WorldWideScience

Sample records for electrostatic sorption mechanism

  1. Sorption mechanisms of perfluorinated compounds on carbon nanotubes

    International Nuclear Information System (INIS)

    Deng Shubo; Zhang Qiaoying; Nie Yao; Wei Haoran; Wang Bin; Huang Jun; Yu Gang; Xing Baoshan

    2012-01-01

    Sorption of perfluorinated compounds (PFCs) on carbon nanotubes (CNTs) is critical for understanding their subsequent transport and fate in aqueous environments, but the sorption mechanisms remain largely unknown. In this study, the sorption of six PFCs on CNTs increased with increasing C-F chain length when they had a same functional group, and the CNTs with hydroxyl and carboxyl groups had much lower adsorbed amount than the pristine CNTs, indicating that hydrophobic interaction dominated the sorption of PFCs on the CNTs. Electrostatic repulsion suppressed the sorption of PFCs on the CNTs, resulting in the lower sorption with increasing pH. Hydrogen bonding interaction was negligible. The hydrophobic C-F chains can be closely adsorbed on the CNTs surface in parallel to the axis or along the curvature, making it impossible to form micelles on the CNT surface, leading to the lower sorption than other adsorbents. Highlights: ► Sorption capacities of PFOA on different CNTs are less than that on activated carbon and resins. ► Hydrophobic interaction is principally involved in the sorption of PFCs on CNTs. ► Electrostatic repulsion suppresses the sorption of PFCs on CNTs. - Hydrophobic interaction dominated the sorption of perfluorinated compounds on carbon nanotubes, while electrostatic repulsion suppressed their sorption.

  2. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    Science.gov (United States)

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  3. Recent progress in sorption mechanisms and models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.

    2005-01-01

    Full text of publication follows: Sorption-desorption phenomena play an important role in the migration of radioactive species in surface and underground waters. In order to predict the transport of these species, we need a good knowledge of sorption processes and data, together with reliable models able to be included in transport calculation. Traditional approaches based on experimentally determined distribution coefficients (Kd) and sorption isotherms have a limited predictive capability, since they are very sensitive to the numerous parameters characterizing the solution and the solid. Models based on thermodynamic equilibria were developed to account for the influence these parameters: the ion exchange model and the surface complexation models (2-pK mono-site, 1-pK multi-site, with several different electrostatic models: CCM, DLM, BSM, TLM,...). Although these models are very useful, studies performed in recent years showed that they have important theoretical and experimental limitations, which result in the fact that we must be very careful when we use them for extrapolating sorption data to long term and to large natural systems. Among all problems which can be found are: the possibility to fit a set of experimental data with different models, sometimes bad adequacy with the real sorption processes, some theoretical limitations such as a rigorous definition of reference and standard states in surface equilibria, slow kinetics which prevent from equilibrium achievement, irreversibility, solubility and evolution of solid phases... Through the increase of the number of sensitive spectroscopic methods, we are now able to know more about sorption processes at the atomic scale. Models such as the 1-pK CD-MUSIC model can account for the influence of orientation of the faces of the solid. More and more examples of the influence of this orientation on the sorption properties are known. Calculations performed by 'ab initio' modeling is also useful to predict the

  4. Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity.

    Science.gov (United States)

    Cao, Yuanyuan; Chen, Yu; Sun, Xiaofu; Zhang, Zhongmin; Mu, Tiancheng

    2012-09-21

    Most of the ionic liquids (ILs) are hygroscopic in air. The effects of structural factors of ILs (cation, anion, alkyl chain length at cation, and C2 methylation at cation) and external factors (temperature, relative humidity, and impurity) on the kinetics of water sorption by 18 ILs were investigated. A modified two-step sorption mechanism was proposed to correlate the water sorption data in the ILs. Three type of parameters (sorption capacity, sorption rate and degree of difficulty to reach sorption equilibrium) based on the modified two-step mechanism were derived to comprehensively characterize the water sorption processes. These parameters have similar tendencies, providing an efficient way to evaluate them by one parameter that can be easily obtained. The hydrophilicity of the ILs was classified to four levels (super-high, high, medium, low) according to the water sorption capacity. The results show that cation of the ILs also plays an important role in water sorption, and the impurities affect the water sorption enormously. Acetate and halogen-based ILs have the highest hydrophilicity when combined with the imidazolium or pyridinium cation.

  5. Arsenic Sorption on Mechanically Activated Magnetite and Olivine

    Directory of Open Access Journals (Sweden)

    Zdenka Bujňáková

    2012-12-01

    Full Text Available Arsenic sorption on mechanically activated minerals such as magnetite Fe3O4 (Kiruna, Sweden and olivine (Mg,Fe2SiO4 (Ǻheim,Norway has been studied and compared in this work. Experiments were carried out with non-activated and mechanically activatedsamples. The activation of both minerals was performed in a planetary mill at different milling conditions. The specific surface areaand consequent sorption activity were enhanced by mechanical activation. The using of olivine seems to be better than magnetite fromthe point of view of milling time, which is necessary for achievement of the same sorption effect.

  6. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  7. Investigating the gas sorption mechanism in an rht -metal-organic framework through computational studies

    KAUST Repository

    Pham, Tony T.

    2014-01-09

    Grand canonical Monte Carlo (GCMC) simulations were performed to investigate CO2 and H2 sorption in an rht-metal-organic framework (MOF) that was synthesized with a ligand having a nitrogen-rich trigonal core through trisubstituted triazine groups and amine functional groups. This MOF was synthesized by two different groups, each reporting their own distinct gas sorption measurements and crystal structure. Electronic structure calculations demonstrated that the small differences in the atomic positions between each group\\'s crystal structure resulted in different electrostatic parameters about the Cu2+ ions for the respective unit cells. Simulations of CO2 sorption were performed with and without many-body polarization effects and using our recently developed CO2 potentials, in addition to a well-known bulk CO2 model, in both crystallographic unit cells. Simulated CO2 sorption isotherms and calculated isosteric heats of adsorption, Qst, values were in excellent agreement with the results reported previously by Eddaoudi et al. for both structures using the polarizable CO2 potential. For both crystal structures, the initial site for CO2 sorption were the Cu 2+ ions that had the higher positive charge in the unit cell, although the identity of this electropositive Cu2+ ion was different in each case. Simulations of H2 sorption were performed with three different hydrogen potentials of increasing anisotropy in both crystal structures and the results, especially with the highest fidelity model, agreed well with Eddaoudi et al.\\'s experimental data. The preferred site of H 2 sorption at low loading was between two Cu2+ ions of neighboring paddlewheels. The calculation of the normalized hydrogen dipole distribution for the polarizable model in both crystal structures aided in the identification of four distinct sorption sites in the MOF, which is consistent to what was observed in the experimental inelastic neutron scattering (INS) spectra. Lastly, while the

  8. Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Abdullah Al, E-mail: mamun@toki.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Morita, Masao, E-mail: masao.swimer@akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Matsuoka, Mitsuaki, E-mail: m-matsuoka@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Tokoro, Chiharu, E-mail: tokoro@waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2017-07-15

    Highlights: • Coprecipitation showed twice the sorption density of simple adsorption at pH 5. • Mechanism shift from outer- to inner-sphere surface complexation at high Cr/Fe. • In coprecipitation the mechanism shift occurs at lower Cr/Fe ratios than adsorption. • Higher-molar-ratio bidentate binuclear Cr−Fe bonds; yielded ferrihydrite expansion. - Abstract: Hexavalent chromium (Cr(VI)) attracted researchers’ interest for its toxicity, natural availability and removal difficulty. Nevertheless, its sorption mechanism is not clearly understood yet. In this work, we elucidated the sorption mechanism of the co-precipitation of chromates with ferrihydrite through quantitative analysis. The influence of Cr/Fe molar ratio on sorption was investigated by zeta potential measurements, X-ray diffraction (XRD) and X-ray adsorption fine-structure analysis (XAFS). Coprecipitation at pH 5 showed almost twice the sorption density of adsorption at pH 5. In co-precipitation, a shift of the XRD peak due to inner-sphere sorption of chromate was observed at Cr/Fe molar ratio 0.5. For adsorption, the same peak shift was confirmed at Cr/Fe molar ratio of 1. Zeta potential at pH 5 suggested that the sorption mechanism changed at Cr/Fe molar ratio 0.25 for coprecipitation and at Cr/Fe molar ratio of 1 for adsorption. Fitting of Cr and Fe K-edge extended X-ray adsorption fine-structure suggested that ferrihydrite immobilized Cr(VI) via outer sphere surface complexation for lower Cr/Fe ratios and via inner-sphere surface complexation for higher molar ratios. At higher molar ratios, bidentate binuclear Cr−Fe bonds were well established, thus resulting in the expansion of the ferrihydrite structure.

  9. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.

    Science.gov (United States)

    Yang, Hui; Hu, Yuanan; Cheng, Hefa

    2016-10-01

    Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream.

  10. Sorption compressor/mechanical expander hybrid refrigeration

    Science.gov (United States)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  11. Kinetics and mechanism of the sorption of some aromatic amines onto amberlite IRA-904 anion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, A.B.; El-Sheikh, M.Y.; Evans, J.; El-Safty, S.A.

    2000-01-01

    The kinetics of the sorption of aromatic amines such as o-aminophenol (o-AP), o-phenylenediamine (o-PDA), and p-phenylenediamine (p-PDA) onto Amberlite anion-exchange resin in chloride form was investigated in batch experiments spectrophotometrically at different temperatures. The sorption rate is zero order in all amines sorbed, increasing directly in the order: p-PDA < o-PDA < o-AP, which corresponds to the sequence of the electrostatic contributions to the sorption interactions. The attainments of sorption equilibrium of aromatic amines is seen to be similar. The diffusion coefficients (D) have been calculated by using Fick's equation from the second portions of the sorption/desorption curves; D values ranged from 0.7 to 2.8 x 10{sup {minus}9} cm{sup 2}/s. These results, reflecting the diffusion mechanism, were ascribed to intraparticle diffusion. Arrhenius parameters for the diffusion process and the thermodynamic quantities for the process of equilibrium sorption have been estimated. The effect of a chemical oxidation reaction on intraparticle diffusion was investigated by measuring the intraparticle diffusion of amines during the redox reaction.

  12. Kinetics and Mechanism of the Sorption of Some Aromatic Amines onto Amberlite IRA-904 Anion-Exchange Resin.

    Science.gov (United States)

    Zaki; El-Sheikh; Evans; El-Safty

    2000-01-01

    The kinetics of the sorption of aromatic amines such as o-aminophenol (o-AP), o-phenylenediamine (o-PDA), and p-phenylenediamine (p-PDA) onto Amberlite anion-exchange resin in chloride form was investigated in batch experiments spectrophotometrically at different temperatures. The sorption rate is zero order in all amines sorbed, increasing directly in the order: p-PDAelectrostatic contributions to the sorption interactions. The attainment of sorption equilibrium of aromatic amines is seen to be similar. The diffusion coefficients (D) have been calculated by using Fick's equation from the second portions of the sorption/desorption curves; D values ranged from 0.7 to 2.8x10(-9) cm(2)/s. These results, reflecting the diffusion mechanism, were ascribed to intraparticle diffusion. Arrhenius parameters for the diffusion process and the thermodynamic quantities for the process of equilibrium sorption have been estimated. The effect of a chemical oxidation reaction on intraparticle diffusion was investigated by measuring the intraparticle diffusion of amines during the redox reaction. Copyright 2000 Academic Press.

  13. Development of a Composite Non-Electrostatic Surface Complexation Model Describing Plutonium Sorption to Aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Powell, B A; Kersting, A; Zavarin, M; Zhao, P

    2008-10-28

    Due to their ubiquity in nature and chemical reactivity, aluminosilicate minerals play an important role in retarding actinide subsurface migration. However, very few studies have examined Pu interaction with clay minerals in sufficient detail to produce a credible mechanistic model of its behavior. In this work, Pu(IV) and Pu(V) interactions with silica, gibbsite (Aloxide), and Na-montmorillonite (smectite clay) were examined as a function of time and pH. Sorption of Pu(IV) and Pu(V) to gibbsite and silica increased with pH (4 to 10). The Pu(V) sorption edge shifted to lower pH values over time and approached that of Pu(IV). This behavior is apparently due to surface mediated reduction of Pu(V) to Pu(IV). Surface complexation constants describing Pu(IV)/Pu(V) sorption to aluminol and silanol groups were developed from the silica and gibbsite sorption experiments and applied to the montmorillonite dataset. The model provided an acceptable fit to the montmorillonite sorption data for Pu(V). In order to accurately predict Pu(IV) sorption to montmorillonite, the model required inclusion of ion exchange. The objective of this work is to measure the sorption of Pu(IV) and Pu(V) to silica, gibbsite, and smectite (montmorillonite). Aluminosilicate minerals are ubiquitous at the Nevada National Security Site and improving our understanding of Pu sorption to aluminosilicates (smectite clays in particular) is essential to the accurate prediction of Pu transport rates. These data will improve the mechanistic approach for modeling the hydrologic source term (HST) and provide sorption Kd parameters for use in CAU models. In both alluvium and tuff, aluminosilicates have been found to play a dominant role in the radionuclide retardation because their abundance is typically more than an order of magnitude greater than other potential sorbing minerals such as iron and manganese oxides (e.g. Vaniman et al., 1996). The sorption database used in recent HST models (Carle et al., 2006

  14. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals

    International Nuclear Information System (INIS)

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J.

    2016-01-01

    Highlights: • Mercury sorption by Al-WTRs involves electrostatic forces and chemisorption. • Hg forms bonds with oxygen and sulfur atoms of Al-WTR’s organic ligands. • Mercury is incorporated into the residual fraction to form stable complexes. • Mercury binds mainly to SiO x species in the residual fraction. - Abstract: Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal–WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding.

  15. Mechanical behavior analysis on electrostatically actuated rectangular microplates

    Science.gov (United States)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Dai, Lu; Zhao, Yulong

    2015-03-01

    Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices.

  16. Mechanical behavior analysis on electrostatically actuated rectangular microplates

    International Nuclear Information System (INIS)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Zhao, Yulong; Dai, Lu

    2015-01-01

    Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices. (paper)

  17. PCB Congener Sorption To Carbonaceous Sediment Components: Macroscopic Comparison And Characterization Of Sorption Kinetics And Mechanism

    Science.gov (United States)

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparati...

  18. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals.

    Science.gov (United States)

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J

    2016-04-15

    Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal-WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Camilloni, Carlo; Sahakyan, Aleksander B.; Holliday, Michael; Isern, Nancy G.; Zhang, Fengli; Eisenmesser, Elan Z.; Vendruscolo, Michele

    2014-07-15

    Proline isomerization is a ubiquitous process that plays a key role in the folding of proteins and in the regulation of their functions1-3. Different families of enzymes, known as peptidyl-prolyl isomerases (PPIases), catalyse this reaction, which involves the interconversion between the cis and trans isomers of the Nterminal amide bond of the amino acid proline2,3. A complete description of the mechanisms by which these enzymes function, however, has remained elusive. Here, we show that cyclophilin A, one of the most common PPIases4, provides a catalytic environment that acts on the substrate through an electrostatic lever mechanism. In this mechanism, the electrostatic field in the catalytic site turns the electric dipole associated with the carboxylic group of the amino acid preceding the proline in the substrate, thus causing the rotation of the peptide bond between the two residues. This mechanism resulted from the analysis of an ensemble of conformations populated by cyclophilin A during the enzymatic reaction using a combination of NMR measurements, molecular dynamics simulations and density functional theory calculations. We anticipate that this approach will be helpful in elucidating whether the electrostatic lever mechanism that we describe is common to other PPIases, and more generally to characterise other enzymatic processes.

  20. Mechanisms of nickel sorption by a bacteriogenic birnessite

    Energy Technology Data Exchange (ETDEWEB)

    Pena, J.; Kwon, K.D.; Refson, K.; Bargar, J.R.; Sposito, G.

    2010-04-01

    A synergistic experimental-computational approach was used to study the molecular-scale mechanisms of Ni sorption at varying loadings and at pH 6-8 on the biogenic hexagonal birnessite produced by Pseudomonas putida GB-1. We found that Ni is scavenged effectively by bacterial biomass-birnessite assemblages. At surface excess values below 0.18 mol Ni kg{sup -1} sorbent (0.13 mol Ni mol{sup -1} Mn), the biomass component of the sorbent did not interfere with Ni sorption on mineral sites. Extended X-ray absorption fine structure (EXAFS) spectra showed two dominant coordination environments: Ni bound as a triple-corner-sharing (Ni-TCS) complex at vacancy sites and Ni incorporated (Ni-inc) into the MnO{sub 2} sheet, with the latter form of Ni favored at high sorptive concentrations and decreased proton activity. In parallel to our spectral analysis, first-principles geometry optimizations based on density functional theory (DFT) were performed to investigate the structure of Ni surface complexes at vacancy sites. Excellent agreement was achieved between EXAFS- and DFT-derived structural parameters for Ni-TCS and Ni-inc. Reaction-path calculations revealed a pH-dependent energy barrier associated with the transition from Ni-TCS to Ni-inc. Our results are consistent with the rate-limited incorporation of Ni at vacancy sites in our sorption samples, but near-equilibrium state of Ni in birnessite phases found in nodule samples. This study thus provides direct and quantitative evidence of the factors governing the occurrence of Ni adsorption versus Ni incorporation in biogenic hexagonal birnessite, a key mineral in the terrestrial manganese cycle.

  1. The sorption and mechanical properties of the modified cement matrix used for conditioning of radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Nuculae, Ortenzia; Jinescu, Gheorghita; Duliu, Octavian; Dogaru, Gheorghe

    2008-01-01

    Full text: Radioactive contaminant sorption onto concrete represents one of the most important retardation mechanisms in engineered barriers such as the conditioning matrix itself, concrete walls and concrete floors. During the life of a disposal facility for radioactive waste, the sorption properties as well as the mechanical properties of the cement are affected by both external and internal processes. The most important sorbing material present in concrete is the hydrated cement. The sorption data obtained for specific cement or cement mixes in general may be used to characterize a given cement type. In order to improve the mechanical and sorption properties of the cement matrix, different additives were used in the laboratory tests. The used additives are known to have good sorption properties. The paper describes the influence of the concentration of additives on the mechanical and sorption properties of the cement matrix. As radioactive contaminants 134 Cs, 60 Co, 3 H, 241 Am were used. (authors)

  2. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P

    2013-01-01

    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  3. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars

    International Nuclear Information System (INIS)

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd 2+ /NH 4 + sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500 °C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH 4 + and Cd 2+ , with a maximum sorption of 13.35 and 125.8 mg g −1 , respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3 mg g −1 ) for Cd 2+ . Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd 2+ sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. - Highlights: • Biochars varied in physicochemical properties and adsorption capacity. • Canna indica derived biochar has a high sorption capacity for Cd 2+ . • NH 4 + and Cd 2+ sorption on biochars fits a pseudo second order and Langmuir model. • Sorption mechanism is related to complexation, cation exchange and precipitation.

  4. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoqiang [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Hao, Hulin [Ningbo Raw Water Resource Research Academy, Ningbo (China); Zhang, Changkuan [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); He, Zhenli [Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945 (United States); Yang, Xiaoe, E-mail: xyang571@yahoo.com [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-01-01

    The objective of this study was to investigate the relationship between Cd{sup 2+}/NH{sub 4}{sup +} sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500 °C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH{sub 4}{sup +} and Cd{sup 2+}, with a maximum sorption of 13.35 and 125.8 mg g{sup −1}, respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3 mg g{sup −1}) for Cd{sup 2+}. Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd{sup 2+} sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. - Highlights: • Biochars varied in physicochemical properties and adsorption capacity. • Canna indica derived biochar has a high sorption capacity for Cd{sup 2+}. • NH{sub 4}{sup +} and Cd{sup 2+} sorption on biochars fits a pseudo second order and Langmuir model. • Sorption mechanism is related to complexation, cation exchange and precipitation.

  5. Study of sorption mechanisms of europium(3) and uranium(6) ions on clays : impact of silicates

    International Nuclear Information System (INIS)

    Kowal-Fouchard, A.

    2002-11-01

    Bentonite clay has been selected as a potential buffer or backfill material in a number of disposal programmes for high level waste. In order to enhance the thermodynamic database of sorption phenomena at the solid-water interface, we have investigated sorption mechanisms of europium(III) and uranium(VI) ions onto montmorillonite and bentonite. Thermodynamic data were obtained for different ions concentrations, different background electrolytes and different ionic strengths. The structural identification of the surface complexes and sorption sites was carried out using two spectroscopies, XPS and TRLIFS, while sorption edges were performed using batch experiments. However, clays are complex minerals and in order to understand these sorption mechanisms we have studied europium(III) and uranium(VI) retention on a silica and an alumina because these solids are often considered as basic components of clays. The comparison of structural results shows that europium ions are significantly sorbed on permanently charged sites of clay until pH 7. But this ion is also sorbed on ≡SiOH and ≡AlOH sites of montmorillonite at pH higher than 6. Uranyl ions sorption on montmorillonite is mainly explained by retention of three complexes on ≡SiOH sites. Moreover, we have shown that nitrate ions and dissolved silicates affect on uranium(VI) sorption mechanisms onto alumina. Nevertheless, uranyl ions sorption on montmorillonite and bentonite only decreases with increasing carbonate concentration. Finally, all the sorption edges were then modeled using these results and a surface complexation model (2 pK and constant capacitance models). (author)

  6. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.

    Science.gov (United States)

    Deng, Shubo; Ting, Yen Peng

    2005-11-01

    Heavy metal pollution in the aqueous environment is a problem of global concern. Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrial effluents and natural waters. A modified fungal biomass of Penicillium chrysogenum with positive surface charges was prepared by grafting polyethylenimine (PEI) onto the biomass surface in a two-step reaction. The presence of PEI on the biomass surface was verified by FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Due to the high density of amine groups in the long chains of PEI molecules on the surface, the modified biomass was found to possess positive zeta potential at pH below 10.4 as well as high sorption capacity for anionic Cr(VI). Using the Langmuir adsorption isotherm, the maximum sorption capacity for Cr(VI) at a pH range of 4.3-5.5 was 5.37 mmol/g of biomass dry weight, the highest sorption capacity for Cr(VI) compared to other sorbents reported in the literature. Scanning electronic microscopy (SEM) provided evidence of chromium aggregates formed on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface in the pH range 2.5-10.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption. The sorption kinetics indicated that redox reaction occurred on the biomass surface, and whether the converted Cr(III) ions were released to solution or adsorbed on the biomass depended on the solution pH. Sorption mechanisms including electrostatic interaction, chelation, and precipitation were found to be involved in the complex sorption of chromium on the PEI-modified biomass.

  7. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  8. A study of sorption mechanism onto cement hydrates by isotherm measurements

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2003-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cement material, which controls the aqueous concentrations of elements in the porewater, is a very important parameter when considering the release of radionuclides from the near field of a repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium and thorium onto Ordinary Portland Cement (OPC) and Calcium Silicate Hydrate (C-S-H gel), to justify and support this assumption. In addition, the effect of competitive sorption between thorium and uranium and other groundwater ions is studied by examining sorption using a range of sodium chloride concentrations to simulate different groundwater ionic strengths. Based on the experimental results, we have showed that: Caesium and strontium sorb by substitution for Ca in C-S-H phases and the presence of some calcium sites with different ion-exchange log K values is suggested; Thorium would be fixed in a surface co-precipitation to form a solubility-limiting phase. The results of sorption experiments are reasonably well modelled by the ion-exchange model for caesium and strontium and the surface co-precipitation model for thorium, respectively. (author)

  9. Lead and cadmium sorption mechanisms on magnetically modified biochars

    Czech Academy of Sciences Publication Activity Database

    Trakal, L.; Veselská, V.; Šafařík, Ivo; Vítková, M.; Číhalová, S.; Komárek, M.

    2016-01-01

    Roč. 203, MAR (2016), s. 318-324 ISSN 0960-8524 R&D Projects: GA MŠk(CZ) LD14066 Institutional support: RVO:67179843 Keywords : pyrolysis bio-chars * aqueous-solutions * heavy-metals * removal * adsorption * water * contaminants * pb * temperatures * copper * Magnetic biochar * Fe oxide impregnation * Metal sorption * Cation release * Wastewater treatment Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.651, year: 2016

  10. Sorption mechanisms of sulfamethazine to soil humin and its subfractions after sequential treatments.

    Science.gov (United States)

    Guo, Xiaoying; Shen, Xiaofang; Zhang, Meng; Zhang, Haiyun; Chen, Weixiao; Wang, Hui; Koelmans, A A; Cornelissen, Gerard; Tao, Shu; Wang, Xilong

    2017-02-01

    Sorption mechanisms of an antibiotic sulfamethazine (SMT) to humin (HM) isolated from a peat soil and its subfractions after sequential treatments were examined. The treatments of HM included removal of ash, O-alkyl carbon, lipid, and lignin components. The HF/HCl de-ashing treatment removed a large amount of minerals (mainly silicates), releasing a fraction of hydrophobic carbon sorption domains that previously were blocked, increasing the sorption of SMT by 33.3%. The de-O-alkyl carbon treatment through acid hydrolysis greatly reduced polarity of HM samples, thus weakening the interaction between sorbents with water at the interfaces via H-bonding, leaving more effective sorption sites. Sorption of SMT via mechanisms such as van der Waals forces and π-π interactions was enhanced by factors of 2.04-2.50. After removing the lipid/lignin component with the improved Soxhlet extraction/acid hydrolysis, the organic carbon content-normalized sorption enhancement index E oc was calculated. The results demonstrated that the E oc-lipid for SMT (16.9%) was higher than E oc-lignin (10.1%), implying that removal of unit organic carbon mass of lipid led to a higher increase in sorption strength than that of lignin. As each component was progressively removed from HM, the sorption strength and isotherm nonlinearity of the residual HM samples for SMT were gradually enhanced. The K oc values of SMT by HM samples were positively correlated with their aromatic carbon contents, implying that π-π electron donor-acceptor interactions between the benzene ring of sorbate and the aromatic domains in HM played a significant role in their interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. SORPTION-DESORPTION MECHANISM OF Zn(II AND Cd(II ON CHITIN

    Directory of Open Access Journals (Sweden)

    Sri Juari Santosa

    2010-06-01

    Full Text Available This study reports the results of the elucidation of the sorption-desorption mechanism of Zn(II and Cd(II on chitin through the determination of capacity, energy, and rate constant of sorption as well as the investigation of their desorption properties in NaCl and Na2EDTA solutions. The chitin was isolated through deproteination followed by demineralization of crab (Portunus pelagicus Linn shell using NaOH solutions. The sorption of both metal ions followed the Langmuir isotherm model, resulting the sorption capacities of 3.2 x 10-4 and 2.8 x 10-4 mol g-1 for Zn(II and Cd(II, respectively, and sorption energies of 15.1 kJ mol-1 for Zn(II and 17.9 kJ mol-1 for Cd(II. It was also observed that Zn(II was sorbed slightly faster than Cd(II with first order sorption rate constants of 2.82 x 10-3 min-1 for Zn(II and 2.61 x 10-3 min-1 for Cd(II. The result of the desorption experiment showed that Cd(II and especially Zn(II could only be exchanged by Na(I after desorbing those metal ions by strong chelating agent of EDTA2-. The easier desorption of Zn(II than Cd(II by EDTA2- must be attributed by the smaller sorption energy of Zn(II and by harder acid property of Zn(II than Cd(II as EDTA2- contained hard electron donor elements.   Keywords: sorption, desorption, chitin, Zn(II, Cd(II

  12. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample.

    Science.gov (United States)

    Wang, Xilong; Guo, Xiaoying; Yang, Yu; Tao, Shu; Xing, Baoshan

    2011-03-15

    The sorption behavior of organic compounds (phenanthrene, lindane, and atrazine) to sequentially extracted humic acids and humin from a peat soil was examined. The elemental composition, XPS and (13)C NMR data of sorbents combined with sorption isotherm data of the tested compounds show that nonspecific interactions govern sorption of phenanthrene and lindane by humic substances. Their sorption is dependent on surface and bulk alkyl carbon contents of the sorbents, rather than aromatic carbon. Sorption of atrazine by these sorbents, however, is regulated by polar interactions (e.g., hydrogen bonding). Carboxylic and phenolic moieties are key components for H-bonding formation. Thermal analysis reveals that sorption of apolar (i.e., phenanthrene and lindane) and polar (i.e., atrazine) compounds by humic substances exhibit dissimilar relationships with condensation and thermal stability of sorption domains, emphasizing the major influence of domain spatial arrangement on sorption of organic compounds with distinct polarity. Results of pH-dependent sorption indicate that reduction in sorption of atrazine by the tested sorbents is more evident than phenanthrene with increasing pH, supporting the dependence of organic compound sorption on its polarity and structure. This study highlights the different interaction mechanisms of apolar and polar organic compounds with humic substances.

  13. Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins.

    Science.gov (United States)

    Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo; Vallittu, Pekka; Shimizu, Hiroshi; Takahashi, Yutaka

    2014-11-01

    This study investigated the influence of water sorption on certain mechanical properties of injection-molded thermoplastic denture base resins. Six thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethylmethacrylate) and a polymethylmethacrylate (PMMA) conventional heat-polymerized denture-based polymer, selected as a control, were tested. Specimens of each denture base material were fabricated according to ISO 1567 specifications and were either dry or water-immersed for 30 days (n = 10). The ultimate flexural strength, the flexural strength at the proportional limit and the elastic modulus of the denture base materials were calculated. Water sorption significantly decreased the ultimate flexural strength, the flexural strength at the proportional limit and the elastic modulus of one of the polyamides and the PMMAs. It also significantly increased the ultimate flexural strength of the polycarbonate. The mechanical properties of some injection-molded thermoplastic denture base resins changed after water sorption.

  14. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch

    International Nuclear Information System (INIS)

    Wang Zuohua; Xiang Bo; Cheng Rumei; Li Yijiu

    2010-01-01

    In this paper, different starches were modified by diethylenetriamine. The native starch reacted with diethylenetriamine giving CAS, whereas the enzymatic hydrolysis starch was modified by diethylenetriamine producing CAES. Adsorption capacities of CAES for four acid dyes, namely, Acid orange 7 (AO7), Acid orange 10 (AO10), Acid green 25 (AG25) and Acid red 18 (AR18) have been determined to be 2.521, 1.242, 1.798 and 1.570 mmol g -1 , respectively. In all cases, CAES has exhibited higher sorption ability than CAS, and the increment for these dyes took the sequence of AO7 (0.944 mmol g -1 ) > AO10 (0.592 mmol g -1 ) > AR18 (0.411 mmol g -1 ) > AG25 (0.047 mmol g -1 ). Sorption kinetics and isotherms analysis showed that these sorption processes were better fitted to pseudo-second-order equation and Langmuir equation. Chemical sorption mechanisms were confirmed by studying the effects of pH, ionic strength and hydrogen bonding. Thermodynamic parameters of these dyes onto CAES and CAS were also observed and it indicated that these sorption processes were exothermic and spontaneous in nature.

  15. PAL application to the study of sorption mechanism in polymers - capillary effects

    International Nuclear Information System (INIS)

    Ito, Y.; Shimadzu, A.; Ikeda, K.

    1999-01-01

    The positron annihilation lifetime technique can be applied to the study of the sorption mechanism in polymers in a quite unique way. In our previous experiments it had been shown that τ 3 and I 3 of polymers show a V-shaped dependence as a function of the contact with vapours. The decreasing part of the V-shaped dependence had been attributed to the Langmuir-type sorption, and the increasing part of delayed occurrence of the Henry-type sorption. But since there was some doubt that the capillary effect, i.e. the vapour to be sorbed is deposited in between the polymer membranes, might be involved in the increasing part, we performed a careful experiment to avoid the capillary effect. We have performed further experiments in a careful conditions to avoid the capillary effect, and have observed the same V-shape as before. Thus our interpretation of the V-shaped dependence has been established. Furthermore, in another example it is shown a case where the capillary effect is observed. This latter case is an example how positron annihilation lifetime can distinguish the real sorption and false sorption (capillary effect). (author)

  16. New insights into the sorption mechanism of cadmium on red mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo Lei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Ma Chenyan [State Key Laboratory of Synchrotron Radiation, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ma Yibing, E-mail: ybma@caas.ac.cn [Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Shuzhen; Lv Jitao [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Cui Mingqi [State Key Laboratory of Synchrotron Radiation, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China)

    2011-05-15

    Effectiveness and mechanism of cadmium (Cd) sorption on original, acidified and ball milling nano-particle red muds were investigated using batch sorption experiments, sequential extraction analysis and X-ray absorption near edge structure (XANES) spectroscopy. The maximum sorption capacity of Cd was 0.16, 0.19, and 0.21 mol/kg for the original, acidified, and nano-particle red muds at pH 6.5, respectively. Both acidification and ball-milling treatments significantly enhanced Cd sorption and facilitated transformation of Cd into less extractable fractions. The Cd L{sub III}-edge XANES analysis indicated the formation of inner-sphere complexes of Cd similar to XCdOH (X represents surface groups on red mud) on the red mud surfaces although outer-sphere complexes of Cd were the primary species. This work shed light on the potential application of red mud to remediate Cd-contaminated soils and illustrated the promising tool of XANES spectroscopy for speciation of multicomponent systems of environmental relevance. - Graphical abstract: Display Omitted Highlights: > Red mud has a strong affinity for Cd contaminants. > Ball-milling treatments significantly enhance Cd sorption on red mud. > Cadmium partially formed inner-sphere complexes on the red mud surfaces. > Red mud can be used to remediate Cd contaminated soils effectively. - Cadmium can be strongly sorbed and partially forms inner-sphere complexes on red mud.

  17. Effect of chromium speciation on its sorption mechanism onto grape stalks entrapped into alginate beads

    OpenAIRE

    Escudero, Carlos; Fiol, Núria; Villaescusa, Isabel; Bollinger, Jean-Claude

    2013-01-01

    Sorption of Cr(III) and Cr(VI) ions onto 2% grape stalk (GS) powder entrapped in a biopolymeric gel matrix of calcium alginate (CA) has been investigated and a mechanism for the retention of both, Cr(VI) and Cr(III) is proposed. Protons were found to be consumed in Cr(VI) sorption/reduction and to compete with Cr(III) for the sorbent active sites. Isotherm equilibrium was modelled according to Langmuir equation: maximum capacity was found to be 6.4 and 3.6 mg g−1 for Cr(III) and Cr(VI), respe...

  18. Sorption mechanisms of sulfamethazine to soil humin and its subfractions after sequential treatments

    NARCIS (Netherlands)

    Guo, X.; Shen, X.; Zhang, M.; Zhang, H.; Chen, W.; Wang, H.; Koelmans, A.A.; Cornelissen, G.; Tao, S.; Wang, X.

    2017-01-01

    Sorption mechanisms of an antibiotic sulfamethazine (SMT) to humin (HM) isolated from a peat soil and its subfractions after sequential treatments were examined. The treatments of HM included removal of ash, O-alkyl carbon, lipid, and lignin components. The HF/HCl de-ashing treatment removed a large

  19. Microbial Biofilms as a Mechanism for Metal Sorption on Plastic Debris

    Science.gov (United States)

    Richard, H.; Rochman, C. M.; Komada, T.; Carpenter, E. J.

    2016-02-01

    Heavy metals from the water column accumulate onto weathered plastic debris to a greater extent than onto virgin plastic. Hypothesized mechanisms that drive this process include oxidation by ultraviolet light, precipitation of metal ions onto the surface of the plastic, and biofilm growth. We provide the first example of research quantifying how biofilms influence metal sorption onto plastic debris. We conducted laboratory experiments to find out whether or not the presence of biofilms increases the sorption capacity of plastic debris, and also performed in situ experiments in the San Francisco Bay to compare low-density polyethylene, polylactic acid, and glass as substrates for fouling and metal sorption. This research reveals the potential for plastic debris to act as a vector bringing heavy metals into aquatic food webs relative to other debris materials.

  20. Sorption Mechanisms of Eu(3+) on CSH Phases of Hydrated Cements.

    Science.gov (United States)

    Pointeau, Ingmar; Piriou, Bernard; Fedoroff, Michel; Barthes, Marie-Genevieve; Marmier, Nicolas; Fromage, Francine

    2001-04-15

    The sorption mechanisms of Eu(3+) on calcium silicate hydrate (CSH) phases of hydrated cement were investigated as a tool for the prediction of the behavior of trivalent radionuclides with aged/degraded cements in radioactive waste repositories. Four techniques were used: site-selective and time-resolved luminescence spectroscopy, XPS, high-resolution SEM coupled with EDX, and XRD. Results showed that europium is not precipitated in the solution despite its low solubility limit. It is strongly retained on CSH, resulting in a more than 99.8% sorption rate. Two main sorption sites were characterized by luminescence spectroscopy. One site, with a long lifetime, can be interpreted as Eu included in the framework of CSH. Another one, with a shorter lifetime, can be interpreted as a site with a hydrated environment that is high but is less than that of europium hydroxide. It corresponds to superficial complexation or precipitation. Copyright 2001 Academic Press.

  1. Investigation of Sorption and Diffusion Mechanisms, and Preliminary Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nair, Sankar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-02-01

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several monovalent and divalent cation exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed using tritiated water feed solution containing tritium at the high end of the range (1 mCi/mL) anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. The tritium concentration was about 0.1 ppm. The permeate was recovered under vacuum. The HTO/H2O selectivity and separation factor calculated from the measured tritium concentrations ranged from 0.99 to 1.23, and 0.83-0.98, respectively. Although the membrane performance for HTO separation was lower than expected, several encouraging observations including molecular sieving and high vapor permeance are reported. Additionally, several new approaches are proposed, such as tuning the sorption and diffusion properties offered by small pore LTA zeolite materials, and cation exchanged aluminosilicates with high metal loading. It is hypothesized that substantially improved preferential transport of tritium (HTO) resulting in a more concentrated permeate can be achieved. Preliminary economic analysis for the membrane-based process to concentrate tritiated water is also discussed.

  2. Field Simulations and Mechanical Implementation of Electrostatic Elements for the ELENA Transfer Lines

    CERN Document Server

    Barna, D; Borburgh, J; Carli, C; Vanbavinckhove, G

    2014-01-01

    The Antiproton Decelerator (AD) complex at CERN will be extended by an extra low energy anti-proton ring (ELENA) [1] further decelerating the anti-protons thus improving their trapping. The kinetic energy of 100 keV at ELENA extraction facilitates the use of electrostatic transfer lines to the experiments. The mechanical implementation of the electrostatic devices are presented with focus on their alignment, bakeout compatibility, ultra-high vacuum compatibility and polarity switching. Field optimisations for an electrostatic crossing device of three beam lines are shown.

  3. An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide

    Science.gov (United States)

    Wierzbicki, Mirosław

    2017-09-01

    The presence of gases (methane or carbon dioxide) in hard coal is connected with numerous threats for miners employed in underground mining facilities. When analyzing the coal-methane system, it is necessary to determine the relationship between pressure and gas sorption. Such a relationship should be determined under conditions similar to the natural ones - when it comes to both temperature and pressure. The present paper discusses the results of research conducted with the use of coal briquettes under the state of mechanical stress. Carbon dioxide sorption isotherms were determined for different values of stress affecting the coal material. For five coal samples collected in different mines of the Upper Silesian Coal Basin, Langmuir's sorption isotherms were determined. The results point to significant impact that mechanical stress has upon the sorption process. It is about 1 percent of the value obtained for coal not subjected to stress per 1 MPa. The research results can also prove useful when analyzing hard coal seams from the perspective of their carbon dioxide sequestration abilities.

  4. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.

    Science.gov (United States)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-07

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r(-1) term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.

  5. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-01-01

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r −1 term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN 2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN 2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions

  6. Modeling the mechanism involved during the sorption of methylene blue onto fly ash.

    Science.gov (United States)

    Kumar, K Vasanth; Ramamurthi, V; Sivanesan, S

    2005-04-01

    Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using fly ash as an adsorbent. Operating variables studied were initial dye concentration, fly ash mass, pH, and contact time. Maximum color removal was observed at a basic pH of 8. Equilibrium data were represented well by a Langmuir isotherm equation with a monolayer sorption capacity of 5.718 mg/g. Sorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics. Rate constants at different initial concentrations were estimated. The process mechanism was found to be complex, consisting of both surface adsorption and pore diffusion. The effective diffusion parameter D(i) values were estimated at different initial concentrations and the average value was determined to be 2.063 x 10(-9)cm2/s. Analysis of sorption data using a Boyd plot confirms the particle diffusion as the rate-limiting step for the dye concentration ranges studied in the present investigation (20 to 60 mg/L).

  7. New insights into the sorption mechanism of cadmium on red mud.

    Science.gov (United States)

    Luo, Lei; Ma, Chenyan; Ma, Yibing; Zhang, Shuzhen; Lv, Jitao; Cui, Mingqi

    2011-05-01

    Effectiveness and mechanism of cadmium (Cd) sorption on original, acidified and ball milling nano-particle red muds were investigated using batch sorption experiments, sequential extraction analysis and X-ray absorption near edge structure (XANES) spectroscopy. The maximum sorption capacity of Cd was 0.16, 0.19, and 0.21 mol/kg for the original, acidified, and nano-particle red muds at pH 6.5, respectively. Both acidification and ball-milling treatments significantly enhanced Cd sorption and facilitated transformation of Cd into less extractable fractions. The Cd LIII-edge XANES analysis indicated the formation of inner-sphere complexes of Cd similar to XCdOH (X represents surface groups on red mud) on the red mud surfaces although outer-sphere complexes of Cd were the primary species. This work shed light on the potential application of red mud to remediate Cd-contaminated soils and illustrated the promising tool of XANES spectroscopy for speciation of multicomponent systems of environmental relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Effect of chromium speciation on its sorption mechanism onto grape stalks entrapped into alginate beads

    Directory of Open Access Journals (Sweden)

    Carlos Escudero

    2017-02-01

    Full Text Available Sorption of Cr(III and Cr(VI ions onto 2% grape stalk (GS powder entrapped in a biopolymeric gel matrix of calcium alginate (CA has been investigated and a mechanism for the retention of both, Cr(VI and Cr(III is proposed. Protons were found to be consumed in Cr(VI sorption/reduction and to compete with Cr(III for the sorbent active sites. Isotherm equilibrium was modelled according to Langmuir equation: maximum capacity was found to be 6.4 and 3.6 mg g−1 for Cr(III and Cr(VI, respectively. The important Ca2+ release observed when Cr(III is sorbed indicates that ion exchange is the main mechanism involved at concentrations lower than 200 mg L−1 while other mechanisms such as microprecipitation or coordination might take place for higher initial concentrations. In the case of Cr(VI, the sorption mechanism is based on the reduction to Cr(III promoted by both protons and the functional groups on the GS surface; this reduction-formed Cr(III is retained by the alginate gel matrix and by microprecipitation onto the surface of GS particles. ESR and SEM-EDX were used to identify chromium species sorbed on the solid phase. Results from this study suggest that GS entrapped in CA gel beads is an effective sorbent for both, Cr(III and Cr(VI removal from aqueous solutions.

  9. Geochemical and Spectroscopic Investigations of Cd and Pb Sorption Mechanisms on Contrasting Biochars: Engineering Implications

    Czech Academy of Sciences Publication Activity Database

    Trakal, L.; Bingöl, D.; Pohořelý, Michael; Hruška, M.; Komárek, M.

    2014-01-01

    Roč. 171, NOV 2014 (2014), s. 442-451 ISSN 0960-8524 R&D Projects: GA ČR(CZ) GA14-02219S Grant - others:GA MŠMT(CZ) LD13068 Institutional support: RVO:67985858 Keywords : biochar * metals * sorption mechanisms Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 4.494, year: 2014

  10. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.

    Science.gov (United States)

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    Sorption to the phyllosilicate clay minerals Illite, kaolinite, and bentonite has been studied for a wide variety of organic cations using a flow-through method with fully aqueous medium as the eluent. Linear isotherms were observed at concentrations below 10% of the cation-exchange capacity (CEC) for Illite and kaolinite and below 1 mmol/kg (<1% CEC) for bentonite. Sorption to clays was strongly influenced by the electrolyte composition of the eluent but with a consistent trend for a diverse set of compounds on all clays, thus allowing for empirical correction factors. When sorption affinities for a given compound to a given clay are normalized to the CEC of the clay, the differences in sorption affinities between clays are reduced to less than 0.5 log units for most compounds. Although CEC-normalized sorption of quaternary ammonium compounds to clay was up to 10-fold higher than CEC-normalized sorption to soil organic matter, CEC-normalized sorption for most compounds was comparable between clays and soil organic matter. The clay fraction is thus a potentially relevant sorption phase for organic cations in many soils. The sorption data for organic cations to clay showed several regular trends with molecular structure but also showed quite a few systematic effects that we cannot explain. A model on the basis of the molecular size and charge density at the ionized nitrogen is used here as a tool to obtain benchmark values that elucidate the effect of specific polar moieties on the sorption affinity.

  11. Design of Electrostatic Directional Dry Adhesives for Robotic Attachment Mechanisms

    Data.gov (United States)

    National Aeronautics and Space Administration — Attachment mechanisms that are effective over a wide range of material types and surface conditions can be used for a variety of applications including manipulator...

  12. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  13. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications.

