WorldWideScience

Sample records for electrostatic levitation facility

  1. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  2. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    General oayout of Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  3. An Overview of the Materials Science Research at the Marshall Space Flight Center Electrostatic Levitator Facility and Recent CDDF Efforts

    Science.gov (United States)

    2003-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the ability to process non-conducting materials, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. = 5 atm), and the decoupling of positioning force from sample heating. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. The ESL facility at NASA s Marshall Space Flight Center is in use for materials research and thermophysical property measurement by a number of different internal and external investigators. Results from the recent CDDF studies on the high energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory will be presented. The Microgravity Research Program supports the facility.

  4. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, N. A., E-mail: namauro@noctrl.edu [Department of Physics, North Central College, Naperville, Illinois 60540 (United States); Vogt, A. J. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Derendorf, K. S. [Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130 (United States); Johnson, M. L.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130 (United States); Rustan, G. E.; Quirinale, D. G.; Goldman, A. I. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Kreyssig, A. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Lokshin, K. A. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Neuefeind, J. C.; An, Ke [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Xun-Li [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Ave., Kowloon (Hong Kong); Egami, T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Physics and Astronomy, Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  5. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, N.A.; Kelton, K.F. (WU)

    2011-10-27

    High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

  6. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  7. Property Measurements and Solidification Studies by Electrostatic Levitation

    National Research Council Canada - National Science Library

    PARADIS, PAUL‐FRANÇOIS; YU, JIANDING; ISHIKAWA, TAKEHIKO; YODA, SHINICHI

    2004-01-01

    A bstract : The National Space Development Agency of Japan has recently developed several electrostatic levitation furnaces and implemented new techniques and procedures for property measurement, solidification...

  8. Electrostatic Levitation for Studies of Additive Manufactured Materials

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL

  9. Hybrid Processing Combining Electrostatic Levitation and Laser Heating: Application to Terrestrial Analogues of Asteroid Materials

    Directory of Open Access Journals (Sweden)

    Paul-François Paradis

    2011-01-01

    Full Text Available Electrostatic levitation combined with laser heating is becoming a mature technique that has been used for several fundamental and applied studies in fluid and materials sciences (synthesis, property determination, solidification studies, atomic dynamic studies, etc.. This is attributable to the numerous processing conditions (containerless, wide heating temperature range, cooling rates, atmospheric compositions, etc. that levitation and radiative heating offer, as well as to the variety of diagnostics tools that can be used. In this paper, we describe the facility, highlighting the combined advantages of electrostatic levitation and laser processing. The various capabilities of the facility are discussed and are exemplified with the measurements of the density of selected iron-nickel alloys taken over the liquid phase.

  10. Contact-free handling using actively controlled electrostatic levitating fields

    NARCIS (Netherlands)

    Woo, S.J.

    2012-01-01

    In general electric field forces have the distinctive property of being able to mediate forces to virtually any material in a fully non-invasive and contact-free fashion. Based on this property, electrostatic levitation holds great promise for the semiconductor, solar panel, and flat-panel display

  11. Electrostatically Levitated Ring-Shaped Rotational-Gyro/Accelerometer

    Science.gov (United States)

    Murakoshi, Takao; Endo, Yasuo; Fukatsu, Keisuke; Nakamura, Sigeru; Esashi, Masayoshi

    2003-04-01

    This paper reports an electrostatically levitated inertia measurement system which is based on the principle of a rotational gyro. The device has several advantages: the levitation of the rotor in a vacuum eliminates mechanical friction resulting in high sensitivity; the position control for the levitation allows accelerations to be sensed in the tri-axis; and the fabrication of the device by a micromachining technique has the cost advantages afforded by miniaturization. Latest measurements yield a noise floor of the gyro and that of the accelerometer as low as 0.15 deg/h1/2 and 30 μG/Hz1/2, respectively. This performance is achieved by a new sensor design. To further improve of the previous device, a ring-shaped structure is designed and fabricated by deep reactive ion etching using inductively coupled plasma. The rotor levitation is performed with capacitive detection and electrostatic actuation. Multiaxis closed-loop control is realized by differential capacitance sensing and frequency multiplying. The rotation of the micro gyro is based on the principle of a planar variable capacitance motor.

  12. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

  13. An electrostatic levitator for high-temperature containerless materials processing in 1-g

    Science.gov (United States)

    Rhim, Won-Kyu; Chung, Sang K.; Barber, Daniel; Man, Kin F.; Gutt, Gary; Rulison, Aaron; Spjut, R. Erik

    1993-10-01

    This article discusses recent developments in high-temperature electrostatic levitation technology for containerless processing of metals and alloys. Presented is the first demonstration of an electrostatic levitation technology which can levitate metals and alloys (2-4 mm diam spheres) in vacuum and of superheating-undercooling-recalescence cycles which can be repeated while maintaining good positioning stability. The electrostatic levitator (ESL) has several important advantages over the electromagnetic levitator. Most important is the wide range of sample temperature which can be achieved without affecting levitation. This article also describes the general architecture of the levitator, electrode design, position control hardware and software, sample heating, charging, and preparation methods, and operational procedures. Particular emphasis is given to sample charging by photoelectric and thermionic emission. While this ESL is more oriented toward ground-based operation, an extension to microgravity applications is also addressed briefly. The system performance was demonstrated by showing multiple superheating-undercooling-recalescence cycles in a zirconium sample (Tm=2128 K). This levitator, when fully matured, will be a valuable tool both in Earth-based and space-based laboratories for the study of thermophysical properties of undercooled liquids, nucleation kinetics, the creation of metastable phases, and access to a wide range of materials with novel properties.

  14. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    Science.gov (United States)

    Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662

  15. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    2011-11-01

    Full Text Available A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated.

  16. Microstructure formation and in situ phase identification from undercooled Co-61.8 at.% Si melts solidified on an electromagnetic levitator and an electrostatic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, 2266-98 Shimo-Shidami, Moriyama, Nagoya, Aichi 463-8560 (Japan); Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: li.mingjun@aist.go.jp; Nagashio, Kosuke [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Mizuno, Akitoshi; Adachi, Masayoshi; Watanabe, Masahito [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Katayama, Yoshinori [Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan)

    2008-06-15

    Co-61.8 at.% Si (CoSi-CoSi{sub 2}) eutectic alloys were solidified on an electromagnetic levitator (EML) and an electrostatic levitator (ESL) at different undercooling levels. The results indicated that there is only a single recalescence event at low undercooling with the CoSi intermetallic compound as primary phase, which is independent of processing facilities, on either an EML or an ESL. The microstructure, however, is strongly dependent on the processing facility. The interior melt flow behavior in the sphere solidified at the EML differs substantially from that at the ESL, thus yielding different microstructures. On high undercooling, double recalescence takes place regardless of levitation condition. In situ X-ray diffraction of alloys solidified on the EML demonstrates that the CoSi{sub 2} compound becomes the primary phase upon the first recalescence, and the CoSi intermetallic phase crystallizes during the second recalescence. In addition to phase identification, real-time diffraction patterns can also provide additional evidence of the fragmentation of the primary phase and the ripening feature in the subsequent cooling process in the semisolid state. The phase competition between the CoSi and CoSi{sub 2} compounds is discussed when considering the nucleation barrier. The low interfacial energy of the CoSi{sub 2} phase favors a preferential nucleation event over the CoSi phase, which also plays a critical role in non-reciprocity nucleation and thus yields a double recalescence profile at high undercooling.

  17. Comparative investigation of nucleation undercooling of zirconium using the electromagnetic and electrostatic levitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stefan [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Institut fuer Festkoerperphysik, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Herlach, Dieter M. [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany)

    2008-07-01

    Containerless processing techniques are applied to deeply undercool metallic melts by avoidance of heterogeneous nucleation on container walls. In this work we investigate the nucleation undercooling of Zirconium processed by the electromagnetic and the electrostatic levitation. While in the first case the samples are processed within ultra high purity inert gas atmosphere, the electrostatic levitation allows to process the melts in ultra high vacuum. We achieved large melt undercoolings of up to 400 K. A statistical analysis of the maximum undercooling observed within a modified model by Skripov gives information about the nucleation mechanism.

  18. Finite Element Analysis of the Vertical Levitation Force in an Electrostatic MEMS Comb Drive Actuator

    Science.gov (United States)

    Wooldridge, J.; Blackburn, J.; Muniz-Piniella, A.; Stewart, M.; Shean, T. A. V.; Weaver, P. M.; Cain, M. G.

    2013-11-01

    A vertical levitation electrostatic comb drive actuator was manufactured for the purpose of measuring piezoelectric coefficients in small-scale materials and devices. Previous modelling work on comb drive levitation has focussed on control of the levitation in standard poly-silicon devices in order to minimize effects on lateral modes of operation required for the accelerometer and gyroscope applications. The actuator developed in this study was manufactured using a 20 μm electroplated Ni process with a 25 μm trench created beneath the released structure through chemical wet etching. A finite element analysis using ZINC was used to model electrostatic potential around a cross section of one static and one movable electrode, from which the net levitation force per unit electrode was calculated. The model was first verified using the electrode geometry from previously studied systems, and then used to study the variation of force as a function of decreasing substrate-electrode distance. With the top electrode surfaces collinear the calculated force density is 0.00651 epsilon0V2Mμm-1, equivalent to a total force for the device of 36.4 μN at an applied voltage of VM=100 V, just 16% larger than the observed value. The measured increase in force with distance was smaller than predicted with the FEA, due to the geometry of the device in which the electrodes at the anchored ends of the supporting spring structure displace by a smaller amount than those at the centre.

  19. Electric field and force modeling for electrostatic levitation of lossy dielectric plates

    Science.gov (United States)

    Woo, S. J.; Higuchi, T.

    2010-11-01

    Electrostatic levitation holds great promise for the semiconductor, solar panel, and flat-panel display industry where the handling of dielectrics in a contact-free manner can bring many advantages and solve long-standing contamination and particulate control problems. In this work an analytical model is developed for the electrostatic levitation field between a lossy dielectric plate and a generic stator electrode structure consisting of a regular planar array of parallel bar electrodes. Time-varying voltages of differing polarities are alternatingly applied to the bar electrodes. Atmospheric humidity-related surface conduction on the plate is explicitly taken into account in the model since it has a profound effect on the field dynamics. Based on this model, the electrostatic levitation force is calculated using the Maxwell stress tensor formulation. The levitation force dynamics are investigated by evaluating the transient response of the field under a step in the applied voltages. In this context, the rate of electric charge build up on the plate is characterized by the suspension initiation time (TSI), which is defined as the time elapsed between applying step voltages to the stator electrodes and start of lift-off of the dielectric plate from its initial position. TSI is theoretically predicted for 0.7 mm thick soda-lime glass substrates, typically used in the manufacturing of liquid crystal displays (LCDs), as a function of electrode geometry, air gap separation, ambient humidity, and step voltage magnitudes. The predicted results are shown to be in good agreement with previously published experimental data for soda-lime glass substrates.

  20. Stability of electrostatic modes in a levitated dipole

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, J. [Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1997-02-01

    Plasma confined in a magnetic dipole is stabilized by the expansion of the magnetic flux. The stability of low beta electrostatic modes in a magnetic dipole field is examined when the distribution function is to lowest order Maxwellian. It is shown that for sufficiently gentle density and temperature gradients the configuration would be expected to be stable to magnetohydrodynamic interchange, as well as to dissipative trapped ion and collisionless trapped particle modes. These results are applicable to any magnetic configuration for which the curvature drift frequency exceeds the diamagnetic drift frequency. {copyright} {ital 1997 American Institute of Physics.}

  1. Surface tension and viscosity of molten vanadium measured with an electrostatic levitation furnace

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Junpei T., E-mail: okada.junpei@jaxa.j [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Watanabe, Yuki [Advanced Engineering Service Co., Ltd., 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Paradis, Paul-Francois [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2010-07-15

    Surface tension and viscosity of molten vanadium were measured over a wide temperature range by the oscillating drop method in an electrostatic levitation furnace. Over the (2023 to 2517) K temperature range, the surface tension can be expressed as gamma(T)/(10{sup -3} N/m) = 1935 - 0.27 left brace(T - T{sub m})/Kright brace with T{sub m} = 2183 K. Over the same temperature span, the viscosity can be expressed as eta(T)/(10{sup -3} Pa . s) = 1.23exp[2.27 . 10{sup 4}/(RTK{sup -1})], where R is the gas constant.

  2. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W. (WU); (UAB); (NASA); (UMASS, Amherst)

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  3. Challenges of Handling, Processing, and Studying Liquid and Supercooled Materials at Temperatures above 3000 K with Electrostatic Levitation

    Directory of Open Access Journals (Sweden)

    Takehiko Ishikawa

    2017-10-01

    Full Text Available Over the last 20 years, great progress has been made in techniques for electrostatic levitation, with innovations such as containerless thermophysical property measurements and combination of levitators with synchrotron radiation source and neutron beams, to name but a few. This review focuses on the technological developments necessary for handling materials whose melting temperatures are above 3000 K. Although the original electrostatic levitator designed by Rhim et al. allowed the handling, processing, and study of most metals with melting points below 2500 K, several issues appeared, in addition to the risk of contamination, when metals such as Os, Re, and W were processed. This paper describes the procedures and the innovations that made successful levitation and the study of refractory metals at extreme temperatures (>3000 K possible; namely, sample handling, electrode design (shape and material, levitation initiation, laser heating configuration, and UV range imaging. Typical results are also presented, putting emphasis on the measurements of density, surface tension, and viscosity of refractory materials in their liquid and supercooled phases. The data obtained are exemplified by tungsten, which has the highest melting temperature among metals (and is second only to carbon in the periodic table, rhenium and osmium. The remaining technical difficulties such as temperature measurement and evaporation are discussed.

  4. Dendritic solidification and thermal expansion of refractory Nb-Zr alloys investigated by electrostatic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.J.; Hu, L.; Wang, L.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2017-05-15

    The dendritic growth and thermal expansion of isomorphous refractory Nb-5%Zr, Nb-10%Zr, and Nb-15%Zr alloys were studied by electrostatic levitation technique. The obtained maximum undercoolings for the three alloys were 534 (0.2T{sub L}), 498 (0.19T{sub L}), and 483 K (0.18T{sub L}), respectively. Within these undercooling ranges, the dendritic growth velocities of the three alloys all exhibited power laws, and achieved 38.5, 34.0, and 27.1 m s{sup -1} at each maximum undercooling. The microstructures were characterized by coarse dendrites at small undercooling, while they transformed into refined dendrites under large undercooling condition. In addition, the measured thermal expansion coefficients of solid Nb-Zr alloys increased linearly with temperature. The values at liquid state were more than double of those at solid state, which also displayed linear dependence on temperature. (orig.)

  5. Contrasting electrostatic and electromagnetic levitation experimental results for transformation kinetics of steel alloys.

    Science.gov (United States)

    Matson, Douglas M; Fair, David J; Hyers, Robert W; Rogers, Jan R

    2004-11-01

    The delay between conversion of metastable ferrite to stable austenite during ternary Fe-Cr-Ni alloy double recalescence is seen to differ by over an order of magnitude for tests conducted using electrostatic and electromagnetic levitation. Several possible reasons for this deviation are proposed. Thermodynamic calculations on evaporation rates indicate that potential composition shifts during testing are minimized by limiting test time and thermal history. Simulation indicates that deviation would be limited to a factor of 1.5 under worst-case conditions. Possible effects due to differences in sample size are also eliminated since the metastable array, where stable phase nucleation must occur, is significantly smaller than the sample. Differences in internal convection are seen to be the most probable reason for the observed deviation.

  6. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Wu, S. C.; Zhou, Z. B.; Bai, Y. Z.; Hu, M.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurements, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-12-15

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10{sup −8} m/s{sup 2}/Hz{sup 1/2} at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  7. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers

    Science.gov (United States)

    Li, G.; Wu, S. C.; Zhou, Z. B.; Bai, Y. Z.; Hu, M.; Luo, J.

    2013-12-01

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10-8 m/s2/Hz1/2 at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  8. The NASA MSFC Electrostatic Levitation (ESL) Laboratory: Summary of Capabilities, Recent Upgrades, and Future Work

    Science.gov (United States)

    SanSoucie, Michael P.; Vermilion, David J.; Rogers, Jan R.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. A summary of the labs capabilities, recent upgrades, and ongoing and future work will be provided. The laboratory has recently added two new capabilities to its main levitation chamber: a rapid quench system and an oxygen control system. The rapid quench system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. The oxygen control system consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity between two gas compartments separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The ESL laboratory also has an emissometer, called the High-Temperature Emissivity Measurement System (HiTEMS). This system measures the spectral emissivity of materials from 600degC to 3,000degC. The system consists of a vacuum chamber, a black body source, and a Fourier Transform Infrared Spectrometer (FTIR). The system utilizes optics to swap the signal between the sample and the black body. The system was originally designed to measure the hemispherical spectral emissivity of levitated samples, which are typically 2.5mm spheres. Levitation allows emissivity measurements of molten samples, but more work is required to develop this capability. The system is currently setup measure the near-normal spectral emissivity of stationary samples, which has been used

  9. Measurements of thermophysical properties of molten silicon by a high-temperature electrostatic levitator

    Science.gov (United States)

    Rhim, W. K.; Chung, S. K.; Rulison, A. J.; Spjut, R. E.

    1997-03-01

    Several thermophysical properties of molten silicon measured by the high-temperature electrostatic levitator at JPL are presented. They are density, constant-pressure specific heat capacity, hemispherical total emissivity, and surface tension. Over the temperature range investigated (1350< T m<1825 K), the measured liquid density (in g·cm-3) can be expressed by a quadratic function, p(T)= p m-1.69×10-4( T-T m)-1.75×10-7( T-T m)2 with T m and p m being 1687 K and 2.56 g·cm-3, respectively. The hemispherical total emissivity of molten silicon at the melting temperature was determined to be 0.18, and the constant-pressure specific heat was evaluated as a function of temperature. The surface tension (in 10-3 N·m-1) of molten silicon over a similar temperature range can be expressed by σ( T)=875-0.22( T-T m).

  10. Present status of TIARA electrostatic accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Saito, Yuichi; Uno, Sadanori; Okoshi, Kiyonori; Ishii, Yasuyuki; Nakajima, Yoshinori; Sakai, Takuro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    The electrostatic accelerator, 3 MV tandem accelerator, 3 MV single end accelerator and 400 kV ion implantation equipment, which were installed in Takasaki Ion Irradiation Research Facility (TIARA) of Japan Atomic Energy Research Institute, have been used for the research on the advanced utilization of radiation mainly in material science by ion beam. The utilization is open to other researchers, and in fiscal year 1995, about 40% was the utilization by outsiders. The number of the experimental subjects adopted in fiscal year 1995 was 47, and the fields of research were space and environment materials, nuclear fusion reactor materials, new functional materials, biotechnology and base technology. The operation time in fiscal year 1995 was 1201, 1705 and 1505 hours for the tandem accelerator, single end accelerator and ion implantation equipment, respectively. The methods of experiment are reported. The troubles occurred in the tandem accelerator and single end accelerator are reported. As the diversification of beam utilization in the tandem accelerator, the utilizations of high energy molecular ions, low energy negative ions, multivalent ions by post stripper and low intensity ions by mesh attenuator have been attempted. These utilizations are described. (K.I.)

  11. Beamline Electrostatic Levitator (BESL) for in-situ High Energy K-Ray Diffraction Studies of Levitated Solids and Liquids at High Temperature

    Science.gov (United States)

    Gangopadhyay, A. K.; Lee, G. W.; Kelton, K. F.; Rogers, J. R.; Goldman, A. I.; Robinson, D. S.; Rathz, T. J.; Hyers, R. W.

    2005-01-01

    Determinations of the phase formation sequence, the crystal structures and the thermodynamic properties of materials at high temperatures are difficult because of contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic (EML), aerodynamic, and acoustic levitation, are most suitable these studies. An adaptation of ESL for in-situ structural studies of a wide range of materials, including metals, semiconductors, insulators using high energy (125 keV) synchrotron x-rays is described here. This beamline ESL (BESL) allows the in-situ determination of the atomic structures of equilibrium solid and liquid phases, including undercooled liquids, as well as real-time studies of solid-solid and liquid-solid phase transformations. The use of image plate (MAR345) or GE-Angio detectors enables fast (30 ms - 1s) acquisition of complete diffraction patterns over a wide q-range (4 - 140/mm). The wide temperature range (300 - 2500 K), containerless processing under high vacuum (10(exp -7) - 10(exp -8) torr), and fast data acquisition, make BESL particularly suitable for phase diagram studies of high temperature materials. An additional, critically important, feature of BESL is the ability to also make simultaneous measurement of a host of thermo-physical properties, including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension; all on the same sample and simultaneous with the structural measurements.

  12. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    Science.gov (United States)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  13. Appearance of metastable B2 phase during solidification of Ni 50 Zr 50 alloy: electrostatic levitation and molecular dynamics simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Quirinale, D. G. [Ames Lab., Ames, IA (United States). Div. of Materials Sciences and Engineering; Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy; Rustan, G. E. [Ames Lab., Ames, IA (United States). Div. of Materials Sciences and Engineering; Wilson, S. R. [Ames Lab., Ames, IA (United States). Div. of Materials Sciences and Engineering; Kramer, M. J. [Ames Lab., Ames, IA (United States). Div. of Materials Sciences and Engineering; Goldman, A. I. [Ames Lab., Ames, IA (United States). Div. of Materials Sciences and Engineering; Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy; Mendelev, M. I. [Ames Lab., Ames, IA (United States). Div. of Materials Sciences and Engineering

    2015-02-04

    High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni50Zr50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2–B33 transformation is proposed and investigated through further MD simulations.

  14. Levitation Technology in International Space Station Research

    Science.gov (United States)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies

  15. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  16. Thermodynamic properties and solidification kinetics of intermetallic Ni{sub 7}Zr{sub 2} alloy investigated by electrostatic levitation technique and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2016-01-21

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.

  17. Facile fabrication of tissue-engineered constructs using nanopatterned cell sheets and magnetic levitation

    Science.gov (United States)

    Penland, Nisa; Choi, Eunpyo; Perla, Mikael; Park, Jungyul; Kim, Deok-Ho

    2017-02-01

    We report a simple and versatile method for in vitro fabrication of scaffold-free tissue-engineered constructs with predetermined cellular alignment, by combining magnetic cell levitation with thermoresponsive nanofabricated substratum (TNFS) based cell sheet engineering technique. The TNFS based nanotopography provides contact guidance cues for regulation of cellular alignment and enables cell sheet transfer, while magnetic nanoparticles facilitate the magnetic levitation of the cell sheet. The temperature-mediated change in surface wettability of the thermoresponsive poly(N-isopropylacrylamide), substratum enables the spontaneous detachment of cell monolayers, which can then be easily manipulated through use of a ring or disk shaped magnet. Our developed platform could be readily applicable to production of tissue-engineered constructs containing complex physiological structures for the study of tissue structure-function relationships, drug screening, and regenerative medicine.

  18. Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Debabani Ganguly

    Full Text Available Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012 demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via "electrostatic steering" and at the same time promote "folding-competent" encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association

  19. Experimental determination of a time-temperature-transformation diagram of the undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy using the containerless electrostatic levitation processing technique

    Science.gov (United States)

    Kim, Y. J.; Busch, R.; Johnson, W. L.; Rulison, A. J.; Rhim, W. K.

    1996-02-01

    High temperature high vacuum electrostatic levitation was used to determine the complete time-temperature-transformation (TTT) diagram of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass forming alloy in the undercooled liquid state. This is the first report of experimental data on the crystallization kinetics of a metallic system covering the entire temperature range of the undercooled melt down to the glass transition temperature. The measured TTT diagram exhibits the expected ``C'' shape. Existing models that assume polymorphic crystallization cannot satisfactorily explain the experimentally obtained TTT diagram. This originates from the complex crystallization mechanisms that occur in this bulk glass-forming system, involving large composition fluctuations prior to crystallization as well as phase separation in the undercooled liquid state below 800 K.

  20. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kreiner, A.J. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina)], E-mail: kreiner@tandar.cnea.gov.ar; Thatar Vento, V. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Levinas, P. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Di Paolo, H.; Burlon, A.A. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kesque, J.M. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Valda, A.A.; Debray, M.E.; Somacal, H.R. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Minsky, D.M. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina)] (and others)

    2009-07-15

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.0.

  1. Sound Waves Levitate Substrates

    Science.gov (United States)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  2. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    Science.gov (United States)

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Metallic glass formation in highly undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 during containerless electrostatic levitation processing

    Science.gov (United States)

    Kim, Y. J.; Busch, R.; Johnson, W. L.; Rulison, A. J.; Rhim, W. K.

    1994-10-01

    Various sample sizes of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 with masses up to 80 mg were undercooled below Tg (the glass transition temperature) while electrostatically levitated. The final solidification product of the sample was determined by x-ray diffraction to have an amorphous phase. Differential scanning calorimetry was used to confirm the absence of crystallinity in the processes sample. The amorphous phase could be formed only after heating the samples above the melting temperature for extended periods of time in order to break down and dissolve oxides or other contaminants which would otherwise initiate heterogeneous nucleation of crystals. Noncontact pyrometry was used to monitor the sample temperature throughout processing. The critical cooling rate required to avoid crystallization during solidification of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy fell between 0.9 and 1.2 K/s.

  4. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume III: Test protocol

    Energy Technology Data Exchange (ETDEWEB)

    Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Inc., Toronto, Ontario (Canada)

    1996-04-01

    The American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] has been awarded a subcontract by the National Renewable Energy Laboratory [NREL] to demonstrate the technical performance and viability of flue gas temperature control in combination with dry acid gas reagent and activated carbon injection at an existing electrostatic precipitator [ESP] equipped municipal waste combustor [MWC]. The objective of this proof-of-concept demonstration test is to economically and reliably meet 40 CFR 60 Subpart Cb Emissions Guidelines for MWC's at existing ESP equipped facilities. The effort is being directed by a Subcommittee of tile ASME Research Committee on Industrial and Municipal Wastes [RCIMW] chaired by Dave Hoecke. Mr. Greg Barthold of ASME/CRTD is the Project Manager. ASME/CRTD contracted with Rigo & Rigo Associates, Inc. in cooperation with A.J. Chandler & Associates, Ltd. to be the Principal Investigator for the project and manage the day-t o-day aspects of the program, conduct the testing reduce and interpret the data and prepare the report. Testing will be conducted at the 2 by 210 TPD, ESP equipped MWC at the Davis County Resource Recovery Facility in Layton, Utah. The test plan calls for duplicate metals (Cd, Pb and Hg), dioxin and acid gas runs.

  5. Electrostatic containerless processing system

    Science.gov (United States)

    Rulison, Aaron J.; Watkins, John L.; Zambrano, Brian

    1997-07-01

    We introduce a materials science tool for investigating refractory solids and melts: the electrostatic containerless processing system (ESCAPES). ESCAPES maintains refractory specimens of materials in a pristine state by levitating and heating them in a vacuum chamber, thereby avoiding the contaminating influences of container walls and ambient gases. ESCAPES is designed for the investigation of thermophysical properties, phase equilibria, metastable phase formation, undercooling and nucleation, time-temperature-transformation diagrams, and other aspects of materials processing. ESCAPES incorporates several design improvements over prior electrostatic levitation technology. It has an informative and responsive computer control system. It has separate light sources for heating and charging, which prevents runaway discharging. Both the heating and charging light sources are narrow band, which allows the use of optical pyrometry and other diagnostics at all times throughout processing. Heat is provided to the levitated specimens by a 50 W Nd:YAG laser operating at 1.064 μm. A deuterium arc lamp charges the specimen through photoelectric emission. ESCAPES can heat metals, ceramics, and semiconductors to temperatures exceeding 2300 K; specimens range in size from 1 to 3 mm diam. This article describes the design, capabilities, and applications of ESCAPES, focusing on improvements over prior electrostatic levitation technology.

  6. The Wonders of Levitation

    Science.gov (United States)

    French, M. M. J.

    2010-01-01

    I discuss some interesting classroom demonstrations of diamagnetism and how this effect can produce levitation. The possibilities for hands-on demonstrations of diamagnetic and superconducting levitation are discussed. To conclude I discuss some practical uses for levitation in daily life. (Contains 6 figures.)

  7. (abstract) Undercooling Studies of the Bulk Metallic Glass Forming Zr(sub 41.2)Ti(sub 13.8)Cu(sub 12.5)Ni(sub 10.0)Be(sub 22.5) Alloy During Containerless Electrostatic Levitation Processing

    Science.gov (United States)

    Kim, Y. J.; Busch, R.; Johnson, W. L.; Rulison, A. J.; Rhim, W. K.

    1995-01-01

    Bulk glass forming metallic alloys have long been desired for technological applications and for investigation into liquid undercooling, solidification processes, and thermophysical properties. A glass forming alloy Zr(sub 41.2)Ti(sub 13.8)Cu(sub 12.5)Ni(sub 10.0)Be(sub 22.5) was used to investigate the thermal treatments affecting undercooling and vitrification. The experiments were performed using the high temperature high vacuum electrostatic levitator at JPL. A sample approximately 3 mm in diameter was melted, superheated, undercooled, and solidified while levitated in high vacuum. The results show that when the sample was held above its melting temperature for a sufficient period of time to dissolve oxides and then cooled faster than a critical cooling rate, it undercooled to the glass transition temperature, T(sub g), and formed a glassy alloy. The required critical cooling rate for metallic glass formation was obtained to be between 0.9 K per second and 1.2 K per second for the 42.4 mg sample.

  8. Leidenfrost levitation: beyond droplets.

    Science.gov (United States)

    Hashmi, Ali; Xu, Yuhao; Coder, Benjamin; Osborne, Paul A; Spafford, Jonathon; Michael, Grant E; Yu, Gan; Xu, Jie

    2012-01-01

    Friction is a major inhibitor in almost every mechanical system. Enlightened by the Leidenfrost effect - a droplet can be levitated by its own vapor layer on a sufficiently hot surface - we demonstrate for the first time that a small cart can also be levitated by Leidenfrost vapor. The levitated cart can carry certain amount of load and move frictionlessly over the hot surface. The maximum load that the cart can carry is experimentally tested over a range of surface temperatures. We show that the levitated cart can be propelled not only by gravitational force over a slanted flat surface, but also self-propelled over a ratchet shaped horizontal surface. In the end, we experimentally tested water consumption rate for sustaining the levitated cart, and compared the results to theoretical calculations. If perfected, this frictionless Leidenfrost cart could be used in numerous engineering applications where relative motion exists between surfaces.

  9. An Ultrasonic Levitator

    Directory of Open Access Journals (Sweden)

    R.R. Boullosa

    2013-12-01

    Full Text Available We report the development of an ultrasonic levitation system. Liquid drops or solid samples of diameter less than one half wavelength of the excitation frequency are levitated without contact just below the pressure nodes. The piezo transducer is excited by an ultrasonic signal of around 29 kHz through a voltage amplifier. The choice of the number of half-waves of the acoustic field in the space between the reflector and radiator is made by means of a micrometer. A lamp, an amplifier and a frequency generator are integrated to the levitator. The diameters of the droplets of liquid that can levitate are of the order of tenths of mm to 3 or 4 mm, depending on the liquid properties (density, surface tension, etc.. Solid objects can also be levitated. The maximum voltage of the system is 20 Vrms.

