. Electrostatics plays an important role in weak intermolecular interactions. The present series is aimed at understanding these electrostatic aspects. This article presents the.

  5. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul.

    Science.gov (United States)

    Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H

    2016-01-27

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  6. Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region

    Energy Technology Data Exchange (ETDEWEB)

    Ilyasov, Askar A., E-mail: asjosik@mail.ru [Space Research Institute of the Russian Academy of Science, Moscow 117997 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Chernyshov, Alexander A., E-mail: achernyshov@iki.rssi.ru; Mogilevsky, Mikhail M., E-mail: mogilevsky@romance.iki.rssi.ru [Space Research Institute of the Russian Academy of Science, Moscow 117997 (Russian Federation); Golovchanskaya, Irina V., E-mail: golovchanskaya@pgia.ru; Kozelov, Boris V., E-mail: boris.kozelov@gmail.com [Polar Geophysical Institute of the Russian Academy of Science, Apatity, Murmansk region 184209 (Russian Federation)

    2015-03-15

    Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.

  7. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    International Nuclear Information System (INIS)

    Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A.

    1989-01-01

    The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma β (the ratio of plasma pressure to the magnetic pressure) varies from β = 1 to β << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet

  8. Finite-Difference Time-Domain Modeling of Infrasonic Waves Generated by Supersonic Auroral Arcs

    Science.gov (United States)

    Pasko, V. P.

    2010-12-01

    Atmospheric infrasonic waves are acoustic waves with frequencies ranging from ˜0.02 to ˜10 Hz [e.g., Blanc, Ann. Geophys., 3, 673, 1985]. The importance of infrasound studies has been emphasized in the past ten years from the Comprehensive Nuclear-Test-Ban Treaty verification perspective [e.g., Le Pichon et al., JGR, 114, D08112, 2009]. A proper understanding of infrasound propagation in the atmosphere is required for identification and classification of different infrasonic waves and their sources [Drob et al., JGR, 108, D21, 4680, 2003]. In the present work we employ a FDTD model of infrasound propagation in a realistic atmosphere to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. We have recently applied similar modeling approaches for studies of infrasonic waves generated from thunderstorms [e.g., Few, Handbook of Atmospheric Electrodynamics, H. Volland (ed.), Vol. 2, pp.1-31, CRC Press, 1995], quantitative interpretation of infrasonic signatures from pulsating auroras [Wilson et al., GRL, 32, L14810, 2005], and studies of infrasonic waves generated by transient luminous events in the middle atmosphere termed sprites [e.g., Farges, Lightning: Principles, Instruments and Applications, H.D. Betz et al. (eds.), Ch.18, Springer, 2009]. The related results have been reported in [Pasko, JGR, 114, D08205, 2009], [de Larquier et al., GRL, 37, L06804, 2010], and [de Larquier, MS Thesis, Penn State, Aug. 2010], respectively. In the FDTD model, the altitude and frequency dependent attenuation coefficients provided by Sutherland and Bass [J. Acoust. Soc. Am., 115, 1012, 2004] are included in classical equations of acoustics in a gravitationally stratified atmosphere using a decomposition technique recently proposed by de Groot-Hedlin [J. Acoust. Soc. Am., 124, 1430, 2008]. The auroral infrasonic waves (AIW) in the frequency range 0.1-0.01 Hz associated with the supersonic motion of auroral arcs have been

  9. Generation of High-Power Sub-THz Waves in Magnetized Turbulent Electron Beam Plasmas

    Science.gov (United States)

    Thumm, M. K. A.; Arzhannikov, A. V.; Astrelin, V. T.; Burdakov, A. V.; Ivanov, I. A.; Kalinin, P. V.; Kandaurov, I. V.; Kurkuchekov, V. V.; Kuznetsov, S. A.; Makarov, M. A.; Mekler, K. I.; Polosatkin, S. V.; Popov, S. A.; Postupaev, V. V.; Rovenskikh, A. F.; Sinitsky, S. L.; Sklyarov, V. F.; Stepanov, V. D.; Trunev, Yu. A.; Timofeev, I. V.; Vyacheslavov, L. N.

    2013-02-01

    Sub-THz radiation can be generated by conversion of plasma waves into electromagnetic (EM) radiation in a plasma with strong Langmuir (LT) turbulence produced via a two-stream instability of a high current relativistic electron beam (REB). Nonlinear plasmon-plasmon merging results in the generation of photons nearby the 2nd harmonic of the plasma frequency 2ω p ("2ω p -process"). For plasma densities of 1014 - 1015 cm-3, these frequencies are in the range of sub-THz waves at 370-570 GHz. The specific power density of sub-THz-wave emission from plasmas in the multi-mirror magnetic trap GOL-3 (at BINP) during injection of a 10-μs-REB with a current density of about 1 kA/cm2 at plasma densities n e ≈ 5•1014 cm-3, electron temperatures T e ≈ 1.5 keV and magnetic induction B ≈ 4 T was measured to be approx. 1 kW/cm3 in the frequency band around 300 GHz. In the case of a weakly relativistic 100-μs-electron beam (90 keV) with 250 A/cm2 the corresponding results are 700 W/cm3 around 90 GHz with an efficiency of 1-2 % at n e ≈ 3•1013 cm-3 (total power ≈ 30 kW). Theoretical investigations show that at a density of n e ≈ 3•1015 cm-3 and a turbulence level of 5 % the generated sub-THz power can reach ≈ 1 MW/cm3.

  10. New method of analyzing wave processes in pulse generators based on lines with distributed parameters

    CERN Document Server

    Gordeev, V S

    2001-01-01

    A new method of theoretical analysis of wave processes in high-current pulse generators through the relations between integral values reflecting regularities of energy transfer in ideal lines with distributed parameters is described. The use of the method developed considerably simplifies the procedure of searching for an optimal - from the point of view of getting maximal efficiency - relation of impedances for pulse facilities on stepped lines including those with arbitrary number of cascades. High efficiency of the method is demonstrated by several examples.