    Science.gov (United States)

    Trakal, Lukáš; Bingöl, Deniz; Pohořelý, Michael; Hruška, Miroslav; Komárek, Michael

    2014-11-01

    Biochars prepared from nut shells, plum stones, wheat straws, grape stalks and grape husks were tested as potential sorbents for Cd and Pb. Mechanisms responsible for metal retention were investigated and optimal sorption conditions were evaluated using the RSM approach. Results indicated that all tested biochars can effectively remove Cd and Pb from aqueous solution (efficiency varied between 43.8% and 100%). The removal rate of both metals is the least affected by the biochar morphology and specific surface but this removal efficiency is strongly pH-dependent. Results of variable metal removal combined with different optimized conditions explain the different metal sorption mechanisms, where the predominant mechanism is ion exchange. In addition, this mechanism showed very strong binding of sorbed metals as confirmed by the post-desorption of the fully metal-loaded biochars. Finally, these biochars could thus also be applicable for metal contaminated soils to reduce mobility and bioavailability of Cd and Pb. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Uranyl ion sorption mechanisms on titanium oxide: a multi-scale approach

    International Nuclear Information System (INIS)

    Vandenborre, J.; Drot, R.; Simoni, E.; Dong, W.; Du, J.; Dossot, M.; Humbert, B.; Ehrhardt, J.J.

    2005-01-01

    Full text of publication follows: Radionuclides retention mechanisms onto mineral phases is of primary importance for nuclear waste management. The aim of the presented study is to demonstrate that it is possible to predict the retention properties of a methodological powdery substrate from the study of its natural crystallographic orientations. Among the radionuclides of interest, U(VI) can be seen as a model of the radionuclides oxo-cations. The substrate under study is the titanium oxide (TiO 2 ). In fact, rutile can be found as powder and also as manufactured single crystal which allows to study the retention processes on perfectly known crystallographic planes. Since the repartition of the different crystallographic orientations are known for the powder, the results obtained for the single crystals can directly be used to account for the powder retention properties. By using combined spectroscopic techniques such as TRLFS, XPS, DRIFT and SHG, it is possible to determine the nature of the reactive surface sites and also the surface species. XPS and TRLFS measurements allowed to determine that two same uranyl surface species were formed on titania (110) and (001). Only, the relative intensities of these species vary with the surface coverage. Atomic Force Microscopy was carried out to verify that no surface precipitation occurs for the higher surface coverages. Moreover, these analysis have also evidenced that the U(VI) sorption is homogeneous. These observations were corroborated by SHG experiments (mainly for (001)) which have also shown that the sorption occurs, in a first step, onto preferential surface symmetry axis. For rutile powder, the preferential crystallographic orientations are (110), (100) and (101) in the ratio 60/20/20. TRLFS and XPS experiments have shown that two uranyl surface species are formed whatever the pH value ranged from 1 to 5. The spectroscopic characteristics of these species are the same as the ones observed on (110) and (001

  15. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  16. The role of electrostatics in TrxR electron transfer mechanism: A computational approach.

    Science.gov (United States)

    Teixeira, Vitor H; Capacho, Ana Sofia C; Machuqueiro, Miguel

    2016-12-01

    Thioredoxin reductase (TrxR) is an important enzyme in the control of the intracellular reduced redox environment. It transfers electrons from NADPH to several molecules, including its natural partner, thioredoxin. Although there is a generally accepted model describing how the electrons are transferred along TrxR, which involves a flexible arm working as a "shuttle," the molecular details of such mechanism are not completely understood. In this work, we use molecular dynamics simulations with Poisson-Boltzmann/Monte Carlo pKa calculations to investigate the role of electrostatics in the electron transfer mechanism. We observed that the combination of redox/protonation states of the N-terminal (FAD and Cys59/64) and C-terminal (Cys497/Selenocysteine498) redox centers defines the preferred relative positions and allows for the flexible arm to work as the desired "shuttle." Changing the redox/ionization states of those key players, leads to electrostatic triggers pushing the arm into the pocket when oxidized, and pulling it out, once it has been reduced. The calculated pKa values for Cys497 and Selenocysteine498 are 9.7 and 5.8, respectively, confirming that the selenocysteine is indeed deprotonated at physiological pH. This can be an important advantage in terms of reactivity (thiolate/selenolate are more nucleophilic than thiol/selenol) and ability to work as an electrostatic trigger (the "shuttle" mechanism) and may be the reason why TrxR uses selenium instead of sulfur. Proteins 2016; 84:1836-1843. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Mechanisms of trace metal sorption in Pseudomonas putida-birnessite assemblages

    Science.gov (United States)

    Peña, J.; Kwon, K. D.; Bargar, J. R.; Sposito, G.

    2012-04-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute strongly to the adsorption of nutrient and toxicant metals in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). The biogenic Mn(IV) oxide found in field settings, as well as that produced by model bacteria in laboratory culture, is typically layer-type hexagonal birnessite containing abundant cation vacancy sites and enmeshed in an organic matrix of bacterial cells and extracellular polymeric substances. In this talk I summarize the results from laboratory-scale research designed to investigate the mechanisms of metal sorption by the bacterial biomass-birnessite assemblages formed by Pseudomonas putida GB-1 when grown in the presence of 1 mM Mn(II) at circumneutral pH values. The goals of this research were first, to identify the structure of the surface complexes formed by trace metals (e.g., Ni, Cu and Zn) on biogenic birnessite and second, to determine the conditions under which the bacterial cell surfaces and extracellular polymeric substances contribute to metal sorption. Macroscopic and spectroscopic experiments were performed at varying pH values (6 - 8) and over a wide-range of metal concentrations. Extended X-ray absorption fine structure (EXAFS) spectroscopy and first-principles calculations based on density functional theory showed that cation vacancy sites in birnessite drive mineral reactivity, but that surface speciation varies from metal to metal. For, Ni we identified two species, Ni bonded to three surface oxygen atoms vacancy sites as a triple-corner-sharing (TCS) complex and Ni incorporated at vacancy sites, with surface speciation varying with pH and surface loading. Zinc formed TCS complexes at vacancy sites, with the proportion of Zn in tetrahedral or octahedral coordination geometry influenced

  18. Using mechanisms of hydrolysis and sorption to reduce siloxanes occurrence in biogas of anaerobic sludge digesters

    DEFF Research Database (Denmark)

    Gatidou, Georgia; Arvaniti, Olga S.; Stasinakis, Athanasios S.

    2016-01-01

    Hydrolysis of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6) and dodecamethylcyclohexasilane (D6_silane) and their sorption to digested sludge was studied in batch experiments. Hydrolysis was affected...... of all siloxanes in biogas, enhancing their removal through hydrolysis and sorption to sludge....

  19. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions.

    Science.gov (United States)

    Esteghlal, Sara; Niakousari, Mehrdad; Hosseini, Seyed Mohammad Hashem

    2018-03-17

    The objective of current study was to examine the electrostatic interactions between gelatin and carboxymethyl cellulose (CMC) as a function of pH and mixing ratio (MR) and to observe how the physical and mechanical properties of gelatin-CMC composite films are affected by these interactions. The interaction between biopolymers was studied using turbidometric analysis at different gelatin: CMC MRs and pH values. A reduction in pH and MR enhanced the electrostatic interactions; while, decreased the relative viscosity of mixed system. Physical and mechanical properties of resultant composite films were examined and compared with those of control gelatin films. Changes in the intensity of interactions between the two biopolymers resulted in films with different properties. Polymer complexation led to formation of resistant film networks of less solubility and swellability. Water vapor permeability (WVP) was not significantly (P≤0.05) influenced by incorporating CMC into continuous gelatin films. Composite films prepared at MR of 9:1 and pH opt (corresponding to the maximum amount of interaction) revealed different characteristics such as maximum amounts of WVP and swelling and minimum amounts of tensile strength and solubility. FTIR spectra of composite films confirmed that gelatin and CMC were not covalently bonded. Copyright © 2018. Published by Elsevier B.V.

  20. Sorption of Pseudomonas putida onto differently structured kaolinite minerals

    Science.gov (United States)

    Vasiliadou, I. A.; Papoulis, D.; Chrysikopoulos, C.; Panagiotaras, D.; Karakosta, E.; Fardis, M.; Papavassiliou, G.

    2010-12-01

    The presence of bio-colloids (e.g. bacteria and viruses) in the subsurface could be attributed to the release of particles from septic tanks, broken sewer lines or from artificial recharge with treated municipal wastewater. Bio-colloid transport in the subsurface is significantly affected by sorption onto the solid matrix. Bio-colloid attachment onto mobile or suspended in the aqueous phase soil particles (e.g. clay or other minerals) also may influence their fate and transport in the subsurface. The present study focuses on the investigation of Pseudomonas (Ps.) putida sorption onto well (KGa-1) and poorly (KGa-2) crystallized kaolinite minerals. Batch experiments were carried out to determine the sorption isotherms of Ps. putida onto both types of kaolinite particles. The sorption process of Ps. putida onto KGa-1 and KGa-2 is adequately described by a Langmuir isotherm. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy as well as Nuclear Magnetic Resonance were employed to study the sorption mechanisms of Ps. putida. Experimental results indicated that KGa-2 presented higher affinity and sorption capacity than KGa-1. It was shown that electrostatic interactions and structural disorders can influence the sorption capacity of clay particles.

  1. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk.

    Science.gov (United States)

    Vadivelan, V; Kumar, K Vasanth

    2005-06-01

    Batch experiments were carried out for the sorption of methylene blue onto rice husk particles. The operating variables studied were initial solution pH, initial dye concentration, adsorbent concentration, and contact time. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Langmuir isotherm equation. The monolayer sorption capacity of rice husks for methylene blue sorption was found to be 40.5833 mg/g at room temperature (32 degrees C). The sorption was analyzed using pseudo-first-order and pseudo-second-order kinetic models and the sorption kinetics was found to follow a pseudo-second-order kinetic model. Also the applicability of pseudo second order in modeling the kinetic data was also discussed. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. The average external mass transfer coefficient and intraparticle diffusion coefficient was found to be 0.01133 min(-1) and 0.695358 mg/g min0.5. Analysis of sorption data using a Boyd plot confirms that external mass transfer is the rate limiting step in the sorption process. The effective diffusion coefficient, Di was calculated using the Boyd constant and was found to be 5.05 x 10(-04) cm2/s for an initial dye concentration of 50 mg/L. A single-stage batch-adsorber design of the adsorption of methylene blue onto rice husk has been studied based on the Langmuir isotherm equation.

  2. Equilibrium and kinetic mechanism for Reactive Black 5 sorption onto high lime Soma fly ash.

    Science.gov (United States)

    Eren, Zeynep; Acar, Filiz Nuran

    2007-05-08

    Batch adsorption studies were carried out for the sorption of C.I. Reactive Black 5, a reactive dye, onto high lime fly ash, obtained from Soma Thermal Power Plant (Turkey), to be low cost adsorbent. The effect of various experimental parameters such as contact time, adsorbent dose and initial dye concentration were investigated. Determination of the adsorption equilibrium concentrations was determined by UV-vis spectrophotometry analytical method. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Freundlich isotherm equation. The adsorption kinetics of C.I. Reactive Black 5 onto high lime fly ash were also studied to characterize of the surface complexation reaction. A pseudo-second-order mechanism has been developed to predict the rate constant of the adsorption, the equilibrium capacity and initial adsorption rate with the effect of initial concentration. A single-stage batch adsorber design of the adsorption of C.I. Reactive Black 5 onto high lime fly ash has been studied based on the Freundlich isotherm equation.

  3. Influence of organic fertilization on the sorption mechanisms of 241 Am in tropical soils

    International Nuclear Information System (INIS)

    Pereira, Tatiane Rocha

    2009-01-01

    In this work the mechanisms involved in the sorption of 241 Am were investigated depending on the physicochemical properties of some Brazilian soils and on alterations promoted by organic amendment. This experimental study was conducted in a controlled area, where pots containing different kinds of soils (histisol, ferralsol and nitisol), with different organic amendment doses (without amendment; 2 kg m -2 and 4 kg m -2 ) were artificially contaminated by radioactive solution water, which contained 241 Am. Migration studies, distribution (or partition) coefficient (KJ), bioavailability and organic matter were carried out in these soils, with ar without organic amendment. In order to evaluate the effective bioavailability of radionuclides, radish (Raphanus sativus L.) was cultivated in these pots, and later the concentration of 241 Am in radish's roots was measured. The main results show that 241 Am tends to be strongly attached to organic matter and that organic amendment in tropical soils minimizes the radionuclide studied desorption. Also, distribution (or partition) coefficient values for 241 Am were generated and these values are smaller than those ones determined for soils from temperate zones. Physical and chemical fractioning of organic matter were carried out. (author)

  4. Effect of Chemical Treatment on Mechanical and Water-Sorption Properties Coconut Fiber-Unsaturated Polyester from Recycled PET

    OpenAIRE

    Munirah Abdullah, Nurul; Ahmad, Ishak

    2012-01-01

    Coconut fibers were used as reinforcement for unsaturated polyester resin from recycled PET that has been prepared using glycolysis and polyesterification reaction. Various concentrations of alkali, silane, and silane on alkalized fiber were applied and the optimum concentration of treatments was determined. Morphological and mechanical properties of the composite have also been investigated to study the effect of fiber surface treatment. The influence of water uptake on the sorption characte...

  5. Sorption of ferrous iron by EPS from the acidophilic bacterium Acidiphilium Sp.: A mechanism proposal

    International Nuclear Information System (INIS)

    Tapia, J.M.; MuNoz, J.; Gonzlez, F.; Blazquez, M.L.; Ballester, A.

    2016-01-01

    The aim of this work was to assess the uptake of Fe(II) by extracellular polymeric substances (EPS) from the acidophilic bacterium Acidiphillium 3.2Sup(5). These EPS were extracted using EDTA. EPS of A. 3.2Sup(5) loaded in sorption tests with Fe(II), were characterized using the following experimental techniques: scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that EPS adsorb ferrous iron according to Freundlich model with a metal sorption uptake of K = 1.14 mg1−1/n L1/n g−1 and a sorption intensity of 1/n = 1.26. In addition, ferrous iron sorption by EPS took place by preferential interaction with the carboxyl group which promotes the formation of ferrous iron oxalates (FeC2O4). Since the interaction reaction was reversible (Log K = 0.77 ± 0.33), that means that the cation sorption can be reversed at convenience. (Author)

  6. Sorption of ferrous iron by EPS from the acidophilic bacterium Acidiphilium Sp.: A mechanism proposal

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, J.M.; MuNoz, J.; Gonzlez, F.; Blazquez, M.L.; Ballester, A.

    2016-07-01

    The aim of this work was to assess the uptake of Fe(II) by extracellular polymeric substances (EPS) from the acidophilic bacterium Acidiphillium 3.2Sup(5). These EPS were extracted using EDTA. EPS of A. 3.2Sup(5) loaded in sorption tests with Fe(II), were characterized using the following experimental techniques: scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that EPS adsorb ferrous iron according to Freundlich model with a metal sorption uptake of K = 1.14 mg1−1/n L1/n g−1 and a sorption intensity of 1/n = 1.26. In addition, ferrous iron sorption by EPS took place by preferential interaction with the carboxyl group which promotes the formation of ferrous iron oxalates (FeC2O4). Since the interaction reaction was reversible (Log K = 0.77 ± 0.33), that means that the cation sorption can be reversed at convenience. (Author)

  7. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  8. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2018-03-28

    In this article, we investigate the mechanical behavior of initially curved microplates under electrostatic actuation. Microplates are essential components of many Micro-Electro-Mechanical System devices; however, they commonly undergo an initial curvature imperfection, due to the microfabrication process. Initial curvature imperfection significantly affects the mechanical behavior of microplates. In this work, we derive a dynamic analogue of the von Kármán governing equation for such plates. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the static and dynamic behavior of the microplate. Two profiles of initial curvature commonly encountered in microfabricated structures are considered, where one assumes a variation in shape along one dimension of the plate only (cylindrical bending shape) while the other assumes a variation in shape along both dimensions of the plate. Their effects on both the static and dynamic responses of the microplates are examined and compared. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model over a range of the initial plate rise. The static behavior of the microplate is investigated when varying the DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage superimposed to a DC voltage.

  9. Highly Efficient Lead Distribution by Magnetic Sewage Sludge Biochar: Sorption Mechanisms and Bench Applications.

    Science.gov (United States)

    Ifthikar, Jerosha; Wang, Jia; Wang, Qiliang; Wang, Ting; Wang, Huabin; Khan, Aimal; Jawad, Ali; Sun, Tingting; Jiao, Xiang; Chen, Zhuqi

    2017-08-01

    Highly efficient magnetic sewage sludge biochar (MSSBC) discloses feasible fabrication process with lower production cost, superior adsorption capacity, usage of waste sewage sludge as resource, selected by external magnetic field and exceptional regeneration property. 2gL -1 MSSBC exhibited a high adsorption capacity of 249.00mgg -1 in 200ppmPb(II) and the lead-MSSBC equilibrium was achieved within one hour, owing to the existence of the copious active sites. The adsorption kinetics was well described by the pseudo-second-order model while the adsorption isotherm could be fitted by Langmuir model. Mechanism study demonstrated the adsorption involved electrostatic attraction, ion exchange, inner-sphere complexation and formation of co-precipitates at the surface of MSSBC. Additionally, adsorption performance maintained remarkable in a broad pH window. These outcomes demonstrated the promising waste resource utilization by a feasible approach that turns the solid waste of sewage sludge into biochar adsorbent with auspicious applications in elimination of Pb(II) from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A numerical study on charging mechanism in leaky dielectric liquids inside the electrostatic atomizers

    Science.gov (United States)

    Kashir, Babak; Perri, Anthony; Yarin, Alexander L.; Mashayek, Farzad

    2017-11-01

    The charging of leaky dielectric liquids inside an electrostatic atomizer is studied numerically by developed codes based on OpenFOAM platform. Faradaic reactions are taken into account as the electrification mechanism. The impact of ionic finite size (steric terms) in high voltages is also investigated. The fundamental electrohydrodynamic understanding of the charging mechanism is aimed in the present work where the creation of polarized near-electrode layer and the movement of charges due to hydrodynamic flow are studied in conjunction with the solution of the Navier-Stokes equations. The case of a micro channel electrohydrodynamic flow subjected to two electrodes of the opposite polarity is considered as an example, with the goal to predict the resulting net charge at the exit. Even though the electrodes constitute a small portion of the channel wall, otherwise insulated, it is indicated that the channel length plays a dominant role in the discharging net charge. The ionic fluxes at the electrode surfaces are accounted through the Frumkin-Butler-Volmer relation found from the concurrent in-house experimental investigations. This projects was supported by National science Foundation (NSF) GOALI Grant CBET-1505276.

  11. Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

    2012-04-26

    The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge

  12. Multipolar electrostatics.

    Science.gov (United States)

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  13. Mechanisms of water-in-crude oil emulsion formation, stabilization and resolution by electrostatic means

    Energy Technology Data Exchange (ETDEWEB)

    Less, Simone

    2008-07-01

    Oil reserves are declining all over the world. Nevertheless the age of oil is probably bound to last for several years still, even though the growth of the world energy consumption will lead to a faster depletion than the one we are experiencing today. The possibility of avoiding new oil and energy crises will depend upon the oil industry's ability to find new fields and, above all, on mankind's ability to achieve an optimum exploitation of the currently available resources. The search of new fields is very expensive and the probability of finding new highly productive formations is small. The development of efficient technologies for oil extraction and processing to apply to existing fields is very important to extend their profitability. After being extracted, crude oil is a mixture of gases and liquids which need to be separated and purified, before being injected into their respective pipelines. In general, those operations are carried out on site. Since approximately 40% of the world production of oil comes from the sea (a percentage expected to increase in the next years), the need to economize on the space of the equipment is important. In addition, the growing attention to heavy and extra heavy oils raises a question on how they can be efficiently produced. In the light of this, the electrostatic separation (often denoted as electro coalescence) of crude oil emulsions is an important tool which, despite recent developments, still has a great potential. It is a cost-effective solution to guarantee the required export oil quality, and to increase the process efficiency on the platforms by allowing a quick discharge of the water in excess. This work was developed within the aims of the project 'Electro coalescence II - Criteria for an efficient process in real crude oil systems', the continuation of a former project in which the fundamental mechanisms active in the electro coalescence process were identified for model systems. The new

  14. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method.

    Science.gov (United States)

    Fan, Zixi; Zhang, Qian; Li, Meng; Niu, Dongyuan; Sang, Wenjiao; Verpoort, Francis

    2018-03-01

    In this work, a KMnO 4 -modified-biochar-based composite material with manganese oxide produced at 600 °C was fabricated to investigate the sorption mechanism of Cd(II) and to comprehensively evaluate the effect of the modification on biochar properties. Cd(II) adsorption mechanisms were mainly controlled by interaction with minerals, complexation with oxygen-containing functional groups, and cation-π interaction. The sorption capacity was significantly reduced after a deash treatment of biochar, almost shrunk by 3 and 3.5 times for pristine biochar (PBC) and modified biochar (MBC). For deashed PBC, oxygen-containing functional groups were the main contributor toward Cd(II) adsorption while interaction with minerals was significantly compromised and became negligible. The sorption capacity was also apparently decreased after the deash treatment of MBC; however, for deashed MBC, interaction with minerals still was the main contributor to the sorption ability, which could be attributed to the mechanism of interaction of Cd(II) with loaded MnO x on biochar. Cation-π interaction in MBC was notably enhanced compared to PBC due to the oxidation of KMnO 4 on biomass. Also, sorption performance by oxygen-containing functional groups was also enhanced. Hence, the modification by KMnO 4 has a significant effect on the Cd(II) sorption performance of biochar.

  15. Understanding the sorption behavior of Pu{sup 4+} on poly(amidoamine) dendrimer functionalized carbon nanotube. Sorption equilibrium, mechanism, kinetics, radiolytic stability, and back-extraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Parveen [Indian Institute of Technology, Himachal Pradesh (India); Sengupta, Arijit [Bahbha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Deb, Ashish Kumar Singha; Ali, S. Musharaf [Bahbha Atomic Research Centre, Mumbai (India). Chemical Engineering Div.; Homi Bhabha National Institute, Mumbai (India); Dasgupta, Kinshuk [Bhabha National Institute, Mumbai (India). Mechanical Metallurgy Div.

    2017-07-01

    Poly(amidoamine) dendrimer functionalized carbon nanotube was demonstrated as highly efficient sorbent of the Pu{sup 4+} from radioactive waste solution. The second generation dendrimer was found to have more efficiency as compared to the 1{sup st} generation might be due to the availability of more functionality for coordinating to the Pu{sup 4+} ion. Analysis of different isotherm models revealed that, Langmuir isotherm was predominantly operating through chemi-sorption (with the sorption energy 10.07 and 16.95 kJ mol{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer) with the sorption capacity 89.22 mg g{sup -1} and 92.48 mg g{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer, respectively. Analysis of different sorption kinetics model revealed that the sorption proceeded via pseudo 2{sup nd} order reaction. The 2{sup nd} generation dendrimer was found to be radiolytically more stable while oxalic acid was found to be suitable for quantitative back extraction of Pu{sup 4+}.

  16. U(VI) and Eu(III) ion sorption in the interface solution-phosphate solids: Structural study and mechanisms

    International Nuclear Information System (INIS)

    Drot, Romuald

    1998-01-01

    As part of the storage of nuclear wastes in a deep underground disposal, radionuclides sorption on geological or engineered barriers is one of the most important factor which could enhance retardation. Thus, the knowledge of such mechanisms is needed. For this purpose, we chose to experimentally define sorption equilibria before performing simulation of retention data. Several phosphate compounds are potential candidates as engineered barrier additives. We considered Th 4 (PO 4 ) 4 P 2 O 7 , Zr 2 O(PO 4 ) 2 which allow to study the effect of PO 4 and P 2 O 7 groups separately. Eu(III) and U(IV) ions were used as structural probes in order to simulate actinides (III) and (VI) behavior. X-ray powder diffraction, IR spectroscopy and electron probe microanalysis were used to characterized the synthesized solids. Electrophoretic measurements showed an amphoteric behavior of surface sites. Moreover, laser spectro-fluorimetry experiments indicated that no diffusion phenomena of the sorbed ion inside the solid occurs. Thus, we considered that a surface complexation model should be applied. Laser spectro-fluorimetry and XPS allowed to determine the nature of surface sites. ZrP 2 O 7 presents only one single site (P 2 O 7 groups) whereas Th 4 (PO 4 ) 4 P 2 O 7 and Zr 2 O(PO 4 ) 2 admit two types of sites (PO 4 /P 2 O 7 and PO 4 /oxo groups, respectively). Sorbed species were identified using laser spectro-fluorimetry which indicate that, in KNO 3 0.5 M medium and for a known surface site, there are two surface complexes for U(VI) (sorption of UO 2+ 2 et de UO 2 NO + 3 species) and only one for Eu(III) (sorption of EuNO 2+ 3 ). They are linked to the substrate as bidentate inner sphere complexes (EXAFS study). Surface acidity constants were determined by simulation of potentiometric titration curves obtained for each solid suspension using FITEQL code (CCM). As sorption equilibria were defined, experimental retention data simulation was performed with respect to structural

  17. Steady State Sorption Measurement and the Transport Mechanism in Polymeric Membrane during Vapor Permeation

    Czech Academy of Sciences Publication Activity Database

    Fialová, Kateřina; Petričkovič, Roman; Sharma, M.; Uchytil, Petr

    2006-01-01

    Roč. 275, 1-2 (2006), s. 166-174 ISSN 0376-7388 R&D Projects: GA ČR(CZ) GD203/03/H140; GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : sorption * vapor permeation * diffusion coefficient Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.442, year: 2006

  18. The influences of pH and ionic strength on the sorption of tylosin on goethite.

    Science.gov (United States)

    Guo, Xuetao; Yang, Chen; Wu, Yinai; Dang, Zhi

    2014-02-01

    As one of the widely used antibiotics in the world, the environmental risks of tylosin (TYL) received more and more attention. In order to assess its environmental fate and ecological effects accurately, it is necessary to understand the sorption properties of TYL on the soils/sediments. The sorption of TYL on goethite at different pH and ionic strength conditions were measured through a series of batch experiments and the sorption data of TYL were fitted by Freundlich and dual-mode sorption models. It was obvious that sorption was strongly dependent on pH and ionic strength. Sorption capacity of TYL increased as the pH increased and ionic strength decreased. The pH and ionic strength-dependent trends might be related with complexation between cationic/neutral TYL species and goethite. The sorption affinity of TYL on goethite decreased as ionic strength increased, which only occurred at higher TYL concentrations, suggested that inner complex might have dominated process at low concentrations and outer complex might occur at higher concentrations of TYL. Spectroscopic evidence indicated that tricarbonylamide and hydroxyl functional groups of TYL might be accounted for the sorption on mineral surfaces. The experimental data of TYL sorption could be fitted by surface complexation model (FITEQL), indicating that ≡FeOH with TYL interaction could be reasonably represented as a complex formation of a monoacid with discrete sites on goethite. The sorption mechanism of TYL might be related with surface complexation, electrostatic repulsion, and H-bounding on goethite. It should be noticed that the heterogeneous of sorption affinity of TYL on goethite at various environment to assess its environment risk.

  19. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides

    International Nuclear Information System (INIS)

    Duc, M.

    2002-11-01

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  20. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Nastasović, Aleksandra B., E-mail: anastaso@chem.bg.ac.rs [University of Belgrade, Institute of Chemistry Technology and Metallurgy, Department of Chemistry, Department of Microelectronic Technologies, Njegoševa 12, Belgrade (Serbia); Ekmeščić, Bojana M. [University of Belgrade, Institute of Chemistry Technology and Metallurgy, Department of Chemistry, Department of Microelectronic Technologies, Njegoševa 12, Belgrade (Serbia); and others

    2016-11-01

    Highlights: • Macroporous PGME-deta sorption potential for Pb(II), Cd(II) and Cu(II) was studied. • Sorption kinetics obeyed pseudo-second order model. • Maximal Pb(II), Cd(II) and Cu(II) sorption capacities were 164, 152 and 120 mg g{sup −1}. • AFM indicates that metal sorption changes the size and morphology of PGME-deta. • XPS suggests complexation through the formation of Me−O and Me−N bonds in PGME-deta. - Abstract: The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  1. Effects of lead, cadmium, chromium, and arsenic on the sorption of lindane and norfloxacin by river biofilms, particles, and sediments.

    Science.gov (United States)

    Dong, Deming; Li, Lufeng; Zhang, Liwen; Hua, Xiuyi; Guo, Zhiyong

    2018-02-01

    The sorption of both classic and emerging organic contaminants onto aquatic solids is a critical process that controls their fate in natural waters. Sorption is affected by numerous factors, including coexisting heavy metals. The mechanisms of the influence of heavy metals, especially those occurring in acid radical anions, are still unclear. Here, the effects of Pb, Cd, Cr, and As on the sorption of lindane and norfloxacin (NOR) onto natural biofilms, suspended particles, and sediments from one river were investigated following batch equilibration methods. In addition, changes in representative components that have important roles in sorption from these solids in the presence and absence of metals were characterized by spectrum analyses. The results indicated that sorption of lindane and NOR on the three solids in the absence of heavy metals was highly linear and nonlinear, respectively. Pb and Cd promoted and Cr and As suppressed hydrophobic lindane sorption on the three solids. This was because Pb and Cd enhanced but Cr and As weakened the hydrophobicity of these solids. Pb, Cd, Cr, and As decreased NOR sorption on sediments and suspended particles at pH 5.7~6.3. This was due to electrostatic competition between cationic Pb/Cd and NORH 2 + , and the combination of Cr/As acid radicals with NORH 2 + , which suppressed its ion-exchange adsorption. Pb, Cd, Cr, and As generally increased the sorption of NOR onto the biofilms at pH 5.7~6.3. Pb and Cd strengthened the flocculation of dissolved organic matter combined with NORH 2 + onto the biofilms. Cr and As enhanced the hydrophilicity of biofilms, and then increased their sorption of NOR with active hydrophilic groups. The mechanisms of how different heavy metals affect NOR sorption by biofilms were more complicated than the mechanisms affecting lindane sorption, as well as by sediments and particles.

  2. Electrostatic mode coupling at 2ω/sub UH/: a generation mechanism for auroral kilometric radiation

    International Nuclear Information System (INIS)

    Barbosa, D.D.

    1976-01-01

    The instability of a low density, electron beam drifting along a magnetic field to nearly perpendicular propagating electrostatic waves near the upper hybrid frequency is investigated for application to an auroral environment. It was found that 4 to 10 KeV beams can interact significantly with the background plasma through anomalous cyclotron resonances which extend the range of unstable parallel wave numbers over a large region of wave number space. This region can include a nonconvective hot spot where the group velocity of the unstable waves approaches zero. Positive slope in the total distribution function is not a necessary requirement for instability; the broken symmetry along the field can allow the transfer of beam drift energy to electrostatic wave turbulence. Using Gurnett's (1974) polar ionospheric model for a representative auroral field line modeled as dipolar (L = 8), one infers that certain heights favor generation of enhanced, beamdriven electrostatic turbulence. Those regions are in the vicinity of where ω/sub UH//Ω/sub c/ approx. 3/2 with an excursion from this value depending on beam parameters. We speculate that electrostatic turbulence will heat the background electrons to a limiting temperature such that the instability becomes marginally effective. This limiting temperature is estimated for auroral beam-plasma conditions as 1 to 6 eV. Quasi-linear beam moment equations are developed to compute an upper bound to electrostatic wave amplitudes that can be maintained by the beam. We find that energy densities approaching E 2 /8πnT approx. 1 over auroral scale lengths can result in effective energy transfer from the beam to the plasma

  3. PLZT Ceramic Driving Rotary Micro-mirror Based on Photoelectric-electrostatic Mechanism

    Science.gov (United States)

    Tang, Yujuan; Yang, Zhong; Chen, Yusong; Wang, Xinjie

    2017-12-01

    Based on the anomalous photovoltaic effect of PLZT, a rotary micro-mirror driven by hybrid photoelectric-electrostatic actuation of PLZT ceramic is proposed. Firstly, the mathematical modelling of coupled multi-physics fields of PLZT ceramic is established during illumination and light off phases. Then, the relationship between the rotation angle and the photovoltage of PLZT ceramics is established. In addition, the feasibility of rotary micro-mirror with hybrid photoelectric-electrostatic driving is verified via closed-loop control for photo-induced voltage of PLZT ceramic. The experimental results show that the photo-induced voltage of PLZT ceramics has good dynamic control precision using on-off closed-loop control method.

  4. Breakup mechanisms of electrostatic atomization of corn oil and diesel fuel

    Science.gov (United States)

    Malkawi, G.; Yarin, A. L.; Mashayek, F.

    2010-09-01

    High-viscosity organic oils may be considered as an alternative to the ordinary diesel fuel. These organic oils and the diesel fuel are all Newtonian liquids; however, viscosity values of the organic oils are more than 20 times higher than that of the diesel fuel. In the present work, the electrostatic atomization of corn oil jets is studied and compared to the electrostatic atomization of diesel fuel jets. The experimental data revealed that in addition to the varicose breakup of straight jets, bending modes set in and grow in conjunction with the varicose undulations. Bending instability, kindred to the aerodynamically-driven bending instability of high-speed liquid jets moving in air, and to the electrically-driven bending instability of polymer jets in electrospinning, is significantly more pronounced in the case of the highly-viscous corn oil jets than in diesel jets. The experimental results are interpreted using the theory of bending instability developed previously for electrospinning.

  5. Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite. Kinetics, mechanism and activation parameters

    Energy Technology Data Exchange (ETDEWEB)

    Yusan, Sabriye; Aslani, Mahmut A.A.; Aytas, Sule [Ege Univ., Izmir (Turkey). Inst. of Nuclear Sciences; Bampaiti, Anastasia; Noli, Fotini [Aristotle University of Thessaloniki (Greece). Dept. of Chemistry; Erenturk, Sema [Istanbul Technical Univ., Ayazaga Campus, Maslak-Istanbul (Turkey). Energy Inst.

    2016-11-01

    In this study, for the first time ZnO nanoparticles and diatomite-supported ZnO nanocomposite have been utilized as adsorbent for the removal of Th(IV) ions from aqueous solutions under different experimental conditions. The Langmuir, Freundlich, Temkin and Dubinin- Radushkevich (D-R) isotherms were used to analyze the equilibrium data. The sorption equilibrium data were fitted well to the Langmuir isotherm with maximum sorption capacities values was found to be 1.105 mmol/g and 0.320 mmol/g for ZnO nanoparticles and diatomite supported ZnO nanocomposite, respectively. Pseudo-first and pseudo-second order equations, Intraparticle diffusion and Bangham's models were considered to evaluate the rate parameters and sorption mechanism. Sorption kinetics were better reproduced by the pseudo-second order model (R{sup 2} > 0.999), with an activation energy (E{sub a}) of +99.74 kJ/mol and +62.95 kJ/mol for ZnO nanoparticles and diatomite-supported ZnO nanocomposite, respectively. In order to specify the type of sorption reaction, thermodynamic parameters were also determined. The evaluated ΔG* and ΔH* indicate the non-spontaneous and endothermic nature of the reactions. The results of this work suggest that both of the used materials are fast and effective adsorbents for removing Th(IV) from aqueous solutions and chemical sorption plays a role in controlling the sorption rate.

  6. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  7. Modeling the sorption kinetic of metsulfuron-methyl on Andisols and Ultisols volcanic ash-derived soils: kinetics parameters and solute transport mechanisms.

    Science.gov (United States)

    Cáceres, Lizethly; Escudey, Mauricio; Fuentes, Edwar; Báez, María E

    2010-07-15

    Metsulfuron-methyl sorption kinetic was studied in Andisol and Ultisol soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Different kinetic models were applied to the experimental results. The pseudo-second-order model fitted sorption kinetics data better than the pseudo-first-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the different behavior of metsulfuron-methyl in both kinds of soils, both parameters being the highest for Andisol. The application of Elovich equation, intraparticle diffusion model and a two-site nonequilibrium model (TSNE) allowed to conclude that: (i) the high organic matter content is the governing factor for Andisols where mass transfer across the boundary layer, and in a lesser degree, intraparticle diffusion were the two processes controlling sorption kinetic and (ii) the mineral composition was more relevant in Ultisols where rate was controlled almost exclusively by intraparticle diffusion into macropores and micropores. The slower sorption rate on Ultisols, the mechanism involved and the lower sorption capacity of this kind of soils must be taken into account to assess leaching behavior of this herbicide. 2010 Elsevier B.V. All rights reserved.

  8. Mechanisms controlling retention during ultrafiltration of charged saccharides: Molecular conformation and electrostatic forces

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Møller, Victor; Prado-Rubio, Oscar A.

    2013-01-01

    and between solute molecules and membrane material are amongst the key factors determining the separation efficiency during ultrafiltration of charged saccharides. Our hypothesis is that the manipulation of pH in addition to the classic pressure control should enhance the ultrafiltration performance......Separation of different biomass components in solution, including charged saccharides, is one of the key challenges in biorefining of plant biomass. Ultrafiltration is one of the potential processes that could cope with such separation. Electrostatic interactions between solute molecules...... into account when it comes to optimizing ultrafiltration of such species....

  9. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    Science.gov (United States)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  10. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    International Nuclear Information System (INIS)

    Liu Jin; Chen Yongguang; Tan Zhiliang; Yang Jie; Zhang Xijun; Wang Zhenxing

    2011-01-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded. (semiconductor devices)

  11. Sorption of radionuclides on Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Meijaer, A.; Triay, I.; Knight, S.; Cisneros, M.

    1989-01-01

    A substantial database of sorption coefficients for important radionuclides on Yucca Mountain tuffs has been obtained by Los Alamos National Laboratory over the past ten years. Current sorption studies are focussed on validation questions and augmentation of the existing database. Validation questions concern the effects of the use of crushed instead of solid rock samples in the batch experiments, the use of oversaturated stock solutions, and variations in water/rock ratios. Sorption mechanisms are also being investigated. Database augmentation activities include determination of sorption coefficients for elements with low sorption potential, sorption on psuedocolloids, sorption on fracture lining minerals, and sorption kinetics. Sorption can provide an important barrier to the potential migration of radionuclides from the proposed repository within Yucca Mountain to the accessible environment. In order to quantify this barrier, sorption coefficients appropriate for the Yucca Mountain groundwater system must be obtained for each of the important radionuclides in nuclear waste. Los Alamos National Laboratories has conducted numerous batch (crushed-rock) sorption experiments over the past ten years to develop a sorption coefficient database for the Yucca Mountain site. In the present site characterization phase, the main goals of the sorption test program will be to validate critical sorption coefficients and to augment the existing database where important data are lacking. 11 refs., 1 fig., 3 tabs

  12. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex

    DEFF Research Database (Denmark)

    Dohn, A. O.; Jónsson, E. Ö.; Levi, Gianluca

    2017-01-01

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory...... and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H2O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds...

  13. An experimental and theoretical investigation of the mechanical behavior of multilayer initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2017-04-07

    We investigate the static and dynamic behavior of a multilayer clamped-free-clamped-free (CFCF) microplate, which is made of polyimide, gold, chromium, and nickel. The microplate is slightly curved away from a stationary electrode and is electrostatically actuated. The free and forced vibrations of the microplate are examined. First, we experimentally investigate the variation of the first natural frequency under the electrostatic DC load. Then, the forced dynamic behavior is investigated by applying a harmonic AC voltage superimposed to a DC voltage. Results are shown demonstrating the transition of the dynamic response of the microplate from hardening to softening as the DC voltage is changed as well the dynamic pull-in phenomenon. For theoretical model, we adopt a dynamic analog of the von-Karman governing equations accounting for initial curvature imperfection. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the mechanical behavior of the microplate. We compare the theoretical results with experimental data and show excellent agreement among the results. We also examine the effect of the initial rise on the natural frequencies of first three symmetric-symmetric modes of the plate.

  14. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    Science.gov (United States)

    Nastasović, Aleksandra B.; Ekmeščić, Bojana M.; Sandić, Zvjezdana P.; Ranđelović, Danijela V.; Mozetič, Miran; Vesel, Alenka; Onjia, Antonije E.

    2016-11-01

    The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  15. Hydro-mechanical coupling and permeability of an unsaturated swelling clay under hydrous and thermal stress: sorption curve and water permeability

    International Nuclear Information System (INIS)

    Olchitzky, E.

    2002-02-01

    The use of swelling clay for engineered safety barriers of radioactive waste disposal require the understanding of its thermal-hydro-mechanical behaviour. This work concerns particularly the characterization and the modelling of the behaviour of one of these clays: the FoCa7 clay. The characteristics of the studied material are: the sorption (desorption) curve and the water permeability. For each of them, new experiments have allowed to acquire data in fields still few explored: in temperature (between 20 and 80 C) for the sorption curve and in the unsaturated field for the water permeability. The analysis of these results and of bibliographic data has allowed in one hand to estimate the importance of the hysteresis phenomenon and the temperature influence on the sorption curve and in another hand, to establish the requirement to introduce in the modelling of the sorption curve, a plastic parameter due to the irreversible deformations occurring during the compaction. Moreover, the tests carried out for data acquirement have been used too to give validation elements to the non linear behaviour laws proposed by O. Coussy and P. Dangla for the non saturated porous media. The particularity of these laws is to suppose the existence of an effective constraint in the non saturated field, this shows the importance of the validation elements presented here. (O.M.)

  16. Thermodynamic analysis of water vapor sorption isotherms and mechanical properties of selected paper-based food packaging materials.

    Science.gov (United States)

    Rhim, Jong-Whan; Lee, Jun Ho

    2009-01-01

    Adsorption isotherms of 3 selected paper-based packaging materials, that is, vegetable parchment (VP) paper, Kraft paper, and solid-bleached-sulfate (SBS) paperboard, were determined at 3 different temperatures (25, 40, and 50 degrees C). The GAB isotherm model was found to fit adequately for describing experimental adsorption isotherm data for the paper samples. The monolayer moisture content of the paper samples decreased with increase in temperature, which is in the range of 0.0345 to 0.0246, 0.0301 to 0.0238, and 0.0318 to 0.0243 g water/g solid for the MG paper, the Kraft paper, and the SBS paperboard, respectively. The net isosteric heats of sorption (q(st)) for the paper samples decreased exponentially with increase in moisture content after reaching the maximum values of 18.51, 27.39, and 26.80 kJ/mol for the VP paper, the Kraft paper, and the SBS paperboard, respectively, at low-moisture content. The differential enthalpy and entropy of 3 paper samples showed compensation phenomenon with the isokinetic temperature of 399.7 K indicating that water vapor had been adsorbed onto the paper samples with the same mechanism. Depending on the paper material, tensile strength of paper samples was affected by moisture content.

  17. A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: Analytical and structural studies.

    Science.gov (United States)

    Tõnsuaadu, K; Gruselle, M; Villain, F; Thouvenot, R; Peld, M; Mikli, V; Traksmaa, R; Gredin, P; Carrier, X; Salles, L

    2006-12-15

    The sorption mechanism of Ru3+ ions on hydroxy (HAp), carbonate (CO3HAp), and fluor apatites (FAp) has been studied in detail. Ru apatites were obtained by reaction of the apatites with RuCl3 in aqueous solution. The structure and composition of the ruthenium-modified apatites were studied by several techniques: elemental analysis, XRD, EXAFS, IR, NMR, SEM-EDS, TEM, and thermal analysis. The amount of Ru in the modified apatite varies from 7.8 to 10.5 wt% and is not related to the initial composition or the specific surface area of the apatite. The different characterization techniques show that in the Ru-modified apatites Ru is surrounded by six oxygen atoms and do not contain any chlorine. For Ru-HAp and Ru-CO3HAp the new phase is amorphous whereas it is crystalline for FAp. The catalytic oxidation ability is higher for Ru-HAp and Ru-CO3HAp compared to Ru-FAp apatite in the oxidation of benzylic alcohol.

  18. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    Science.gov (United States)

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  19. The influence of water sorption-desorption cycles on the mechanical properties of composites based on recycled polyolefine and linen yarn production waste

    Science.gov (United States)

    Bakradze, G.; Kajaks, J.; Reihmane, S.; Krutohvostov, R.; Bulmanis, V.

    2007-11-01

    The effect of water on the mechanical properties (tensile modulus, ultimate tensile strength, tensile strain, and specific work at break) of both chemically treated and untreated composites based on a recycled low-density polyethylene and linen yarn production waste is analyzed. It is found that three water sorption-desorption cycles change the tensile properties of both the materials irreversibly. This effect is considered as the result of partial fracture of the fiber-matrix interface.

  20. Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jost Wendt; Sung Jun Lee; Paul Blowers

    2008-09-30

    The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

  1. Sorption and mechanism of aqueous U(Ⅵ) onto red soil-colloid

    International Nuclear Information System (INIS)

    Xia Liangshu; Huang Xin; Cao Cuncun; Chen Wei; Lu Junwen

    2013-01-01

    By static adsorption experiments, the effects of pH, ionic strength, adsorption time, uranium initial concentration, adsorbent dosage, red soil-colloid size, and organic matters on the biosorption capacity of red soil-colloid extracted from the soil around uranium tailing for uranium were studied. The adsorption process was analyzed by thermodynamics and kinetics, and the adsorption mechanism was characterized by the element analysis, infrared spectroscopy and scanning electron microscopy. The results show that the adsorption capacity for U (Ⅵ) on red soil-colloid increases with the decrease of ionic strength or particle size, increases with the initial concentration of uranium, decreases with the increase of the amount of red soil-colloid; the saturated adsorption capacity q max can be up to 76.76 μg/mg by red soil-colloid which diameter is less than 1 μm at 25 ℃ and pH=3.5, when the ionic strength is 0.001 mol/L. FT-IR micrograph before and after red soil-colloid adsorbed uranyl ions indicates that the red soil-colloid are mainly composed of hydroxyl, carbonyl, Si-O, Si-O-Fe, etc. The adsorption of U (Ⅵ) on red soil-colloid follows Langmuir adsorption isotherm, and the pseudo-second-order equation provides the best correlation for the adsorption process. (authors)

  2. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  3. Study of sorption mechanisms of europium(3) and uranium(6) ions on clays : impact of silicates; Etude des mecanismes de retention des ions U(6) et Eu(3) sur les argiles: influence des silicates

    Energy Technology Data Exchange (ETDEWEB)

    Kowal-Fouchard, A

    2002-11-01

    Bentonite clay has been selected as a potential buffer or backfill material in a number of disposal programmes for high level waste. In order to enhance the thermodynamic database of sorption phenomena at the solid-water interface, we have investigated sorption mechanisms of europium(III) and uranium(VI) ions onto montmorillonite and bentonite. Thermodynamic data were obtained for different ions concentrations, different background electrolytes and different ionic strengths. The structural identification of the surface complexes and sorption sites was carried out using two spectroscopies, XPS and TRLIFS, while sorption edges were performed using batch experiments. However, clays are complex minerals and in order to understand these sorption mechanisms we have studied europium(III) and uranium(VI) retention on a silica and an alumina because these solids are often considered as basic components of clays. The comparison of structural results shows that europium ions are significantly sorbed on permanently charged sites of clay until pH 7. But this ion is also sorbed on {identical_to}SiOH and {identical_to}AlOH sites of montmorillonite at pH higher than 6. Uranyl ions sorption on montmorillonite is mainly explained by retention of three complexes on {identical_to}SiOH sites. Moreover, we have shown that nitrate ions and dissolved silicates affect on uranium(VI) sorption mechanisms onto alumina. Nevertheless, uranyl ions sorption on montmorillonite and bentonite only decreases with increasing carbonate concentration. Finally, all the sorption edges were then modeled using these results and a surface complexation model (2 pK and constant capacitance models). (author)

  4. Sorption of beryllium from sulfuric acid solutions by aminocarboxylic polyampholites

    International Nuclear Information System (INIS)

    Pakholkov, V.S.; Tsevin, A.P.; Rychkov, V.N.