  10. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hennet, L.; Pozdnyakova, I.; Drewitt, J.W.E.; Leydier, M.; Brassamin, S.; Zanghi, D.; Magazu, S.; Price, D.L. [CEMHTI and University of Orleans, 45071 Orleans Cedex 02 (France); Cristiglio, V.; Kozaily, J.; Fischer, H.E.; Cuello, G.J.; Koza, M. [ILL, BP. 156, 38042 Grenoble Cedex 09 (France); Bytchkov, A. [ESRF, BP. 220, 38043 Grenoble Cedex 09 (France); Thiaudiere, D. [Synchrotron SOLEIL, BP. 48, 91192 Gif-sur-Yvette Cedex (France); Gruner, S. [Institute of Physics, Chemnitz UT, 09107 Chemnitz (Germany); Greaves, G.N. [IMAPS, University of Wales, Aberystwyth, SY23 3BZ (United Kingdom)

    2011-05-15

    Aerodynamic levitation is an effective way to suspend samples which can be heated with CO{sub 2} lasers. The advantages of this container-less technique are the simplicity and compactness of the device, making it possible to integrate it easily in different kinds of experiments. In addition, all types of materials can be used, including metals and oxides. The integration of aerodynamic levitation at synchrotron and neutron sources provides powerful tools to study the structure and dynamics of molten materials. We present here an overview of the existing techniques (electromagnetic levitation, electrostatic levitation, single-axis acoustic levitation, and aerodynamic levitation) and of the developments made at the CEMHTI in Orleans, as well as a few examples of experimental results already obtained. (authors)

  11. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

    1996-04-01

    Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  12. Levitation in paramagnetic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.A. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)]. E-mail: pdunne2@tcd.ie; Hilton, J. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland); Coey, J.M.D. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)

    2007-09-15

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated.

  13. Levitation in physics.

    Science.gov (United States)

    Brandt, E H

    1989-01-20

    Several physical effects allow free floatation of solid and even liquid matter. Materials may be levitated by a jet of gas, by intense sound waves, or by beams of laser light. In addition, conductors levitate in strong radio-frequency fields, charged particles in alternating electric fields, and magnets above superconductors or vice versa. Although levitation by means of ferromagnets is unstable, supper-conductors may be suspended both above and below a magnet as a result of flux pinning. Levitation is used for containerless processing and investigation of materials, for frictionless bearings and high-speed ground transportation, for spectroscopy of single atoms and microparticles, and for demonstrating superconductivity in the new oxide superconductors.

  14. Magnetic levitation of single cells

    National Research Council Canada - National Science Library

    Naside Gozde Durmus; H. Cumhur Tekin; Sinan Guven; Kaushik Sridhar; Ahu Arslan Yildiz; Gizem Calibasi; Ionita Ghiran; Ronald W. Davis; Lars M. Steinmetz; Utkan Demirci

    2015-01-01

    .... Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal...

  15. Electrostatic Stabilization Of Growing Protein Crystals

    Science.gov (United States)

    Shlichta, Paul J.

    1991-01-01

    Proposed technique produces large crystals in compact, economical apparatus. Report presents concept for supporting protein crystals during growth in microgravity. Yields crystals larger and more-nearly perfect than those grown on Earth. Combines best features of sandwich-drop and electrostatic-levitation methods of support. Drop of protein solution inserted between pair of glass or plastic plates, as in sandwich-drop-support method. Electrostatically charged ring confines drop laterally and shapes it, as in electrostatic technique. Apparatus also made to accommodate several drops simultaneously between same pair of supporting plates. Drops can be inserted and crystals removed through ducts in plates.

  16. Levitation of superconducting composites

    Science.gov (United States)

    Chiang, C. K.; Turchinskaya, M.; Swartzendruber, L. J.; Shull, R. D.; Bennett, L. H.

    1991-01-01

    The inverse levitation of a high temperature superconductor polymer composite consisting of powdered quench melt growth Ba2YCu3O(7-delta) and cyanoacrylate is reported. Magnetic hysteresis loop measurements for the composite are compared to those measured for the bulk material prior to powdering. Differences in the flux pining capability between the two material forms are small but significant.

  17. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83 B17 During Solidification

    Science.gov (United States)

    Quirinale, D. G.; Messina, D.; Rustan, G. E.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.

    2017-11-01

    In situ measurements of structure, density, and magnetization on samples of Fe83 B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23 B6 /fcc Fe coherently grown structures and primitive tetragonal Fe3 B metastable phase in addition to characterizing the equilibrium Fe2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.

  18. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  19. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  20. Photophoretic levitation of engineered aerosols for geoengineering

    Science.gov (United States)

    Keith, David W.

    2010-01-01

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates. PMID:20823254

  1. Review of Progress in Acoustic Levitation

    Science.gov (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2017-12-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  2. Asteroid electrostatic instrumentation and modelling

    Science.gov (United States)

    Aplin, K. L.; Bowles, N. E.; Urbak, E.; Keane, D.; Sawyer, E. C.

    2011-06-01

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  3. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  4. Magnetic levitation of single cells.

    Science.gov (United States)

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine.

  5. High-temperature levitated materials

    National Research Council Canada - National Science Library

    Price, David L

    2010-01-01

    .... This can be avoided by suspending the sample through levitation. This technique also makes metastable states of matter accessible, opening up new avenues of scientific enquiry, as well as possible new materials for technological applications...

  6. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    Science.gov (United States)

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  7. Levitation Methods for Structural and Dynamical Studies of Liquids at High Temperatures

    Directory of Open Access Journals (Sweden)

    Holland-Moritz D.

    2011-05-01

    Full Text Available In recent years, levitation methods have been increasingly used to study the atomic structure and dynamics of high-temperature liquids, in particular metallic melts. These methods provide a containerless and, consequently, high-purity sample environment. No corrections for signals due to a crucible need to be made, and deep undercoolings of the liquid become possible, reducing the effect of thermal fluctuations. On the other hand, the sample position and, hence, the scattering geometry is not fixed and the free sample surface exhibits capillary waves. Nevertheless, the combination of levitation techniques with x-ray or neutron sources has proven to be possible and successfull. This paper reviews the progress made in this field during the last 10 years or so. It discusses the different levitation techniques: aerodynamic, electromagnetic, electrostatic, as well as the applied spectroscopic techniques: x-ray and neutron diffraction, x-ray absorption and quasi-elastic neutron diffraction. Some recent results are also highlighted.

  8. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  9. Multipolar electrostatics.

    Science.gov (United States)

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  10. Magnetic levitation of condensed hydrogen

    Science.gov (United States)

    Paine, C. G.; Seidel, G. M.

    1991-01-01

    Liquid and solid molecular hydrogen has been levitated using a pair of small superconducting solenoids. The hydrogen samples, up to 3 mm in dimension, were trapped in a magnetic potential having either a discrete minimum or a minimum in the form of a ring 1 cm in diameter. The hydrogen could be moved about in the magnetic trap by applying an electric field.

  11. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  12. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F.

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  13. Droplet Vaporization In A Levitating Acoustic Field

    Science.gov (United States)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  14. Theory and applications of electromagnetic levitation

    Science.gov (United States)

    Frost, R. T.; Chang, C. W.

    1982-01-01

    A simple treatment of the electromagnetic levitation problem is presented, with emphasis placed on approximate formulas useful in planning and interpreting laboratory measurements. Consideration is also given to numerical solutions for fields, eddy currents, and Lorentz forces for rapidly varying applied fields, with particular reference made to traveling wave levitation experiments. Applications of levitation processing are briefly reviewed, including thermophysical property measurements, undercooling studies, containerless crystal growth, and continuous casting of cylinders.

  15. Velocity damper for electromagnetically levitated materials

    Science.gov (United States)

    Fox, Richard J.

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  16. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  17. Investigations of levitated helium drops

    Science.gov (United States)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  18. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross

  19. A Simple, Inexpensive Acoustic Levitation Apparatus

    Science.gov (United States)

    Schappe, R. Scott; Barbosa, Cinthya

    2017-01-01

    Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite…

  20. Passive levitation in alternating magnetic fields

    Science.gov (United States)

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aronson, Eugene A [Albuquerque, NM

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  1. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  2. Magnetic levitation induced by negative permeability

    OpenAIRE

    Rangelov, A. A.

    2011-01-01

    In this paper we study the interaction between a point magnetic dipole and a semi-infinite metamaterial using the method of images. We obtain analytical expressions for the levitation force for an arbitrarily oriented dipole. Surprisingly the maximal levitation force for negative permeability is found to be stronger compared to the case when the dipole is above a superconductor.

  3. MAGNETICALLY LEVITATED TRAIN'S SUSPENSION MODEL

    Directory of Open Access Journals (Sweden)

    V. A. Polyakov

    2017-10-01

    Full Text Available Purpose. The implementation of the magnetically levitated train’s (MLT levitation force (LF occurs during the interaction between fields of superconducting train’s (STC and short-circuited track’s contours (STC, which are included in to levitation module (LU. Based on this, the purpose of this study is to obtain a correct description of such interaction. Methodology. At the present stage, the main and most universal tool for the analysis and synthesis of processes and systems is their mathematical and, in particular, computer modeling. At the same time, the radical advantages of this tool make even more important the precision of choosing a specific methodology for research conducting. This is particularly relevant in relation to such large and complex systems as MLT. For this reason, the work pays special attention to the reasoned choice of the selective features of the research paradigm. Findings. The analysis results of existing versions of LF implementation’s models show that each of them, along with the advantages, also has significant drawbacks. In this regard, one of the main results of the study should be the construction of this force implementation’s mathematical model, which preserves the advantages of the mentioned versions, but free from their shortcomings. The rationality of application, for the train’s LF researching, of an integrative holistic paradigm, which assimilates the advantages of the electric circuit's and magnetic field's theory’s, is reasonably justified in work. Originality. The scientific novelty of the research – in priority of such a paradigm’s and the corresponding version’s of the LF’s implementation’s model’s creating. Practical value. The main manifestation of the practical significance of the work is the possibility, in the case of using its results, to significantly increase the effectiveness of dynamic MLT research while reducing their resource costing.

  4. Ultrasonic Levitation for Liquid Droplet

    Science.gov (United States)

    Otsuka, Tetsuro; Nakane, Tomoo

    2002-05-01

    Ultrasonic levitation in a gravity field was tested using a viscous liquid at a frequency range from 20 kHz to 28 kHz. Red ink and glycerin droplets havingdiameters in the range of 3 mm to 5 mm were placed at a node of a standing wave. As a result, the droplets were not only flattened like a disk, but also found to contain fine air bubbles. Additionally, the droplets continuously changed their location moving from node to node while maintaining a constant volume.

  5. Quantum Spin Stabilized Magnetic Levitation

    Science.gov (United States)

    Rusconi, C. C.; Pöchhacker, V.; Kustura, K.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.

  6. Optomechanics with levitating nitrogen-vacancy centers

    OpenAIRE

    Ahmed Abobeih, Mohamed

    2015-01-01

    Levitated nanoparticles in high vacuum have recently demonstrated unique capabilities to advance the field of optomechanics, by providing a new platform for ultra high quality factors nanomechanical oscillators, thanks to the absence of supporting substrates. At the same time, nitrogen-vacancy (NV) centers in nanodiamonds have shown outstanding properties as individual quantum objects, acting as artificial atoms. Therefore, the levitation of NV centers in high vacuum is expected to open a new...

  7. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  8. Matrix method for acoustic levitation simulation.

    Science.gov (United States)

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  9. How to Simply Demonstrate Diamagnetic Levitation with Pencil Lead

    Science.gov (United States)

    Koudelkova, Vera

    2016-01-01

    A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.

  10. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  11. Energy-Based Controller Design of Stochastic Magnetic Levitation System

    OpenAIRE

    Sun, Weiwei; Wang, Kaili; Nie, Congcong; Xie, Xuejun

    2017-01-01

    This paper investigates the control problem of magnetic levitation system, in which velocity feedback signal is influenced by stochastic disturbance. Firstly, single-degree-freedom magnetic levitation is regarded as an energy-transform action device. From the view of energy-balance relation, the magnetic levitation system is transformed into port-controlled Hamiltonian system model. Next, based on the Hamiltonian structure, the control law of magnetic levitation system is designed by applying...

  12. Levitation Force Properties of Superconducting Magnetic Bearing Using Bulk Magnet

    OpenAIRE

    齋藤, 友基; 荻原, 宏康

    1999-01-01

    Type II superconductors can be trapped fluxes at pinning centers. The fluxes-trapping superconductor behaves like a permanent magnet, which is called a "bulk magnet". It is reported that its magnetic field is stronger than that of a usual permanent magnet. We propose a novel levitation system using two sets of superconductors, one of which used the bulk magnets. In this paper, we compared the levitation forces of a usual levitation system with a permanent magnet and the novel levitation syste...

  13. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  14. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  15. Levitation-melting technique for metals and alloys

    Science.gov (United States)

    Downey, J. W.

    1969-01-01

    Experimentation resulted in an improved levitation-melting technique for metals and alloys which quickly produces a completly homogeneous melt. Also developed were two levitation coils that permit a wide variety of metals to be levitated in the molten state and a helium quenching method which minimizes contamination and segregation.

  16. A simple and efficient levitation technique for noncontact coating of ...

    Indian Academy of Sciences (India)

    Abstract. A simple and very efficient gas jet levitation technique for levitating inertial confinement fusion (ICF) targets has been developed. A low velocity gas jet through diverging nozzle generates precisely controlled low Reynolds number flow pattern, capable of levitating polymer microballoons up to 2500 μm diameter.

  17. Self-arraying of charged levitating droplets.

    Science.gov (United States)

    Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent

    2011-06-01

    Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation.

  18. A Simple, Inexpensive Acoustic Levitation Apparatus

    Science.gov (United States)

    Schappe, R. Scott; Barbosa, Cinthya

    2017-01-01

    Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite costly; we wanted to develop a simple, inexpensive system to demonstrate this visually striking example of standing waves. A search of the literature produced only one article relevant to creating such an apparatus, but the authors' approach uses a test tube, which limits the access to the standing wave. Our apparatus, shown in Fig. 1, can levitate multiple small (1-2 mm) pieces of expanded polystyrene (Styrofoam) using components readily available to most instructors of introductory physics. Acoustic levitation occurs in small, stable equilibrium locations where the weight of the object is balanced by the acoustic radiation force created by an ultrasonic standing wave; these locations are slightly below the pressure nodes. The levitation process also creates a horizontal restoring force. Since the pressure nodes are also velocity antinodes, this transverse stability may be analogous to the effect of an upward air stream supporting a ball.

  19. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    CERN Document Server

    Kawaguchi, T

    2002-01-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the gamma-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is a...

  20. Acoustic levitation of a large solid sphere

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)

    2016-07-25

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  1. Exploration of micro-diamagnetic levitation rotor

    Science.gov (United States)

    Su, Yufeng; Zhang, Kun; Ye, Zhitong; Xiao, Zhiming; Takahata, Kenichi

    2017-12-01

    We investigated a micro-diamagnetic levitation rotor system (MDLRS) in which the rotor freely levitates above the magnets. To explore the characteristics of the rotor, we carried out numerical simulations of and experiments on the MDLRS. Numerical simulation results show that the steady-state levitation height of the rotor is 130 µm, which is basically consistent with the experimental result (132 µm). Under the actuation of a regulated nitrogen flow, experimental results from the rotation speed of the rotor show that the maximum rate is 500 rpm at a flow rate of 28.16 sccm. Furthermore, an empirical model of the relationship between the flow rate and the rotation speed is proposed.

  2. Particle manipulation by a non-resonant acoustic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, CP 66318, 05314-970 São Paulo (Brazil); Pérez, Nicolás [Centro Universitario de Paysandú, Universidad de la República, Ruta 3 km 363, 60000 Paysandú (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, Av. Mello Moraes, 2231, 05508-030 São Paulo (Brazil)

    2015-01-05

    We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.

  3. Design and Development of an Acoustic Levitation System for Use in CVD Growth of Carbon Nanotubes

    Science.gov (United States)

    Qasem, Amal ali

    produce the standing waves. The levitation of small Styrofoam balls was successful by using this system and verified wavelengths of standing wave and position of levitation. We could not levitate powders, most likely due to electrostatic charging, air currents, but most importantly insufficient power to drive transducer. In addition, we built a CVD growth furnace with ultrasound transducer- horn- quartz rod and reflector. The reflector support also included a sense piezoelectric element for determining standing wave strength. This reflector support was mounted on a linear translation stage to control the quartz rod-reflector separation to produce standing waves. To remove the contaminated unwanted CNTs, we built a separate tube furnace tube filled with a molecular sieve to burn the CNT's in air. Finally, we made catalyst-coated, ceramic microparticles for levitation and used these to verify CNT growth. Future efforts research would be to levitate these micro particles at room temperature then in the high temperature furnace for growth of carbon nanotubes.

  4. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Science.gov (United States)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  5. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer

    Science.gov (United States)

    Yin, Yonggang; Sun, Boqian; Han, Fengtian

    2016-01-01

    A micromachined electrostatically-suspended accelerometer (MESA) is a kind of three-axis inertial sensor based on fully-contactless electrostatic suspension of the proof mass (PM). It has the potential to offer broad bandwidth, high sensitivity, wide dynamic range and, thus, would be perfectly suited for land seismic acquisition. Previous experiments showed that it is hard to lift up the PM successfully during initial levitation as the mass needs to be levitated simultaneously in all six degrees of freedom (DoFs). By analyzing the coupling electrostatic forces and torques between three lateral axes, it is found there exists a self-locking zone due to the cross-axis coupling effect. To minimize the cross-axis coupling and solve the initial levitation problem, this paper proposes an effective control scheme by delaying the operation of one lateral actuator. The experimental result demonstrates that the PM can be levitated up with six-DoF suspension operation at any initial position. We also propose a feed-forward compensation approach to minimize the negative stiffness effect inherent in electrostatic suspension. The experiment results demonstrate that a more broadband linear amplitude-frequency response and higher suspension stiffness can be achieved, which is crucial to maintain high vector fidelity for potential use as a three-component MEMS geophone. The preliminary performance tests of the three-axis linear accelerometer were conducted under normal atmospheric pressure and room temperature. The main results and noise analysis are presented. It is shown that vacuum packaging of the MEMS sensor is essential to extend the bandwidth and lower the noise floor, especially for low-noise seismic data acquisition. PMID:27213376

  6. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer

    Directory of Open Access Journals (Sweden)

    Yonggang Yin

    2016-05-01

    Full Text Available A micromachined electrostatically-suspended accelerometer (MESA is a kind of three-axis inertial sensor based on fully-contactless electrostatic suspension of the proof mass (PM. It has the potential to offer broad bandwidth, high sensitivity, wide dynamic range and, thus, would be perfectly suited for land seismic acquisition. Previous experiments showed that it is hard to lift up the PM successfully during initial levitation as the mass needs to be levitated simultaneously in all six degrees of freedom (DoFs. By analyzing the coupling electrostatic forces and torques between three lateral axes, it is found there exists a self-locking zone due to the cross-axis coupling effect. To minimize the cross-axis coupling and solve the initial levitation problem, this paper proposes an effective control scheme by delaying the operation of one lateral actuator. The experimental result demonstrates that the PM can be levitated up with six-DoF suspension operation at any initial position. We also propose a feed-forward compensation approach to minimize the negative stiffness effect inherent in electrostatic suspension. The experiment results demonstrate that a more broadband linear amplitude-frequency response and higher suspension stiffness can be achieved, which is crucial to maintain high vector fidelity for potential use as a three-component MEMS geophone. The preliminary performance tests of the three-axis linear accelerometer were conducted under normal atmospheric pressure and room temperature. The main results and noise analysis are presented. It is shown that vacuum packaging of the MEMS sensor is essential to extend the bandwidth and lower the noise floor, especially for low-noise seismic data acquisition.

  7. Hiding levitating objects above a ground plane

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    An approach to hiding objects levitating above a conducting sheet is suggested in this paper. The proposed device makes use of isotropic negative-refractive-index materials without extreme material parameters, and creates an illusion of a remote conducting sheet. Numerical simulations are performed...

  8. Levitating a Magnet Using a Superconductive Material.

    Science.gov (United States)

    Juergens, Frederick H.; And Others

    1987-01-01

    Presented are the materials and a procedure for demonstrating the levitation of a magnet above a superconducting material. The demonstration can be projected with an overhead projector for a large group of students. Kits to simplify the demonstration can be purchased from the Institute for Chemical Education of the University of Wisconsin-Madison.…

  9. Levitated crystals and quasicrystals of metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Goree, John A [Dept Phys and Astron., University of Iowa

    2012-07-25

    New scientific and technological opportunities exist by marrying dusty plasma research with metamaterials. Specifically, by balancing control and self-assembly, certain laboratory plasmas can become a generic levitation platform for novel structure formation and nanomaterial synthesis. We propose to experimentally investigate two dimensional (2D) and three dimensional (3D) levitated structures of metamaterials and their properties. Such structures can self assemble in laboratory plasmas, similar to levitated dust crystals which were discovered in the mid 1990's. Laboratory plasma platform for metamaterial formation eliminates substrates upon which most metamaterials have to be supported. Three types of experiments, with similar setups, are discussed here. Levitated crystal structures of metamaterials using anisotropic microparticles are the most basic of the three. The second experiment examines whether quasicrystals of metamaterials are possible. Quasicrystals, discovered in the 1980's, possess so-called forbidden symmetries according to the conventional crystallography. The proposed experiment could answer many fundamental questions about structural, thermal and dynamical properties of quasicrystals. And finally, how to use nanoparticle coated microparticles to synthesize very long carbon nanotubes is also described. All of the experiments can fit inside a standard International Space Station locker with dimensions of 8-inch x 17-inch X 18-inch. Microgravity environment is deemed essential in particular for large 3D structures and very long carbon nanotube synthesis.

  10. Electrostatically controlled micromechanical gyroscope

    Science.gov (United States)

    Hawkey, Timothy (Inventor); Torti, Richard (Inventor); Johnson, Bruce (Inventor)

    1994-01-01

    An integrated electrostatically-controlled micromechanical gyroscope with a rotor encompassed within a rotor cavity and electrostatically spun within the cavity. The gyroscope includes a plurality of axial electrostatic rotor actuators above and below the rotor for controlling the axial and tilt position of the rotor within the cavity, and a plurality of radial electrostatic actuators spaced circumferentially around the rotor for controlling the radial and tilt position of the rotor within the cavity. The position of the rotor within the cavity is then resolved to determine the external forces acting on the rotor.

  11. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  12. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83B17 During Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Quirinale, D.G.; Messina, D.; Rustan, G.E.; Kreyssig, A.; Prozorov, R.; Goldman, A.I. (Ames); (Iowa State)

    2017-11-01

    In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.

  13. Electrostatic Discharge Training Manual

    Science.gov (United States)

    1980-09-01

    NAVSEA SE 003-AA-TRN-OO LEYE V ELECTROSTATIC DISCHARGE TRAINING MANUAL s DTIC ,T OF I!ELECTE, ,4MA 0W\\R 9 981 E PUBLISHED BY DIRECTION OF COMMANDER...LABORATORY-TYPE DETECTORS SHOULD BE USED. IN SUMMARY, CHARACTERIS- TICS TO CONSIDER IN SELECTING AN ELECTROSTATIC DETECTOR ARE: o SENSITIVITY (MINIMUM

  14. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    For an excellent summary of the field of supramolecular chemistry, readers are referred to the article by J-M Lehn in Resonance, VaLl,. No.3, p.39, 1996. Electrostatics plays an important role in weak intermolecular interactions. The present series is aimed at understanding these electrostatic aspects. This article presents the.

  15. Edutainment Science: Electrostatics

    Science.gov (United States)

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  16. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture shows such an electrostatic septum in its tank. See 7501120X, 7501199 and 7501201 for more detailed pictures.

  17. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  18. Acoustic levitation of an object larger than the acoustic wavelength.

    Science.gov (United States)

    Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C

    2017-06-01

    Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.

  19. Stop of magnetic flux movement in levitating superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Smolyak, B.M., E-mail: b-smolyak@yandex.ru; Zakharov, M.S., E-mail: maksim.s.zakharov@gmail.com

    2017-01-15

    Highlights: • A direct experimental study of magnetic flux creep in the levitating superconductor. • When a levitating object is in a fixed position, magnetic flux movement is observed. • Levitation stops flux creep process. - Abstract: A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  20. Electrostatic Cycling of Hybridization Using Nonionic DNA Mimics.

    Science.gov (United States)

    Ruffin, Sade; Hung, Isabella A; Koniges, Ursula M; Levicky, Rastislav

    2017-07-28

    This study demonstrates efficient electrostatic control of surface hybridization through use of morpholinos, a charge-neutral DNA mimic, as the immobilized "probes". In addition to being compatible with low ionic strengths, use of uncharged probes renders the field interaction specific to the nucleic acid analyte. In contrast to DNA probes, morpholino probes enable facile cycling between hybridized and dehybridized states within minutes. Impact of ionic strength and temperature on the effectiveness of electrostatics to direct progress of hybridization is evaluated. Optimal electrostatic control is found when stability of probe-analyte duplexes is set so that electrostatics can efficiently switch between the forward (hybridization) and reverse (dehybridization) directions.

  1. Stop of magnetic flux movement in levitating superconductor

    Science.gov (United States)

    Smolyak, B. M.; Zakharov, M. S.

    2017-01-01

    A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  2. Energy-Based Controller Design of Stochastic Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    Weiwei Sun

    2017-01-01

    Full Text Available This paper investigates the control problem of magnetic levitation system, in which velocity feedback signal is influenced by stochastic disturbance. Firstly, single-degree-freedom magnetic levitation is regarded as an energy-transform action device. From the view of energy-balance relation, the magnetic levitation system is transformed into port-controlled Hamiltonian system model. Next, based on the Hamiltonian structure, the control law of magnetic levitation system is designed by applying Lyapunov theory. Finally, the simulation verifies the correctness of the proposed results.

  3. The Inductrack concept: A new approach to magnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.; Ryutov, D.

    1996-05-01

    This report describes theoretical and experimental investigations of a new approach to the problem of the magnetic levitation of a moving object. By contrast with previously studied levitation approaches, the Inductrack concept concept represents a simpler, potentially less expensive, and totally passive means of levitating a high-speed train. It may also be applicable to other areas where simpler magnetic levitation systems are needed, for example, high-speed test sleds for crash testing applications, or low-friction conveyer systems for industrial use.

  4. Magnetic Levitation Experiments with the Electrodynamic Wheel

    Science.gov (United States)

    Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian

    Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  5. Magnetic levitation from negative permeability materials

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Mark W., E-mail: mcoffey@mines.edu [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States)

    2012-09-03

    As left-handed materials and metamaterials are becoming more prevalent, we examine the effect of negative permeability upon levitation force. We first consider two half spaces of differing permeability and a point magnetic source, so that the method of images may be employed. We determine that the resulting force may be larger than for conventional magnetic materials. We then illustrate the inclusion of a finite sample thickness. -- Highlights: ► The effect of negative permeability upon levitation force is considered. ► Such an effect could be realized with metamaterials. ► The resulting force may be larger than with conventional materials. ► The analysis is extended to allow for a finite sample thickness. ► Representative numerical values are given.

  6. Magnetic levitation system for moving objects

    Science.gov (United States)

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  7. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  8. New laser power sensor using diamagnetic levitation

    Science.gov (United States)

    Pinot, P.; Silvestri, Z.

    2017-08-01

    This paper presents a preliminary study of an elementary device consisting of a small plate made from pyrolytic carbon levitated above a magnet array which is sensitive to any irradiating laser power. This device might provide an interesting alternative to power meters based on thermal measurement techniques via the Stefan-Boltzmann law or the photon-electron interaction. We show that the photo-response of a pyrolytic carbon plate in terms of levitation height versus irradiation power in the range of 20 mW to 1 W is sufficiently linear, sensitive, and reproducible to be used as a laser power sensor. The elevation height change as a function of irradiance time appears to be a suitable measurement parameter for establishing a relation with the irradiating laser power. The influence of some quantities affecting the measurement results has been highlighted. The study demonstrates that such a device should prove useful for applications in metrology, industry, or emerging technologies.

  9. Cryogenically enhanced magneto-Archimedes levitation

    Energy Technology Data Exchange (ETDEWEB)

    Catherall, A T; Lopez-Alcaraz, P; Benedict, K A; King, P J; Eaves, L [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2005-05-01

    The application of both a strong magnetic field and magnetic field gradient to a diamagnetic body can produce a vertical force which is sufficient to counteract its weight due to gravity. By immersing the body in a paramagnetic fluid, an additional adjustable magneto-buoyancy force is generated which enhances the levitation effect. Here we show that cryogenic oxygen and oxygen-nitrogen mixtures in both gaseous and liquid form provide sufficient buoyancy to permit the levitation and flotation of a wide range of materials. These fluids may provide an alternative to synthetic ferrofluids for the separation of minerals. We also report the dynamics of corrugation instabilities on the surface of magnetized liquid oxygen.

  10. Aerodynamic levitation : an approach to microgravity.

    Energy Technology Data Exchange (ETDEWEB)

    Glorieux, B.; Saboungi, M.-L.; Millot, F.; Enderby, J.; Rifflet, J.-C.

    2000-12-05

    Measurements of the thermophysical and structural properties of liquid materials at high temperature have undergone considerable development in the past few years. Following improvements in electromagnetic levitation, aerodynamic levitation associated with laser heating has shown promise for assessing properties of different molten materials (metals, oxides, and semiconductors), preserving sample purity over a wide range of temperatures and under different gas environments. The density, surface tension and viscosity are measured with a high-speed video camera and an image analysis system. Results on nickel and alumina show that small droplets can be considered in the first approximation to be under microgravity conditions. Using a non-invasive contactless technique recently developed to measure electrical conductivity, results have been extended to variety of materials ranging from liquid metals and liquid semiconductors to ionically conducting materials. The advantage of this technique is the feasibility of monitoring changes in transport occurring during phase transitions and in deeply undercooled states.

  11. High Temperature Superconducting Levitation Energy Storage Flywheel having Stable Levitation without Control and Its Vibration Control Electromagnetic Damper

    OpenAIRE

    福室, 允央; 大関, 健一郎; 斎藤, 正人; 葛, 徳梁; 村上, 岩範; 長屋, 幸助

    2004-01-01

    A simple and stable energy-storage flywheel system with high temperature superconducting levitation is presented. In order to have stable levitation, a superconductor and a permanent magnet are used, and 3 permanent magnets support the top of the shaft. In the part of drive system, 8-poles permanent magnet and 8 coils are used to cancel electromagnetic forces in the radial direction. An electromagnetic damper consisting of permanent magnet for levitation and 4 coils is presented which lies at...

  12. Dependence of Levitation Force on Frequency of an Oscillating Magnetic Levitation Field in a Bulk YBCO Superconductor

    OpenAIRE

    Carter, Hamilton; Pate, Stephen; Goedecke, George

    2012-01-01

    The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disc on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical[1] agreement with the field strength required to levitate the same superconductor with a non-oscilla...

  13. Magnetic Levitational Assembly for Living Material Fabrication.

    Science.gov (United States)

    Tasoglu, Savas; Yu, Chu Hsiang; Liaudanskaya, Volha; Guven, Sinan; Migliaresi, Claudio; Demirci, Utkan

    2015-07-15

    Functional living materials with microscale compositional topographies are prevalent in nature. However, the creation of biomaterials composed of living micro building blocks, each programmed by composition, functionality, and shape, is still a challenge. A powerful yet simple approach to create living materials using a levitation-based magnetic method is presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Internal magnetic relaxation in levitation superconductors

    CERN Document Server

    Smolyak, B M; Ermakov, G V

    2001-01-01

    Effect of arresting levitation relaxation, appearing during reverse magnetization of YBaCuO superconducting ceramics, was detected. At bipolar magnetization magnetic moment of a sample remains invariable. Internal magnetic relaxation occurs, in the course of which magnetic flux is redistributed inside the sample. As a result the state of filed at the sample boundary does not change and full force acting on the system of closed currents remains constant. A formula for calculating the time of internal relaxation is provided

  15. Experimenting with a Superconducting Levitation Train

    Science.gov (United States)

    Miryala, Santosh; Koblischka, M. R.