  11. Optimal Design of Electromagnetic Acoustic Transducer Used to Generate Lamb Wave

    Directory of Open Access Journals (Sweden)

    Yan LIU

    2014-01-01

    Full Text Available Electromagnetic ultrasonic transducer is the core component of the electromagnetic ultrasonic testing equipment. This paper establishes a three-dimensional model of the electromagnetic ultrasonic transducer used to generate Lamb wave, then by uniform design experiment and finite element analysis, the paper obtains the law between the eddy current density, the conductor width, length of the coil, the lift off distance, and the permanent magnets thickness. The law is verified by the experiment. It provides an overall principle for the optimal design of electromagnetic ultrasonic transducer.

  12. Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole

    2008-01-01

    We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....

  13. Influence of water conductivity on shock waves generated by underwater electrical wire explosion

    Science.gov (United States)

    Liu, Ben; Wang, Deguo; Guo, Yanbao

    2018-01-01

    The new application of electrical explosion of wire (EEW) used in petroleum industry is to enhance oil recovery (EOR). Because of the complex environment underground, the effect of underground water conductivity on EEW should be considered. This work describes the effect of water conductivities on discharge current, voltage and shock waves. It was found that the effect of water conductivity contains two parts. One is the shunt effect of saline water, which can be considered as a parallel load with the copper wire between the electrodes connected to the discharge circuit. The peak pressure of shock waves are gradually decrease with the increase of water conductivity. The other is the current loss through saline water directly to the ground ends without flowing through the electrodes. The shunt effect is the main factor affecting the wire discharge process. As the charging voltage increased, the energy loss caused by these two parts are all reduced. These indicate that increasing the charging voltage to a certain value will increase the energy efficiency to generate a more powerful shock waves in conductive water.

  14. Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation

    Science.gov (United States)

    Ahmadi, N.; Wilder, F. D.; Usanova, M.; Ergun, R.; Argall, M. R.; Goodrich, K.; Eriksson, S.; Germaschewski, K.; Torbert, R. B.; Lindqvist, P. A.; Le Contel, O.; Khotyaintsev, Y. V.; Strangeway, R. J.; Schwartz, S. J.; Giles, B. L.; Burch, J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission observed electron whistler waves at the center and at the gradients of magnetic holes on the dayside magnetosheath. The magnetic holes are nonlinear mirror structures which are anti-correlated with particle density. We used expanding box Particle-in-cell simulations and produced the mirror instability magnetic holes. We show that the electron whistler waves can be generated at the gradients and the center of magnetic holes in our simulations which is in agreement with MMS observations. At the nonlinear regime of mirror instability, the proton and electron temperature anisotropy are anti-correlated with the magnetic hole. The plasma is unstable to electron whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are dominant, electron temperature anisotropy develops at the edges of the magnetic holes and electrons become isotropic at the magnetic field minimum. We investigate the possible mechanism for enhancing the electron temperature anisotropy and analyze the electron pitch angle distributions and electron distribution functions in our simulations and compare it with MMS observations.

  15. Development of an Omnidirectional-Capable Electromagnetic Shock Wave Generator for Lipolysis

    Directory of Open Access Journals (Sweden)

    Ming Hau Chang

    2017-01-01

    Full Text Available Traditional methods for adipose tissue removal have progressed from invasive methods such as liposuction to more modern methods of noninvasive lipolysis. This research entails the development and evaluation of an omnidirectional-capable flat-coil electromagnetic shock wave generator (EMSWG for lipolysis. The developed EMSWG has the advantage of omnidirectional-capable operation. This capability increases the eventual clinical usability by adding three designed supports to the aluminum disk of the EMSWG to allow omnidirectional operation. The focal pressures of the developed EMSWG for different operating voltages were measured, and its corresponding energy intensities were calculated. The developed EMSWG was mounted in a downward orientation for lipolysis and evaluated as proof of concept. In vitro tests on porcine fatty tissues have been carried out. It is found that at a 6 kV operating voltage with 1500 shock wave exposures, a 2 cm thick subcutaneous hypodermis of porcine fatty tissue can be ruptured, resulting in a damaged area of 1.39 mm2. At a 6.5 kV operating voltage with 2000 shock wave exposures, the damaged area is increased to about 5.20 mm2, which can be enlarged by changing the focal point location, resulting in significant lipolysis for use in clinical applications.

  16. Electrostatic Detumble of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrostatic Tractor Technology research explores the harmony of physics and engineering to develop and test electrostatic actuation methods for touchless detumble...

  17. Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm

    Science.gov (United States)

    Sentman, D. D.; Wescott, E. M.; Picard, R. H.; Winick, J. R.; Stenbaek-Nielsen, H. C.; Dewan, E. M.; Moudry, D. R.; Sa~O Sabbas, F. T.; Heavner, M. J.; Morrill, J.

    2003-03-01

    The present report investigates using simultaneous observations of coincident gravity waves and sprites to establish an upper limit on sprite-associated thermal energy deposition in the mesosphere. The University of Alaska operated a variety of optical imagers and photometers at two ground sites in support of the NASA Sprites99 balloon campaign. One site was atop a US Forest Service lookout tower on Bear Mt. in the Black Hills, in western South Dakota. On the night of 18 August 1999 we obtained from this site simultaneous images of sprites and OH airglow modulated by gravity waves emanating from a very active sprite producing thunderstorm over Nebraska, to the Southeast of Bear Mt. Using 25s exposures with a bare CCD camera equipped with a red filter, we were able to coincidentally record both short duration (3MR) N2 1PG red emissions from sprites and much weaker (~1kR), but persistent, OH Meinel nightglow emissions. A time lapse movie created from images revealed short period, complete /360° concentric wave structures emanating radially outward from a central excitation region directly above the storm. During the initial stages of the storm outwardly expanding waves possessed a period of τ~10min and wavelength λ~50km. Over a 1h interval the waves gradually changed to longer period τ~11min and shorter wavelength λ~40km. Over the full 2h observation time, about two dozen bright sprites generated by the underlying thunderstorm were recorded near the center of the outwardly radiating gravity wave pattern. No distinctive OH brightness signatures uniquely associated with the sprites were detected at the level of 2% of the ambient background brightness, establishing an associated upper limit of approximately ΔTthe volume of the sprites. The corresponding total thermal energy deposited by the sprite is bounded by these measurements to be less than ~1GJ. This value is well above the total energy deposited into the medium by the sprite, estimated by several

  18. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    Science.gov (United States)

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-04-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors.