    1985-01-01

    Sorption of beryllium ions from BeSo 4 solutions by aminocarboxylic polyampholites at 18 deg C under steady-state conditions is studied. With the pH value growth the sorption of beryllium ions increases, that is characteristic for sorption according the cation exchange mechanism. Co- sorption of beryllium and uranium from BeSO 4 , UO 2 SO 4 , (NH 4 ) 2 SO 4 solution is considered, and possibility of sorption beryllium purification from uranium impurity is shown

  5. Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61

    KAUST Repository

    Forrest, Katherine A.

    2012-07-26

    Grand canonical Monte Carlo (GCMC) simulations were performed to investigate hydrogen sorption in an rht-type metal-organic framework (MOF), PCN-61. The MOF was shown to have a large hydrogen uptake, and this was studied using three different hydrogen potentials, effective for bulk hydrogen, but of varying sophistication: a model that includes only repulsion/dispersion parameters, one augmented with charge-quadrupole interactions, and one supplemented with many-body polarization interactions. Calculated hydrogen uptake isotherms and isosteric heats of adsorption, Q st, were in quantitative agreement with experiment only for the model with explicit polarization. This success in reproducing empirical measurements suggests that modeling MOFs that have open metal sites is feasible, though it is often not considered to be well described via a classical potential function; here it is shown that such systems may be accurately described by explicitly including polarization effects in an otherwise traditional empirical potential. Decomposition of energy terms for the models revealed deviations between the electrostatic and polarizable results that are unexpected due to just the augmentation of the potential surface by the addition of induction. Charge-quadrupole and induction energetics were shown to have a synergistic interaction, with inclusion of the latter resulting in a significant increase in the former. Induction interactions strongly influence the structure of the sorbed hydrogen compared to the models lacking polarizability; sorbed hydrogen is a dipolar dense fluid in the MOF. This study demonstrates that many-body polarization makes a critical contribution to gas sorption structure and must be accounted for in modeling MOFs with polar interaction sites. © 2012 American Chemical Society.

  6. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides; Contribution a l'etude des mecanismes de sorption aux interfaces solide-liquide: application aux cas des apatites et des oxy-hydroxydes

    Energy Technology Data Exchange (ETDEWEB)

    Duc, M

    2002-11-15

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  7. Impact of de-ashing humic Acid and humin on organic matter structural properties and sorption mechanisms of phenanthrene.

    Science.gov (United States)

    Yang, Yu; Shu, Liang; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2011-05-01

    Organic matter-mineral interactions greatly affect the fate of hydrophobic organic compounds (HOCs) in the environment. In the present study, the impact of organic matter-mineral interaction on sorption of phenanthrene (PHE) by the original and de-ashed humic acids (HAs) and humin (HM) was examined. After de-ashing treatment, the overall polarity of organic matter in HAs and HM consistently decreased. Differently, the surface polarity of HAs increased but that of HM decreased. No correlation between K(oc) values of PHE by all tested sorbents and their bulk polarity was observed due to inaccessibility of a portion of interior sorption domains. The inaccessibility of interior sorption domains in HAs and HM was partly due to the crystalline structure in organic matter as indicated by differential scanning calorimetric (DSC) and ¹³C NMR data and the interference from minerals. A good correlation between surface polarity of the original and de-ashed HAs and HMs and their K(oc) values for PHE indicated its importance in HOC sorption. Dissimilar changes in surface polarity of HAs and HM after de-ashing treatment can be ascribed to the distinct interactions between organic matter and minerals. The solid-state ¹³C NMR, XPS, and elemental composition data of all tested sorbents revealed that a larger fraction of O atoms in HAs were involved in organic matter-mineral interaction as compared to HM. Results of this work highlight the importance of soil organic matter (SOM)-mineral interactions, surface polarity, and microscaled domain arrangement of SOM in HOC sorption.

  8. Assembly and Maturation of a T = 4 Quasi-Equivalent Virus Is Guided by Electrostatic and Mechanical Forces

    Directory of Open Access Journals (Sweden)

    Bradley M. Kearney

    2014-08-01

    Full Text Available Nudaurelia capensis w virus (NωV is a eukaryotic RNA virus that is well suited for the study of virus maturation. The virus initially assembles at pH 7.6 into a marginally stable 480-Å procapsid formed by 240 copies of a single type of protein subunit. During maturation, which occurs during apoptosis at pH 5.0, electrostatic forces guide subunit trajectories into a robust 410-Å virion that is buttressed by subunit associated molecular switches. We discuss the competing factors in the virus capsid of requiring near-reversible interactions during initial assembly to avoid kinetic traps, while requiring robust stability to survive in the extra-cellular environment. In addition, viruses have a variety of mechanisms to deliver the genome, which must remain off while still inside the infected cell, yet turn on under the proper conditions of infection. We conclude that maturation is the process that provides a solution to these conflicting requirements through a program that is encoded in the procapsid and that leads to stability and infectivity.

  9. Understanding the sorption mechanisms of aflatoxin B1 to kaolinite, illite, and smectite clays via a comparative computational study.

    Science.gov (United States)

    Kang, Fuxing; Ge, Yangyang; Hu, Xiaojie; Goikavi, Caspar; Waigi, Michael Gatheru; Gao, Yanzheng; Ling, Wanting

    2016-12-15

    In current adsorption studies of biotoxins to phyllosilicate clays, multiply weak bonding types regarding these adsorptions are not well known; the major attractive forces, especially for kaolinite and illite, are difficult to be identified as compared to smectite with exchangeable cations. Here, we discriminated the bonding types of aflatoxin B1 (AFB1) contaminant to these clays by combined batch experiment with model computation, expounded their bonding mechanisms which have been not quantitatively described by researchers. The observed adsorbent-to-solution distribution coefficients (K d ) of AFB1 presented in increasing order of 18.5-37.1, 141.6-158.3, and 354.6-484.7L/kg for kaolinite, illite, and smectite, respectively. Normalization of adsorbent-specific surface areas showed that adsorption affinity of AFB1 is mainly dependent on the outside surfaces of clay aggregates. The model computation and test of ionic effect further suggested that weakly electrostatic attractions ((Si/Al-OH) 2 ⋯(OC) 2 ) are responsible for AFB1-kaolinite adsorption (K d , 18.5-37.1L/kg); a moderate electron-donor-acceptor attraction ((CO) 2 ⋯K + ⋯(O-Al) 3 ) is related to AFB1-illite adsorption (K d , 141.6-158.3L/kg); a strong calcium-bridging linkage ((CO) 2 ⋯Ca 2+ ⋯(O-Si) 4 ) is involved in AFB1-smectite adsorption (K d , 354.6-484.7L/kg). Changes in Gibbs free energy (ΔG°) suggested that the computed result is reliable, providing a good reproduction of AFB1-clay interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  11. Sorption properties of carbon nanostructures

    International Nuclear Information System (INIS)

    Eletskii, Aleksandr V

    2004-01-01

    The current status of research in sorption properties of carbon nanotubes (CNTs) is reviewed. The structural peculiarities of CNTs, determining their sorption characteristics, are considered. The mechanisms of sorption of gaseous and condensed substances by such structures are analyzed. Special attention is paid to the problem of using CNTs for storing hydrogen and other gaseous substances. Methods for filling CNTs with liquid materials, based on capillary phenomena and wetting the graphite surface of the CNT with liquids of various nature, are considered. Properties of 'peapods' formed as a result of filling single-walled CNTs with fullerene molecules are reviewed. Also considered are perspectives on the applied usage of the sorption properties of CNTs in electrochemical and fuel cells, and material storage devices, as well as for producing superminiature metallic conductors. (reviews of topical problems)

  12. Uranium sorption from sulfate solutions by polyampholytes

    International Nuclear Information System (INIS)

    Rychkov, V.N.

    2003-01-01

    Uranium sorption from sulfate solutions by aminocarboxylic and aminophosphoric acid polyampholytes is studied. Effect of concentration of sulfuric acid, ammonium sulfate, ph value of solution and concentration of metal in solution on uranium absorptivity by ampholytes is studied. It is determined that sorption process is described satisfactorily by K d =KC p Z equation. Basing on calculated data on uranium ion state in sulfate solutions, analysis of results and data of IR spectroscopy conclusions about uranium sorption process mechanism are made [ru

  13. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

    Science.gov (United States)

    Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H

    2017-12-12

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

  14. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  15. Sorption mechanisms of selenium species (selenite and selenate) on copper-based minerals; Mecanismes de sorption des especes du selenium (selenite et seleniate) sur des mineraux a base de cuivre

    Energy Technology Data Exchange (ETDEWEB)

    Devoy, J

    2001-09-01

    The sorption of radionuclides on the surface of minerals represents a process capable to delay the migration of the elements from a spent fuel deep repository towards the biosphere. In the framework of a deep underground repository, an engineered clay barrier has a high trapping capacity for cationic radio-elements, in particular because of the negative charge of clay surfaces. However, anionic radioelements like selenium species, would be only weakly retained by chemical processes. In order to optimize the trapping capacity of a clay barrier with respect to anionic species, prospective studies are carried out in order to find and evaluate some minerals with specific chemical trapping functions. Among radionuclides, the case of selenium has to be considered because its isotope {sup 79}Se is present in radioactive wastes and has a half life time of 6.5 10{sup 4} years. It is also judicious to find a mineral capable of trapping simultaneously several anionic radio-elements. Copper oxides and sulfides (Cu{sub 2}O, CuO, Cu{sub 2}S, CuS, CuFeS{sub 2} and Cu{sub 5}FeS{sub 4}) are good adsorbents with respect to selenium species (selenite and selenate). These minerals, with their selenium retention properties, could be used also for the decontamination of soils and waters or to process industrial effluents. The sorption mechanisms have been studied in details for copper oxides (Cu{sub 2}O and CuO) with respect to selenite and selenate. Chalcomenite precipitates in acid pH conditions when selenite is added to a Cu{sub 2}O and CuO suspension. Selenate, in contact with cuprite (Cu{sub 2}O) leads also to a selenium-based precipitate in acid pH environment. For higher pH values, selenite and selenate are adsorbed on copper oxides (Cu{sub 2}O and CuO) and lead to internal and external sphere complexes, respectively. In the case of a selenite/cuprite mixture in basic pH environment and at the equilibrium, a chemical reaction occurs between the oxidation product of cuprite, Cu

  16. Sorption Characteristics of Mixed Molecules of Glutaraldehyde from Water on Mesoporous Acid-Amine Modified Low-Cost Activated Carbon: Mechanism, Isotherm, and Kinetics

    Directory of Open Access Journals (Sweden)

    Mukosha Lloyd

    2015-01-01

    Full Text Available The environmental discharge of inefficiently treated waste solutions of the strong biocide glutaraldehyde (GA from hospitals has potential toxic impact on aquatic organisms. The adsorption characteristics of mixed polarized monomeric and polymeric molecules of GA from water on mesoporous acid-amine modified low-cost activated carbon (AC were investigated. It was found that the adsorption strongly depended on pH and surface chemistry. In acidic pH, the adsorption mechanism was elaborated to involve chemical sorption of mainly hydroxyl GA monomeric molecules on acidic surface groups, while in alkaline pH, the adsorption was elaborated to involve both chemical and physical sorption of GA polymeric forms having mixed functional groups (aldehyde, carboxyl, and hydroxyl on acidic and amine surface groups. The optimum pH of adsorption was about 12 with significant contribution by cooperative adsorption, elucidated in terms of hydrogen bonding and aldol condensation. Freundlich and Dubinin-Radushkevich models were fitted to isotherm data. The adsorption kinetics was dependent on initial concentration and temperature and described by the Elovich model. The adsorption was endothermic, while the intraparticle diffusion model suggested significant contribution by film diffusion. The developed low-cost AC could be used to supplement the GA alkaline deactivation process for efficient removal of residual GA aquatic toxicity.

  17. Sorption of colloids, organics, and metals onto gas-water interfaces: Transport mechanisms and potential remediation technology. 1998 annual progress report

    International Nuclear Information System (INIS)

    Tokunaga, T.K.; Wan, J.

    1998-01-01

    'Although contaminant sorption at mineral surfaces has received much recognition as a major mechanism controlling contaminant behavior in subsurface environments, virtually no attention has been given to the possibility of contaminant sorption at gas-water interfaces. Moreover, no effort has yet been advanced to optimize such interactions for the purpose of facilitating in-situ remediation. Gas-water interfaces, unlike water-solid interfaces, are mobile. Therefore, associations of contaminants with gas-water interfaces can be very important not only in subsurface contaminant distributions, but also in contaminant transport, and potentially in remediation. The first objective of this research is to develop a quantitative understanding of interactions between contaminants and gas-water interfaces. The anticipated results will provide insights into the poorly understood phenomenon of contaminant interactions with the gas-water interface, and improve the current conceptual models of contaminant behavior in subsurface environments. The second purpose of this research is to explore the possibility of using surfactant stabilized microbubbles for in-situ remediation. Both pump-and-treat, and air sparging remediation methods are ineffective at displacing contaminants in zones which are advectively inaccessible. Stable microbubbles can migrate beyond preferential flow pathways and enter lower permeability zones by buoyant rise. The microbubbles can deliver oxygen and nutrients for promoting aerobic degradation of organic contaminants, and also deliver surfactants for emulsifying NAPLs.'

  18. Sorption and migration of neptunium in porous sedimentary materials

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Nakayama, Shinichi

    2005-01-01

    Column migration experiments of neptunium were conducted for porous sedimentary materials: coastal sand, tuffaceous sand, ando soil, reddish soil, yellowish soil and loess, and migration behavior, sorption mechanisms and chemical formation of Np were investigated. The migration behavior of Np in each material was much different each other, due to chemical formation in solution and/or sorption mechanism of Np. Mathematical models of different concepts were applied to the experimental results to interpret the sorption mechanism and the migration behavior. It can be concluded that both of instantaneous equilibrium sorption and sorption-desorption kinetics have to be considered to model the Np migration in sedimentary materials. (author)

  19. Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite

    International Nuclear Information System (INIS)

    Marques Fernandes, Maria; Vér, Nóra; Baeyens, Bart

    2015-01-01

    Highlights: • Contaminant retention in argillaceous rocks controlled by sorption on clay minerals. • Cs, Ni, Co, Eu, Th and UO 2 sorption isotherm measurements on Boda and Opalinus Clay. • Boda and Opalinus Clay exhibit different mineralogies and porewater compositions. • Blind predictions using quasi-mechanistic sorption models developed for illite. • Good agreement between measurements and blind predictions. - Abstract: Reliable predictions of radiocontaminant migration are a requirement for the establishment of radioactive waste repositories. Parametrization of the necessary sorption models seems to be, however, extremely challenging given the multi-mineralic composition of the lithosphere. In this study it is shown for two argillaceous rocks – Boda and Opalinus Clay relevant for the Hungarian and Swiss repository concepts, respectively – that this task can be substantially simplified by taking into account only the most sorptive mineral fraction, namely the 2:1 clay minerals illite and illite/smectite mixed layers. Two different models were required to blind predict the sorption isotherms of Cs, Co, Ni, Eu, Th and UO 2 measured on the two clay rock samples in a synthetic porewater. Cs sorption was modelled with the generalised Cs (GCs) sorption model and the sorption of the other cations with the 2site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model. The 2SPNE SC/CE model for illite was extended with surface complexation reactions on weak sites for Co, Ni, Eu, UO 2 and on strong sites for Eu-carbonato complexes. Complementary to the sorption measurements and modelling, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the retention mechanism of Ni on illite, Boda and Opalinus Clay at higher loadings. The reliable blind predictions of the selected metal cations, which are representative for monovalent alkaline metals, divalent transition metals, lanthanides, and trivalent

  20. Modeling PCN-61 and PCN-66: Isostructural rht -Metal–Organic Frameworks with Distinct CO 2 Sorption Mechanisms

    KAUST Repository

    Pham, Tony

    2014-11-05

    © 2014 American Chemical Society. Simulations of CO2 sorption were performed in two members of the highly tunable rht-metal-organic framework (MOF) platform: PCN-61 and PCN-66. These MOFs differ only in the triisophthalate ligand used to synthesize the respective MOFs. In PCN-61, the center of the ligand contains a benzene ring; this ring is substituted with a triphenylamine group in PCN-66. There are two chemically distinct Cu2+ ions that comprise the copper paddlewheels, [Cu2(O2CR)4], in all rht-MOFs. One type of Cu2+ ion, denoted Cu1, projects into the truncated tetrahedral (T-Td) and truncated octahedral (T-Oh) cages, while the other Cu2+ ion, denoted Cu2, projects into the cuboctahedral (cub-Oh) cages. Electronic structure calculations revealed that, in PCN-61, the Cu2 ions have a significantly higher partial positive charge than the Cu1 ions, whereas the opposite was observed in PCN-66. The simulations revealed that the CO2 molecules sorb initially onto the Cu2+ ions that have the higher partial positive charge, i.e., the Cu2 ions in PCN-61 and the Cu1 ions in PCN-66. This was demonstrated by examining the radial distribution function, g(r), about both Cu2+ ions and the modeled structure at low loading for both MOFs. This study provided insights into how differences in the charge distributions about the copper paddlewheels between two isostructural MOFs, arising from the choice of functionality on the ligand, can lead to different CO2 binding sites at low loading and suggests a more general conceptual framework for controlling sorption through the tuning of MOF electronics.

  1. Sorption of fibronectin to human root surfaces in vitro

    International Nuclear Information System (INIS)

    Mendieta, C.; Caravana, C.; Fine, D.H.

    1990-01-01

    The purpose of this study was to determine the conditions that favor the sorption and retention of human plasma fibronectin to cementum. Rectangular root segments prepared from teeth extracted for orthodontic reasons were mounted on a capillary pipette and immersed in solutions of 125 I fibronectin for assay of cementum sorption under various conditions. Kinetic studies showed sorption to be rapid, with 77% of the maximum fibronectin sorption occurring within 1 minute. Fibronectin sorption was reduced when added in conjunction with serum and was inhibited by monovalent ions (such as sodium), but enhanced in the presence of divalent cations (such as calcium). Exposure of cementum to serum partially blocked subsequent sorption of fibronectin, while cementum bound fibronectin was eluted by subsequent exposure to serum. Treatment of cementum with citric acid pH 1.1 (4 minutes) followed by 5% sodium hypochlorite (5 minutes) caused a significant increase in fibronectin sorption with maximum retention upon subsequent exposure to serum (P less than 0.05). Fibronectin sorption to cementum was: rapid, electrostatic in nature, competitive, reversible, Ca+(+)-facilitated, and maximized by prior treatment of the root with citric acid and sodium hypochlorite. It is concluded that sorption of fibronectin to cementum can be achieved for clinical gain; however, conditions of application can significantly influence both accumulation and subsequent release of root sorbed material

  2. Hydro-mechanical coupling and permeability of an unsaturated swelling clay under hydrous and thermal stress: sorption curve and water permeability; Couplage hydromecanique et permeabilite d'une argile gonflante non saturee sous sollicitations hydriques et thermiques: courbe de sorption et permeabilite a l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Olchitzky, E

    2002-02-15

    The use of swelling clay for engineered safety barriers of radioactive waste disposal require the understanding of its thermal-hydro-mechanical behaviour. This work concerns particularly the characterization and the modelling of the behaviour of one of these clays: the FoCa7 clay. The characteristics of the studied material are: the sorption (desorption) curve and the water permeability. For each of them, new experiments have allowed to acquire data in fields still few explored: in temperature (between 20 and 80 C) for the sorption curve and in the unsaturated field for the water permeability. The analysis of these results and of bibliographic data has allowed in one hand to estimate the importance of the hysteresis phenomenon and the temperature influence on the sorption curve and in another hand, to establish the requirement to introduce in the modelling of the sorption curve, a plastic parameter due to the irreversible deformations occurring during the compaction. Moreover, the tests carried out for data acquirement have been used too to give validation elements to the non linear behaviour laws proposed by O. Coussy and P. Dangla for the non saturated porous media. The particularity of these laws is to suppose the existence of an effective constraint in the non saturated field, this shows the importance of the validation elements presented here. (O.M.)

  3. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar.

    Science.gov (United States)

    Huang, Peng; Ge, Chengjun; Feng, Dan; Yu, Huamei; Luo, Jiwei; Li, Jiatong; Strong, P J; Sarmah, Ajit K; Bolan, Nanthi S; Wang, Hailong

    2018-03-01

    In this study, the impacts of various cations, cation strength and pH on ofloxacin (OFL) adsorption to cassava residue-derived biochars were determined. The associated adsorption mechanisms are discussed. The biochars were prepared at pyrolysis temperatures ranging from 350°C to 750°C, and labeled as CW350, CW450, CW550, CW650 and CW750. The Freundlich model provided the best fit to describe the adsorption capacity of OFL and the Freundlich coefficient (logK f ) increased with increasing pyrolysis temperature. The inclusion of Zn 2+ or Al 3+ increased OFL sorption capacities of five biochars, while Cu 2+ reduced sorption to CW450 and CW550. No significant impacts on OFL sorption were observed in the presence of K + and Ca 2+ . The concentration of Ca 2+ affected the adsorption capacity of CW550, but had no significant impact on other biochars. The pH of OFL solution, ranging from 3 to 9, had no significant changes on OFL adsorption by all the tested biochars. Results of FTIR spectra and zeta potential indicated that electrostatic interactions, cationic exchange, metal bridging and micropore filling could be the main sorption mechanism between OFL and biochars. These studies indicated that cassava residue can be converted into biochars that are effective adsorbents for removing OFL from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-Montmorillonite. Part III: Modelling

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1995-07-01

    Titration and sorption measurements, carried out under a wide variety of conditions on Na-montmorillonite, were examined in terms of cation exchange and surface complexation mechanisms. A computer code called MINSORB was developed and used throughout this work. This code allowed the uptake of radionuclides by both mechanisms to be calculated simultaneously; also taking into account competitive reactions from other cations present. A stepwise iterative fitting/modelling procedure is described. For the case of Na-montmorillonite it is demonstrated that an electrostatic term in the surface complexation model is not required. A basic data set comprising of site capacities and protonation/deprotonation constants was defined, which was valid for all surface complexation sorption reactions. The main study was carried out with Ni, but impurity cations present in the system, particularly Zn, had to be examined in addition due to their competitive effects on Ni sorption. The surface complexation behaviour of Ni and Zn was investigated in detail to give intrinsic surface complexation constants on two of the ≡SOH type sites included in the model. The sorption of Mg, Ca and Mn is also considered, though in less detail, and estimated surface complexation constants for these nuclides are presented. Cation exchange was included in all of the calculations. Measured selectivity coefficients for Ni-Na, Zn-Na and Ca-Na exchange reactions are given. The model, with the derived parameters, allowed all the data from titration measurements through sorption edges to sorption isotherms to be calculated. (author) 31 figs., 9 tabs., refs

  5. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  6. Sorption of {sup 239}Np and {sup 235}U fission products by zeolite Y, Mexican natural erionite, and bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, M.T.; Solache, M.; Iturbe, J.L. [Instituto Nacional de Investigaciones Nucleares, C.P. (Mexico)]|[Universidad Autonoma Metropolitana, C.P. (Mexico)] [and others

    1996-09-01

    Zeolite Y, erionite, and bentonite have been used in this work to remove {sup 239}Np and {sup 235}U fission products from aqueous solutions at various pH values. It was found that the sorption of fission products by aluminosilicates takes place by different mechanisms, mainly ion exchange, precipitation, and electrostatic surface interaction. The radionuclides content was determined by {gamma}-spectrometry, and X-ray diffraction was used to learn whether the solids maintained their crystallinity at different pH values.

  7. Sorption isolation of strontium from seawater

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Zheleznov, V.V.; Kaplun, E.V.; Sokol'nitskaya, T.A.; Yukhkam, A.A.

    2001-01-01

    Sorption isolation of strontium from seawater is considered and prospects of use of selective adsorbents for purification of seawater or liquid radioactive wastes mixed with seawater from 90 Sr are discussed. Comparative analysis of sorptive properties of adsorbents of different nature is done. It is shown that sorption-reagent materials developed by authors can to afford effective separation of 90 Sr from seawater. Possible mechanism of strontium sorption by these adsorbents is considered. The prospect of their use for purification of liquid radioactive wastes from strontium is shown [ru

  8. Limiting assumptions in molecular modeling: electrostatics.

    Science.gov (United States)

    Marshall, Garland R

    2013-02-01

    Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.

  9. Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism.

    Science.gov (United States)

    Han, Shuai; Wang, Ting; Yang, Li; Li, Bin

    2017-12-01

    Bio-based hydrogel containing cyclodextrins (CDs) is of a promising polymer material that could display many advantages including wide availability, sustainability, biocompatibility and biodegradability, especially the inherent encapsulation ability with hydrophobic substance. To obtain these, the electrostatic and host-guest interactions were introduced and a hydrogel with three-dimensional double network structures was built. For preparing a spherical biopolymer cage, hydroxyethyl cellulose (HEC) and modified chitosan (HACC) were cross-linked by a one-pot reaction. The existence of HACC in this hydrogel provides a positive charge core to attract negative host molecule of sulfobutylether-β-cyclodextrin (SEB-β-CD). The loading amount of SEB-β-CD were determined by the method of weight increment and photometric titration, respectively, and an average content of active SEB-β-CD in our prepared hydrogel is more than 50%, much higher than the grafting of CD on biopolymers materials through chemical reaction. By the host-guest interaction, hydrophobic molecule of PP could adsorb rapidly in our prepared hydrogel and sustain-release in aqueous solution. Through ion-exchange interaction, different negative ions were studied for obtaining a control release of SEB-β-CD, which is to achieve the purpose of rapid release of hydrophobic guest molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Understanding hydrogen sorption in a metal-organic framework with open-metal sites and amide functional groups

    KAUST Repository

    Pham, Tony T.

    2013-05-09

    Grand canonical Monte Carlo (GCMC) studies of the mechanism of hydrogen sorption in an rht-MOF known as Cu-TPBTM are presented. The MOF is a decorated/substituted isostructural analogue to the unembellished rht-MOF, PCN-61, that was studied previously [ Forrest, K. A.J. Phys. Chem. C 2012, 116, 15538-15549. ]. The simulations were performed using three different hydrogen potentials of increasing complexity. Simulated hydrogen sorption isotherms and calculated isosteric heat of adsorption, Qst, values were in excellent agreement with the reported experimental data for only a polarizable model in one of four experimentally observed crystal structure configurations. The study demonstrates the ability of modeling to distinguish the differential sorption of distinct strucures; one configuration is found to be dominant due to favorable interactions with substrates. In addition, it was discovered that the presence of polar amide groups had a significant effect on the electrostatics of the Cu2+ ions and directs the low-pressure physisorption of hydrogen in the MOF. This is in contrast to what was observed in PCN-61, where an exterior copper ion had a higher relative charge and was the favored loading site. This tunability of the electrostatics of the copper ions via chemical substitution on the MOF framework can be explained by the presence of the negatively charged oxygen atom of the amide group that causes the interior Cu2+ ion to exhibit a higher positive charge through an inductive effect. Further, control simulations, taking advantage of the flexibility afforded by theoretical modeling, include artificially modified charges for both Cu2+ ions chosen equal to or with a higher charge on the exterior Cu2+ ion. This choice resulted in distinctly different hydrogen sorption characteristics in Cu-TPBTM with no direct sorption on the open-metal sites. Thus, this study demonstrates both the tunable nature of MOF platforms and the possibility for rational design of sorption

  11. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  12. The effect of organic amendment on mobility of cesium in tropical soils - The effect of organic amendment on sorption mechanisms for cesium and cobalt in tropical soils

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, M.A.V.; Santos-Oliveira, R. [Instituto de Engenharia nuclear/CNEN. Rua Helio de Almeida, 75. Cidade Universitaria - Ilha do Fundao, Rio de Janeiro, RJ. CEP 21941-906 (Brazil); Garcia, R.J.L.; Ferreira, A.C.M.; Rochedo, E.R.R.; Sobrinho, G.A.N. [Instituto de Radioprotecao e Dosimetria/CNEN. Av. Salvador Allende s /no. Rio de Janeiro, RJ. CEP: 22780-160 (Brazil); Perez, D.V. [Centro Nacional de Pesquisa de Solos/EMBRAPA. R. Jardim Botanico, 1024.Rio de Janeiro, RJ, CEP: 22460-000 (Brazil); Wasserman, J.C. [dUFF Network of Environment and Sustainable Development (REMADS-UFF), University Federal Fluminense, Niteroi, RJ (Brazil)

    2014-07-01

    This work aimed to investigate the mechanisms involved in the sorption of {sup 137}Cs and {sup 60}Co as a function of the physico-chemical properties of some types of Brazilian soils and the changes on the behavior of these radionuclides due to changes in soil properties promoted by organic amendment. The experimental study was conducted in a controlled area, where pots containing different types of soils (Ferralsol, Nitisol and Histosol) and different doses of organic amendment (no amendment; 2 kg.m{sup -2} and 4 kg.m{sup -2}) were spiked with {sup 137}Cs and {sup 60}Co. The organic amendment used in this experiment was obtained in the Unit of Compost of the Organic Material of Pinheiral (RJ, Brazil), where the compost is made up from the leaves swept from the streets of the Pinheiral city. The mobility of these radionuclides in the soil was assessed through sequential chemical extraction and desorption studies as a function of pH. The bioavailability was evaluated through the effective absorption of radionuclide by root crops (Raphanus sativus, L). This study evidenced that the organic amendment plays an important role in the desorption processes of cobalt and cesium, reducing desorption of both nuclides beneath higher organic amendment dose. This behavior was observed in acid conditions as well in alkaline. However extreme acid conditions may mobilize both radionuclides, although cobalt mobility was shown to be more sensitive to low pH than cesium. (authors)

  13. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  14. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.

  15. Plutonium sorption onto hematite colloids at femto- and nanomolar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, A.Yu.; Kalmykov, S.N.; Aliev, R.A. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Radiochemistry Div.

    2011-07-01

    The surface-mediated reduction of Pu(VI) upon sorption onto hematite colloids is addressed in the paper that bring some new light on the mechanisms of interaction of Pu in high valence states with different Fe(III) oxides. We study the sorption of Pu taken at two different total concentrations around 10{sup -9} and 10{sup -14} M using {sup 239}Pu and short-lived {sup 237}Pu tracer. In order to conclude on the mechanisms of Pu sorption onto hematite, the kinetics of sorption of Pu(IV) and Pu(VI) at two concenrations is studied as well as its leaching behavior. The rate limiting step in Pu(VI) sorption is its surface-mediated reduction. The experimental evidence of the polymerization of Pu(IV) on the surface taken at Pu total concentration of {proportional_to} 10{sup -9} M is presented based on the kinetics of sorption and leaching behavior. (orig.)

  16. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  17. AFFECTS OF MECHANICAL MILLING AND METAL OXIDE ADDITIVES ON SORPTION KINETICS OF 1:1 LiNH2/MgH2 MIXTURE

    Energy Technology Data Exchange (ETDEWEB)

    Erdy, C.; Anton, D.; Gray, J.

    2010-12-08

    The destabilized complex hydride system composed of LiNH{sub 2}:MgH{sub 2} (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of {approx}32 kJ/mole H{sub 2} was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 C to 200 C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert's apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH{sub 3} formation.

  18. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  19. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  20. Iodine sorption by ion-exchange fiber on the basis of polyacrylonitrile and AV-17 anionite under static conditions

    International Nuclear Information System (INIS)

    Tarchigina, N.I.; Artemov, A.V.; Ksenzenko, V.I.

    1986-01-01

    Iodine sorption from natural waters by a qualitatively new sorbent - ion-exchange fiber on the basis of polyacrylonitrile and AV-17 anionite is investigated. Mechanism of iodine sorption by ion-exchange material is suggested. Iodine sorption kinetics by fibrous sorbent under static conditions is described. Iodine sorption efficient constants are determined by experimental data processing with the use of electronic computer

  1. MOLECULAR DYNAMICS MODELING OF SORPTION OF PESTICIDES ONTO THE SURFACES OF KAOLINITE

    Science.gov (United States)

    To accurately predict the fate of contaminants in the environment and to make sound decisions about environmental remediation, we must accurately understand sorption mechanisms and surface reactivity of environmental particles. Sorption of selected pesticides on kaolinite surface...

  2. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  3. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential

    Directory of Open Access Journals (Sweden)

    Kovo G. Akpomie

    2015-09-01

    Full Text Available The potential of a low-cost Nigerian montmorillonite for the adsorption of Ni(II and Mn(II ions from aqueous solution was investigated by batch mode. XRD, SEM and BET analysis were used to characterize the adsorbent. The experiments were performed as a function of pH, particle size, adsorbent dose, initial metal ion concentration, contact time, ligands and temperature. The process was found to be dependent on all the parameters investigated, with a pH of 6.0 obtained for optimum removal of both metal ions. The Langmuir monolayer adsorption capacity of 166.67 and 142.86 mg/g was obtained for Ni(II and Mn(II ions respectively. The Freundlich isotherm gave the best fit to the experimental data than the Langmuir, Temkin and Dubinin–Radushkevich isotherms. The scatchard plot analysis indicated the existence of more than one type of active site on the montmorillonite which corroborates the good fit of the Freundlich model. The pseudo-first order, pseudo-second order and intraparticle diffusion models were applied to the kinetic data. The best fit was achieved with the pseudo-first order model and the existence of intraparticle diffusion mechanism was indicated. Thermodynamic studies showed an endothermic, dissociative, spontaneous and a physical adsorption process between the metal ions and the montmorillonite. Desorption studies revealed over 90% desorption of both metal ions from the metal loaded adsorbent.

  4. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-07-01

    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  5. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    Science.gov (United States)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional

  6. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  7. U(VI) and Eu(III) ion sorption in the interface solution-phosphate solids: Structural study and mechanisms; Sorption des ions U(VI) et Eu(III) a l`interface solution - solides phosphates: Etude structurale et mechanismes

    Energy Technology Data Exchange (ETDEWEB)

    Drot, Romuald [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1998-09-18

    As part of the storage of nuclear wastes in a deep underground disposal, radionuclides sorption on geological or engineered barriers is one of the most important factor which could enhance retardation. Thus, the knowledge of such mechanisms is needed. For this purpose, we chose to experimentally define sorption equilibria before performing simulation of retention data. Several phosphate compounds are potential candidates as engineered barrier additives. We considered Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, Zr{sub 2}O(PO{sub 4}){sub 2} which allow to study the effect of PO{sub 4} and P{sub 2}O{sub 7} groups separately. Eu(III) and U(IV) ions were used as structural probes in order to simulate actinides (III) and (VI) behavior. X-ray powder diffraction, IR spectroscopy and electron probe microanalysis were used to characterized the synthesized solids. Electrophoretic measurements showed an amphoteric behavior of surface sites. Moreover, laser spectro-fluorimetry experiments indicated that no diffusion phenomena of the sorbed ion inside the solid occurs. Thus, we considered that a surface complexation model should be applied. Laser spectro-fluorimetry and XPS allowed to determine the nature of surface sites. ZrP{sub 2}O{sub 7} presents only one single site (P{sub 2}O{sub 7} groups) whereas Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7} and Zr{sub 2}O(PO{sub 4}){sub 2} admit two types of sites (PO{sub 4}/P{sub 2}O{sub 7} and PO{sub 4}/oxo groups, respectively). Sorbed species were identified using laser spectro-fluorimetry which indicate that, in KNO{sub 3} 0.5 M medium and for a known surface site, there are two surface complexes for U(VI) (sorption of UO{sup 2+}{sub 2} et de UO{sub 2}NO{sup +}{sub 3} species) and only one for Eu(III) (sorption of EuNO{sup 2+}{sub 3}). They are linked to the substrate as bidentate inner sphere complexes (EXAFS study). Surface acidity constants were determined by simulation of potentiometric titration curves obtained for each solid

  8. Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: the origin of sorption capacity improvement.

    Science.gov (United States)

    Shin, Eun Woo; Rowell, Roger M

    2005-08-01

    Juniper (Juniperus monosperma), a small-diameter underutilized material, has been studied as a lignocellulosic biosorbent for removing heavy metals from water. In this study, juniper wood was modified by sulfonation to enhance sorption capacity for cadmium in water. The origin of the enhancement was investigated by observing the sorption behaviors and the change in surface functional group concentrations. Cadmium sorption by all juniper wood biosorbents studied was fast and the sorption capacity decreased with decreasing pH, similar to results found for other biosorbents. Sulfonated juniper was found to have at least twice the sorption capacity for cadmium removal from water compared to that of untreated juniper, though the sorption capacity increased with increasing pH. A slight increase in carboxylate content after sulfonation was likely responsible for a small portion of the enhancement. Elemental analysis showed an increase in sulfur content after sulfonation. Diffuse reflectance infrared Fourier transform (DRIFT) spectra showed a decrease in the band at 1660 cm(-1) in the range of carbonyl groups as a result of sulfonation. This indicates that coniferaldehyde groups in the lignin of juniper wood corresponding to this band were substituted into sulfonic acid groups after sulfonation. This interpretation was supported by both the color forming reaction with phloroglucinol-hydrochloric acid and the reaction mechanisms from the acid sulfite pulping process. Consequently, the enhancement of cadmium sorption capacity of juniper wood by sulfonation mainly originated from the production of sulfonic acid groups, which are binding sites for heavy metals.

  9. Insights into an intriguing gas sorption mechanism in a polar metal–organic framework with open-metal sites and narrow channels

    KAUST Repository

    Forrest, Katherine A.

    2014-01-01

    Simulations of H2 and CO2 sorption were performed in the metal-organic framework (MOF), [Cu(Me-4py-trz-ia)]. This MOF was recently shown experimentally to exhibit high uptake for H2 and CO2 sorption and this was reproduced and elucidated through the simulations performed herein. Consistent with experiment, the theoretical isosteric heat of adsorption, Qst, values were nearly constant across all loadings for both sorbates. The simulations revealed that sorption directly onto the open-metal sites was not observed in this MOF, ostensibly a consequence of the low partial positive charges of the Cu2+ ions as determined through electronic structure calculations. Sorption was primarily observed between adjacent carboxylate oxygen atoms (site 1) and between nearby methyl groups (site 2) of the organic linkers. In addition, saturation of the most energetically favorable sites (site 1) is possible only after filling a nearby site (site 2) first due to the MOF topology. This suggests that the lack of dependence on loading for the Qst is due to the concurrent filling of sites 1 and 2, leading to an observed average Qst value. © 2014 the Partner Organisations.

  10. Sorption properties of wool

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Strict ecological legislation, especially in highly developed countries, imposed requirements for the purification of industrial effluents and the need for efficient oil clean up after sea and inland water spills. Although numerous processes have been developed, the application of sorbents is still one of the most efficient methods to remove heavy metal ions, dyes and crude oil from water. Recently, special attention was paid to sorbents based on natural fibres. A review of studies concerning the sorption properties of wool is presented in this paper. The presence of various functional groups on the wool fibre surface contributes to the efficient sorption of heavy metal ions and dyes. A hydrophobic, scaly surface and fibre crimp strongly influence the high sorption capacity of wool for oil. Wool has great sorption potential even as a recycled material. Accordingly, it can be used as a viable substitute to commercially available synthetic sorbents that show poor biodegradab ility.

  11. Chemical alteration of calcium silicate hydrates in saline groundwater. Mechanism of sorption of Na on C-S-H and effect of NaCl on leaching of Ca from C-S-H

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2004-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In the presence of some reactive ions in a saline groundwater, the chemical properties of cement materials should be affected. In this study, the mechanism of sorption of sodium (Na) on C-S-H and the effect of sodium chloride (NaCl) concentration on dissolution of Calcium Silicate Hydrate (C-S-H) are discussed by measuring the sorption isotherm of sodium onto C-S-H gel (Ca/Si = 0.65-1.2). Based on the experimental results, it is showed that sodium sorbs by substitution for Ca in C-S-H phases and leaching of Ca from C-S-H is enhanced in NaCl solution ( -1 mol dm -3 ). The results of sorption experiments are reasonably well modelled by the ion-exchange model assuming some calcium sites with different ion-exchange log K values. It is also suggested that the dissolution of C-S-H can be modelled reasonably well by considering the effect of ionic strength on activity coefficients of aqueous species for high Ca/Si ratio of C-S-H, and the effect of exchange of sodium with calcium of C-S-H on leaching of Ca becomes obvious for lower Ca/Si ratio of C-S-H. (author)

  12. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.

    Science.gov (United States)

    Fernandes, M Marques; Scheinost, A C; Baeyens, B

    2016-08-01

    The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. In this study we couple macroscopic sorption experiments to surface complexation modelling and spectroscopic investigations, including extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS), to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/An(III)) by montmorillonite in the absence and presence of dissolved carbonate. Based on the experimental sorption isotherms for the carbonate-free system, the previously developed 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model needed to be complemented with an additional surface complexation reaction onto weak sites. The fitting of sorption isotherms in the presence of carbonate required refinement of the previously published model by reducing the strong site capacity and by adding the formation of Ln/An(III)-carbonato complexes both on strong and weak sites. EXAFS spectra of selected Am samples and TRLFS spectra of selected Cm samples corroborate the model assumptions by showing the existence of different surface complexation sites and evidencing the formation of Ln/An(III) carbonate surface complexes. In the absence of carbonate and at low loadings, Ln/An(III) form strong inner-sphere complexes through binding to three Al(O,OH)6 octahedra, most likely by occupying vacant sites in the octahedral layers of montmorillonite, which are exposed on {010} and {110} edge faces. At higher loadings, Ln/An(III) binds to only one Al octahedron, forming a weaker, edge-sharing surface complex. In the presence of carbonate, we identified a ternary mono- or dicarbonato Ln/An(III) complex binding directly to one Al(O,OH)6 octahedron, revealing that type-A ternary complexes form with the one

  13. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Experimental And Modelling Investigations on Na-Illite: Acid-Base Behaviour And the Sorption Of Strontium, Nickel, Europium And Uranyl

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    2005-06-01

    In an extensive study the physico-chemical, protolysis and sorption characteristics of Sr(II), Ni(II), Eu(III) and U(VI) have been measured on illite and modeled over a wide range of pH, sorbate and NaCI0 4 concentrations. SampIes of Illite du Puy, collected in the region of Le Puy-en- Velay, France, were carefully conditioned to the Na-form and physico-chemically characterised. Potentiometric titrations on suspensions of the Na-illite were carried out using a batch back titration technique in 0.01, 0.1 and 0.5 M NaCI0 4 background electrolytes from pH 2 to 12 in an inert atmosphere glove box. The supernatant solutions from each titration experiment in each series were analysed for K, Mg, Ca, Sr, Si, Al, Fe and Mn. The titration data were modeled in terms of the protolysis of two amphoteric edge sites (=S W1 0H and =S W2 0H) without an electrostatic term. The protonation/deprotonation constants and site capacities obtained from the titration measurements were then fixed. The sorption edge and isotherm data were modeled with strong (=S S OH) and weak (=S W1 0H) surface complexation sites, assumed to have the same protolysis constants, again without electrostatic terms. Uptake by cation exchange was included in all of the calculations. This sorption model, the 2 site protolysis non electrostatic surface complexation and cation exchange model, had been developed previously for montmorillonite and was successful in describing the sorption characteristics of Sr, Ni, Eu and U on Na-illite over a wide range of conditions. Cation exchange capacity, strong and weak site capacities and protolysis constants for Na-illite are given, together with surface complexation constants and selectivity coefficients for Sr, Ni, Eu and U. At 0.01 M NaCI0 4 and pH below 8 the sorption of Sr, Ni, Eu and U was dominated by a cation exchange mechanism. The strong dependency of sorption on pH observed under these conditions arose from the competitive effects of Ca and Al on the uptake of the

  15. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid—carbon nanotube composites using atomic force microscopy

    International Nuclear Information System (INIS)

    Iqbal, Qais; Bernstein, Peter; Zhu, Yazhe; Rahamim, Joseph; Cebe, Peggy; Staii, Cristian

    2015-01-01

    We use atomic force microscopy (AFM) to perform a systematic quantitative characterization of the elastic modulus and dielectric constant of poly(L-lactic acid) electrospun nanofibers (PLLA), as well as composites of PLLA fibers with 1.0 wt% embedded multiwall carbon nanotubes (MWCNTs–PLLA). The elastic moduli are measured in the fiber skin region via AFM nanoindentation, and the dielectric constants are determined by measuring the phase shifts obtained via electrostatic force microscopy (EFM). We find that the average value for the elastic modulus for PLLA fibers is (9.8 ± 0.9) GPa, which is a factor of 2 larger than the measured average elastic modulus for MWCNT–PLLA composites (4.1 ± 0.7) GPa. We also use EFM to measure dielectric constants for both types of fibers. These measurements show that the dielectric constants of the MWCNT–PLLA fibers are significantly larger than the corresponding values obtained for PLLA fiber. This result is consistent with the higher polarizability of the MWCNT–PLLA composites. The measurement methods presented are general, and can be applied to determine the mechanical and electrical properties of other polymers and polymer nanocomposites. (paper)

  16. Status report on SIRS: sorption information retrieval system

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, D.D.; Serne, R.J.; Baldwin, A.J.; Petrie, G.M.