    2014-01-01

    The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…

  16. Cavity optomechanics in a levitated helium drop

    Science.gov (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  17. Laser Techniques on Acoustically Levitated Droplets

    Directory of Open Access Journals (Sweden)

    Cannuli Antonio

    2018-01-01

    acoustically levitated droplets of trehalose aqueous solutions in order to perform spectroscopic analyses as a function of concentration and to test the theoretical diameter law. The study of such systems is important in order to better understand the behaviour of trehalose-synthesizing extremophiles that live in extreme environments. In particular, it will be shown how acoustic levitation, combined with optical spectroscopic instruments allows to explore a wide concentration range and to test the validity of the diameter law as a function of levitation lag time, i.e. the D2 vs t law. On this purpose a direct diameter monitoring by a video camera and a laser pointer was first performed; then the diameter was also evaluated by an indirect measure through an OH/CH band area ratio analysis of collected Raman and Infrared spectra. It clearly emerges that D2 vs t follows a linear trend for about 20 minutes, reaching then a plateau at longer time. This result shows how trehalose is able to avoid total water evaporation, this property being essential for the surviving of organisms under extreme environmental conditions.

  18. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  19. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  20. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  1. Active magnetic levitation guide based on magnetic damping control

    Science.gov (United States)

    Zheng, Zhongqiao; Xu, Minzheng

    2017-07-01

    With the application of active magnetic levitation technology, flutter is a problem in the planar multi-point support system, which reduces the bearing capacity and the control precision, and it is difficult to apply advanced control strategies. Therefore, a new method called magnetic damping control is proposed to solve the flutter problem, which can make active magnetic levitation guide to run smoothly.

  2. Spin-stabilized magnetic levitation without vertical axis of rotation

    Science.gov (United States)

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  3. Method and apparatus for shaping and enhancing acoustical levitation forces

    Science.gov (United States)

    Oran, W. A.; Berge, L. H.; Reiss, D. A.; Johnson, J. L. (Inventor)

    1980-01-01

    A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described.

  4. Levitation characteristics of the superconducting mixed-{mu} system

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T.; Kubota, M.; Suzuki, E.; Matsuda, T.; Hirakawa, M.; Nakashima, H.; Ohsaki, H.; Mizuno, T

    2003-10-15

    A mixed-{mu} or magnetic gradient levitation system, which consists of an iron component, a superconducting screen and electric coils, enables a stable levitation even at a standstill without active control. The stable levitation is based on the combination of ferromagnetic material (iron), diamagnetic material (superconducting screen) and air. We carried out levitation tests using two types of experimental apparatuses: a large-scale system with superconducting screens of multilayered NbTi plates and a small-scale system with superconducting screens of tile-shaped YBCO bulks. Both systems have race-track-shaped exciting coils and a test block with iron as a levitator. As a result, the stable levitation of the test block in the room temperature space was successfully demonstrated in both apparatuses. The maximum weight of the test block in the experiment of a large-scale apparatus was 79 kg including the weight 26 kg of iron. In addition, we analyzed the electromagnetic characteristics of these levitation models by the finite element method and obtained the good agreement between the experimental and numerical analysis results. From these results, we have obtained the prospect of designing a stable levitation model with a sufficient accuracy through the parameter survey by the numerical analysis.

  5. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  6. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  7. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    OpenAIRE

    Miyatake, Yoshihito; Komori, Mochimitsu; Asami, Ken-ichi; Sakai, Nobuo

    2012-01-01

    Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  8. Electrostatic comb drive for vertical actuation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1997-07-10

    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  9. Experimenting with a superconducting levitation train

    OpenAIRE

    Koblischka, Michael Rudolf; Miryala, Santosh

    2014-01-01

    The construction and operation of a prototype high-Tc superconducting train model is presented. The train is levitated by a melt-processed GdBa2Cu3Ox (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron plate. The train bodies are constructed with FRP sheets forming a vessel to maintain the temperature of liquid nitrogen. The superconductors are field-cooled on the magnetic track, which provides...

  10. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Areas, electrostatic septa in long straight sections 2 an 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, provide a vertical electric field to remove the ions created by the circulating beam in the residual gas. Here we see one of the electrostatic septa being assembled by Faustin Emery (left) and Jacques Soubeyran (right), in the clean room of building 867. See also 7501199, 7501201, 7801286 and further explanations there.

  11. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed......Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency......, and a high voltage attenuation interface for an audio analyzer is presented. THD below 0:1% is reported....

  12. Electrostatics in Chemistry-Electrostatic Models for Weak Molecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Electrostatics in Chemistry - Electrostatic Models for Weak Molecular Complexation. Shridhar R Gadre Pravin K Babu. Series Article Volume 4 Issue 12 December 1999 pp 11-20 ...

  13. A levitation instrument for containerless study of molten materials

    Science.gov (United States)

    Nordine, Paul C.; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al2O3 at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y3Al5O12 far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al2O3 as a function of temperature. Levitation of dense liquid HfO2 at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.

  14. Smart-Phone Based Magnetic Levitation for Measuring Densities.

    Directory of Open Access Journals (Sweden)

    Stephanie Knowlton

    Full Text Available Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform.

  15. Smart-Phone Based Magnetic Levitation for Measuring Densities.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur; Ghiran, Ionita Calin; Tasoglu, Savas

    2015-01-01

    Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform.

  16. An asymmetry in electrostatics

    Science.gov (United States)

    Ganci, Salvatore

    2013-11-01

    This paper outlines a misuse of the electrostatic induction concept. A non-symmetrical behaviour was observed in a charge by the induction of an insulated hollow metallic conductor (the Faraday ice pail experiment). The major consequence of this experiment is a quick demonstration that the Earth must have a net negative charge.

  17. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  18. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  19. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture is a detail of 7501199, and shows the suspension of the wires. 7801286 shows a septum in its tank. See also 7501120X.

  20. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Electrostatics in Chemistry - Basic Principles. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 2 February 1999 pp 8-19. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Diamagnetic levitation in the fractionally superconducting bile cholates.

    Science.gov (United States)

    Wolf, A A; Halpern, E H; Sherman, J

    1976-01-01

    Diamagnetic levitation similar to that seen in metallic superconductors has been observed in organic compounds; namely, the bile cholates. Levitation phenomena, with forces exceeding 400 lbs/in, occurred in repeated experiments at transition temperatures extablished by susceptibility and resistivity measurements. With crystalline phase change ruled out by X-ray diffraction studies, the observed levitation must be regarded as due to superconductive effects occurring in small domains randomly dispersed throughout the insulating bulk of the investigated cholates. The transition temperatures observed in some of these compounds were higher than those seen in the metals.

  2. Note: Attenuation motion of acoustically levitated spherical rotor

    Science.gov (United States)

    Lü, P.; Hong, Z. Y.; Yin, J. F.; Yan, N.; Zhai, W.; Wang, H. P.

    2016-11-01

    Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.

  3. Amorphization of Molecular Liquids of Pharmaceutical Drugs by Acoustic Levitation

    Directory of Open Access Journals (Sweden)

    C. J. Benmore

    2011-08-01

    Full Text Available It is demonstrated that acoustic levitation is able to produce amorphous forms from a variety of organic molecular compounds with different glass forming abilities. This can lead to enhanced solubility for pharmaceutical applications. High-energy x-ray experiments show that several viscous gels form from saturated pharmaceutical drug solutions after 10–20 min of levitation at room temperature, most of which can be frozen in solid form. Laser heating of ultrasonically levitated drugs can also result in the vitrification of molecular liquids, which is not attainable using conventional amorphization methods.

  4. Investigation of Electrostatic Accelerometer in HUST for Space Science Missions

    Science.gov (United States)

    Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

    2014-05-01

    High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

  5. Analysis of the particle stability in a new designed ultrasonic levitation device.

    Science.gov (United States)

    Baer, Sebastian; Andrade, Marco A B; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas

    2011-10-01

    The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object.

  6. Coarse-fine residual gravity cancellation system with magnetic levitation

    Science.gov (United States)

    Salcudean, S. E.; Davis, H.; Chen, C. T.; Goertz, D. E.; Tryggvason, B. V.

    1992-01-01

    Aircraft flight along parabolic trajectories have been proposed and executed in order to achieve low cost, near free fall conditions of moderate duration. This paper describes a six degree of freedom experiment isolation system designed to cancel out residual accelerations due to mechanical vibrations and errors in aircraft trajectory. The isolation system consists of a fine motion magnetic levitator whose stator is transported by a conventional coarse motion stage. The levitator uses wide gap voice coil actuators and has the dual purpose of isolating the experiment platform from aircraft vibrations and actively cancelling residual accelerations through feedback control. The course motion stage tracks the levitated platform in order to keep the levitator's coils centered within their matching magnetic gaps. Aspects of system design, an analysis of the proposed control strategy and simulation results are presented. Feasibility experiments are also discussed.

  7. Force sensing with an optically levitated charged nanoparticle

    Science.gov (United States)

    Hempston, David; Vovrosh, Jamie; Toroš, Marko; Winstone, George; Rashid, Muddassar; Ulbricht, Hendrik

    2017-09-01

    Levitated optomechanics is showing potential for precise force measurements. Here, we report a case study to show experimentally the capacity of such a force sensor, using an electric field as a tool to detect a Coulomb force applied onto a levitated nanosphere. We experimentally observe the spatial displacement of up to 6.6 nm of the levitated nanosphere by imposing a DC field. We further apply an AC field and demonstrate resonant enhancement of force sensing when a driving frequency, ωAC, and the frequency of the levitated mechanical oscillator, ω0, converge. We directly measure a force of 3.0 ± 1.5 × 10-20 N with 10 s integration time, at a centre of mass temperature of 3 K and at a pressure of 1.6 × 10-5 mbar.

  8. Microrobot with passive diamagnetic levitation for microparticle manipulations

    Science.gov (United States)

    Feng, Lin; Zhang, Shengyuan; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito

    2017-12-01

    In this paper, an innovative microrobot with passive diamagnetic levitation is presented. Based on theoretical analysis, finite element method simulation, and experiments, the shape of pyrolytic graphite is redesigned, which improves the stability of passive diamagnetic levitation significantly. Therefore, passive diamagnetic levitation is able to be applied for 3-D control of the microrobot. Compared with the traditional microrobots driven by permanent magnets in a microfluidic chip, the microrobot made of pyrolytic graphite and driven by magnetic force has two advantages, no friction and 3-D control, which is able to expand the scope of the microrobot applications. Finally, the microrobot with passive diamagnetic levitation was demonstrated by being encapsulated in a microfluidic chip for microparticle manipulations.

  9. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  10. Aerodynamic levitator for large-sized glassy material production.

    Science.gov (United States)

    Yoda, Shinichi; Cho, Won-Seung; Imai, Ryoji

    2015-09-01

    Containerless aerodynamic levitation processing is a unique technology for the fabrication of bulk non-crystalline materials. Using conventional aerodynamic levitation, a high reflective index (RI) material (BaTi2O5 and LaO3/2-TiO2-ZrO2 system) was developed with a RI greater than approximately 2.2, which is similar to that of diamond. However, the glass size was small, approximately 3 mm in diameter. Therefore, it is essential to produce large sized materials for future optical materials applications, such as camera lenses. In this study, a new aerodynamic levitator was designed to produce non-crystalline materials with diameters larger than 6 mm. The concept of this new levitator was to set up a reduced pressure at the top of the molten samples without generating turbulent flow. A numerical simulation was also performed to verify the concept.

  11. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    OpenAIRE

    Hai Jiang; Jianfang Liu; Qingqing Lv; Shoudong Gu; Xiaoyang Jiao; Minjiao Li; Shasha Zhang

    2016-01-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radi...

  12. Superconducting levitation applications to bearings and magnetic transportation

    CERN Document Server

    Moon, Francis C

    1994-01-01

    Presents the fundamental principles governing levitation of material bodies by magnetic fields without too much formal theory. Defines the technology of magnetic bearings, especially those based on superconductivity, and demonstrates the key roles that magnetics, mechanics and dynamics play in the complete understanding of magnetic levitation and its bearings. Features extensive figures and photos of Mag-Lev devices and summarizes recent U.S. research studies in an effort to regain the lead in Mag-Lev technologies

  13. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.

    Science.gov (United States)

    Kosaka, Ryo; Yoshida, Fumihiko; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi

    2015-01-01

    The purpose of the present study is to investigate a bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump to realize a blood pump with a low hemolysis level. The impeller levitates axially by balancing a gravitational force, buoyancy, a magnetic force, and hydrodynamic forces on the top and bottom sides of the impeller. To adjust the levitation position of the impeller, the balance of acting forces on the impeller was adjusted by changing the shroud area on the bottom impeller. Three pumps having various shroud area were prepared as tested models: 817 mm(2) (HH-S), 875 mm(2) (HH-M) and 931 mm(2) (HH-L). First, for evaluating the bearing gap adjustment, the bearing gap was estimated by calculating a balancing position of the acting forces on the impeller. We actually measured the gravitational force, buoyancy and the magnetic force, and numerically analyzed hydrodynamic forces on the top and bottom sides of the impeller. Second, to verify accuracy of the estimated bearing gap, the measurement test of the bearing gap was performed. Finally, an in-vitro hemolysis test was performed to evaluate a hemolysis level of the pump. As a result, bottom bearing gaps were estimated as 40 μm (HH-S), 60 μm (HH-M) and 238 μm (HH-L). In the measurement test, bottom bearing gaps were measured as 63 μm (HH-S), 219 μm (HH-M), and 231 μm (HH-L). The estimated bearing gaps had positively correlated with the measured bearing gaps in relation to the shroud area on the impeller. In the hemolysis test, hemolysis level in every model was almost equivalent to that of BPX-80, when the bearing gap was adjusted greater than 60 μm. We could adjust the bearing gap by changing the shroud area on the impeller for improvement of levitation performance to realize a blood pump with a low hemolysis level.

  14. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight section 2 and 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, establish a vertical electrical field to remove the ions created by the circulating beam in the residual gas. See 7801286 for such a septum in its tank, and 7501201 for a detailed view of the wire suspension. See also 7501120X.

  15. Levitated Plasmonic Nanoantennas in an Aqueous Environment.

    Science.gov (United States)

    Tuna, Yazgan; Kim, Ji Tae; Liu, Hsuan-Wei; Sandoghdar, Vahid

    2017-08-22

    We report on the manipulation of a plasmonic nanoantenna in an aqueous solution using an electrostatic trap created between a glass nanopipette and a substrate. By scanning a trapped gold nanosphere in the near field of a single colloidal quantum dot embedded under the substrate surface, we demonstrate about 8-fold fluorescence enhancement over a lateral full width at half-maximum of about 45 nm. We analyze our results with the predictions of numerical electromagnetic simulations under consideration of the electrostatic free energy in the trap. Our approach could find applications in a number of experiments, where plasmonic effects are employed at liquid-solid interfaces.

  16. Magnetic levitation Maglev technology and applications

    CERN Document Server

    Han, Hyung-Suk

    2016-01-01

    This book provides a comprehensive overview of magnetic levitation (Maglev) technologies, from fundamental principles through to the state-of-the-art, and describes applications both realised and under development. It includes a history of Maglev science and technology showing the various milestones in its advancement. The core concepts, operating principles and main challenges of Maglev applications attempted across various fields are introduced and discussed. The principle difficulties encountered when applying Maglev technology to different systems, namely air gap control and stabilization, are addressed in detail. The book describes how major advancements in linear motor and magnet technologies have enabled the development of the linear-motor-powered Maglev train, which has a high speed advantage over conventional wheeled trains and has the potential to reach speed levels achieved by aircraft. However, many expect that Maglev technology to be a green technology that is applied not only in rail transportat...

  17. Experience on a cryogenic linear mechanism based on superconducting levitation

    Science.gov (United States)

    Serrano-Tellez, Javier; Romera-Juarez, Fernando; González-de-María, David; Lamensans, Mikel; Argelaguet-Vilaseca, Heribert; Pérez-Díaz, José-Luis; Sánchez-Casarrubios, Juan; Díez-Jiménez, Efrén.; Valiente-Blanco, Ignacio

    2012-09-01

    The instrumentation of many space missions requires operation in cryogenic temperatures. In all the cases, the use of mechanisms in this environment is a matter of concern, especially when long lifetime is required. With the aim of removing lifetime concerns and to benefit from the cryogenic environment, a cryogenic contactless linear mechanism has been developed. It is based on the levitation of a permanent magnet over superconductor disks. The mechanism has been designed, built, and tested to assess the performances of such technology. The levitation system solves the mechanical contact problems due to cold-welding effects, material degradation by fatigue, wearing, backlash, lubrication...etc, at cryogenic temperatures. In fact, the lower is the temperature the better the superconductor levitation systems work. The mechanism provides a wide stroke (18mm) and high resolution motion (1μm), where position is controlled by changing the magnetic field of its environment using electric-magnets. During the motion, the moving part of the mechanism levitates supported by the magnetic interaction with the high temperature type II superconductors after reaching the superconductor state down to 90K. This paper describes the results of the complete levitation system development, including extensive cryogenic testing to measure optically the motion range, resolution, run-outs and rotations in order to characterize the levitation mechanism and to verify its performance in a cryogenic environment.

  18. Eddy damping effect of additional conductors in superconducting levitation systems

    Science.gov (United States)

    Jiang, Zhao-Fei; Gou, Xiao-Fan

    2015-12-01

    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  19. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  20. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Hamilton, E-mail: hcarter3@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Pate, Stephen, E-mail: pate@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Goedecke, George, E-mail: ggoedeck@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-02-14

    Highlights: ► AC magnetic field strength required for levitation is independent of frequency. ► RMS magnetic field strength is in good agreement with DC magnetic field strength. ► Dependence of YBCO levitation force on AC magnetic field frequency is investigated. -- Abstract: The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  1. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    Directory of Open Access Journals (Sweden)

    Zhou Yiheng

    2017-01-01

    Full Text Available Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major structural parameters are analysed by finite element method, which is conductive to the design and optimization of the tubular horizontal-gap passive magnetic levitation vibration isolator. The force characteristics of different topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are compared and evaluated from the aspect of force density, force ripple and manufacturability. In comparison with conventional passive magnetic levitation vibration isolators, the proposed tubular horizontal-gap passive magnetic levitation vibration isolator shows advantage in higher force density.

  2. The near-field acoustic levitation for spheres by transducer with concave spherical radiating surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian Fang; Sun, Xu Guang; Jiao, Xiao Yang; Chen, Hong Xia [Jilin University, Changchun (China); Hua, Shun Ming [Zhejiang University, Ningbo (China); Zhang, Hong Chun [Aviation University of AirForce, Changchun (China)

    2013-02-15

    To levitate ICF target spheres in the near-field acoustic levitation, a transducer with concave spherical radiating surface and a nearfield acoustic levitation system is established. The concave spherical radiating surface of the transducer is designed by the finite element parametric method. Then the levitation height and levitation perturbation of spheres with different mass and diameters in the near-field acoustic levitation system are tested and discussed in the driving voltage at 400V, 500V and 600V, respectively, when the levitation system is under the resonant frequency. Finally, based on the experimental results, the height formula of the near-field acoustic levitation for spheres is deduced by introducing a coupling coefficient.

  3. PREFACE: Electrostatics 2015

    Science.gov (United States)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  4. Modeling in Nonlinear Vibrations of a High-Tc Superconducting Levitation System

    OpenAIRE

    長屋, 幸助; 周東, 俊介

    1996-01-01

    Three dimensional analytical results for the levitation force of a vibrating high-Tc superconducting levitation system were presented. When the levitated superconductor vibrates, the levitation force shows nonlinear relationships with the air gap, amplitude and vibration frequency, so that the convensional models which do not consider dynamic effects cannot be applied. In the model proposed by(Uesaka et al.), dynamic effects are considered, but the critical current is constant. We propose an ...

  5. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    OpenAIRE

    Zhou Yiheng; Kou Baoquan; Yang Xiaobao; Luo Jun; Zhang He

    2017-01-01

    Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major ...

  6. Experimental determination of the dynamics of an acoustically levitated sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  7. High levitation pressures with cage-cooled superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Komori, Mochimitsu [Department of Mechanical Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka (Japan)

    2002-05-01

    We present an analysis of and experimental results from a levitational system comprising a stationary, bulk high-temperature superconductor (HTS) and a levitated component (rotor) that consists of a cylindrical permanent magnet surrounded by an annular HTS. The rotor is cooled below the critical temperature of the HTS while surrounded by a ferromagnetic cage. When the ferromagnetic cage is removed, the flux from the permanent magnet is essentially excluded from the interior of the HTS. When brought into proximity with the HTS stator, the cage-cooled rotor experiences a levitational force. The levitational force may be calculated by applying magnetic circuit theory. Such calculations indicate that for a sufficiently high critical current density, the levitational pressure may exceed that between the permanent magnet and its mirror image. We constructed a rotor from an NdFeB permanent magnet and YBCO bulk HTS with a critical current density of {approx}5 kA cm{sup -2}. A soft ferromagnetic steel cage was constructed in segments. The critical current density of the stator HTS was also {approx}5 kA cm{sup -2}. Experimental results obtained with the cage-cooled rotor and stationary HTS show a significant increase in force over that of an equivalent PM rotor and stationary HTS. (author)

  8. Modal bifurcation in a high-Tc superconducting levitation system

    Science.gov (United States)

    Taguchi, D.; Fujiwara, S.; Sugiura, T.

    2011-05-01

    This paper deals with modal bifurcation of a multi-degree-of-freedom high-Tc superconducting levitation system. As modeling of large-scale high-Tc superconducting levitation applications, where plural superconducting bulks are often used, it can be helpful to consider a system constituting of multiple oscillators magnetically coupled with each other. This paper investigates nonlinear dynamics of two permanent magnets levitated above high-Tc superconducting bulks and placed between two fixed permanent magnets without contact. First, the nonlinear equations of motion of the levitated magnets were derived. Then the method of averaging was applied to them. It can be found from the obtained solutions that this nonlinear two degree-of-freedom system can have two asymmetric modes, in addition to a symmetric mode and an antisymmetric mode both of which also exist in the linearized system. One of the backbone curves in the frequency response shows a modal bifurcation where the two stable asymmetric modes mentioned above appear with destabilization of the antisymmetric mode, thus leading to modal localization. These analytical predictions have been confirmed in our numerical analysis and experiments of free vibration and forced vibration. These results, never predicted by linear analysis, can be important for application of high-Tc superconducting levitation systems.

  9. Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers

    Science.gov (United States)

    Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat

    2014-01-01

    Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973

  10. Partial squeeze film levitation modulates fingertip friction.

    Science.gov (United States)

    Wiertlewski, Michaël; Fenton Friesen, Rebecca; Colgate, J Edward

    2016-08-16

    When touched, a glass plate excited with ultrasonic transverse waves feels notably more slippery than it does at rest. To study this phenomenon, we use frustrated total internal reflection to image the asperities of the skin that are in intimate contact with a glass plate. We observed that the load at the interface is shared between the elastic compression of the asperities of the skin and a squeeze film of air. Stroboscopic investigation reveals that the time evolution of the interfacial gap is partially out of phase with the plate vibration. Taken together, these results suggest that the skin bounces against the vibrating plate but that the bounces are cushioned by a squeeze film of air that does not have time to escape the interfacial separation. This behavior results in dynamic levitation, in which the average number of asperities in intimate contact is reduced, thereby reducing friction. This improved understanding of the physics of friction reduction provides key guidelines for designing interfaces that can dynamically modulate friction with soft materials and biological tissues, such as human fingertips.

  11. Excitation of low-frequency electrostatic instability on the auroral ...

    African Journals Online (AJOL)

    Low-Frequency Electrostatic Instability That Is Observed By Both Ground Facilities And Satellites Have Been Studied In The Auroral Acceleration Region Consisting Of Hot Precipitating Electron Beam From The Magnetosphere, Cold Background Electron And Ion Beam Moving Upward Away From The Earth Along The ...

  12. Optically Levitated Microspheres as a Probe for New Interactions

    Science.gov (United States)

    Rider, Alexander; Moore, David; Blakemore, Charles; Lu, Marie; Gratta, Giorgio

    2016-03-01

    We are developing novel techniques to probe new interactions at micron distances using optically levitated dielectric microspheres. Levitated microspheres are an ideal probe for short-range interactions because they are suspended using the radiation pressure at the focus of a laser beam, which means that the microspheres can be precisely manipulated and isolated from the surrounding environment at high vacuum. We have performed a search for unknown charged particles bound within the bulk of the microspheres. Currently, we are searching for the presence of a Chameleon field postulated to explain the presence of dark energy in the universe. In the future we plan to use optically levitated microspheres to search for micron length-scale gravity like interactions that could couple between a microsphere and another mass. We will present resent results from these experiments and plans for future searches for new interactions.

  13. Damping in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  14. Diamagnetically-stabilized levitation control of an intraluminal magnetic capsule.

    Science.gov (United States)

    Lam, Michael; Mintchev, Martin P

    2008-01-01

    Controlled navigation promotes full utilization of capsule endoscopy for reliable real-time diagnosis in the gastrointestinal (GI) tract, but intermittent natural peristalsis can disturb the navigational control, destabilize the capsule and take it out of levitation. A real-size magnetic navigation system that can handle peristaltic forces of up to 1.5 N was designed utilizing the computer-aided design (CAD) system Maxwell 3D (Ansoft, Pittsburg, PA), and was verified using a small-size physical experimental setup. The proposed system contains a pair of 50-cm in diameter, 10,000-turns copper electromagnets with a 10-cm by 10-cm ferrous core driven by currents of up to 300 Amperes and can successfully maintain position control over the levitating capsule during peristalsis. The addition of Bismuth diamagnetic casing for stabilizing the levitating capsule was also studied.

  15. Three-dimensional tissue culture based on magnetic cell levitation.

    Science.gov (United States)

    Souza, Glauco R; Molina, Jennifer R; Raphael, Robert M; Ozawa, Michael G; Stark, Daniel J; Levin, Carly S; Bronk, Lawrence F; Ananta, Jeyarama S; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A; Gelovani, Juri G; Killian, T C; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.

  16. Towards measuring quantum electrodynamic torque with a levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang

    2017-04-01

    According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.

  17. Compound Droplet Levitation for Lab-on-a-Chip

    Science.gov (United States)

    Black, James; Neitzel, G. Paul

    2016-11-01

    A fluid transport mechanism utilizing thermocapillarity has been previously shown to successfully levitate and translate both microliter- and nanoliter-volume droplets of silicone oil. The surface flow required to drive levitation and transport has not been achieved for aqueous droplets, and encapsulation of samples within a layer of silicone oil is necessary. A droplet-on-demand generator capable of producing nanoliter-volume compound droplets has been developed and previously reported. The work presented here discusses efforts to demonstrate the applicability of this microfluidic transport mechanism to lab-on-a-chip systems. We elaborate on translation speeds of single-phase, nanoliter-volume, silicone-oil droplets. Compound droplets of varying compositions of oil and water are then generated, captured, levitated, and merged to explore the composition limits thereof. Work supported by NSF and NASA.

  18. Development of a single-axis ultrasonic levitator and the study of the radial particle oscillations

    Science.gov (United States)

    Baer, Sebastian; Andrade, Marco A. B.; Esen, Cemal; Adamowski, Julio Cezar; Ostendorf, Andreas

    2012-05-01

    This work describes the development and analysis of a new single-axis acoustic levitator, which consists of a 38 kHz Langevin-type piezoelectric transducer with a concave radiating surface and a concave reflector. The new levitator design allows to significantly reducing the electric power necessary to levitate particles and to stabilize the levitated sample in both radial and axial directions. In this investigation the lateral oscillations of a levitated particle were measured with a single point Laser Doppler Vibrometer (LDV) and an image evaluation technique. The lateral oscillations were measured for different values of particle diameter, particle density and applied electrical power.

  19. Eddy damping effect of additional conductors in superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn

    2015-12-15

    Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  20. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  1. Cascade Control of Magnetic Levitation with Sliding Modes

    Directory of Open Access Journals (Sweden)

    Eroğlu Yakup

    2016-01-01

    Full Text Available The effectiveness and applicability of magnetic levitation systems need precise feedback control designs. A cascade control approach consisting of sliding mode control plus sliding mode control (SMC plus SMC is designed to solve position control problem and to provide a high control performance and robustness to the magnetic levitation plant. It is shown that the SMC plus SMC cascade controller is able to eliminate the effects of the inductance related uncertainties of the electromagnetic coil of the plant and achieve a robust and precise position control. Experimental and numerical results are provided to validate the effectiveness and feasibility of the method.

  2. Electric levitation using ϵ-near-zero metamaterials.

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J; Vakil, Ashkan; Engheta, Nader

    2014-01-24

    The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial--one whose permittivity is near zero--exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields. Leveraging this concept, we study some realistic requirements for the levitation or repulsion of a polarized particle radiating at any frequency, from microwave to optics.

  3. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  4. A containerless levitation setup for liquid processing in a superconducting magnet.

    Science.gov (United States)

    Lu, Hui-Meng; Yin, Da-Chuan; Li, Hai-Sheng; Geng, Li-Qiang; Zhang, Chen-Yan; Lu, Qin-Qin; Guo, Yun-Zhu; Guo, Wei-Hong; Shang, Peng; Wakayama, Nobuko I

    2008-09-01

    Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded.

  5. Levitation of YBa2Cu3O(7-x) superconductor in a variable magnetic field

    Science.gov (United States)

    Terentiev, Alexander N.; Kuznetsov, Anatoliy A.

    1992-01-01

    The influence of both a linear alternating and rotational magnetic field component on the levitation behavior of a YBa2Cu3O(7-x) superconductor was examined. The transition from a plastic regime of levitation to an elastic one, induced by an alternating field component, was observed. An elastic regime in contrast to a plastic one is characterized by the unique position of stable levitation and field frequency dependence of relaxation time to this position. It was concluded that the vibrations of a magnet levitated above the superconductor can induce a transition from a plastic regime of levitation to an elastic one. It was found that a rotational magnetic field component induced rotations of a levitated superconductor. Rotational frictional motion of flux lines is likely to be an origin of torque developed. A prototype of a motor based on a levitated superconductor rotor is proposed.

  6. Using visualizations to teach electrostatics

    Science.gov (United States)

    Casperson, Janet M.; Linn, Marcia C.

    2006-04-01

    We investigate the effect of visualizations of electrostatics phenomena on students' ability to integrate microscopic and macroscopic views of electrostatics in the context of a technology-enhanced inquiry project that features particle interactions. We used knowledge integration instructional design patterns to determine activity sequences. A pretest/post-test design was used to assess the students' overall gains. The results from the implementation of the project in two classes demonstrate that it helped students form a more integrated understanding of electrostatics. An analysis of student responses to prompts embedded with the visualizations reveals that interactions with the visualizations played a significant role in increasing understanding.

  7. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  8. Electrostatic fluctuations in soap films.

    Science.gov (United States)

    Dean, D S; Horgan, R R

    2002-06-01

    A field theory to describe electrostatic interactions in soap films, described by electric multilayers with a generalized thermodynamic surface-charging mechanism, is studied. In the limit where the electrostatic interactions are weak, this theory is exactly soluble. The theory incorporates in a consistent way, the surface-charging mechanism and the fluctuations in the electrostatic field that correspond to the zero-frequency component of the van der Waals force. It is shown that these terms lead to a Casimir-like attraction that can be sufficiently large to explain the transition between the common black film to a Newton black film.