  19. Terahertz wave generation from spontaneously formed nanostructures in silver nanoparticle ink.

    Science.gov (United States)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Nakajima, Makoto

    2016-05-01

    We demonstrate terahertz pulse generation from silver nanoparticle ink, originally developed for printed electronics, under irradiation by femtosecond laser pulses. Using metal nanoparticle ink, metallic nanostructures can be easily made in a large area without lithographic techniques. Terahertz pulses were emitted from the baked ink, having spontaneously formed nanostructures of ∼100  nm. From the results of the baking temperature dependence and the polarization measurement, the terahertz generation is attributed to the nonlinear polarization induced by the enhanced local fields around these nanostructures. This study paves the way for the future development of terahertz emitters which have resonances in both the near-infrared light and the terahertz wave, by combining micrometer-scale structures drawn by an inkjet printer and nanometer-scale structures formed during the baking process.

  20. Excitation of Banded Whistler Waves in the Magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S. Peter [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory

    2012-07-13

    Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.

  1. Potential health effects of standing waves generated by low frequency noise

    Directory of Open Access Journals (Sweden)

    Stanislav Ziaran

    2013-01-01

    Full Text Available The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  2. Potential health effects of standing waves generated by low frequency noise.

    Science.gov (United States)

    Ziaran, Stanislav

    2013-01-01

    The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN) from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car) and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise) and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  3. Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets

    Science.gov (United States)

    Tian, Yichao; Tian, He; Wu, Yanling; Zhu, Leilei; Tao, Luqi; Zhang, Wei; Shu, Yi; Xie, Dan; Yang, Yi; Wei, Zhiyi; Lu, Xinghua; Ren, Tian-Ling; Shih, Chih-Kang; Zhao, Jimin

    Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc. National Basic Research Program of China MOST (2012CB821402), External Cooperation Program of Chinese Academy of Sciences (GJHZ1403), and National Natural Science Foundation of China (11274372).

  4. Analysis of the Effect of Electron Density Perturbations Generated by Gravity Waves on HF Communication Links

    Science.gov (United States)

    Fagre, M.; Elias, A. G.; Chum, J.; Cabrera, M. A.

    2017-12-01

    In the present work, ray tracing of high frequency (HF) signals in ionospheric disturbed conditions is analyzed, particularly in the presence of electron density perturbations generated by gravity waves (GWs). The three-dimensional numerical ray tracing code by Jones and Stephenson, based on Hamilton's equations, which is commonly used to study radio propagation through the ionosphere, is used. An electron density perturbation model is implemented to this code based upon the consideration of atmospheric GWs generated at a height of 150 km in the thermosphere and propagating up into the ionosphere. The motion of the neutral gas at these altitudes induces disturbances in the background plasma which affects HF signals propagation. To obtain a realistic model of GWs in order to analyze the propagation and dispersion characteristics, a GW ray tracing method with kinematic viscosity and thermal diffusivity was applied. The IRI-2012, HWM14 and NRLMSISE-00 models were incorporated to assess electron density, wind velocities, neutral temperature and total mass density needed for the ray tracing codes. Preliminary results of gravity wave effects on ground range and reflection height are presented for low-mid latitude ionosphere.

  5. Numerical study on static component generation from the primary Lamb waves propagating in a plate with nonlinearity

    Science.gov (United States)

    Wan, Xiang; Tse, Peter W.; Zhang, Xuhui; Xu, Guanghua; Zhang, Qing; Fan, Hongwei; Mao, Qinghua; Dong, Ming; Wang, Chuanwei; Ma, Hongwei

    2018-04-01

    Under the discipline of nonlinear ultrasonics, in addition to second harmonic generation, static component generation is another frequently used nonlinear ultrasonic behavior in non-destructive testing (NDT) and structural health monitoring (SHM) communities. However, most previous studies on static component generation are mainly based on using longitudinal waves. It is desirable to extend static component generation from primary longitudinal waves to primary Lamb waves. In this paper, static component generation from the primary Lamb waves is studied. Two major issues are numerically investigated. First, the mode of static displacement component generated from different primary Lamb wave modes is identified. Second, cumulative effect of static displacement component from different primary Lamb wave modes is also discussed. Our study results show that the static component wave packets generated from the primary S0, A0 and S1 modes share the almost same group velocity equal to the phase velocity of S0 mode tending to zero frequency c plate . The finding indicates that whether the primary mode is S0, A0 or S1, the static components generated from these primary modes always share the nature of S0 mode. This conclusion is also verified by the displacement filed of these static components that the horizontal displacement field is almost uniform and the vertical displacement filed is antisymmetric across the thickness of the plate. The uniform distribution of horizontal displacement filed enables the static component, regardless of the primary Lamb modes, to be a promising technique for evaluating microstructural damages buried in the interior of a structure. Our study also illustrates that the static components are cumulative regardless of whether the phase velocity of the primary and secondary waves is matched or not. This observation indicates that the static component overcomes the limitations of the traditional nonlinear Lamb waves satisfying phase velocity

  6. Anomalous electron streaming due to electrostatic modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Schultz, S.D.; Bers, A.; Ram, A.K.