    1980-11-01

    Two major uses were identified for the Sorption Information Retrieval System: (1) to aid geochemists in the elucidation of sorption mechanisms; and (2) to aid safety assessment modelers in selection of Kds for any given scenerio. Other benefits such as providing an auditable vehicle for the Kd selection were also discussed.

  17. Synthesis of Nano-sized Boehmites for Optimum Phosphate Sorption

    DEFF Research Database (Denmark)

    Watanabe, Yujiro; Kasama, Takeshi; Fukushi, Keisuke

    2011-01-01

    the highest amount of phosphate sorption (1.73 mmol g-1 at pH 3.3) compared with Al-bearing materials. The reaction mechanism during phosphate sorption was described by the anion exchange reaction between phosphate ions in sodium phosphate solution and hydroxide ions on boehmite surfaces. Therefore...

  18. Status report on SIRS: sorption information retrieval system

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Serne, R.J.; Baldwin, A.J.; Petrie, G.M.

    1980-11-01

    Two major uses were identified for the Sorption Information Retrieval System: (1) to aid geochemists in the elucidation of sorption mechanisms; and (2) to aid safety assessment modelers in selection of Kds for any given scenerio. Other benefits such as providing an auditable vehicle for the Kd selection were also discussed

  19. Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: A case study of polypropylene.

    Science.gov (United States)

    Zhan, Zhiwei; Wang, Jundong; Peng, Jinping; Xie, Qilai; Huang, Ying; Gao, Yifan

    2016-09-15

    Though plastics show good chemical inertness, they could sorb polychlorinated biphenyls (PCBs) and other toxic pollutants from the surrounding environment. Thus, ingestion of microplastics by marine organisms potentially enhances the transport and bioavailability of toxic chemicals. However, there is lack of studies on the sorption capacity, mechanism and factors affecting the sorption behavior. Here, sorption of PCBs by microplastics in the simulated seawater was studied using the batch oscillation equilibration technique, in which polypropylene (PP) and 3,3',4,4'-tetrachlorobiphenyl (PCB77) acted as model plastic and PCB, respectively. Factors including particle size, temperature and solution environment were investigated. Results showed that, equilibrium sorption time is about 8h and sorption capacity increase with decreasing particle size and temperature. Different sorption capacity in three solution environments was observed. Equilibrium data in three solution environments fitted very well to the Langmuir sorption model, indicating chemical sorption is the predominant mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sorption behavior of thorium onto montmorillonite and illite

    International Nuclear Information System (INIS)

    Iida, Yoshihisa; Barr, Logan; Yamaguchi, Tetsuji; Hemmi, Ko

    2016-01-01

    Thorium (Th)-229 is one of the important radionuclides for the performance assessment calculations for high-level radioactive waste repositories. The sorption behavior of Th onto montmorillonite and illite were investigated by batch sorption experiments. Experiments were carried out under variable pH and carbonate concentrations. The sorbability of montmorillonite was higher than that of illite. Distribution coefficients, K d (m 3 kg -1 ), decreased with increased carbonate concentrations and showed the minimal value at around pH 10. The sorption behaviors of Th were analyzed by the non-electrostatic surface complex model with PHREEQC computer program. The model calculations were able to explain the experimental results reasonably well. The decreases of K d was likely due to the stabilization of aqueous species by hydroxo-carbonate complexations in the solutions. (author) [ja

  1. Selective lanthanide sorption and mechanism using novel hybrid Lewis base (N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide) ligand modified adsorbent

    International Nuclear Information System (INIS)

    Awual, Md. Rabiul; Kobayashi, Tohru; Miyazaki, Yuji; Motokawa, Ryuhei; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro; Yaita, Tsuyoshi

    2013-01-01

    Highlights: •Hybrid Lewis base adsorbent was prepared for selective lanthanide (Eu, Sm) removal. •Common ions did not interfere due to strong interactions between Eu/Sm and adsorbent. •The adsorbent has good sorption and kinetic performances for potential applications. •The adsorption is reversible and adsorbent reusable in many cycles without any deterioration. -- Abstract: This study aims to develop a highly selective Lewis base adsorbent to investigate the selective sorption and recovery of Eu(III) and Sm(III) from wastewater. The oxygen and nitrogen donor atoms containing Lewis base N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide (MePhPTA) ligand was synthesized and subsequently an adsorbent was prepared by direct immobilization onto mesoporous silica. Determined maximum adsorption capacities were 125.63 and 124.38 mg/g for Eu(III) and Sm(III), respectively. Experiments with mixed-cations solutions showed that the sequence of preferential adsorption was Eu(III) > Sm(III). The lanthanide sorption by hybrid Lewis base adsorbent (HyLBA) was not adversely affected by the presence of sodium, potassium, calcium, magnesium, chloride, sulfate and nitrate ions due to strong affinity between hard Lewis acid lanthanide and hard Lewis base adsorbent. The crystallography for the Sm-MePhPTA complex suggested that MePhPTA was strongly coordinated to Sm(III) with oxygen and nitrogen by forming a stable complex with two 5-membered rings. The data clarified that bond lengths between Sm(III) and amide oxygen (2.475 Å) were shorter than Sm-N (2.662 Å) in phenanthroline moiety indicating strong oxygen driven HyLBA. The results suggested that HyLBA has a good prospect of promising applications for separation/sorption of lanthanide ions from effluents

  2. Sulfate sorption on rape (Brassica campestris L.) straw biochar, loess soil and a biochar-soil mixture.

    Science.gov (United States)

    Zhao, Baowei; Nan, Xujun; Xu, Huan; Zhang, Tao; Ma, Fengfeng

    2017-10-01

    The effects of biochar amendment on sulfur behavior in soils are unknown. In this paper, sulfate (SO 4 2- ) sorption on rape (Brassica campestris L.) straw biochar produced at 600 °C (BC), loess soil (soil) and a 1:9 (w/w) biochar-soil mixture (BC-soil) was investigated by batch experiments. The effects of contact time, initial SO 4 2- concentration, temperature and solution pH value on sorption were tested. Kinetics, isotherms and thermodynamics for sorption were investigated. Pre- and post-sorption characterizations of BC and soil were respectively studied using Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy, respectively. It has been shown that SO 4 2- sorption on three sorbents was well described by pseudo-second-order kinetic model. The sorption isotherms could be fitted using Langmuir and Freundlich models. BC amendment did not increase the sorption capacity of soil for SO 4 2- . The values of ΔG 0 , ΔH 0 and ΔS 0 indicated that the nature of sorption was spontaneous, endothermic and feasible. Increasing solution pH value led to a slight reduction in the sorption amount of SO 4 2- . Sulfate was mainly sorbed onto BC through electrostatic interaction, whereas onto the soil via electrostatic interaction and formation of poorly soluble CaSO 4 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  4. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatic Potentials of Atoms, Ions and Molecules. Shridhar R Gadre and Pravin K Bhadane. 1 Part 1 - Basic Principles,. Resonance, Vol.4, No.2, 11-19,. 1999. Electrostatic Potential (ESP) generated by a chemical species is widely used as a tool for exploring its properties and locating potential sites for interaction with ...

  5. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  6. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture shows such an electrostatic septum in its tank. See 7501120X, 7501199 and 7501201 for more detailed pictures.

  7. Edutainment Science: Electrostatics

    Science.gov (United States)

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  8. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    This article presents the fundamental concepts of electrostatics as applied to atoms and molecules. The electric field and potential due to a set of discrete as well as continuous charge distributions are discussed along with their graphic visualization. Funda- mental theorems in electrostatics are also summarized. Introduction.

  9. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    For an excellent summary of the field of supramolecular chemistry, readers are referred to the article by J-M Lehn in Resonance, VaLl,. No.3, p.39, 1996. Electrostatics plays an important role in weak intermolecular interactions. The present series is aimed at understanding these electrostatic aspects. This article presents the.

  10. Sorption of nickel on chitosan

    International Nuclear Information System (INIS)

    Pivarciova, O.; Rosskopfova, O.; Galambos, M.

    2012-01-01

    This work was focused on the study of sorption properties of nickel on chitosan. Sorption of nickel on the selected sorbents was studied by batch method. Radionuclide 63 Ni was used as a tracer. Langmuir isotherm was used for interpretation of the sorption of nickel on chitosan by varying the concentration of Ni 2 + cations in aqueous phase.

  11. Energy Balance in an Electrostatic Accelerator

    OpenAIRE

    Zolotorev, Max S.; McDonald, Kirk T.

    2000-01-01

    The principle of an electrostatic accelerator is that when a charge e escapes from a conducting plane that supports a uniform electric field of strength E_0, then the charge gains energy e E_0 d as it moves distance d from the plane. Where does this energy come from? We that the mechanical energy gain of the electron is balanced by the decrease in the electrostatic field energy of the system.

  12. Electrostatic Detumble of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrostatic Tractor Technology research explores the harmony of physics and engineering to develop and test electrostatic actuation methods for touchless detumble...

  13. On the derivation of a sorption database

    International Nuclear Information System (INIS)

    Ewart, F.T.; Haworth, A.; Wisbey, S.J.

    1992-01-01

    The safety arguments in support of many radioactive waste repository concepts are heavily dependent on the existence of a sorption reaction. Such a reaction will, in the near field, reduce the magnitude of the release of a number of hazardous radionuclides so that their release to the geosphere is dispersed in time. In the geosphere, the sorption reactions provide a mechanism whereby the migration of the elements released from the repository is retarded and the radioisotopes then subsequently decay. The processes involved in sorption cannot in many cases be satisfactorily represented in thermodynamic terms such as are employed in the description of dissolution and precipitation. Experiments that investigate these reactions are not easy to perform. The sorption parameters that are obtained experimentally for the near field relate, in the UK case, to sorption on to a cementitious surface. These surfaces, since they consist substantially of calcium hydroxide or calcium silicate hydrates, control the aqueous chemistry, do not permit pH changes to be made and limit the range of concentrations of sorbate that may be used. In the far field, on the other hand, the surfaces are not in general so active with respect to the solution chemistry and data can be obtained across a wide spectrum of aqueous chemistries. These data, although they may be useful in testing and parameterizing models, may not have validity under field conditions since the minerals will, inevitably, react to the changes in water chemistry, over geological timescales. The uncertainties in the experimental data are, for many elements and solids, balanced by a reasonable agreement between workers in the values of the parameters used to describe sorption. 22 refs., 1 fig., 1 tab

  14. Study of the enthalpy-entropy mechanism from water sorption of orange seeds (C. sinensis cv. Brazilian for the use of agro-industrial residues as a possible source of vegetable oil production

    Directory of Open Access Journals (Sweden)

    Daniele Penteado Rosa

    2013-02-01

    Full Text Available Orange seeds are a promising agroindustry-waste which can be implemented in the extraction and production of vegetable oil. The relationship between moisture content and water activity provides useful information for the processing and storage of this waste item. The aim of this study was to determine the mechanism of water sorption enthalpy-entropy of orange seeds (C. sinensis cv. Brazilians according to the moisture content. Therefore, desorption isotherms were determined at five different temperature (30, 40, 50, 60, and 70 ºC under a wide range of moisture content (0.005-0.057 kg kg-1 d.b. and water activity (0.02-0.756. Theoretical and empirical models were used for modeling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy, and Gibbs free energy using the Oswin model when the effect of temperature on the hygroscopic equilibrium was considered.

  15. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  16. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  17. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    Electrostatic Levitator (ESL) general layout with captions. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  18. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  19. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    General oayout of Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  20. Technetium Sorption Media Review

    International Nuclear Information System (INIS)

    Duncan, J.B.; Kelly, S.E.; Robbins, R.A.; Adams, R.D.; Thorson, M.A.; Haass, C.C.

    2011-01-01

    This report presents information and references to aid in the selection of 99Tc sorption media for feasibility studies regarding the removal of 99Tc from Hanford's low activity waste. The report contains literature search material for sorption media (including ion exchange media) for the most tested media to date, including SuperLig 639, Reillex HPQ, TAM (Kruion), Purolite A520E and A530E, and Dowex 1X8. The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities in a safe, environmentally compliant, cost-effective and energy-effective manner.

  1. TECHNETIUM SORPTION MEDIA REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; KELLY SE; ROBBINS RA; ADAMS RD; THORSON MA; HAASS CC

    2011-08-25

    This report presents information and references to aid in the selection of 99Tc sorption media for feasibility studies regarding the removal of 99Tc from Hanford's low activity waste. The report contains literature search material for sorption media (including ion exchange media) for the most tested media to date, including SuperLig 639, Reillex HPQ, TAM (Kruion), Purolite A520E and A530E, and Dowex 1X8. The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities in a safe, environmentally compliant, cost-effective and energy-effective manner.

  2. Cadmium sorption in solution by a chitin: effect of pH; Sorption du cadmium en solution par une chitine: effet du pH

    Energy Technology Data Exchange (ETDEWEB)

    Benguella, B.; Benaissa, H. [Universtie de Tlemcen, Lab. de Materiaux Sorbants et Traitement des Eaux, Dept. de Chimie, Faculte des Sciences, Tlemcen (Algeria)

    2001-07-01

    The pH is an essential factor to take into consideration in the sorption mechanisms of metals: it acts both on the metal speciation in solution and on the chemical behaviour of the surface of the sorbing material, and thus indirectly on the sorption mechanism. The effect of the initial pH of the solution on the cadmium sorption by raw state chitin has been studied in static conditions. The approach used is the determination of the sorption kinetics and equilibria for different values of initial pH (pH < 7-7.5). An increase of the initial pH value of the solution leads to an increase of the cadmium sorption capacity by chitin at the equilibrium. The Langmuir model has revealed to be convenient for a mathematical description of the sorption isotherms obtained. (J.S.)

  3. Radionuclide sorption-desorption pattern in soils from Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Garcia, C.J.; Rigol, A.; Rauret, G. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 3a Planta, 08028 Barcelona (Spain); Vidal, M. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 3a Planta, 08028 Barcelona (Spain)], E-mail: miquel.vidal@ub.edu

    2008-02-15

    The pattern of radiostrontium and radiocesium sorption-desorption was examined in 30 Spanish soils by the quantification of the distribution coefficients (K{sub d}) with batch tests, the evaluation of sorption reversibility with a single extraction, the estimation of sorption dynamics by the application of drying-wetting cycles, and the calculation of K{sub d}{sup adjusted} values as an input for risk assessment models. The data obtained overlapped with those found in soils from other climatic areas, suggesting identical interaction mechanisms and allowing the extrapolation of parameterisations and prediction models among different scenarios.

  4. Magnetosheath electrostatic turbulence

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1979-01-01

    By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath

  5. Sorption of actinides onto nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Shiryaev, Andrei [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry; Kalmykov, Stepan [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Vernadsky Institute of Geochemistry and Analytical Chemistry

    2015-06-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  6. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  7. Uranium sorption by tannin resins

    International Nuclear Information System (INIS)

    Olivares Rieumont, S.; Martinez Luzardo, J.; Torres Hernandez, J.; Lima Cazorla, D. de la Rosa.

    1998-01-01

    The sorption of uranium by immobilised Eucalyptus Saligna Sm. and Lysiloma latisiliqua L tannins was investigated. Immobilization condition were analyzed. These resins resulted suitable adsorbent for the concentration of uranium from aqueous systems. The sorption of uranium is pH dependent. At pH 5.5 maximum in sorption capacity is registered. The presence of appreciable amount of sodium chloride do not have any effect on uranium removal. Carbonate and calcium ions in concentrations similar to these that could be found in sea water and other natural water do not decrease the uranium uptake. Tannin resins can be used several times without an appreciable decay of their sorption capacity

  8. A mechanistic approach to the generation of sorption databases

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1992-01-01

    Sorption of radionuclides in the near and far fields of an underground nuclear waste repository is one of the most important processes retarding their release to the environment. In the vast majority of cases sorption data have been presented in terms of empirical parameters such as distribution coefficients and isotherm equations. A consequence of this empirical methodology is that the sorption data are only strictly valid under the experimental conditions at which they were measured. Implicit in this approach is the need to generate large amounts of data and fitting parameters necessary for an empirical description of sorption under all realistically conceivable conditions which may arise in space and time along the migration pathway to Man. An alternative approach to the problem is to try to understand, and develop model descriptions of, underlying retention mechanisms and to identify those systems parameters which essentially determine the extent of sorption. The aim of this work is to see to what extent currently existing mechanistic models, together with their associated data, can be applied to predict sorption data from laboratory experiments on natural systems. This paper describes the current status of this work which is very much in an early stage of development. An example is given whereby model predictions are compared with laboratory results for the sorption of Np at trace concentrations under oxidizing conditions on a series of minerals relevant to granite formations. 31 refs., 11 figs., 5 tabs

  9. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  10. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Areas, electrostatic septa in long straight sections 2 an 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, provide a vertical electric field to remove the ions created by the circulating beam in the residual gas. Here we see one of the electrostatic septa being assembled by Faustin Emery (left) and Jacques Soubeyran (right), in the clean room of building 867. See also 7501199, 7501201, 7801286 and further explanations there.

  11. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed......, and a high voltage attenuation interface for an audio analyzer is presented. THD below 0:1% is reported....

  12. Sorption of aromatic hydrocarbons onto montmorillonite as affected by norfloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Zhiguo, E-mail: peizg@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Kong, Jingjing [School of Chemistry and Materials, Fujian Normal University, Fuzhou 350007 (China); Shan, Xiao-quan; Wen, Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China)

    2012-02-15

    Graphical abstract: {sup 1}H NMR spectrum provided direct evidence for {pi}-{pi} and cation-{pi} complexation between PAHs and Nor{sup +} by ring-current-induced upfield chemical shifts of the amino group and methylene group of Nor{sup +}. Highlights: Black-Right-Pointing-Pointer Nor decreases 1,3-DNB sorption, and increases NAPH, PHEN and PYR sorption on montmorillonite. Black-Right-Pointing-Pointer Nor{sup {+-}} increased PHEN and PYR sorption more pronounced than Nor{sup +} and Nor{sup -}. Black-Right-Pointing-Pointer The corresponding mechanisms were described by FTIR and {sup 1}H NMR. - Abstract: Effect of norfloxacin (Nor) on the sorption of 1,3-dinitrobenzene (1,3-DNB), and PAHs (naphthalene (NAPH), phenanthrene (PHEN) and pyrene (PYR)) to K{sup +}-montmorillonite was studied. Nor suppressed 1,3-DNB sorption due to their competition for the same sorption sites. 1,3-DNB was sorbed on K{sup +}-montmorillonite surface via cation-polar interaction and n-{pi} electron donor-acceptor interaction. Nor also was sorbed on these sites through cation exchange, cation bridging and/or surface complexation. Nor increased three PAHs sorption on montmorillonite and the enhanced magnitude was positively correlated with the {pi}-donor strength of three PAHs. The enhanced sorption of PAHs by Nor was primarily attributed to {pi}-{pi} interaction between {pi}-electron-depleted quinoline ring of Nor and {pi}-electron-rich PAHs. Compared with cation (Nor{sup +}) and anion (Nor{sup -}), zwitterion (Nor{sup {+-}}) of Nor increased PHEN and PYR sorption more pronounced due to additional cation-{pi} interaction between the sorbed Nor{sup {+-}} and PAHs. {sup 1}H NMR spectrum provided direct evidence for {pi}-{pi} and cation-{pi} complexation between PAHs and Nor{sup +} in solution by ring-current-induced upfield chemical shifts of amino group and methylene group of Nor{sup +}.

  13. Embedding beyond electrostatics-The role of wave function confinement.

    Science.gov (United States)

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob

    2016-09-14

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.

  14. Effects of radiation and temperature on iodide sorption by surfactant-modified bentonite.

    Science.gov (United States)

    Choung, Sungwook; Kim, Minkyung; Yang, Jung-Seok; Kim, Min-Gyu; Um, Wooyong

    2014-08-19

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were also evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation ((60)Co) resulted in significantly (∼2-10 times) lower iodide Kd values for the SMB. The results of FTIR, NMR, and XANES spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  15. A large-stroke electrostatic micro-actuator

    International Nuclear Information System (INIS)

    Towfighian, S; Seleim, A; Abdel-Rahman, E M; Heppler, G R

    2011-01-01

    Voltage-driven parallel-plate electrostatic actuators suffer from an operation range limit of 30% of the electrostatic gap; this has restrained their application in microelectromechanical systems. In this paper, the travel range of an electrostatic actuator made of a micro-cantilever beam above a fixed electrode is extended quasi-statically to 90% of the capacitor gap by introducing a voltage regulator (controller) circuit designed for low-frequency actuation. The voltage regulator reduces the actuator input voltage, and therefore the electrostatic force, as the beam approaches the fixed electrode so that balance is maintained between the mechanical restoring force and the electrostatic force. The low-frequency actuator also shows evidence of high-order superharmonic resonances that are observed here for the first time in electrostatic actuators

  16. Yucca Mountain Project far-field sorption studies and data needs

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-09-01

    Batch sorption experiments in which radionuclides dissolved in groundwaters from Yucca Mountain were sorbed onto samples of crushed tuff have resulted in a substantial database of sorption coefficients for radionuclides of interest to the repository program. Although this database has been useful in preliminary evaluations of Yucca Mountain as a potential site for a nuclear waste repository, the database has limitations that must be addressed before it can be used for performance assessment calculations in support of a license application for a waste repository. The purpose of this paper is to: review the applicability of simple (constant) sorption coefficients in transport calculations; review and evaluate alternative methods for the derivation of sorption coefficients; summarize and evaluate the present YMP sorption database to identify areas of data sufficiency and significant data gaps; summarize our current understanding of pertinent sorption mechanisms and associated kinetic parameters; evaluate the significance to the YMP of potential problems in the experimental determination and field application of sorption coefficients as enumerated by the NRC (Nuclear Regulatory Commission, 1987) in its technical position paper on sorption; formulate and evaluate strategies for the resolution of NRC concerns regarding experimental problems; and formulate a position on the sorption coefficient database and the level of understanding of sorption mechanisms likely to be required in the licensing application. 75 refs., 1 fig., 2 tabs

  17. Sorption-cooled continuous miniature dilution refrigeration for astrophysical applications

    Science.gov (United States)

    May, Andrew J.; Calisse, Paolo G.; Coppi, Gabriele; Haynes, Vic; Martinis, Lorenzo; McCulloch, Mark A.; Melhuish, Simon J.; Piccirillo, Lucio

    2016-07-01

    A progress report is provided on the development of a tiltable continuous miniature dilution refrigerator and associated 3He/4He sorption coolers. These systems are currently being developed to provide sub-Kelvin cooling of the bolometer arrays for several ground- and balloon-based experiments which aim to measure the polarization of the Cosmic Microwave Background (QUBIC, LSPE and POLARBEAR-2). The novel tiltable miniaturised system benefits from a lack of external circulation pumps and a mechanically simple design. The condenser of the twin-pumped recirculating diluter is cooled continuously by two 3He/4He sorption coolers. The sorption pumps are operated by convective heat switches. The dilution unit features a thermally separated mixing chamber, still and step heat exchangers. The designs and analyses of both the sorption coolers and the diluter are reported; both systems have been manufactured and are presently under test.

  18. Electrostatic analogy for symmetron gravity

    Science.gov (United States)

    Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin

    2017-12-01

    The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.

  19. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  20. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  1. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Electrostatics in Chemistry - Basic Principles. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 2 February 1999 pp 8-19. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Electrostatically suspended torsion pendulum

    Science.gov (United States)

    Willemenot, E.; Touboul, P.

    2000-01-01

    A torsion pendulum without a torsion wire has been designed and realized, in order to measure very weak forces. The arm of this torsion pendulum (5.40 g, 1.32×10-6 kg m2 of inertia) is electrostatically suspended. Its 6 degrees of freedom are controlled thanks to electrostatic forces, and capacitive position sensing with a noise spectral density between 10-10 and 10-13 m/√Hz . The torque noise spectral density is 1.3×10-14 Nm/√Hz around 0.05 Hz with a 1/√f increase at lower frequency, corresponding to 10-8 rad/s2/√Hz , and 2×10-10 ms-2/√Hz with a lever arm of 2 cm. The residual seismic noise limit the performances above 0.1 Hz. The free oscillating mode has a torsion stiffness of 5.14×10-8 Nm/rad and a Q of 217. This new instrument allows on ground experiments on very weak parasitic forces inside space accelerometers developed in ONERA, with a good representativeness. For example, it is possible to measure electrostatic stiffnesses with high resolution thanks to the low torque noise spectral density; the electrostatic damping phenomenon is also well seen as illustrated by the rather low Q. The instrument design and operation are described, the main performances are given, and the possibilities offered are discussed.

  3. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  4. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture is a detail of 7501199, and shows the suspension of the wires. 7801286 shows a septum in its tank. See also 7501120X.

  5. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  6. An asymmetry in electrostatics

    Science.gov (United States)

    Ganci, Salvatore

    2013-11-01

    This paper outlines a misuse of the electrostatic induction concept. A non-symmetrical behaviour was observed in a charge by the induction of an insulated hollow metallic conductor (the Faraday ice pail experiment). The major consequence of this experiment is a quick demonstration that the Earth must have a net negative charge.

  7. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    lar chemistry can be understood on the basis of simple electro- static concepts. The basic rules of the 'electrostatic game' were presented in Part 11. .... the molecules from running into each other, a strategy similar to the one in the B-F model above is employed. The docking process in the search for the minimum energy ...

  8. Electrostatic collection efficiency in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Romero, A.; Guardiola, J.; Rincon, J. (Univ. of Alcala de Henares, Madrid (Spain))

    1992-01-01

    Fluidized beds of binary mixtures have been used to clean air streams containing dust particles in the size range 4.4 to 14 {mu}m. All beds were composed of glass beads and plastic granules mixed at different proportions. The effect on the electrostatic collection efficiency of a number of variables, including type of collecting mixture, bed height, and gas velocity, was examined. To calculate the single collection efficiency from experimental results, an early model proposed by Clift et al. was used. The electrostatic collection efficiency was determined by subtracting the other individual mechanism efficiencies from the single particle collection efficiency.

  9. Sorption of Hydrophobic Organic Contaminants to Glacially Deposited Sediments of Central Illinois

    Science.gov (United States)

    Jeong, S.; Werth, C. J.; Wander, M. M.

    2003-04-01

    The nature and distribution of solid phase carbonaceous material strongly affect the sorption of hydrophobic organic contaminants (HOCs) to soils and sediments. High surface area carbonaceous materials (HSCM, e.g. charcoal, soot) and mature organic matter facies (e.g. humin, kerogen) exhibit high sorption capacities, nonlinear sorption isotherms, and sorption-desorption hysteresis. The accurate characterization of carbonaceous material type and distribution are crucial for prediction of the fate of HOCs in soils and sediments. The objectives of this work are to determine the type(s) of carbonaceous material that controls adsorption in central Illinois groundwater sediments, and to determine how oxidative weathering affects sorption capacity. Sediment samples were collected from oxidized and reduced zones of the Chanute Air Force Base in Rantoul (Illinois, USA) and treated to obtain fractions of the sediment samples enriched in different types of carbonaceous materials (e.g., humic acid, kerogen, black carbon). The different fractions were then evaluated for their sorption capacity and mechanism to sorb trichloroethylene (TCE), a common groundwater pollutant. Isotherm results indicate that kerogen primarily controls the sorption of TCE. Isotherm results also show that the Koc (sorption distribution coefficient normalized by the fraction of organic carbon) for the reduced sediment is larger than that for the oxidized sediment. Current experiments are focused on the question of whether kerogen oxidation or kerogen protection by mineral precipitates reduces the sorption capacity in the oxidized sediments, and on whether kerogen controls sorption in groundwater sediments not affected by glaciation.

  10. Electrostatically biased binding of kinesin to microtubules.

    Directory of Open Access Journals (Sweden)

    Barry J Grant

    2011-11-01

    Full Text Available The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules.

  11. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  12. Sorption of aromatic organic pollutants to grasses from water

    Science.gov (United States)

    Barbour, J.P.; Smith, J.A.; Chiou, C.T.

    2005-01-01

    The influence of plant lipids on the equilibrium sorption of three aromatic solutes from water was studied. The plant-water sorption isotherms of benzene, 1,2-dichlorobenzene, and phenanthrene were measured over a large range of solute concentrations using sealed vessels containing water, dried plant material, and solute. The plant materials studied include the shoots of annual rye, tall fescue, red fescue, and spinach as well as the roots of annual rye. Seven out of eight sorption isotherms were linear with no evidence of competitive effects between the solutes. For a given plant type, the sorption coefficient increased with decreasing solute water solubility. For a given solute, sorption increased with increasing plant lipid content. The estimated lipid-water partition coefficients of individual solutes were found to be significantly greater than the corresponding octanol-water partition coefficients. This indicates that plant lipids are a more effective partition solvent than octanol for the studied aromatic compounds. As expected, the solute lipid-water partition coefficients were log-linearly related to the respective water solubilities. For the compounds studied, partitioning into the lipids is believed to be the primary sorption mechanism. ?? 2005 American Chemical Society.

  13. Electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 μm) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters

  14. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight section 2 and 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, establish a vertical electrical field to remove the ions created by the circulating beam in the residual gas. See 7801286 for such a septum in its tank, and 7501201 for a detailed view of the wire suspension. See also 7501120X.

  15. Novel miniature electrostatic generator

    Science.gov (United States)

    Bakhoum, Ezzat G.

    2008-01-01

    A new and unusual design for an electrostatic high voltage generator is introduced. The prototype device built by the author can generate a voltage up to approximately 180kV; yet, its physical size is only a fraction of the size of a comparable Van de Graaff generator. In recent years there has been increasing demand for high voltage generators that are also very compact and lightweight. The new design introduced here fulfills that requirement.

  16. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    Science.gov (United States)

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  17. Sorption of chromium(VI) and chromium(III) on aluminium hydroxide

    International Nuclear Information System (INIS)

    Music, S.

    1986-01-01

    Factors that influence the sorption of Cr(VI) and Cr(III) on aluminium hydroxide were investigated. The sorption of chromates decreases as the pH of the suspension increases. The mechanism of CrOsub(4)sup(2-) sorption was interpreted in terms of reactions between chromates and -OH and/or Hsub(2)O groups at the hydroxide/liquid interface. It was shown that chromates are more tightly sorbed on aluminium hydroxide compared to other anions, e.g. chlorides. On the other hand, specifically absorbed anions, such as molybdates, compete strongly with chromates for the sorption sites. The sorption of chromium(III) increases with the pH of the suspension. Also, the sorption of chromium(III) is suppressed in the presence of citrate ions. The best conditions for the fixation of Cr(VI) and Cr(III) by aluminium hydroxide are presented. (author)

  18. Sorption of microamounts of Cesup(3+), Pmsup(3+), Gdsup(3+) and Ybsup(3+) on aluminium hydroxide

    International Nuclear Information System (INIS)

    Music, S.

    1986-01-01

    The sorption of microamounts of trivalent lanthanides (Lnsup(3+)) on freshly precipitated Al(OH)sub(3) was measured in dependence on pH and on the time of sorption. The influence of organic complexing ligands and inorganic electrolytes on the sorption process was also investigated. The mechanism of sorption is discussed. Freshly precipitated Al(OH)sub(3) could be used for the preconcentration of microamounts of trivalent lanthanides. However, the preconcentration was not quantitative in the presence of high concentrations of complexing ligands (citrate and similar) which formed strong complexes with Lnsup(3+) ions. (author)

  19. Sorption of chromium(III) and chromium(VI) on lead sulfide

    International Nuclear Information System (INIS)

    Music, S.

    1985-01-01

    The sorption of chromium(III) and chromium(VI) on lead sulfide was investigated in dependence on pH, time of sorption, and on the concnetrations of sorbate and sorbent. The mechanisms of the sorption of Crsup(3+) and CrOsub(4)sup(2-) traces on lead sulfide are discussed; a difference between CrOsub(4)sup(2-) sorption on PbS and α-Fesub(2)Osub(3) was found. Sulfates and molybdates affect the removal of chromates from aqueous solutions. Lead sulfide carrier prepared in this work was also used for the preconcentration of chromium(III) and chromium(VI) from tap water. (author)

  20. Sorption of trace amounts of 67Ga and 65Zn on some divalent and trivalent metal hydroxides

    International Nuclear Information System (INIS)

    Music, S.; Sipalo-Zuljevic, J.; Vlatkovic, M.

    1977-01-01

    Trace concentrations of 67 Ga and 65 Zn were applied to the radiochemical study of sorption using Al(III), Cr(III), Fe(III), In(III), La(III), Zn(II), Cu(II) and Ni(II) hydroxides as sorbents. The results are given in terms of percentages sorbed, depending on solution pH or on the time of contact between the heterofeneous phases. The percentage sorbed is strongly pH-dependent. Sorption curves for 67 Ga show the maximum sorption (about 100%) starting from the pH values at the onset of the sorbent precipitation and ending with their approximate isoelectric point. Further increase in pH leads to a sudden decrease of the amounts sorbed. The sorption of 65 Zn is also pH-dependent; the decrease of sorption proceeds from right-to-left on the pH scale, i.e. in reverse direction if compared with gallium. The results are explained in terms of coprecipitation, electrostatic attraction (repulsion) and Van der Waals induced dipole attraction. Some sorption results, concerning the contact time dependence of the sorption are discussed in terms of specific sorption controlled by the diffusion of sorbate into the solid sorbent. (author)

  1. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.

    Science.gov (United States)

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip

    2016-02-15

    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.

  2. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-10-12

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs.

  3. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    International Nuclear Information System (INIS)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-01-01

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs

  4. Structures, profile consistency, and transport scaling in electrostatic convection

    DEFF Research Database (Denmark)

    Bian, N.H.; Garcia, O.E.

    2005-01-01

    Two mechanisms at the origin of profile consistency in models of electrostatic turbulence in magnetized plasmas are considered. One involves turbulent diffusion in collisionless plasmas and the subsequent turbulent equipartition of Lagrangian invariants. By the very nature of its definition...

  5. Microencapsulation and Electrostatic Processing Method

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  6. Sorption of tylosin and sulfamethazine on solid humic acid.

    Science.gov (United States)

    Guo, Xuetao; Tu, Bei; Ge, Jianhua; Yang, Chen; Song, Xiaomei; Dang, Zhi

    2016-05-01

    Tylosin (TYL) and sulfamethazine (SMT) are ionizable and polar antimicrobial compounds, which have seeped into the environment in substantial amounts via fertilizing land with manure or sewage. Sorption of TYL and SMT onto humic acid (HA) may affect their environmental fate. In this study, the sorption of TYL and SMT on HA at different conditions (pH, ionic strength) was investigated. All sorption isotherms fitted well to the Henry and Freundlich models and they were highly nonlinear with values of n between 0.5 and 0.8, which suggested that the HA had high heterogeneity. The sorption of TYL and SMT on HA decreased with increasing pH (2.0-7.5), implying that the primary sorption mechanism could be due to cation exchange interactions between TYL(+)/SMT(+) species and the functional groups of HA. Increasing ionic strength resulted in a considerable reduction in the Kd values of TYL and SMT, hinting that interactions between H bonds and π-π EDA might be an important factor in the sorption of TYL and SMT on HA. Results of Fourier transform infrared (FT-IR) and (13)C-nuclear magnetic resonance (NMR) analysis further demonstrated that carboxyl groups and O-alkyl structures in the HA could interact with TYL and SMT via ionic interactions and H bonds, respectively. Overall, this work gives new insights into the mechanisms of sorption of TYL and SMT on HA and hence aids us in assessing the environmental risk of TYL and SMT under diverse conditions. Copyright © 2015. Published by Elsevier B.V.

  7. Influence of organic fertilization on the sorption mechanisms of {sup 241} Am in tropical soils; A influencia da adubacao organica nos mecanismos de sorcao do {sup 241} Am em solos tropicais

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Tatiane Rocha

    2009-07-01

    In this work the mechanisms involved in the sorption of {sup 241}Am were investigated depending on the physicochemical properties of some Brazilian soils and on alterations promoted by organic amendment. This experimental study was conducted in a controlled area, where pots containing different kinds of soils (histisol, ferralsol and nitisol), with different organic amendment doses (without amendment; 2 kg m{sup -2} and 4 kg m{sup -2}) were artificially contaminated by radioactive solution water, which contained {sup 241}Am. Migration studies, distribution (or partition) coefficient (KJ), bioavailability and organic matter were carried out in these soils, with ar without organic amendment. In order to evaluate the effective bioavailability of radionuclides, radish (Raphanus sativus L.) was cultivated in these pots, and later the concentration of {sup 241}Am in radish's roots was measured. The main results show that {sup 241}Am tends to be strongly attached to organic matter and that organic amendment in tropical soils minimizes the radionuclide studied desorption. Also, distribution (or partition) coefficient values for {sup 241}Am were generated and these values are smaller than those ones determined for soils from temperate zones. Physical and chemical fractioning of organic matter were carried out. (author)

  8. PREFACE: Electrostatics 2015

    Science.gov (United States)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  9. Actinides sorption onto hematite. Experimental data, surface complexation modeling and linear free energy relationship

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, Anna Y.; Kalmykov, Stephan N. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry

    2014-07-01

    The sorption of actinides in different valence states - Am(III), Th(IV), Np(V) and U(VI) onto hematite have been revisited with the special emphasis on the equilibrium constants of formation of surface species. The experimental sorption data have been treated using surface complexation modeling from which the set of new values of equilibrium constants were obtained. Formation of inner sphere monodentate surface species adequately describes the pH-sorption edges for actinide ions indicative the ionic electrostatic nature of bonding with small or no covalency contribution. The linear free energy relationship representing the correlation between the hydrolysis constants and surface complexation constants has been developed for various cations including K(I), Li(I), Na(I), Ag(I), Tl(I), Sr(II), Cu(II), Co(II), La(III), Eu(III), Ga(III), Am(III), Th(IV), Np(V), U(VI). (orig.)

  10. Comparative evaluation for the sorption capacity of four carbonaceous sorbents to phenol

    Directory of Open Access Journals (Sweden)

    Ding Feng Jin

    2016-10-01

    Full Text Available Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC, mesoporous carbon (MPC, bamboo biochar (BBC and oak wood biochar (OBC were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the π–π electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively, compared to MPC (73.00 mg/g and AC, indicating an ineffective potential for phenol removal from water.

  11. Electrostatic Plasma Accelerator (EPA)

    Science.gov (United States)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  12. Electrostatic Dust Control on Planetary Surfaces

    Science.gov (United States)

    Clark, P. E.; Calle, C. I.; Curtis, S. A.; Keller, J. F.; Minetto, F.; Mantovani, J. G.

    2007-01-01

    Successful operation for exploration of planetary regoliths will depend on the capability to keep surfaces free of dust which could compromise performance and to collect dust for characterization. Such study is essential in order to resolve issues in dealing with regolith fines identified during the Apollo missions where dust behaved like abrasive Velcro before returning to the Moon. During Moon landings, locally-induced stirring of the regolith caused dust to be suspended long enough to come into contact with conducting surfaces. Lunar fines, because of their electrostatic charging, were difficult to collect and sparsely sampled: bag seals were broken, samples contaminated and lost. Our objectives here are to describe a multi-faceted electrostatically-based approach and methodology for addressing this issue, as well as to present our preliminary results which confirm the view that the successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Our device concept combines electron or ion beams, acting as a plasma dust sweeper to control the flow of dust by systematic scanning of the surface with an electrostatically controlled potential. A plate of the opposite potential used to induce dust migration in the presence of an electrical field. Our goal is a compact device of dust for sampling as part of the extended exploration process on extensive areas of exposed impact-generated regolith, on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  13. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    Science.gov (United States)

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.

  14. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  15. Review of the sorption of actinides on natural minerals

    International Nuclear Information System (INIS)

    Beall, G.W.

    1981-01-01

    Over the past few years, a large body of data concerning sorption of actinides on geologic media has been built in connection with high-level-waste disposal. The primary aim of the work has been to allow predictions of the migration behavior of these radionuclides in the case of a breach of the repository that allowed groundwater flow through the repository. As a result of this work, some new backfill materials specifically tailored for the actinides have also been designed. Several major mechanisms of sorption that appear to dominate the sorption of actinides have emerged from these studies. These mechanisms can be divided into solution reactions dominated by hydrolysis, chemisorption reactions, and oxidation-reduction reactions. Each of these mechanisms will be discussed in detail, with experimental examples. Surprisingly, one mechanism, cation exchange, does not play an important role; why it fails to operate in any significant way in the environmental pH region will be discussed. The implications of the sorption mechanisms for waste forms and backfill materials will be discussed in detail. These discussions will center primarily around the valence state of the actinide in various waste forms and the effect of various anions on leachability from waste forms and backfill materials

  16. Surface complexation model of uranyl sorption on Georgia kaolinite

    Science.gov (United States)

    Payne, T.E.; Davis, J.A.; Lumpkin, G.R.; Chisari, R.; Waite, T.D.

    2004-01-01

    The adsorption of uranyl on standard Georgia kaolinites (KGa-1 and KGa-1B) was studied as a function of pH (3-10), total U (1 and 10 ??mol/l), and mass loading of clay (4 and 40 g/l). The uptake of uranyl in air-equilibrated systems increased with pH and reached a maximum in the near-neutral pH range. At higher pH values, the sorption decreased due to the presence of aqueous uranyl carbonate complexes. One kaolinite sample was examined after the uranyl uptake experiments by transmission electron microscopy (TEM), using energy dispersive X-ray spectroscopy (EDS) to determine the U content. It was found that uranium was preferentially adsorbed by Ti-rich impurity phases (predominantly anatase), which are present in the kaolinite samples. Uranyl sorption on the Georgia kaolinites was simulated with U sorption reactions on both titanol and aluminol sites, using a simple non-electrostatic surface complexation model (SCM). The relative amounts of U-binding >TiOH and >AlOH sites were estimated from the TEM/EDS results. A ternary uranyl carbonate complex on the titanol site improved the fit to the experimental data in the higher pH range. The final model contained only three optimised log K values, and was able to simulate adsorption data across a wide range of experimental conditions. The >TiOH (anatase) sites appear to play an important role in retaining U at low uranyl concentrations. As kaolinite often contains trace TiO2, its presence may need to be taken into account when modelling the results of sorption experiments with radionuclides or trace metals on kaolinite. ?? 2004 Elsevier B.V. All rights reserved.

  17. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  18. Sorption of Arsenite onto Mackinawite Coated Sand

    Science.gov (United States)

    Gallegos, T. J.; Hayes, K. F.; Abriola, L. M.

    2004-05-01

    Arsenic contamination of groundwater is a widespread problem affecting aquifers in the United States as well as abroad. Recent strengthening of the US EPA MCL for arsenic has prompted the need for technology capable of removing both arsenite and arsenate from solution. Arsenite, the more toxic form of arsenic, is more difficult to remove from anoxic zones in the subsurface. Studies by others have demonstrated the affinity of some types of iron sulfides for arsenite, such as troilite, pyrite, amorphous iron sulfide and mackinawite. However, these studies have not provided a comprehensive investigation of the macroscopic behavior of arsenite in the presence of crystalline mackinawite in a form that can be readily applied to real-world treatment technologies. This study examines the behavior of arsenite in the presence of mackinawite coated sand. PH edge results demonstrate that arsenite sorption onto mackinawite coated sand increases with increasing pH, reaching maximum removal at pH 10. Arsenite removal, albeit slight, occurring below pH 5 is independent of pH indicative of a different removal mechanism. Isotherm studies show that at low concentrations, removal is Langmuirian in nature. Arsenite sorption abruptly converts to linear behavior at high concentrations, possibly attributed to the saturation of the monolayer. Ionic strength effects were assessed by comparing pH edge data developed for three different concentrations of NaCl background electrolyte solution. Increases in ionic strength enhance the removal of arsenite from solution, suggesting possible inner-sphere surface complexation removal mechanisms. Information gathered in this study can be used to further develop surface complexation models to describe and predict reactivity of arsenite in the presence of mackinawite coated sands in anoxic regions. Mackinawite coated sands investigated here may provide a feasible reactive medium for implementation in above-ground sorption reactors or subsurface

  19. Sorption data bases for generic Swiss argillaceous rock systems

    International Nuclear Information System (INIS)

    Bradbury, M. H.; Baeyens, B.; Thoenen, T.

    2010-09-01

    implies, these factors were used to convert the (predominantly) illite sorption values into sorption values valid for the defined generic conditions with regard to mineralogy and porewater composition. Conversion factors were used to adapt sorption values to mineralogy (CF min ), to pH value (CF pH ) and to radionuclide speciation (CF spec ). Finally, a Lab→Field conversion factor (CF Lab→Field ) was applied to adapt sorption data measured in dispersed systems (batch experiments) to intact rock under in-situ conditions. Calcareous rock is used in safety analyses as being representative of a clay rock which has lost most of its favorable sorption properties due to near-field effects such as alteration by an alkaline plume and subsequent processes. It is assumed that calcareous rocks do not contain any significant quantities of phyllosilicates and that only uptake data on calcite are relevant. Sorption data on calcite are extremely sparse and the uptake mechanisms are not fully understood. However, when the existing sorption data (log R d values) are plotted against the ionic radii of the respective metals, an acceptable linear correlation between these two quantities is found. This so-called linear free energy relationship is used to complement the sparse experimental data in the SDB for calcareous systems. (authors)

  20. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  1. Electrostatics of patchy surfaces.

