WorldWideScience

Sample records for electrostatic ion beam

  1. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  2. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  3. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  4. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  5. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  6. Transverse confinement of an ion beam in a purely electrostatic configuration

    International Nuclear Information System (INIS)

    Correa, J.R.; Ordonez, C.A.; Weathers, D.L.

    2005-01-01

    The transverse confinement of an ion beam in a purely electrostatic configuration is studied. Analytical expressions for the electric potential of three different electrode configurations are found. Each configuration may be described as consisting of many closely spaced Einzel lenses, such that the focusing periodicity length is much smaller than the transverse size of the beam. Classical trajectory computer simulations are used to obtain a map of the phase space co-ordinates for which transverse electrostatic confinement occurs with one of the configurations. The results indicate that confinement should occur for a large range of conditions. It is speculated that the configurations studied can be used for transverse confinement of ion beams in either electrostatic ion traps or electrostatic ion storage rings

  7. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  8. Excitation of electrostatic ion cyclotron wave in electron beam plasma system

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1984-01-01

    The electrostatic ion cyclotron waves excited in an electron beam plasma system was investigated. The excitation condition of the waves was calculated by using Harris type dispersion relation under some assumption, and its comparison with the experimental result was made. Beam plasma discharge is a kind of RF discharge, and it is caused by the waves generated by the interaction of electron beam with plasma. It was shown that electrostatic ion cyclotron waves seemed to be the most probable as excited waves. But the excitation mechanism of these waves has not been concretely investigated. In this study, the excitation condition of electrostatic ion cyclotron waves was calculated as described above. The experimental apparatus and the results of potential, electric field and ion saturation current in beam plasma, electron drift motion in azimuthal direction and the waves excited in beam plasma are reported. The frequency of oscillation observed in beam plasma corresponds to the harmonics or subharmonics of ion cyclotron frequency. The calculation of Harris type dispersion relation, the numerical calculation and the comparison of the experimental result with the calculated result are described. (Kako, I.)

  9. Electrostatic lens to focus an ion beam to uniform density

    International Nuclear Information System (INIS)

    Johnson, C.H.

    1977-01-01

    A focusing lens for an ion beam having a gaussian or similar density profile is described. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens

  10. Lens effect of unipolar electrostatic steerers on low-energy ion beams and its effective reduction

    International Nuclear Information System (INIS)

    Asozu, Takuhiro; Matsuda, Makoto; Kutsukake, Kenichi

    2010-08-01

    The JAEA-Tokai tandem accelerator has two ion injectors, one is the negative ion injector placed on the ground and the other is the positive ion injector in the high voltage terminal. The electrostatic steerers in the high voltage terminal are used for ion beams from the both injectors. Because the beams from the negative ion injector gain high energy at the 20MV terminal, the electrodes of the electrostatic steerers are designed to be supplied several ten kV. The high voltages are supplied by two unipolar DC power supplies and they are controlled as the sum of the voltages keeps constant. The high electric potential between the electrodes affects the beam trajectory as an electrostatic lens. The potential must be too high for the low energy ion beams from the positive ion injector on the 100kV deck. We simulated the beam trajectory by calculation and evaluated the strength of the lens effects. The results showed that the focal distances were too short to control the beam form positive ion injector using optical devices in the downstream. If we reduce the voltages to one tenth in simulation, then the focusing effects were much less significant. We installed a multiplying factor circuit to make the voltages variable and much lower. The results of beam-handling tests using the circuit actually showed significant increase of the ion beam current. (author)

  11. Power consumption in positive ion beam converter with electrostatic electron suppressor

    International Nuclear Information System (INIS)

    Hashimoto, Kiyoshi; Sugawara, Tohru

    1985-01-01

    The power recovery characteristics of an in-line direct beam converter provided with electrostatic electron suppressor were studied numerically by tracing the orbits of fast primary ions and secondary charged particles generated along their beam path by collision with background gas molecules. It is shown that, in reference to the electrostatic field potential at the point of impact, the energy distribution of secondary ions impinging on the suppressor has two peaks-one corresponding to a zone of high positive potential surrounding the collector and the other to one of slightly negative potential around the electron suppressor. Secondary electron emission from the suppressor is ascribed mainly to the latter peak, associated with impingement of slower secondary ions. Far much power consumed in secondary particle acceleration is spent for emitting electrons from the suppressor than for secondary ions generated by beam-gas collision. The upper limit of background pressure is discussed on the basis of criteria prescribed for restricting the power consumed in this secondary particle acceleration, as for practical convenience of electrode cooling. Numerical examples are given of calculations based on particle trajectory analysis of both primary ions and secondary particles, for the case of a 100 keV-proton sheet beam 10 cm thick of 35 mA/cm 2 current density. (author)

  12. A cryogenic electrostatic trap for long-time storage of keV ion beams

    Science.gov (United States)

    Lange, M.; Froese, M.; Menk, S.; Varju, J.; Bastert, R.; Blaum, K.; López-Urrutia, J. R. Crespo; Fellenberger, F.; Grieser, M.; von Hahn, R.; Heber, O.; Kühnel, K.-U.; Laux, F.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Schröter, C. D.; Schwalm, D.; Shornikov, A.; Sieber, T.; Toker, Y.; Ullrich, J.; Wolf, A.; Zajfman, D.

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2×103 cm-3, which for a room temperature environment corresponds to a pressure in the 10-14 mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  13. Electrostatic system of background suppression under detection of low-intensive ion beams

    International Nuclear Information System (INIS)

    Dubrovin, M.M.; Belyaev, V.A.

    2002-01-01

    Paper describes electrostatic system to suppress background at recording of low-intensive particle fluxes with transverse cross section exceeding the area of detector inlet aperture. Electrostatic system comprises 5 electrodes ensuring such spatial distribution of electrostatic field that enables accumulation of beam all ions with 30 x 40 mm 2 cross section at inlet aperture of secondary electron multiplier (SEM) with 9 mm diameter. In this case, ion trajectories prior to enter SEM are turned by 180 deg thus essentially improving signal/background ratio [ru

  14. JAERI electrostatic accelerators for multiple ion beam application

    International Nuclear Information System (INIS)

    Ishii, Yasuyuki; Tajima, Satoshi; Takada, Isao

    1993-01-01

    An electrostatic accelerators facility of a 3MV tandem accelerator, a 3MV single-ended accelerator and a 400kV ion implanter was completed mainly for materials science and biotechnology research at JAERI, Takasaki. The accelerators can be operated simultaneously for multiple beam application in triple and dual beam modes. The single-ended machine was designed to satisfy an extremely high voltage stability of ±1x10 -5 to provide a submicron microbeam stably. The measured voltage stability and ripple were within the designed value. (author)

  15. A cryogenic electrostatic trap for long-time storage of keV ion beams.

    Science.gov (United States)

    Lange, M; Froese, M; Menk, S; Varju, J; Bastert, R; Blaum, K; López-Urrutia, J R Crespo; Fellenberger, F; Grieser, M; von Hahn, R; Heber, O; Kühnel, K-U; Laux, F; Orlov, D A; Rappaport, M L; Repnow, R; Schröter, C D; Schwalm, D; Shornikov, A; Sieber, T; Toker, Y; Ullrich, J; Wolf, A; Zajfman, D

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  16. Improvements in or relating to the deflection of ion beams by electrostatic mirror apparatus

    International Nuclear Information System (INIS)

    Freeman, J.H.