    1993-01-01

    The motion of circulating electrons in a tokamak interacting with electrostatic waves (such as lower-hybrid waves) is given by a guiding center Hamiltonian and studied by numerical integration. The unperturbed motion of electron guiding centers is first shown to be integrable, and, in a manner similar to that used in previous works, a set of action-angle coordinates for the orbits are derived which take into account finite aspect ratio and noncircular plasma cross section. Electrostatic modes in the low-frequency, long-wavelength limit are treated as a perturbation to the guiding center Hamiltonian. The waves are generated with low integral values of the toroidal and poloidal mode numbers n and m and satisfy the approximate lower-hybrid dispersion relation k perpendicular /k parallel ∼ ω pe /ω ∼ 10 1.5 . If the number of modes is greater than three, the electron motion parallel to the magnetic field is observed to be stochastic in the phase-space region where v parallel is near the wave parallel phase velocity. On surfaces with rational values of the safety factor q, superposition of modes with degenerate values of the parallel mode number n + (m/q) is shown to result in electron streaming perpendicular to the magnetic field. The speed and direction of this radial motion are observed to have sinusoidal dependence on the poloidal angle. For models including finite magnetic-field shear, the authors find a limit to the extent of the radial streaming of the electrons. Results for the speed of the electron radial motion for typical tokamak parameters are presented

  7. MODELING THE ASIAN TSUNAMI EVOLUTION AND PROPAGATION WITH A NEW GENERATION MECHANISM AND A NON-LINEAR DISPERSIVE WAVE MODEL

    Directory of Open Access Journals (Sweden)

    Paul C. Rivera

    2006-01-01

    Full Text Available A common approach in modeling the generation and propagation of tsunami is based on the assumption of a kinematic vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. In this study, a new generation mechanism and the use of a highly-dispersive wave model to simulate tsunami inception, propagation and transformation are proposed. The new generation model assumes that transient ground motion during the earthquake can accelerate horizontal currents with opposing directions near the fault line whose successive convergence and divergence generate a series of potentially destructive oceanic waves. The new dynamic model incorporates the effects of earthquake moment magnitude, ocean compressibility through the buoyancy frequency, the effects of focal and water depths, and the orientation of ruptured fault line in the tsunami magnitude and directivity.For tsunami wave simulation, the nonlinear momentum-based wave model includes important wave propagation and transformation mechanisms such as refraction, diffraction, shoaling, partial reflection and transmission, back-scattering, frequency dispersion, and resonant wave-wave interaction. Using this model and a coarse-resolution bathymetry, the new mechanism is tested for the Indian Ocean tsunami of December 26, 2004. A new flooding and drying algorithm that consider waves coming from every direction is also proposed for simulation of inundation of low-lying coastal regions.It is shown in the present study that with the proposed generation model, the observed features of the Asian tsunami such as the initial drying of areas east of the source region and the initial flooding of western coasts are correctly simulated. The formation of a series of tsunami waves with periods and lengths comparable to observations

  8. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  9. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework.

    Science.gov (United States)

    Slunyaev, A V; Pelinovsky, E N

    2016-11-18

    The role of multiple soliton and breather interactions in the formation of very high waves is disclosed within the framework of the integrable modified Korteweg-de Vries (MKdV) equation. Optimal conditions for the focusing of many solitons are formulated explicitly. Namely, trains of ordered solitons with alternate polarities evolve to huge strongly localized transient waves. The focused wave amplitude is exactly the sum of the focusing soliton heights; the maximum wave inherits the polarity of the fastest soliton in the train. The focusing of several solitary waves or/and breathers may naturally occur in a soliton gas and will lead to rogue-wave-type dynamics; hence, it represents a new nonlinear mechanism of rogue wave generation. The discovered scenario depends crucially on the soliton polarities (phases), and is not taken into account by existing kinetic theories. The performance of the soliton mechanism of rogue wave generation is shown for the example of the focusing MKdV equation, when solitons possess "frozen" phases (certain polarities), though the approach is efficient in some other integrable systems which admit soliton and breather solutions.

  10. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    Science.gov (United States)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  11. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  12. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    Electrostatic Levitator (ESL) general layout with captions. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  13. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  14. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    General oayout of Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  15. Influence of the Wavelength Dependence of Birefringence in the Generation of Supercontinuum and Dispersive Wave in Fiber Optics

    Directory of Open Access Journals (Sweden)

    Rodrigo Acuna Herrera

    2017-01-01

    Full Text Available In this paper, we perform numerical analysis about the influence of the wavelength dependence of birefringence (WDB in the Supercontinuum (SC and dispersive wave (DW generation. We study different birefringence profiles such as constant, linear, and parabolic. We see that, for a linear and parabolic profile, the generation of SC practically does not change, while this does so when the constant value of the birefringence varies. Similar situation happens with the generation of dispersive waves. In addition, we observe that the broadband of the SC increases when the Stimulated Raman Scattering (SRS is neglected for all WDB profiles.

  16. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  17. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. II. FE analysis of bulk wave generation.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2013-07-01

    The paper studies numerically the bulk acoustic wave generation by the surface acoustic wave propagating across a grating created on the surface of an elastically anisotropic half-infinite substrate. The computations are fully based on the finite element method. Applying the discrete Fourier transformation to the displacement field found inside the substrate and using an orthogonality relation valid for plane modes we determine separately the spatial spectrum of the quasi longitudinal and the quasi transverse bulk waves, that is, the dependence of the amplitudes of these waves on the tangential component of the wave vector. The dependence is investigated of the central spectral peak height and shape on the frequency of the incident surface wave as well as on the thickness, the width, and the number of strips forming the grating. In particular, it is found that under certain conditions the central peak can be approximated fairly precisely by the central peak of a sinc-function describing the spectrum of the bounded acoustic beam of rectangular shape and of width equal to the length of the grating. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks

    Science.gov (United States)

    Li, C.; Miller, J.; Wang, J.; Koley, S. S.; Katz, J.