    Science.gov (United States)

    Adar, Ram M; Andelman, David; Diamant, Haim

    2017-09-01

    In the study of colloidal, biological and electrochemical systems, it is customary to treat surfaces, macromolecules and electrodes as homogeneously charged. This simplified approach is proven successful in most cases, but fails to describe a wide range of heterogeneously charged surfaces commonly used in experiments. For example, recent experiments have revealed a long-range attraction between overall neutral surfaces, locally charged in a mosaic-like structure of positively and negatively charged domains ("patches"). Here, we review experimental and theoretical studies addressing the stability of heterogeneously charged surfaces, their effect on ionic profiles in solution, and the interaction between two such surfaces. We focus on electrostatics, and highlight the important new physical parameters appearing in the heterogeneous case, such as the largest patch size and inter-surface charge correlations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inhibitory effects of extracellular polymeric substances on ofloxacin sorption by natural biofilms.

    Science.gov (United States)

    Zhang, Liwen; Dong, Deming; Hua, Xiuyi; Guo, Zhiyong

    2018-06-01

    Natural biofilms have strong affinities for organic contaminants, and their extracellular polymeric substances (EPS) have been thought to control the sorption process. However, the role of EPS in the sorption of antibiotics, an emerging concern, is poorly understood. Here, soluble (SEPS) and bound EPS (BEPS) were extracted from intact biofilms incubated at different lengths of time to obtain SEPS- and BEPS-free biofilms. Batch sorption experiments and infrared spectroscopy were used to investigate the role of EPS in the sorption of ofloxacin (OFL) by natural biofilms. The sorption capacities of OFL onto intact biofilms were lower than that those onto SEPS-free and BEPS-free biofilms. Partition and Langmuir adsorption contributed to the sorption of OFL onto these biofilms. SEPS and BEPS suppressed partitioning of OFL into biofilm organic matter. Meanwhile, the formation of hydrogen bonds could affect the Langmuir adsorption of OFL onto BEPS-free biofilms. These sorption mechanisms occurred simultaneously and enhanced the sorption capacities of biofilms after EPS removal. The information obtained in this study is beneficial for understanding the interaction mechanisms between antibiotics and natural biofilms. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sorption and desorption of naphthalene by soil organic matter: importance of aromatic and aliphatic components.

    Science.gov (United States)

    Gunasekara, Amrith S; Xing, Baoshan

    2003-01-01

    Nonlinear isotherm behavior has been reported for the sorption of hydrophobic organic compounds (HOCs) in soil organic matter (SOM), but the exact mechanisms are unknown. Our objective was to provide insight into the sorption mechanism of HOCs in SOM by studying the sorption-desorption processes of naphthalene in a mineral soil, its humic fractions, and lignin. Additionally, humin and lignin were used for studying the effects of temperature and cosolvent on HOC sorption. All isotherms were nonlinear. The humin and lignin isotherms became more linear at elevated temperatures and with the addition of methanol indicating a condensed to expanded structural phase transition. Isotherm nonlinearity and hysteresis increased in the following order: soil humic acid (HA) soil soil humin. Of the samples, aliphatic-rich humin exhibited the largest degree of nonlinearity and had the highest sorption capacity for naphthalene. High nonlinearity and hysteresis in humin were most likely caused by its condensed structure. A novel aliphatic, amorphous condensed conformation is proposed. This conformation can account for both high sorption capacities and increased nonlinearity observed for aliphatic-rich samples and can explain many sorption disparities discussed in the literature. This study clearly illustrates the importance of both aliphatic and aromatic moieties for HOC sorption in SOM.

  4. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics.

    Science.gov (United States)

    Wang, Lu; Qiang, Zhimin; Li, Yangang; Ben, Weiwei

    2017-06-01

    The detailed sorption steps and biodegradation characteristics of fluoroquinolones (FQs) including ciprofloxacin, enrofloxacin, lomefloxacin, norfloxacin, and ofloxacin were investigated through batch experiments. The results indicate that FQs at a total concentration of 500μg/L caused little inhibition of sludge bioactivity. Sorption was the primary removal pathway of FQs in the activated sludge process, followed by biodegradation, while hydrolysis and volatilization were negligible. FQ sorption on activated sludge was a reversible process governed by surface reaction. Henry and Freundlich models could describe the FQ sorption isotherms well in the concentration range of 100-300μg/L. Thermodynamic parameters revealed that FQ sorption on activated sludge is spontaneous, exothermic, and enthalpy-driven. Hydrophobicity-independent mechanisms determined the FQ sorption affinity with activated sludge. The zwitterion of FQs had the strongest sorption affinity, followed by cation and anion, and aerobic condition facilitated FQ sorption. FQs were slowly biodegradable, with long half-lives (>100hr). FQ biodegradation was enhanced with increasing temperature and under aerobic condition, and thus was possibly achieved through co-metabolism during nitrification. This study provides an insight into the removal kinetics and mechanism of FQs in the activated sludge process, but also helps assess the environmental risks of FQs resulting from sludge disposal. Copyright © 2016. Published by Elsevier B.V.

  5. KINETIC STUDIES ON THE SORPTION OF LEAD AND CADMIUM ...

    African Journals Online (AJOL)

    Kinetic investigations are necessary for determining the rate of reaction and mechanism. The kinetics of the sorption of Pb2+ and Cd2+ from aqueous solution on to the biomass of C. bicolor was studied by batch equilibrium technique. The removal of the two metal ions was found to be > 60% depending on the initial metal ...

  6. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  7. Sorption of selenate on soils and pure phases: kinetic parameters and stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Loffredo, N. [Institut de Radioprotection et Surete Nucleaire (IRSN), DEI/SECRE/Laboratoire de Radioecologie et d' Ecotoxicologie, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Mounier, S. [Laboratoire PROTEE, Universite du Sud Toulon-Var, BP 20132, La Garde 83957 (France); Thiry, Y. [Agence Nationale pour la gestion des Dechets Radioactifs (Andra), Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France); Coppin, F., E-mail: frederic.coppin@irsn.fr [Institut de Radioprotection et Surete Nucleaire (IRSN), DEI/SECRE/Laboratoire de Radioecologie et d' Ecotoxicologie, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex (France)

    2011-09-15

    due to outer sphere complexes, as for goethite, whereas for soil Bu the sorption was mainly attributed to inner sphere complexes followed by reduction mechanisms, probably initiated by microorganisms, in which no steady state was reached at the end of the 165 h experiments. The sorption of selenate decreased when concentrations reached 1 x 10{sup -3} mol L{sup -1}, due to solid saturation, except for aluminium hydroxide. Reduction of selenate seemed also to occur on goethite and soil Ro, for the same concentration, but without preventing a decrease in sorption. Thus, this work shows that the comparison of selenate behaviour between soil and pure phases helps to elucidate the main carrier phases and sorption mechanisms in soil. - Highlights: > We model selenate sorption on pure solid phases and on two soils. > No selenate sorption on calcite, humic acid and silica. > Selenate sorption as outer sphere complexes on goethite and one soil. > Selenate sorption as inner sphere complexes on aluminium hydroxide and other soil. > Data could be modelled with a two sites complexation model (equilibrium and kinetic).

  8. Kinetic and isotherm studies of bisphenol A adsorption onto orange albedo(Citrus sinensis): Sorption mechanisms based on the main albedo components vitamin C, flavones glycosides and carotenoids.

    Science.gov (United States)

    Kamgaing, Theophile; Doungmo, Giscard; Melataguia Tchieno, Francis Merlin; Gouoko Kouonang, Jimmy Julio; Mbadcam, Ketcha Joseph

    2017-07-03

    Orange albedo and its adsorption capacity towards bisphenol A (BPA) were studied. Adsorption experiments were conducted in batch mode at 25-55°C. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared (FTIR) spectroscopy were used to characterise the biosorbent. The effects of various parameters including adsorption time, equilibrium pH, adsorbent dosage and initial adsorbate concentration were investigated. The optimum contact time and pH for the removal of BPA were 60 min and 2, respectively. It was found that the adsorption isotherms best matched the Freundlich model, the adsorption of BPA being multilayer and that of the albedo surface heterogeneous. From the kinetic studies, it was found that the removal of BPA best matched the pseudo-second order kinetic model. An adsorption mechanism based on the albedo surface molecules is proposed and gives a good account of π-π interactions and hydrogen bonding. Orange albedo, with a maximum BPA loading capacity of 82.36 mg g -1 (significantly higher than that of most agricultural residues), is a good candidate for BPA adsorption in aqueous media.

  9. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures

    International Nuclear Information System (INIS)

    Zheng, Hao; Wang, Zhenyu; Zhao, Jian; Herbert, Stephen; Xing, Baoshan

    2013-01-01

    Sorption of sulfonamides on biochars is poorly understood, thus sulfamethoxazole (SMX) sorption on biochars produced at 300–600 °C was determined as a function of pH and SMX concentration, as well as the inorganic fractions in the biochars. Neutral SMX molecules (SMX 0 ) were dominant for sorption at pH 1.0–6.0. Above pH 7.0, although biochars surfaces were negatively-charged, anionic SMX species sorption increased with pH and is regulated via charge-assisted H-bonds. SMX 0 sorption at pH 5.0 was nonlinear and adsorption-dominant for all the biochars via hydrophobic interaction, π–π electron donor–acceptor interaction and pore-filling. The removal of inorganic fraction reduced SMX sorption by low-temperature biochars (e.g., 300 °C), but enhanced the sorption by high-temperature biochars (e.g., 600 °C) due to the temperature-dependent inorganic fractions in the biochars. These observations are useful for producing designer biochars as engineered sorbents to reduce the bioavailability of antibiotics and/or predict the fate of sulfonamides in biochar-amended soils. -- Highlights: •Sulfamethoxazole (SMX) sorption on biochars at pH 5.0 was adsorption-dominant. •Removal of inorganic fractions in low-temperature biochars reduced SMX sorption. •Removal of inorganic fractions in high-temperature biochars enhanced SMX sorption. •Anionic SMX was adsorbed on negatively charged biochar via charge-assisted H-bond. -- Solution pH and biochar property control the sorption amount and mechanisms of antibiotic sulfamethoxazole

  10. Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup.

    Science.gov (United States)

    Wu, Daxiong; Fang, Linlin; Qin, Yanmin; Wu, Wenjuan; Mao, Changming; Zhu, Haitao

    2014-07-15

    A sorbent for oil spill cleanup was prepared through a novel strategy by treating polyurethane sponges with silica sol and gasoline successively. The oil sorption capacity, oil/water selectivity, reusability and sorption mechanism of prepared sorbent were studied. The results showed that the prepared sorbent exhibited high sorption capacity and excellent oil/water selectivity. 1g of the prepared sorbent could adsorb more than 100 g of motor oil, while it only picks up less than 0.1 g of water from an oil-water interface under both static and dynamic conditions. More than 70% of the sorption capacity remained after 15 successive sorption-squeezing cycles, which suggests an extraordinary high reusability. The prepared sorbent is a better alternative of the commercial polypropylene sorbent which are being used nowadays. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sorption of uranium(VI) by La-Al-carboxymethyl konjac glucomannan microsphere sorbent

    International Nuclear Information System (INIS)

    Siyao Sun; Liping Wu; Xuegang Luo

    2017-01-01

    The microsphere of carboxymethyl konjac glucomannan immobilizing La 3+ and Al 3+ (CMKGM-La-Al) has been explored for sorption of U(VI). The maximum U(VI) sorption capacity of the microsphere is found to be 45.4 mg g -1 at pH 5. Experimental data are fitted well with the linear Langmuir and linear pseudo-first-order kinetic model. The sorption process is endothermic, spontaneous and favorable. The possible mechanism of CMKGM modification and sorption of U(VI) on CMKGM-La-Al involves ion exchange and coordination reaction. The comparison between CMKGM-La-Al and other sorbents suggests that CMKGM-La-Al can be considered as an effective sorbent for U(VI) sorption. (author)

  12. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  13. Fabrication of a New Electrostatic Linear Actuator

    Science.gov (United States)

    Matsunaga, Takashi; Kondoh, Kazuya; Kumagae, Michihiro; Kawata, Hiroaki; Yasuda, Masaaki; Murata, Kenji; Yoshitake, Masaaki

    2000-12-01

    We propose a new electrostatic linear actuator with a large stroke and a new process for fabricating the actuator. A moving slider with many teeth on both sides is suspended above lower electrodes on a substrate by two bearings. A photoresist is used as a sacrificial layer. Both the slider and the bearings are fabricated by Ni electroplating. The bearings are fabricated by the self-alignment technique. Bearings with 0.6 μm clearance can be easily fabricated. All processes are performed at low temperatures up to 110°C. It is confirmed that the slider can be moved mechanically, and also can be moved by about 10 μm when a voltage pulse of 50 V is applied between the slider and the lower electrodes when the slider is upside down. However, the slider cannot move continuously because of friction. We also calculate the electrostatic force acting on one slider tooth. The simulation result shows that the reduction of the electrostatic force to the vertical direction is very important for mechanical movement of the actuator.

  14. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-11-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 m g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great as those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  15. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-07-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 ml g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great at those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland Cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  16. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  17. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  18. Equilibrium, kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modified bentonite and kaolinite.

    Science.gov (United States)

    Shu, Yuehong; Li, Laisheng; Zhang, Qiuyun; Wu, Honghai

    2010-01-15

    The sorption of chlorobenzenes (CBs) by cetyltrimethylammonium bromide (CTMAB) modified bentonite and kaolinite was investigated. The sorption isotherms for CBs were nearly linear, suggesting that sorption could be described by a distribution process. The distribution coefficient (K(d)) was primarily affected by the amount of sorbed surfactant. The organic carbon normalized sorption coefficient (K(oc)), however, was particularly dependent on arrangement of the surfactant cations. The K(d) of CBs was larger for CTMAB-bentonites than that for CTMAB-kaolinites, while the case for K(oc) was opposite. Thus, the clay mineral structure and morphology had a considerable influence on the surfactant arrangement, which was responsible for the partitioning of CBs. The sorption of CBs onto both CTMAB-bentonites and CTMAB-kaolinites followed pseudo-second-order kinetics. The intra-particle diffusion model for sorption was also investigated and compared to identify sorption mechanism. The sorption of CBs both on CTMAB-bentonites and CTMAB-kaolinites was exothermic in nature and accompanied by an increase in entropy and a decrease in Gibbs energy in the temperature range of 15-35 degrees C. The results indicated that CBs strongly interacted with CTMAB modified bentonite and kaolinite.

  19. Sorption of benzothiazoles onto sandy aquifer material under equilibrium and nonequlibrium conditions

    Directory of Open Access Journals (Sweden)

    Kragulj Marijana M.

    2014-01-01

    Full Text Available In this study, the sorption behaviour of 1,3-benzothiazole (BT and 2-(methylthiobenzothiazole (MTBT was investigated on Danube geosorbent under equilibrium and nonequilibrium conditions. All sorption isotherms fitted well with the Freundlich model (R2=0.932-0.993. The results showed that organic matter of the Danube geosorbent has a higher sorption affinity for the more hydrophobic MTBT compared to BT. However, sorption-desorption experiments showed that MTBT was more easily desorbed than BT molecules, which indicates the importance of absorption relative to adsorption in the overall sorption mechanism of MTBT. In general, molecules of BT and MTBT were more easily desorbed in the lower concentration range, which resulted in an increase in the hysteresis indices with increasing concentrations. Column experiments revealed that retention of the investigated compounds on the aquifer material followed the compound’s hydrophobicity. BT showed a lower retention, in accordance with its lower sorption affinity obtained in the static experiments, while MTBT showed a greater sorption affinity, and thus had a longer retention time on the column. Thus during transport BT represent greater risk for groundwaters than MTBT. These results have increased our understanding of benzothiazoles sorption and desorption process which represent one of the most important factors which influence the behaviour of organic compounds in the environment.

  20. Sorption of chlorimuron-ethyl on montmorillonite clays: effects of exchangeable cations, pH, and ionic strength.

    Science.gov (United States)

    Ren, Wenjie; Teng, Ying; Zhou, Qixing; Paschke, Albrecht; Schüürmann, Gerrit

    2014-10-01

    Sorption interaction of chlorimuron-ethyl with montmorillonite clays was investigated under varied types of exchangeable cation, pH, and ionic strength conditions. Chlorimuron-ethyl sorption on bentonites exhibited pronounced cation dependency, and the sorption ability increased as the sequence Ca(2+)- clay type and much weaker for montmorillonites. The decrease of pH at the range of 4.0-6.0 prominently increased sorption of chlorimuron-ethyl on all cation-exchanged montmorillonite clays, and nearly a neglected sorption (about 2 %) can be observed at pH over 7.0. In the presence of CaCl2, sorption of chlorimuron-ethyl on Fe(3+)-bentonite was promoted because of complexion of Ca(2+) and the surface of Fe(3+)-bentonite. However, as the concentration of CaCl2 increased, chlorimuron-ethyl sorption on Ca(2+)- and Fe(3+)-exchanged bentonite decreased, suggesting that Ca bridging was not the prevailing mechanism for sorption of chlorimuron-ethyl on these clays. Furthermore, chlorimuron-ethyl sorption was relatively sensitive to pH, and the change of pH may obscure effect of other factors on the sorption, so it was quite necessary to control pH at a constant value when the effect of other factor was being studied.

  1. Sorption isotherms: A review on physical bases, modeling and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France) and Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France)]. E-mail: guillaumelimousin@yahoo.fr; Gaudet, J.-P. [Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France); Charlet, L. [Laboratoire de Geophysique Interne et Techtonophysique - CNRS-IRD-LCPC-UJF-Universite de Savoie, BP 53, 38041 Grenoble Cedex (France); Szenknect, S. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Barthes, V. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Krimissa, M. [Electricite de France, Division Recherche et Developpement, Laboratoire National d' Hydraulique et d' Environnement - P78, 6 quai Watier, 78401 Chatou (France)

    2007-02-15

    The retention (or release) of a liquid compound on a solid controls the mobility of many substances in the environment and has been quantified in terms of the 'sorption isotherm'. This paper does not review the different sorption mechanisms. It presents the physical bases underlying the definition of a sorption isotherm, different empirical or mechanistic models, and details several experimental methods to acquire a sorption isotherm. For appropriate measurements and interpretations of isotherm data, this review emphasizes 4 main points: (i) the adsorption (or desorption) isotherm does not provide automatically any information about the reactions involved in the sorption phenomenon. So, mechanistic interpretations must be carefully verified. (ii) Among studies, the range of reaction times is extremely wide and this can lead to misinterpretations regarding the irreversibility of the reaction: a pseudo-hysteresis of the release compared with the retention is often observed. The comparison between the mean characteristic time of the reaction and the mean residence time of the mobile phase in the natural system allows knowing if the studied retention/release phenomenon should be considered as an instantaneous reversible, almost irreversible phenomenon, or if reaction kinetics must be taken into account. (iii) When the concentration of the retained substance is low enough, the composition of the bulk solution remains constant and a single-species isotherm is often sufficient, although it remains strongly dependent on the background medium. At higher concentrations, sorption may be driven by the competition between several species that affect the composition of the bulk solution. (iv) The measurement method has a great influence. Particularly, the background ionic medium, the solid/solution ratio and the use of flow-through or closed reactor are of major importance. The chosen method should balance easy-to-use features and representativity of the studied

  2. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. An efficient numerical approach to electrostatic microelectromechanical system simulation

    International Nuclear Information System (INIS)

    Pu, Li

    2009-01-01

    Computational analysis of electrostatic microelectromechanical systems (MEMS) requires an electrostatic analysis to compute the electrostatic forces acting on micromechanical structures and a mechanical analysis to compute the deformation of micromechanical structures. Typically, the mechanical analysis is performed on an undeformed geometry. However, the electrostatic analysis is performed on the deformed position of microstructures. In this paper, a new efficient approach to self-consistent analysis of electrostatic MEMS in the small deformation case is presented. In this approach, when the microstructures undergo small deformations, the surface charge densities on the deformed geometry can be computed without updating the geometry of the microstructures. This algorithm is based on the linear mode shapes of a microstructure as basis functions. A boundary integral equation for the electrostatic problem is expanded into a Taylor series around the undeformed configuration, and a new coupled-field equation is presented. This approach is validated by comparing its results with the results available in the literature and ANSYS solutions, and shows attractive features comparable to ANSYS. (general)

  4. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  5. Explosion safety in industrial electrostatics

    International Nuclear Information System (INIS)

    Szabo, S V; Kiss, I; Berta, I

    2011-01-01

    Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.

  6. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs

  7. Computational Methods for Biomolecular Electrostatics

    Science.gov (United States)

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  8. A Model Kelvin Electrostatic Generator.

    Science.gov (United States)

    Hill, M.; Jacobs, D. J.

    1997-01-01

    Describes how to construct a form of a Kelvin Electrostatics Generator from readily available components and provides an explanation of how it works. The device can generate 10-12 mm long sparks in the air. (DDR)

  9. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  10. Sorption kinetics of diuron on volcanic ash derived soils.

    Science.gov (United States)

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Sorption of tetracycline on organo-montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Niu; Wang, Ming-xia; Liu, Ming-ming; Liu, Fan [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Weng, Liping [Department of Soil Quality, Wageningen University, P.O. Box 8005, 6700 EC, Wagneningen (Netherlands); Koopal, Luuk K. [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen (Netherlands); Tan, Wen-feng, E-mail: wenfeng.tan@hotmail.com [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shanxi 712100 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The sorption capacity of tetracycline on Mont. modified with QACs was highly promoted. Black-Right-Pointing-Pointer Tetracycline adsorbed on organoclay was affected by the amount and the length of QACs. Black-Right-Pointing-Pointer Tetracycline adsorption on organoclay exhibited high pH-dependence below 5. - Abstract: Tetracycline (TC) is a veterinary antibiotic that is frequently detected as pollutant in the environment. Powerful adsorbents are required for removing TC. The present paper compares the TC adsorption capacity of Na-montmorillonite (Na-mont) with six organo-montmorillonites (organo-monts). Three quaternary ammonium cations (QACs) with different alkyl-chain lengths were used as modifiers. Powder X-ray diffraction indicated that the d{sub 001} values of organo-monts increased with increasing the QACs loading and alkyl-chain length. The CECs of the organo-monts were substantially lower than that of Na-mont and decreased with QACs chain length and increased loading. The modeling of the adsorption kinetics revealed that the processes of TC adsorption on the tested samples could be well fitted by the pseudo-second-order equation. The maximum adsorption capacities of TC on the organo-monts (1000-2000 mmol/kg) were considerably higher than that on Na-mont (769 mmol/kg). Both the Langmuir and Freundlich model could fit the adsorption isotherms. The TC adsorption to the organo-monts increase significantly with decreasing the pH below 5.5 because of the electrostatic interaction, and a high QACs loading performed better than a low loading at around pH 3.

  12. Nonlinear Dynamics of Electrostatically Actuated MEMS Arches

    KAUST Repository

    Al Hennawi, Qais M.

    2015-05-01

    In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using a multi- mode Galarkin Reduced Order Model (ROM). We investigate the static response of the arch experimentally where we show several jumps due to the snap-through instability. Experimentally, a case study of in-plane silicon micromachined arch is studied and its mechanical behavior is measured using optical techniques. We develop an algorithm to extract various parameters that are needed to model the arch, such as the induced axial force, the modulus of elasticity, and the initially induced initial rise. After that, we excite the arch by a DC electrostatic force superimposed to an AC harmonic load. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Then, we excite the arch by an electric load of two AC frequency components, where we report a combination resonance of the summed type. Agreement is reported among the theoretical and experimental work.

  13. SORPTION AND SOLUBILITY OF LOW-SHRINKAGE RESIN-BASED DENTAL COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sevda Yantcheva

    2016-04-01

    Full Text Available Background: Resin-based composites are well-established restorative materials. However, these materials may absorb significant amounts of water when exposed to aqueous environments. Sorption and solubility are affecting composite restorations by two different mechanisms; the first is the up taking of water producing an increased weight and the second is the dissolution of materials in water, leading to a weight reduction of the final conditioned samples. Objective: To measure the water sorption and solubility of different low-shrinkage resin-based composites. Six materials were selected: Filtek P60, Filtek Ultimate, SonicFill, Filtek Silorane, Kalore and Venus Diamond. Materials and methods: Five disc specimens were prepared of each material and polymerized with diode light-curing unit. Water sorption and solubility of the different materials were were calculated by means of weighting the samples before and after water immersion and desiccation. Data were statistically analyzed using Shapiro-Wilk One Way Analysis of Variance followed by the Holm-Sidak comparison test . Results: There were significant differences (p<=0.001 between materials regarding sorption and solubility. Regarding sorption F. Silorane showed lowest values, followed by SonicFill, without significant difference between them. Statistical significant differences exist between F. Silorane and F.P60, F. Ultimate, Kalore. Significant differences exist between SonicFill and F. Ultimate. F.Silorane (-0.018 and Kalore (-0.010 showed lowest values of solubility but there were marginal difference among all composites investigated. Conclusions: 1.The material with lowest values of sorption and solubility was F.Silorane. 2. The attained sorption and solubility values for composites are influenced by the differences in resin matrix composition and filler contend. 3. Modifications of dimethacrylate matrix did not minimize significantly sorption and solubility of composites. 4. Besides water

  14. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [College of Environmental Science and Engineering, Anhui Normal University, South Jiuhua Road, 189, 241002 Wuhu (China); Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Fiol, Núria [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Villaescusa, Isabel, E-mail: Isabel.Villaescusa@udg.edu [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Poch, Jordi [Applied Mathematics Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain)

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data.

  15. Sorption of perfluoroalkyl substances in sewage sludge.

    Science.gov (United States)

    Milinovic, Jelena; Lacorte, Silvia; Rigol, Anna; Vidal, Miquel

    2016-05-01

    The sorption behaviour of three perfluoroalkyl substances (PFASs) (perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutanesulfonic acid (PFBS)) was studied in sewage sludge samples. Sorption isotherms were obtained by varying initial concentrations of PFOS, PFOA and PFBS. The maximum values of the sorption solid-liquid distribution coefficients (Kd,max) varied by almost two orders of magnitude among the target PFASs: 140-281 mL g(-1) for PFOS, 30-54 mL g(-1) for PFOA and 9-18 mL g(-1) for PFBS. Freundlich and linear fittings were appropriate for describing the sorption behaviour of PFASs in the sludge samples, and the derived KF and Kd,linear parameters correlated well. The hydrophobicity of the PFASs was the key parameter that influenced their sorption in sewage sludge. Sorption parameters and log(KOW) were correlated, and for PFOS (the most hydrophobic compound), pH and Ca + Mg status of the sludge controlled the variation in the sorption parameter values. Sorption reversibility was also tested from desorption isotherms, which were also linear. Desorption parameters were systematically higher than the corresponding sorption parameters (up to sixfold higher), thus indicating a significant degree of irreversible sorption, which decreased in the sequence PFOS > PFOA > PFBS.

  16. PHOSPHORUS SORPTION ISOTHERMS AND EXTERNAL ...

    African Journals Online (AJOL)

    ACSS

    both models fitted well with the P sorption data of the soils. The adsorption maxima (Xm) and bonding energy (b) values of the soils derived from Langmuir model were in the ranges of 560-833 mg P kg-1 and 0.16-20 L kg-1, respectively. The Freundlich capacity factor (Kf) ranged from 237 to 1200 mg kg-1.The EPRs of the ...

  17. Sorption of small amounts of europium(III) on iron(III) hydroxide and oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of small amounts of europium(III) on iron(III) hydroxide and oxide has been studied as a function of pH. The mechanism of sorption is discussed. Optimum conditions have been found for the preconcentration of small or trace amounts of europium(III) by iron(III) hydroxide and oxide. The influence of complexing agents (EDTA, oxalate, tartrate and 5-sulfosalicylic acid) on the sorption of small amounts of europium(III) on iron(III) oxide has also been studied. (author)

  18. Nonlinear chemical sorption isotherms in the assessment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Walker, J.R.; LeNeveu, D.M.

    1987-01-01

    Radionuclides emplaced in an underground disposal vault can possibly migrate from the vault, and through the geosphere, to enter Man's environment. Chemical sorption is a primary mechanism for retarding this migration. The effects of nonlinear chemical sorption isotherms on radionuclide transport are discussed. A method is given by which nonlinear isotherms can be approximated by the linear sorption isotherm used in the vault submodel. The relevance of nonlinear isotherms to transport in the geosphere is discussed, and it is shown that the linear isotherm model is conservative for deep geologic disposal. 22 refs

  19. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  20. SPARCLE: Electrostatic Tool for Lunar Dust Control

    International Nuclear Information System (INIS)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Cheung, C. Y.; Keller, J. F.; Moore, M.; Calle, C. I.

    2009-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the dust which could compromise performance and to collect dust for characterization. Solving the dust problem is essential before we return to the Moon. During the Apollo missions, the discovery was made that regolith fines, or dust, behaved like abrasive velcro, coating surfaces, clogging mechanisms, and making movement progressively more difficult as it was mechanically stirred up during surface operations, and abrading surfaces, including spacesuits, when attempts were made to remove it manually. In addition, some of the astronauts experienced breathing difficulties when exposed to dust that got into the crew compartment. The successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Here we will describe the surface properties of dust particles, the basis for their behavior, and an electrostatically-based approach and methodology for addressing this issue confirmed by our preliminary results. Our device concept utilizes a focused electron beam to control the electrostatic potential of the surface. A plate of the opposite potential is then used to induce dust migration in the presence of an electrical field. Our goal is a compact device of <5 kg mass and using <5 watts of power to be operational in <5 years with heritage from ionic sweepers for active spacecraft potential control (e.g., on POLAR). Rovers could be fitted with devices that could harness the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  1. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

    Science.gov (United States)

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  2. Applicability of microautoradiography to sorption studies

    International Nuclear Information System (INIS)

    Thompson, J.L.; Wolfsberg, K.

    1979-01-01

    The technique of microautoradiography was applied to the study of the sorption of uranium and americium on five rock types which exist at the Nevada Test Site. It was found that autoradiograms could be prepared in a few days which would allow the specific minerals responsible for sorption to be identified. Furthermore, the state of aggregation of the sorbed species was clearly indicated. It was concluded that microautoradiography was a useful adjunct to currently used methods for studying sorption of certain radionuclides

  3. Resonant behavior of dielectric objects (electrostatic resonances).

    Science.gov (United States)

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning.

  4. Some theoretical aspects of electrostatic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1978-11-01

    A review is presented of the main results of the theoretical work on electrostatic double layers. The general properties of double layers are first considered. Then the time-independent double layer is discussed. The discussion deals with the potential drop, the thickness, and some necessary criteria for the existence and stability of the layer. As a complement to the study of the timeindependent double layer a few remarks are also made upon the timedependent double layer. Finally the question of how double layers are formed and maintained is treated. Several possible formation mechanisms are considered. (author)

  5. Kinetics of volatile organic compound sorption/desorption on clay minerals

    Science.gov (United States)

    Morrissey, Fergus A.; Grismer, Mark E.

    1999-03-01

    Soils surrounding industrial sites or at locales where industrial chemicals are utilized, frequently become contaminated through unsuitable discharge of potentially hazardous organic compounds. The fate and transport of these chemicals must be sufficiently understood to predict detrimental environmental impacts and to develop technically and economically appropriate remedial action to minimize environmental degradation. Improving our understanding of the processes involved in organic pollutant vapor transport is important because the gas phase is often the most mobile, and therefore most potentially hazardous phase. In order to gain a better understanding of the basic kinetic processes affecting soil adsorption/desorption of volatile organic compounds (VOC's) in the vapor phase, we conducted VOC adsorption/desorption experiments using oven-dry clay minerals. Transient, isothermal, gravimetric sorption experiments using volatile organic compounds (VOC's) acetone, benzene and toluene onto pure clay minerals obtained from Ward's Scientific (kaolinite, illite, and Ca-montmorillonite) suggest a biphasic sorption mechanism on these minerals. Experimental results indicate that hydrophobic sorption onto oven-dry clay minerals with negligible soil organic matter is controlled by rates of inter-particle Fickian diffusion mechanisms, intra-particle Fickian diffusion mechanisms, and sorption kinetics. Using an analytical solution to Fick's Second Law where sorption is partitioned into macroscopic and microscopic domains, each with unique diffusion time constants, enables precise prediction of experimental sorption observations. Correlation coefficients of 0.999 were found between the parameter optimized analytical solution and very large sets of experimental data. Macroscopic diffusion coefficients ranged from 10 -2 to 10 -4 cm 2/min, while microscopic diffusion coefficients ranged from 10 -12 to 10 -17 cm 2/min. Sorption rates suggest that significant fractions of VOC

  6. Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media

    International Nuclear Information System (INIS)

    Lenell, Brian A.; Arai, Yuji

    2017-01-01

    Graphical abstract: Ammonium adsorption enhanced ReO 4 − adsorption in ZVI under alkaline conditions (modified from Cho et al., 2015) [39]. - Highlights: • ZVI effectively sorbs Re(VII) at near neutral pH. • Sorption of Re(VII) in ZVI is attributed to the reductive precipitation of Re(IV)O 2 . • The extent of Re(VII) sorption in ZVI decreases with increasing pH from 8 to 10. • The rate of Re(VII) sorption in ZVI increases with increasing nitrate concentration. - Abstract: Technetium(Tc)-99 is one of major risk drivers in low level radioactive liquid waste at the U.S. Department of Energy sites. Cementitious waste technology (CWT) has been considered immobilizing pertechnetate, Tc(VII)O 4 − , in brine and alkaline waste solutions, as Tc(IV) oxides and/or sulfides with the use of reducing agents like slag. In this study, zero valent iron (ZVI) was evaluated as a potential reducing agent in CWT as a function of pH and [nitrate] (0–0.1 M) using perrhenate, Re(VII)O 4 − , as an analogue for Tc(VII)O 4 − . Batch Re(VII)O 4 − sorption experiments in conjunction with X-ray absorption spectroscopic analysis showed that the Re(VII) sorption occurred via the reductive precipitation of Re(IV)O 2 (s) and the extent of sorption decreased with increasing pH from 8 to 10. Interestingly, pseudo 2nd order kinetic rates increased with increasing [nitrate] which was attributed to co-adsorption of NH 4 + (i.e., a reaction product of reduced nitrate by ZVI), facilitating electrostatic attraction towards ReO 4 − under alkaline conditions. Considering the thermodynamically favorable reduction of Tc(VII) over Re(VII), ZVI might have potential for improving the reduction capacity of the current CWT.

  7. Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals.

    Science.gov (United States)

    Nagar, Rachana; Sarkar, Dibyendu; Makris, Konstantinos C; Datta, Rupali

    2010-02-01

    Drinking-water treatment residual (WTR) have been proposed as a low-cost alternative sorbent for arsenic (As) - contaminated aquatic and soil systems. However, limited information exists regarding the effect of solution chemistry on As sorption by WTR. A batch incubation study was carried out to investigate the effect of solution pH (3-9) on As(V) sorption by Al- and Fe-based WTR as a function of solid: solution ratio (SSR) and initial As concentration. The effect of competing ligands (phosphate-P(V) and sulfate), and complexing metal (calcium) on As(V) sorption envelopes at the optimum SSR (200gL(-1)) was also evaluated. At 200gL(-1) SSR, maximum As(V) sorption ( approximately 100%) exhibited by the Fe-WTR was limited at the pH range of 3-7, whereas, the Al-WTR demonstrated approximately 100% As(V) sorption in the entire pH range. The negative pH effect on As(V) sorption became more pronounced with increasing initial As concentrations and decreasing SSR. Sorption of As(V) by surfaces of both WTR decreased in the presence of P(V), exhibiting strong pH dependence. Only for the Fe-WTR, increased dissolved iron concentrations at pH>7 supported a Fe-hydroxide reductive dissolution mechanism to account for the enhanced As sorption at alkaline pH. Addition of sulfate did not influence As(V) sorption by both WTR. A cooperative effect of calcium on As(V) sorption was observed at alkaline pH due to the formation of a calcium-arsenate phase. The constant capacitance model provided reasonable fits to the sorption envelope data for both single ion and binary ion (As and P) systems, but it was unable to explain the enhanced As sorption by the Fe-WTR at pH>7.

  8. Sorption comparison between phenanthrene and its degradation intermediates, 9,10-phenanthrenequinone and 9-phenanthrol in soils/sediments.

    Science.gov (United States)

    Xiao, Di; Pan, Bo; Wu, Min; Liu, Ying; Zhang, Di; Peng, Hongbo

    2012-01-01

    The degradation intermediates of phenanthrene (PHE) may have increased health risks to organisms than PHE. Therefore, environmental fate and risk assessment studies should take into considerations of PHE degradation products. This study compared the sorption properties of PHE and its degradation intermediates, 9,10-phenanthrenequinone (PQN) and 9-phenanthrol (PTR) in soils, sediments and soil components. A relationship between organic carbon content (f(OC)) and single-point sorption coefficient (logK(d)) was observed for all three chemicals in 10 soils/sediments. The large intercept in the logf(OC)-logK(d) regression for PTR indicated that inorganic fractions control PTR sorption in soils/sediments. No relationship between specific surface area and K(d) was observed. This result indicated that determination of surface area based on gas sorption could not identify surface properties for PHE, PQN, and PTR sorption and thus provide limit information on sorption mechanisms. The high sorption and strong nonlinearity (low n values) of PTR in comparison to PHE suggested that the mobility of PTR could be lower than PHE. Increased mobility of PQN compared with PHE may be expected in soils/sediments because of PQN lower sorption. The varied sorption properties of the three chemicals suggested that their environmental risks should be assessed differently. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The effect of salinity on the sorption of cadmium ions from aqueous medium on Fe(III-sepiolite

    Directory of Open Access Journals (Sweden)

    Habish Amal Juma

    2015-01-01

    Full Text Available In this study, the sorption of cadmium ions onto sepiolite modified with hydrated iron(III oxide, Fe(III-sepiolite, has been investigated in natural seawater, artificial seawater, aqueous solution of NaCl of the same ionic strength as the seawater and distilled water. The sorption experiments were performed as a function of the initial solution pH value, the initial metal concentration and the equilibration time, using the batch method. The equilibrium sorption data were analyzed by the Langmuir, Freundlich and Sips isotherm models and the kinetics of sorption was analyzed using the pseudo-first-order and the pseudo-second-order kinetic models. The maximum sorption capacity and the strength of the sorbate-sorbent bonds at initial pH = 7 were found to decrease in the following order: distilled water > NaCl solution > artificial seawater > natural seawater. The values of parameter nS in the Sips model, which fitted the equilibrium sorption results best, showed that heterogeneity of the sorbent surface was the highest in distilled water and the lowest in natural seawater. The sorption kinetic data fitted well with the pseudo-second-order kinetic model, which suggests that the rate-limiting step in Cd2+ sorption onto Fe(III-sepiolite could be chemisorption. The low desorption percentage in both distilled water and 0.001 M HNO3 indicated that sorption occurred mainly by chemisorption mechanisms. [Projekat Ministarstva nauke republike srbije, br. III 45019

  10. Moisture sorption in naturally coloured cotton fibres

    Science.gov (United States)

    Ceylan, Ö.; De Clerck, K.

    2017-10-01

    Increasing environmental concerns have stimulated an interest in naturally coloured cottons. As many commercial and technical performance aspects of cotton fibres are influenced by their response towards atmospheric humidity, an in-depth research on moisture sorption behaviour of these fibres using dynamic vapour sorption is carried out. Significant differences were observed in sorption capacity and hysteresis behaviour of brown and green cotton fibres. These differences are mainly attributed to the variations in maturity and crystallinity index of the fibres. This study provides valuable insights into the moisture sorption behaviour of naturally coloured cotton fibres.

  11. Strontium sorption on Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1984-12-01

    A laboratory study of strontium-85 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that strontium sorption is most strongly a function of pH. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence strontium sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect. Ferrous ion, added to groundwater to simulate the conditions of water at the bottom of waste trenches, did not account for low strontium sorption observed with some trench waters

  12. The role of electrostatic interactions in the Streptococcus thermophilus adhesion on human erythrocytes in media with different 2:1 electrolyte concentration

    Directory of Open Access Journals (Sweden)

    О. І. Гордієнко

    2015-10-01

    Full Text Available In the two-stage sorption model at the first stage is mostly reversible attachment, while at the second irreversible stage molecular and cellular adhesion processes take place. An important factor, influencing the adhesion processes, is physical-chemical characteristics of the medium, in particular, the presence of divalent cations therein. The aim of this work is to assess the role of electrostatic component of the intercellular interactions in media with different 2:1 electrolyte concentration at the first reversible stage of adhesion and probability of further occurrence of specific binding. Electrostatic interactions play a decisive role in intercellular adhesion process. The obtained experimental results and theoretical calculations of the electrostatic interaction parameters once again confirmed the acceptability of a two-stage model of sorption and DLVO theory to describe a cell-cell adhesion.

  13. Uranyl sorption onto alumina

    International Nuclear Information System (INIS)

    Jacobsson, A.M.M.

    1997-01-01

    The mechanism for the adsorption of uranyl onto alumina from aqueous solution was studied experimentally and the data were modeled using a triple layer surface complexation model. The experiments were carried out at low uranium concentrations (9 x 10 -11 --5 x 10 -8 M) in a CO 2 free environment at varying electrolyte concentrations (0.01--1 M) and pH (4.5--12). The first and second acid dissociation constants, pK a1 and pK a2 , of the alumina surface were determined from potentiometric titrations to be 7.2 ± 0.6 and 11.2 ± 0.4, respectively. The adsorption of uranium was found to be independent of the electrolyte concentration. The authors therefore conclude that the uranium binds as an inner sphere complex. The results were modeled using the code FITEQL. Two reactions of uranium with the surface were needed to fit the data, one forming a uranyl complex with a single surface hydroxyl and the other forming a bridged or bidentate complex reacting with two surface hydroxyls of the alumina. There was no evidence from these experiments of site heterogeneity. The constants used for the reactions were based in part on predictions made utilizing the Hard Soft Acid Base, HSAB, theory, relating the surface complexation constants to the hydrolysis of the sorbing metal ion and the acid dissociation constants of the mineral oxide surface

  14. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  15. [Surface Property and Sorption Characteristics of Phosphorus onto Surface Sediments in Sanggou Bay].

    Science.gov (United States)

    Zhu, Jia-mei; Cao, Xiao-yan; Liu, Su-mei; Wang, Li-sha; Yang, Gui-peng; Ge, Cheng-feng; Lu, Min

    2016-02-15

    Kinetic curves and isotherms were investigated to study the sorption mechanism of phosphorus onto the sediments of Sanggou Bay, together with the surface charge properties of sediments and the forms of phosphorus studied. The results showed that the sorption including a fast process and a slow one, and could be described by a two-compartment first order equation. The thermodynamic isotherms were well fitted with a modified Langmuir equation. The maximum adsorption capacity was larger in summer than in spring, and the smaller particle size was favorable to the sorption. The maximum adsorption capacities (Qm) were 0.0471-0.1230 mg x g(-1), and the zero equilibrium phosphorus concentration (EPC0) of the sediments ranged from 0.0596 mg x L(-1) to 0.1927 mg x L(-1), which indicated that the sediments from Sanggou Bay were sources of phosphorus. Inorganic phosphorus (IP) was the main form of total phosphorus (TP). The contents of exchangeable or loosely absorbed P and Fe-bound P increased significantly in the samples after sorption. The sorption process involved physical sorption and chemical sorption, with the former being the predominant.

  16. Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material

    Science.gov (United States)

    Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.

    1999-01-01

    Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.

  17. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  18. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  19. Sorption of Pesticides to Natural and Synthetic Nanoparticles

    Science.gov (United States)

    Guluzada, Leyla; Luo, Leilei; Pattky, Martin; Anwander, Reiner; Huhn, Carolin; Haderlein, Stefan

    2017-04-01

    Many organic pollutants tend to associate with particles in environment. Such interactions with solid surfaces may not only alter the reactivity and bioavailability of pesticides, but also their uptake. This alteration may occur both in the way and in the amount the compound enters the organisms. In its turn this may change the overall effects of these compounds on organisms and ecosystems. The main goal of the work presented here is to provide mechanistic information on the sorbate-sorbent interactions between nanoparticles and a set of pesticides under environmentally relevant and physiological conditions. As such, the work is part of the interdisciplinary graduate research program EXPAND at the University of Tübingen investigating molecular interactions between pesticides and particles to elucidate how such interactions impact the toxicological effects. To this end, natural and synthetic nanoparticles covering a wide range of physicochemical properties and pesticides for different target organisms were used. Sorption experiments were carried out with insecticides (imidacloprid; thiacloprid), fungicides (hexaconazole; propiconazole) and herbicides (glyphosate with its metabolite AMPA; glufosinate). The choice of the pesticides was based on their environmental significance and their mode of action. Both engineered nanoparticles with tailored surface properties and nanoparticles of natural origin were characterized and applied to cover various modes of sorptive interactions with the pesticides. The impact of various geochemical and physiological conditions including pH, temperature, ionic strength, background electrolytes and DOM (dissolved organic matter) on the sorption of the pesticides to nanoparticles was studied. Sorption kinetics and sorption isotherms were determined and the results are discussed in terms of predominant sorption mechanisms and the suitability of certain nanoparticles for toxicological studies in the framework of the EXPAND project.