    1980-01-01

    An electrostatic mirror apparatus is described for the deflection of positive ion beams. It is claimed that with this apparatus, ion beams of intensity greater than 100 microamps in an electromagnetic separator have been turned through 90 0 and it has been observed that high beam currents can cause the ion beam to 'blow up' (i.e. expand) as it enters the mirror space and then be focused down on exit to a beam narrower than that incident upon the mirror apparatus. (U.K.)

  17. Ion beam studies. Pt. 3(a): the modelling of electrostatic mirrors for the manipulation and focussing of heavy ions

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-06-01

    Electrostatic mirrors have been used to steer, focus and scan intense beams of heavy ions. In this paper, an account is given of the computer modelling of such mirrors. Consideration is given to aperture effects in the lens and it is shown that shaped fields can be used to control the focussing behaviour. The mirror structure incorporates an additional negatively-biased electrode to prevent the penetration of the electric field through the apertures and along the beam trajectories outside the mirror space. This factor and the compact design minimise the space-charge de-focussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The experimental verification of the modelling for a variety of ion-beam manipulation requirements will be described in a subsequent paper. (author)

  18. Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.

    Science.gov (United States)

    Mathew, Jose V; Bhattacharjee, Sudeep

    2011-01-01

    Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.

  19. Lifetime measurements in an electrostatic ion beam trap using image charge monitoring

    International Nuclear Information System (INIS)

    Rahinov, Igor; Toker, Yoni; Heber, Oded; Rappaport, Michael; Zajfman, Daniel; Strasser, Daniel; Schwalm, Dirk

    2012-01-01

    A technique for mass-selective lifetime measurements of keV ions in a linear electrostatic ion beam trap is presented. The technique is based on bunching the ions using a weak RF potential and non-destructive ion detection by a pick-up electrode. This method has no mass-limitation, possesses the advantage of inherent mass-selectivity, and offers a possibility of measuring simultaneously the lifetimes of different ion species with no need for prior mass-selection.

  20. The kick-out mass selection technique for ions stored in an Electrostatic Ion Beam Trap

    International Nuclear Information System (INIS)

    Toker, Y; Altstein, N; Aviv, O; Rappaport, M L; Heber, O; Schwalm, D; Strasser, D; Zajfman, D

    2009-01-01

    A simple mass selection technique which allows one to clean a keV ion beam of undesirable masses while stored in an Electrostatic Ion Beam Trap (EIBT) is described. The technique is based on the time-of-flight principle and takes advantage of the long storage times and self-bunching that are possible in this type of traps (self bunching being the effect that keeps ions of the same mass bunched in spite of their finite distributions of velocities and trajectories). As the oscillation period is proportional to the square root of the ion mass, bunches containing ions of different masses will separate in space with increasing storage time and can be kicked out by a pulsed deflector mounted inside the trap. A mass selector of this type has been implemented successfully in an EIBT connected to an Even-Lavie supersonic expansion source and is routinely used in ongoing cluster experiments.

  1. Adaptation of the perfect linear model for ion beam formation to the case of plasma sources with electron electrostatic containment

    International Nuclear Information System (INIS)

    Coste, Ph.; Aubert, J.; Lejeune, C.

    1991-01-01

    The extensive development of ion beam technologies in the last years, in particular for thin film deposition and etching, poses the problem of predicting the behaviour of the ion beam from convenient models. One of the existing models, the 'perfect linear model', is easy to use and provides information about the geometrical parameters of the ion beam envelope. In this model, however, the plasma potential must be close to the plasma electrode potential. Now, ion sources with electrostatic containment of the ionizing electrons -very attractive because of their improved ionization efficiency - have a plasma potential higher than the plasma electrode potential. Thus, a space-charge sheath with a non-negligible thickness exists, which modifies the equilibrium conditions of the plasma meniscus and, therefore, the initial divergence of the ion beam. In this paper an adaptation of the perfect linear model for ion beam formation to the case of plasma sources with electron electrostatic containment is presented. (author)

  2. Theoretical study of the electrostatic lens aberrations of a negative ion accelerator for a neutral beam injector

    International Nuclear Information System (INIS)

    Miyamoto, Kenji; Hatayama, Akiyoshi

    2009-01-01

    Aberrations due to the electrostatic lenses of a negative ion accelerator for a neutral beam injector and the space charge effect are theoretically investigated. A multi-stage extractor/accelerator is modeled and the aberration coefficients are numerically calculated using the eikonal method, which is conventionally used in electron optics. The aberrations are compared with the radii of a beam core with good beam divergence and a beam halo with poor beam divergence. H - beamlet profile measurements give the 1/e radii of the beam core and beam halo of 5.8 mm (beam divergence angel: 6 mrad) and 11.5 mm (beam divergence angel: 12 mrad), respectively. When the beam divergence angle of the beam core is 5 mrad and the beam energy is 406 keV, the aberrations due to the electrostatic lenses are less than a few millimeters, thus are less than the radii of the beam core and beam halo. The geometrical aberrations due to te space charge effect (negative ion current density: 10 mA/cm 2 ), however, are estimated to be much larger than the radius of the beam halo. Although the aperture radii of the grids are not taken into account in this estimation, the results indicate that the space charge effect is an important factor in the aberration or beam halo in a negative ion accelerator. (author)

  3. Investigations of electrostatic ion waves in a collisionless plasma

    International Nuclear Information System (INIS)

    Michelsen, P.

    1980-06-01

    The author reviews a series of publications concerning theoretical and experimental investigations of electrostatic ion waves in a collisionless plasma. The experimental work was performed in the Risoe Q-machine under various operational conditions. Besides a description of this machine and the diagnostic techniques used for the measurements, two kinds of electrostatic waves are treated, namely, ion-acoustic waves and ion-cyclotron waves. Due to the relative simplicity of the ion-acoustic waves, these were treated in detail in order to get a more general understanding of the behaviour of the propagation properties of electrostatic waves. The problem concerning the difficulties in describing waves excited at a certain position and propagating in space by a proper mathematical model was especially considered in depth. Furthermore, ion-acoustic waves were investigated which propagated in a plasma with a density gradient, and afterwards in a plasma with an ion beam. Finally, a study of the electrostatic ion-cyclotron waves was undertaken, and it was shown that these waves were unstable in a plasma traversed by an ion beam. (Auth.)

  4. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    Science.gov (United States)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  5. Engineering Design of Electrostatic Quadrupole for ISOL Beam Lines

    International Nuclear Information System (INIS)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S.