    2017-10-01

    This laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2-10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2-4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about -2.1, and for larger droplets, the power decreases well below -3. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from ˜1 mm to 46 and 14 µm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.

  19. Creation of Magnetic Fields by Electrostatic and Thermal Fluctuations

    International Nuclear Information System (INIS)

    Saleem, Hamid

    2009-01-01

    It is pointed out that the electrostatic and thermal fluctuations are the main source of magnetic fields in unmagnetized inhomogeneous plasmas. The unmagnetized inhomogeneous plasmas can support a low frequency electromagnetic ion wave as a normal mode like Alfven wave of magnetized plasmas. But this is a coupled mode produced by the mixing of longitudinal and transverse components of perturbed electric field due to density inhomogeneity. The ion acoustic wave does not remain electrostatic in non-uniform plasmas. On the other hand, a low frequency electrostatic wave can also exist in the pure electron plasmas and it couples with ion acoustic wave when ions are dynamic. These waves can become unstable when density and temperature gradients are parallel to each other as can be the case of laser plasmas and is the common situation in stellar cores. The main instability condition for the electrostatic and electromagnetic modes is the same (2/3)κ n T (where κ n and κ T are inverse of the scale lengths of gradients of density and electron temperature, respectively). This indicates that the electrostatic and magnetic field fluctuations are strongly coupled in unmagnetized nonuniform plasmas.

  20. Generation of Autologous Platelet-Rich Plasma by the Ultrasonic Standing Waves.

    Science.gov (United States)

    Wu, Yue; Kanna, Murugappan Suresh; Liu, Chenhui; Zhou, Yufeng; Chan, Casey K

    2016-08-01

    Platelet-rich plasma (PRP) is a volume of autologous plasma that has a higher platelet concentration above baseline. It has already been approved as a new therapeutic modality and investigated in clinics, such as bone repair and regeneration, and oral surgery, with low cost-effectiveness ratio. At present, PRP is mostly prepared using a centrifuge. However, this method has several shortcomings, such as long preparation time (30 min), complexity in operation, and contamination of red blood cells (RBCs). In this paper, a new PRP preparation approach was proposed and tested. Ultrasound waves (4.5 MHz) generated from piezoelectric ceramics can establish standing waves inside a syringe filled with the whole blood. Subsequently, RBCs would accumulate at the locations of pressure nodes in response to acoustic radiation force, and the formed clusters would have a high speed of sedimentation. It is found that the PRP prepared by the proposed device can achieve higher platelet concentration and less RBCs contamination than a commercial centrifugal device, but similar growth factor (i.e., PDGF-ββ). In addition, the sedimentation process under centrifugation and sonication was simulated using the Mason-Weaver equation and compared with each other to illustrate the differences between these two technologies and to optimize the design in the future. Altogether, ultrasound method is an effective method of PRP preparation with comparable outcomes as the commercially available centrifugal products.

  1. Nonlinear piezoelectricity in PZT ceramics for generating ultrasonic phase conjugate waves

    Science.gov (United States)

    Yamamoto; Kokubo; Sakai; Takagi

    2000-03-01

    We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.

  2. Ground-based gravitational wave interferometric detectors of the first and second generation: an overview

    International Nuclear Information System (INIS)

    Losurdo, Giovanni

    2012-01-01

    The era of first-generation gravitational wave interferometric detectors is ending. No signals have been detected so far. However, remarkable results have been achieved: the design sensitivity has been approached (and in some cases even exceeded) together with the achievement of robustness and reliability; a world-wide network of detectors has been established; the data collected so far has allowed upper limits to be put on several types of sources; some second-generation technologies have been tested on these detectors. The scenario for the next few years is very exciting. The projects to upgrade LIGO and Virgo to second-generation interferometers, capable of increasing the detection rate by a factor of ∼1000, have been funded. The construction of Advanced LIGO and Advanced Virgo has started. GEO600 has started the upgrade to GEO HF, introducing light squeezing for the first time on a large detector. LCGT has been partly funded and the construction of the vacuum system is underway. There is a possibility that the third Advanced LIGO interferometer will be constructed in India. So, a powerful worldwide network could be in operation by the end of the decade. In this paper, we review the results achieved so far and the perspectives for the advanced detectors. (paper)

  3. Theoretical and experimental investigation of electron beam acceleration and sub-millimeter wave generation

    Science.gov (United States)

    Luhmann, N. C., Jr.; McDermott, D. B.

    1992-10-01

    The overall objective of our research for ARO is to develop devices that have the potential for being compact generators of submillimeter-wave radiation. (1) The high-harmonic gyro-frequency multiplier, which is an efficient generator of high frequency RF, will be tested at the tenth-harmonic in our rebuilt test-stand. (2) High-power harmonic gyro-TWTs can be designed to operate in high order modes in large size waveguide by using the marginal stability design criterion. (3) Our high power, second-harmonic TE2 1 gyro-TWT, which is predicted to generate an order of magnitude higher power than state-of-the-art fundamental frequency gyrotrons, has been fully designed and construction is well underway. (4) The interaction strength in our high-harmonic CARM increases as the electron Larmor radius moves closer to the wall radius as the magnetic field is lowered towards a grazing intersection. (5) A high performance amplifier is predicted to result from our initial gyro-klystron experiment.

  4. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    International Nuclear Information System (INIS)

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-01-01

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  5. Ionospheric disturbances caused by long period sound waves generated by Saturn-Apollo launches

    Science.gov (United States)

    Rao, G. L.