  9. Electrostatic electrochemistry at insulators.

    Science.gov (United States)

    Liu, Chongyang; Bard, Allen J

    2008-06-01

    The identity of charges generated by contact electrification on dielectrics has remained unknown for centuries and the precise determination of the charge density is also a long-standing challenge. Here, electrostatic charges on Teflon (polytetrafluoroethylene) produced by rubbing with Lucite (polymethylmethacrylate) were directly identified as electrons rather than ions by electrochemical (redox) experiments with charged Teflon used as a single electrode in solution causing various chemical reactions: pH increases; hydrogen formation; metal deposition; Fe(CN)(6)(3-) reduction; and chemiluminescence in the system of Teflon(-)/Ru(bpy)(3)(2+)/S(2)O(8)(2-) (analogous to electrogenerated chemiluminescence). Moreover, copper deposition could be amplified by depositing Pd first in a predetermined pattern, followed by electroless deposition to produce Cu lines. This process could be potentially important for microelectronic and other applications because Teflon has desirable properties including a low dielectric constant and good thermal stability. Charge density was determined using Faraday's law and the significance of electron transfer processes on charged polymers and potentially other insulators have been demonstrated.

  10. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  11. Efficient fuzzy logic controller for magnetic levitation systems | Shu ...

    African Journals Online (AJOL)

    In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC) is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input ...

  12. Diamagnetically stabilized levitation control of an intraluminal magnetic capsule.

    Science.gov (United States)

    Lam, Michael; Mintchev, Martin

    2009-08-01

    Controlled navigation promotes full utilization of capsule endoscopy for reliable real-time diagnosis in the gastrointestinal (GI) tract, but intermittent natural peristalsis can disturb the navigational control, destabilize the capsule and take it out of levitation. The focus of the present work was to develop an economical and effective real-time magnetic capsule-guiding system that can operate in the presence of naturally existing peristalsis while retaining navigational control. A real-size magnetic navigation system that can handle peristaltic forces of up to 1.5 N was designed utilizing the computer-aided design (CAD) system Maxwell 3D (Ansoft, Pittsburg, PA) and was verified using a small-size physical experimental setup. The proposed system contains a pair of 50 cm diameter, 10,000-turn copper electromagnets with a 10 cm x 10 cm ferrous core driven by currents of up to 300 A and can successfully maintain position control over the levitating capsule during peristalsis. The addition of bismuth diamagnetic casing for stabilizing the levitating capsule was also studied. A modeled magnetic field around the diamagnetically cased permanent magnet was shown to be redistributed aligning its interaction with the external electromagnets, thus stabilizing the levitating capsule. In summary, a custom-designed diamagnetically facilitated capsule navigation system can successfully steer an intraluminal magnet-carrying capsule.

  13. Annoyance caused by the sounds of a magnetic levitation train

    NARCIS (Netherlands)

    Vos, J.

    2004-01-01

    In a laboratory study, the annoyance caused by the passby sounds from a magnetic levitation (maglev) train was investigated. The listeners were presented with various sound fragments. The task of the listeners was to respond after each presentation to the question: "How annoying would you find the

  14. Levitation of Superconductive Cable in Earth Magnetic Field

    Directory of Open Access Journals (Sweden)

    Pavel Karban

    2006-01-01

    Full Text Available The paper represents an introductory study about a superconductive cable levitating in Earth’s magnetic field. Built are two mathematical models of the problem providing both the shape of the arc of the cable and forces acting along it. The theoretical analysis is supplemented with an illustrative example.

  15. Technical background for a demonstration magnetic levitation system

    Science.gov (United States)

    Britcher, Colin P.

    1987-01-01

    A preliminary technical assessment of the feasibility of a demonstration Magnetic Levitation system, required to support aerodynamic models with a specified clear air volume around them, is presented. Preliminary calculations of required sizes of electromagnets and power supplies are made, indicating that the system is practical. Other aspects, including model position sensing and controller design, are briefly addressed.

  16. Low gravity on earth by magnetic levitation of biological material.

    Science.gov (United States)

    Valles, James M; Guevorkian, Karine

    2002-07-01

    The use of a magnetic field gradient levitation apparatus as a tool for investigating gravisensing mechanisms in biological systems and as a low gravity simulator for biological systems is described. The basic principles are described. Differences between its application to pure materials and the heterogeneous materials of biological materials are emphasized.

  17. Burning and graphitization of optically levitated nanodiamonds in vacuum

    CERN Document Server

    Rahman, A T M A; Kim, M S; Bose, S; Morley, G W; Barker, P F

    2015-01-01

    A nitrogen-vacancy (NV$^-$) center in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic center-of-mass superpositions \\cite{Scala2013, Zhang2013} and for testing quantum gravity \\cite{Albrecht2014}. Here, we study the behavior of optically levitated nanodiamonds containing NV$^-$ centers at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below $\\approx 10$ mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature ($T_i$) and find that it would be detrimental to the NV$^-$ center's spin coherence time \\cite{Toyli2012}. These values of $T_i$ make it clear that the diamond is not melting, contradicting a recent suggestion \\cite{Neukirch2015}. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size.

  18. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    Science.gov (United States)

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex…

  19. Viscoacoustic model for near-field ultrasonic levitation

    Science.gov (United States)

    Melikhov, Ivan; Chivilikhin, Sergey; Amosov, Alexey; Jeanson, Romain

    2016-11-01

    Ultrasonic near-field levitation allows for contactless support and transportation of an object over vibrating surface. We developed an accurate model predicting pressure distribution in the gap between the surface and levitating object. The formulation covers a wide range of the air flow regimes: from viscous squeezed flow dominating in small gap to acoustic wave propagation in larger gap. The paper explains derivation of the governing equations from the basic fluid dynamics. The nonreflective boundary conditions were developed to properly define air flow at the outlet. Comparing to direct computational fluid dynamics modeling our approach allows achieving good accuracy while keeping the computation cost low. Using the model we studied the levitation force as a function of gap distance. It was shown that there are three distinguished flow regimes: purely viscous, viscoacoustic, and acoustic. The regimes are defined by the balance of viscous and inertial forces. In the viscous regime the pressure in the gap is close to uniform while in the intermediate viscoacoustic and the acoustic regimes the pressure profile is wavy. The model was validated by a dedicated levitation experiment and compared to similar published results.

  20. A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics

    Directory of Open Access Journals (Sweden)

    He Li

    2016-10-01

    Full Text Available A novel ultrasonic levitating bearing excited by three piezoelectric transducers is presented in this work. The transducers are circumferentially equispaced in a housing, with their center lines going through the rotation center of a spindle. This noncontact bearing has the ability to self-align and carry radical and axial loads simultaneously. A finite element model of the bearing is built in ANSYS, and modal analysis and harmonious response analysis are conducted to investigate its characteristics and driving parameters. Based on nonlinear acoustic theory and a thermodynamic theory of ideal gas, the radical and lateral load-carrying models are built to predict the bearing’s carrying capacity. In order to validate the bearing’s levitation force, a test system is established and levitating experiments are conducted. The experimental data match well with the theoretical results. The experiments reveal that the maximum radical and axial levitating loads of the proposed bearing are about 15 N and 6 N, respectively, when the piezoelectric transducers operate at a working frequency of 16.11 kHz and a voltage of 150 Vp-p.

  1. Oscillating and star-shaped drops levitated by an airflow

    NARCIS (Netherlands)

    Bouwhuis, W.; Winkels, K.G.; Peters, I.R.; Brunet, P.; van der Meer, Roger M.; Snoeijer, Jacobus Hendrikus

    2013-01-01

    We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a breaking of axisymmetry and the appearance of “star drops”. This is strongly reminiscent of the Leidenfrost stars that are observed for drops floating above a hot substrate. The key advantage

  2. Flow-stabilized levitation in a magnetic stirrer.

    Science.gov (United States)

    Baldwin, Kyle; Fairhurst, David; de Fouchier, Jean-Baptiste; Atkinson, Patrick; Darwent, Thomas; Hill, Richard; Swift, Michael

    Magnetic stirrers are a useful tool for preparing solutions as the mixing vessel can be completely sealed, with no physical contact between the drive magnet and stir-bar. However, colloquially, stir-bars are known as ``fleas'' due to the onset of jumping at high speeds, which halts mixing. Here, we investigate the transition from spinning to jumping and discover an intriguing additional state, where the flea is levitated several centimeters while moving in a superposition of rotation and oscillation. This is of interest as Earnshaw's theorem states that there is no arrangement of static permanent magnets that be levitated stably. Current mag-lev technology side-steps this via secondary effects (e . g . diamagnetic repulsion or superconductive flux-line pinning), none of which can account for the flea's stability. We map the equations of motion onto a driven damped-pendulum system, universally characterize the onset of jumping, and successfully predict the oscillating flea's behavior. We further find that the stability is maintained by the flea's oscillation, which, at intermediate Reynolds numbers (Re 10), pumps fluid out from the ends of the flea, creating a streaming flow that centers it. If, however, Re is too low/too high, the respective flows are reciprocal/reversed, which both destabilize the levitation. This levitation technique demonstrates increasing Re can reverse the streaming flows relevant to propulsion, and could be cheaply implemented to study a variety of fluid and biological systems. We acknowledge support from NTU and the Erasmus student programme.

  3. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  4. Computational Methods for Biomolecular Electrostatics

    Science.gov (United States)

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  5. Electrostatic precipitators for industrial applications

    CERN Document Server

    Francis, Steve L; Bradburn, Keith M

    2014-01-01

    This Guidebook provides basic knowledge of the physics and power supplies of electrostatic precipitators. It also deals with practical aspects of ESP design and gives examples of typical applications of ESPs.

  6. Conductive Bands Diminish Electrostatic Discharges

    Science.gov (United States)

    Leung, Philip L.; Whittlesey, Albert

    1992-01-01

    Electrostatic discharges on surfaces covered with electrically insulating paints reduced by connecting edges of painted surfaces to electrical grounds with band of conductive material. Prevents charge build up on paint which eventually arcs to conductive surface, damaging structures and equipment.

  7. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    Science.gov (United States)

    Kokuzawa, T.; Toshihiko, S.; Yoshizawa, M.

    2010-06-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  8. A Classroom Demonstration of Levitation and Suspension of a Superconductor over a Magnetic Track

    OpenAIRE

    Strehlow, Charles P.; Sullivan, M. C.

    2008-01-01

    The suspension and levitation of superconductors by permanent magnets is one of the most fascinating consequences of superconductivity, and a wonderful instrument for generating interest in low temperature physics and electrodynamics. We present a novel classroom demonstration of the levitation/suspension of a superconductor over a magnetic track that maximizes levitation/suspension time, separation distance between the magnetic track and superconductor and also insulator aesthetics. The demo...

  9. Effect of magnetization process on levitation force between a superconducting disk and a permanent magnet

    OpenAIRE

    Liu, L.; Hou, Y.; He, C. Y.; Gao, Z. X.; Xiao, L.; Ren, H. T.; Jiao, Y. L.; Zheng, M. H.

    2003-01-01

    The levitation forces between a permanent magnet and a coaxial superconducting disk after different magnetization processes are measured. Significant effect of the magnetization process on the levitation force is observed. Theoretical calculations of levitation force based on the critical state model with temperature and field-dependent critical current density, and the heat dissipation due to the flux motion are in perfect agreement with the experimental data.

  10. The effects of magnetization process on levitation characteristics of a superconducting bulk magnet

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Li, Y. H.; Liang, G.; Yang, X. S.; Cheng, C. H.; Zhao, Y.

    2015-09-01

    In this paper, a bulk YBCO superconductor was magnetized in a chosen magnetic field generated from a superconducting magnet (SM) after field cooling process. The effects of magnetization process with different magnetization intensities on levitation forces and relaxation characteristics were investigated. From the results, it can be confirmed that the superconducting bulk magnet (SBM) magnetized with proper magnetization intensity was beneficial to improve the levitation characteristics of the magnetic levitation system. Nevertheless, when the magnetization intensity exceeded 0.85T, the levitation forces and the relaxation characteristics of the SBM attained saturation.

  11. Controlling the net charge on a nanoparticle optically levitated in vacuum

    Science.gov (United States)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  12. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  13. Three-dimensional cell culturing by magnetic levitation.

    Science.gov (United States)

    Haisler, William L; Timm, David M; Gage, Jacob A; Tseng, Hubert; Killian, T C; Souza, Glauco R

    2013-10-01

    Recently, biomedical research has moved toward cell culture in three dimensions to better recapitulate native cellular environments. This protocol describes one method for 3D culture, the magnetic levitation method (MLM), in which cells bind with a magnetic nanoparticle assembly overnight to render them magnetic. When resuspended in medium, an external magnetic field levitates and concentrates cells at the air-liquid interface, where they aggregate to form larger 3D cultures. The resulting cultures are dense, can synthesize extracellular matrix (ECM) and can be analyzed similarly to the other culture systems using techniques such as immunohistochemical analysis (IHC), western blotting and other biochemical assays. This protocol details the MLM and other associated techniques (cell culture, imaging and IHC) adapted for the MLM. The MLM requires 45 min of working time over 2 d to create 3D cultures that can be cultured in the long term (>7 d).

  14. Lateral restoring force on a magnet levitated above a superconductor

    Science.gov (United States)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  15. Reduction of characteristic RL time for fast, efficient magnetic levitation

    Science.gov (United States)

    Li, Yuqing; Feng, Guosheng; Wang, Xiaofeng; Wu, Jizhou; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-09-01

    We demonstrate the reduction of characteristic time in resistor-inductor (RL) circuit for fast, efficient magnetic levitation according to Kirchhoff's circuit laws. The loading time is reduced by a factor of ˜4 when a high-power resistor is added in series with the coils. By using the controllable output voltage of power supply and voltage of feedback circuit, the loading time is further reduced by ˜ 3 times. The overshoot loading in advance of the scheduled magnetic field gradient is equivalent to continuously adding a resistor without heating. The magnetic field gradient with the reduced loading time is used to form the upward magnetic force against to the gravity of the cooled Cs atoms, and we obtain an effectively levitated loading of the Cs atoms to a crossed optical dipole trap.

  16. Nonlinear characterization of a single-axis acoustic levitator.

    Science.gov (United States)

    Andrade, Marco A B; Ramos, Tiago S; Okina, Fábio T A; Adamowski, Julio C

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  17. Reduction of characteristic RL time for fast, efficient magnetic levitation

    Directory of Open Access Journals (Sweden)

    Yuqing Li

    2017-09-01

    Full Text Available We demonstrate the reduction of characteristic time in resistor-inductor (RL circuit for fast, efficient magnetic levitation according to Kirchhoff’s circuit laws. The loading time is reduced by a factor of ∼4 when a high-power resistor is added in series with the coils. By using the controllable output voltage of power supply and voltage of feedback circuit, the loading time is further reduced by ∼ 3 times. The overshoot loading in advance of the scheduled magnetic field gradient is equivalent to continuously adding a resistor without heating. The magnetic field gradient with the reduced loading time is used to form the upward magnetic force against to the gravity of the cooled Cs atoms, and we obtain an effectively levitated loading of the Cs atoms to a crossed optical dipole trap.

  18. Optical Levitation of Nanodiamonds by Doughnut Beams in Vacuum

    CERN Document Server

    Zhou, Lei-Ming; Chen, Jun; Zhao, Nan

    2016-01-01

    Optically levitated nanodiamonds with nitrogen-vacancy centers promise a high-quality hybrid spin-optomechanical system. However, the trapped nanodiamond absorbs energy form laser beams and causes thermal damage in vacuum. We propose to solve the problem by trapping a composite particle (a nanodiamond core coated with a less absorptive silica shell) at the center of strongly focused doughnut-shaped laser beams. Systematical study on the trapping stability, heat absorption, and oscillation frequency concludes that the azimuthally polarized Gaussian beam and the linearly polarized Laguerre-Gaussian beam ${\\rm LG}_{03}$ are the optimal choices. With our proposal, particles with strong absorption coefficients can be trapped without obvious heating and, thus, the spin-optomechanical system based on levitated nanodiamonds are made possible in high vacuum with the present experimental techniques.

  19. [S.G. Levit Moscow School of Medical Genetics].

    Science.gov (United States)

    Fando, R A

    2014-01-01

    The article considers medical genetic studies carried out by S.G. Levit scientific School. The workers of the Medical biologic institute studied geographical prevalence of different forms of colorblindness, early canities and surdomutism. The hospital examination of twins was another direction of research studies of Levit School. The organization of the mentioned research was clear-cut planned. The groups of researchers were organized to study normal and pathologic characteristics. The special research program was developed. The institute permanently carried out active workshops and conferences, published scientific transactions. The consolidation of various specialists around the scientific school made it possible to resolve many inter-disciplinary problems in the field of inherent pathology.

  20. Small Levitating Ordered Droplet Clusters: Stability, Symmetry, and Voronoi Entropy.

    Science.gov (United States)

    Fedorets, Alexander A; Frenkel, Mark; Bormashenko, Edward; Nosonovsky, Michael

    2017-11-16

    A method to generate levitating monodisperse microdroplet clusters with an arbitrary number of identical droplets is presented. Clusters with 1-28 droplets levitate over a locally heated water layer in an ascending vapor-air jet. Due to the attraction to the center of the heated area combined with aerodynamic repulsion between the droplets, the clusters form structures that are quite diverse and different from densest packing of hard spheres. The clusters self-organize into stable and reproducible configurations dependent on the number of droplets while independent of the droplets' size. The central parts of larger clusters reproduce the shape of smaller clusters. The ability to synthesize stable clusters with a given number of droplets is important for tracing droplets, which is crucial for potential applications such as microreactors and for chemical analysis of small volumes of liquid.

  1. FPGA Fuzzy Controller Design for Magnetic Ball Levitation

    OpenAIRE

    Basil Hamed; Hosam Abu Elreesh

    2012-01-01

    this paper presents a fuzzy controller design for nonlinear system using FPGA. A magnetic levitation system is considered as a case study and the fuzzy controller is designed to keep a magnetic object suspended in the air counteracting the weight of the object. Fuzzy controller will be implemented using FPGA chip. The design will use a high-level programming language HDL for implementing the fuzzy logic controller using the Xfuzzy tools to implement the fuzzy logic controller into HDL code. T...

  2. Sliding mode control of a magnetic levitation system

    Directory of Open Access Journals (Sweden)

    Al-Muthairi N. F.

    2004-01-01

    Full Text Available Sliding mode control schemes of the static and dynamic types are proposed for the control of a magnetic levitation system. The proposed controllers guarantee the asymptotic regulation of the statesof the system to their desired values. Simulation results of the proposed controllers are given to illustrate the effectiveness of them. Robustness of the control schemes to changes in the parameters of the system is also investigated.

  3. Comparison of Systems for Levitation Heating of Electrically Conductive Bodies

    Directory of Open Access Journals (Sweden)

    Ivo Dolezel

    2004-01-01

    Full Text Available Levitation heating of nonmagnetic electrically conductive bodies can be realized in various systems consisting of one of more inductors. The paper deals with compassion of the resultant. Lorentz lifts force acting on such a body (cylinder, sphere and velocity of its heating for different shapes of coils and parameters of the field currents (amplitudes, frequency. The tack is solved in quasi-coupled formulation. Theoretical considerations are supplemented with an illustrative example whose results are discussed.

  4. Anti-levitation of Landau levels in vanishing magnetic fields

    Science.gov (United States)

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    Soon after the discovery of the quantum Hall effects in two-dimensional electron systems, the question on the fate of the extended states in a Landau level in vanishing magnetic (B) field arose. Many theoretical models have since been proposed, and experimental results remain inconclusive. In this talk, we report experimental observation of anti-levitation behavior of Landau levels in vanishing B fields (down to as low as B 58 mT) in a high quality heterojunction insulated-gated field-effect transistor (HIGFET). We observed that, in the Landau fan diagram of electron density versus magnetic field, the positions of the magneto-resistance minima at Landau level fillings ν = 4, 5, 6 move below the ``traditional'' Landau level line to lower electron densities. This clearly differs from what was observed in the earlier experiments where in the same Landau fan plot the density moved up. Our result strongly supports the anti-levitation behavior predicted recently. Moreover, the even and odd Landau level filling states show quantitatively different behaviors in anti-levitation, suggesting that the exchange interactions, which are important at odd fillings, may play a role. SNL is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Efficient Fuzzy Logic Controller for Magnetic Levitation Systems

    Directory of Open Access Journals (Sweden)

    D. S. Shu’aibu

    2016-12-01

    Full Text Available Magnetic levitation is a system of suspending a body or a complete system against gravity. Suspending a system in air against gravity without using fixed structure for supporting is highly unstable and complex. In the previous research many techniques of stabilizing magnetic levitation systems were discussed. In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input signals were investigated. Using unit step input signal, the proposed controller has a settling time of 0.35 secs, percentage overshoot of 0% and there is no oscillation. The proposed controller is validated with a model of an existing practical conventional proportional plus derivatives (PD controller. The PD controller has a settling time of 0.45 secs, percentage overshoot of 7% and with oscillation. Similarly, with sinusoidal input, the FLC has a phase shift and peak response of 0^0 and 0.9967 respectively, while PD controller has a phase shift and peak response of 24.48o and 0.9616 respectively. A disturbance signal was applied to the input of the control system. Fuzzy controller succeeded in rejecting the disturbance signal without further turning of the parameters whereby PD controller failed.

  6. Detecting Casimir torque with an optically levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  7. Study of a new passive magnetic levitation concept

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.

    1995-03-01

    As a bonus from an existing LDRD-supported project (Electromechanical Battery Research and Development) a new concept for the magnetic levitation of a moving object evolved. To initiate a study of the merits of the concept mid-year ``seed money`` LDRD funding was provided. The FY94 activities resulted in a preliminary evaluation of the merits of this concept through calculations, laboratory measurements, and the design of a simple test model. There is now considerable international interest in the ``Maglev`` concept for highspeed trains. Wear, rolling friction, and speed limitations of conventional rail technology make this technology unsuitable for such trains, whence the use of magnetic levitation. In present Maglev trains, however, such as those constructed in Germany and Japan, servo-controlled magnetic systems are required, involving sensor and control circuitry and non-trivial on-board power requirements. In such systems the failure of a control system can have serious consequences, so that redundant systems may be required, thus adding to the cost and complexity. It would be highly desirable to replace the present ``active``, servo-controlled magnetic levitation systems with a totally passive one, one for which neither control circuits nor on-board power would be required. Failure of such a system could be made to be much more benign in its consequences than for servo-controlled ones, and the cost, particularly of the on-board equipment, might be greatly reduced.

  8. 特集3 : 研究解説 : Magnetic Levitation : A Challenge for Control Design in Mechatronics

    OpenAIRE

    Bleuler, Hannes

    1992-01-01

    Magnetic levitation is classified and it is shown that the industrially apploed active levitation is a typical mechatronics system. The important control problems for active magnetic bearings are then presented and current research areas are indicated.

  9. Linear stability analysis of a levitated nanomagnet in a static magnetic field: Quantum spin stabilized magnetic levitation

    Science.gov (United States)

    Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.

  10. The Japanese magnetic levitation train is on the rails; Le train a levitation magnetique japonais est sur les rails

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Henry

    2003-09-01

    In December 2002 was inaugurated in Shanghai (China) the very first magnetic levitation train. This train, named Maglev, reaches the cruise speed of 430 km/h and is the result of a Chinese-German cooperation between Transrapid International and SMTDC companies. The Maglev technology should be used for the project of very high speed train between Tokyo and Osaka (Japan). The test railways and trains of Yamanashi are today at the validation stage (technically and economically) with the aim of reducing costs and managing the noise problems due to the high number of tunnels along the line. This paper describes the specific infrastructures of the magnetic levitation train, the propulsion system (superconducting magnets) and the different kinds of switching required. (J.S.)

  11. Improvement of the Characteristics of Levitation and Lateral Firce in the Mixed-μ Levitation System with Permanent Magnet

    OpenAIRE

    金, 弘中; 鳥居, 粛; 海老原, 大樹; Hong Joong, KIM; Susumu, TORII; Daiki, EBIHARA; 武蔵工業大学; 武蔵工業大学; 武蔵工業大学; Musashi Institute of Technology; Musashi Institute of Technology; Musashi Institute of Technology

    1997-01-01

    The newly developed superconductor materials product in interaction so that for application for magnetic bearings and the transport system could be realized by simple arrangements. For an example, Mixed-μ levitation system is the one among those using three elements, which are an excitation magnet, a superconducting shield and a ferromagnetic rail. The authors try to obtain the optimal configuration by a two-dimensional finite element method. The authors propose the optimized sizes of each el...

  12. Continuous electrodeionization through electrostatic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Dermentzis, Konstantinos [Technological Educational Institute, T.E.I. of Kavala, General Department of Sciences, Laboratory of Chemical Technology, Agios Loucas, 65404 Kavala (Greece)], E-mail: demerz@otenet.gr

    2008-02-15

    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency.

  13. Electrostatics of Atoms and Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 2. Electrostatics of Atoms and Molecules. G Narahari Sastry. Book Review Volume 7 Issue 2 February 2002 pp 90-91. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/02/0090-0091 ...

  14. Electrostatic Precipitator (ESP) TRAINING MANUAL

    Science.gov (United States)

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  15. Resistivity Problems in Electrostatic Precipitation

    Science.gov (United States)

    White, Harry J.

    1974-01-01

    The process of electrostatic precipitation has ever-increasing application in more efficient collection of fine particles from industrial air emissions. This article details a large number of new developments in the field. The emphasis is on high resistivity particles which are a common cause of poor precipitator performance. (LS)

  16. Stable diamagnetic self-levitation of a micro-magnet by improvement of its magnetic gradients

    NARCIS (Netherlands)

    Profijt, H.B.; Pigot, C.; Reyne, G.; Grechishkin, R.M.; Cugat, O.

    A disc-shaped SmCo magnet with a diameter of 0.85 mm is levitated above a graphite diamagnetic plate at a height of about 14 μm. The magnet is magnetised into a double dipole. The levitation of multipolar magnets above a diamagnetic material was suggested in 1956 by Boerdijk and patented in 1995 by

  17. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2017-01-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  18. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    Science.gov (United States)

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  19. Levitation and propulsion of a Mie-resonance particle by a surface plasmon.

    Science.gov (United States)

    Maslov, A V

    2017-09-01

    It is predicted that the optical force induced by a surface plasmon can form a stable equilibrium position for a resonant particle at a finite distance from the surface. The levitated particle can be efficiently propelled along the surface without touching it. The levitation originates from the strong interaction of the particle with the surface.

  20. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.

    Science.gov (United States)

    Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  1. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  2. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    Science.gov (United States)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  3. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    Science.gov (United States)

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.

  4. Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound

    Science.gov (United States)

    Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo

    2017-03-01

    We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.

  5. System and Method for Obtaining Simultaneous Levitation and Rotation of a Ferromagnetic Object

    Science.gov (United States)

    Banerjee, Subrata; Sarkar, Mrinal Kanti; Ghosh, Arnab

    2017-02-01

    In this work a practical demonstration for simultaneous levitation and rotation for a ferromagnetic cylindrical object is presented. A hollow steel cylinder has been arranged to remain suspended stably under I-core electromagnet utilizing dc attraction type levitation principle and then arranged to rotate the levitated object around 1000 rpm speed based on eddy current based energy meter principle. Since the object is to be rotating during levitated condition the device will be frictionless, energy-efficient and robust. This technology may be applied to frictionless energy meter, wind turbine, machine tool applications, precision instruments and many other devices where easy energy-efficient stable rotation will be required. The cascade lead compensation control scheme has been applied for stabilization of unstable levitation system. The proposed device is successfully tested in the laboratory and experimental results have been produced.

  6. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  7. A Spectral Canonical Electrostatic Algorithm

    CERN Document Server

    Webb, Stephen D

    2015-01-01

    Studying single-particle dynamics over many periods of oscillations is a well-understood problem solved using symplectic integration. Such integration schemes derive their update sequence from an approximate Hamiltonian, guaranteeing that the geometric structure of the underlying problem is preserved. Simulating a self-consistent system over many oscillations can introduce numerical artifacts such as grid heating. This unphysical heating stems from using non-symplectic methods on Hamiltonian systems. With this guidance, we derive an electrostatic algorithm using a discrete form of Hamilton's Principle. The resulting algorithm, a gridless spectral electrostatic macroparticle model, does not exhibit the unphysical heating typical of most particle-in-cell methods. We present results of this using a two-body problem as an example of the algorithm's energy- and momentum-conserving properties.

  8. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  9. Electrostatic septa for SPS extraction

    CERN Multimedia

    1975-01-01

    The extraction system for the N-Area is located in LSS2 (another one for the W-Area, now abandoned, was in LSS6). The electrostatic septum consists of 4 parts, each 3 m long. It is made of W-wires, 0.12 mm thick. The nominal electric field is 100 kV/cm. See also Annual Report 1975, p.175.

  10. Quantitative nanoscale electrostatics of viruses.

    Science.gov (United States)

    Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J

    2015-11-07

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.

  11. Damping and support in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  12. The use of high temperature superconductors to levitate lunar telescope

    Science.gov (United States)

    Brown, Beth A.

    1992-01-01

    The objective of this paper was to assist in the construction of a lunar telescope mirror model by conducting research on composite materials and other lightweight, rigid materials, and by determining how much weight can be levitated by available superconductors. It is believed that with the construction of four magnets suspended over four bulk superconductors (or vice versa), there should be no problems lifting a model mirror and stabilizing it at different positions. It may be necessary to increase the size and quality of the superconductors and/or magnets in order to achieve this.

  13. Levitation of dust at the surface of protoplanetary disks

    DEFF Research Database (Denmark)

    Wurm, Gerhard; Haack, Henning

    2009-01-01

    In recent years photophoretic forces acting on dust particles have been shown to be important for optically thin parts of protoplanetary disks. The optical surface (photosphere) of protoplanetary disks is a transitional region where the thermal radiation of the disk can escape. We show here...... that photophoresis by the thermal radiation is sufficient to levitate dust particles at several pressure scale heights. Under certain conditions these particles can constitute the surface layer. In this case only the particles which are most susceptible to photophoresis are observed at the surface of protoplanetary...

  14. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    Science.gov (United States)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-12-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems.

  15. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    Directory of Open Access Journals (Sweden)

    Hai Jiang

    2016-09-01

    Full Text Available The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  16. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles, E-mail: carles.navau@uab.cat; Sanchez, Alvaro

    2013-04-15

    Highlights: ► Study of the levitation of a superconducting bar over different magnetic guideways. ► A soft ferromagnet within permanent magnets improves levitation stability. ► We study the best geometry for large levitation force with full stability. -- Abstract: The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  17. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.

    Science.gov (United States)

    Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y

    2006-01-01

    It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.

  18. Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders

    Science.gov (United States)

    Patel, A.; Hopkins, S. C.; Baskys, A.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.

    2015-11-01

    Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications.

  19. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  20. Arbitrary Finite-time Tracking Control for Magnetic Levitation Systems

    Directory of Open Access Journals (Sweden)

    Xuan-Toa Tran

    2014-10-01

    Full Text Available In this paper, an arbitrary finite-time tracking control (AFTC method is developed for magnetic levitation systems with uncertain dynamics and external disturbances. By introducing a novel augmented sliding-mode manifold function, the proposed method can eliminate the singular problem in traditional terminal sliding-mode control, as well as the reaching-phase problem. Moreover, the tracking errors can reach the reference value with faster convergence and better tracking precision in arbitrarily determined finite time. In addition, a fuzzy-arbitrary finite-time tracking control (F-AFTC scheme that combines a fuzzy technique with AFTC to enhance the robustness and sliding performance is also proposed. A fuzzy logic system is used to replace the discontinuous control term. Thus, the chattering phenomenon is resolved without degrading the tracking performance. The stability of the closed-loop system is guaranteed by the Lyapunov theory. Finally, the effectiveness of the proposed methods is illustrated by simulation and experimental study in a real magnetic levitation system.