    2014-01-01

    In the ISOL system, the RI beam should be transported from the target ion source to post accelerator through various analyzing and charge-breeding systems such as PS (pre-seperator), HRMS (High Resolution Mass Seperator), RF cooler and A/q separator. A reference particle for the beam dynamics calculation is 132 Sn 1+ . After charge breeder system, the charge state is boosted from +1 to +19 with ECR charge breeder and to +33 with EBIS charge breeder. Because the beam energy is as low as 50 keV, the electrostatic optics was adopted rather than the magnetic optics. The electrostatic quadrupole triplets were used for the beam focusing and the electrostatic bender is used for 90-degree bending. In this paper, the design procedure and engineering design of the electrostatic quadrupole are presented

  6. High-current beam transport in electrostatic accelerator tubes

    International Nuclear Information System (INIS)

    Ramian, G.; Elais, L.

    1987-01-01

    The UCSB Free Electron Laser (FEL) has successfully demonstrated the use of a commercial 6 megavolt electrostatic accelerator as a high current beam source in a recirculating configuration. The accelerator, manufactured by National Electrostatics Corp. (NEC), Middleton WI, uses two standard high gradient accelerator tubes. Suppression of ion multiplication was accomplished by NEC with apertures and a shaped electrostatic field. This field shaping has fortuitously provided a periodically reversing radial field component with sufficient focusing strength to transport electron beams of up to 3 Amps current. Present two-stage FEL work requires a 20 Amp beam and proposed very high voltage FEL designs require currents as high as 100 Amps. A plan to permit transport of such high current beams by the addition of solenoidal focussing elements is described

  7. Developments at an electrostatic cryogenic storage ring for electron-cooled keV energy ion beams

    International Nuclear Information System (INIS)

    Vogel, Stephen

    2016-01-01

    This work is devoted to final setup activities and the commissioning of an electrostatic cryogenic storage ring (CSR) at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. The first cryogenic operation of CSR in 2015 has been documented and characterized using a set of non-destructive beam diagnostic tools developed within this work. These are (1) the current pick-up system for the determination of the current of the stored ion beam and its velocity, (2) a position pick-up system for measuring the transverse position of the ion beam center at six symmetric locations of the storage ring circumference, and (3) a Schottky pick-up system for the monitoring of coasting ion beams. Despite the requirements imposed by the cryogenic operation, the developed diagnostic system demonstrated its full functionality. First characterizations of the storage ring properties and the performance of the diagnostic system are presented. Based on previous work, an electron cooling system for CSR has been developed and largely realized. With the implementation into CSR in 2016, the electron cooler will enhance the storage ring into a unique experimental facility for electron-ion collision studies. With this CSR is on the track to become the first cryogenic storage ring featuring actively cooled ion beams.

  8. Resolving beam transport problems in electrostatic accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    This paper reviews problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance

  9. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    Science.gov (United States)

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  10. Resolving beam transport problems in electrostatic accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A review is given of problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance

  11. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    International Nuclear Information System (INIS)

    Park, Sae-Hoon; Kim, Yu-Seok; Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2015-01-01

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber

  12. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  13. Basic Design Study on 1-MV Electrostatic Accelerator for ion irradiation

    International Nuclear Information System (INIS)

    Cho, Yongsub; Kim, Kyeryung; Lee, Chanyoung

    2014-01-01

    The KOMAC (KOrea Multi-purpose Accelerator Complex) has electrostatic ion accelerators whose terminal voltages are less than 100kV. To extend ion beam irradiations with higher energy ions for industrial purposes, an electrostatic accelerator of 1-MV terminal voltage should have been studied. For industrial applications, the most important features of the accelerator are high current and high reliability for high irradiation dose and high through-put with high current and long irradiation time. The basic study on 1-MV electrostatic ion accelerator for industrial applications has been done. The key components are a high voltage power supply, an ion source, and an accelerating column. The feasibility study for fabrication is being performed. Especially the R and D for ion source is required. The 1-MV ion accelerator will be constructed with domestic companies and installed in the beam application research building, which is under construction in the site of KOMAC at Gyeongju

  14. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  15. Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.R.

    1988-01-01

    A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current

  16. Electrostatic mechanism of shaping the wave micro-relief on the surface of a semiconductor, sputtered by an ion beam

    International Nuclear Information System (INIS)

    Grigor'ev, A.I.

    2000-01-01

    The effect of the electric field formed due to the surface charging, is not accounted for in the weakly-developed theoretical models for the ordered micro-relief formation on the surface of a semiconductor under the impact of an ion beam. It is shown, that the problem on modeling the physical mechanism of forming the ordered wave micro-relief on the semiconductor surface under the impact of a high-energy ion beam may be interpreted as an electrostatic one [ru

  17. Ion acceleration in electrostatic collisionless shock: on the optimal density profile for quasi-monoenergetic beams

    Science.gov (United States)

    Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.

    2018-03-01

    A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.

  18. The steering and manipulation of ion beams for low-energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-01-01

    Both electrostatic and magnetic fields are used in low-energy accelerators. Electrostatic fields are essential in the acceleration stages and they are commonly used for ion beam scanning and focussing. Magnetic fields are only infrequently used as lenses, but they are essential for mass analysis and are sometimes employed for beam steering. The electrostatic mirror is a versatile and compact lens which has hitherto received little attention for the controlled manipulation of heavy ions. In addition to energy analysis it can be used to steer, focus and scan such beams and its flexibility and usefulness can be further increased by shaping the electrostatic field in the mirror space. The use of a computer programme to model the focussing behaviour of a variety of lens shapes is described and it is shown that the focal properties of the mirror can be controlled to produce a parallel, convergent or divergent output beam. The use of mirrors for two-dimensional beam focusing is also outlined. To permit the use of the mirror system with heavy ions an apertured front plate, without field-defining gauzes, was utilized. In consequence an additional electrode was incorporated in the lens structure to prevent penetration of the positive electric field along the beam axes outside the mirror space. This factor and the compact design of the mirror, contributed to the minimisation of space-charge defocussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The results of experiments confirming the computer predictions are briefly described and, in conclusion some possible applications of electrostatic mirrors in electromagnetic isotope separators and low energy accelerators are outlined. (Auth.)

  19. Characteristics of particle beam acceleration on KUMS tandem electrostatic accelerator 5SDH-2

    OpenAIRE

    谷池, 晃; 古山, 雄一; 北村, 晃

    2006-01-01

    The KUMS tandem electrostatic accelerator, 5SDH-2, was installed in 1996. Ten years have passed since it installed and we obtain some data for accelerator operations. We report the particle beam characteristics such as relation between beam species and switcher magnet current, and dependence of ion charge fraction on stripper gas thickness. We also try to generate nitrogen ion beams, and low energy ion beams.