    1972-01-01

    Wavelike disturbances were observed in the ionosphere following several nuclear explosions in early 1960's. Supersonic shock waves within the atmosphere generated by large rockets can cause ionospheric electron density perturbations. A CW phase path Doppler array in the New York area was operated during the Saturn-Apollo 12 and 13 launches and recorded Doppler frequency fluctuations due to rocket launchings. Cross correlation and power spectral analyses of the phase path-path Doppler frequency variation records showed that the phase velocities of the signal arrivals were from south of the array with 700 - 800 m/sec corresponding to periods in the range of 2 to 4 minutes. Ionograms taken every 60 seconds from Wallops Islands showed clearly ionospheric disturbances due to rockets. The group velocities were estimated to be of the order of 450 m/sec 1 obtained from the earliest visible disturbances seen on CW phase path Doppler records and ionograms together with the rocket trajectory data.

  6. Generation of higher derivatives operators and electromagnetic wave propagation in a Lorentz-violation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C., E-mail: luizhenriqueunifei@yahoo.com.br [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, SP, 09210-580 (Brazil); Dias, A.G., E-mail: alex.dias@ufabc.edu.br [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, SP, 09210-580 (Brazil); Ferrari, A.F., E-mail: alysson.ferrari@ufabc.edu.br [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, SP, 09210-580 (Brazil); Nascimento, J.R., E-mail: jroberto@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, Paraíba, 58051-970 (Brazil); Petrov, A.Yu., E-mail: petrov@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, Paraíba, 58051-970 (Brazil)

    2016-05-10

    We study the perturbative generation of higher-derivative Lorentz violating operators as quantum corrections to the photon effective action, originated from a specific Lorentz violation background, which has already been studied in connection with the physics of light pseudoscalars. We calculate the complete one loop effective action of the photon field through the proper-time method, using the zeta function regularization. This result can be used as a starting point to study possible effects of the Lorentz violating background we are considering in photon physics. As an example, we focus on the lowest order corrections and investigate whether they could influence the propagation of electromagnetic waves through the vacuum. We show, however, that no effects of the kind of Lorentz violation we consider can be detected in such a context, so that other aspects of photon physics have to be studied.

  7. Generation of higher derivatives operators and electromagnetic wave propagation in a Lorentz-violation scenario

    Directory of Open Access Journals (Sweden)

    L.H.C. Borges

    2016-05-01

    Full Text Available We study the perturbative generation of higher-derivative Lorentz violating operators as quantum corrections to the photon effective action, originated from a specific Lorentz violation background, which has already been studied in connection with the physics of light pseudoscalars. We calculate the complete one loop effective action of the photon field through the proper-time method, using the zeta function regularization. This result can be used as a starting point to study possible effects of the Lorentz violating background we are considering in photon physics. As an example, we focus on the lowest order corrections and investigate whether they could influence the propagation of electromagnetic waves through the vacuum. We show, however, that no effects of the kind of Lorentz violation we consider can be detected in such a context, so that other aspects of photon physics have to be studied.

  8. Analytical structural optimization and experimental verifications for traveling wave generation in self-assembling swimming smart boxes

    International Nuclear Information System (INIS)

    Bani-Hani, M A; Karami, M A

    2015-01-01

    This paper presents vibration analysis and structural optimization of a swimming–morphing structure. The swimming of the structure is achieved by utilization of piezoelectric patches to generate traveling waves. The third mode shape of the structure in the longitudinal direction resembles the body waveform of a swimming eel. After swimming to its destination, the morphing structure changes shape from an open box to a cube using shape memory alloys (SMAs). The SMAs used for the configuration change of the box robot cannot be used for swimming since they fail to operate at high frequencies. Piezoelectric patches are actuated at the third natural frequency of the structure. We optimize the thickness of the panels and the stiffness of the springs at the joints to generate swimming waveforms that most closely resemble the body waveform of an eel. The traveling wave is generated using two piezoelectric sets of patches bonded to the first and last segments of the beams in the longitudinal direction. Excitation of the piezoelectric results in coupled system dynamics equations that can be translated into the generation of waves. Theoretical analysis based on the distributed parameter model is conducted in this paper. A scalar measure of the traveling to standing wave ratio is introduced using a 2-dimensional Fourier transform (2D-FFT) of the body deformation waveform. An optimization algorithm based on tuning the flexural transverse wave is established to obtain a higher traveling to standing wave ratio. The results are then compared to common methods in the literature for assessment of standing to traveling wave ratios. The analytical models are verified by the close agreement between the traveling waves predicted by the model and those measured in the experiments. (paper)

  9. Acoustic-gravity waves generated by atmospheric and near-surface sources

    Science.gov (United States)

    Kunitsyn, Viacheslav E.; Kholodov, Alexander S.; Krysanov, Boris Yu.; Andreeva, Elena S.; Nesterov, Ivan A.; Vorontsov, Artem M.

    2013-04-01

    Numerical simulation of the acoustic-gravity waves (AGW) generated by long-period oscillations of the Earth's (oceanic) surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. Wavelike disturbances are quite frequent phenomena in the atmosphere and ionosphere. These events can be caused by the impacts from space and atmosphere, by oscillations of the Earth'as surface and other near-surface events. These wavelike phenomena in the atmosphere and ionosphere appear as the alternating areas of enhanced and depleted density (in the atmosphere) or electron concentration (in the ionosphere). In the paper, AGW with typical frequencies of a few hertz - millihertz are analyzed. AGW are often observed after the atmospheric perturbations, during the earthquakes, and some time (a few days to hours) in advance of the earthquakes. Numerical simulation of the generation of AGW by long-period oscillations of the Earth's and oceanic surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. The AGW generated by the near-surface phenomena within a few hertz-millihertz frequency range build up at the mid-atmospheric and ionospheric altitudes, where they assume their typical spatial scales of the order of a few hundred kilometers. Oscillations of the ionospheric plasma within a few hertz-millihertz frequency range generate electromagnetic waves with corresponding frequencies as well as travelling ionospheric irregularities (TIDs). Such structures can be successfully monitored using satellite radio tomography (RT) techniques. For the purposes of RT diagnostics, 150/400 MHz transmissions from low-orbiting navigational satellites flying in polar orbits at the altitudes of about 1000 km as well as 1.2-1.5 GHz signals form high-orbiting (orbital altitudes about 20000 km) navigation systems like GPS/GLONASS are used. The results of experimental studies on generation of wavelike disturbances by particle precipitation are presented

  10. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models

    Science.gov (United States)

    Rappaport, Theodore S.; Xing, Yunchou; MacCartney, George R.; Molisch, Andreas F.; Mellios, Evangelos; Zhang, Jianhua

    2017-12-01

    This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5-100 GHz range.