  1. Optomechanics in a Levitated Droplet of Superfluid Helium

    Science.gov (United States)

    Brown, Charles; Harris, Glen; Harris, Jack

    2017-04-01

    A critical issue common to all optomechanical systems is dissipative coupling to the environment, which limits the system's quantum coherence. Superfluid helium's extremely low optical and mechanical dissipation, as well as its high thermal conductivity and its ability cool itself via evaporation, makes the mostly uncharted territory of superfluid optomechanics an exciting avenue for exploring quantum effects in macroscopic objects. I will describe ongoing work that aims to exploit the unique properties of superfluid helium by constructing an optomechanical system consisting of a magnetically levitated droplet of superfluid helium., The optical whispering gallery modes (WGMs) of the droplet, as well as the mechanical oscillations of its surface, should offer exceptionally low dissipation, and should couple to each other via the usual optomechanical interactions. I will present recent progress towards this goal, and also discuss the background for this work, which includes prior demonstrations of magnetic levitation of superfluid helium, high finesse WGMs in liquid drops, and the self-cooling of helium drops in vacuum.

  2. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    Science.gov (United States)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  3. Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation.

    Science.gov (United States)

    Valles, J M; Lin, K; Denegre, J M; Mowry, K L

    1997-08-01

    We have levitated, for the first time, living biological specimens, embryos of the frog Xenopus laevis, using a large inhomogeneous magnetic field. The magnetic field/field gradient product required for levitation was 1430 kG2/cm, consistent with the embryo's susceptibility being dominated by the diamagnetism of water and protein. We show that unlike any other earth-based technique, magnetic field gradient levitation of embryos reduces the body forces and gravity-induced stresses on them. We discuss the use of large inhomogeneous magnetic fields as a probe for gravitationally sensitive phenomena in biological specimens.

  4. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  5. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.

    Science.gov (United States)

    Lee, Woong Ryeol; Oh, Kyung Taek; Park, So Young; Yoo, Na Young; Ahn, Yong Sik; Lee, Don Haeng; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Eun Seong

    2011-07-01

    Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Multi-Objective PID-Controller Tuning for a Magnetic Levitation System using NSGA-II

    DEFF Research Database (Denmark)

    Pedersen, Gerulf K. M.; Yang, Zhenyu

    2006-01-01

    This paper investigates the issue of PID-controller parameter tuning for a magnetic levitation system using the non-dominated sorting genetic algorithm (NSGA-II). The magnetic levitation system is inherently unstable and the PID-controller parameters are hard to find using conventional methods....... Based on four different performance measures, derived from the step response of the levitation system, the algorithm is used to find a set of non-dominated parameters for a PID-controller that can stabilize the system and minimize the performance measures....

  7. Lone pairs: an electrostatic viewpoint.

    Science.gov (United States)

    Kumar, Anmol; Gadre, Shridhar R; Mohan, Neetha; Suresh, Cherumuttathu H

    2014-01-16

    A clear-cut definition of lone pairs has been offered in terms of characteristics of minima in molecular electrostatic potential (MESP). The largest eigenvalue and corresponding eigenvector of the Hessian at the minima are shown to distinguish lone pair regions from the other types of electron localization (such as π bonds). A comparative study of lone pairs as depicted by various other scalar fields such as the Laplacian of electron density and electron localization function is made. Further, an attempt has been made to generalize the definition of lone pairs to the case of cations.

  8. Electrostatic Climber for Space Elevator and Launcher

    OpenAIRE

    Bolonkin, A.

    2007-01-01

    Author details research on the new, very prospective, electrostatic Space Elevator climber based on a new electrostatic linear engine previously offered at the 42nd Joint Propulsion Conference (AIAA-2006-5229) and published in AEAT, Vol.78, No.6, 2006, pp. 502-508. The electrostatic climber discussed can have any speed (and braking), the energy for climber movement is delivered by a lightweight high-voltage line into a Space Elevator-holding cable from Earth electric generator. This electric ...

  9. Electrostatics in pharmaceutical aerosols for inhalation.

    Science.gov (United States)

    Wong, Jennifer; Chan, Hak-Kim; Kwok, Philip Chi Lip

    2013-08-01

    Electrostatics continues to play an important role in pharmaceutical aerosols for inhalation. Despite its ubiquitous nature, the charging process is complex and not well understood. Nonetheless, significant advances in the past few years continue to improve understanding and lead to better control of electrostatics. The purpose of this critical review is to present an overview of the literature, with an emphasis on how electrostatic charge can be useful in improving pulmonary drug delivery.

  10. Electrostatic Complexation between Membrane and Colloid

    Science.gov (United States)

    Wang, Jiafang; Muthukumar, M.

    2006-03-01

    As a primary model of endocytosis, the electrostatic complexation between membrane and colloid is studied. Using a simple approximation, the membrane shape can be determined easily without solving the nonlinear differential shape equation, which facilitates the consideration of electrostatic effects. The phase diagram for the electrostatic complexes can be constructed in terms of the rescaled stretching tension, adhesion strength, and the screening length. By referring to the phase diagram, the possible phase transitions due to the variations of the electrostatic factors (including the charge density, and the screening length) are discussed.

  11. Preconceptual design for the electrostatic enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L.C.

    1992-09-01

    This report presents a preconceptual design (design criteria and assumptions) for electrostatic enclosures to be used during buried transuranic waste recovery operations. These electrostatic enclosures (along with the application of dust control products) will provide an in-depth contamination control strategy. As part of this preconceptual design, options for electrostatic curtain design are given including both hardwall and fabric enclosures. Ventilation systems, doors, air locks, electrostatic curtains, and supporting systems also are discussed. In addition to the conceptual design, engineering scale tests are proposed to be run at the Test Reactor Area. The planned engineering scale tests will give final material specifications for full-scale retrieval demonstrations.

  12. Limiting assumptions in molecular modeling: electrostatics.

    Science.gov (United States)

    Marshall, Garland R

    2013-02-01

    Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.

  13. Electrostatic analogy for symmetron gravity

    Science.gov (United States)

    Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin

    2017-12-01

    The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.

  14. Microencapsulation and Electrostatic Processing Device

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  15. Electrostatically anchored branched brush layers.

    Science.gov (United States)

    Liu, Xiaoyan; Dedinaite, Andra; Rutland, Mark; Thormann, Esben; Visnevskij, Ceslav; Makuska, Ricardas; Claesson, Per M

    2012-11-06

    A novel type of block copolymer has been synthesized. It consists of a linear cationic block and an uncharged bottle-brush block. The nonionic bottle-brush block contains 45 units long poly(ethylene oxide) side chains. This polymer was synthesized with the intention of creating branched brush layers firmly physisorbed to negatively charged surfaces via the cationic block, mimicking the architecture (but not the chemistry) of bottle-brush molecules suggested to be present on the cartilage surface, and contributing to the efficient lubrication of synovial joints. The adsorption properties of the diblock copolymer as well as of the two blocks separately were studied on silica surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry. The adsorption kinetics data highlight that the diblock copolymers initially adsorb preferentially parallel to the surface with both the cationic block and the uncharged bottle-brush block in contact with the surface. However, as the adsorption proceeds, a structural change occurs within the layer, and the PEO bottle-brush block extends toward solution, forming a surface-anchored branched brush layer. As the adsorption plateau is reached, the diblock copolymer layer is 46-48 nm thick, and the water content in the layer is above 90 wt %. The combination of strong electrostatic anchoring and highly hydrated branched brush structures provide strong steric repulsion, low friction forces, and high load bearing capacity. The strong electrostatic anchoring also provides high stability of preadsorbed layers under different ionic strength conditions.

  16. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  17. Optimizing electromagnetic levitation design to enhance thermodynamic measurement

    Science.gov (United States)

    Royer, Zachary L.

    Here we consider two studies which show how computer modeling and simulation can be used to study aspects of material science for which experimental methods would be time consuming or difficult. In the first we examined the optimization of electromagnetic levitation coils, for reduced sample temperature, through the development of a genetic algorithm and a rigorous analytical model. In the development of the analytical model for levitation, we propose a new model for the heating effect from a design consisting of a series of co-axial circular loops. With the new model we are better able to predict sample temperatures as compared with existing models. The new model is incorporated into a robust genetic algorithm to produce a powerful and generic design tool for the creation of levitation coils. Using this new design tool we seek to expand the range of temperatures (specifically to lower temperatures) and materials that are able to be studied using EML. In the second study, we examine the growth of a grain structure in the presence of second phase particles that act as pinning agents. The existing models of grain growth with pinning agents have thus far focused on particle distributions at the extremes of grain boundary correlation. When experimental measurements at the limits of correlation are compared to the appropriate models, they have shown good agreement but seem to suggest that there is a transition in behavior between the limits but the nature and mechanisms are not well known. As such we look to study pinning agent distributions centered around the initial grain boundaries and varied in such a way as to examine the transition from high to low boundary correlation. The results show that the average grain size varies smoothly during the transition. However, the results also show that there is an anomalous increase in grain size, when the boundary region containing pinning agents is slightly larger than the diffuse boundary width from the phase-field model and

  18. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  19. An acoustic levitation technique for the study of nonlinear oscillations of gas bubbles in liquids

    Science.gov (United States)

    Young, D. A.; Crum, L. A.

    1983-08-01

    A technique of acoustic levitation was developed for the study of individual gas bubbles in a liquid. Isopropyl alcohol and a mixture of glycerine and water (33-1/3% glycerine by volume) were the two liquids used in this research. Bubbles were levitated near the acoustic pressure antinode of an acoustic wave in the range of 20-22 kHz. Measurements were made of the levitation number as a function of the normalized radius of the bubbles. The levitation number is the ratio of the hydrostatic pressure gradient to the acoustic pressure gradient. These values were then compared to a nonlinear theory. Results were very much in agreement except for the region near the n=2 harmonic. An explanation for the discrepancy between theory and experiment appears to lie in the polytropic exponent associated with the gas in the interior of the bubble.

  20. Levitation and Self-Organization of Liquid Microdroplets over Dry Heated Substrates

    Science.gov (United States)

    Zaitsev, Dmitry V.; Kirichenko, Dmitry P.; Ajaev, Vladimir S.; Kabov, Oleg A.

    2017-09-01

    Levitating droplets of liquid condensate are known to organize themselves into ordered arrays over hot liquid-gas interfaces. We report experimental observation of similar behavior over a dry heated solid surface. Even though the lifetime of the array is shorter in this case, its geometric characteristics are remarkably similar to the case of droplets levitating over liquid-gas interfaces. A simple model is developed that predicts the mechanisms of both droplet levitation and interdroplet interaction leading to pattern formation over a dry surface; the model is shown to be in good agreement with the experimental data. Using the insights from the new experiments, we are able to resolve some long-standing controversies pertaining to the mechanism of levitation of droplets over liquid-gas interfaces.

  1. Nonlinear resonances of three modes in a high-Tc superconducting magnetic levitation system

    Science.gov (United States)

    Sasaki, Masahiko; Sakaguchi, Ryunosuke; Sugiura, Toshihiko

    2013-11-01

    In a high-Tc superconducting magnetic levitation system, an object can levitate without control and contact. So it is expected to be applied to magnetically levitated transportation. To use it safely, lightening the levitated object is necessary. But this reduces the bending stiffness of the object. Besides, the system has nonlinearity. Therefore nonlinear elastic vibration can occur. This study focused on how plural nonlinear elastic vibrations of the 1st, 2nd and 3rd modes simultaneously occur. Our numerical calculation and experiment found out that the three modes simultaneously resonate when the amplitude of the 2nd mode is large enough whereas only the 2nd mode resonates when it is small.

  2. A Superconducting Levitation Transport Model System for Dynamical and Didactical Studies

    Science.gov (United States)

    Rosenzweig, St.; Reich, E.; Neu, V.; Berger, D.; Peukert, K.; Holzapfel, B.; Schultz, L.; Pospiech, G.

    Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Min" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics.

  3. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    National Research Council Canada - National Science Library

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-01-01

    ... of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein...

  4. Acoustic Levitator Power Device: Study of Ethylene-Glycol Water Mixtures

    Science.gov (United States)

    Caccamo, M. T.; Cannuli, A.; Calabrò, E.; Magazù, S.

    2017-05-01

    Acoustic levitator power device is formed by two vertically and opposed high output acoustic transducers working at 22 kHz frequency and produces sound pressure levels of 160 dB. The acoustic waves are monitored from an oscilloscope using a signal amplifier. The ability to perform contactless measurements, avoidance of undesired contamination from the container, are some of advantages of this apparatus. Acoustic levitation can be also used for sample preparation of high concentrated mixtures starting from solutions. In the present paper, an acoustic levitator power device is employed to collect data on levitated water mixtures of Ethylene Glycol (EG) which are then analysed by Infra-Red spectroscopy. The study allows to follow the drying process versus time and to obtain a gel-like compound characterized by an extended chemical crosslinking.

  5. In situ tuning of whispering gallery modes of levitated silica microspheres

    Science.gov (United States)

    Minowa, Yosuke; Toyota, Yusuke; Ashida, Masaaki

    2017-06-01

    We demonstrated the tuning of whispering gallery modes (WGMs) of a silica microsphere during optical levitation through the annealing process. We determined the annealing temperature from the power balance between the CO2 laser light heating and several cooling processes. Cooling caused by heat conduction through the surrounding air molecules is the dominant process. We achieved a blue shift of the WGMs as large as 1 \\%, which was observed in the white-light scattering spectrum from the levitated microsphere.

  6. Magnetic levitation force between a superconducting bulk magnet and a permanent magnet

    OpenAIRE

    Wang, J. J.; He, C. Y.; Meng, L. F.; Li, C.; Han, R. S.; Gao, Z. X.

    2002-01-01

    The current density in a disk-shaped superconducting bulk magnet and the magnetic levitation force exerted on the superconducting bulk magnet by a cylindrical permanent magnet are calculated from first principles. The effect of the superconducting parameters of the superconducting bulk is taken into account by assuming the voltage-current law and the material law. The magnetic levitation force is dominated by the remnant current density, which is induced by switching off the applied magnetizi...

  7. Rigid levitation, flux pinning, thermal depinning and fluctuation in high-Tc superconductors

    Science.gov (United States)

    Brandt, E. H.

    1991-01-01

    Here, the author shows that the strong velocity-independent frictional force on a levitating superconductor and on any type-II superconductor moving in a homogeneous magnetic field is caused by pinning and depinning of the magnetic flux lines in its interior. Levitation may thus be used to investigate the pinning properties of a superconductor, and friction in a superconductor bearing may be minimized by choosing appropriate materials and geometries.

  8. Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    OpenAIRE

    Osorio, M. R.; Lahera, D. E.; Suderow, H.

    2012-01-01

    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provide...

  9. Determination of critical current density in melt-processed HTS bulks from levitation force measurements

    OpenAIRE

    Kordyuk, A. A.; Nemoshkalenko, V. V.; Viznichenko, R. V.; Habisreuther, T.; Gawalek, W.

    1999-01-01

    A simple approach to describe the levitation force measurements on melt-processed HTS bulks was developed. A couple of methods to determine the critical current density $J_c$ were introduced. The averaged $ab$-plane $J_c$ values for the field parallel to this plane were determined. The first and second levitation force hysteresis loops calculated with these $J_c$ values coincide remarkably well with the experimental data.

  10. Stable diamagnetic self-levitation of a micro-magnet by improvement of its magnetic gradients

    Energy Technology Data Exchange (ETDEWEB)

    Profijt, H.B. [Grenoble Electrical Engineering Laboratory, G2ELab, ENSE3, Grenoble Universities, BP 46, 38402 Saint-Martin-d' Heres Cedex (France); TST, MESA Institute for Nanotechnology, University of Twente (Netherlands); Pigot, C.; Reyne, G. [Grenoble Electrical Engineering Laboratory, G2ELab, ENSE3, Grenoble Universities, BP 46, 38402 Saint-Martin-d' Heres Cedex (France); Grechishkin, R.M. [Laboratory of Magnetoelectronics, Tver State University (Russian Federation); Cugat, O. [Grenoble Electrical Engineering Laboratory, G2ELab, ENSE3, Grenoble Universities, BP 46, 38402 Saint-Martin-d' Heres Cedex (France)], E-mail: orphee.cugat@g2elab.inpg.fr

    2009-02-15

    A disc-shaped SmCo magnet with a diameter of 0.85 mm is levitated above a graphite diamagnetic plate at a height of about 14 {mu}m. The magnet is magnetised into a double dipole. The levitation of multipolar magnets above a diamagnetic material was suggested in 1956 by Boerdijk and patented in 1995 by Pelrine, but without any known published experimental results. In this letter, both theoretical and experimental results are presented.

  11. Electrostatic Evaluation of the SRB Velostat(Trademark) Pads

    Science.gov (United States)

    Buhler, Charles R.; Calle, Carlos I.

    2007-01-01

    During RSRM Grain inspection, pads constructed of Velostat are grounded and installed in the RSRM bore enabling inspectors to move throughout the bore during the inspection. Velostat pads are installed by grounding the first pad installed and subsequent pads are installed overlapping the previously installed pad maintaining a conductive path to facility ground. Pads are removed upon completion of the inspection in a reverse fashion. As the pads are removed scanning of propellant surfaces is performed per OMRS. During PPICI Audit of B5308.006 (Forward Segment Grain Inspection) in October 07 one audit finding noted that electrostatic scanning of propellant surfaces was being performed during removal of conductive pads following grain inspection. ATK does not perform electrostatic scanning of propellant surfaces during pad removal following final inspection at the plant. The integrated team consisting of NASA SE, USA SE, USA QE, ATK LSS, ATK Systems Safety and ATK DE concurred that electrostatic scanning of propellant surfaces was unnecessary as the conductive pads are grounded. Additional time spent in bore performing scanning presents itself as additional risk. Technicians reported that they have never seen any voltage readings while scanning propellant surfaces during pad removal. USA Systems engineering has written KB 17530 in response to the finding which will delete the requirement (item 2 B47GEN.ll0) to scan propellant surfaces during pad removal. As a result of an E3 panel discussion on December 13, 2007, it was decided that verification of the electrical grounding of the Velostat pads be verified.

  12. Thermodynamic Studies of Levitated Microdroplets of Highly Supersaturated Electrolyte Solutions

    Science.gov (United States)

    Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo

    1996-01-01

    Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin) and its calculation for various electrolyte solutions at 298 K.

  13. Levitation pressure and friction losses in superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A superconducting bearing having at least one permanent magnet magnetized with a vertical polarization. The lower or stator portion of the bearing includes an array of high-temperature superconducting elements which are comprised of a plurality of annular rings. An annular ring is located below each permanent magnet and an annular ring is offset horizontally from at least one of the permanent magnets. The rings are composed of individual high-temperature superconducting elements located circumferentially along the ring. By constructing the horizontally-offset high-temperature superconducting ring so that the c-axis is oriented in a radial direction, a higher levitation force can be achieved. Such an orientation will also provide substantially lower rotational drag losses in the bearing.

  14. Overview of Magnetic Levitation Systems with Emphasis on Electrodynamic Suspension

    Directory of Open Access Journals (Sweden)

    Abbas Najjar-Khodabakhsh

    2011-07-01

    Full Text Available Nowadays, the use of magnetic levitation systems has made attention in transportation. Suspension is caused by two magnetic fields in the near distance and thus the repulsion and attraction induced between them. In Iran, different types of magnetic systems and their applications, especially in the transportation system were not considered deeply and the features and specifications of each of these systems is not discussed yet. In this article we want to review past research and studies on the applications and the characteristics of these systems to fully express and we do compare them with each other. We also offer the laboratory equipment for study the behavior of magnetic suspension systems with emphasis on electrodynamic suspension.

  15. Magnetic levitation in the analysis of foods and water.

    Science.gov (United States)

    Mirica, Katherine A; Phillips, Scott T; Mace, Charles R; Whitesides, George M

    2010-06-09

    This paper describes a method and a sensor that use magnetic levitation (MagLev) to characterize samples of food and water on the basis of measurements of density. The sensor comprises two permanent NdFeB magnets positioned on top of each other in a configuration with like poles facing and a container filled with a solution of paramagnetic ions. Measurements of density are obtained by suspending a diamagnetic object in the container filled with the paramagnetic fluid, placing the container between the magnets, and measuring the vertical position of the suspended object. MagLev was used to estimate the salinity of water, to compare a variety of vegetable oils on the basis of the ratio of polyunsaturated fat to monounsaturated fat, to compare the contents of fat in milk, cheese, and peanut butter, and to determine the density of grains.

  16. Prominence condensation and magnetic levitation in a coronal loop

    Science.gov (United States)

    Van Hoven, G.; Mok, Y.; Drake, J. F.

    1992-01-01

    The results of a model dynamic simulation of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of the confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of the normal-polarity Kippenhahn-Schlueter-type) is formed, which supports the prominence at or near the field apex. The simplicity of this 1.5-dimensional model, with its accompanying diagnostics, elucidates the various contributions to the nonlinear dynamics of prominence condensation and levitation.

  17. Output feedback control of a mechanical system using magnetic levitation.

    Science.gov (United States)

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A

    2015-07-01

    This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Sensitive Superconducting Gravity Gradiometer Constructed with Levitated Test Masses

    Science.gov (United States)

    Griggs, C. E.; Moody, M. V.; Norton, R. S.; Paik, H. J.; Venkateswara, K.

    2017-12-01

    We demonstrate basic operations of a two-component superconducting gravity gradiometer (SGG) that is constructed with a pair of magnetically levitated test masses coupled to superconducting quantum-interference devices. A design that gives a potential sensitivity of 1.4 ×10-4 E Hz-1 /2 (1 E ≡10-9 s-2 ) in the frequency band of 1 to 50 mHz and better than 2 ×10-5 E Hz-1 /2 between 0.1 and 1 mHz for a compact tensor SGG that fits within a 22-cm-diameter sphere. The SGG has the capability of rejecting the platform acceleration and jitter in all 6 degrees of freedom to one part in 109 . Such an instrument has applications in precision tests of fundamental laws of physics, earthquake early warning, and gravity mapping of Earth and the planets.

  19. Precision force sensing with optically-levitated nanospheres

    Science.gov (United States)

    Geraci, Andrew

    2017-04-01

    In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.

  20. Green chemistry and nanofabrication in a levitated Leidenfrost drop

    Science.gov (United States)

    Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady

    2013-10-01

    Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal-polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials.

  1. Anti-levitation in integer quantum Hall systems

    Science.gov (United States)

    Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.

    2014-01-01

    The evolution of extended states of two-dimensional electron gas with white-noise randomness and field is numerically investigated by using the Anderson model on square lattices. Focusing on the lowest Landau band we establish an anti-levitation scenario of the extended states: As either the disorder strength W increases or the magnetic field strength B decreases, the energies of the extended states move below the Landau energies pertaining to a clean system. Moreover, for strong enough disorder, there is a disorder-dependent critical magnetic field Bc(W) below which there are no extended states at all. A general phase diagram in the W-1/B plane is suggested with a line separating domains of localized and delocalized states.

  2. Dynamical behavior of granular matter in low gravity (diamagnetic levitation)

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.S. E-mail: brooks@magnet.fsu.edu; Cothern, J.A

    2001-05-01

    We report studies on the dynamics of macroscopic particles in a low-gravity 'magnetic levitation' environment. In a real sense, this allows the investigation of new states of granular matter. Particle ensembles (rods, spheres, or grains) can be held in a weak confining potential due to diamagnetic forces in a high-field-resistive magnet. In such a case 'kT' is not zero, and assemblies of particles undergo ergodic processes to find the lowest configurational ground state. This new area presents unique problems for video data acquisition and mathematical descriptions of the complex dynamic motions, interactions, and configurations of single and multiple particle assemblies. Three examples of such processes are presented.

  3. Thermodynamic studies of levitated microdroplets of highly supersaturated electrolyte solutions

    Science.gov (United States)

    Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo

    1996-09-01

    Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration nspin and its calculation for various electrolyte solutions at 298 K.

  4. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.

    Science.gov (United States)

    Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A

    2011-03-06

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  5. Active Magnetic Bearing Online Levitation Recovery through μ-Synthesis Robust Control

    Directory of Open Access Journals (Sweden)

    Alexander H. Pesch

    2017-01-01

    Full Text Available A rotor supported on active magnetic bearings (AMBs is levitated inside an air gap by electromagnets controlled in feedback. In the event of momentary loss of levitation due to an acute exogenous disturbance or external fault, reestablishing levitation may be prevented by unbalanced forces, contact forces, and the rotor’s dynamics. A novel robust control strategy is proposed for ensuring levitation recovery. The proposed strategy utilizes model-based μ-synthesis to find the requisite AMB control law with unique provisions to account for the contact forces and to prevent control effort saturation at the large deflections that occur during levitation failure. The proposed strategy is demonstrated experimentally with an AMB test rig. First, rotor drop tests are performed to tune a simple touchdown-bearing model. That model is then used to identify a performance weight, which bounds the contact forces during controller synthesis. Then, levitation recovery trials are conducted at 1000 and 2000 RPM, in which current to the AMB coils is momentarily stopped, representing an external fault. The motor is allowed to drive the rotor on the touchdown bearings until coil current is restored. For both cases, the proposed control strategy shows a marked improvement in relevitation transients.

  6. TinyLev: A multi-emitter single-axis acoustic levitator

    Science.gov (United States)

    Marzo, Asier; Barnes, Adrian; Drinkwater, Bruce W.

    2017-08-01

    Acoustic levitation has the potential to enable novel studies due to its ability to hold a wide variety of substances against gravity under container-less conditions. It has found application in spectroscopy, chemistry, and the study of organisms in microgravity. Current levitators are constructed using Langevin horns that need to be manufactured to high tolerance with carefully matched resonant frequencies. This resonance condition is hard to maintain as their temperature changes due to transduction heating. In addition, Langevin horns are required to operate at high voltages (>100 V) which may cause problems in challenging experimental environments. Here, we design, build, and evaluate a single-axis levitator based on multiple, low-voltage (ca. 20 V), well-matched, and commercially available ultrasonic transducers. The levitator operates at 40 kHz in air and can trap objects above 2.2 g/cm3 density and 4 mm in diameter whilst consuming 10 W of input power. Levitation of water, fused-silica spheres, small insects, and electronic components is demonstrated. The device is constructed from low-cost off-the-shelf components and is easily assembled using 3D printed sections. Complete instructions and a part list are provided on how to assemble the levitator.

  7. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  8. Electrostatic precipitator for air cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, P.; Eriksson, R.; Vlastos, A.

    1981-03-31

    An electrostatic precipitator is disclosed for air cleaning wherein the air passes through in two steps: first passing through a charging portion and next through a separation portion. The charging portion includes wires positioned parallel to and between parallel metal sheets, the wires having an electric potential other than that of the metal sheets. The separation portion includes plural parallel metal sheets, each of which has an electric potential other than that of adjacent metal sheets. The charging portion includes two or more wires between each pair of metal sheets, and the metal sheets of the charging portion extend through and constitute some of the metal sheets of the separation portion, between which are disposed addition metal sheets of an odd number.

  9. Microencapsulation and Electrostatic Processing Method

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  10. An electrostatically rebalanced micromechanical accelerometer

    Science.gov (United States)

    Boxenhorn, Burton; Greiff, Paul

    The design and test performance of a low-cost micromechanical accelerometer (MA) with integral electrodes, developed for use with the vibratory micromechanical gyro described by Boxenhorn and Greiff (1988), are reported. The MA is a monolithic Si device of size 300 x 600 microns and comprises a torsional pendulum with capacitive readout and an electrostatic torquer. Data from 360-deg sweep tests performed in a g-field are presented in tables and graphs and discussed in detail. Results include bandwidth about 1 Hz, scale-factor error 480 ppm, stable bias of 260 microg over 203 min, and temperature effect 2100 microg/C on bias and -123 ppm/C on scale factor.

  11. Electrostatic analysis of nanoelectromechanical systems

    Science.gov (United States)

    Xu, Yang

    We present a multiscale method, seamlessly combining semiclassical, effective-mass Schrodinger (EMS), and tight-binding (TB) theories proposed for electrostatic analysis of silicon nanoelectromechanical systems (NEMS). By using appropriate criteria, we identify the physical models that are accurate in each local region. If the local physical model is semiclassical, the charge density is directly computed by the semiclassical theory. If the local physical model is quantum-mechanical (EMS or TB model), the charge density is calculated by using the theory of local density of states (LDOS). The LDOS is efficiently calculated from Green's function by using Haydock's recursion method where the Green's function is expressed as a continued fraction based on the local Hamiltonian. Once the charge density is determined, a Poisson equation is solved self-consistently to determine the electronic properties. The accuracy and efficiency of the multiscale method are demonstrated by considering several NEMS examples. The multiscale method can be used to compute the effect of surface and interior defects such as vacancies and broken bonds on the performance of microelectromechanical systems (MEMS). By combining multiscale electrostatic analysis with mechanical analysis, we compute the capacitance-voltage and pull-in/pull-out voltages of MEMS switches in the presence of defects in the dielectric oxide layer. Our results indicate that both surface and interior defects can change the pull-in/pull-out voltages significantly. These voltage offsets can lead to an eventual failure of the MEMS switches. The self-consistent TB method is used to investigate carbon nanotube (CNT)-based sensors. We compute the screening effects of semiconducting and metallic single-wall carbon nanotubes (SWNTs) when water molecules and various ions pass through the nanotubes. The trajectories of ions and water molecules are obtained from molecular dynamics (MD) simulations. It is shown that metallic SWNTs have

  12. Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation

    Science.gov (United States)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.

  13. Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation

    Science.gov (United States)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  14. Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation

    Science.gov (United States)

    Ramachandran, N.; Leslie, F.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  15. Review on the Modeling of Electrostatic MEMS

    Science.gov (United States)

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  16. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  17. Electrostatic Propulsion Using C60 Molecules

    Science.gov (United States)

    Leifer, Stephanie D.; Saunders, Winston A.

    1993-01-01

    Report proposes use of C60 as propellant material in electrostatic propulsion system of spacecraft. C60, C70, and similar molecules, have recently been found to have characteristics proving advantageous in electrostatic propulsion. Report discusses these characteristics and proposes experiments to determine feasibility of concept.

  18. Electrostatic disruption of a charged conducting spheroid

    Science.gov (United States)

    Hill, J. R.; Mendis, D. A.

    1981-01-01

    Electrostatic disruption of elongated parent grains following sudden charging to high electrostatic potentials is proposed as a specific mechanism for the appearance of striae or pseudosynchronic bands which have been observed in several comets. The polar and equatorial electrostatic tension for axis ratios between 0.01 and 1000 are calculated, and the polar pressure is found to be larger than the equatorial pressure for prolate spheroids. The electrostatic polar pressure profile along the polar axis for prolate spheroids is calculated, and the pressure is found to increase monotonically from a minimum at the center to a maxima at the ends. This indicates that as a prolate spheroid of uniform tensile strength is charged up, it will continue to chip off at the ends when the electrostatic pressure there exceeds the uniform tensile strength of the grain. The result can be a prolate grain or a grain which continues chipping until it explodes.