  20. Computer simulations for intense continuous beam transport in electrostatic lens systems

    International Nuclear Information System (INIS)

    Zhao Xiaosong; Lv Jianqin

    2008-01-01

    A code LEADS based on the Lie algebraic analysis for the continuous beam dynamics with space charge effect in beam transport has been developed. The program is used for the simulations of axial-symmetric and unsymmetrical intense continuous beam in the channels including drift spaces, electrostatic lenses and DC electrostatic accelerating tubes. In order to get the accuracy required, all elements are divided into many small segments, and the electric field in the segments is regarded as uniform field, and the dividing points are treated as thin lenses. Iteration procedures are adopted in the program to obtain self-consistent solutions. The code can be used in the designs of low energy beam transport systems, electrostatic accelerators and ion implantation machines. (authors)

  1. Preliminary design of electrostatic sensors for MITICA beam line components

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, S., E-mail: spagnolo@igi.cnr.it; Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35127 Padova (Italy)

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  2. Electrostatic plasma lens for focusing negatively charged particle beams.

    Science.gov (United States)

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  3. Small electrostatic storage rings; also for highly charged ions?

    International Nuclear Information System (INIS)

    Moeller, S.P.; Pedersen, U.V.

    2001-01-01

    Two years ago, a small electrostatic storage ring ELISA (electrostatic ion storage ring, Aarhus) was put into operation. The design of this small 7 m circumference ring was based on electrostatic deflection plates and quadrupoles. This is in contrast to the larger ion storage rings, which are based on magnetic focusing and deflection. The result is a small, relatively inexpensive, storage ring being able to store ions of any mass and any charge at low energy ( -11 mbar resulting in storage times of several tens of seconds for singly charged ions. The maximum number of singly charged ions that can be stored is a few 10 7 . Several experiments have already been performed in ELISA. These include lifetime studies of metastable ions and studies of fullerenes and metal-cluster ions. Lasers are also used for excitation of the circulating ions. Heating/cooling of the ring is possible. Cooling of the ring leads to significantly lower pressures, and correspondingly longer lifetimes. A change of the temperature of the vacuum chambers surrounding the ion beam also leads to a change of the spectrum of the black-body radiation, which has a significant influence on weakly bound negative ions. At the time of writing, at least two other electrostatic storage rings are being built, and more are planned. In the following, the electrostatic storage ring ELISA will be described, and results from some of the initial experiments demonstrating the performance will be shown. The relative merits of such a ring, as opposed to the larger magnetic rings and the smaller ion traps will be discussed. The potential for highly charged ions will be briefly mentioned. (orig.)

  4. Characteristics of a R.F. ion source used in an electrostatic accelerator

    International Nuclear Information System (INIS)

    Zhan Furu; Hu Chundong; Hu Suhua; Chen Bin; Zhang Shuqing; Wang Shaohu; Yu Zengliang; Li Jun; Yuan Hongyong

    2000-01-01

    A radio frequency (r.f.) ion source used in the electrostatic accelerator was designed and built for the study on the ion beam bioengineering. The extracting characteristics were determined by experiments, from which the results showed that a maximal beam current is obtained under the condition of the extracting voltage 1700 V and the gas pressure in the range of (4-8) x 10 -4 Pa. And the diameter of the ion beam was measured as well

  5. Beam transport through electrostatic accelerators and matching into post accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1986-01-01

    Ion beam transport through electrostatic acceleration is briefly reviewed. Topics discussed include injection, matching into the low-energy acceleration stage, matching from the terminal stripper into the high-energy stage, transport to a post accelerator, space charge, bunching isochronism, dispersion and charge selection. Beam transport plans for the proposed Vivitron accelerator are described. (orig.)

  6. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.; Hanada, M.; Kojima, A.

    2013-01-01

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  7. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  8. IMPROVEMENT OF THE CERN SPS ELECTROSTATIC SEPTA ION TRAPS

    CERN Multimedia

    Balhan, Bruno; Barlow, Roger Andrew; Raffaele, Graziano

    2016-01-01

    At CERN, the SPS synchrotron is equipped with a slow extraction channel towards the fixed target beam lines in the North Area This channel includes five consecutive electrostatic septa, where the field free region and the active high field region are separated by an array of tungsten-rhenium wires. The field-free region provides for the circulating beam, while the high field region is used to deflect the extracted beam. Since the residual gas can be ionized by the orbiting beam, low energy ions could cross the wire array and enter the high field region and cause high voltage breakdown when accelerated onto the cathode. To prevent low energy ions from entering this high electric field region, a vertical field is applied to the orbiting beam using so-called ‘ion traps’ for active protection. The vertical field is created by electrodes placed inside the region containing the circulating beam. Due to electromagnetic coupling onto the ion trap electrodes observed with the high frequency LHC beam (25 ns spaced ...

  9. Generation and focusing of intense ion beams with an inverse pinch ion diode

    International Nuclear Information System (INIS)

    Hashimoto, Yoshiyuki; Sato, Morihiko; Yatsuzuka, Mitsuyasu; Nobuhara, Sadao

    1992-01-01

    Generation and focusing of ion beams using an inverse pinch ion diode with a flat anode has been studied. The ion beams generated with the inverse pinch ion diode were found to be focused at 120 mm from the anode by the electrostatic field in the diode. The energy and maximum current density of the ion beams were 180 keV and 420 A/cm 2 , respectively. The focusing angle of the ion beams was 4.3deg. The beam brightness was estimated to be 1.3 GW/cm 2 ·rad 2 . The focusing distance of the ion beams was found to be controllable by changing the diameters of the anode and cathode. (author)

  10. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  11. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    Science.gov (United States)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  12. Collective ion acceleration by relativistic electron beams in plasmas

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.

    1991-01-01

    A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena

  13. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  14. Development of the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1997-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility's radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date

  15. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  16. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  17. Optimization of the electrostatic structure of the ion microprobe

    Directory of Open Access Journals (Sweden)

    I. G. Ignat'ev

    2012-03-01

    Full Text Available The paper presents optimization data obtained for an immersion probe-forming system of the ion microprobe to be used in 3 MeV H+ ion accelerator generating 0,4 μm beam spot for normalized acceptance of 7 μm2 · mrad2 · MeV. To achieve higher microprobe resolution it is intended to place an electrostatic lens between the collimators and the accelerating tube.

  18. An innovative accelerator-driven inertial electrostatic confinement device using converging ion beams

    International Nuclear Information System (INIS)

    Bauer, T. H.; Wigeland, R. A.

    1999-01-01

    Fundamental physics issues facing development of fusion power on a small-scale are assessed with emphasis on the idea of Inertial Electrostatic Confinement (IEC). The authors propose a new concept of accelerator-driven IEC fusion, termed Converging Beam Inertial Electrostatic Confinement (CB-IEC). CB-IEC offers a number of innovative features that make it an attractive pathway toward resolving fundamental physics issues and assessing the ultimate viability of the IEC concept for power generation

  19. Computerized study of several electrostatic, surface-ionization ion-source configurations

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, S.J.; Schuster, B.G.