  11. Nonlinear Acoustic Waves Generated by Surface Disturbances and Their Effects on Lower Thermospheric Composition

    Science.gov (United States)

    Pineyro, B.; Snively, J. B.

    2017-12-01

    Recent 1D and 2D nonlinear atmospheric models have provided important insight into acoustic waves generated by seismic events, which may steepen into shocks or saw-tooth trains while also dissipating strongly in the thermosphere [e.g., Chum et al., JGR, 121, 2016; Zettergren et al., JGR, 122, 2017]. Although they have yield results that agree with with observations of ionospheric perturbations, dynamical models for the diffusive and stratified lower thermosphere [e.g., Snively and Pasko, JGR, 113, 2008] often use single gas approximations with height-dependent physical properties (e.g. mean molecular weight, specific heats) that do not vary with time (fixed composition). This approximation is simpler and less computationally expensive than a true multi-fluid model, yet captures the important physical transition between molecular and atomic gases in the lower thermosphere. Models with time-dependent composition and properties have been shown to outperform commonly used models with fixed properties; these time-dependent effects have been included in a one-gas model by adding an advection equation for the molecular weight, finding closer agreement to a true binary-gas model [Walterscheid and Hickey, JGR, 106, 2001 and JGR, 117, 2012]. Here, a one-dimensional nonlinear mass fraction approach to multi-constituent gas modeling, motivated by the results of Walterscheid and Hickey [2001, 2012], is presented. The finite volume method of Bale et al. [SIAM JSC, 24, 2002] is implemented in Clawpack [http://www.clawpack.org; LeVeque, 2002] with a Riemann Solver to solve the Euler Equations including multiple species, defined by their mass fractions, as they undergo advection. Viscous dissipation and thermal conduction are applied via a fractional step method. The model is validated with shock tube problems for two species, and then applied to investigate propagating nonlinear acoustic waves from ground to thermosphere, such as following the 2011 Tohoku Earthquake [e

  12. The Role of Solar Wind Structures in the Generation of ULF Waves in the Inner Magnetosphere

    Science.gov (United States)

    Alves, L. R.; Souza, V. M.; Jauer, P. R.; da Silva, L. A.; Medeiros, C.; Braga, C. R.; Alves, M. V.; Koga, D.; Marchezi, J. P.; de Mendonça, R. R. S.; Dallaqua, R. S.; Barbosa, M. V. G.; Rockenbach, M.; Dal Lago, A.; Mendes, O.; Vieira, L. E. A.; Banik, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C. A.

    2017-07-01

    The plasma of the solar wind incident upon the Earth's magnetosphere can produce several types of geoeffective events. Among them, an important phenomenon consists of the interrelation of the magnetospheric-ionospheric current systems and the charged-particle population of the Earth's Van Allen radiation belts. Ultra-low-frequency (ULF) waves resonantly interacting with such particles have been claimed to play a major role in the energetic particle flux changes, particularly at the outer radiation belt, which is mainly composed of electrons at relativistic energies. In this article, we use global magnetohydrodynamic simulations along with in situ and ground-based observations to evaluate the ability of two different solar wind transient (SWT) events to generate ULF (few to tens of mHz) waves in the equatorial region of the inner magnetosphere. Magnetic field and plasma data from the Advanced Composition Explorer (ACE) satellite were used to characterize these two SWT events as being a sector boundary crossing (SBC) on 24 September 2013, and an interplanetary coronal mass ejection (ICME) in conjunction with a shock on 2 October 2013. Associated with these events, the twin Van Allen Probes measured a depletion of the outer belt relativistic electron flux concurrent with magnetic and electric field power spectra consistent with ULF waves. Two ground-based observatories apart in 90°C longitude also showed evidence of ULF-wave activity for the two SWT events. Magnetohydrodynamic (MHD) simulation results show that the ULF-like oscillations in the modeled electric and magnetic fields observed during both events are a result from the SWT coupling to the magnetosphere. The analysis of the MHD simulation results together with the observations leads to the conclusion that the two SWT structures analyzed in this article can be geoeffective on different levels, with each one leading to distinct ring current intensities, but both SWTs are related to the same disturbance in the

  13. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...

  14. Two approaches for numerical modelling of waves generated by landslides : macroscopic and grain scales.

    Science.gov (United States)

    Clous, Lucie; Abadie, Stéphane

    2017-04-01

    The present works aims to show two approaches for the numerical modelling of waves generated by landslides. The first approach is based on a macroscopic view of the landslide. Two cases are introduced : the pyroclastic flow and the generation by a granular flow. Regarding the pyroclastic flow, if we consider that the high interstitial pressure persists during the propagation as showed in some experiments (Roche et al.), the slide has a fluid-like behaviour and therefore can be modelled as a Newtonian fluid. Some experiments are in process to assess this hypothesis. In the case of granular flow, we deal with the experiment of glass beads falling on a slope into water (Viroulet) for two diameters of beads. First, the landslide is modelled as a Newtonian fluid. The aim is to determine the viscosity value for each case and be able to reproduce the first wave. To be closer to the granular media, the mu(I)-rheology is also introduced (GDR MiDi). This rheology has been proposed to model dense granular flow and parameters are defined by the media. The second approach is to model the grain itself in the granular media. It can be done by coupling a DEM code with a Navier-Stokes code for example (Shan and Zhao). However, here, the idea is to compute the slide and the fluids with only a Navier-Stokes (NS) code. To realise that, the solid are modelled using penalised fluid (Ducassou et al.). Yet, the interactions between solid have to be manage by an additional routine in the NS code. A first model has been developed for interaction between discs. Experimental results are expected for the validation of this routine like the fall of several cylinders on a slope into water. References : O. Roche, S. Montserrat, Y. Niño, and A. Tamburrino. Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows. Journal of Geophysical Research, 115(B9), September 2010. Sylvain Viroulet. Simulations de