  19. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  20. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    Science.gov (United States)

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  1. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); Qian, Nan; Che, Tong; Jin, Liwei [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); Si, Shuaishuai [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Zhang, Ya; Zheng, Jun [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China)

    2016-12-15

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems. - Highlights: • The effect of PMG configurations to levitation performances is investigated. • Bigger force and greater force decay are obtained on Halbach-type PMG. • Halbach-type PMG is not sensitive to the levitation force in various bulk arrays. • Practical issues including costs and assembly of PMGs are considered.

  2. ELECTROSTATICALLY ENHANCED BARRIER FILTER COLLECTION

    Energy Technology Data Exchange (ETDEWEB)

    John Erjavec; Michael D. Mann; Ryan Z. Knutson; Michael L. Swanson; Michael E. Collings

    2003-06-01

    electrostatically enhanced barrier filter collection (EBFC). This concept combines electrostatic precipitation (ESP) with candle filters in a single unit. Similar technology has been recently proven on a commercial scale for atmospheric applications, but needed to be tested at high temperatures and pressures. The synergy obtained by combining the two control technologies into a single system should actually reduce filter system capital and operating costs and make the system more reliable. More specifically, the ESP is expected to significantly reduce candle filter load and also to limit ash reintrainment, allowing for full recovery of baseline pressure drop during backpulsing of the filters.

  3. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals

    National Research Council Canada - National Science Library

    Lu, Ganhua; Mao, Shun; Park, Sungjin; Ruoff, Rodney S; Chen, Junhong

    2009-01-01

    Facile dry decoration of graphene oxide sheets with aerosol Ag nanocrystals synthesized from an arc plasma source has been demonstrated using an electrostatic force directed assembly technique at room temperature...

  4. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  5. Introduction to numerical electrostatics using MATLAB

    CERN Document Server

    Dworsky, Lawrence N

    2014-01-01

    The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers

  6. Space-charge electrostatic precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, C.E.

    1977-05-01

    An improved electrostatic precipitator called a space charge precipitator was tested and studied. A space charge precipitator differs from a conventional model in that the fields necessary to move the particles from the gas to the collecting surfaces are provided by a cloud of charged innocuous drops, such as glycerine or water, rather than by a charged electrode system. The flow conditions, electrical equipment, and physical dimensions of the test precipitator are typical of industrial applications. Experiments using water fog at a velocity of 10 ft/sec and a residence time of 0.6 sec, for a system charged at 25 kV, show a removal of iron oxide particles of approximately 52 percent. Theoretical calculations, assuming 2 micron particles, predict a removal of 50 percent. The results with glycerine fog are comparable. Experiments at various flowrates for both water fog and glycerine fog show a trend of decreasing particle removal for increasing flowrate. An identical trend is predicted by the space charge theory. Electron micrographs verify that only particles smaller than two microns are present in the laboratory precipitator.

  7. Monitoring by Control Technique - Electrostatic Precipitators

    Science.gov (United States)

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about electrostatic precipitator control techniques used to reduce pollutant emissions.

  8. The Electrocardiogram as an Example of Electrostatics

    Science.gov (United States)

    Hobbie, Russell K.

    1973-01-01

    Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)

  9. Nonlinear resonances of three modes in a high-T{sub c} superconducting magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Masahiko, E-mail: galian@z2.keio.jp; Sakaguchi, Ryunosuke; Sugiura, Toshihiko, E-mail: sugiura@mach.keio.ac.jp

    2013-11-15

    Highlights: •We studied two nonlinear vibrations of a levitated beam supported by superconductors. •One of the vibrations is combination resonance of the 1st mode and the 3rd mode. •The other vibration is autoparametric resonance of the 2nd mode. •When the amplitude of the 2nd mode is small, the combination resonance is suppressed. •Otherwise, the two resonances can be resonated simultaneously. -- Abstract: In a high-T{sub c} superconducting magnetic levitation system, an object can levitate without control and contact. So it is expected to be applied to magnetically levitated transportation. To use it safely, lightening the levitated object is necessary. But this reduces the bending stiffness of the object. Besides, the system has nonlinearity. Therefore nonlinear elastic vibration can occur. This study focused on how plural nonlinear elastic vibrations of the 1st, 2nd and 3rd modes simultaneously occur. Our numerical calculation and experiment found out that the three modes simultaneously resonate when the amplitude of the 2nd mode is large enough whereas only the 2nd mode resonates when it is small.

  10. A new 3D levitation force measuring device for REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.L. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Yang, W.M., E-mail: yangwm@snnu.edu.cn [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Li, J.W.; Yuan, X.C. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Ma, J. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Department of Physics, Qinghai Normal University, Xining 810008 (China); Wang, M. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China)

    2014-01-15

    Highlights: •A new 3D levitation force measuring device has been designed and constructed. •It can measure the 3D real-time interaction force simultaneously and directly. •Performance, accuracy and effectiveness has been demonstrate by tests. -- Abstract: A new 3D levitation force measuring device for ReBa{sub 2}Cu{sub 3}O{sub 7−x} (REBCO) bulk superconductors has been designed and constructed. Three pull pressure load cells are orthogonally set on a fixing bracket to test the interaction force between a bulk superconductor and a magnet in three dimensions. To realize the simple, rapid and accurate measurement of the levitation force, a non-magnetic hollow cylinder flange, three pull pressure load cells, a piece of iron plate, a NbFeB permanent magnet (PM) and some steel balls are elaborately constructed with the fixing bracket, thus the magnet or REBCO bulk superconductor can be well and rigidly connected with the load cells, and the mutual interference from the three pull pressure load cells can be effectively avoided during the levitation force measuring processes. This device can be used to measure the interaction (or levitation) force between a superconductor and a magnet, that between a magnet and a magnet, or the magnetic force among magnetic materials in three dimensions.

  11. Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields

    Science.gov (United States)

    Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

    2011-03-01

    To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  12. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    Science.gov (United States)

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  13. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    Science.gov (United States)

    H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub

    2016-05-01

    The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.

  14. The size effect on the magnetic levitation force of MgB2 bulk superconductors

    Science.gov (United States)

    Savaskan, B.; Koparan, E. T.; Güner, S. B.; Celik, S.; Yanmaz, E.

    2016-12-01

    In this study, the size effect on the magnetic levitation performance of disk-shaped MgB2 bulk superconductors and permanent magnets was investigated. MgB2 samples with varying diameters of 13 mm, 15 mm and 18 mm, each of which were 2 g in mass, were prepared by two-step solid state reaction method. Vertical levitation force measurements under both zero-field-cooled (ZFC) and field-cooled (FC) regimes were carried out at different temperatures of 20, 24 and 28 K. It was determined that the levitation force of the MgB2 strongly depends on both the diameters of the sample and the permanent magnet. In ZFC regime, the maximum levitation force value for the permanent magnet and the sample 18 mm in diameters reached to the 8.41 N at 20 K. In addition, in FC regime, attractive and repulsive force increased with increasing diameters of the sample and the permanent magnet. In that, the sample with 18 mm in diameter showed the highest attractive force value -3.46 N at 20 K and FC regime. The results obtained in this study are very useful in magnetic levitation devices as there is no detailed study on the size of superconductors and permanent magnets.

  15. Effect of reciprocating motions around working points on levitation force of superconductor-magnet system

    Science.gov (United States)

    Xu, Jimin; Zhang, Fei; Sun, Tao; Yuan, Xiaoyang; Zhang, Cuiping

    2016-09-01

    In order to simulate vibration around working points in practical operation of superconducting levitation system, magnet in a simple superconductor-magnet system are conducted reciprocating motions around static height in this study. Two YBCO cylindrical samples with different grain orientations are used to investigate the effect of reciprocating motions of magnet on superconducting magnetic force. The c-axis of sample S1 is perpendicular to the top surface while sample S2 is parallel to the top surface. The initial cooling processes for the superconductors include zero-field-cooled (ZFC) and filed-cooled (FC). Compared to the levitation force before reciprocating motions, the ZFC levitation force at static height becomes smaller after reciprocating while the FC force presents opposite phenomenon. It is found that levitation force at static height tends to be stable after several times of reciprocating under ZFC and FC conditions and its time-decay phenomenon is suppressed in some extent, which is meaningful for the practical application of superconducting levitation system. Based on vortex dynamic, some physical discussions are presented to the experimental results.

  16. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  17. The Mechanism Study of Alternating Arc(ACMagnetic Levitation Induction Motor

    Directory of Open Access Journals (Sweden)

    Li Zeng

    2015-01-01

    Full Text Available Magnetic levitation (no bearings motor by using magnetic force to make rotor suspend and drive realize its high or ultra-high speed rotating. The stator’s structure of traditional no bearing magnetic levitation motor is double winding which is polar logarithmic difference 1 of 2 sets of winding (torque winding and suspension winding and embedded in the stator. Using two inverter respectively for the two sets of winding to go into the same frequency current in order to realize the suspension of the rotor and motor’s driven, small carrying capacity of motor’s structure, controlling complex system. This paper based on the traditional motor technology puts forward a kind of arc principle and respectively decorates two arc motors in horizontal and vertical direction symmetric to rotor according to the electromagnetic bearing suspension technology that is constituted the arc magnetic levitation induction motor. Establishing air-gap transformation regular between rotor and stator (air-gap length motor is under the effect of interference. Based on the electromagnetic theory establishing distribution regular of the air-gap magnetic induction intensity. Virtual displacement principle is used to establish electromagnetism mathematical model and motor electromagnetism levitation. By the finite element analysis carrying on simulation research to the magnetic induction intensity, electric magnetic levitation force and distribution features of electromagnetic torque and so on.

  18. The effect of acoustically levitated objects on the dynamics of ultrasonic actuators

    Science.gov (United States)

    Ilssar, D.; Bucher, I.

    2017-03-01

    This paper presents a comprehensive model, coupling a piezoelectric actuator operating at ultrasonic frequencies to a near-field acoustically levitated object through a compressible thin layer of gas such that the combined dynamic response of the system can be predicted. The latter is derived by introducing a simplified model of the nonlinear squeezed layer of gas and a variational model of the solid structure and the piezoelectric elements. Since the harmonic forces applied by the entrapped fluid depend on the levitated object's height and vertical motion, the latter affects the impedance of the driving surface, affecting the natural frequencies, damping ratios, and amplification of the actuator. Thus, the developed model is helpful when devising a resonance tracking algorithm aimed to excite a near-field acoustic levitation based apparatus optimally. Validation of the suggested model was carried out using a focused experimental setup geared to eliminate the effects that were already verified in the past. In agreement with the model, the experimental results showed that the natural frequency and damping ratio of a designated mode decrease monotonically with the levitated object's average height, whereas the amplification of the mode increases with the levitation height.

  19. Nanomagnetic levitation three-dimensional cultures of breast and colorectal cancers.

    Science.gov (United States)

    Bumpers, Harvey L; Janagama, Dasharatham G; Manne, Upender; Basson, Marc D; Katkoori, Venkat

    2015-04-01

    Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. We developed for the first time nanomagnetically levitated three-dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon-encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and epidermal growth factor receptor expressions. These phenotypes were compared with two-dimensional and 3-D cultures grown in a gel matrix. The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and epidermal growth factor receptor activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and maybe more feasible for a range of applications in drug discovery or regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Experiment and simulation of superconducting magnetic levitation with REBCO coated conductor stacks

    Science.gov (United States)

    Liu, Kun; Yang, Wenjiao; Ma, Guangtong; Quéval, Loïc; Gong, Tianyong; Ye, Changqing; Li, Xiang; Luo, Zhen

    2018-01-01

    Three superconducting stacks made of 120 REBCO coated conductor tapes were each fabricated and assembled to obtain several REBCO modules. Their levitation responses over two different permanent magnet (PM) guideways were investigated by experiment and finite element simulation. For the experiment, a test rig was developed that can measure the force in the three directions for any given relative movement between the REBCO stacks and the PM guideway. For the finite element simulation, a 2D H-formulation was adopted. To treat the high aspect ratio of REBCO tapes, an anisotropic homogenization technique was used. The agreement between the measurements and the simulations is good, thus validating the modeling methodology. It was observed from the experiment and simulation results that the perpendicular field contributes to the levitation force whereas the parallel field is responsible for the guidance force, as a result of the existence of anisotropy on the local magnetic stimulation. Based on that, promising REBCO modules including both longitudinal and transverse arrangements of REBCO stacks were proposed and tested, in terms of providing a significant levitation force with the lateral stability preserved. Moreover, a pre-load process able to suppress the relaxation of the levitation force was put forward. To conclude, this study outlines explicit principles to obtain an appropriate layout of coated conductor stacks that could be effective for practical magnetic levitation operation.

  1. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  2. Improved Electronic Control for Electrostatic Precipitators

    Science.gov (United States)

    Johnston, D. F.

    1986-01-01

    Electrostatic precipitators remove particulate matter from smoke created by burning refuse. Smoke exposed to electrostatic field, and particles become electrically charged and migrate to electrically charged collecting surfaces. New microprocessor-based electronic control maintains precipitator power at maximum particulate-collection level. Control automatically senses changes in smoke composition due to variations in fuel or combustion and adjusts precipitator voltage and current accordingly. Also, sensitive yet stable fault detection provided.

  3. Experimental Results of an Electrostatic Injector

    Science.gov (United States)

    2014-10-01

    injections in small engines to improve fuel-air mixing. Based on TDA Research and University of Colorado study of electrostatic injectors, this...qualitatively analyze the spray. The experiments in this project consist of baseline tests on an electrostatic in- jector designed by TDA Research Inc...Figure 2. In TDA Research’s initial study and this study, a downstream charge induction is utilized [1]. 3 Figure 2. Downstream charge induction

  4. Miniature Bipolar Electrostatic Ion Thruster

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  5. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  6. Analyzing forensic evidence based on density with magnetic levitation.

    Science.gov (United States)

    Lockett, Matthew R; Mirica, Katherine A; Mace, Charles R; Blackledge, Robert D; Whitesides, George M

    2013-01-01

    This paper describes a method for determining the density of contact trace objects with magnetic levitation (MagLev). MagLev measurements accurately determine the density (± 0.0002 g/cm(3) ) of a diamagnetic object and are compatible with objects that are nonuniform in shape and size. The MagLev device (composed of two permanent magnets with like poles facing) and the method described provide a means of accurately determining the density of trace objects. This method is inexpensive, rapid, and verifiable and provides numerical values--independent of the specific apparatus or analyst--that correspond to the absolute density of the sample that may be entered into a searchable database. We discuss the feasibility of MagLev as a possible means of characterizing forensic-related evidence and demonstrate the ability of MagLev to (i) determine the density of samples of glitter and gunpowder, (ii) separate glitter particles of different densities, and (iii) determine the density of a glitter sample that was removed from a complex sample matrix. © 2012 American Academy of Forensic Sciences.

  7. Measuring densities of solids and liquids using magnetic levitation: fundamentals.

    Science.gov (United States)

    Mirica, Katherine A; Shevkoplyas, Sergey S; Phillips, Scott T; Gupta, Malancha; Whitesides, George M

    2009-07-29

    This paper describes an analytical system that uses magnetic levitation to measure densities of solids and water-immiscible organic liquids with accuracies ranging from +/-0.0002 to +/-0.02 g/cm(3), depending on the type of experiment. The technique is compatible with densities of 0.8-3 g/cm(3) and is applicable to samples with volumes of 1 pL to 1 mL; the samples can be either spherical or irregular in shape. The method employs two permanent NdFeB magnets positioned with like poles facing one another--with the axis between the poles aligned with the gravitational field--and a container filled with paramagnetic medium (e.g., MnCl(2) dissolved in water) placed between these magnets. Density measurements are obtained by placing the sample into the container and measuring the position of the sample relative to the bottom magnet. The balance of magnetic and gravitational forces determines the vertical position of the sample within the device; knowing this position makes it possible to calculate the density of the sample.

  8. Optical binding of two microparticles levitated in vacuum

    Science.gov (United States)

    Arita, Yoshihiko; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    Optical binding refers to an optically mediated inter-particle interaction that creates new equilibrium positions for closely spaced particles [1-5]. Optical binding of mesoscopic particles levitated in vacuum can pave the way towards the realisation of a large scale quantum bound array in cavity-optomechanics [6-9]. Recently we have demonstrated trapping and rotation of two mesoscopic particles in vacuum using a spatial-light-modulator-based approach to trap more than one particle, induce controlled rotation of individual particles, and mediate interparticle separation [10]. By trapping and rotating two vaterite particles, we observe intensity modulation of the scattered light at the sum and difference frequencies with respect to the individual rotation rates. This first demonstration of optical interference between two microparticles in vacuum has lead to a platform to explore optical binding. Here we demonstrate for the first time optically bound two microparticles mediated by light scattering in vacuum. We investigate autocorrelations between the two normal modes of oscillation, which are determined by the centre-of-mass and the relative positions of the two-particle system. In situ determination of the optical restoring force acting on the bound particles are based on measurement of the oscillation frequencies of the autocorrelation functions of the two normal modes, thereby providing a powerful and original platform to explore multiparticle entanglement in cavity-optomechanics.

  9. Translational and rotational dynamic analysis of a superconducting levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A [Electric-Electronic Engineering Department, Ataturk University, Erzurum (Turkey); Hull, J R [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Gundogdu, Oe [Mechanical Engineering Department, Ataturk University, Erzurum (Turkey)

    2005-07-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  10. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    Directory of Open Access Journals (Sweden)

    Jiancheng Fang

    2013-11-01

    Full Text Available Unbalance in magnetically levitated rotor (MLR can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor’s unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR’s rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC method, using a general band-pass filter (GPF to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  11. Stability of equilibrium of a superconducting ring that levitates in the field of a fixed ring with constant current

    Science.gov (United States)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2015-11-01

    In order to develop a plasma trap with levitating superconducting magnetic coils, it is necessary to search for their stable levitating states. An analytical expression for the potential energy of a single superconducting ring that captures a fixed magnetic flux in the field of a fixed ring with constant current versus the coordinate of the free ring on the axis of the system, deviation angle of its axis from the axis of the system, and radial displacement of its plane is derived for uniform gravity field in the thin ring approximation. The calculated stable levitation states of the superconducting ring in the field of the ring with constant current are proven in experiments. The generalization of such an approach to the levitation of several rings makes it possible to search for stable levitation states of several coils that form a magnetic system of a multipole trap.

  12. Study on Heat Transfer and Flow Characteristic Under Phase-Change Process of an Acoustically Levitated Droplet

    Science.gov (United States)

    Shitanishi, Kuniharu; Hasegawa, Koji; Kaneko, Akiko; Abe, Yutaka

    2014-11-01

    Acoustic levitation is one of the levitation technique which is expected to be used for analytical chemistry and manufacturing new materials. Thus, it is important to gather the knowledge about acoustically levitated droplet. The purpose of this study is to investigate the heat transfer and flow behavior under phase change process of an acoustically levitated droplet. The following results were obtained from experiments. Evaporation process and external flow structure of the levitated droplet is visualized by a high speed camera and it is found that they differ by the type of fluid. Toroidal vortices are observed near the surface of the ethanol solution droplet. Heat transfer coefficient is estimated from the volume change and temperature gradient. It is substantially higher than that estimated by the existing experimental correlation.

  13. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  14. Experimental studies in fluid mechanics and materials science using acoustic levitation

    Science.gov (United States)

    Trinh, E. H.; Robey, J.; Arce, A.; Gaspar, M.

    1987-01-01

    Ground-based and short-duration low gravity experiments have been carried out with the use of ultrasonic levitators to study the dynamics of freely suspended liquid drops under the influence of predominantly capillary and acoustic radiation forces. Some of the effects of the levitating field on the shape as well as the fluid flow fields within the drop have been determined. The development and refinement of measurement techniques using levitated drops with size on the order of 2 mm in diameter have yielded methods having direct application to experiments in microgravity. In addition, containerless melting, undercooling, and freezing of organic materials as well as low melting metals have provided experimental data and observations on the application of acoustic positioning techniques to materials studies.

  15. Detection of membrane-bound and soluble antigens by magnetic levitation.

    Science.gov (United States)

    Andersen, Mikkel Schou; Howard, Emily; Lu, Shulin; Richard, Matthew; Gregory, Mark; Ogembo, Gordon; Mazor, Ofer; Gorelik, Pavel; Shapiro, Nathan I; Sharda, Anish V; Ghiran, Ionita

    2017-10-11

    Magnetic levitation is a technique for measuring the density and the magnetic properties of objects suspended in a paramagnetic field. We describe a novel magnetic levitation-based method that can specifically detect cell membrane-bound and soluble antigens by measurable changes in levitation height that result from the formation of antibody-coated bead and antigen complex. We demonstrate our method's ability to sensitively detect an array of membrane-bound and soluble antigens found in blood, including T-cell antigen CD3, eosinophil antigen Siglec-8, red blood cell antigens CD35 and RhD, red blood cell-bound Epstein-Barr viral particles, and soluble IL-6, and validate the results by flow cytometry and immunofluorescence microscopy performed in parallel. Additionally, employing an inexpensive, single lens, manual focus, wifi-enabled camera, we extend the portability of our method for its potential use as a point-of-care diagnostic assay.

  16. Levitating states of superconducting rings in the field of a fixed ring with constant current

    Science.gov (United States)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Denisyuk, A. I.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2014-06-01

    We consider the possibility of designing a plasma trap with a magnetic system formed by super-conducting rings and coils levitating in the field of a fixed coaxial coil carrying constant current. An analytic dependence of the potential energy of such a system with one or two levitating superconducting rings having trapped preset magnetic fluxes on their coordinates in the uniform gravitational field is obtained in the thin ring approximation. Calculations performed in the Mathcad system show that equilibrium states of such a system exist for certain values of parameters. Levitating states of a single superconducting ring and two superconducting rings in the field of the coil with constant current are observed experimentally in positions corresponding to calculated values.

  17. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    Science.gov (United States)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  18. Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid.

    Science.gov (United States)

    Inui, Norio; Goto, Kosuke

    2013-11-01

    We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position, where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers' escape theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example, we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir force at room temperature.

  19. Vibro-levitation and inverted pendulum: parametric resonance in vibrating droplets and soft materials.

    Science.gov (United States)

    Ramachandran, Rahul; Nosonovsky, Michael

    2014-07-14

    The phenomenon of liquid droplets "levitating" or bouncing off a liquid vibrating surface has attracted attention of scientists due to its possible application in microfluidics and novel nanostructured superhydrophobic materials. Several models have been suggested in the literature, and the effect is usually attributed to non-linear viscosity. Here we suggest a simple model relating the effect to the parametric resonance as described by the Mathieu equation, which explains stabilization of an inverted pendulum with vibration foundation. Small fast vibrations can be substituted by an effective "levitation" force. We present modeling and experimental results for oil droplets and discuss how the mathematical separation of the slow and fast motion provides insights on the relation of vibro-levitation of oil droplets and soft materials with the vibro-stabilization of an inverted pendulum, and the "Indian rope" and "Cornstarch monster" tricks.

  20. Dependence of oscillational instabilities on the amplitude of the acoustic wave in single-axis levitators

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo; Ruiz-Boullosa, Ricardo; Cutanda Henríquez, Vicente

    2007-01-01

    It is well known that acoustic waves exert forces on a boundary with which they interact; these forces can be so intense that they can compensate for the weight of small objects up to a few grams. In this way, it is possible to maintain solid or liquid samples levitating in a fluid, avoiding...... the use of containers, which may be undesirable for certain applications. Moreover, small samples can be manipulated by means of acoustic waves. In this paper, we report a study on the oscillational instabilities that can appear on a levitated solid sphere in single-axis acoustic devices. A theory...... published on the topic predicts that these instabilities appear when the levitator is driven with a frequency above the resonant frequency of the empty device. The theory also shows that the instabilities can either saturate to a state with constant amplitude, or they can grow without limit until the object...

  1. Sample handling and chemical kinetics in an acoustically levitated drop microreactor.

    Science.gov (United States)

    Pierre, Zakiah N; Field, Christopher R; Scheeline, Alexander

    2009-10-15

    Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container's surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor.

  2. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    Science.gov (United States)

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  3. Innovative initiative to enhance the performance of electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Riepe, T.; Podhorsky, M.; Herder, H.; Malec, I.

    2007-07-01

    In the future, many plants will not be able to meet new statutory directives on emissions from fossil-fired power stations with the existing flue gas cleaning systems. In particular the dust emissions and above all the fine dust emissions from existing electrostatic precipitators (ESPs) must be further reduced. Today, most plant operators are therefore looking for ways to modernise their facilities in order to obviate the construction of new plants, which is very expensive. Since it is normally not possible to simply enlarge the electrostatic precipitator installations due to a lack of space, recent developments to achieve a more efficient operation of these units are acquiring special importance. In particular the Bi-Corona{reg_sign} technology developed by Balcke-Duerr holds great potential for that purpose. The Bi-Corona technology was examined at a pilot plant in the Neurath lignite-fired power station where the average clean gas dust concentration was reduced by up to 40% as against the conventional precipitator. In addition, state-of-the-art control systems and high-voltage equipment, as well as modifications of the rapping systems can help meet the required targets. In any case, modern flow optimisation methods (CFD) combined with devices to homogenise dust and gas flow help to upgrade existing units. The individual options and their impacts are described in more detail in this paper. The aim of the Balcke-Duerr 'Innovation Initiative on Electrostatic Precipitators' is to enable a large number of existing units to be adapted to future requirements though systematically engineered modernisations. 15 refs., 17 figs.

  4. Description of an aerodynamic levitation apparatus with applications in Earth sciences

    Directory of Open Access Journals (Sweden)

    Simon Klaus

    2010-09-01

    Full Text Available Abstract Background In aerodynamic levitation, solids and liquids are floated in a vertical gas stream. In combination with CO2-laser heating, containerless melting at high temperature of oxides and silicates is possible. We apply aerodynamic levitation to bulk rocks in preparation for microchemical analyses, and for evaporation and reduction experiments. Results Liquid silicate droplets (~2 mm were maintained stable in levitation using a nozzle with a 0.8 mm bore and an opening angle of 60°. The gas flow was ~250 ml min-1. Rock powders were melted and homogenized for microchemcial analyses. Laser melting produced chemically homogeneous glass spheres. Only highly (e.g. H2O and moderately volatile components (Na, K were partially lost. The composition of evaporated materials was determined by directly combining levitation and inductively coupled plasma mass spectrometry. It is shown that the evaporated material is composed of Na > K >> Si. Levitation of metal oxide-rich material in a mixture of H2 and Ar resulted in the exsolution of liquid metal. Conclusions Levitation melting is a rapid technique or for the preparation of bulk rock powders for major, minor and trace element analysis. With exception of moderately volatile elements Na and K, bulk rock analyses can be performed with an uncertainty of ± 5% relative. The technique has great potential for the quantitative determination of evaporated materials from silicate melts. Reduction of oxides to metal is a means for the extraction and analysis of siderophile elements from silicates and can be used to better understand the origin of chondritic metal.

  5. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  6. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets.

    Science.gov (United States)

    Kremer, J; Kilzer, A; Petermann, M

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  7. Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.

    Science.gov (United States)

    Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong

    2015-03-01

    The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.

  8. Improved levitation and trapping of particles by negative dielectrophoresis by the addition of amphoteric molecules

    Science.gov (United States)

    Flores-Rodriguez, Neftali; Markx, Gerard H.

    2004-02-01

    Addition of amphoteres could be used to improve the levitation and trapping of particles by negative dielectrophoresis. Addition of amphoteric molecules to electromanipulation media increases not only the permittivity of the medium and its viscosity but also its density. To investigate the effect of addition of amphoteres on levitation and trapping by negative dielectrophoresis, the electrokinetic behaviour of latex beads and viable yeast cells (Saccharomyces cerevisiae) was investigated in concentrated solutions of the amphoteric molecules N-[2-hydroxyethyl] piperazine-N'-[2-ethanesulfonic acid] (HEPES) and egr -aminocaproic acid (EACA) using different frequencies and voltages of the applied electrical signal and microelectrodes of different sizes. When using interdigitated electrodes without castellations, latex beads levitated an average of 43% higher when 0.67 M EACA solutions were used and a 54% higher after adding 0.67 M HEPES compared with the levitation heights when no amphoteres were added. Under the same conditions, yeast levitated 78% and 86% higher, respectively. At low voltages and low HEPES/EACA concentrations, the latex particles accumulated in bands between or above the electrodes. However, at the highest voltages and HEPES/EACA concentrations used, the particles formed a network of pearl chains above the electrode arrays. When using electrodes of the interdigitated castellated type of characteristic size 30 µm, latex particles levitated 32% and 40% higher when 0.67 M EACA and HEPES solutions were used in comparison with when no amphoteres were added. At these concentrations, the flow rate needed to dislodge the latex particles from the traps formed by the electric field pattern between the castellations of the interdigitated castellated electrodes was increased by 46% compared with the flow rate needed to achieve this when no amphoteres were added.

  9. The first step in layer-by-layer deposition: Electrostatics and/or non-electrostatics?

    NARCIS (Netherlands)

    Lyklema, J.; Deschênes, L.

    2011-01-01

    A critical discussion is presented on the properties and prerequisites of adsorbed polyelectrolytes that have to function as substrates for further layer-by-layer deposition. The central theme is discriminating between the roles of electrostatic and non-electrostatic interactions. In order to

  10. Recovery of nonferrous metals from scrap automobiles by magnetic fluid levitation.

    Science.gov (United States)

    Mir, L.; Simard, C.; Grana, D.

    1973-01-01

    Ferrofluids are colloidal dispersions of subdomain magnetic solids in carrier liquids. In the presence of a non-homogeneous magnetic field, ferrofluids exert a pressure on immersed nonmagnetic objects in the opposite sense of the field gradient. This pressure force can, when opposite to gravity, levitate objects of higher density than the ferrofluid. This levitation technique can be used to separate solids according to density. Its application to the separation of nonferrous metals from shredded automobiles has been demonstrated on a prototype of a full-scale separator. Its use to recover nonferrous metals from municipal solid wastes also seems practical.

  11. A Novel Control-rod Drive Mechanism via Electromagnetic Levitation in MNSR

    Directory of Open Access Journals (Sweden)

    Divandari Mohammad

    2014-07-01

    Full Text Available In this paper, an electromagnetic levitation system was used with a synchronous motor to navigate the control rod of a small-type research reactor. The result from this prototype magnetic levitation system was in agreement with simulation results. The control system was programmed in MATLAB through open-loop system, closed-loop with state feedback and closed-loop with state feedback integral tracking. The final control system showed the highest performance with a low positioning error. Our results showed that the developed control system has the potential to be used as a reliable actuator in nuclear reactors to satisfy higher performance and safety.

  12. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    Science.gov (United States)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-11-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  13. Design of a Low-Cost Air Levitation System for Teaching Control Engineering.

    Science.gov (United States)

    Chacon, Jesus; Saenz, Jacobo; Torre, Luis de la; Diaz, Jose Manuel; Esquembre, Francisco

    2017-10-12

    Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system's nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab.

  14. Designing Flexible Neuro-Fuzzy System Based on Sliding Mode Controller for Magnetic Levitation Systems

    OpenAIRE

    Zahra Mohammadi; Mohammad Teshnehlab; Mahdi Aliyari Shoorehdeli

    2011-01-01

    This study presents a novel controller of magnetic levitation system by using new neuro-fuzzy structures which called flexible neuro-fuzzy systems. In this type of controller we use sliding mode control with neuro-fuzzy to eliminate the Jacobian of plant. At first, we control magnetic levitation system with Mamdanitype neuro-fuzzy systems and logical-type neuro-fuzzy systems separately and then we use two types of flexible neuro-fuzzy systems as controllers. Basic flexible OR-type neuro-fuzzy...