    1984-08-01

    A computer-based method is presented whereby the optics of electrostatic, surface-ionization ion-source designs can be analyzed theoretically. The analysis solves for the luminosity and disperstion of a beam of charged particles at the final collimating slit and at locations preceding the slit. The performance of an ion source tested in 1960 and also some newer optical configurations are compared with theory.

  20. Auroral ion beams and ion acoustic wave generation by fan instability

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A

    1996-04-01

    Satellite observations indicate that efficient energy transport among various plasma particles and between plasma waves and plasma particles is taking place in auroral ion beam regions. These observations show that two characteristic wave types are associated with the auroral ion beam regions: electrostatic hydrogen cyclotron waves with frequencies above hydrogen gyrofrequency, and low frequency waves with frequencies below hydrogen gyrofrequency. We speculate that the low frequency waves can be ion acoustic waves generated through the fan instability. The presence of a cold background ion component is necessary for the onset of this instability. A cold ion component has been directly observed and has been indirectly suggested from observations of solitary wave structures. The wave-particle interaction during the development of the fan instability results in an efficient ion beam heating in the direction perpendicular to the ambient magnetic field. The fan instability development and the ion beam heating is demonstrated in a numerical particle simulation. 23 refs, 16 figs.

  1. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  2. Cryogenic trapping of keV ion beams at the CSR prototype

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Blaum, Klaus; Froese, Michael; Grieser, Manfred; Lange, Michael; Orlov, Dimitry; Sieber, Thomas; Hahn, Robert von; Varju, Jozef; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Heber, Oded; Rappaport, Michael; Zajfman, Daniel [Weizmann Institut of Science, Rehovot (Israel)

    2009-07-01

    A Cryogenic Trap for Fast ion beams (CTF) was built to explore cooling techniques and test thermal decoupling of ion optics for the development of the electrostatic Cryogenic Storage Ring (CSR). These challenging projects will lead to a new experimental field of atomic and molecular physics with keV ion beams. The cold conditions of 2-10 K minimize the blackbody radiation field and are expected to lead to extremely low restgas densities (equivalent pressure at room temperature {approx}10{sup -13} mbar) which result in long storage lifetimes and for molecular ions to radiative cooling to their ro-vibrational ground states. The CTF consists of two stacks of electrostatic mirror electrodes allowing the storage of up to 20 keV ion beams. Cryogenic ion beam storage has been realized with this device using a liquid helium refrigeration system to cool down the experimental trapping area to few-Kelvin cryogenic temperatures and experiments with cryogenically trapped molecular nitrogen ions have been performed to verify the low vacuum conditions by measuring their storage lifetimes.

  3. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  4. Manufacture of electrostatic septum for extracting particle beam

    International Nuclear Information System (INIS)

    Tokumoto, Shuichi

    1979-01-01

    In the main ring of National Laboratory for High Energy Physics, fast and slow extractions of accelerated proton beam are carried out by using electrostatic septa. The electrostatic septum is an apparatus to deflect beam by an electrostatic field, basically composed of a couple of parallel plate electrodes installed in a vacuum chamber. The electrostatic septum is required to satisfy the following two conditions: it must be very thin and flat to reduce the loss of extracted beam, and sufficiently high electric field must be generated to deflect beam in a limited length. The structure and manufacture of electrostatic septa are described. The manufacturing is explained by dividing a septum into an anode and a cathode, terminals introducing high voltage, a vacuum chamber, and high voltage circuit. The performance is also described on the experiments for no-beam condition and beam extraction. Beam extraction has been carried out over 1500 hours thus far, the average beam intensity being 1 x 10 12 ppp, and extraction efficiency more than 90%. There have been no serious failure to affect the performance nor metal wire breakage. They have satisfied their purposes, being used for both fast and slow extractions. Presently, lengthening of the electrostatic field region is being planned to increase the length of the septa to 1.5 m per unit. (Wakatsuki, Y.)

  5. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  6. Effect of X-ray suppression system upon parameters of electrostatic accelerator ion beam

    Directory of Open Access Journals (Sweden)

    I. G. Ignat'ev

    2014-12-01

    Full Text Available Experimental study results are presented for a beam profile and emittance of an electrostatic accelerator “Sokol” before and after being equipped with magnet X-ray suppression system.

  7. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  8. The wondrous world of transport and acceleration of intense ion beams

    International Nuclear Information System (INIS)

    Siebenlist, F.

    1987-01-01

    A theoretical and experimental study of the transport, bunching and acceleration of intense ion beams in periodic focusing channels is described. The aim is to show the feasibility of accelerating high current ion beams with a Multiple Electrostatic Quadrupole Array Linear ACcelerator (MEQALAC). 83 refs.; 51 figs.; 3 tabs

  9. Optics elements for modeling electrostatic lenses and accelerator components: III. Electrostatic deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    2000-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the envelope (matrix) computer code TRACE 3-D as a part of the development of a suite of electrostatic beamline element models which includes lenses, acceleration columns, quadrupoles and prisms. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the first-order modeling of cylindrical, spherical and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low-energy beamline at the Center for Accelerator Mass Spectrometry. Although initial tests following installation of the new beamline showed that the new spherical electrostatic analyzer was not behaving as predicted by these first-order models, operational conditions were found under which the analyzer now works properly as a double-focusing spherical electrostatic prism

  10. Dynamics of beam-driven Langmuir and ion-acoustic waves including electrostatic decay

    International Nuclear Information System (INIS)

    Li, B.; Willes, A.J.; Robinson, P.A.; Cairns, I.H.

    2003-01-01

    The evolution of Langmuir waves and ion-acoustic waves stimulated by a hot electron beam in an initially homogeneous plasma is investigated numerically in time, position, and wave number space. Quasilinear interactions between the beam particles and Langmuir waves, nonlinear interactions between the Langmuir and ion-acoustic waves through Langmuir decay processes, and spontaneous emission are taken into account in the kinetic theory employed. For illustrative parameters of those in the solar wind near 1 a.u., nonlinear Langmuir decays are observed to transfer the beam-driven Langmuir waves rapidly out of resonance. The scattered Langmuir waves then undergo further decays, moving sequentially toward small wave numbers, until decay is kinematically prohibited. The main features of the evolution of Langmuir and ion-acoustic waves are spatially inhomogeneous. The scattered Langmuir spectra increase and eventually reach or exceed the beam-driven Langmuir spectra at a given spatial location (except in regions where further decays proceed). The ion-acoustic waves are relatively weak and subject to damping at the later stages of their evolution. The development of fine structures in the product Langmuir and ion-acoustic waves are observed, due to depletion of their energy by decay and dominant damping effects, respectively. The propagation of the beam is essentially unaffected by the operation of the decay process. The decay process is thus slaved to the primary beam-plasma evolution, as assumed in previous studies. A variation of the ratio of electron temperature to ion temperature is found to affect not only the ion-acoustic wave levels through effects on the damping rate, but also the dynamics of decay via effects on the decay rate. The latter was not addressed in previous studies. Furthermore, spontaneous emission of ion-acoustic waves is found to affect the dynamics of decay, thus its inclusion is necessary to correctly model the Langmuir and ion-acoustic spectra