  15. A novel scheme for high-quality 120 GHz optical millimeter-wave generation without optical filter

    Science.gov (United States)

    Zhu, Zihang; Zhao, Shanghong; Li, Yongjun; Chen, Xiaoping; Li, Xuan

    2015-01-01

    A novel scheme to generate 120 GHz millimeter (mm)-wave from 10 GHz radio frequency (RF) local oscillator (LO) with an integrated nested Mach-Zehnder modulator (MZM) is proposed and demonstrated. By properly adjusting the modulator dc bias voltages and the LO voltages and phases, a frequency of 12-tupling optical mm-wave with an optical sideband suppression ratio (OSSR) higher than 37 dB can be generated without optical filter. This scheme largely reduces the response frequency of the modulator and the LO frequency. Furthermore, the non-ideal nested MZM parameters are analyzed theoretically, and we find that both the imperfect extinction ratio of the MZM and the phase imbalance between two arms of optical coupler have an influence on the performance of the generated optical mm-wave.

  16. Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal

    Directory of Open Access Journals (Sweden)

    K. Takeya

    2017-01-01

    Full Text Available When combined with a nonlinear waveguide crystal, Cherenkov phase matching allows for highly effective generation of high power and broadband terahertz (THz waves. Using a ridged Lithium Niobate (LiNbO3 waveguide coupled with a specially designed silicon lens, we successfully generated THz waves with intensity of approximately three orders of magnitude stronger than those from conventional photoconductive antenna. The broadband spectrum was from 0.1 THz to 7 THz with a maximum dynamic range of 80 dB. The temporal shape of time domain pulse is a regular single cycle which could be used for high depth resolution time of flight tomography. The generated THz wave can also be easily monitored by compact room-temperature THz camera, enabling us to determine the spatial characteristics of the THz propagation.

  17. The theory of magnetohydrodynamic wave generation by localized sources. I - General asymptotic theory

    Science.gov (United States)

    Collins, William

    1989-01-01

    The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.

  18. Inversion of the Chelyabinsk seismic surface waves and comparative constraints on the generation of seismic waves by atmospheric Impacts on Earth and Mars

    Science.gov (United States)

    Karakostas, F. G.; Rakoto, V.; Lognonne, P. H.

    2015-12-01

    Meteor impacts are a very important seismic source for planetary seismology, since their locations and, in some cases, their occurence times can be accurately known from orbiters, tracking or optical observations. Their importance becomes greater in the case of a seismic experiment with one seismometer, as the SEIS (Seismic Experiment of Interior Structure) of the future Martian mission "InSight", as the known location allows a direct inversion of differential travel times and wave forms in terms of structure. Meteor impacts generate body and surface seismic waves when they reach the surface of a planet. But when they explode into the atmosphere, due to ablation, they generate shock waves, which are converted into linear, seismic waves in the solid part and acoustic waves in the atmosphere. This effect can be modeled when the amplitude of Rayleigh and other Spheroidal normal modes is made with the atmospheric/ground coupling effects. In this study, meteor impacts are modeled as seismic sources in a comparative analysis for the cases of Earth and Mars. Using the computed seismograms, calculated by the summation of the normal modes of the full planet (e.g. with atmosphere) the properties of the seismic source can be obtained. Its duration is typically associated to the radiation duration of shock waves until they reach the linear regime of propagation. These transition times are comparatively analyzed, for providing constraints on the seismic source duration on Earth and Mars. In the case of Earth, we test our approach with the Chelyabinsk superbolide. The computed seismograms are used in order to perform the inversion of the source, by comparison with the data of the Global Seismographic Network. The results are interpreted and compared with other observations. In the case of Mars, equivalent sources are similarly modeled in different atmospheric, impact size and lithospheric conditions.

  19. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.

    Directory of Open Access Journals (Sweden)

    Masato Kiyoshi

    Full Text Available The optimization of antibodies is a desirable goal towards the development of better therapeutic strategies. The antibody 11K2 was previously developed as a therapeutic tool for inflammatory diseases, and displays very high affinity (4.6 pM for its antigen the chemokine MCP-1 (monocyte chemo-attractant protein-1. We have employed a virtual library of mutations of 11K2 to identify antibody variants of potentially higher affinity, and to establish benchmarks in the engineering of a mature therapeutic antibody. The most promising candidates identified in the virtual screening were examined by surface plasmon resonance to validate the computational predictions, and to characterize their binding affinity and key thermodynamic properties in detail. Only mutations in the light-chain of the antibody are effective at enhancing its affinity for the antigen in vitro, suggesting that the interaction surface of the heavy-chain (dominated by the hot-spot residue Phe101 is not amenable to optimization. The single-mutation with the highest affinity is L-N31R (4.6-fold higher affinity than wild-type antibody. Importantly, all the single-mutations showing increase affinity incorporate a charged residue (Arg, Asp, or Glu. The characterization of the relevant thermodynamic parameters clarifies the energetic mechanism. Essentially, the formation of new electrostatic interactions early in the binding reaction coordinate (transition state or earlier benefits the durability of the antibody-antigen complex. The combination of in silico calculations and thermodynamic analysis is an effective strategy to improve the affinity of a matured therapeutic antibody.

  20. Studies on the parametric decay of waves in fusion plasmas

    International Nuclear Information System (INIS)

    Paettikangas, T.

    1992-08-01

    Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)