  15. Experimental study on stabilizing range extension of diamagnetic levitation under modulated magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T C S; Wong, P L; Liu, K P, E-mail: 50578230@student.cityu.edu.h, E-mail: meplwong@cityu.edu.h, E-mail: mekpliu@cityu.edu.h [Manufacturing Engineering and Engineering Management Department, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2010-01-01

    The real energy-free levitation exists with the help of diamagnetic material. Its ultra-high sensitivity to force is particularly attractive to micro/nano force sensing. A key parameter: Levitation Stabilizing Local Range, LR (allowable moving range of the floater) is critical to the load and self-rotating performance. Besides, larger LR reduces the energy loss due to the eddy current and has greater application potential. Recently, an idea of extending the LR by a modulating coil array has been validated using numerical simulation. This paper takes the next move to carry out an experimental study on the shape effect of stacked coil arrays with different currents on LR.

  16. Precise measurements of diamagnetic susceptibility of benzophenone and paraffin by using a magnetic levitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K; Mogi, I; Awaji, S; Watanabe, K [High Field Laboratory for Superconducting Materials, Institute of Materials Research, Tohoku University, Sendai, 980-8577 (Japan)], E-mail: kohki@imr.tohoku.ac.jp

    2009-03-01

    Measurements for temperature dependence of diamagnetic susceptibility were performed under the magnetic levitation condition. The magnetic susceptibility of a single crystal of benzophenone showed monotonous decrease toward to the melting point with increasing temperature. The minimum change of the susceptibility was detected by 1.4 x 10{sup -12} m{sup 3}/kg. On the contrary, slight increase was observed below the melting point in the case of paraffin. The susceptibility of a paraffin melt was found to be smaller than that of the solid state. It was demonstrated that the magnetic levitation enables sensitive and contactless measurements of the diamagnetic susceptibility across the melting point.

  17. Optically levitated nanoparticle as a model system for stochastic bistable dynamics

    Science.gov (United States)

    Ricci, F.; Rica, R. A.; Spasenović, M.; Gieseler, J.; Rondin, L.; Novotny, L.; Quidant, R.

    2017-05-01

    Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.

  18. Screened Electrostatic Interactions in Molecular Mechanics.

    Science.gov (United States)

    Wang, Bo; Truhlar, Donald G

    2014-10-14

    In a typical application of molecular mechanics (MM), the electrostatic interactions are calculated from parametrized partial atomic charges treated as point charges interacting by radial Coulomb potentials. This does not usually yield accurate electrostatic interactions at van der Waals distances, but this is compensated by additional parametrized terms, for example Lennard-Jones potentials. In the present work, we present a scheme involving radial screened Coulomb potentials that reproduces the accurate electrostatics much more accurately. The screening accounts for charge penetration of one subsystem's charge cloud into that of another subsystem, and it is incorporated into the interaction potential in a way similar to what we proposed in a previous article (J. Chem. Theory Comput. 2010, 6, 3330) for combined quantum mechanical and molecular mechanical (QM/MM) simulations, but the screening parameters are reoptimized for MM. The optimization is carried out with electrostatic-potential-fitted partial atomic charges, but the optimized parameters should be useful with any realistic charge model. In the model we employ, the charge density of an atom is approximated as the sum of a point charge representing the nucleus and inner electrons and a smeared charge representing the outermost electrons; in particular, for all atoms except hydrogens, the smeared charge represents the two outermost electrons in the present model. We find that the charge penetration effect can cause very significant deviations from the popular point-charge model, and by comparison to electrostatic interactions calculated by symmetry-adapted perturbation theory, we find that the present results are considerably more accurate than point-charge electrostatic interactions. The mean unsigned error in electrostatics for a large and diverse data set (192 interaction energies) decreases from 9.2 to 3.3 kcal/mol, and the error in the electrostatics for 10 water dimers decreases from 1.7 to 0.5 kcal

  19. Electrostatic effects on hyaluronic acid configuration

    Science.gov (United States)

    Berezney, John; Saleh, Omar

    2015-03-01

    In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.

  20. Electrostatic adhesion testing of electronic metallizations

    Science.gov (United States)

    Yang, H. S.; Brotzen, F. R.; Callahan, D. L.; Dunn, C. F.

    1997-06-01

    A novel technique is developed to measure quantitatively the adhesion strength of metallizations deposited on substrates such as silicon. Electrostatic adhesion testing employs electrostatic forces to generate delaminating stresses in thin metallic films. The interfacial adhesion strength is readily calculated from the electrode geometry and the applied electrostatic field at failure. Unlike other adhesion tests, this technique does not require any mechanical contact and is virtually independent of the plastic deformation of the film. Furthermore, this test provides direct strength measurements as opposed to work or energy of adhesion measurements obtained by the common peel test. The adhesion strengths of several metallizations (Cu, Al) are characterized using the electrostatic technique. The distribution of stress-at-failure data follows Weibull failure statistics. Field emission scanning electron microscopy reveals that the films are delaminated in a microblister-type mode. It is shown that electrostatic adhesion testing is effective in providing quantitative values for the adhesion strengths and failure probabilities of thin-film metallizations.

  1. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  2. Annoyance caused by the sounds of a magnetic levitation train.

    Science.gov (United States)

    Vos, Joos

    2004-04-01

    In a laboratory study, the annoyance caused by the passby sounds from a magnetic levitation (maglev) train was investigated. The listeners were presented with various sound fragments. The task of the listeners was to respond after each presentation to the question: "How annoying would you find the sound in the preceding period if you were exposed to it at home on a regular basis?" The independent variables were (a) the driving speed of the maglev train (varying from 100 to 400 km/h), (b) the outdoor A-weighted sound exposure level (ASEL) of the passbys (varying from 65 to 90 dB), and (c) the simulated outdoor-to-indoor reduction in sound level (windows open or windows closed). As references to the passby sounds from the maglev train (type Transrapid 08), sounds from road traffic (passenger cars and trucks) and more conventional railway (intercity trains) were included for rating also. Four important results were obtained. Provided that the outdoor ASELs were the same, (1) the annoyance was independent of the driving speed of the maglev train, (2) the annoyance caused by the maglev train was considerably higher than that caused by the intercity train, (3) the annoyance caused by the maglev train was hardly different from that caused by road traffic, and (4) the results (1)-(3) held true both for open or closed windows. On the basis of the present results, it might be expected that the sounds are equally annoying if the ASELs of the maglev-train passbys are at least 5 dB lower than those of the intercity train passbys. Consequently, the results of the present experiment do not support application of a railway bonus to the maglev-train sounds.

  3. Studying the field induced breakup of acoustically levitated drops

    Science.gov (United States)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of

  4. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...... polarity, i.e. a pair of electrostatic convective cells....

  5. Electrostatic Stabilization of Graphene in Organic Dispersions.

    Science.gov (United States)

    Rodgers, Andrew N J; Velický, Matěj; Dryfe, Robert A W

    2015-12-08

    The exfoliation of graphite to give graphene dispersions in nonaqueous solvents is an important area with regards to scalable production of graphene in bulk quantities and its ultimate application in devices. Understanding the mechanisms governing the stability of these dispersions is therefore of both scientific interest and technological importance. Herein, we have used addition of an indifferent electrolyte to perturb few-layer graphene dispersions in a nonaqueous solvent (1,2-dichloroethane) as a way to probe the importance of interparticle electrostatic repulsions toward the overall dispersion stability. At a sufficient electrolyte concentration, complete sedimentation of the dispersions occurred over 24 h, and the relationship between dispersed graphene concentration and electrolyte concentration was consistent with a dispersion stabilized by electrostatic repulsions. We also found that an increased oxygen content in the graphite starting material produced dispersions of greater stability, indicating that the extent of oxidation is an important parameter in determining the extent of electrostatic stabilization in nonaqueous graphene dispersions.

  6. The ZS Electrostatic Septa Ion Traps control

    CERN Document Server

    Barlow, R A; Laffin, M; Balhan, B

    2011-01-01

    The SPS is equipped with a North extraction channel to a fixed target beam line. This channel is equipped with an extraction chain that comprises electrostatic and electromagnetic septa that contribute to the extraction process of the proton beam. The electrostatic septa (ZS) are the extraction elements that can cause the most problems during operation, this is mainly due to the combination of high fields and high voltages within the equipment. There are several systems that protect the equipment against the effects of which the 'ion trap system'. The ion trap is a cleaning electrode device and these are placed in the field-free region containing the circulating beam. They remove ions produced by beam interactions within the residual gas molecules. They are powered by power supplies that can output up to -10 kV with a range of -500 µA max. This internal note concerns the electronics and control of the ZS electrostatic septa ion traps.

  7. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency depe...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported.......Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...

  8. Laser spectroscopy with an electrostatic ConeTrap

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, S., E-mail: sam.kelly@postgrad.manchester.ac.uk; Campbell, P. [University of Manchester, Nuclear Physics Group, Schuster Laboratory, Brunswick Street (United Kingdom); Cheal, B., E-mail: Bradley.Cheal@Liverpool.ac.uk [University of Liverpool, Oliver Lodge Laboratory (United Kingdom); Eronen, T.; Geldhof, S.; Jokinen, A.; Moore, I. D.; Penttilä, H.; Pohjalainen, I.; Rinta-Antila, S.; Sonnenschein, V.; Voss, A. [JYFL, University of Jyväskylä (Finland)

    2017-11-15

    A compact electrostatic trap has been designed and installed as part of the recent upgrades to the IGISOL IV facility. The ConeTrap provides an in vacuo optical pumping site for low energy (800 eV) ionic ensembles available for interaction periods of 10-100 ms. At present, 6.7(3) % of injected mass A=98 ions can be trapped, stored for 5 ms, extracted and transported to a laser-ion interaction region. This fraction represents those ions for which no perturbation to total energy or energy spread is observed. Proposed enhancements to the trap are designed to improve the trapping efficiency by up to a factor of 5. Differential pumping and reduction in background pressure below the present 10{sup −6} mbar will extend storage times beyond 100 ms.

  9. The levitation characteristics of the magnetic substances using trapped HTS bulk annuli with various magnetic field distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B., E-mail: kim@ec.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Ikegami, T.; Matsunaga, J.; Fujii, Y. [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Onodera, H. [Japan Science and Technology Agency–Core Research for Evolutional Science and Technology (JST–CREST), Tokyo 102-0076 (Japan)

    2013-11-15

    Highlights: •The spherical solenoid magnet can make a various magnetic field distributions. •We generated a large magnetic gradient at inner space of HTS bulks. •The levitation height of samples was improved by the reapplied field method. •The levitation height depends on the variation rate of magnetic field gradient. -- Abstract: We have been investigating the levitation system without any mechanical contact which is composed of a field-cooled ring-shaped high temperature superconducting (HTS) bulks [1]. In this proposed levitation system, the trapped magnetic field distributions of stacked HTS bulk are very important. In this paper, the spherical solenoid magnet composed of seven solenoid coils with different inner and outer diameters was designed and fabricated as a new magnetic source. The fabricated spherical solenoid magnet can easily make a homogeneous and various magnetic field distributions in inner space of stacked HTS bulk annuli by controlling the emerging currents of each coil. By using this spherical solenoid magnet, we tried to make a large magnetic field gradient in inner space of HTS bulk annuli, and it is very important on the levitation of magnetic substances. In order to improve the levitation properties of magnetic substances with various sizes, the external fields were reapplied to the initially trapped HTS bulk magnets. We could generate a large magnetic field gradient along the axial direction in inner space of HTS bulk annuli, and obtain the improved levitation height of samples by the proposed reapplied field method.

  10. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Science.gov (United States)

    Liu, Mei; Gao, Hong; Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin

    2011-01-01

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm). The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  11. Electrostatic Separation Of Layers In Thermal Insulation

    Science.gov (United States)

    Bhandari, Pradeep

    1995-01-01

    Layers in multilayer insulation charged to keep them separated by electrostatic repulsion, eliminating need for spacer nets. Removal of spacer nets reduces conduction of heat between layers. Insulation in question type used to slow leakage of heat into Dewar flasks containing liquid helium. Proposal originally applied to insulation in cryogenic cooling subsystems of infrared-detector systems in outer space, also appears applicable to small panels of insulation for terrestrial cryogenic equipment, provided layers contained in evacuated spaces and weight of each layer small fraction of electrostatic force upon it.

  12. Histidine in Continuum Electrostatics Protonation State Calculations

    Science.gov (United States)

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  13. Chromosome congression explained by nanoscale electrostatics.

    Science.gov (United States)

    Gagliardi, L John; Shain, Daniel H

    2014-02-24

    Nanoscale electrostatic microtubule disassembly forces between positively charged molecules in kinetochores and negative charges on plus ends of microtubules have been implicated in poleward chromosome motions and may also contribute to antipoleward chromosome movements. We propose that chromosome congression can be understood in terms of antipoleward nanoscale electrostatic microtubule assembly forces between negatively charged microtubule plus ends and like-charged chromosome arms, acting in conjunction with poleward microtubule disassembly forces. Several other aspects of post-attachment prometaphase chromosome motions, as well as metaphase oscillations, are consistently explained within this framework.

  14. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    Science.gov (United States)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  15. Electrostatic collection efficiency in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Romero, A.; Guardiola, J.; Rincon, J. (Univ. of Alcala de Henares, Madrid (Spain))

    1992-01-01

    Fluidized beds of binary mixtures have been used to clean air streams containing dust particles in the size range 4.4 to 14 {mu}m. All beds were composed of glass beads and plastic granules mixed at different proportions. The effect on the electrostatic collection efficiency of a number of variables, including type of collecting mixture, bed height, and gas velocity, was examined. To calculate the single collection efficiency from experimental results, an early model proposed by Clift et al. was used. The electrostatic collection efficiency was determined by subtracting the other individual mechanism efficiencies from the single particle collection efficiency.

  16. Electrostatic control of phospholipid polymorphism.

    Science.gov (United States)

    Tarahovsky, Y S; Arsenault, A L; MacDonald, R C; McIntosh, T J; Epand, R M

    2000-12-01

    A regular progression of polymorphic phase behavior was observed for mixtures of the anionic phospholipid, cardiolipin, and the cationic phospholipid derivative, 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine. As revealed by freeze-fracture electron microscopy and small-angle x-ray diffraction, whereas the two lipids separately assume only lamellar phases, their mixtures exhibit a symmetrical (depending on charge ratio and not polarity) sequence of nonlamellar phases. The inverted hexagonal phase, H(II,) formed from equimolar mixtures of the two lipids, i.e., at net charge neutrality (charge ratio (CR((+/-))) = 1:1). When one type of lipid was in significant excess (CR((+/-)) = 2:1 or CR((+/-)) = 1:2), a bicontinuous cubic structure was observed. These cubic phases were very similar to those sometimes present in cellular organelles that contain cardiolipin. Increasing the excess of cationic or anionic charge to CR((+/-)) = 4:1 or CR((+/-)) = 1:4 led to the appearance of membrane bilayers with numerous interlamellar contacts, i.e., sponge structures. It is evident that interactions between cationic and anionic moieties can influence the packing of polar heads and hence control polymorphic phase transitions. The facile isothermal, polymorphic interconversion of these lipids may have important biological and technical implications.

  17. Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel

    Science.gov (United States)

    Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian

    Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  18. Model based analysis of the drying of a single solution droplet in an ultrasonic levitator

    DEFF Research Database (Denmark)

    Sloth, Jakob; Kiil, Søren; Jensen, Anker

    2006-01-01

    are compared to data for the drying of aqueous solutions of maltodextrin DE 15 and trehalose from experiments conducted using an ultrasonic levitator. Model predictions are in good agreement with the experimental data, indicating that the model describes the most important physical phenomena of the process....

  19. Ultra-flat bismuth films for diamagnetic levitation by template-stripping

    NARCIS (Netherlands)

    Kokorian, J; Engelen, Johannes Bernardus Charles; de Vries, Jeroen; Nazeer, H.; Woldering, L.A.; Abelmann, Leon

    2013-01-01

    In this paper we present a method to deposit thin films of bismuth with sub-nanometer surface roughness for application to diamagnetic levitation. Evaporated films of bismuth have a high surface roughness with peak to peak values in excess of 100 nm and average values on the order of 20 nm. We

  20. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  1. Separation and enrichment of enantiopure from racemic compounds using magnetic levitation.

    Science.gov (United States)

    Yang, Xiaochuan; Wong, Shin Yee; Bwambok, David K; Atkinson, Manza B J; Zhang, Xi; Whitesides, George M; Myerson, Allan S

    2014-07-18

    Crystallization of a solution with high enantiomeric excess can generate a mixture of crystals of the desired enantiomer and the racemic compound. Using a mixture of S-/RS-ibuprofen crystals as a model, we demonstrated that magnetic levitation (MagLev) is a useful technique for analysis, separation and enantioenrichment of chiral/racemic products.

  2. Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.

    Science.gov (United States)

    Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai

    2009-06-01

    In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications.

  3. Modeling of a compliant joint in a Magnetic Levitation System for an endoscopic camera

    NARCIS (Netherlands)

    Simi, M.; Tolou, N.; Valdastri, P.; Herder, J.L.; Menciassi, A.; Dario, P.

    2012-01-01

    A novel compliant Magnetic Levitation System (MLS) for a wired miniature surgical camera robot was designed, modeled and fabricated. The robot is composed of two main parts, head and tail, linked by a compliant beam. The tail module embeds two magnets for anchoring and manual rough translation. The

  4. Noncontact orientation of objects in three-dimensional space using magnetic levitation.

    Science.gov (United States)

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M

    2014-09-09

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.

  5. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Directory of Open Access Journals (Sweden)

    Chen-Guang Huang

    2017-11-01

    Full Text Available During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A − V formulation of magnetoquasistatic Maxwell’s equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  6. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Science.gov (United States)

    Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2017-11-01

    During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A - V formulation of magnetoquasistatic Maxwell's equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  7. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Science.gov (United States)

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro

    2013-04-01

    The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  8. Magnetic levitation using a stack of high temperature superconducting tape annuli

    Science.gov (United States)

    Patel, A.; Hahn, S.; Voccio, J.; Baskys, A.; Hopkins, S. C.; Glowacki, B. A.

    2017-02-01

    Stacks of large width superconducting tape can carry persistent currents over similar length scales to bulk superconductors, therefore giving them potential for trapped field magnets and magnetic levitation. 46 mm wide high temperature superconducting tape has previously been cut into square annuli to create a 3.5 T persistent mode magnet. The same tape pieces were used here to form a composite bulk hollow cylinder with an inner bore of 26 mm. Magnetic levitation was achieved by field cooling with a pair of rare-earth magnets. This paper reports the axial levitation force properties of the stack of annuli, showing that the same axial forces expected for a uniform bulk cylinder of infinite J c can be generated at 20 K. Levitation forces up to 550 N were measured between the rare-earth magnets and stack. Finite element modelling in COMSOL Multiphysics using the H-formulation was also performed including a full critical state model for induced currents, with temperature and field dependent properties as well as the influence of the ferromagnetic substrate which enhances the force. Spark erosion was used for the first time to machine the stack of tapes proving that large stacks can be easily machined to high geometric tolerance. The stack geometry tested is a possible candidate for a rotary superconducting bearing.

  9. Noncontact orientation of objects in three-dimensional space using magnetic levitation

    Science.gov (United States)

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K.; Soh, Siowling; Whitesides, George M.

    2014-01-01

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136

  10. Mechatronic Design of an Electromagnetically Levitated Linear Positioning System using Novel Multi-DoF Actuators

    NARCIS (Netherlands)

    Laro, D.A.H.

    2009-01-01

    The development of contactless electromagnetically levitated positioning systems is stimulated by the demand for vacuum compatible production machines. These vacuum compatible machines are used e.g. in the development of faster semiconductor chips and optical discs with larger data capacity. A novel

  11. Automatic Tuning of PID Controller for a 1-D Levitation System Using a Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Gerulf K.m.

    2006-01-01

    The automatic PID control design for a onedimensional magnetic levitation system is investigated. The PID controller is automatically tuned using the non-dominated sorting genetic algorithm (NSGA-II) based on a nonlinear system model. The developed controller is digitally implemented and tested...

  12. Automatic gas-levitation system for vacuum deposition of laser-fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, C.W.; Cameron, G.R.; Krenik, R.M.; Crane, J.K.

    1981-09-08

    An improved simple system has been developed to gas-levitate microspheres during vacuum-deposition processes. The automatic operation relies on two effects: a lateral stabilizing force provided by a centering-ring; and an automatically incremented gas metering system to offset weight increases during coating.

  13. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Science.gov (United States)

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  14. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  15. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2002-01-01

    Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously.

  16. Influence of trapped field on the levitation force of SmBCO bulk superconductor

    Science.gov (United States)

    Wang, Ya-Nan; Yang, Wan-Min; Yang, Peng-Tao; Zhang, Chun-Yan; Chen, Jun-Liang; Zhang, Li-Juan; Chen, Li

    2017-11-01

    High quality single domain SmBCO bulks superconductor with diameter in 20 mm and thickness in 10 mm were fabricated by the RE + 011 TSIG method in air. The effect of applied magnetic field (Ba) on the trapped field (Btr) and Btr dependence of levitation forces between a permanent magnet (20 mm in diameter, B = 0.5 T) and the SmBCO bulk have been investigated. The results show that the maximum trapped field (Btr,max) of the sample with 0.5 wt% CeO2 increases from 0.17 T to 0.8 T with the increasing of Ba from 0.2 T to 1.4 T, and the fitting equation is achieved, Btr,max is related to Ba: Btr , max = 0.613 × Ba0.688, and the maximum levitation force shows a complicated variation trend, it increases from 49.4 N to 74.9 N with the increasing of Btr,max from 0 T to 0.43 T, and then decreases from 74.9 N to 69.5 N with the increasing of Btr,max from 0.43 T to 0.58 T, and then increases from 69.5 N to 86.9 N with the increasing of Btr,max from 0.58 T to 0.67 T. This is a very new and first discovered phenomenon on Btr dependence of levitation force compared with the reported results for bulk superconductor. The levitation forces of other two samples were measured and also show a complicated variation trend. And a speculative cause is considered. These results provided a new way which can greatly enhance and control the levitation force by adjusting the trapped field of the sample for practical applications.

  17. RNA topology remolds electrostatic stabilization of viruses

    NARCIS (Netherlands)

    Erdemci-Tandogan, Gonca; Wagner, Jef; Van Der Schoot, Paul; Podgornik, Rudolf; Zandi, Roya

    2014-01-01

    Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell: the capsid. Spontaneous coassembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall.

  18. Electrostatic clamp manufactured by novel method

    NARCIS (Netherlands)

    Sligte, E. te; Storm, A.; Koster, N.B.

    2011-01-01

    Electrostatic clamps (ESCs), used in reticle and wafer handling, are presently manufactured using glass bonding and polishing technologies. We present a patented alternative concept to this process, relying on coating and etching processes rather than bonding. We manufactured a first prototype clamp

  19. Collapse of Electrostatic Waves in Magnetoplasmas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens

    1984-01-01

    The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....

  20. Biodegradability of electrostatic photocopier toners | Odokuma ...

    African Journals Online (AJOL)

    The biodegradability of two of the most popular brands of electrostatic photocopier toners (Minolta-Mt-Toner II and Sharp-Katun) in the Niger Delta and their reused forms was investigated. Heterotrophic soil microflora from the rain forest soil in the Niger Delta served as seed for biodegradation tests. The static shake flask ...

  1. Electrostatics of a Family of Conducting Toroids

    Science.gov (United States)

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  2. Electrostatic MEMS devices with high reliability

    Science.gov (United States)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  3. Electrostatic sampling of trace DNA from clothing.

    Science.gov (United States)

    Zieger, Martin; Defaux, Priscille Merciani; Utz, Silvia

    2016-05-01

    During acts of physical aggression, offenders frequently come into contact with clothes of the victim, thereby leaving traces of DNA-bearing biological material on the garments. Since tape-lifting and swabbing, the currently established methods for non-destructive trace DNA sampling from clothing, both have their shortcomings in collection efficiency and handling, we thought about a new collection method for these challenging samples. Testing two readily available electrostatic devices for their potential to sample biological material from garments made of different fabrics, we found one of them, the electrostatic dust print lifter (DPL), to perform comparable to well-established sampling with wet cotton swabs. In simulated aggression scenarios, we had the same success rate for the establishment of single aggressor profiles, suitable for database submission, with both the DPL and wet swabbing. However, we lost a substantial amount of information with electrostatic sampling, since almost no mixed aggressor-victim profiles suitable for database entry could be established, compared to conventional swabbing. This study serves as a proof of principle for electrostatic DNA sampling from items of clothing. The technique still requires optimization before it might be used in real casework. But we are confident that in the future it could be an efficient and convenient contribution to the toolbox of forensic practitioners.

  4. OPERATION AND MAINTENANCE MANUAL FOR ELECTROSTATIC PRECIPITATORS

    Science.gov (United States)

    The manual focuses on the operation and maintenance (O/M) of typical electrostatic precipitators (ESPs). It summarizes available information on theory and design in sufficient detail to provide a basic background O/M portions of the manual. Although O/M-related air pollution prob...

  5. Electrostatic model of semiconductor nanoparticles trapped in ...

    Indian Academy of Sciences (India)

    A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting ... In the single charge configuration, the dielectric constant of the medium has been identified as the selection criteria for hosting the nanoparticles.

  6. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    Science.gov (United States)

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.

  7. Surface micromachined linear electrostatic stepper motor

    NARCIS (Netherlands)

    Tas, Niels Roelof; Sonnenberg, A.H.; Sander, A.F.M.; Sander, A.F.M.; Elwenspoek, Michael Curt

    1997-01-01

    A linear electrostatic stepper motor has been designed and fabricated in a single mask surface micromachining process. It consists of two drive units that alternately generate a step to move the shuttle. The friction and adhesion in the clamps has been measured. A friction coefficient of 0.8±0.3 has

  8. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  9. Electrostatic fuel conditioning of internal combustion engines

    Science.gov (United States)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  10. Electrostatic model of semiconductor nanoparticles trapped in ...

    Indian Academy of Sciences (India)

    Abstract. A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting polymer electrolytes. The effective mass approximation has been applied to the system. In the single charge configuration, the dielectric ...

  11. Fabrication and characterization of an electrostatic contraction beams micromotor

    NARCIS (Netherlands)

    Sarajlic, Edin; Berenschot, Johan W.; Tas, Niels Roelof; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2006-01-01

    We report on fabrication and experimental characterization of an electrostatic contraction beams motor that exhibits both reliable operation and high performance haracteristics. This electrostatic linear stepper micromotor is fabricated in a single polysilicon layer combining vertical trench

  12. Interaction of particles with complex electrostatic structures and 3D clusters

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, Tetyana

    2007-10-16

    Particles of micrometer size externally introduced in plasmas usually find their positions of levitation in the plasma sheath, where the gravity force is compensated by the strong electric field. Here due to electrostatic interaction they form different structures, which are interesting objects for the investigation of strongly coupled systems and critical phenomena. Because of the low damping (e.g. in comparison to colloidal suspension) it is possible to measure the dynamics up to the relevant highest frequency (e.g. Einstein frequency) at the most elementary level of single particle motion. The task of this work was to analyze the three dimensional structure, dynamical processes and the limit of the cooperative behavior in small plasma crystals. In addition to the study of the systems formed, the immersed particles themselves may be used for diagnostics of the plasma environment: estimation of parameters or monitoring of the processes inside plasma. The laboratory experiments are performed in two radio-frequency (RF) plasma reactors with parallel plate electrodes, where the lower electrode is a so-called 'adaptive electrode'. This electrode is segmented into 57 small 'pixels' independently driven in DC (direct current) and/or RF voltage. When RF voltage is applied to one of these pixels, a bright localized glow, 'secondary plasma ball', appears above. Three dimensional dust crystals with less than 100 particles are formed inside this 'plasma ball' - the ideal conditions for the investigation of the transition from cluster systems to collective systems. The investigation of the particle interactions in crystals is performed with an optical diagnostic, which allows determination of all three particle coordinates simultaneously with time resolution of 0.04 sec. The experimental results are: 1. The binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part, which is

  13. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  14. Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, Anton, E-mail: tkacha@rpi.edu; Lu, James J.-Q.

    2015-07-01

    This paper presents a directed self-assembly (DSA) approach for assembling small electronic components, such as semiconductor dies, into sparse 2D arrays using diamagnetic levitation. The dies attached to a diamagnetic layer can be levitated at a room temperature over a stage made of magnets arranged in a checkerboard pattern. By selecting a proper die design, levitation height, and vibration pattern of the magnetic stage we assemble the dies into a regular 2D array with a specific lateral and vertical orientation of the dies. The assembled dies are transferred to a receiving substrate using capillary force. - Highlights: • Self-assembly of semiconductor dies into arrays using diamagnetic levitation. • Control over the die orientation in vertical and lateral dimensions. • Simulation shows good scalability of assembly time with the number of dies. • Suitable for assembly of LED panels, displays and microcell photovoltaics.

  15. PREFACE: 13th International Conference on Electrostatics

    Science.gov (United States)

    Taylor, D. Martin

    2011-06-01

    Electrostatics 2011 was held in the city of Bangor which is located in North West Wales in an area of outstanding natural beauty close to the Snowdonia mountain range and bordering the Irish Sea. The history of the area goes back into the mists of times, but a continuous technological thread can be traced from the stone- and bronze-age craftsmen, who inhabited the area several thousand years ago, via the civil engineering and fortifications of the Romans and Edward I of England, through Marconi's long-wave trans-Atlantic transmitter near Caernarfon to the conference host. The School of Electronic Engineering at Bangor University has contributed much to the discipline of Electrostatics not only in teaching and research but also in supporting industry. It was a great pleasure for me, therefore, to have the pleasure of welcoming the world's experts in Electrostatics to Bangor in April 2011. In my preface to the Proceedings of Electrostatics 1999, I reported that almost 90 papers were presented. Interestingly, a similar number were presented in 2011 testifying to the importance and endurance of the subject. The all-embracing nature of electrostatics is captured in the pictorial depiction used for the conference logo: a hand-held plasma ball with its close link to gaseous discharges and the superimposed Antarctic aurora highlighting the featured conference themes of atmospheric, planetary and environmental electrostatics. Leading these themes were three invited contributions, the first by Giles Harrison who delivered the Bill Bright Memorial Lecture 'Fair weather atmospheric electricity', Carlos Calle on 'The electrostatic environments of Mars and the Moon' and Istvan Berta on 'Lightning protection - challenges, solutions and questionable steps in the 21st century'. Leading other key sessions were invited papers by Atsushi Ohsawa on 'Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry' and Antonio

  16. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  17. Vibration Control of the Hi-Tc Superconducting Levitation Synchronization Motor(18th MAGDA Conference)

    OpenAIRE

    村上, 岩範; 小林, 祐介; 關口, 隆弘; 安藤, 嘉則; 山田, 功; Iwanori, MURAKAMI; Yusuke, KOBAYASHI; Takahiro, SEKIGUCHI; Yoshinori, ANDO; Kou, YAMADA; 群馬大学; 群馬大学院; 群馬大学院; 群馬大学; 群馬大学

    2010-01-01

    In this research, we propose the High-Tc superconducting levitation synchronization motor that is able to do the levitation and the vibration suppression with a single permanent magnet. The center of gravity position is low because this rotor is a disk structure, and the pitching doesn't occur easily. We measure the whirling vibration displacement of the rotor under the drive with the laser displacement meter. Then, we differentiate this displacement and calculate the whirling velocity. When ...