  11. Modification of 300kV RF Ion Source for 1-MV Electrostatic Accelerator at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The specifications of the 1-MV electrostatic accelerator are shown as below. High voltage power supply is electron transformer rectifier (ELV) type which was developed in Nuclear Physics Institute (Novosibirsk) for industrial electron accelerators. And accelerator column consists of alumina and metal electrode rings were 0.5m-long brazed structure which can be installed horizontally. In case of ion source for 1-MV electrostatic accelerator, it is chosen a thonemann type rf ion source and 300-kV test-stand was made up to confirm the stable operating conditions. High voltage power supply is fabricated by domestic company, and its operation has been confirming at KOMAC site. Equally, the ion source of 300-kV test-stand should be modified to install into the high voltage power supply. In this paper, modification of ion source of 300-kV test-stand for 1-MV electrostatic accelerator is presented and its processes are considered. 300-kV RF ion source and power supply are testing for the 1-MV electrostatic accelerator and trying for combination between them. The 1-MV electrostatic accelerator will be fabricated with domestic companies and tested in the beam application research building at KOMAC.

  12. Modification of 300kV RF Ion Source for 1-MV Electrostatic Accelerator at KOMAC

    International Nuclear Information System (INIS)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub

    2015-01-01

    The specifications of the 1-MV electrostatic accelerator are shown as below. High voltage power supply is electron transformer rectifier (ELV) type which was developed in Nuclear Physics Institute (Novosibirsk) for industrial electron accelerators. And accelerator column consists of alumina and metal electrode rings were 0.5m-long brazed structure which can be installed horizontally. In case of ion source for 1-MV electrostatic accelerator, it is chosen a thonemann type rf ion source and 300-kV test-stand was made up to confirm the stable operating conditions. High voltage power supply is fabricated by domestic company, and its operation has been confirming at KOMAC site. Equally, the ion source of 300-kV test-stand should be modified to install into the high voltage power supply. In this paper, modification of ion source of 300-kV test-stand for 1-MV electrostatic accelerator is presented and its processes are considered. 300-kV RF ion source and power supply are testing for the 1-MV electrostatic accelerator and trying for combination between them. The 1-MV electrostatic accelerator will be fabricated with domestic companies and tested in the beam application research building at KOMAC

  13. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  14. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  15. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  16. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  17. Progress report of the innovated KIST ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan, E-mail: jonghansong@gmail.com

    2017-01-15

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36} Cl, {sup 41}Ca and {sup 129}I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  18. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  19. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  20. Multispecies Weibel Instability for Intense Ion Beam Propagation Through Background Plasma

    CERN Document Server

    Davidson, Ronald C; Kaganovich, Igor D; Qin, Hong; Startsev, Edward

    2005-01-01

    In application of heavy ion beams to high energy density physics and fusion, background plasma is utilized to neutralize the beam space charge during drift compression and/or final focus of the ion beam. It is important to minimize the deleterious effects of collective instabilities on beam quality associated with beam-plasma interactions. Plasma electrons tend to neutralize both the space charge and current of the beam ions. It is shown that the presence of the return current greatly modifies the electromagnetic Weibel instability (also called the filamentation instability), i.e., the growth rate of the filamentation instability greatly increases if the background ions are much lighter than the beam ions and the plasma density is comparable to the ion beam density. This may preclude using underdense plasma of light gases in heavy ion beam applications. It is also shown that the return current may be subject to the fast electrostatic two-stream instability.

  1. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  2. Gabor lens focusing of a negative ion beam

    International Nuclear Information System (INIS)

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab

  3. Experimental study of the transport limits of intense heavy ion beams in the HCX

    International Nuclear Information System (INIS)

    Prost, L.R.; Bieniosek, F.M.; Celata, C.M.; Dugan, C.C.; Faltens, A.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik, A.W.; Haber, I.

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density up to ∼ 0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. The experiment also contributes to the practical baseline knowledge of intense beam manipulations necessary for the design, construction and operation of a heavy ion driver for inertial fusion. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We first present the results for a coasting 1 MeV K + ion beam transported through the first ten electrostatic transport quadrupoles, measured with optical beam-imaging and double-slit phase-space diagnostics. This includes studies at two different radial fill factors (60% and 80%), for which the beam transverse distribution was characterized in detail. Additionally, beam energy measurements will be shown. We then discuss the first results of beam transport through four pulsed room-temperature magnetic quadrupoles (located downstream of the electrostatic quadrupoles), where the beam dynamics become more sensitive to the presence of secondary electrons

  4. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  5. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    Science.gov (United States)

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  6. Beam Extraction for 1-MV Electrostatic Accelerator at the 300 kV Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Seoul (Korea, Republic of); Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. A beam extraction experiment for the test stand was performed, and the beam current was measured using a faraday cup in the chamber. A beam extraction results for the RF ion source will be presented. Beam extraction from the RF ion source of the test stand is verified by measuring the beam current with a faraday cup in the chamber. Thus far NI Labview, PLC and faraday cup have been used to measure the beam current. The OPC server is useful for monitoring the PLC values. The average beam current of (a), (b) and (c) shown in figure 2 are 110.241µA, 105.8597µA and 103.5278µA respectively.

  7. Large amplitude ion-acoustic waves in a plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.; Sanuki, H.

    1995-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with an electron beam, by the pseudopotential method. The region of the existence of large amplitude ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the electron beam temperature, the ion temperature, the electrostatic potential, and the concentration of the electron beam density. It turns out that the region of the existence spreads as the beam temperature increases but the effect of the electron beam velocity is relatively small. New findings of large amplitude ion-acoustic waves in a plasma with an electron beam are predicted. copyright 1995 American Institute of Physics

  8. Ion beam studies. Part 1. The retardation of ion beams to very low energies in an implantation accelerator

    International Nuclear Information System (INIS)

    Freeman, J.H.; Temple, W.; Beanland, D.; Gard, G.A.

    1976-02-01

    The design and operation of a compact electrostatic lens for the retardation and focussing of high intensity beams of heavy ions down to energies in the range 10 to 1,000 eV is described. The use of such beams for low-energy ion implantation and for the production of uniform ion-deposited layers is outlined. The practical behaviour of the lens is shown to be in agreement with computer calculations and the theoretical model is used to delineate and explain the boundary conditions under which the focussing behaviour becomes anomalous. The calculated and measured effects of space-charge repulsion on the quality of focussing are compared and it is demonstrated that a simple retardation lens design can be effectively employed at high flux. (author)

  9. Ion beam analysis

    International Nuclear Information System (INIS)

    Bethge, K.