  20. Roles of functional groups of naproxen in its sorption to kaolinite.

    Science.gov (United States)

    Yu, Chenglong; Bi, Erping

    2015-11-01

    The sorption of acidic anti-inflammatory drugs to soils is important for evaluating their fate and transformations in the water-soil environment. However, roles of functional groups of ionisable drugs onto mineral surfaces have not been sufficiently studied. In this study, batch experiments of naproxen (NPX, anti-inflammatory drug) and two kinds of competitors to kaolinite were studied. The Kd of naproxen to kaolinite is 1.30-1.62 L kg(-1). The n-π electron donor-acceptor (n-π EDA) interaction between diaromatic ring of naproxen (π-electron acceptors) and the siloxane oxygens (n-donors) of kaolinite is the dominant sorption mechanism. The carboxyl group of naproxen can contribute to the overall sorption. A conception model was put forward to elucidate to sorption mechanisms, in which the contribution of n-π EDA and hydrogen bond to overall sorption was quantified. These sorption mechanisms can be helpful for estimating the fate and mobility of acid pharmaceuticals in soil-water environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Examination of Pb2+ bio-sorption onto Rhodotorula mucilaginosa using response surface methodology.

    Science.gov (United States)

    Jiang, Bin-hui; Zhao, Yan; Zhao, Xin; Hu, Xiao-min; Li, Li

    2015-01-01

    With the rapid industrial development, wastewater has been a risk for environmental contamination. We aimed to explore the optimum condition and mechanism of Pb2+ bio-sorption onto Rhodotorula mucilaginosa WT6-5. Optimization of initial concentration of Pb2+, initial pH, and adsorption time for Pb2+ bio-sorption onto R. mucilaginosa WT6-5 was performed using response surface methodology. Field emission scanning electron microscopy, energy dispersive X-ray detection, X-ray fluorescence and Fourier transform infrared spectroscopy were used to analyze the mechanisms and characteristics of Pb2+ bio-sorption. A maximum Pb2+ bio-sorption capacity of 1.45 mg/g was obtained under the optimal conditions of initial concentration of Pb2+ (30 mg/L), initial pH (5.45) and adsorption time (25 minutes). Some Pb2+ remained after adsorption, and the -OH, -C=O and C-O functional groups were primarily involved in Pb2+ bio-sorption onto R. mucilaginosa WT6-5. The mechanism of Pb2+ bio-sorption involved chemical and biological actions, ion exchange and functional groups effects.

  2. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  3. The effect of MWCNT treatment by H2O2 and/or UV on fulvic acids sorption.

    Science.gov (United States)

    Czech, Bożena

    2017-05-01

    The carbon nanotubes (CNT) present in the wastewater subjected to treatment will possess altered physico-chemical properties. The changed properties will result in the unknown behavior of CNT in the environment after disposal; and it is expected to differ from their pristine analogues. In the present paper the effect of sorption of dissolved organic matter with fulvic acids (FA) as representatives onto UV and/or H 2 O 2 treated CNT was tested. Both kinetics and mechanism of sorption was estimated. The chemical adsorption was a rate limiting step and a pseudo-second order kinetics described the sorption of FA onto UV and/or H 2 O 2 treated CNT. The treating increased affinity towards FA and treating by UV and H 2 O 2 simultaneously possessed greater impact on k 2 than UV and H 2 O 2 separately. The greatest effect on CNT sorption capacity revealed H 2 O 2 . The sorption mechanism was described by Temkin (CNT-H 2 O 2 ) and Dubinin-Radushkevich model. The increase in CNT surface disorder caused by UV and/or H 2 O 2 treatment favored sorption of FA via π-π interactions (exfoliated surface and disordered CNT walls). FA sorption occurred between aromatic rings of FA and CNT and hydrogen bonds formed with the oxygen functional groups. The results indicate that UV and/or H 2 O 2 treatment affected the sorption capacity and affinity of CNT towards FA. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs

  5. Electrostatic Doping in Semiconductor Devices

    NARCIS (Netherlands)

    Gupta, Gaurav; Rajasekharan, Bijoy; Hueting, Raymond J.E.

    2017-01-01

    To overcome the limitations of chemical doping in nanometer-scale semiconductor devices, electrostatic doping (ED) is emerging as a broadly investigated alternative to provide regions with a high electron or hole density in a semiconductor device. In this paper, we review various reported ED

  6. Continuous electrodeionization through electrostatic shielding

    International Nuclear Information System (INIS)

    Dermentzis, Konstantinos

    2008-01-01

    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency

  7. Modern instrumentation of electrostatic accelerators

    International Nuclear Information System (INIS)

    Repnow, R.

    1986-01-01

    For diagnostics and control of electrostatic accelerators complex electronic systems are used also inside the accelerator vessel to an increasing extent. Methods for protection of the equipment and for the data transmission are discussed. Several existing digital control systems are compared and the advantages of digital closed loop regulation systems are indicated. (orig.)

  8. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  9. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    Science.gov (United States)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the

  10. Phosphorus sorption isotherms and external phosphorus ...

    African Journals Online (AJOL)

    Information on P sorption characteristics of soils is important for making profitable P fertiliser recommendations and designing appropriate P management strategies for improving crop productivity. An experiment was conducted to determine the P sorption capacities and external P requirements (EPR) of some soils of ...

  11. Blowing Dust Away With Electrostatic Wind

    Science.gov (United States)

    Utter, M. G.

    1984-01-01

    Ionized air molecules drive away contaminants. Electrostatic wind prevents dust buildup and subsequent electrical breakdown in powerlines, transformers, switchgears, Van de Graaff generators, electrostatic precipitators, and other high-voltage equipment. Makes periodic cleaning or airblasting unnecessary.

  12. New composite materials to metal sorption

    International Nuclear Information System (INIS)

    Annenkov, V.V.; Danilovtseva, E.N.; Filina, E.A.; Trofimov, B.A.

    2002-01-01

    Complexing-active polymers are promising substances for detoxication of radioactive elements from the polluted soils and natural waters. Tis work is devoted to searching of new polymeric compositions for detoxication of soils and waters from heavy metals. Three systems (azole-carboxylic polyampholytes, polymer-polymer complexes of poly(1-vinylimidazole) (PVI), Ai- and Al-based organo/inorganic composites) were discussed. Sorption properties of new composites were studied using Cu 2+ ions as an example. The sorption equilibrium range time is equals to 20-60 min, sorption capacity attains 280 mg/g. The most effective sorbents are composites on the basis of PVI, poly(4-vinylpyridine) decrease sorption capacity due to hydrophobia of this polymer. Thus, composites on the basis of nitrogen-containing polymers are promising systems for heavy materials sorption. Introduction of Si-, Al-hydroxides into composites allows to decrease cost of the materials and increase their nature-compatibility

  13. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  14. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  15. Chemical equilibria in bio sorption

    International Nuclear Information System (INIS)

    Romero, A.; Gonzalez, F.; Ballester, A.; Blazquez, M. L.; Munoz, J.A.

    2007-01-01

    An experimental study of bio sorption was carried out using six different kinds of algae and five different heavy metals (cadmium, copper, nickel, lead and zinc). Experimental data fitted very well to langmuir's model and this allowed to predict the behaviour of the biomass under specific working conditions. Using the equations of the model under different initial assumptions, a series of mathematical calculations were done for mono metallic, bimetallic and tri metallic systems. the most complicated calculation is that in which, knowing the initial metal concentration (C 0 ), it is necessary to calculate the conditions reached at the equilibrium, this is, q e and C e . This assumption is of great interest from the point of view of the actual applicability of the process. However, in this case, it is necessary to solve very complex mathematical equations which, for multi metallic systems, are of degree n+1, where n is the number of ions present in solution. The excellent correlation between experimental and theoretical data demonstrates that the bio sorption process can be modelling. (Author) 18 refs

  16. A surface complexation model of YREE sorption on Ulva lactuca in 0.05-5.0 M NaCl solutions

    Science.gov (United States)

    Zoll, Alison M.; Schijf, Johan

    2012-11-01

    We present distribution coefficients, log iKS, for the sorption of yttrium and the rare earth elements (YREEs) on BCR-279, a dehydrated tissue homogenate of a marine macroalga, Ulva lactuca, resembling materials featured in chemical engineering studies aimed at designing renewable biosorbents. Sorption experiments were conducted in NaCl solutions of different ionic strength (0.05, 0.5, and 5.0 M) at T = 25 °C over the pH range 2.7-8.5. Distribution coefficients based on separation of the dissolved and particulate phase by conventional filtration (3 kDa) using an existing pH-dependent model. Colloid-corrected values were renormalized to free-cation concentrations by accounting for YREE hydrolysis and chloride complexation. At each ionic strength, the pH dependence of the renormalized values is accurately described with a non-electrostatic surface complexation model (SCM) that incorporates YREE binding to three monoprotic functional groups, previously characterized by alkalimetric titration, as well as binding of YREE-hydroxide complexes (MOH2+) to the least acidic one (pKa ∼ 9.5). In non-linear regressions of the distribution coefficients as a function of pH, each pKa was fixed at its reported value, while stability constants of the four YREE surface complexes were used as adjustable parameters. Data for a single fresh U. lactuca specimen in 0.5 M NaCl show generally the same pH-dependent behavior but a lower degree of sorption and were excluded from the regressions. Good linear free-energy relations (LFERs) between stability constants of the YREE-acetate and YREE-hydroxide solution complex and surface complexes with the first and third functional group, respectively, support their prior tentative identifications as carboxyl and phenol. A similar confirmation for the second group is precluded by insufficient knowledge of the stability of YREE-phosphate complexes and a perceived lack of YREE binding in 0.05 M NaCl; this issue awaits further study. The results

  17. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    Science.gov (United States)

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.

    Science.gov (United States)

    Kah, Melanie; Sigmund, Gabriel; Xiao, Feng; Hofmann, Thilo

    2017-11-01

    The sorption of ionic and ionizable organic compounds (IOCs) (e.g., pharmaceuticals and pesticides) on carbonaceous materials plays an important role in governing the fate, transport and bioavailability of IOCs. The paradigms previously established for the sorption of neutral organic compounds do not always apply to IOCs and the importance of accounting for the particular sorption behavior of IOCs is being increasingly recognized. This review presents the current state of knowledge and summarizes the recent advances on the sorption of IOCs to carbonaceous sorbents. A broad range of sorbents were considered to evaluate the possibility to read across between fields of research that are often considered in isolation (e.g., carbon nanotubes, graphene, biochar, and activated carbon). Mechanisms relevant to IOCs sorption on carbonaceous sorbents are discussed and critically evaluated, with special attention being given to emerging sorption mechanisms including low-barrier, charge-assisted hydrogen bonds and cation-π assisted π-π interactions. The key role played by some environmental factors is also discussed, with a particular focus on pH and ionic strength. Overall the review reveals significant advances in our understanding of the interactions between IOCs and carbonaceous sorbents. In addition, knowledge gaps are identified and priorities for future research are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    International Nuclear Information System (INIS)

    Sheng Guangyao; Yang Yaning; Huang Minsheng; Yang Kai

    2005-01-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs ∼3.0 and ∼7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH ∼7.0 than at pH ∼3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH ∼7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH ∼3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH ∼3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides

  20. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Guangyao [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States)]. E-mail: gsheng@uark.edu; Yang Yaning [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Huang Minsheng [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China); Yang Kai [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China)

    2005-04-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs {approx}3.0 and {approx}7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH {approx}7.0 than at pH {approx}3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH {approx}7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH {approx}3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH {approx}3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides.

  1. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars.

    Science.gov (United States)

    Wang, Fei; Sun, Hongwen; Ren, Xinhao; Liu, Yarui; Zhu, Hongkai; Zhang, Peng; Ren, Chao

    2017-12-01

    The effects of humic acid (HA) and heavy metals (Cu 2+ and Ag + ) on the sorption of polar and apolar organic pollutants onto biochars that were produced at temperatures of 200 °C (BC200) and 700 °C (BC700) were studied. Due to the plentiful polar functional groups on BC200, cationic propranolol exhibited higher levels of sorption than naphthalene on BC200 while naphthalene and propranolol showed similar sorption capacities on BC700. HA changed the characteristics of biochars and generally inhibited the sorption of target organic pollutants on biochars; however, enhancement occurred in some cases depending on the pollutants involved and their concentrations, biochars used and the addition sequences and concentrations of HA. On BC200, HA modifications mainly influenced sorption by decreasing its polarity and increasing its aromaticity, while on BC700, the surface area and pore volume greatly decreased due to the pore-blocking effects of HA. Residue dissolved HA in solution may also contribute to sorption inhibition. Complexation between polar functional groups on BC200 and heavy metals slightly enhanced the sorption of neutral naphthalene and significantly enhanced that of anionic 4-nitro-1-naphtol, while limited the sorption of cationic propranolol. Heavy metals together with their associated water molecules decreased the sorption of target chemicals on BC700 via pore-filling or pore-mouth-covering. Inhibition of heavy metals for 4-nitro-1-naphthol was found to be the weakest due to the bridge effects of heavy metals between 4-nitro-1-naphtol and BC700. The higher polarizability of Ag + led to the increase of its sorption on biochars in the presence of organic aromatic pollutants. The results of the present study shed light on the sorption mechanisms of bi-solute systems and enable us to select suitable biochar sorbents when chemicals co-exist. Copyright © 2017. Published by Elsevier Ltd.

  2. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  3. Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene

    DEFF Research Database (Denmark)

    Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads

    2017-01-01

    Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons......-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry...

  4. The dependency of adhesion and friction on electrostatic attraction

    Science.gov (United States)

    Persson, B. N. J.

    2018-04-01

    I develop a general mean-field theory for the influence of electrostatic attraction between two solids on the contact mechanics. I assume elastic solids with random surface roughness. I consider two cases, namely, with and without an electrically insulating layer between the conducting solids. The former case is important for, e.g., the finger-touch screen interaction. I study how the electrostatic attraction influences the adhesion and friction. For the case of an insulating layer, I find that when the applied nominal contact pressure is relatively small, as the applied voltage increases, there is a sharp increase in the contact area, and hence in the friction, at a critical voltage.

  5. Dynamic design of gas sorption J-T refrigerator

    International Nuclear Information System (INIS)

    Chan, C.K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts and is desirable for longterm sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance

  6. Dynamic design of gas sorption J-T refrigerator

    Science.gov (United States)

    Chan, C. K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts is desirable for long-term sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance.

  7. Introduction of Electrostatically Charged Particles into Metal Melts

    Science.gov (United States)

    Kudryashova, Olga; Vorozhtsov, Sergey; Stepkina, Maria; Khrustalev, Anton

    2017-12-01

    One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size.

  8. Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous.

    Science.gov (United States)

    Dobrowolski, Ryszard; Szcześ, Aleksandra; Czemierska, Magdalena; Jarosz-Wikołazka, Anna

    2017-02-01

    The adsorption of Cd(II), Pb(II), Ni(II), Co(II) and Cr(VI) ions on the extracellular polymeric substances (EPS) obtained from bacterial strain Rhodococcus opacus and Rhodococcus rhodochrous was investigated by the static sorption method. Influence of pH, time and temperature were studied. It was found that the influence of the pH value and time of adsorption depends on the type of adsorbed ions. For all investigated systems an increase of temperature above 35°C reduces adsorption. However, the static sorption capacities values oscillate around 1.5mmol/g, independently of the type of the studied metal ions. The adsorption mechanism of studied metal ions onto the tested EPSs seems to be very complex and it is probably due to an electrostatic attraction, a surface complex formation and chemical interaction between the metal ions and the functional groups (mainly hydroxyl, acetamido or amino groups) of bacterial extracellular biopolymers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Electrostatic self-assembly of biomolecules

    Science.gov (United States)

    Olvera de La Cruz, Monica

    2015-03-01

    Charged filaments and membranes are natural structures abundant in cell media. In this talk we discuss the assembly of amphiphiles into biocompatible fibers, ribbons and membranes. We describe one- and two-dimensional assemblies that undergo re-entrant transitions in crystalline packing in response to changes in the solution pH and/or salt concentration resulting in different mesoscale morphologies and properties. In the case of one-dimensional structures, we discuss self-assembled amphiphiles into highly charged nanofibers in water that order into two-dimensional crystals. These fibers of about 6 nm cross-sectional diameter form crystalline arrays with inter-fiber spacings of up to 130 nm. Solution concentration and temperature can be adjusted to control the inter-fiber spacings. The addition of salt destroys crystal packing, indicating that electrostatic repulsions are necessary for the observed ordering. We describe the crystallization of bundles of filament networks interacting via long-range repulsions in confinement by a phenomenological model. Two distinct crystallization mechanisms in the short and large screening length regimes are discussed and the phase diagram is obtained. Simulation of large bundles predicts the existence of topological defects among bundled filaments. Crystallization processes driven by electrostatic attractions are also discussed. Funded by Center for Bio-Inspired Energy Science (CBES), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.

  10. Electrostatic sensor modeling for torque measurements

    Science.gov (United States)

    Mika, Michał; Dannert, Mirjam; Mett, Felix; Weber, Harry; Mathis, Wolfgang; Nackenhorst, Udo

    2017-09-01

    Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko (1984). Thus, there have been optical and magnetical, as well as capacitive sensors introduced). This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  11. Electrostatic sensor modeling for torque measurements

    Directory of Open Access Journals (Sweden)

    M. Mika

    2017-09-01

    Full Text Available Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko(1984. Thus, there have been optical and magnetical, as well as capacitive sensors introduced . This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  12. Glyphosate sorption to soils of Argentina. Estimation of affinity coeficient by pedotransfer function

    Science.gov (United States)

    De Geronimo, Eduardo; Aparicio, Virginia; Costa, José Luis

    2017-04-01

    Argentine agricultural production is fundamentally based on a technological package that combines direct seeding and glyphosate with transgenic crops (soybean, maize and cotton). Therefore, glyphosate is the most employed herbicide in the country, where 180 to 200 million liters are applied every year. Glyphosate is strongly sorbed to soil by binding to clay minerals, layer silicates, metal oxides, non-crystalline materials or organic matter. Sorption of glyphosate is a reversible process that regulates the half-life and mobility of the herbicide and it is therefore related to the risk of contaminating courses of surface and groundwater. However, this behavior may vary depending on the characteristics of the soil on which it is applied. In addition, pH is a determining factor since it modifies the net charge in the molecule and, with it, the force of the electrostatic interaction between the glyphosate and the components of the soil. For a reliable risk assessment of groundwater contamination from pesticides precise predictions of sorption coefficients are needed. The aim of this work is to study the affinity of glyphosate to different soils of Argentina and create a model to estimate the glyphosate Freundlich sorption coefficient (Kf) from easily measurable soil properties. Adsorption of glyphosate was investigated on 12 different agricultural soils of Argentina using batch equilibration technique and fit to Freundlich sorption model. The correlation coefficients and the effects of soil characteristic factors on glyphosate adsorption parameter were analyzed through principal component and multiple lineal regression analysis. Results indicate that pH and clay contents were found to be the most significant soil factors which affect the glyphosate adsorption process. The Freundlich (Kf) pedotransfer function obtained by stepwise regression analysis was Kf = 735.2*Clay - 104.2*pH + 0.7*Polsen - 3.8*Alin. A 97.9% of the variation of glyphosate sorption coefficient

  13. Sorption of radionuclides on mineral surfaces

    International Nuclear Information System (INIS)

    Berry, J.A.; Cowper, M.M.; Green, A.; Jefferies, N.L.; Linklater, C.M.

    1991-01-01

    The sorption of the radioelements uranium, caesium, radium and americium onto rocks and single mineral phases is being investigated in order to improve the understanding of sorption processes. The spatial distribution of uranium onto rock surfaces has been investigated by immersing thin sections of granite and sandstone into 0.8 ppm uranium solutions for periods of up to three months. The sections have been examined by a number of techniques such as RBS, PIXE and dynamic SIMS. In granite thin sections, uranium is preferentially sorbed onto phyllosilicate minerals (10 -8 g cm -2 ). In the sandstone, iron-rich phases dominate sorption. Enhanced levels of uranium sorption (10 -7 g cm -2 ) were observed on surfaces enriched with iron. Even within single mineral phases, inhomogeneities have been detected. Solution chemistry was also an important factor in uranium sorptive behaviour, with sorption from groundwater inhibited by comparison to that on mineralogically similar thin sections immersed in ultra-high purity water. The sorption of caesium from ultra-high purity water and a synthetic groundwater (0.065M NaCl brine) onto quartz, calcite and kaolinite has been studied by the batch sorption technique. Both calcite and quartz are nonsorbing whilst kaolinite is moderately sorbing. R D values from pure water experiments are a factor of 30 higher than those from groundwater, which reflects competition for cation exchange sites on the kaolinite surface between caesium and sodium and potassium in the groundwater. (author)

  14. Sorption behavior of cesium onto bentonite colloid

    International Nuclear Information System (INIS)

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  15. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  16. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  17. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  18. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  19. Heavy metal sorption by microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Sandau, E. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Sandau, P. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Pulz, O. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany)

    1996-12-31

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  20. Electrostatic septa for SPS extraction

    CERN Multimedia

    1975-01-01

    The extraction system for the N-Area is located in LSS2 (another one for the W-Area, now abandoned, was in LSS6). The electrostatic septum consists of 4 parts, each 3 m long. It is made of W-wires, 0.12 mm thick. The nominal electric field is 100 kV/cm. See also Annual Report 1975, p.175.

  1. Metal Sorption to Dolomite Surfaces

    International Nuclear Information System (INIS)

    Brady, P.V.; Papenguth, H.W.; Kelly, J.W.

    1999-01-01

    Potential human intrusion into the Waste Isolation Pilot Plant (WIPP) might release actinides into the Culebra Dolomite where sorption reactions will affect of radiotoxicity from the repository. Using a limited residence time reactor the authors have measured Ca, Mg, Nd adsorption/exchange as a function of ionic strength, P CO2 , and pH at 25 C. By the same approach, but using as input radioactive tracers, adsorption/exchange of Am, Pu, U, and Np on dolomite were measured as a function of ionic strength, P CO2 , and pH at 25 C. Metal adsorption is typically favored at high pH. Calcium and Mg adsorb in near-stoichiometric proportions except at high pH. Adsorption of Ca and Mg is diminished at high ionic strengths (e.g., 0.5M NaCl) pointing to association of Na + with the dolomite surface, and the possibility that Ca and Mg sorb as hydrated, outer-sphere complexes. Sulfate amplifies sorption of Ca and Mg, and possibly Nd as well. Exchange of Nd for surface Ca is favored at high pH, and when Ca levels are low. Exchange for Ca appears to control attachment of actinides to dolomite as well, and high levels of Ca 2+ in solution will decrease Kds. At the same time, to the extent that high P CO2 increase Ca 2+ levels, JK d s will decrease with CO 2 levels as well, but only if sorbing actinide-carbonate complexes are not observed to form (Am-carbonate complexes appear to sorb; Pu-complexes might sorb as well; U-carbonate complexation leads to desorption). This indirect CO 2 effect is observed primarily at, and above, neutral pH. High NaCl levels do not appear to affect to actinide K d s

  2. Quantitative nanoscale electrostatics of viruses.

    Science.gov (United States)

    Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J

    2015-11-07

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.

  3. Voltage limitations of electrostatic accelerators

    International Nuclear Information System (INIS)

    Hyder, H. R. McK.

    1999-01-01

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine

  4. Voltage limitations of electrostatic accelerators

    International Nuclear Information System (INIS)

    Hyder, H.R.

    1999-01-01

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine. copyright 1999 American Institute of Physics

  5. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  6. Isotherms and thermodynamics for the sorption of heavy metal ions onto functionalized sporopollenin

    Energy Technology Data Exchange (ETDEWEB)

    Gubbuk, Ilkay Hilal, E-mail: ihilalg@gmail.com [Selcuk University, Department of Chemistry, Campus, 42031 Konya (Turkey)

    2011-02-15

    In this study, sporopollenin of Lycopodium clavatum spores was used for the sorption experiment. Glutaraldehyde (GA) immobilized sporopollenin (Sp), is employed as a sorbent in sorption of selected heavy metal ions. The sorbent prepared by sequential treatment of sporopollenin by silanazing compound and glutaraldehyde is suggested for sorption of Cu(II), Zn(II) and Co(II) from aqueous solutions. Experimental conditions for effective sorption of heavy metal ions were optimized with respect to different experimental parameters using batch method in detail. Optimum pH range of Cu(II) has occurred at pH {>=} 5.5 and Zn(II), Co(II) at pH {>=} 5.0, for the batch method. All of the metal ions can be desorbed with 10 cm{sup 3} of 0.5 mol dm{sup -3} of ethylenediaminetetraacetic acid (EDTA) solution. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm equations were applied to the experimental data. Thermodynamic parameters such as free energy ({Delta}G{sup o}), entropy ({Delta}S{sup o}) and enthalpy ({Delta}H{sup o}) were also calculated from the sorption results used to explain the mechanism of the sorption. The results indicated that this sorbent is successfully employed in the separation of trace Cu(II), Zn(II) and Co(II) from the aqueous solutions.

  7. Sorption of atrazine, acetochlor, and 2,4-D by hardwood-derived biochar

    Science.gov (United States)

    Gonzalez, J. M.; Shipitalo, M. J.

    2016-12-01

    Offsite transport of herbicides and other agricultural pesticides to streams and other bodies of water can adversely impact drinking water supplies and aquatic ecology. Atrazine, acetochlor, and 2,4-D are herbicides commonly used to control weeds in maize (Zea mays) and soybean (Glycine max), the dominant crops in the U.S. Midwest. Unfortunately, these materials are frequently detected at high concentrations in surface runoff and subsurface drainage, especially when rainstorms occur shortly after their application. Thus, edge-of-field technologies employing effective sorbents to remove pesticides in water are needed to reduce this concern. In this study, we investigated the sorption of atrazine, acetochlor, and 2,4-D by a hardwood-derived biochar. Sorption kinetics and isotherms were determined for each pesticide using concentrations ranging from 5 to 100 ug L-1. The results from the kinetic sorption studies were fitted to pseudo first- and second-order reaction models and demonstrated that sorption was fast; in less than an hour > 90% of the added pesticides were sorbed and after 24 hours up to 100% was removed. The pH of the suspensions after the sorption kinetic and isotherm studies was 8.26 ± 0.51. Thus, because of the nature of the biochar and the pesticides used in this study, hydrophobic interactions appear to be the main mechanism of sorption. Furthermore, since the sorption was fast, we hypothesize that sorption occurred on the surface of biochar. The information from this study can be used to develop agricultural best management practices to remove pesticides in water.

  8. Sorption and diffusion of phenols onto well-defined ordered nanoporous monolithic silicas.

    Science.gov (United States)

    El-Safty, S A

    2003-04-01

    The sorption of phenol, and o-, m-, and p-aminophenol (o-, m-, and p-AP) onto highly ordered mesoporous silicas (HOM) with cubic Im3m (HOM-1), hexagonal H(I) (HOM-2), 3-D hexagonal p6(3)/mmc (HOM-3), cubic Ia3d (HOM-5), lamellar L( infinity ) (HOM-6), and solid phase S (HOM-8) materials has been investigated kinetically. Nanostructured silica molecular sieves have been prepared at 25 and 60 degrees C with lyotropic liquid-crystalline phases of the nonionic surfactant (Brij 76) that was used as a structure-directing agent. Such nanostructured silicas have been studied by 29Si nuclear magnetic resonance (29Si NMR), powder X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET) method for nitrogen adsorption and surface area measurements, and transmission electron microscopy (TEM) techniques after synthesis and sorption. It was found that all materials exhibit well-defined long-range porous architectures without significant loss of the ordered texture during phenol sorption. The kinetics of phenol sorption has been studied spectrophotometrically at different temperatures (25-40 degrees C; +/-0.1 range). The sorption rate is zero order in all phenols sorbed, and increases directly in the pattern P >m-AP > o-AP > p-AP, which reflects the mobility of the phenol compounds on the particle pores. The isothermal sorption and the kinetic parameters were discussed and it was established that a diffusion-controlled process characterizes phenol sorption. Furthermore, the mechanism of phenol sorption was deduced to be predominantly particle diffusion. The diffusion coefficients were determined using Fick's equation. The trend of diffusion of all phenols onto nanoporous silica was HOM-8 > HOM-2 > HOM-6 > HOM-5 > HOM-1 > HOM-3, reflecting the effect of the uniform pore size distribution and the internal surface area of the nanostructured silicas on the diffusion process.

  9. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures

    International Nuclear Information System (INIS)

    Zhang Guixiang; Zhang Qing; Sun Ke; Liu Xitao; Zheng Wenjuan; Zhao Ye

    2011-01-01

    Simazine sorption to corn straw biochars prepared at various temperatures (100-600 deg. C) was examined to understand its sorption behavior as influenced by characteristics of biochars. Biochars were characterized via elemental analysis, BET-N 2 surface area (SA), FTIR and 13 C NMR. Freundlich and dual-mode models described sorption isotherms well. Positive correlation between log K oc values and aromatic C contents and negative correlation between log K oc values and (O + N)/C ratios indicate aromatic-rich biochars have high binding affinity to simazine (charge transfer (π-π*) interactions) and hydrophobic binding may overwhelm H-bonding, respectively. Dual-mode model results suggest adsorption contribution to total sorption increases with carbonization degree. Positive correlation between amounts of adsorption (Q ad ) and SA indicates pore-filling mechanism. Comparison between our results and those obtained with other sorbents indicates corn straw biochars produced at higher temperature can effectively retain simazine. These observations will be helpful for designing biochars as engineered sorbents to remove triazine herbicides. - Highlights: → Biochars were characterized via elemental analysis, BET-N 2 , FTIR and 13 C NMR. → Freundlich and dual-mode models described sorption isotherms well. → Biochar produced at higher temperature had larger sorption capacity for simazine. → Aromatic-rich biochars have high binding affinity to simazine. → Dual-mode model results suggest adsorption contribution to total sorption. - The corn straw biochar prepared at higher temperature with stronger hydrophobicity, more aromatic C and larger surface area had higher sorption capacity for simazine.

  10. Influences of different environmental parameters on the sorption of trivalent metal ions on bentonite: batch sorption, fluorescence, EXAFS and EPR studies.

    Science.gov (United States)

    Verma, P K; Pathak, P N; Mohapatra, P K; Godbole, S V; Kadam, R M; Veligzhanin, A A; Zubavichus, Y V; Kalmykov, S N

    2014-04-01

    The presence of long-lived radionuclides in natural aquatic systems is of great environmental concern in view of their possible migration into biospheres of mankind. Trivalent actinides such as (241/243)Am can contribute a great deal to radioactivity for several thousand years. This migration is significantly influenced by various factors such as pH, complexing ions present in aquatic environments, and the sorption of species involving radionuclides by sediments around water bodies. Clay minerals such as bentonite are known to be highly efficient in radionuclide retention and hence are suitable candidates for backfill materials. This study presents experimental results on the interaction of Eu(iii) and Gd(iii) (chemical analogs of Am(iii) and Cm(iii)) with bentonite clay under varying experimental conditions of contact time, pH, and the presence of complexing anions such as humic acid (HA) and citric acid (cit). The sorption of HA on bentonite decreased with increasing the pH from 2 to 8, which was attributed to electrostatic interactions between HA and the bentonite surfaces. The sorption of Eu(iii) on bentonite colloids showed marginal variation with pH (>95%). However, a decrease in Eu(iii) sorption was observed in the presence of HA beyond pH 5 due to the increased aqueous complexation of Eu(iii) with deprotonated HA in the aqueous phase. The complexation of Eu(iii) with citrate ions was studied using Time Resolved Laser induced Fluorescence Spectroscopy (TRLFS) to explain the sorption data. Extended X-ray absorption fine structure (EXAFS) and electron paramagnetic resonance (EPR) investigations were carried out to understand the local chemical environment surrounding Eu(iii) and Gd(iii) (EPR probe) sorbed on bentonite under different experimental conditions. Surface complexation modelling shows the predominant formation of ≡XOEu(+2) (silanol) up to pH < 7, and beyond which ≡YOEu(OH)(+) (aluminol) is responsible for the quantitative sorption of Eu(iii) onto

  11. Sorption of metaldehyde using granular activated carbon

    Directory of Open Access Journals (Sweden)

    S. Salvestrini

    2017-09-01

    Full Text Available In this work, the ability of granular activated carbon (GAC to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

  12. Radionuclide sorption on granitic drill core material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Locklund, B.

    1987-11-01

    Distribution ratios were determined for Sr-85, Cs-134 and Eu-152 on crushed granite and fissure coating/filling material from Stripa mines. Measurements were also carried out on intact fissure surfaces. The experimental data for Sr-85, Cs-134 on crushed material can be accomodated by a sorption model based on the assumption that the crushed material consists of porous spheres with outer and inner surfaces available for sorption. In the case of Eu-152 only sorption on the outer surfaces of the crushed material was observed. The absence of sorption on inner surfaces is most probably due to high depletion of the more strongly sorbed Eu-152 in the water phase and very low diffusivity of Eu-152 in the sorbed state. (orig./HP)

  13. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    Biochar, a byproduct resulting from the pyrolysis of biomass, is considered to be an anthropogenic carbonaceous sorbent. Despite a worldwide increase in the application of biochar on agricultural fields to improve crop productivity over the past few decades, there have been few studies...... on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...

  14. Dynamical Aspects of Electrostatic Double Layers

    DEFF Research Database (Denmark)

    Raadu, M.A.; Juul Rasmussen, J.

    1988-01-01

    Electrostatic double layers have been proposed as an acceleration mechanism in solar flares and other astrophysical objects. They have been extensively studied in the laboratory and by means of computer simulations. The theory of steady-state double layers implies several existence criteria......, in particular the Bohm criteria, restricting the conditions under which double layers may form. In the present paper several already published theoretical models of different types of double layers are discussed. It is shown that the existence conditions often imply current-driven instabilities in the ambient...... plasma, at least for strong double layers, and it is argued that such conditions must be used with care when applied to real plasmas. Laboratory double layers, and by implication those arising in astrophysical plasmas often produce instabilities in the surrounding plasma and are generally time...

  15. Sorption of fomesafen in Brazilian soils

    OpenAIRE

    Silva,G.R.; D'Antonino,L.; Faustino,L.A.; Silva,A.A.; Ferreira,F.A.; Texeira,C.C.

    2013-01-01

    The study of the dynamics of a herbicide in the soil focus on the interactions with environmental components to obtain agronomic efficiency, ensuring selectivity to the culture and risk reduction of environmental impact. This study evaluated the sorption process of fomesafen in the Brazilian soils Ultisol, Cambisol, and Organosol. Besides soil, washed sand was used as an inert material for determination of the sorption ratio of fomesafen in the soil. The bioassay method was applied, using Sor...

  16. A radiotracer study on the kinetics of gold sorption by mineral surfaces

    Science.gov (United States)

    Heinhorst, J. P.; Lehmann, B.

    1994-09-01

    Aqueous solutions with about 10 ppt195Au and [HCl] of 10-2.3 and 10-1.3 m were exposed to solid minerals for several months. The gold uptake with time was observed by time-stepped sampling and radiochemical Au analysis. Sorbants were polished thick sections of quartz, pyrite, pyrrhotite and elemental gold, as well as crushed grains and sawed mineral cubes of quartz and pyrite (all randomly oriented). The kinetics of gold sorption strongly varied with the surface area of the sorbents, the type of mineral and the pH of the solution. Mineral-specific differences in reaction rates were observed only at experimental pH values around 2.3, where sorption on pyrrhotite and elemental gold was much more rapid than by quartz and pyrite. At pH around 1.3 gold sorption was rapid on all minerals. This finding is thought to reflect the gold speciation, i.e. neutral hydroxo-gold complexes above pH 1.5, for which only chemisorption is possible, versus dominantly AuCl{4/-} below pH 1.5, where unspecific electrostatic interaction enhances reaction rates with all protonated mineral surfaces.

  17. Study on the sorption process of triclosan on cationic microfibrillated cellulose and its antibacterial activity.

    Science.gov (United States)

    Zhang, Hongjie; Zeng, Xu; Xie, Jinglei; Li, Zhiqiang; Li, Hailong

    2016-01-20

    Cationic microfibrillated cellulose (CMFC), as one kind of cellulose-based materials, is widely used in many fields. In this work, it was functionalized with a traditional antibacterial agent (triclosan, TCS). The sorption process of TCS onto CMFC was expressed by kinetic and isotherm models. The results showed that there was a high correlation coefficient (R(2)>0.9) in the pseudo-second-order model and the isotherm models, indicating that CMFC had a good sorption capacity for TCS. The sorption type was chemisorption, and the reaction power was electrostatic interactions. The antibacterial activity of the assembled TCS/CMFC compound was tested by disk diffusion method, and it was found a higher antibacterial activity than CMFC alone (bigger inhibition zone diameters). Further, the functionalized TCS/CMFC compound was used in the fiber network during handsheets making, and it had a higher antibacterial rate than TCS alone (increase by 45.1% against Escherichia coli and by 54.8% against Staphylococcus aureus, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ion injector for electrostatic accelerator

    International Nuclear Information System (INIS)

    Novikov, M.T.; Tsygikalo, A.A.

    1980-01-01

    Basing on the analysis of formulae connecting beam parameters at the input and output of an electrostatic accelerator, a design of an ion injector for a charge-exchange accelerator is suggested. The distinguishing injector feature is that it contains a preaccelerator with autofocusing of the beam at its output, which provides better matching of ion source and accelerator operating conditions when preserving the conditions of beam autofocusing in the accelerator. Such an injector is a self-contained instrument. It allows control, within certain limits, of ion optics of inlet lenses of the accelerator and preaccelerator during operation when preserving better matching of ion source operation with the accelerator [ru

  19. Radionuclides sorption in clay soils

    International Nuclear Information System (INIS)

    Siraky, G.; Lewis, C.; Hamlat, S.; Nollmann, C.E.

    1987-01-01

    The sorption behaviour of clay soils is examined through a parametric study of the distribution coefficient (Kd) for the radionuclides of interest, Cs and Sr. This work is a preliminary stage of the migration studies of these nuclides in a porous medium (ground of Ezeiza, Argentina) and the evaluation of radiologic impact of the removal of low and intermediate activity wastes in shallow trenches. The determination of Kd is performed by a static technique or batch. The phases are separated by centrifugation at 20000 g during 1 hour. The activity of supernatant solution of Cs-137 and Sr-85 is measured in a detecting system of I Na(Tl) well-type. Two types of parameters were changed: a) those related to the determination method: phase separation (centrifugation vs. centrifugation plus filtration); equilibrium period, ratio solid/liquid; b) those related to the geochemical system: pH of contact solution, carrier concentration, competitive ions, ionic strength, desorption. It was observed that the modification of parameters in the Kd-measurement does not change the order of magnitude of results. (Author)

  20. Electrostatic Climber for Space Elevator and Launcher

    OpenAIRE

    Bolonkin, A.

    2007-01-01

    Author details research on the new, very prospective, electrostatic Space Elevator climber based on a new electrostatic linear engine previously offered at the 42nd Joint Propulsion Conference (AIAA-2006-5229) and published in AEAT, Vol.78, No.6, 2006, pp. 502-508. The electrostatic climber discussed can have any speed (and braking), the energy for climber movement is delivered by a lightweight high-voltage line into a Space Elevator-holding cable from Earth electric generator. This electric ...

  1. Electrostatics in pharmaceutical aerosols for inhalation.

    Science.gov (United States)

    Wong, Jennifer; Chan, Hak-Kim; Kwok, Philip Chi Lip

    2013-08-01

    Electrostatics continues to play an important role in pharmaceutical aerosols for inhalation. Despite its ubiquitous nature, the charging process is complex and not well understood. Nonetheless, significant advances in the past few years continue to improve understanding and lead to better control of electrostatics. The purpose of this critical review is to present an overview of the literature, with an emphasis on how electrostatic charge can be useful in improving pulmonary drug delivery.

  2. Preconceptual design for the electrostatic enclosure

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-09-01

    This report presents a preconceptual design (design criteria and assumptions) for electrostatic enclosures to be used during buried transuranic waste recovery operations. These electrostatic enclosures (along with the application of dust control products) will provide an in-depth contamination control strategy. As part of this preconceptual design, options for electrostatic curtain design are given including both hardwall and fabric enclosures. Ventilation systems, doors, air locks, electrostatic curtains, and supporting systems also are discussed. In addition to the conceptual design, engineering scale tests are proposed to be run at the Test Reactor Area. The planned engineering scale tests will give final material specifications for full-scale retrieval demonstrations

  3. Industrial Electrostatic-Gecko Gripper, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics is developing an innovative product, the Electrostatic Gecko Gripper? (ESG Gripper), for the industrial automation market. This unique gripping...

  4. Industrial Electrostatic-Gecko Gripper, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics is developing an innovative product, the "Electrostatic Gecko Gripper" (ESG Gripper), for the industrial automation market. This unique gripping...

  5. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  6. Microencapsulation and Electrostatic Processing Device

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  7. Electrostatic discharge concepts and definitions

    Energy Technology Data Exchange (ETDEWEB)

    Borovina, Dan L [Los Alamos National Laboratory

    2008-01-01

    Many objects -like a human body, plastic wrap, or a rolling cart -that are electrically neutral, overall, can gain a net electrostatic charge by means of one of three methods: induction, physical transfer, or triboelectric charging (separation of conductive surfaces). The result is a voltage difference between the charged object and other objects, creating a situation where current flow is likely if two objects come into contact or close proximity. This current flow is known as electrostatic discharge, or ESD. The energy and voltage of the discharge can be influenced by factors such as the temperature and humidity in the room, the types of materials or flooring involved, or the clothing and footwear a person uses. Given the possible ranges of the current and voltage characteristic of an ESD pulse, it is important to consider the safety risks associated with detonator handling, assembly and disassembly, transportation and maintenance. For main charge detonators, these safety risks include high explosive violent reactions (HEVR) as well as inadvertent nuclear detonations (lND).

  8. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    International Nuclear Information System (INIS)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-01-01

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of ''local equilibrium'' assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of

  9. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  10. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-10-12

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U

  11. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy.

    Science.gov (United States)

    Dutta, Anirban; Mandal, Abhishek; Manna, Suman; Singh, S B; Berns, Anne E; Singh, Neera

    2015-10-01

    Soil organic matter (SOM) content is the major soil component affecting pesticide sorption. However, recent studies have highlighted the fact that it is not the total carbon content of the organic matter, but its chemical structure which have a profound effect on the pesticide's sorption. In the present study, sorption of atrazine and metsulfuron-methyl herbicides was studied in four SOM fractions viz. commercial humic acid, commercial lignin, as well as humic acid and humin extracted from a compost. Sorption data was fitted to the Freundlich adsorption equation. In general, the Freundlich slope (1/n) values for both the herbicides were <1. Except for atrazine sorption on commercial humic acid, metsulfuron-methyl was more sorbed. Desorption results suggested that atrazine was more desorbed than metsulfuron-methyl. Lignin, which showed least sorption of both the herbicides, showed minimum desorption. Sorption of atrazine was best positively correlated with the alkyl carbon (adjusted R (2) = 0.748) and carbonyl carbon (adjusted R (2) = 0.498) but, their effect was statistically nonsignificant (P = 0.05). Metsulfuron-methyl sorption showed best positive correlation with carbonyl carbon (adjusted R (2) = 0.960; P = 0.05) content. Sorption of both the herbicides showed negative correlation with O/N-alkyl carbon. Correlation of herbicide's sorption with alkyl and carbonyl carbon content of SOM fractions suggested their contribution towards herbicide sorption. But, sorption of metsulfuron-methyl, relatively more polar than atrazine, was mainly governed by the polar groups in SOM. IR spectra showed that H-bonds and charge-transfer bonds between SOM fraction and herbicides probably operated as mechanisms of adsorption.

  12. Polyaromatic hydrocarbons (PAHs) sorption behavior unaffected by the presence of multi-walled carbon nanotubes (MWNTs) in a natural soil system.

    Science.gov (United States)

    Li, Shibin; Anderson, Todd A; Green, Micah J; Maul, Jonathan D; Cañas-Carrell, Jaclyn E

    2013-06-01

    The batch equilibrium approach was used to examine the influence of multi-walled carbon nanotubes (MWNTs) on the sorption behaviors of polyaromatic hydrocarbons (PAHs) in soil. To the knowledge of the authors, this is the first study of PAH sorption to MWNTs in real natural soil systems. The sorption behavior of three PAHs (naphthalene, fluorene, and phenanthrene) in the presence of commercially available MWNTs in two natural soils (a sandy loam and a silt loam) and Ottawa sand was evaluated. Adsorption of PAHs by MWNTs in this study was three orders of magnitude higher than that of natural soils. Sorption coefficients of PAHs (Kd and Koc) were unchanged in the presence of 2 mg g(-1) MWNTs in soil (p > 0.05). A micro-mechanics approach, termed 'the rule of mixtures' was used for predicting PAH sorption behaviors in mixtures based on sorption coefficients derived from single sorbents. The equation, KT = KMα + KN(1 - α) (K, sorption coefficients, Kd or Koc), predicted sorption coefficients in a mixture based on mixture component sorption coefficients and mass fractions. Data presented in this study could be used to fill data gaps related to the environmental fate of carbon nanotubes in soil.

  13. Kinesin motor protein as an electrostatic ratchet machine

    Science.gov (United States)

    Tsironis, George; Ciudad, Aleix; Sancho, Jose Maria

    2008-03-01

    Kinesin and related motor proteins utilize ATP fuel to propel themselves along the external surface of microtubules in a processive and directional fashion. We show that the observed step-like motion is possible through time varying charge distributions furnished by the ATP hydrolysis circle while the static charge configuration on the microtuble provides the guide for motion. Thus, while the chemical hydrolysis energy induces appropriate local conformational changes, the motor translational energy is fundamentally electrostatic. Numerical simulations of the mechanical equations of motion show that processivity and directionality are direct consequences of the ATP-dependent electrostatic interaction between the different charge distributions of kinesin and microtubule. Treating proterins as continuous dielectric media and using a Green's function formalism we find analytical expressions for the electrostatic energy in the vicinity of the protein surfaces. We calculate the Bjerrum length in the interior of the protein and analyze its dependence on the charge proximity to the protein interface. We apply these results to kinesin and estimate the pure electrostatic ATP-ADP interaction to be larger than 2k T.