  18. Investigation on the levitation force behaviour of malic acid added bulk MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Savaskan, B., E-mail: burcusavaskan@hotmail.com [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830 Of, Trabzon (Turkey); Taylan Koparan, E. [Department of Primary Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300 Zonguldak (Turkey); Celik, S. [Department of Physics, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100 Rize (Turkey); Ozturk, K.; Yanmaz, E. [Department of Physics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-07-15

    Highlights: • The effects of malic acid addition on the levitation force properties of bulk MgB{sub 2} has been first time investigated and reported. • The malic acid adding has a positive impact on the levitation properties. • 4 wt% and 6 wt% malic acid added samples exhibited a higher vertical and lateral force than pure sample. - Abstract: The effects of malic acid addition (from 0 to 15 wt% of the total MgB{sub 2}) on the levitation force properties of bulk MgB{sub 2} have been investigated. All samples were prepared from magnesium powder, amorphous boron powder, malic acid (C{sub 4}H{sub 6}O{sub 5}) and toluene (C{sub 7}H{sub 8}) by using two-step solid state reaction method. Vertical and lateral levitation force measurements that are under both zero-field-cooled (ZFC) and field-cooled (FC) regimes were carried out at different temperatures of 24, 28 and 32 K for samples with various adding level. It was found that the reasonable malic acid adding has a positive impact on the levitation properties. At 24 K and 28 K, the 4 wt% and 6 wt% malic acid added samples exhibits a higher levitation force than pure sample. In the case of the optimally additive 4 wt% sample, the maximum levitation force corresponds to 18.60 N, whereas the pure sample shows 16.95 N at 24 K for ZFC regime. In this study the enhancing effect of malic acid adding on the levitation force properties of MgB{sub 2} has been first time investigated and reported.

  19. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster.

    Science.gov (United States)

    Herranz, Raul; Larkin, Oliver J; Dijkstra, Camelia E; Hill, Richard J A; Anthony, Paul; Davey, Michael R; Eaves, Laurence; van Loon, Jack J W A; Medina, F Javier; Marco, Roberto

    2012-02-01

    Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM). We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.

  20. Antimicrobial effect of an ultrasonic levitation washer disinfector with silver electrolysis and ozone oxidation on methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Tamai, Mariko; Matsushita, Shigeto; Miyanohara, Hiroaki; Imuta, Naoko; Ikeda, Ryuji; Kawai, Kazuhiro; Nishi, Junichiro; Sakamoto, Akihiro; Shigihara, Takanori; Kanekura, Takuro

    2013-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has rapidly emerged as a cause of severe and intractable skin infection. At present, there are no effective topical treatments, and infection or colonization by MRSA of the skin raises serious medical problems. We developed an ultrasonic levitation washer that generates silver ions (Ag(+)) and ozone (O3) to clean and sterilize medical devices. We report the effect of ultrasonic levitation (levitation) with Ag(+) and O3 on MRSA in vitro and in vivo. Antimicrobial effect against six MRSA strains of all agr types was examined under three in vitro conditions; cells floating in a water tank, cells infiltrating-, and cells forming a biofilm on an atelocollagen membrane. In the in vivo studies, we assayed the number of MRSA organisms that survived treatment on murine skin ulcers and evaluated the ulcer size. Levitation with Ag(+) dramatically decreased the survival of MRSA floating in a water tank. Levitation with Ag(+) and O3 significantly decreased the viability of MRSA that had infiltrated or formed a biofilm on atelocollagen membranes regardless of the level of biofilm production. In vivo studies showed that the number of MRSA on murine skin ulcers was significantly decreased when 15-min treatment was performed for 7 consecutive days and that the ulcer size was significantly decreased after the seventh treatment course. Levitation with Ag(+) and O3 may be a valuable tool for treating MRSA infestation of the skin and for accelerating wound healing. © 2013 Japanese Dermatological Association.

  1. Bistable dynamics of a levitated nanoparticle (Presentation Recording)

    Science.gov (United States)

    Ricci, Francesco; Spasenovic, M.; Rica, Raúl A.; Novotny, Lukas; Quidant, Romain

    2015-08-01

    Bistable systems are ubiquitous in nature. Classical examples in chemistry and biology include relaxation kinetics in chemical reactions [1] and stochastic resonance processes such as neuron firing [2,3]. Likewise, bistable systems play a key role in signal processing and information handling at the nanoscale, giving rise to intriguing applications such as optical switches [4], coherent signal amplification [5,6] and weak forces detection [5]. The interest and applicability of bistable systems are intimately connected with the complexity of their dynamics, typically due to the presence of a large number of parameters and nonlinearities. Appropriate modeling is therefore challenging. Alternatively, the possibility to experimentally recreate bistable systems in a clean and controlled way has recently become very appealing, but elusive and complicated. With this aim, we combined optical tweezers with a novel active feedback-cooling scheme to develop a well-defined opto-mechanical platform reaching unprecedented performances in terms of Q-factor, frequency stability and force sensitivity [7,8]. Our experimental system consists of a single nanoparticle levitated in high vacuum with optical tweezers, which behaves as a non-linear (Duffing) oscillator under appropriate conditions. Here, we prove it to be an ideal tool for a deep study of bistability. We demonstrate bistability of the nanoparticle by noise activated switching between two oscillation states, discussing our results in terms of a double-well potential model. We also show the flexibility of our system in shaping the potential at will, in order to meet the conditions prescribed by any bistable system that could therefore then be simulated with our setup. References [1] T. Amemiya, T. Ohmori, M. Nakaiwa, T. Yamamoto, and T. Yamaguchi, "Modeling of Nonlinear Chemical Reaction Systems and Two-Parameter Stochastic Resonance," J. Biol. Phys. 25 (1999) 73 [2] F. Moss, L. M. Ward, and W. G. Sannita, "Stochastic

  2. Highly efficient electrocaloric cooling with electrostatic actuation

    Science.gov (United States)

    Ma, Rujun; Zhang, Ziyang; Tong, Kwing; Huber, David; Kornbluh, Roy; Ju, Yongho Sungtaek; Pei, Qibing

    2017-09-01

    Solid-state refrigeration offers potential advantages over traditional cooling systems, but few devices offer high specific cooling power with a high coefficient of performance (COP) and the ability to be applied directly to surfaces. We developed a cooling device with a high intrinsic thermodynamic efficiency using a flexible electrocaloric (EC) polymer film and an electrostatic actuation mechanism. Reversible electrostatic forces reduce parasitic power consumption and allow efficient heat transfer through good thermal contacts with the heat source or heat sink. The EC device produced a specific cooling power of 2.8 watts per gram and a COP of 13. The new cooling device is more efficient and compact than existing surface-conformable solid-state cooling technologies, opening a path to using the technology for a variety of practical applications.

  3. Contemporary NMR Studies of Protein Electrostatics.

    Science.gov (United States)

    Hass, Mathias A S; Mulder, Frans A A

    2015-01-01

    Electrostatics play an important role in many aspects of protein chemistry. However, the accurate determination of side chain proton affinity in proteins by experiment and theory remains challenging. In recent years the field of nuclear magnetic resonance spectroscopy has advanced the way that protonation states are measured, allowing researchers to examine electrostatic interactions at an unprecedented level of detail and accuracy. Experiments are now in place that follow pH-dependent (13)C and (15)N chemical shifts as spatially close as possible to the sites of protonation, allowing all titratable amino acid side chains to be probed sequence specifically. The strong and telling response of carefully selected reporter nuclei allows individual titration events to be monitored. At the same time, improved frameworks allow researchers to model multiple coupled protonation equilibria and to identify the underlying pH-dependent contributions to the chemical shifts.

  4. Electrostatic demonstration of free-fall weightlessness

    Science.gov (United States)

    Balukovic, Jasmina; Slisko, Josip; Corona Cruz, Adrian

    2015-05-01

    The phenomena of free-fall weightlessness have been demonstrated to students for many years in a number of different ways. The essential basis of all these demonstrations is the fact that in free-falling, gravitationally accelerated systems, the weight force and weight-related forces (for example, friction and hydrostatic forces) disappear. In this article, an original electrostatic demonstration of weightlessness is presented. A charged balloon fixed at the opening of a plastic container cannot lift a light styrofoam sphere sitting on the bottom when the container is at rest. However, while the system is in free-fall, the sphere becomes weightless and the charged balloon is able to lift it electrostatically.

  5. Proton emission with a screened electrostatic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Budaca, R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Academy of Romanian Scientists, Bucharest (Romania); Budaca, A.I. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2017-08-15

    Half-lives of proton emission for Z ≥ 51 nuclei are calculated within a simple analytical model based on the WKB approximation for the barrier penetration probability which includes the centrifugal and overlapping effects besides the electrostatic repulsion. The model has a single free parameter associated to a Hulthen potential which emulates a Coulomb electrostatic interaction only at short distance. The agreement with experimental data is very good for most of the considered nuclei. Theoretical predictions are made for few cases with uncertain emitting state configuration or incomplete decay information. The model's assignment of the proton orbital momentum is in agreement with the differentiation of the experimental data by orbital momentum values realized with a newly introduced correlation formula. (orig.)

  6. Great Sumatra Earthquake registers on electrostatic sensor

    Science.gov (United States)

    Röder, Helmut; Schuhmann, Wolfram; Büttner, Ralf; Zimanowski, Bernard; Braun, Thomas; Boschi, Enzo

    Strong electrical signals that correspond to the Mw = 9.3 earthquake of 26 December 2004, whichoccurred at 0058:50.7 UTC off the west coast of northern Sumatra, Indonesia, were recorded by an electrostatic sensor (a device that detects short-term variations in Earth's electrostatic field) at a seismic station in Italy, which had been installed to study the influence of local earthquakes on a new landslide monitoring system.Electrical signals arrived at the station practically instantaneously and were detected up to several hours before the onset of the Sumatra earthquake (Figure 1) as well as before local quakes. The corresponding seismic signals (p-waves) arrived 740 seconds after the start of the earthquake. Because the electrical signals travel at the speed of light, electrical monitoring for the global detection of very strong earthquakes could be an important tool in significantly increasing the hazard alert window.

  7. RFID reader immunity test against electrostatic discharge

    Directory of Open Access Journals (Sweden)

    Pospisilik Martin

    2016-01-01

    Full Text Available This paper provides a description of an immunity test against the electrostatic discharge according to the standard EN 61000-4-2 that was applied to an RFID reader. The RFID reader was primarily developed for access systems, employing the on-board recognition of the RFID tags. The results obtained by the test are described hereby as well as the discussion on the security of this solution. The results of this experiment are beneficial for the developers of RFID devices, as these devices are endangered by the electrostatic discharge brought by their users. The hereby described results also shown a security hole in a simple access system based on the RFID technology. Details can be found in the paper.

  8. Aerosol Sampling Bias from Differential Electrostatic Charge and Particle Size

    Science.gov (United States)

    Jayjock, Michael Anthony

    Lack of reliable epidemiological data on long term health effects of aerosols is due in part to inadequacy of sampling procedures and the attendant doubt regarding the validity of the concentrations measured. Differential particle size has been widely accepted and studied as a major potential biasing effect in the sampling of such aerosols. However, relatively little has been done to study the effect of electrostatic particle charge on aerosol sampling. The objective of this research was to investigate the possible biasing effects of differential electrostatic charge, particle size and their interaction on the sampling accuracy of standard aerosol measuring methodologies. Field studies were first conducted to determine the levels and variability of aerosol particle size and charge at two manufacturing facilities making acrylic powder. The field work showed that the particle mass median aerodynamic diameter (MMAD) varied by almost an order of magnitude (4-34 microns) while the aerosol surface charge was relatively stable (0.6-0.9 micro coulombs/m('2)). The second part of this work was a series of laboratory experiments in which aerosol charge and MMAD were manipulated in a 2('n) factorial design with the percentage of sampling bias for various standard methodologies as the dependent variable. The experiments used the same friable acrylic powder studied in the field work plus two size populations of ground quartz as a nonfriable control. Despite some ill conditioning of the independent variables due to experimental difficulties, statistical analysis has shown aerosol charge (at levels comparable to those measured in workroom air) is capable of having a significant biasing effect. Physical models consistent with the sampling data indicate that the level and bipolarity of the aerosol charge are determining factors in the extent and direction of the bias.

  9. RNA topology remolds electrostatic stabilization of viruses

    OpenAIRE

    Erdemci-Tandogan, G; Wagner, J.; Schoot, van der, PPAM Paul; Podgornik, R.; Zandi, R

    2013-01-01

    Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell: the capsid. Spontaneous coassembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall. Using field theoretic formulation we show that the inherently branched RNA secondary structure allows viruses to maximize the amount of encapsulated genome and make assembly more efficient, allowing v...

  10. Specific Electrostatic Molecular Recognition in Water

    DEFF Research Database (Denmark)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne

    2016-01-01

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide...... simulations binding also seemed to involve three tightly bound water molecules in the interface between the binding partners. Binding constants in the submicromolar range, useful for biomolecular adhesion and in nanostructure design, were measured....

  11. Airborne particle monitoring by electrostatic precipitation

    Science.gov (United States)

    Robinson, J. C.; Stoneback, I. T.

    1977-01-01

    For qualitative analysis of atmospheric particulates by microscopy, the sampling device should preserve the particles in the state existing at the moment of capture. A collector is described that uses electrostatic precipitation to capture and disperse specimens on various substrates for direct insertion into microscopes. Sampling runs in various atmospheres are described. Micrographs are presented to show particle morphology and distribution on the substrates. Chemical identification by X-ray energy probe and electron diffraction is illustrated.

  12. Low-Shear Microencapsulation and Electrostatic Coating

    Science.gov (United States)

    Morrison, Dennis R.; Mosier, Benjamin

    2005-01-01

    A report presents additional information on the topic of a microencapsulation electrostatic processing system. Information in the report includes micrographs of some microcapsules, a set of diagrams that schematically depict the steps of an encapsulation process, and brief descriptions of (1) alternative versions of the present encapsulation processes, (2) advantages of the present microencapsulation processes over prior microencapsulation processes, and (3) unique and advantageous features of microcapsules produced by the present processes.

  13. Electrostatically actuated torsional resonant sensors and switches

    KAUST Repository

    Younis, Mohammad I.

    2016-12-29

    Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular agent having a mass above a predefined level. In various embodiments, the beam structure may be different types of resonant structures that is at least partially coated or layered with a selective material.

  14. Implications of electrostatic potentials on ribosomal proteins.

    Science.gov (United States)

    Kliber, J S; Hoa, G H; Douzou, P; Graffe, M; Grunberg-Manago, M

    1976-01-01

    Potentiometric studies of ribosomal particles 30S, 50S, and 70S, were designed to investigate possible implications of the electrostatic potentials developed by the 16S and 23S rRNA fractions. Release of protons and proton titrations of these ribosomal fractions were examined as a function of Mg2+ and K+ concentrations. The effects of these cations fit the polyelectrolyte theory remarkably well and are discussed accordingly. PMID:12498

  15. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    release: distribution unlimited. PA#16490 Air Force Research Laboratory Collisionless Electrostatic Shock Modeling and Simulation Daniel W. Crews In-Space... Model • Simulation Results and Verification • Future Work 3Distribution A. Approved for public release: distribution unlimited. PA#16490 Background... model problem for simulation code validation. What’s the Point? 5Distribution A. Approved for public release: distribution unlimited. PA#16490 The

  16. Nonlinear Dynamics of Electrostatically Actuated MEMS Arches

    KAUST Repository

    Al Hennawi, Qais M.

    2015-05-01

    In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using a multi- mode Galarkin Reduced Order Model (ROM). We investigate the static response of the arch experimentally where we show several jumps due to the snap-through instability. Experimentally, a case study of in-plane silicon micromachined arch is studied and its mechanical behavior is measured using optical techniques. We develop an algorithm to extract various parameters that are needed to model the arch, such as the induced axial force, the modulus of elasticity, and the initially induced initial rise. After that, we excite the arch by a DC electrostatic force superimposed to an AC harmonic load. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Then, we excite the arch by an electric load of two AC frequency components, where we report a combination resonance of the summed type. Agreement is reported among the theoretical and experimental work.

  17. SPARCLE: Electrostatic Tool for Lunar Dust Control

    Science.gov (United States)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Cheung, C. Y.; Keller, J. F.; Moore, M.; Calle, C. I.

    2009-03-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the dust which could compromise performance and to collect dust for characterization. Solving the dust problem is essential before we return to the Moon. During the Apollo missions, the discovery was made that regolith fines, or dust, behaved like abrasive velcro, coating surfaces, clogging mechanisms, and making movement progressively more difficult as it was mechanically stirred up during surface operations, and abrading surfaces, including spacesuits, when attempts were made to remove it manually. In addition, some of the astronauts experienced breathing difficulties when exposed to dust that got into the crew compartment. The successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Here we will describe the surface properties of dust particles, the basis for their behavior, and an electrostatically-based approach and methodology for addressing this issue confirmed by our preliminary results. Our device concept utilizes a focused electron beam to control the electrostatic potential of the surface. A plate of the opposite potential is then used to induce dust migration in the presence of an electrical field. Our goal is a compact device of harness the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  18. Biomolecular electrostatics and solvation: a computational perspective.

    Science.gov (United States)

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G; Schnieders, Michael J; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A

    2012-11-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.

  19. Study on the characteristics of magnetic levitation for permanent magnets and ferromagnetic materials with various sizes using stacked HTS bulk annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B., E-mail: kim@elec.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Matsunaga, J.; Doi, A.; Ikegami, T. [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Onodera, H. [JST-CREST, K’s Gobancho 6F, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2013-01-15

    Highlights: ► We achieved the stable levitation of irons by magnetized HTS bulk annuli. ► The relationship between magnetized field and sample size was cleared. ► The iron samples smaller than 1 mm diameter could not levitate stably. ► The spherical solenoid magnet was fabricated to levitate small iron samples. -- Abstract: We achieved stable levitation of cylindrical permanent magnets and irons using stacked ring-shaped high temperature superconducting (HTS) bulks with 20 mm ID, 60 mm OD and 50 mm height, and those were magnetized by field cooling method. The levitation characteristics of permanent magnets and iron samples located in the inner space of that levitation system were investigated experimentally. Iron samples with needle-shape and smaller than 1 mm diameter could not levitate stably. However, we found that the high strength of magnetized field was not necessary to levitate small needle-shaped irons. In order to levitate them, we need a uniform magnetic field in radial direction, so, a spherical solenoid magnet that can easily make a homogeneous magnetic field in inner space of HTS bulk annuli was developed. The spherical solenoid magnet, composed of seven solenoid coils with different inner and outer diameters, was designed by an electromagnetic analysis and fabricated.

  20. Stable Levitation System for a High Speed Rotating Shaft Levitated by a High Temperature Superconductor and Method for Passing through Critical Speeds by Using Rotating Magnetic Damper

    OpenAIRE

    長屋, 幸助; 林, 乃生幸; 大関, 健一郎

    2000-01-01

    This article presents a new levitation technique, which uses a small superconductor and a set of permanent magnets. In the system, a small superconductor is connected to the bottom of the vertical shaft. The gravity force and axial vibration force are supported by the superconductor. A circular permanent magnet is attched to the top of the shaft, and the other circular permanent magnet lies at the frame. The N-pole of one of the magnets faces to the S-pole of the other magnet, so a drag force...

  1. When enthusiasm allows to take off. Levitation accessible to everybody; Quand l'enthousiasme fait decoller. La levitation a la portee de tous

    Energy Technology Data Exchange (ETDEWEB)

    Lentin, J.P.

    2002-12-01

    Aluminium paper, wood sticks and a high voltage DC power supply are enough to make a 'lifter' levitate. This few grams aircraft is equivalent to an asymmetrical capacitor comprising an upper small electrode (a thin copper wire) and a lower large electrode (a sheet of aluminium paper) separated by an insulating medium (the air). When the current is switched on, the lifter takes off thanks to the Biefeld-Brown electro-kinetic effect which remains physically unexplained. This article presents the lifters built by their inventor, J.P. Naudin, from France, and the possible applications of the Biefeld-Brown effect in space propulsion. (J.S.)

  2. Development of coaxial speaker-like non-contact electrostatic sensor for aviation engine exhaust electrostatic character research

    Directory of Open Access Journals (Sweden)

    Du Zhaoheng

    2015-01-01

    Full Text Available Electrostatic sensor is the most important equipment in aero-engine exhaust electrostatic character research. By comparing a variety of sensor test programs, the coaxial speaker-like noncontact electrostatic sensor program is proposed. Numerical simulation analysis indicates the electric field distribution of electrostatic sensor, the influence principle of gap width, outer diameter, center diameter, angle and other factors on the sensor capacitance values which identify the key indicators of electrostatic sensor. The experiment test shows that the simulation analysis is in good agreement with the experimental results.

  3. Electron spin control and spin-libration coupling of a levitated nanodiamond

    Science.gov (United States)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  4. Design of a 2-DOF Control and Disturbance Estimator for a Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A. Pati

    2017-02-01

    Full Text Available This work proposes a systematic two-degree freedom control scheme to improve the reference input tracking and load disturbance rejection for an unstable magnetic levitation system. The proposed control strategy is a two-step design process. Firstly, a proportional derivative controller is introduced purposely to get the desired set-point response of the magnetic levitation system and then, an integral square error (ISE performance specification is used for designing a set-point tracking controller. Secondly, a disturbance estimator is designed using the desired closed loop complimentary sensitivity function for the rejection of load disturbances. This leads to the decoupling of the nominal set-point response from the load disturbance response similar to an open loop control manner. Thus, it is convenient to optimize both controllers simultaneously as well as separately. The effectiveness of the proposed control strategy is validated through simulation.

  5. High Force Magnetic Levitation Using Magnetized Superconducting Bulks as a Field Source for Bearing Applications

    Science.gov (United States)

    Patel, A.; Giunchi, G.; Albisetti, A. Figini; Shi, Y.; Hopkins, S. C.; Palka, R.; Cardwell, D. A.; Glowacki, B. A.

    The ability of high temperature superconducting bulks to trap magnetic fields of several tesla allows them to generate very high levitation force. This paper reports the development of a bulk-bulk superconducting rotary bearing design which uses superconducting bulks on both the rotor and the stator. An evaluation is made of the effectiveness of pulsed fields for magnetizing bulks. Modeling of the bulks using the perfectly trapped flux model is also reported to assess the limits of the bearing design. The results demonstrate the feasibility of a (RE)BCO-MgB2 bulk bearing capable of force densities of the order of 100N/cm2. The design and construction of a unique system capable of magnetizing a 25 mm (RE)BCO bulk and measuring levitation force between this bulk and a coaxial MgB2 hollow cylinder is outlined.

  6. Optimization of levitation and guidance forces in a superconducting Maglev system

    Science.gov (United States)

    Yildizer, Irfan; Cansiz, Ahmet; Ozturk, Kemal

    2016-09-01

    Optimization of the levitation for superconducting Maglev systems requires effective use of vertical and guidance forces during the operation. In this respect the levitation and guidance forces in terms of various permanent magnet array configurations are analyzed. The arrangements of permanent magnet arrays interacting with the superconductor are configured for the purpose of increasing the magnetic flux density. According to configurations, modeling the interaction forces between the permanent magnet and the superconductor are established in terms of the frozen image model. The model is complemented with the analytical calculations and provides a reasonable agreement with the experiments. The agreement of the analytical calculation associated with the frozen image model indicates a strong case to establish an optimization, in which provides preliminary analysis before constructing more complex Maglev system.

  7. Measurement and calculation of levitation forces between magnets and granular superconductors

    Science.gov (United States)

    Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.

    1995-01-01

    Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.

  8. Design of a Low-Cost Air Levitation System for Teaching Control Engineering

    Directory of Open Access Journals (Sweden)

    Jesus Chacon

    2017-10-01

    Full Text Available Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system’s nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab.

  9. A rotational traveling wave based levitation device - Modeling, design, and control

    CERN Document Server

    Gabai, Ran; Shaham, Ran; Cohen, Nadav; Bucher, Izhak

    2016-01-01

    Described is a device acting on an acoustically levitated object by manipulating the pressure and flow of a thin layer of air such that its rotation can be precisely controlled without mechanical contact. Virtual work analysis assists in simplifying the multi-actuator control problem into a problem governed by a controllable parameter. Actuation is done with a vibrating ring capable of producing ultrasonic standing and traveling waves, creating the acoustic excitation that affects the pressure in a thin, intermediate layer of gas. A distinctive vibration pattern is required to generate the temporal and spatial pressure field of the squeezed air layer that gives rise to both acoustic levitation force and rotational torque. Described are the physical and design development stages leading to an optimized structure, all followed by verifying and dynamics-calibration experiments. Moreover, by precisely controlling the ratio of standing and traveling waves in a closed-loop, one can affect the shear forces applied b...

  10. The near-field acoustic levitation of high-mass rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  11. Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments

    Science.gov (United States)

    Dolgin, Benjamin P. (Inventor)

    1994-01-01

    A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.

  12. Design of a Discrete Tracking Controller for a Magnetic Levitation System: A Nonlinear Rational Model Approach

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Salas

    2015-01-01

    Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.

  13. Simulation of magnetization and levitation properties of arrays of ring-shaped type-II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun, E-mail: linxj8686@163.com; Huang, Chenguang; Yong, Huadong; Zhou, Youhe, E-mail: zhouyh@lzu.edu.cn

    2017-03-15

    Highlights: • A strong magnetic coupling appears if the gap between the superconducting rings is small. • The saturation magnetization of superconducting rings is related to the radial gap but independent of the vertical gap. • The array of rings in a non-uniform field experiences a levitation force, which increases with increasing height or thickness of the rings. - Abstract: This paper presents an analysis of the magnetic and mechanical properties of arrays of superconducting rings arranged in axial, radial, and matrix configurations under different magnetic fields. In terms of the Bean's critical state model and the minimum magnetic energy method, the dependences of the magnetization and levitation behaviors on the geometry, number, and gap of the superconducting rings are obtained. The results show that when the applied field is spatially uniform, the magnetic property of the superconducting array is associated with the gaps between the rings. For the case of small gaps, the entire array becomes not easy to be fully penetrated by the induced currents, and the magnetic field profiles of which are almost the same as ones in a single large ring. If the superconducting array is fully penetrated, its saturation magnetization value is affected by the radial interval and, however, is almost independent of the vertical separation. When the applied field produced by a cylindrical permanent magnet is nonuniform, the superconducting array will be subjected to a levitation force. The levitation force increases monotonically and finally reaches a saturation value with increasing height or thickness of the rings, and such saturation value is closely related to the inner radius of the array.

  14. Using magnetic levitation for non-destructive quality control of plastic parts.

    Science.gov (United States)

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-04

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Measurements of low energy hydrogen ion effective sticking coefficients on titanium in the Wisconsin Levitated Octupole

    Energy Technology Data Exchange (ETDEWEB)

    Garner, H.; Post, R. S.

    1981-02-01

    The effective sticking coefficient for low energy (< 30 eV) hydrogen ions on titanium gettered aluminium walls has been measured in the Wisconsin Levitated Octupole. A value of greater than 0.75 was measured. The H/sub 2/ effective sticking coefficient for the same conditions is less than 0.01. Seventy-four percent of the wall area of the Octupole is gettered. The effects of recycling on plasma parameters is also discussed.

  16. Vibration Suppression of Axial Drive High Temperature Superconducting Levitation Synchronous Motor with Magnetic Damper

    OpenAIRE

    村上, 岩範; 陸浦, 優輔; 小林, 祐介; 安藤, 嘉則; 山田, 功; Iwanori, MURAKAMI; Yusuke, MUTSUURA; Yusuke, KOBAYASHI; Yoshinori, ANDO; Kou, YAMADA; 群馬大学; 群馬大学; 群馬大学; 群馬大学; 群馬大学

    2010-01-01

    In this research, we propose the method of the vibration suppression by the magnetic damper system of the axial drive high temperature superconducting levitation synchronous motor. As for this motor, rotor eccentricity causes the vibration though the sway vibratory force by the drive is not generated. Then, we propose an easy magnetic damper system. It consists of four coils. When the rotor vibrates in the radial direction, current flows in the damper coil. It generates the magnetic force. Th...

  17. Trade-off modeling of superconducting levitation machines: theory and experiment

    OpenAIRE

    Badía-Majós, A.; Aliaga, A.; Letosa-Fleta, Jesús; Mora Alfonso, Mario; Peña-Roche, Jorge

    2015-01-01

    Based on the critical state model for the superconducting components, we develop a set of theoretical tools that allow to extract relevant engineering parameters of a superconducting levitation machine. We provide a number of analytical and numerical expressions for the evaluation of the electromagnetic quantities, energies and forces in 2D problems. This assumption includes: (i) rotational symmetric systems as those in bearings and motors, and also the case of (ii) translational symmetry ...

  18. Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway

    Science.gov (United States)

    Zheng, Jun; Zheng, Botian; He, Dabo; Sun, Ruixue; Deng, Zigang; Xu, Xun; Dou, Shixue

    2016-09-01

    Due to the large levitation force or the large guidance force of bulk high-temperature superconducting magnets (BHTSMs) above a permanent magnet guideway (PMG), it is reasonable to employ pre-magnetized BHTSMs to replace applied-magnetic-field-cooled superconductors in a maglev system. There are two combination modes between the BHTSM and the PMG, distinguished by the different directions of the magnetization. One is the S-S pole mode, and the other is the S-N pole mode combined with a unimodal PMG segment. A multi-point magnetic field measurement platform was employed to acquire the magnetic field signals of the BHTSM surface in real time during the pre-magnetization process and the re-magnetization process. Subsequently, three experimental aspects of levitation, including the vertical movement due to the levitation force, the lateral movement due to the guidance force, and the force relaxation with time, were explored above the PMG segment. Moreover, finite element modeling by COMSOL Multiphysics has been performed to simulate the different induced currents and the potentially different temperature rises with different modes inside the BHTSM. It was found that the S-S pole mode produced higher induced current density and a higher temperature rise inside the BHTSM, which might escalate its lateral instability above the PMG. The S-N pole mode exhibits the opposite characteristics. In general, this work is instructive for understanding and connecting the magnetic flux, the inner current density, the levitation behavior, and the temperature rise of BHTSMs employed in a maglev system.

  19. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    OpenAIRE

    Chen-Guang Huang; Hua-Dong Yong; You-He Zhou

    2017-01-01

    During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A − V formulation of magnetoquasistatic Maxwell’s equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely...

  20. Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings

    Science.gov (United States)

    2013-01-01

    Background Cell growth and cell proliferation are intimately linked in the presence of Earth’s gravity, but are decoupled under the microgravity conditions present in orbiting spacecraft. New technologies to simulate microgravity conditions for long-duration experiments, with stable environmental conditions, in Earth-based laboratories are required to further our understanding of the effect of extraterrestrial conditions on the growth, development and health of living matter. Results We studied the response of transgenic seedlings of Arabidopsis thaliana, containing either the CycB1-GUS proliferation marker or the DR5-GUS auxin-mediated growth marker, to diamagnetic levitation in the bore of a superconducting solenoid magnet. As a control, a second set of seedlings were exposed to a strong magnetic field, but not to levitation forces. A third set was exposed to a strong field and simulated hypergravity (2 g). Cell proliferation and cell growth cytological parameters were measured for each set of seedlings. Nucleolin immunodetection was used as a marker of cell growth. Collectively, the data indicate that these two fundamental cellular processes are decoupled in root meristems, as in microgravity: cell proliferation was enhanced whereas cell growth markers were depleted. These results also demonstrated delocalisation of auxin signalling in the root tip despite the fact that levitation of the seedling as a whole does not prevent the sedimentation of statoliths in the root cells. Conclusions In our model system, we found that diamagnetic levitation led to changes that are very similar to those caused by real- [e.g. on board the International Space Station (ISS)] or mechanically-simulated microgravity [e.g. using a Random Positioning Machine (RPM)]. These changes decoupled meristematic cell proliferation from ribosome biogenesis, and altered auxin polar transport. PMID:24006876