    1995-01-01

    Full text: Ion beam analysis is an accelerator application area for the study of materials and the structure of matter; electrostatic accelerators of the Van de Graaff or Dynamitron type are often used for energies up to a few MeV. Two types of machines are available - the single-ended accelerator type with higher beam currents and greater flexibility of beam management, or the tandem accelerator, limited to atomic species with negative ions. The accelerators are not generally installed at specialist accelerator laboratories and have to be easy to maintain and simple to operate. The most common technique for industrial research is Rutherford Back Scattering Spectrometry (RBS). Helium ions are the preferred projectiles, since at elevated energies (above 3 MeV) nuclear resonance scattering can be used to detect photons associated with target molecules containing elements such as carbon, nitrogen or oxygen. Due to the large amount of available data on nuclear reactions in this energy range, activation analysis (detecting trace elements by irradiating the sample) can be performed with charged particles from accelerators over a wider range of atoms than with the conventional use of neutrons, which is more suited to light elements. Resonance reactions have been used to detect trace metals such as aluminium, titanium and vanadium. Hydrogen atoms are vital to the material performance of several classes of materials, such as semiconductors, insulators and ceramics. Prudent selection of the projectile ion aids the analysis of hydrogen composition; the technique is then a simple measurement of the emitted gamma radiation. Solar cell material and glass can be analysed in this way. On a world-wide basis, numerous laboratories perform ion beam analysis for research purposes; considerable work is carried out in cooperation between scientific laboratories and industry, but only a few laboratories provide a completely commercial service

  10. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuldyuld@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  11. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells

  12. Steady-State Ion Beam Modeling with MICHELLE

    Science.gov (United States)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  13. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    application range of the EBI diagnostic method and to benchmark the theoretical model. To achieve this goal a code has been developed in the programming language Python. Different charge distributions were considered and the simulation results have been compared with the theoretical model. The numerical investigations have shown a very good agreement with the theoretical model for deflection angles up to 20 mrad. This value defines the limit for the applicability of the theoretical model. Moreover, the magnetic field of the ion beam has also been taken into acount in the simulations. The results show that at high ion beam currents - starting at about 1 A - the electrons experience a non-negligible displacement along the ion beam axis, which has to be taken into consideration in experiments with intense heavy ion beams. The electrons suffer practically the same displacement under the influence of the magnetic field, regardless of their offset. At an offset of 10 mm the deviation from the shift at the ion beam axis is less than 3 %. For the experimental investigations of the EBI diagnostic method an offline experiment had been set up at the HHT experimental area at GSI in Darmstadt. The Coulomb field of the ion beam had been simulated by electrostatically charged wires. In case of a single wire, the experimental results are in good agreement with the theoretical model for deflection angles up to 20 mrad. This confirms the results of the numerical studies. To simulate the field within an ion beam, several wires have been clamped parallel to each other within a plane perpendicular to the electron beam. The electrons thus could pass through the spaces between the wires. The results of this experiments have quantitatively confirmed the prediction of the theoretical model that the derivative of the deflection angle with respect to the offset is proportional to the charge distribution in the cross section of the ion beam. Quantitatively, however, deviations from the theoretical model

  14. Development of a negative ion-based neutral beam injector in Novosibirsk.

    Science.gov (United States)

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  15. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  16. Triplasmatron sources for broad and reactive ion beams

    International Nuclear Information System (INIS)

    Lejeune, C.; Grandchamp, J.P.; Kessi, O.; Gilles, J.P.

    1986-01-01

    Two alternative discharge structures, which are both convenient for the extraction of broad and reactive ion beams, are described. They have been designed in order to overcome both lifetime and beam contamination problems while preserving a high ionization efficiency and a smooth plasma uniformity. They both use a hot cathode duoplasmatron discharge to inject ionizing electrons into the main ionization chamber, according to the triplasmatron concept. The triplasmatron multipolar ion source (TMIS) uses the magnetic multipolar containment of both electrons and ions, whereas the triplasmatron reflex ion source (TRIS) uses the electrostatic and geometric containment of the ionizing electrons. The behaviour and performance of both structures are reported and discussed with a special emphasis to the operation with either oxygen or fluorocarbon gases. (author)

  17. Frequency threshold for ion beam formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty Thakur, Saikat; Harvey, Zane; Biloiu, Ioana; Hansen, Alex; Hardin, Robert; Przybysz, William; Scime, Earl

    2008-11-01

    We observe a threshold frequency for ion beam formation in expanding, low pressure, argon helicon plasma. Mutually consistent measurements of ion beam energy and density relative to the background ion density obtained with a retarding field energy analyzer and laser induced fluorescence indicate that a stable ion beam of 15 eV appears for source frequencies above 11.5 MHz. Reducing the frequency increases the upstream beam amplitude. Downstream of the expansion region, a clear ion beam is seen only for the higher frequencies. At lower frequencies, large electrostatic instabilities appear and an ion beam is not observed. The upstream plasma density increases sharply at the same threshold frequency that leads to the appearance of a stable double layer. The observations are consistent with the theoretical prediction that downstream electrons accelerated into the source by the double layer lead to increased ionization, thus balancing the higher loss rates upstream [1]. 1. M. A. Lieberman, C. Charles and R. W. Boswell, J. Phys. D: Appl. Phys. 39 (2006) 3294-3304

  18. A synchronous beam sweeper for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.

    1989-01-01

    The Argonne Tandem Linac Accelerator System (ATLAS) facility at Argonne National Laboratory provides a wide range of accelerated heavy ions from the periodic table. Frequently, the beam delivery rate of 12 MHz is too fast for the type of experiment on line. Reaction by-products from a target bombardment may have a decay interval much longer than the dead time between beam bunches. To prevent data from being corrupted by incoming ions a beam sweeper was developed which synchronously eliminates selected beam bunches to suit experimental needs. As the SWEEPER is broad band (DC to 6 MHz) beam delivery rates can be instantaneously changed. Ion beam bunches are selectively kicked out by an electrostatic dipole electrode pulsed to 2 kVDC. The system has been used for almost three years with several hundred hours of operating time logged to date. Beam bunch delivery rates of 6 MHz down to 25 kHz have been provided. Since this is a non-resonant system any beam delivery rate from 6 MHz down to zero can be set. In addition, burst modes have been used where beam is supplied in 12 MHz bursts and then shut down for a period of time set by the user. 3 figs

  19. Stabilization of ion source operation for the ''EG-2.5'' electrostatic accelerator

    International Nuclear Information System (INIS)

    Nikitin, V.A.; Yakushev, V.P.