  14. Sorption-desorption properties of saponite-containing material

    Science.gov (United States)

    Morozova, M. V.; Frolova, M. A.; Makhova, T. A.

    2017-11-01

    The sorption mechanism of the mineral additive showed that self-saturation of the saponite-containing material with water vapors has a long-term nature (12 days). The nature of desorption differs from adsorption isotherm, i.e. the adsorption/desorption hysteresis is observed. Saponite-containing material samples studied after moisture desorption using infrared spectroscopy demonstrated that chemical compounds in the material have the ability to form calcium silicate hydrates when saturated with water. This fact along with the additive capability to control the water-cement ratio during concrete curing contributes to significantly better physical and chemical properties (strength, frost resistance) of the concrete composite.

  15. Different effects of copper (II), cadmium (II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yuqiang, E-mail: yqtao@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Wei [Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19717-1303 (United States); Xue, Bin; Zhong, Jicheng; Yao, Shuchun; Wu, Qinglong [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-10-15

    Highlights: • Low level of Cu{sup 2+} inhibited but high level of Cu{sup 2+} facilitated the sorption of Phe. • Cation–π interaction between Cu{sup 2+} and PAH facilitated the sorption of Phe. • Phenanthrene sorption rebounding did not occur in the presence of high level Cd{sup 2+}. • Both Cd{sup 2+} and PO{sub 4}{sup 3−} inhibited the sorption of Phe, but had various mechanisms. -- Abstract: Due to the large surface area and high organic carbon content of cyanobacteria, organic contaminants can be readily sorbed on cyanobacteria during algal blooms, and then be transferred to the food web. This process is likely to be affected by the coexisting metals and nutrients, however, the possible impacts remain unclear. Effects of Cu{sup 2+}, Cd{sup 2+}, and phosphate on the sorption of phenanthrene on cyanobacterial biomass collected from an algal bloom were therefore studied. Continuous decrease in phenanthrene sorption was observed in the presence of low concentrations of Cu{sup 2+}, and Cd{sup 2+} (<0.04 mmol L{sup −1}), because Cu{sup 2+} and Cd{sup 2+} were coadsorbed with phenanthrene on the surface of cyanobacteria as suggested by scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) analyses. Phenanthrene sorption began to increase with the further increase in Cu{sup 2+} concentration, but remained lower than that in the absence of Cu{sup 2+}. This increase in sorption was ascribed to the cation–π interaction between Cu{sup 2+} and phenanthrene, as suggested by the enhanced ultraviolet absorbance at 251 nm. In contrast, sorption rebounding of phenanthrene did not occur in the presence of higher concentrations of Cd{sup 2+}. The different effects of Cu{sup 2+} and Cd{sup 2+} on phenanthrene sorption were attributed to that Cd{sup 2+} required much more energy than Cu{sup 2+} to form cation–π complexes with phenanthrene in the solutions. Phenanthrene sorption decreased continuously with the increase

  16. Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II from aqueous solution using formaldehyde treated waste tea leaves

    Directory of Open Access Journals (Sweden)

    Jasmin Shah

    2015-05-01

    Full Text Available The sorption characteristic of Ni (II from aqueous solution using formaldehyde treated waste tea leaves as a low cost sorbent has been studied. The effect of pH, contact time, sorbent dose, initial metal ion concentration and temperature were investigated in batch experiments. The equilibrium data were fitted into four most common isotherm models; Freundlich, Langmuir, Tempkin and Dubinin–Radushkevich (D–R. The Langmuir model described the sorption isotherm best with maximum monolayer sorption capacity of 120.50 mg g−1. Four kinetic models, pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elovich were employed to explain the sorption mechanism. The kinetics of sorption data showed that the pseudo-second-order model is the best with correlation coefficient of 0.9946. The spontaneous and exothermic nature of the sorption process was revealed from thermodynamic investigations. The effect of some common alkali and alkaline earth metal ions were also studied which showed that the presence of these ions have no effect on the sorption of Ni (II. The results showed that waste tea leaves have the potential to be used as a low cost sorbent for the removal of Ni (II from aqueous solutions.

  17. Sorption interactions of biochars and pyrogenic carbonaceous materials with anionic contaminants

    Science.gov (United States)

    Fristak, Vladimir; Moreno-Jimenez, Eduardo; Micháleková-Richveisová, Barbora; Schmidt, Hans-Peter; Bucheli, Thomas; Soja, Gerhard

    2016-04-01

    Biochar as a highly porous and carbon-rich material with a large surface area is a new player in the system of environmental remediation techniques. A wide range of valuable sorption properties of this carbonaceous pyrolysis product provides new options to solve contaminant problems in soil and water and thus may reduce the number of contaminated sites. The sorption capacity of agricultural wastes and wood processing-derived biochars has been found to be excellent due to high surface area, pore volume, and surface functional groups. However, sorption interactions and separation of xenobiotics from waste water, soil solutions or polluted surface water is very often affected by the concentration of contaminant, contact time, effects of competitive substances and mainly by the chemical form of the respective contaminant. The negative surface charge of biochar-based sorption materials supports significant sorption in particular for cationic forms of pollutants. On the other hand many environmentally critical substances occur in anionic forms (e.g. As, P, Mo, Tc). Therefore their retention and immobilization by biochar is frequently considered as problematic or limited. Besides, details about the mechanism of biochar interactions with anionic compounds and the options for surface modification are largely unexplored. This contribution presents a comparative study about production and characterization of unmodified, chemically pre-treated and post-treated biochars with respect to sorption processes of model anionic compounds (PO43-, AsO43-). The obtained results confirmed the crucial role of altering biochar properties (pH) and of surface modification for improving biochar sorption efficiency for anionic contaminants.

  18. Inductive and electrostatic acceleration in relativistic jet-plasma interactions.

    Science.gov (United States)

    Ng, Johnny S T; Noble, Robert J

    2006-03-24

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma-wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.

  19. The NEA sorption data base (SDB)

    International Nuclear Information System (INIS)

    Ruegger, B.; Ticknor, K.

    1992-01-01

    The current NEA Sorption Data Base is developed to replace the former International Sorption Information Retrieval System (ISIRS) initiated at Pacific Northwest Laboratory and contains about 11,000 distribution coefficients with corresponding experimental condition parameters describing sorption of key nuclides for a large variety of solid and liquid phases. The SDB is designed to run on a micro-computer using the commercially available database software dBASE III Plus. For each recorded sorption experiment, the SDB provides a bibliographical reference, the most complete characterization of the solid and liquid phases available, a description of the experimental conditions and the distribution coefficient or retardation factor for each element studied. When available, parameters such as temperature, initial radionuclide concentration, pH, Eh, contact time, solid to solution ratio, sample origin, oxidation state and type of solution are included. The SDB provides information for a wide variety of rocks or geological materials, buffer backfill candidates, concretes/cements, elements (Am, Cs, Co, I, Np, Pu, Ra, Sr, Se, Tc, U and, to a lesser extent, Ag, Ba, C, Ce, Eu, Fe, Mn, Mo, Na, Nb, Ni, Pd, Pm, Ru, Sb, Sn, Y, Zn, and Zr), or radioisotopes. A compilation of sorption data like SDB provide a readily available source of data for radioactive waste repository performance assessments when site specific data are not available or essential, for example, during a site selection phase. 2 appendices

  20. Radionuclide sorption from the safety evaluation perspective

    International Nuclear Information System (INIS)

    1992-01-01

    Research and development directed towards the assessment of the long-term performance of radioactive waste disposal systems has been recognised as a priority area with a strong need for international co-operation and co-ordination. The ultimate aims is to promote the quality and credibility of safety assessment techniques for radioactive waste disposal. Sorption in the geosphere is one of the key processes for retarding the transport of radionuclide from the underground disposal facility to the biosphere. In many cases, sorption in the near field and in the biosphere is also important. A workshop, organised to favor discussion around a small number of invited papers, was held in October 1991: - to evaluate critically the way sorption processes are incorporated in performance assessment models; - to identify open issues of high priority, and; - to propose future activities to resolve these issues. These proceedings reproduce the invited papers and the conclusions and recommendations adopted by the workshop. Eight papers are in the INIS SCOPE. The main subjects studied are: sorption database comparison, sorption database development and three case studies, experimental techniques, adsorption models

  1. Sorption of Organophosphorus Flame Retardants (OPFRs) on ...

    Science.gov (United States)

    Organophosphorus flame retardants (OPFRs) are widely used as additives in industrial and consumer products such as electrical and electronic products, furniture, plastics, textiles, and building/construction materials. Due to human exposure and potential health effects, OPFRs including tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) are EPA Action Plan chemicals for chemical assessments under the Toxic Substances Control Act (TSCA). This work investigated the sorption of these three compounds from the air to settled Arizona Test Dust (ATD) and house dust (HD) in a dual small chamber system. The OPFR exposed dust was analyzed to determine the sorption concentration and sorption rate of OPFRs on the dust. The effect of the composition of the dust on OPFR sorption was evaluated. The results showed that ATD and HD have varied sorption capacity for OPFRs from air. This work explores the relationship between OPFR concentrations in settled dust and air. The data can be used to determine partitioning of OPFRs between the gas phase and settled dust indoors and to inform strategies to reduce exposure and risk.

  2. Sorption of tylosin on clay minerals.

    Science.gov (United States)

    Zhang, Qian; Yang, Chen; Huang, Weilin; Dang, Zhi; Shu, Xiaohua

    2013-11-01

    The equilibrium sorption of tylosin (TYL) on kaolinite and montmorillonite was measured at different solution pH using batch reactor systems. The results showed that all the sorption isotherms were nonlinear and that the nonlinearity decreased as the solution pH increased for a given clay. At a specific aqueous concentration, the single-point sorption distribution coefficient (KD) of TYL decreased rapidly as the solution pH increased. A speciation-dependent sorption model that accounted for the contributions of the cationic and neutral forms of TYL fit the data well, suggesting that the sorption may be dominated by both ion exchange and hydrophobic interactions. The isotherm data also fit well to a dual mode model that quantifies the contributions of a site-limiting Langmuir component (ion exchange) and a non-specific linear partitioning component (hydrophobic interactions). X-ray diffraction analyses revealed that the interlayers of montmorillonite were expanded due to the uptake of TYL. TYL molecules likely form a monolayer surface coverage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Dynamical chaos of plasma ions in electrostatic waves

    International Nuclear Information System (INIS)

    Fasoli, A.; Kleiber, R.; Tran, M.Q.; Paris, P.J.; Skiff, F.

    1992-09-01

    Chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric response and the microscopic heating mechanisms have been investigated via optical diagnostic techniques based on laser induced fluorescence. Observations of test-particle dynamical evolution indicate an exponential separation of initially close ion trajectories. (author) 5 figs., 20 refs

  4. MDT WIRE TENSION MEASUREMENT USING AN ELECTROSTATIC METHOD

    CERN Document Server

    Balla, A; Esposito, B; Felici, G; Nedosekin, A; Ponzio, B; Russo, V; Spitalieri, M C

    1998-01-01

    An automated system to measure wire tension in MDT tubes is presented.The method uses electrostatic forces between wire and tube to excite mechanical oscillation around the wire harmonic resonance. A LC oscillating circuit is used to measure capacitance variation due towire oscillation. Wire tension is determined by the frequency at which the wirereaches the maximum oscillation amplitude. Both the excitation and measuring circuits are controlled by a computer.

  5. Review on the Modeling of Electrostatic MEMS

    Science.gov (United States)

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  6. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  7. Application trends for electrostatic ion beam accelerators

    International Nuclear Information System (INIS)

    Norton, G. A.

    2010-01-01

    Since 1930 to 1960 electrostatic accelerators were used primarily for nuclear structure research. This has changed dramatically in the decades that followed. This talk will discuss the applications and their effect on accelerator design and performance. The most recent use for electrostatic accelerators is in the field of pharmacokinetics, which is discussed with a tentative look for the future. (Author)

  8. Electrostatic mask protection for extreme ultraviolet lithography

    NARCIS (Netherlands)

    Moors, R.; Heerens, G.J.

    2002-01-01

    Electrostatic protection of mask for extreme ultraviolet lithography (EUVL) was discussed. Both charged and neutral particles could be prevented from moving towards the mask by choosing a nonuniform electrical field. Benefits of electrostatic protection are that it does not affect the EUV beam and

  9. Large aperture electrostatic dust detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2008-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 V has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5 x 5 cm) detector to microgram quantities of dust particles

  10. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  11. Electrostatic precipitator for air cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, P.; Eriksson, R.; Vlastos, A.

    1981-03-31

    An electrostatic precipitator is disclosed for air cleaning wherein the air passes through in two steps: first passing through a charging portion and next through a separation portion. The charging portion includes wires positioned parallel to and between parallel metal sheets, the wires having an electric potential other than that of the metal sheets. The separation portion includes plural parallel metal sheets, each of which has an electric potential other than that of adjacent metal sheets. The charging portion includes two or more wires between each pair of metal sheets, and the metal sheets of the charging portion extend through and constitute some of the metal sheets of the separation portion, between which are disposed addition metal sheets of an odd number.

  12. Electrostatic effect for the collisionless tearing mode

    International Nuclear Information System (INIS)

    Hoshino, M.

    1987-01-01

    Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987

  13. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  14. Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, N.; McBride, M.B.

    Copper and zinc sorption-desorption studies were carried out over a range of pH values using clay fractions separated from two horizons of an acid soil from New York. In the pH range of high sorption, as much as 95% of the sorbed metal could not be desorbed and thus was considered fixed. Sorption and fixation of Cu and Zn increased rapidly above pH 4 and 5, respectively, for the whole soil clays. Following removal of the oxide fraction by oxalate and citrate-dethionite extractions, sorption and fixation were reduced considerably at pH values below the onset of hydrolysis of the metals in bulk solution. Citrate-dithionite extraction was more effective than oxalate in reducing Zn sorption and fixation. These extraction procedures had less effect on the ability of the clays to sorb and fix Cu. It is concluded that microcrystalline and noncrystalline oxides in the clay fraction of this soil, representing < 20% off the clay by weight, provide reactive surfaces for the chemisorption of Cu and Zn. At low pH, adsorption at these surfaces may be the dominant mechanism of heavy metal immobilization, especially in the subsoil horizons.

  15. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations

    International Nuclear Information System (INIS)

    Wang Yu; Wang Lei; Fang Guodong; Herath, H.M.S.K.; Wang Yujun; Cang Long; Xie Zubin; Zhou Dongmei

    2013-01-01

    Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment. - Highlights: ► Application of the biochars for PCBs sorption was a new and effective way. ► The biochars had higher adsorption affinity for PCBs in the soil extracted solution. ► Pine needle chars adsorbed less nonplanar PCBs than planar ones. ► Coexisting humic acid or metal cations increased PCBs sorption on the biochars. - The biochars had higher adsorption affinity for PCBs in the extracted soil solution because coexisting humic acid and metal cations increased their sorption.

  16. Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite

    Science.gov (United States)

    Simpson, Joshua A.; Bowman, Robert S.

    2009-08-01

    We characterized the nonequilibrium sorption and transport of benzene, toluene, ethylbenzene, and xylenes (BTEX) by surfactant-modified zeolite (SMZ) in batch and column tests. The SMZ was shown in previous studies to be an effective sorbent for removal of BTEX from oilfield wastewaters prior to disposal or reuse. A two-site, first-order chemical nonequilibrium model was used to determine sorption parameters from the batch results. Individual BTEX linear sorption coefficients, Kd, ranged from 7.5 to 37 L kg - 1 and were independent of BTEX concentration or competing solutes, suggesting that partitioning was the mechanism of sorption. The Kd values were the same whether the zeolite was covered by a monolayer or bilayer of the surfactant hexadecyltrimethylammonium (HDTMA). Batch rate coefficients and the fraction of "instantaneous" sorption sites decreased with BTEX hydrophobicity and with total BTEX concentration. The fraction of "instantaneous" sites was 3-11 times greater for the monolayer as compared to the bilayer SMZ. These observations are consistent with a conceptual model in which BTEX are rapidly partitioned into hydrophobic monolayer surfaces and more slowly partitioned to hydrophilic bilayer surfaces. Results from the batch experiments were used to predict BTEX transport through columns of SMZ. Batch-derived rate and site-distribution parameters accurately described the transport dynamics, but the batch-derived Kds significantly underestimated BTEX retardation. Excess dissolved HDTMA in the batch experiments likely led to anomalously low Kd values for those determinations.

  17. Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Huelya [Forensic Medicine Foundation, Nasuhpasa Bath Street, No. 12, 16010 Heykel, Bursa (Turkey)]. E-mail: hkoyuncu@yyu.edu.tr; Kul, Ali Riza [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey)]. E-mail: alirizakul@yyu.edu.tr; Yildiz, Nuray [Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100 Tandogan, Ankara (Turkey)]. E-mail: nyildiz@eng.ankara.edu.tr; Calimli, Ayla [Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100 Tandogan, Ankara (Turkey)]. E-mail: calimli@eng.ankara.edu.tr; Ceylan, Hasan [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey)]. E-mail: hceylan@yyu.edu.tr

    2007-03-06

    The sorption of 3-methoxybenzaldehyde on activated kaolinites has been investigated at different temperatures. Two types of activation tests were performed. The sorption equilibrium was studied by sorption isotherms in the temperature range 303-333 K for natural (untreated), thermally and acid activated kaolinites. It was shown that the isotherm shapes were not affected by temperature and activation types of kaolinite. The absorbance data at 312 nm were fitted reasonably well with the Langmuir and Freundlich isotherm models and the model parameters were determined for different temperatures. Thermodynamic quantities such as Gibbs free energy ({delta}G), the enthalpy ({delta}H) and the entropy change of sorption ({delta}S) were determined for natural, thermally and acid activated kaolinites. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously. Adsorption capacity of acid activated kaolinite for 3-methoxybenzaldehyde was higher compared to that of natural and thermally activated kaolinites at various temperatures. The adsorption and desorption rate constants (k {sub a} and k {sub d}) were obtained separately by applying a geometric approach to the first order Langmuir model. This method provided good conformity between the K from Langmuir parameters and K {sub geo} (k {sub a}/k {sub d}) from geometric approach.

  18. Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites

    International Nuclear Information System (INIS)

    Koyuncu, Huelya; Kul, Ali Riza; Yildiz, Nuray; Calimli, Ayla; Ceylan, Hasan

    2007-01-01

    The sorption of 3-methoxybenzaldehyde on activated kaolinites has been investigated at different temperatures. Two types of activation tests were performed. The sorption equilibrium was studied by sorption isotherms in the temperature range 303-333 K for natural (untreated), thermally and acid activated kaolinites. It was shown that the isotherm shapes were not affected by temperature and activation types of kaolinite. The absorbance data at 312 nm were fitted reasonably well with the Langmuir and Freundlich isotherm models and the model parameters were determined for different temperatures. Thermodynamic quantities such as Gibbs free energy (ΔG), the enthalpy (ΔH) and the entropy change of sorption (ΔS) were determined for natural, thermally and acid activated kaolinites. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously. Adsorption capacity of acid activated kaolinite for 3-methoxybenzaldehyde was higher compared to that of natural and thermally activated kaolinites at various temperatures. The adsorption and desorption rate constants (k a and k d ) were obtained separately by applying a geometric approach to the first order Langmuir model. This method provided good conformity between the K from Langmuir parameters and K geo (k a /k d ) from geometric approach

  19. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. The Effect of Ventilation, Filtration and Passive Sorption on Indoor Air Quality in Museum Storage Rooms

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, M.; Clausen, Geo

    2009-01-01

    and filtration units. Passive sorption was initiated by hanging sheets of sorptive materials oil walls. The control strategies were evaluated in terms of their ability to lower the concentration of internally, generated pollutants, and the indoor-to-outdoor concentration ratio of outdoor pollutants. The overall...... environmental impact for each method was evaluated by the use of material dosimeters. It was found that passive sorption performed better in a small room compared to a large room. Mechanical ventilation and filtration with activated charcoal gave a high protection against ozone, but were less effective...

  1. Water sorption and transport in dry crispy bread crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, van N.H.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.

    2010-01-01

    Water sorption and dynamical properties of bread crust have been studied using gravimetric sorption experiments. Water uptake and loss were followed while relative humidity (RH) was stepwise in- or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment).

  2. Molecular simulation of polycyclic aromatic hydrocarbon sorption to black carbon

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2009-01-01

    Strong sorption of hydrophobic organic contaminants to soot or black carbon (BC) is an important environmental process limiting the bioremediation potential of contaminated soils and sediments. Reliable methods to predict BC sorption coefficients for organic contaminants are therefore required. A

  3. Tritium sorption on protective coatings for concrete

    International Nuclear Information System (INIS)

    Miller, J.M.; Senohrabek, J.A.; Allsop, P.A.

    1992-11-01

    Because of the high sorption level of tritium on unprotected concrete, a program to examine the effectiveness of various concrete coatings and sealants in reducing tritium sorption was undertaken, and various exposure conditions were examined. Coatings of epoxy, polyurethane, bituminous sealant, bituminous sealant covered with polyvinylidene chloride wrap, alkyd paint, and sodium silicate were investigated with tritium (HTO) vapor concentration, humidity and contact time being varied. An exposure to HT was also carried out, and the effect of humidity on the tritium desorption rate was investigated. The relative effectiveness of the coatings was in the order of bituminous sealant + wrap > bituminous sealant > solvent-based epoxy > 100%-solids epoxy > alkyd paint > sodium silicate. The commercially available coatings for concrete resulted in tritium sorption being reduced to less than 7% of unprotected concrete. This was improved to ∼0.1% with the use of the Saran wrap (polyvinylidene chloride). The amount of tritium sorbed was proportional to tritium concentration. The total tritium sorbed decreased with an increase in humidity. A saturation effect was observed with increasing exposure time for both the coated and unprotected samples. Under the test conditions, complete saturation was not achieved within the maximum 8-hour contact time, except for the solvent-based epoxy. The desorption rate increased with a higher-humidity air purge stream. HT desorbed more rapidly than HTO, but the amount sorbed was smaller. The experimental program showed that HTO sorption by concrete can be significantly reduced with the proper choice of coating. However, tritium sorption on concrete and proposed coatings will continue to be a concern until the effects of the various conditions that affect the adsorption and desorption of tritium are firmly established for both chronic and acute tritium release conditions. Material sorption characteristics must also be considered in

  4. SORPTION OF LEAD ON A RUTHENIUM COMPOUND: A MACROSCOPIC AND MICROSCOPIC STUDY

    Science.gov (United States)

    The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity ruthenium compound with time at pH 6 employing batch methods and X-ray absorption fine structure (XAFS) and X-ray diffraction (XRD) spectroscopies. For the spectroscopic studies, Pb so...

  5. Perspectives for application of moulded sorption materials based on peat and mineral compositions

    Science.gov (United States)

    Misnikov, Oleg

    2017-11-01

    The paper discusses scientific and technological grounds for using peat, its wastes and processing products as sorption materials for liquidation of pollutions on water and oil basis. A negative effect on the hydro-physical properties of peat by hysteresis phenomena occurring during drying is noted. Use of optimal concentrations of mineral hydrophilic additives in peat matrix allows to increase speed and capacity of sorption. A working hypothesis is proposed that explains the physical and chemical mechanism for increasing quality of composite sorbents. A principal technological scheme for obtaining sorption materials based on peat is developed. It allows to take into account possible transitions between stages of the technological process, which reduce its cost.

  6. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  7. Polyvinyl chloride Waste as an Adsorbent for the Sorption of Pb2+ from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Donbebe Wankasi

    2014-01-01

    Full Text Available The sorption of Pb2+ from solution by polyvinyl chloride waste was investigated. The morphological features of the polymer sample were studied using the energy dispersive X-ray spectroscopy (EDX, scanning electron microscopy (SEM, X-ray diffraction spectroscopy (XRD, and the Fourier transform infrared spectroscopy (FTIR. Equilibrium, kinetic, and thermodynamic batch adsorption experiments were carried out by the concentration, time, and temperature effects, respectively. The morphological image of the polymer showed irregular small size particles which indicated a high surface area and porosity that facilitated sorption. The adsorption studies recorded relatively rapid uptake of Pb2+ by the polymer which was mainly diffusion controlled and followed a second order kinetic process. The thermodynamic studies suggested relatively low temperature (low energy favoured sorption which was exothermic with a physisorption mechanism.

  8. A study of sorption of cadmium by goethite in aqueous solution

    Directory of Open Access Journals (Sweden)

    N. Salami

    2002-06-01

    Full Text Available Investigation has been carried out on the potential of a locally sourced goethite for the removal of cadmium ion from aqueous solutions using batch equilibration technique. The maximum uptake of cadmium is 6.4  10-2 mg/g-goethite. The sorption kinetics appears to be rapid as equilibrium was attained within a period of 1 hour. The highest sorption capacity was obtained for particle size with diameter (Φ 0.09 mm. Both infrared spectrophotometric and X-ray diffraction (XRD techniques have also provided evidence for cadmium fixation on to the surface of the goethite. The sorption mechanism appears to follow Langmuir adsorption isotherm model. The Langmuir constants K and Xm (mass of Cd2+ required to form monolayer on the entire surface of the goethite were 0.096 mg/g-goethite and 0.075 mg/g-goethite, respectively.

  9. Equilibrium electrostatics of responsive polyelectrolyte monolayers.

    Science.gov (United States)

    Wang, Kang; Zangmeister, Rebecca A; Levicky, Rastislav

    2009-01-14

    The physical behavior of polyelectrolytes at solid-liquid interfaces presents challenges both in measurement and in interpretation. An informative, yet often overlooked, property that characterizes the equilibrium organization of these systems is their membrane or rest potential. Here a general classification scheme is presented of the relationship between the rest potential and structural response of polyelectrolyte films to salt concentration. A numerical lattice theory, adapted from the polymer community, is used to analyze the rest potential response of end-tethered polyelectrolyte layers in which electrostatics and short-range contact interactions conspire to bring about different structural states. As an experimental quantity the rest potential is a readily accessible, nonperturbing metric of the equilibrium structure of a polyelectrolyte layer. A first set of measurements is reported on monolayers of end-tethered, single-stranded DNA in monovalent (NaCl) and divalent (MgCl(2)) counterion environments. Intriguingly, in NaCl electrolyte at least two different mechanisms appear by which the DNA layers can structurally relax in response to changing salt conditions. In MgCl(2) the layers appear to collapse. The possible molecular mechanisms behind these behaviors are discussed. These studies provide insight into phenomena more generally underlying polyelectrolyte applications in the chemical, environmental, and biotechnological fields.

  10. Sorption Properties of Some Romanian Gingerbread

    Directory of Open Access Journals (Sweden)

    Tulbure Anca

    2014-06-01

    Full Text Available Water activity of gingerbread is very important for keeping the product freshness and shelf life. Water activity is influenced by composition, water content and temperature. The water content of gingerbread could vary according with storage condition. i.e. rH. 11 gingerbread samples were analysed. The water content and water activity lies between 7.0 and 12.6% and respectively 0.590 and 0.715. The sorption isotherms were determined at 30°C by gravimetric method. The moisture sorption is influenced by composition, especially sweeteners and humectants. Honey and invert sugar have the same impact on gingerbread higroscopicity.

  11. Sorption studies of uranium in sediment-groundwater systems from the natural analogue sites of Needle's Eye and Broubster

    International Nuclear Information System (INIS)

    Higgo, J.J.; Falck, W.E.; Hooker, P.J.

    1990-01-01

    This report describes the results of sorption experiments designed to provide essential data for migration modelling. Sorption of 233 U from natural ground-water onto peat from Broubster and silt from Needle's Eye was studied under atmospheric conditions and different pH regimes. The temperature was maintained at 10 0 C and, in the case of Needle's Eye silt, the kinetics of sorption were followed. The results were analyzed in conjunction with speciation modelling in an attempt to understand the sorption mechanisms and to extrapolate the findings to cover the range of conditions likely to be met in the field. This work is part of the CEC project Mirage - Second phase, research area 'Natural analogues'

  12. Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Segura, E. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan s/n., C.P. 50000 Toluca (Mexico); Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico); Solache-Rios, M., E-mail: marcos.solache@inin.gob.mx [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico); Colin-Cruz, A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan s/n., C.P. 50000 Toluca (Mexico)

    2009-10-30

    Indigo carmine removal from aqueous solution has been evaluated using Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge treated with HCl (CM). The adsorbents were characterized by scanning electron microscopy, BET surface area and X-ray diffraction. Sorption kinetics and isotherms were determined and the adsorption behaviors analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results obtained with the Fe-zeolitic material, while kinetic first order and Langmuir-Freundlich models were applied to the results from the carbonaceous materials. This indicates mechanisms of chemisorption and physic sorption, respectively, on the heterogeneous materials. The results indicate that the carbonaceous material from the pyrolysis of sewage sludge (sorption capacity 92.83 mg/g) is a better adsorbent of indigo carmine than the zeolitic material (sorption capacity 32.83 mg/g).

  13. Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge

    International Nuclear Information System (INIS)

    Gutierrez-Segura, E.; Solache-Rios, M.; Colin-Cruz, A.

    2009-01-01

    Indigo carmine removal from aqueous solution has been evaluated using Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge treated with HCl (CM). The adsorbents were characterized by scanning electron microscopy, BET surface area and X-ray diffraction. Sorption kinetics and isotherms were determined and the adsorption behaviors analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results obtained with the Fe-zeolitic material, while kinetic first order and Langmuir-Freundlich models were applied to the results from the carbonaceous materials. This indicates mechanisms of chemisorption and physic sorption, respectively, on the heterogeneous materials. The results indicate that the carbonaceous material from the pyrolysis of sewage sludge (sorption capacity 92.83 mg/g) is a better adsorbent of indigo carmine than the zeolitic material (sorption capacity 32.83 mg/g).

  14. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids

    NARCIS (Netherlands)

    Koelmans, A.A.; Meulman, B.; Meijer, T.; Jonker, M.T.O.

    2009-01-01

    Strong sorption to black carbon may limit the environmental risks of organic pollutants, but interactions with cosorbing humic acid (HA) may interfere. We studied the attenuative effect of HA additions on the sorption of polychlorinated biphenyls (PCBs) to a charcoal. "Intrinsic" sorption to

  15. Suitability of Moshi Pumice for Phosphorus Sorption in Constructed ...

    African Journals Online (AJOL)

    The study of Moshi Pumice's phosphorus sorption behaviours and properties was carried out in laboratory scale where by 1-2 mm, 2-4 mm and 4-8 mm grains were tested using batch experiments. The results show that Moshi Pumice has high phosphorus sorption capacity. The sorption capacity for the Moshi Pumice was ...

  16. Phosphorus sorption in relation to soil grain size and geochemical ...

    African Journals Online (AJOL)

    By using stepwise regression, the combination of Al, Fe, clay and Ca predicted more than 94% of the variation in the P sorption capacity of soils samples from Simiyu and Kagera basins. These four soil properties, which are strongly related to P sorption, could therefore be used as quick tests for predicting the P sorption ...

  17. suitability of murram for phosphorus sorption in constructed wetlands

    African Journals Online (AJOL)

    Mimi

    ABSTRACT: The study of Moshi Pumice's phosphorus sorption behaviours and properties was carried out in laboratory scale where by 1-2 mm, 2-4 mm and 4-8 mm grains were tested using batch experiments. The results show that Moshi Pumice has high phosphorus sorption capacity. The sorption capacity for the Moshi ...

  18. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments

    NARCIS (Netherlands)

    Kwadijk, C.J.A.F.; Velzeboer, I.; Koelmans, A.A.

    2013-01-01

    To date, sorption of organic compounds to nanomaterials has mainly been studied for the nanomaterial in its pristine state. However, sorption may be different when nanomaterials are buried in sediments. Here, we studied sorption of Perfluorooctane sulfonate (PFOS) to sediment and to sediment with 4%

  19. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids.

    NARCIS (Netherlands)

    Koelmans, A.A.; Meulman, B.; Meijer, T.; Jonker, M.T.O.

    2009-01-01

    Strong sorption to black carbon may limit the environmental risks of organic pollutants, but interactions with cosorbing humic acid (HA) may interfere. We studied the attenuative effect of HA additions on the sorption of polychlorinated biphenyls (PCBs) to a charcoal. "Intrinsic" sorption to

  20. Phenanthrene sorption to Chinese coal: Importance of coal's geochemical properties

    International Nuclear Information System (INIS)

    Yan Caixia; Yang Yi; Liu Min; Nie Minghua; Zhou, John L.

    2011-01-01

    Highlights: → Phen was chosen as the probe compound for determining the sorption of PAHs to a series of different Chinese coal samples. → The combined partition and adsorption model yielded a better fit than the Freundlich isotherm. → Compared to total carbon, BC might play more important role in the sorption of Phen to coal samples. → Relationships between aromatic and aliphatic carbon contents and sorption parameters indicated the significance of aromatic and aliphatic carbon in the coal sorption behavior. - Abstract: Phenanthrene (Phen) was chosen as the probe compound for determining the sorption of PAHs to a series of different coal samples from China. Based on elemental analysis and nuclear magnetic resonance (NMR) spectra analysis, coal samples were characterized with different metamorphic evolutional degrees. The experimental sorption data were fitted well by the Freundlich model, suggesting enhanced sorption capacity and strong nonlinearity of coal samples. The combined partition and adsorption model yielded a better fit than the Freundlich isotherm, indicating that adsorption dominated the sorption at low aqueous concentrations. Correlations between coal properties and sorption capacity values indicated that C%, H/C and O/C atomic ratios were the key factors controlling the sorption behavior. Compared to total carbon, BC might play more important role in the sorption of Phen to coal samples. Moreover, there existed nonlinear relationships between combined carbon, aromatic and aliphatic carbon contents and log K Fr and n values, respectively, indicating the significance of aromatic and aliphatic carbon in the coal sorption behavior.

  1. Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors.

    Science.gov (United States)

    Guo, Xiaoying; Wang, Xilong; Zhou, Xinzhe; Ding, Xing; Fu, Bin; Tao, Shu; Xing, Baoshan

    2013-01-01

    Soil organic matter (SOM) in a peat soil, humic acid, and humin and their precursors (i.e., cellulose and lignin) were treated at high temperature (250 and 400 °C) with high pressure in a sealed platinum reaction kittle to simulate the influence of diagenesis on their composition and structure, and impact of the simulated diagenesis on sorption behaviors of hydrophobic organic compounds (HOCs) (i.e., naphthalene and 1-naphthol) by these samples was investigated. High temperature and pressure treatment greatly influenced chemical composition and physical properties of the original samples and their sorption for both naphthalene and 1-naphthol. Sorption of naphthalene by all samples was jointly regulated by hydrophobic and π-π interactions with their alkyl and aromatic carbon moieties, which was derived from the positive correlation between total hydrophobic carbon content of all sorbents and their organic carbon content-normalized sorption coefficients (Koc) for this compound (p = 0.075). However, sorption of 1-naphthol by the tested sorbents was governed by hydrogen bonding with their O-containing polar functionalities, as derived from the positive correlation between Koc values of 1-Naph and their polarity index ((O+N)/C). Difference in sorption mechanisms of naphthalene and 1-naphthol by the original and treated samples noted the great influence of chemical composition of sorbates on their interaction and essential roles of specific interactions (e.g., hydrogen bonding) in sorption of polar compound (i.e., 1-naphthol) to these sorbents. Surface area (SA) and porosity data of sorbents obtained from N2 sorption-desorption isotherms at 77 K showed that new SA and pores were created during the diagenetic process of all original samples, which provided substantial sorption sites and thus enhanced sorption of naphthalene and 1-naphthol. Among all tested samples, physicochemical properties of cellulose were most strongly affected by the simulated diagenetic process

  2. Sorption of caesium and strontium onto calcium silicate hydrate in saline groundwater

    International Nuclear Information System (INIS)

    Sugiyama, D.; Fujita, T.

    2005-01-01

    Full text of publication follows: In the concept for radioactive waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. The sorption of radionuclides onto cement materials, which controls the aqueous concentrations of elements in the pore-water, is a very important parameter when considering the release of radionuclides from the near field of a cementitious radioactive waste repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium (10 -5 ∼ 10 -2 mol dm -3 ) and sodium (10 -4 ∼ 10 -1 mol dm -3 ) onto Calcium Silicate Hydrate (C-S-H gel, Ca/Si 0.65 ∼ 1.2) at a liquid:solid ratio of 100:1, to support the assumption. In addition, the competitive sorption between caesium or strontium, and sodium is studied by sorption measurements using a range of sodium chloride concentration to simulate different ionic strengths in saline groundwater. The initial and equilibrated aqueous compositions were measured in the sorption experiments and it was found that caesium, strontium and sodium were sorbed by substitution for Ca in C-S-H phases by examining the mass balance. Based on the experimental results, we propose a modelling approach in which the ion-exchange model is employed and the presence of some calcium sites with different ion-exchange log K values in C-S-H is assumed by considering the composition and the structure of C-S-H. The modelling calculation results predict the measured Rd values well and also describe the competition of sorption of caesium or strontium, and sodium in the experiments. The log K values for sorption of each cation element decreased as Ca/Si ratio of C-S-H gel increased. This agrees with the trend that C-S-H gel is negatively charged at low

  3. Sorption interactions of heavy metals with biochar in soil remediation studies

    Science.gov (United States)

    Fristak, Vladimir; Friesl-Hanl, Wolfgang; Wawra, Anna; Soja, Gerhard

    2015-04-01

    study of sorption mechanisms showed differences in the sorption of the targeted heavy metals in relation to the contribution of ion-exchange and precipitation processes. We confirmed the effectivity of physico-chemical artificial aging on sorption capacity of biochar in terms of changes in surface structure. Based on these results, the application potential of biochar as sorption material for stabilizing heavy metals in soils is discussed.

  4. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide

    International Nuclear Information System (INIS)

    Teutli S, E. A.

    2011-01-01

    sorbent, increased when using from 0.02 to 0.14 g of hematite. The results showed that the Elovich model described the process of sorption kinetics, and Langmuir, Freundlich and Langmuir-Freundlich models the sorption isotherm. These results indicated that the mechanism of sorption was the chemisorption. Also, desorption studies were carried out, and it was observed that the fluoride ions can be removed from the modified hematite using NaCl or NaOH solutions, desorption was more efficient using NaOH solution. (Author)

  5. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2013-01-01

    Full Text Available Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by series expansions in terms of solutions of the Laplace function. Based on this model, the electrostatic adhesion force was calculated using the Maxwell stress tensor formulation. Several important factors which may influence the electrostatic adhesion force were analysed and discussed by both FEM simulation and theoretical calculation. In addition, experiments on the adhesion performance of the electrode panel and the climbing performance of the robot on various wall materials were carried out. Both the simulation and experiment results verify the feasibility of electrostatic adhesion technology being applied on wall climbing robots. The theoretical model and calculation method for the electrostatic adhesion force proposed in this paper are also justified.

  6. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani-Sani, Abolfazl [Wastewater Division, Faculty of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar (Iran, Islamic Republic of); Hosseini-Bandegharaei, Ahmad, E-mail: ahoseinib@yahoo.com [Wastewater Division, Faculty of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar (Iran, Islamic Republic of); Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar (Iran, Islamic Republic of); Hosseini, Seyyed-Hossein [Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar (Iran, Islamic Republic of); Kharghani, Keivan [Water Division, Department of Engineering, Torbat-e-Hydarieh Branch, Islamic Azad University, PO Box 121, Torbat-e-Hydarieh (Iran, Islamic Republic of); Zarei, Hossein [Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar (Iran, Islamic Republic of); Rastegar, Ayoob [Wastewater Division, Faculty of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar (Iran, Islamic Republic of); Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar (Iran, Islamic Republic of)

    2015-04-09

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions.

  7. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    International Nuclear Information System (INIS)

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-01-01

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions

  8. Flexures for large stroke electrostatic actuation in MEMS

    International Nuclear Information System (INIS)

    Krijnen, B; Brouwer, D M

    2014-01-01

    The stroke of a microelectromechanical systems (MEMS) stage suspended by a flexure mechanism and actuated by electrostatic comb-drives is limited by pull-in. A method to analyze the electrostatic stability of a flexure mechanism and to optimize the stroke with respect to the footprint of flexure mechanisms is presented. Four flexure mechanisms for large stroke are investigated; the standard folded flexure, the slaved folded flexure, the tilted folded flexure and the Watt flexure. Given a certain stroke and load force, the flexures are optimized to have a minimum wafer footprint. From these optimizations it is concluded that the standard folded flexure mechanism is the best flexure mechanism for relatively small strokes (up to ±40 μm) and for larger strokes it is better to use the tilted folded flexure. Several optimized flexure mechanisms have been fabricated and experimentally tested to reach a stroke of ±100 μm. The displacement of the fabricated stages as a function of the actuation voltage could be predicted with 82% accuracy, limited by the fairly large tolerances of our fabrication process. (paper)

  9. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  10. Radionuclide sorption and migration studies of getters for backfill barriers

    International Nuclear Information System (INIS)

    Nowak, E.J.

    1980-07-01

    Bentonite and hectorite clay minerals were chosen for study and development as potential backfill materials for testing in the proposed Waste Isolation Pilot Plant (WIPP), a radioactive waste repository and test facility in bedded salt. This choice of materials was based on initial screening results which are presented and on the predicted physical properties of these materials. These properties were verified experimentally in concentrated brines specific to the WIPP site. Distribution coefficients, K/sub d/, were calculated from batch sorption measurements on bentonite and hectorite in the nearly saturated brines A and B. The resulting K/sub d/ values were in the range of (1 to 5) x 10 3 ml/g for europium; (2 to 40) x 10 3 ml/g for plutonium(IV); and (4 to 16) x 10 3 ml/g for americium(III). A silica- and calcite-containing sand mixed with bentonite and hectorite acted as a sorber of americium(III) but was merely an inert diluent for plutonium(IV). Pertechnetate anions (TcO 4 - ) sorbed on activated charcoal with K/sub d/ values in the range of (0.2 to 0.4) x 10 3 ml/g. Pertechnetate, cesium, and strontium ions in brine were not sorbed appreciably by bentonite or hectorite. Although experimental evidence is given for a possible role of solubility in the sorption of europium on getters, other data presented here and evidence from the literature are inconsistent with a simple single reaction sorption mechanism. It is concluded that a backfill containing bentonite on hectorite and activated charcoal is potentially an effective barrier to the migration of Eu(III), Pu(IV), and Am(III) cations and, with further development, to the migration of TcO 4 - anions as well

  11. Intrinsic electrostatic effects in nanostructured ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Uberuaga, Blas Pedro [Los Alamos National Laboratory; Stanek, Chris R [Los Alamos National Laboratory; Nerikar, Pankaj V [Los Alamos National Laboratory

    2009-01-01

    Using empirical potentials, we have found that electrostatic dipoles can be created at grain boundaries formed from non-polar surfaces of fluorite-structured materials. In particular, the {Sigma}5(310)/[001] symmetric tilt grain boundary reconstructs to break the symmetry in the atomic structure at the boundary, forming the dipole. This dipole results in an abrupt change in electrostatic potential across the boundary. In multilayered ceramics composed of stacks of grain boundaries, the change in electrostatic potential at the boundary results in profound electrostatic effects within the crystalline layers, the nature of which depends on the electrostatic boundary conditions. For open-circuit boundary conditions, layers with either high or low electrostatic potential are formed. By contrast, for short-circuit boundary conditions, electric fields can be created within each layer, the strength of which then depends on the thickness of the layers. These electrostatic effects may have important consequences for the behavior of defects and dopants within these materials and offer the possibility of interesting technological applications.

  12. Influence of Fulvic Acid Coatings on Plutonium Sorption to Goethite Colloids

    Science.gov (United States)

    Tinnacher, R. M.; Begg, J.; Powell, B. A.; Zavarin, M.; Kersting, A. B.

    2011-12-01

    underlying mechanisms of FA effects on Pu sorption behavior. First results for pre-complexed Pu-FA systems show an increase in the Pu fractions sorbed onto goethite in the presence of fulvic acid relative to binary Pu-goethite controls. Furthermore, in ternary systems the rates of overall metal sorption reactions appear to be faster and very similar to those for FA sorption. The latter suggests the potential formation of ternary Pu-FA surface complexes on goethite, either by direct sorption of Pu-FA solution complexes or after the rapid creation of an initial organic matter surface coating. In this presentation, results will be further compared to Pu sorption behavior in systems with initially FA-coated goethite. In addition, we will discuss potential differences in Pu desorption behavior in these three systems. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. A suggested approach toward measuring sorption and applying sorption data to repository performance assessment

    International Nuclear Information System (INIS)

    Rundberg, R.S.

    1991-01-01

    The sorption of radioisotopes in relation to geologic disposal of radioactive wastes is discussed. Properties of the radioactive materials, rocks, and minerals, and the chemistry involved are described. 51 refs., 12 figs. CBS

  14. Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust

    Science.gov (United States)

    Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun

    2018-02-01

    The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.

  15. Sorption of fission nuclides on model milk components. II. Sorption of radiostrontium on hydroxyapatite in milk and whey

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.

    1999-01-01

    In this work the whey was chosen as a model solution of liquid phase for sorption study of strontium on hydroxyapatite. The whey was obtained using two methods - ultracentrifugation and precipitation of casein. The sorption was studied at a different pH and at a different concentration of calcium. The sorption of strontium on hydroxyapatite from milk was studied, too. (authors)

  16. Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation. Principles and Practice

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Klamer, Morten; Venås, Thomas Mark

    2010-01-01

    for obtaining sorption isotherms are very time consuming. With new dynamic vapour sorption (DVS) instrumentation, the acquisition of data for constructing sorption isotherms is suddenly dramatically lowered. Where the traditional methods often required months, data can now be obtained in a matter of days...

  17. Illumination of Double Snapback Mechanism in High Voltage Operating Grounded Gate Extended Drain N-type Metal-Oxide-Semiconductor Field Effects Transistor Electro-Static Discharge Protection Devices

    Science.gov (United States)

    Kim, Kil Ho; Jung, Yong Icc; Shim, Jin Seop; So, Hyung Tae; Lee, Ji Hyun; Hwang, Lee Yeun; Park, Jin Won

    2004-10-01

    High current behaviors of the ‘grounded gate extended drain N-type metal-oxide-semiconductor field effects transistor’ (GG_EDNMOS) electro-static discharge (ESD) protection devices are analyzed. Both the transmission line pulse (TLP) data and the thermal incorporated 2-dimensional simulation analyses demonstrate a characteristic double snapback phenomenon after triggering of biploar junction transistor (BJT) operation. This implies the co-existence of two different on-states in high current region. The 2nd on-state, characterized by extremely low snapback holding voltage and low on-resistance, seems to be responsible for the vulnerability of the device under ESD stress. Simulation based contour analyses reveal that combination of BJT operation and deep electron channeling induced by high electron injection gives rise to the 2nd on-state. Thus, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Further studies reveal that the N-drift implant dose, among various process parameters, is a critical factor to determine the formation of deep electron channeling and consequential occurrence of the 2nd on-state. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  18. Introduction to numerical electrostatics using MATLAB

    CERN Document Server

    Dworsky, Lawrence N

    2014-01-01

    The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers

  19. Specific Electrostatic Molecular Recognition in Water

    DEFF Research Database (Denmark)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne

    2016-01-01

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide......-bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen-bond complementarities. From MD...

  20. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  1. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    International Nuclear Information System (INIS)

    Ochs, Michael; Ganter, Charlotte; Tachi, Yukio; Suyama, Tadahiro; Yui, Mikazu

    2011-02-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of K d as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental K d values. The overall error in K d is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  2. Pyrene sorption by natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Chefetz, B.; Deshmukh, A.P.; Hatcher, P.G.; Guthrie, E.A. [Ohio State University, Columbus, OH (USA). Dept. of Chemistry

    2000-07-15

    Sorption of pyrene on various types of natural organic matter (NOM) varying in chemical composition (e.g. high aliphaticity or aromaticity) was examined in batch sorption studies. The NOM samples (cuticle, humin, humic acid, degraded lignin, peat and lignite) were characterized by elemental analyses and solid-state {sup 13}C NMR spectra. Previous studies on polycyclic aromatic hydrocarbons (PAHs) sorption on soils and sediments led to the conclusion that aromatic component of the NOM determines the binding of nonionic compounds and that the polarity of the NOM reduces the binding coefficient of the aromatic NOM moieties. In this study the hypothesis that aliphatic moieties of NOM derived from soils or sediments can contribute significantly to the binding of PAHs in aqueous media was tested. Cuticle and a humin sample from an hnalgal deposit exhibited the highest distribution coefficients (K{sub oc}). Both samples were rich in aliphatic structures and had very low aromaticity (4.6 and 8.8% for cuticle and humin samples, respectively). A positive trend was observed between the K{sub oc} level and the aliphaticity of the NOM, calculated from the {sup 13}C NMR spectra. This study demonstrates that aliphatic NOM compounds significantly sorb pyrene in aqueous solution, thus leading to the conclusion that the contribution of these groups to the sorption of aromatic nonionic pollutants in complex NOM matrices can be significant. 32 refs., 4 figs., 3 tabs.

  3. Enhancement of the bentonite sorption properties.

    Science.gov (United States)

    Mockovciaková, Annamária; Orolínová, Zuzana; Skvarla, Jirí

    2010-08-15

    The almost monomineral fraction of bentonite rock-montmorillonite was modified by magnetic particles to enhance its sorption properties. The method of clay modification consists in the precipitation of magnetic nanoparticles, often used in preparing of ferrofluids, on the surface of clay. The influence of the synthesis temperature (20 and 85 degrees C) and the weight ratio of bentonite/iron oxides (1:1 and 5:1) on the composite materials properties were investigated. The obtained materials were characterized by the X-ray diffraction method and Mössbauer spectroscopy. Changes in the surface and pore properties of the magnetic composites were studied by the low nitrogen adsorption method and the electrokinetic measurements. The natural bentonite and magnetic composites were used in sorption experiments. The sorption of toxic metals (zinc, cadmium and nickel) from the model solutions was well described by the linearized Langmuir and Freundlich sorption model. The results show that the magnetic bentonite is better sorbent than the unmodified bentonite if the initial concentration of studied metals is very low. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Development of a microminiature sorption cooler

    NARCIS (Netherlands)

    Burger, Johannes; Holland, Harry; ter Brake, Marcel; Rogalla, Horst; Wade, Larry

    1997-01-01

    The development of a microcooler for operations below 80 K, for low temperature electronic devices requiring small cooling powers of the order of 10 mW is described. A sorption compressor combined with Joule-Thomson (JT) expansion was selected for miniaturization. The advantage of the system is

  5. A Sorption Hysteresis Model For Cellulosic Materials

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars

    2006-01-01

    The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and/or i...

  6. Sorption of methanol in alkali exchange zeolites

    NARCIS (Netherlands)

    Rep, M.; Rep, M.; Corma, Avelino; Palomares, A.E.; Palomares gimeno, A.E.; van Ommen, J.G.; Lefferts, Leonardus; Lercher, J.A.

    2000-01-01

    Metal cation methanol sorption complexes in MFI (ZSM5), MOR and X have been studied by in situ i.r. spectroscopy in order to understand the nature of interactions of methanol in the molecular sieve pores. The results show that (a) a freely vibrating hydroxy and methyl group of methanol exist on

  7. Radionuclide sorption database for Swiss safety assessment

    International Nuclear Information System (INIS)

    McKinley, I.G.; Hadermann, J.

    1984-10-01

    Recommended sorption data for use in transport models for a Swiss High-Level Waste repository are presented. The models used in 'Project Gewaehr 1985' assume linear sorption isotherms and require elemental partition coefficient (Kd) data. On the basis of a literature search 'realistic' Kd data for 22 elements have been selected for weathered crystalline rock and sediments in contact with a reducing groundwater and also sediments with a less reducing groundwater. In an appendix sorption data for 28 elements on bentonite backfill are given. These data are supplemented with 'conservative' estimates taken to represent minimum reasonable values. Available data are discussed for each element clearly exhibiting (i) the large gaps in knowledge, (ii) their unbalanced distribution between different elements and, hence, (iii) the need for further experiments in the laboratory, the field and analogue studies. An overview of the theoretical concepts of sorption, experimental methodology and data interpretation is given in order to put the values into context. General problem areas are identified. (Auth.)

  8. Sorption of organic gases in residential rooms

    Science.gov (United States)

    Singer, Brett C.; Hodgson, Alfred T.; Hotchi, Toshifumi; Ming, Katherine Y.; Sextro, Richard G.; Wood, Emily E.; Brown, Nancy J.

    Experiments were conducted to characterize organic gas sorption in residential rooms studied "as-is" with furnishings and material surfaces unaltered and in a furnished chamber designed to simulate a residential room. Results are presented for 10 rooms (five bedrooms, two bathrooms, a home office, and two multi-function spaces) and the chamber. Exposed materials were characterized and areas quantified. A mixture of volatile organic compounds (VOCs) was rapidly volatilized within each room as it was closed and sealed for a 5-h Adsorb phase; this was followed by 30-min Flush and 2-h closed-room Desorb phases. Included were alkane, aromatic, and oxygenated VOCs representing a range of ambient and indoor air pollutants. Three organophosphorus compounds served as surrogates for Sarin-like nerve agents. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at a surface sink and potentially a second, embedded sink. The 3-parameter sink-diffusion model provided acceptable fits for most compounds and the 4-parameter two-sink model provided acceptable fits for the others. Initial adsorption rates and sorptive partitioning increased with decreasing vapor pressure for the alkanes, aromatics and oxygenated VOCs. Best-fit sorption parameters obtained from experimental data from the chamber produced best-fit sorption parameters similar to those obtained from the residential rooms.

  9. Internal Electrostatic Discharge Monitor - IESDM

    Science.gov (United States)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  10. Electrostatic extrusion as a dispersion technique for encapsulation of cells and bioactive compounds

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2012-01-01

    Full Text Available Significant development of cells and bioactive compound encapsulation technologies is taking place due to an exceptional possibility of their application in various scientific disciplines, including biomedicine, pharmacy, cosmetology, food and agricultural sciences, beverage production, industrial waste treatment. Despite the broad application of microencapsulation, the literature reviews on dispersion techniques for microcapsule/microbead production, their advantages, restrictions and drawbacks are scarce. The purpose of this paper is to assess the possibilities of electrostatic extrusion for encapsulation of biological material, including living cells in hydrogel microbeads. The paper presents an overview of the mechanisms of droplet formation and controlling experimental parameters for producing microbeads by means of electrostatic extrusion. Electrostatic droplet formation utilizes a special type of physical process taking advantage of electrostatic effects occurring in flowing conductive liquids after introduction of an electric field.When an electrostatic field is applied to the metal needle and an electric charge is induced in the liquid flowing out of the needle, the size of droplet detaching from the needle tip decreases as a funcion of applied electrostatic field. It has been shown that few parameters affect microbead size: applied voltage, electrode geometry, needle size, polarity arrangement and polymer concentration. The electrostatic droplet formation is one of the most precise methods, which enables one to produce spherical and uniform particles ranging from 100 μm up to 1000 μm. Most of the authors report that the encapsulated compounds (drugs, enzymes and living cells remain unaltered after electrostatic extrusion. This technique seems to be particularly promising in biotechnology, pharmaceutical and cosmetics industries, where a low-temperature process, preserving heat-sensitive material is a prerequisite. Future efforts in

  11. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    International Nuclear Information System (INIS)

    Powell, Brian; Schlautman, Mark; Rao, Linfeng; Nitsche, Heino; Gregorich, Kenneth

    2016-01-01

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gaps still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in

  12. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Schlautman, Mark [Clemson Univ., SC (United States); Rao, Linfeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nitsche, Heino [Univ. of California, Berkeley, CA (United States); Gregorich, Kenneth [Univ. of California, Berkeley, CA (United States)

    2016-02-02

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gaps still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in

  13. A facile synthesis of Fe3O4-charcoal composite for the sorption of a hazardous dye from aquatic environment.

    Science.gov (United States)

    Ahmed, Md Juned K; Ahmaruzzaman, M

    2015-11-01

    Herein, we synthesized Fe3O4-charcoal composite using chemical precipitation technique and utilized it for the sorption of methylene blue from aqueous solution. The synthesized composite was characterized by Infra-red spectroscopy, N2 adsorption-desorption isotherm, X-ray diffraction, selected area electron diffraction, transmission electron microscopy, and vibrating sample magnetometer. The composite depicts absorption bands conforming to Fe-O, -OH, CO, and C-O vibrations. The composite was mesoporous in nature with a surface area of 387.30 m(2) g(-1). The observed diffraction planes correspond to face-centered cubic Fe3O4 and disordered graphitic carbon. The spherical Fe3O4 particles (average diameter ∼13.8 nm) were uniformly distributed in the carbon matrix of the charcoal. The saturation and remanent magnetizations demonstrate its potential for magnetic separation and reuse. The composite showed dye sorption capacities of 97.49 mg g(-1) and 90.85 mg g(-1) in batch and fixed-bed system. Pseudo-second order kinetics and Temkin isotherm best represented the sorption data. The sorption process was endothermic, spontaneous, and administered by electrostatic, π-π dispersive interactions, film, and intraparticle diffusion. Microwave irradiations followed by methanol elution regenerated the dye-loaded composite with nearly no loss in sorption capacity. The recovery of energy and potential utilization of bottom ash enhances the prospective of Fe3O4-charcoal composite for industrial applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  15. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  16. Sorption behaviour of perfluoroalkyl substances in soils.

    Science.gov (United States)

    Milinovic, Jelena; Lacorte, Silvia; Vidal, Miquel; Rigol, Anna

    2015-04-01

    The sorption behaviour of three perfluoroalkyl substances (PFASs), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonic acid (PFBS), was studied in six soils with contrasting characteristics, especially in the organic carbon content. Sorption isotherms were obtained by equilibrating the soil samples with 0.01 mol L(-1) CaCl2 solutions spiked with increasing concentrations of the target PFAS. The sorption reversibility of PFASs was also tested for some of the samples. Liquid chromatography coupled to tandem mass spectrometry was used to quantify the target PFASs in the solutions. Both the Freundlich and linear models were appropriate to describe the sorption behaviour of PFASs in soils, and enabled us to derive solid-liquid distribution coefficients (Kd) for each compound in each soil. Kd values increased from 19 to 295 mL g(-1) for PFOS, from 2.2 to 38 mL g(-1) for PFOA and from 0.4 to 6.8 mL g(-1) for PFBS, and were positively correlated with the organic carbon content of the soil. KOC values obtained from the correlations were 710, 96 and 17 mL g(-1) for PFOS, PFOA and PFBS, respectively. Whereas Kd values decreased in the sequence PFOS>PFOA>PFBS, desorption yields were lower than 13% for PFOS, from 24 to 58% for PFOA, and from 32 to 60% for PFBS. This shows that the physicochemical characteristics of PFASs, basically their hydrophobicity, controlled their sorption behaviour in soils, with PFOS being the most irreversibly sorbed PFAS. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Long Term Sorption Diffusion Experiment (LTDE-SD). Performance of main in situ experiment and results from water phase measurements

    Energy Technology Data Exchange (ETDEWEB)

    Widestrand, Henrik; Byegaard, Johan; Nilsson, Kersti; Hoeglund, Susanne; Gustafsson, Erik (Geosigma AB, Uppsala (Sweden)); Kronberg, Magnus (Swedish Nuclear Fuel and Waste Management Co. (Sweden))

    2010-12-15

    The LTDE-SD experiment, (Long Term Sorption Diffusion Experiment) aimed at increasing the scientific knowledge of sorption and diffusion under in situ conditions and to provide data for performance and safety assessment calculations. Performance and results of the in situ experiment phase are presented in the report. In total, 21 radionuclide trace elements and one stable trace element were injected, circulated and sampled for approx6.5 months in a closed borehole section. The trace elements represented non-sorbing tracers and sorbing tracers for which the sorption was dominated by a cation exchange mechanism, a surface complexation mechanism, or dependent on an electrochemical reduction in order to reach the tetravalent state (oxidation state IV) considered very strongly sorbing. The borehole section in contact with the tracer labelled groundwater consisted in part of a natural fracture surface and a borehole section in the unaltered matrix rock, devoid of natural fractures. Water samples were regularly extracted and analysed for trace element concentration and a few ion exchange speciation and filtered samplings were also conducted. Independent colloid filtering and chemical speciation calculations were performed in support the evaluation. Sorption was demonstrated for a series of elements present in the experiment. The amounts lost of the different respective tracers from the aqueous phase follow very well the general understanding of the relative sorption strength of the tracers, as inferred from e.g. batch sorption experiments and dynamic in situ tracer experiments. The chemical speciation calculations of the different tracers were in line with the results of the ion exchange speciation performed during the experiment. With the exception of UO{sub 2} 2+ carbonate complexes formed, no strong indications were obtained that aqueous complexation prevents adsorption under the chemical conditions of the experiment. The 20 nm filtered sampling indicated that

  18. Flexible electrostatic nanogenerator using graphene oxide film.

    Science.gov (United States)

    Tian, He; Ma, Shuo; Zhao, Hai-Ming; Wu, Can; Ge, Jie; Xie, Dan; Yang, Yi; Ren, Tian-Ling

    2013-10-07

    Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could significantly enhance the output voltage from 0.1 V to 2.0 V. The mechanism of our nanogenerator can be explained by an electrostatic effect, which is fundamentally different from that of previously reported piezoelectric and triboelectric generators. In this manuscript, we demonstrate flexible nanogenerators with large-area graphene based materials, which may open up new avenues of research with regard to applications in energy harvesting.

  19. Nanoscale electrostatic actuators in liquid electrolytes.

    Science.gov (United States)

    Boyd, James G; Kim, Doyoung

    2006-09-15

    Equilibrium and energy analyses were performed for an electrostatic actuator consisting of two plane parallel electrodes, operated using DC voltages, separated by a liquid electrolyte. One electrode is fixed, and the other electrode is connected to a spring and is free to move. The mechanical equilibrium includes the spring force, the van der Waals force, and the electrochemical force as given by the solution of the linearized Poisson-Boltzmann equation. The electrode separation is determined as a function of the applied potential, the natural (i.e., zeta) potential, the Debeye length, the initial electrode separation, the spring constant, and the Hamaker constant. The actuator exhibits the classical "pull-in" instability. The natural potential increases the critical applied potential but does not significantly affect the critical separation. For zero natural potential, the spring constant does not affect the critical separation. Ratios of the maximum spring energy, the maximum van der Waals energy, and the maximum electrochemical energy were plotted as functions of the Hamaker constant and the initial electrode separation.

  20. SORPTION OF Au(III BY Saccharomyces cerevisiae BIOMASS

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2010-07-01

    Full Text Available Au(III sorption by S. cerevisiae biomass extracted from beer waste industry was investigated. Experimentally, the sorption was conducted in batch method. This research involved five steps: 1 identification the functional groups present in the S. cerevisiae biomass by infrared spectroscopic technique, 2 determination of optimum pH, 3 determination of the sorption capacity and energy, 4 determination of the sorption type by conducting desorption of sorbed Au(III using specific eluents having different desorption capacity such as H2O (van der Waals, KNO3 (ion exchange, HNO3 (hydrogen bond, and tiourea (coordination bond, 5 determination of effective eluents in Au(III desorption by partial desorption of sorbed Au(III using thiourea, NaCN and KI. The remaining Au(III concentrations in filtrate were analyzed using Atomic Absorption Spectrophotometer. The results showed that: 1 Functional groups of S. cerevisiae biomass that involved in the sorption processes were hydroxyl (-OH, carboxylate (-COO- and amine (-NH2, 2 maximum sorption was occurred at pH 4, equal to 98.19% of total sorption, 3 The sorption capacity of biomass was 133.33 mg/g (6.7682E-04 mol/g and was involved sorption energy 23.03 kJ mol-1, 4 Sorption type was dominated by coordination bond, 5 NaCN was effective eluent to strip Au(III close to 100%.   Keywords: sorption, desorption, S. cerevisiae biomass, Au(III

  1. DelPhiForce web server: electrostatic forces and energy calculations and visualization.

    Science.gov (United States)

    Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil

    2017-11-15

    Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones.

    Science.gov (United States)

    Dollinger, Jeanne; Dagès, Cécile; Voltz, Marc

    2017-04-01

    The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.

  3. Sorption of cesium and strontium from concentrated brines by backfill barrier materials

    International Nuclear Information System (INIS)

    Winslow, C.D.

    1981-03-01

    The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10 -11 to 10 -5 M and a Cs(I) concentration range of 10 -8 to 10 -5 M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week

  4. The Electrocardiogram as an Example of Electrostatics

    Science.gov (United States)

    Hobbie, Russell K.

    1973-01-01

    Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)

  5. The Electrostatic Actuated Next Generation Microshutter Arrays

    Data.gov (United States)

    National Aeronautics and Space Administration — The field of view required for future missions is much larger than James Webb Space Telescope (JWST). We need to use electrostatic actuation to replace magnetic...

  6. Electrostatic correlations: from plasma to biology

    International Nuclear Information System (INIS)

    Levin, Yan

    2002-01-01

    Electrostatic correlations play an important role in physics, chemistry and biology. In plasmas they result in thermodynamic instability similar to the liquid-gas phase transition of simple molecular fluids. For charged colloidal suspensions the electrostatic correlations are responsible for screening and colloidal charge renormalization. In aqueous solutions containing multivalent counterions they can lead to charge inversion and flocculation. In biological systems the correlations account for the organization of cytoskeleton and the compaction of genetic material. In spite of their ubiquity, the true importance of electrostatic correlations has come to be fully appreciated only quite recently. In this paper, we will review the thermodynamic consequences of electrostatic correlations in a variety of systems ranging from classical plasmas to molecular biology

  7. Electrostatic Spectrometer for Mars Rover Wheel

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a simple electrostatic spectrometer that can be mounted on the wheels of a Mars rover to continuously and unobtrusively determine the mineral composition and...

  8. Electrostatic interactions in gas-solid chromatography.

    Science.gov (United States)

    Benson, S. W.; King, J., Jr.

    1966-01-01

    Electrostatic theory of physical adsorption applied to gas-solid chromatography, discussing chromatographic inseparability of argon and oxygen at room temperature, prediction of elution order of many gases, etc

  9. Modeling of Cd(II) sorption on mixed oxide

    International Nuclear Information System (INIS)

    Waseem, M.; Mustafa, S.; Naeem, A.; Shah, K.H.; Hussain, S.Y.; Safdar, M.

    2011-01-01

    Mixed oxide of iron and silicon (0.75 M Fe(OH)3:0.25 M SiO/sub 2/) was synthesized and characterized by various techniques like surface area analysis, point of zero charge (PZC), energy dispersive X-rays (EDX) spectroscopy, Thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR) and X-rays diffraction (XRD) analysis. The uptake of Cd/sup 2+/ ions on mixed oxide increased with pH, temperature and metal ion concentration. Sorption data have been interpreted in terms of both Langmuir and Freundlich models. The Xm values at pH 7 are found to be almost twice as compared to pH 5. The values of both DH and DS were found to be positive indicating that the sorption process was endothermic and accompanied by the dehydration of Cd/sup 2+/. Further, the negative value of DG confirms the spontaneity of the reaction. The ion exchange mechanism was suggested to take place for each Cd/sup 2+/ ions at pH 5, whereas ion exchange was found coupled with non specific adsorption of metal cations at pH 7. (author)

  10. Sorption of uranium on rocks in anaerobic groundwater

    International Nuclear Information System (INIS)

    Hakanen, M.

    1992-12-01

    Spent nuclear fuel contains substantial amounts of long lived isotopes of actinoide elements, the most abundant of which is the oxide from uranium in the fuel matrix. The behaviour of uranium, also present in small concentrations in natural rocks and waters, is redox sensitive. The concentration controlling mechanisms in groundwaters of uranium are not well-known. In this work a series of laboratory experiments was made to study the redox and sorption behaviour of uranium under anaerobic conditions. The experiments indicated that a part of uranium(VI) was reduced to uranium(IV). The sorbed uranium was of mixed oxidation states. The redox potential of water was not an appropriate indicator of the U(IV)/U(VI) ratio. Spiking of the water with the U(IV) was followed by very strong sorption. The derived lower limit (conservative) and the realistic mass distribution ratios (R d ) for U(IV) are 0.7 m 3 /kg and 3.5 m 3 /kg. (orig.)

  11. Sorption of Antimony from Organic Solutions on Inorganic Sorbents

    International Nuclear Information System (INIS)

    El-Dessouky, S.I.; Zakaria, N.; Alian, A.

    2000-01-01

    Sorption of 124 Sb(III) from its complexes in benzene, toluene, o-xylene and chloroform on an artificial inorganic exchanger (chabazite, a) and on bone charcoal (b.ch) was investigated using the static method. Complexes pf Sb(III) with these non-polar organic liquids were prepared by extraction of its chloride by each liquid from 12 M H 2 SO 4 . For the various liquids the order of the uptake in case of chabazite is o-xylene> toluene > benzene> chloroform and in case of b.ch the order is benzene> toluene > chloroform> o-xylene. This suggests different sorption mechanisms for the two studied sorbents, one of them (chabazite) being purely an inorganic sorbent. In general the uptake of Sb(III) from all solvents studied is much higher by b.ch than by chabazite. The uptake of Sb(III) from these non-aqueous solvents by b.ch is also much higher than its uptake by four previously studied sorbents: ashless filter paper cellulose, pyrolysis residue from domestic waste, bentonite elay from upper Egypt and fly ash from a thermal electricity station. The desorption of Sb(III) from the loaded sorbents by 1M HCI was also studied and found maximum within 30 minutes

  12. Impacts of the physiochemical properties of chlorinated solvents on the sorption of trichloroethylene to the roots of Typha latifolia

    International Nuclear Information System (INIS)

    Ma Xingmao; Wang Chen

    2009-01-01

    Sorption to plant roots is the first step for organic contaminants to enter plant tissues. Mounting evidence is showing that sorption to plant roots is nonlinear and competitive. The objective of this study was to investigate the effects of physiochemical properties of homologous chlorinated ethenes and ethanes on the competitive sorption of trichloroethylene (TCE) to the roots of Typha latifolia (cattail). The results showed that chlorinated ethenes exerted significantly stronger competition on the sorption of TCE than chlorinated ethanes. Individual physiochemical properties of organic compounds could be related to the competitive capacity of chlorinated ethenes, but the roles appeared secondary, with molecular structures showing primary effects. Based on these observations, a two-step sorption mechanism was proposed, consisting of the interactions between organic compounds and functional groups on the root surface and subsequent pore filling and absorption to the hydrophobic domains in the composition of roots. - Molecular structures and physiochemical properties of homologous chlorinated aliphatics are important factors affecting competitive sorption of TCE to plant roots

  13. Correlational study between sorption and goo apparent organoclays; Estudo correlacional entre sorcao e viscosidade aparente em argilas organofilicas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, D.L.; Silva, M.R.O.; Ferreira, H.S.; Brasileiro, C.T., E-mail: darciely_lin@hotmail.com, E-mail: marcusraffael@outlook.com, E-mail: hebersivini@gmail.com, E-mail: camilabrasileiro@globo.com [Universidade Federal da Paraiba (UFPB), PB (Brazil)

    2016-07-01

    The sorption of surfactants in bentonite clay can occur through the mechanism of adsorption and absorption, this being a very supple phenomenon according clay and surfactant utilized. Thus the more surfactant sorbed at the organoclay it becomes, and can be used in various applications, including in oil drilling fluid. This study aimed to correlate the sorption of surfactants with the rheological properties of non-aqueous fluids (oil base). In organophilization process was used Bentongel clay which had its concentration varied from 3.16 to 7.16% by weight of clay. It was used to organophilization an ionic surfactant Praepagem WB with 75% of active matter, where its concentration ranged from 127-181 mEq. After organophilizated the clays were filtered, dried in an oven for 48 hours and passed in ABNT sieve No. 200, to be so characterized. Sorption was calculated from mathematical equations. Non-aqueous fluids were prepared according to standard Petrobras (EP-1EP-00023A) for rheological testing. Correlating the sorption of surfactant, and the rheological properties of non-aqueous fluid, obtained satisfactory results where observed through the scatter plots there is a strong correlation between the variables sorption and apparent viscosity, it should also be noted that the viscosity is a variable which increases with an increase in sorption, confirming that the surfactant concentration influences the viscosity. (author)

  14. Review on the Modeling of Electrostatic MEMS

    Directory of Open Access Journals (Sweden)

    Wan-Chun Chuang

    2010-06-01

    Full Text Available Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices.

  15. Test plan for electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.; Loomis, G.G.

    1991-03-01

    This test plan describes experimental details of engineering-scale electrostatic curtain research experiments to be performed at the Idaho National Engineering Laboratory in FY-91. These experiments will investigate the feasibility of using electrostatic curtains as devices to control the spread of contaminants during transuranic waste handling operations. Test objectives, detailed experimental procedures, and data quality objectives necessary to perform the FY-91 experiments are included in this plan. 11 refs

  16. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  17. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  18. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  19. Sorption Behavior of CO2 and CH4 of Glassy Polymeric Membranes and Analytical Discussion of Partial Immobilization Model

    Directory of Open Access Journals (Sweden)

    M. Mahdavian

    2007-06-01

    Full Text Available Among various reported membrane-based gas separation processes, the best explanation is generally achieved by the solution-diffusion model. The main factors in this model are the solubility and diffusivity of permeationcomponents through the membrane. The prediction of permeability and diffusivity in multicomponent gas permeation as well as the separation evaluation equilibrium and kinetic interactions requires a proper explanation of sorption and diffusion phenomena in the polymer matrix. Investigation made by various researchers in this area shows that the equilibrium interaction (sorption step plays the key role in determining diffusion and permeation in multicomponent system. Therefore, the proper description of sorption behaviour of gas mixture in the polymer is an essential task. The dual-mode sorption (Langmuir-Henry is usually used for the description of equilibrium isotherm of gases in glassy polymers based on this model; the diffusive behaviour of the system is subsequently analyzed by the partial immobilization model. In this study, the equilibrium sorption of CO2/CH4 mixture in various polymers was modelled using the experimental data available in the literature. The differences in the mechanism of adsorption for CO2 and CH4 were analyzed by considering variations in mode of sorption for each adsorbed component at different pressures. By introducing a new adsorption parameter, P50/50, (the pressure at which the portion of two modes in sorption are equal the contribution of each adsorbed component in occupying Langmuir sites was evaluated. The results indicate that the relative significance of sorption mode for each component is a function of pressure and it is different for various polymers.

  20. Perspectives on electrostatics and conformational motions in enzyme catalysis.

    Science.gov (United States)

    Hanoian, Philip; Liu, C Tony; Hammes-Schiffer, Sharon; Benkovic, Stephen

    2015-02-17

    CONSPECTUS: Enzymes are essential for all living organisms, and their effectiveness as chemical catalysts has driven more than a half century of research seeking to understand the enormous rate enhancements they provide. Nevertheless, a complete understanding of the factors that govern the rate enhancements and selectivities of enzymes remains elusive, due to the extraordinary complexity and cooperativity that are the hallmarks of these biomolecules. We have used a combination of site-directed mutagenesis, pre-steady-state kinetics, X-ray crystallography, nuclear magnetic resonance (NMR), vibrational and fluorescence spectroscopies, resonance energy transfer, and computer simulations to study the implications of conformational motions and electrostatic interactions on enzyme catalysis in the enzyme dihydrofolate reductase (DHFR). We have demonstrated that modest equilibrium conformational changes are functionally related to the hydride transfer reaction. Results obtained for mutant DHFRs illustrated that reductions in hydride transfer rates are correlated with altered conformational motions, and analysis of the evolutionary history of DHFR indicated that mutations appear to have occurred to preserve both the hydride transfer rate and the associated conformational changes. More recent results suggested that differences in local electrostatic environments contribute to finely tuning the substrate pKa in the initial protonation step. Using a combination of primary and solvent kinetic isotope effects, we demonstrated that the reaction mechanism is consistent across a broad pH range, and computer simulations suggested that deprotonation of the active site Tyr100 may play a crucial role in substrate protonation at high pH. Site-specific incorporation of vibrational thiocyanate probes into the ecDHFR active site provided an experimental tool for interrogating these microenvironments and for investigating changes in electrostatics along the DHFR catalytic cycle

  1. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  2. Effect of the modification of a natural mexican zeolite in the sorption of cadmium and 4-chloro phenol

    International Nuclear Information System (INIS)

    Cortes M, R.

    2007-01-01

    Clinoptilolite type zeolite is a material of relative abundance in Mexico, which possess ion exchange properties and it can be used in the removal of metal ions from polluted waters. The external surface of zeolites can be modified with cationic surfactants. This modification could have a negative effect on the removal of metal ions and provides to the material the capacity to adsorb phenolic compounds. For this reason, it is important to know the capability of the modified material on the sorption of metal ions and phenolic compounds, simultaneously. The aim of this work was to evaluate the effect of the external surface modification with surfactant of a Mexican zeolite over its sorption capacity of cadmium and 4-chloro phenol, in batch and column systems. To accomplish that, a clinoptilolite type zeolitic rock from a deposit located in the state of Sonora, Mexico, was used. It was ground, sieved and characterized with different techniques; and its external surface area was modified with hexadecyltrimethylammonium bromide (HDTMA-Br). A grain size fraction was selected to carry out sorption kinetics and equilibrium experiments, as well as packed column tests with zeolitic material and solutions of cadmium and 4-chloro phenol. There are different models proposed in literature that are used to describe sorption kinetics and equilibrium. In this work, the sorption experimental results were adjusted to some of these models to identify controlling mechanisms on the kinetics and equilibrium of the studied systems. The results showed that the cadmium adsorption on natural and modified zeolite was similar in batch systems. For the case of 4-chloro phenol sorption, it was observed that natural zeolite does not retain this compound, while in modified zeolite the sorption is better than other comparable materials. The results also showed that for the case of cadmium sorption, the mechanism involved was ion exchange; while for sorption of 4-chloro phenol, a partition mechanism

  3. Charge Transport in Electrostatic Radiography.

    Science.gov (United States)

    Fallone, B. Gino

    A new analytical hyperbolic expression is presented to describe the full saturation curve of parallel-plate ionization chambers filled with air or with high atomic number gases at elevated pressures. It is shown that all parameters of the saturation curve expression can be calculated from one single measurement of ionization current at a given electric field and air gap thickness. Isothermal charge deposition on polymers to form stable foil electrets by using an apparatus resembling parallel-plate ionization chambers is reported. Charge carriers produced by irradiation of the sensitive air volume drift in the externally applied electric field and get trapped on the polymer surface to form electrets. The time dependence of the polarization and depolarization current densities, the effective electric field in the electret chamber, and the electret surface charge densities are presented for the radiation-induced foil electret and an excellent agreement is obtained with the measured electret data. The theory of linear systems is used to derive the electric field and potential in distance space in the electret chamber. The charging characteristics of ionographi latent images are discussed in terms of saturation characteristics of ionographic chambers. The minimum applied electric field needed for an optimized charge collection in the ionographic chamber is presented in terms of both the electret characteristic polarization time and the electret relaxation time. The feasibility of radiographic image subtraction based on electrostatic imaging techniques is demonstrated. Latent image charging at one polarity corresponding to the production of the primary image, and latent image discharging with the opposite chamber polarity, are used to create the final image representing the region of interest.

  4. Low power interface IC's for electrostatic energy harvesting applications

    Science.gov (United States)

    Kempitiya, Asantha

    The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of

  5. Effective electrostatic interactions in colloid-nanoparticle mixtures

    Science.gov (United States)

    Denton, Alan R.

    2017-12-01

    Interparticle interactions and bulk properties of colloidal suspensions can be substantially modified by the addition of nanoparticles. Extreme asymmetries in size and charge between colloidal particles and nanoparticles present severe computational challenges to molecular-scale modeling of such complex systems. We present a statistical mechanical theory of effective electrostatic interactions that can greatly ease large-scale modeling of charged colloid-nanoparticle mixtures. By applying a sequential coarse-graining procedure, we show that a multicomponent mixture of charged colloids, nanoparticles, counterions, and coions can be mapped first onto a binary mixture of colloids and nanoparticles and then onto a one-component model of colloids alone. In a linear-response approximation, the one-component model is governed by a single effective pair potential and a one-body volume energy, whose parameters depend nontrivially on nanoparticle size, charge, and concentration. To test the theory, we perform molecular dynamics simulations of the two-component and one-component models and compute structural properties. For moderate electrostatic couplings, colloid-colloid radial distribution functions and static structure factors agree closely between the two models, validating the sequential coarse-graining approach. Nanoparticles of sufficient charge and concentration enhance screening of electrostatic interactions, weakening correlations between charged colloids and destabilizing suspensions, consistent with experiments.

  6. Electrostatic adhesion for added functionality of composite structures

    International Nuclear Information System (INIS)

    Heath, Callum J C; Bond, Ian P; Potter, Kevin D

    2016-01-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (∼2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure. (paper)

  7. Electrostatic adhesion for added functionality of composite structures

    Science.gov (United States)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (˜2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  8. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  9. Sorption of samarium in soils: influence of soil properties and Sm concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Salaberria, Aitor; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    sorption assays. Univariate and multivariate regressions between K{sub d} ({sup 151}Sm) values and the aforementioned soil properties were performed in order to identify the soil properties affecting Sm sorption and to propose models for the estimation of K{sub d} (Sm) values. To determine the influence of Sm concentration in the sorption capacity of soils, sorption isotherms were constructed by applying the above explained sorption test to several soil samples, but labelling with different initial concentrations of stable Sm. Structural analyses (XRD and SEM-EDX) of residues resulting from sorption assays were also done to obtain information to elucidate the sorption mechanisms. The sorption data were fitted to Freundlich and/or Langmuir equations and the corresponding parameters were derived. Finally, K{sub d} values obtained for stable Sm at initial low concentrations (Sm ≅ 10{sup -5} M) and for {sup 151}Sm (Sm ≅ 10{sup -10} M) were compared in order to check the suitability of using the stable Sm isotope instead of Sm radioisotopes in sorption studies. (authors)

  10. Development of sorption database (JAEA-SDB). Update of sorption data including soil and cement systems

    International Nuclear Information System (INIS)

    Suyama, Tadahiro; Tachi, Yukio

    2012-03-01

    Sorption of radionuclides in buffer materials (bentonite) and rocks is the key process in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be controlled by sorption processes. Distribution coefficient (K d ) is therefore important parameter in the performance assessment (PA) of geological disposal. The sorption database including extensive compilations of K d data measured by batch sorption experiments plays key roles in PA-related K d setting and predictive model development under a variety of geochemical conditions. For this purpose, Japan Atomic Energy Agency (JAEA) has developed sorption database (JAEA-SDB) as an important basis for the PA of high-level radioactive waste disposal. This sorption database was firstly developed for the H12 PA, and was improved and updated in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on updating of the sorption database (JAEA-SDB) by adding K d data for various systems including soil and cement systems, to apply JAEA-SDB for the PA-related K d setting for disposal of low level radioactive wastes including TRU wastes and the evaluation of radionuclide transport in surface soil systems. The updated data includes K d data for soil and cement systems extracted from mainly previous published database, and K d data related to our recent activities on the K d setting and mechanistic model development. As a result, 16,000 K d data from 334 references are added, total K d values in the JAEA-SDB are about 46,000. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to have suitable access to the respective data for the performance assessment of various types of radioactive waste. (author)

  11. Sorption of prioritized elements on montmorillonite colloids and their potential to transport radionuclides

    International Nuclear Information System (INIS)

    Wold, Susanna

    2010-04-01

    , Pd, Se, Sn, Zr and U. K d -values for colloids and radionuclides are scarce as well as sorption kinetics. Sorption values were not found for the elements Ra, Nb and Pd, yet sorption of the analogues Sr, Pu and Ni are instead representing these elements. Since sorption and desorption kinetic studies are scarce, recommendations on the reversibility have been based on the elements sorption mechanisms and from their K d -values

  12. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes.

    Science.gov (United States)

    Li, Hao; Zheng, Nan; Liang, Ni; Zhang, Di; Wu, Min; Pan, Bo

    2016-07-01

    Multi-walled carbon nanotubes (MC) were fluorinated by a solid-phase reaction method using polytetrafluoroethylene (PTFE). The surface alteration of carbon nanotubes after fluorination (MC-F) was confirmed based on surface elemental analysis, TEM and SEM. The incorporation of F on MC surface was discussed as F incorporation on carbon defects, replacement of carboxyl groups, as well as surface coating of PTFE. The adsorption performance and mechanisms of MC-F for five kinds of representative organic compounds: sulfamethoxazole (SMX), ofloxacin (OFL), norfloxacin (NOR), bisphenol a (BPA) and phenanthrene (PHE) were investigated. Although BET-N2 surface area of the investigated CNTs decreased after fluorination, the adsorption of all five chemicals increased. Because of the glassification of MC-F surface coating during BET-N2 surface area measurement, the accessible surface area of MC-F was underestimated. Desorption hysteresis was generally observed in all the sorption systems in this study, and the desorption hysteresis of MC-F were stronger than the pristine CNTs. The enhanced adsorption of MC-F may be attributed the pores generated on the coated PTFE and the dispersed CNT aggregates due to the increased electrostatic repulsion after fluorination. The rearrangement of the bundles or diffusion of the adsorbates in MC-F inner pores were the likely reason for the strong desorption hysteresis of MC-F. The butterfly structure of BPA resulted in its high sorption and strong desorption hysteresis. The exothermic sorption character of OFL on CNTs resulted in its strong desorption hysteresis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  14. Sorption of Ni(II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature.

    Science.gov (United States)

    Yang, Shitong; Li, Jiaxing; Lu, Yi; Chen, Yixue; Wang, Xiangke

    2009-09-01

    Bentonite has been widely studied in nuclear waste management because of its special physicochemical properties. In this work, the sorption of Ni(II) from aqueous solution onto GMZ bentonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and temperature was investigated under ambient conditions. The results indicated that the pseudo-second-order rate equation simulated the kinetic sorption process well. The sorption of Ni(II) on GMZ bentonite was strongly dependent on pH and on ionic strength. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on GMZ bentonite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. A positive effect of HA on Ni(II) sorption was found at pH8. The Langmuir, Freundlich, and D-R models were used to simulate the sorption isotherms of Ni(II) at three different temperatures: 303.15, 318.15 and 333.15K. The thermodynamic parameters (DeltaH(0), DeltaS(0) and DeltaG(0)) of Ni(II) sorption on GMZ bentonite at the three different temperatures were calculated from the temperature-dependent sorption isotherms. The results indicated that the sorption process of Ni(II) on GMZ bentonite was endothermic and spontaneous. Experimental results indicate that GMZ bentonite is a suitable sorbent for pre-concentration and solidification of Ni(II) from large volume solutions.

  15. Sorption of Ni(II) on GMZ bentonite: Effects of pH, ionic strength, foreign ions, humic acid and temperature

    International Nuclear Information System (INIS)

    Yang Shitong; Li Jiaxing; Lu Yi; Chen Yixue; Wang Xiangke

    2009-01-01

    Bentonite has been widely studied in nuclear waste management because of its special physicochemical properties. In this work, the sorption of Ni(II) from aqueous solution onto GMZ bentonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and temperature was investigated under ambient conditions. The results indicated that the pseudo-second-order rate equation simulated the kinetic sorption process well. The sorption of Ni(II) on GMZ bentonite was strongly dependent on pH and on ionic strength. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation and ion exchange with Na + /H + on GMZ bentonite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. A positive effect of HA on Ni(II) sorption was found at pH 8. The Langmuir, Freundlich, and D-R models were used to simulate the sorption isotherms of Ni(II) at three different temperatures: 303.15, 318.15 and 333.15 K. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) of Ni(II) sorption on GMZ bentonite at the three different temperatures were calculated from the temperature-dependent sorption isotherms. The results indicated that the sorption process of Ni(II) on GMZ bentonite was endothermic and spontaneous. Experimental results indicate that GMZ bentonite is a suitable sorbent for pre-concentration and solidification of Ni(II) from large volume solutions.

  16. Mechanism of electron transfer in the bioadsorption of hexavalent chromium within Leersia hexandra Swartz granules by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianping, E-mail: likianping@263.net [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China) and Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guilin 541004 (China); Lin Qingyu [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Zhang Xuehong [Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guilin 541004 (China)

    2010-10-15

    Leersia hexandra Swartz biogranules were used to adsorb Cr(VI) from aqueous solutions. Batch biosorption experiments showed that the Cr(VI) concentration sharply decreases in the first 15 min. The main functional groups that may be involved in chromium sorption were determined using Fourier transform infrared spectroscopy. The use of X-ray photoelectron spectroscopy confirmed the reduction of Cr(VI) to Cr(III) through L. hexandra Sw. Results indicate that Cr(III) is the dominant species on the surface of the biogranules and that the redox reaction can be accomplished within 40 min. The mechanism of electron transfer during Cr(VI) reduction to Cr(III) was investigated. Protonation of the oxygen-containing groups produces electrostatic-sorption power over Cr(VI). The nitrogen-containing groups serve as the electron-donor groups in the process of reduction-sorption. Moreover, after the complete reduction of Cr(VI), the pH of the suspension significantly increases.

  17. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  18. Effect of natural organic materials on cadmium and neptunium sorption

    International Nuclear Information System (INIS)

    Kung, K.S.; Triay, I.R.

    1994-01-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study

  19. Effect of natural organic materials on cadmium and neptunium sorption

    International Nuclear Information System (INIS)

    Kung, K.S.; Triay, I.R.

    1995-01-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOPA sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study. (authors). 8 refs., 10 figs

  20. Parametric study of the sorption of Cs(I) and Sr(II) on mixture of bentonite and magnetite using SCM + IEXM

    International Nuclear Information System (INIS)

    Filipska, H.; Stamberg, K.

    2005-01-01

    Full text of publication follows: The behaviour and subsequent fate of released radionuclides in bentonite barrier surrounding the degraded canister is influenced mainly by sorption. We studied sorption processes in such system experimentally and we modelled and simulated them using surface-complexation (SCM) and ion exchange (IExM) models. Our experimental system consisted of: (1) synthetic granitic water with a given ionic strength (0.1 or 0.01 NaNO 3 ), (2) radionuclides studied (10 -6 mol/l CsCl or SrCl 2 .6H 2 O spiked with 137 Cs or 85 Sr), (3) bentonite pre-treated with the aim to remove carbonates, and magnetite as a representative of corrosion products of steel canister. The alkali-metric and acidimetric titrations under exclusion of CO 2 and the percentage of sorption as a function of pH under oxic conditions at room temperature for bentonite, magnetite and their mixtures under different conditions were determined. The resulting data were modelled and appropriate mathematical description was found: SCM non-electrostatic so called Chemical Model (CEM) for the description of sorption on edge sites and ion exchange model (IExM) for sorption on layer sites. Component Additivity Approach (CA) composed of weighted combination of models describing sorption on bentonite and magnetite was verified. In the course of evaluation procedures, the protonation constants, total concentrations of edge sites and layer sites, cation exchange constants and sorption constants for present Cs and Sr forms were obtained by fitting corresponding experimental data. Consequently, CEM+IExM models and the calculated model parameters were used for predictive (simulation) calculations and parametric study of the sorption of Cs(I) and Sr(II) on bentonite, magnetite and their mixtures. The parametric study covered the influence of pH, solid to liquid ratio, bentonite to magnetite ratio, initial concentrations of Cs and Sr, pCO 2 and ionic strength on the values of selectivity coefficients