    1980-01-01

    A system for stabilization of operating conditions of an electrostatic accelerator ion source is described. The system is the first stage of stabilizing the ion current on a target. The current of the beam escaping from a source is equal to the difference between the currents in the source anode and cathode circuits. In the anode circuit the current is stabilized by changing the HF-generator anode voltage, and the cathode current is stabilized by a special automatic device. This ensures the constancy of the current for a beam which escapes from the source and thus increases the stability of ion currents on a target. The range of current control in the source anode circuit constitutes 15-110 μA, current oscillations do not exceed 0.5% during two hours [ru

  20. Development of an MeV ion beam lithography system in Jyvaeskylae

    Energy Technology Data Exchange (ETDEWEB)

    Gorelick, Sergey [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)]. E-mail: Sergey.Gorelick@phys.jyu.fi; Ylimaeki, Tommi [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sagari, A.R.A. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Whitlow, Harry J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)

    2007-07-15

    A lithographic facility for writing patterns with ion beams from cyclotron beams is under development for the Jyvaeskylae cyclotron. Instead of focusing and deflecting the beam with electrostatic and magnetic fields a different approach is used. Here a small rectangular beam spot is defined by the shadow of a computer-controlled variable aperture in close proximity to the sample. This allows parallel exposure of rectangular pattern elements of 5-500 {mu}m side with protons up to 6 MeV and heavy ions ({sup 20}Ne, {sup 85}Kr) up to few 100 MeV. Here we present a short overview of the system under construction and development of the aperture design, which is a critical aspect for all ion beam lithography systems.

  1. Design studies of an electrostatic quadrupole channel for transport of a high-brightness H- beam and comparison with gas focusing

    International Nuclear Information System (INIS)

    Chang, C.R.; Horowitz, E.; Reiser, M.

    1989-01-01

    Transport of low-energy, high-brightness H - beams from the ion source to the radio-frequency quadrupole (RFQ) accelerator requires the solution of several physics and engineering problems to avoid particle losses and emittance growth. The authors developed a conceptual design of an electrostatic quadrupole channel for transport of a 120 keV, 120 mA, H - beam into a 425 MHz RFQ with low emittance growth and high transmission efficiency. This design satisfies several constraints imposed by voltage breakdown and beam optics considerations. The system will consist entirely of electrostatic lenses which prevent plasma build-up and eliminate possible emittance growth from plasma fluctuations. Pertinent design features a worst case non-linear analysis for the electrostatic quadrupole channel, and first results of a particle simulation code used to study beam loss and emittance growth are reported. As an alternative to the electrostatic quadrupole concept, gas focusing is being investigated for transporting low-energy H - beams. Recent results from the numerical simulations of such a gas focussing channel are presented

  2. Research and simulation of intense pulsed beam transfer in electrostatic accelerate tube

    International Nuclear Information System (INIS)

    Li Chaolong; Shi Haiquan; Lu Jianqin

    2012-01-01

    To study intense pulsed beam transfer in electrostatic accelerate tube, the matrix method was applied to analyze the transport matrixes in electrostatic accelerate tube of non-intense pulsed beam and intense pulsed beam, and a computer code was written for the intense pulsed beam transporting in electrostatic accelerate tube. Optimization techniques were used to attain the given optical conditions and iteration procedures were adopted to compute intense pulsed beam for obtaining self-consistent solutions in this computer code. The calculations were carried out by using ACCT, TRACE-3D and TRANSPORT for different beam currents, respectively. The simulation results show that improvement of the accelerating voltage ratio can enhance focusing power of electrostatic accelerate tube, reduce beam loss and increase the transferring efficiency. (authors)

  3. Beam Optics for Typical Part of ISOL Beam Lines

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2013-01-01

    KOMAC (Korea Multi-purpose Accelerator Complex) is doing a project, the detailed design of the ISOL beam lines for the heavy ion accelerator project of IBS (Institute of Basic Science) from August 2013 to February 2014. The heavy ion beams are transported by using the electrostatic quadrupoles and electrostatic benders between the equipment. The work-scope of the project is the beam optics design of the beam lines and the detailed design of the beam optics components, the electrostatic quadrupoles and the electrostatic bender. This work summarized the initial result of beam optics design of the beam line. We performed the beam optics simulation in two regions of ISOL beam lines and found that beam envelope is less than 2 cm. We will check that the poletip file values are reasonable or not in near future, and we also applied this method to the other parts of the ISOL beam line and optimize them. The result will be used the detailed design of the electrostatic quadrupoles and benders

  4. Electromagnetic Waves Dispersion and Interaction of an Annular Beam-Ion Channel System in Plasma Waveguide

    Directory of Open Access Journals (Sweden)

    Jixiong Xiao

    2017-01-01

    Full Text Available A linear theory for the electromagnetic properties and interactions of an annular beam-ion channel system in plasma waveguide is presented. The dispersion relations for two families of propagating modes, including the electrostatic and transverse magnetic modes, are derived. The dependencies of the dispersion behavior and interaction for different wave modes on the thickness of the annular beam and betatron oscillation frequency are studied in detail by numerical calculations. The results show that the inner and outer radii of the beam have different influences on propagation properties of the electrostatic and electromagnetic modes with different betatron oscillation parameters. In the weak ion channel situation, the two types of electrostatic waves, that is, space charge and betatron modes, have no interaction with the transverse magnetic modes. However, in the strong ion channel situation, the transverse magnetic modes will have two branches and a low frequency mode emerged as the new branch. In this case, compared with the solid beam case, the betatron modes not only can interact with the high frequency branch at small wavenumber but also can interact with the low frequency branch at large wavenumber.

  5. Two-stream instability for a light ion beam-plasma system with external magnetic field

    International Nuclear Information System (INIS)

    Okada, T.; Tazawa, H.

    1992-12-01

    For inertial confinement fusion, a focused light ion beam (LIB) is required to propagate stably through a chamber to a target. We have pointed out that the applied external magnetic field is important for LIB propagation. To investigate the influence of the external magnetic field on the LIB propagation, we analysed the electrostatic dispersion relation of magnetized light ion beam-plasma system. The particle in-cell (PIC) simulation results are presented for a light ion beam-plasma system with external magnetic field. (author)

  6. Direct energy recovery from helium ion beams by a beam direct converter with secondary electron suppressors

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Yamamoto, Y.; Toku, H.; Kobayashi, A.; Okazaki, T.

    1989-01-01

    A 5-yr study of beam direct energy conversion was performed at the Kyoto University Institute of Atomic Energy to clarify the essential features of direct energy recovery from monoenergetic ion beams so that the performance characteristics of energy recovery can be predicted reasonably well by numerical calculations. The study used an improved version of an electrostatically electron-suppressed beam direct converter. Secondary electron suppressor grids were added, and a helium ion beam was used with typical parameters of 15.4 keV, 90 mA, and 100 ms. This paper presents a comparison of experimental results with numerical results by the two-dimensional Kyoto University Advanced Dart (KUAD) code, including evaluation of atomic processes

  7. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  8. Warm-fluid description of intense beam equilibrium and electrostatic stability properties

    International Nuclear Information System (INIS)

    Lund, S.M.; Davidson, R.C.

    1998-01-01

    A nonrelativistic warm-fluid model is employed in the electrostatic approximation to investigate the equilibrium and stability properties of an unbunched, continuously focused intense ion beam. A closed macroscopic model is obtained by truncating the hierarchy of moment equations by the assumption of negligible heat flow. Equations describing self-consistent fluid equilibria are derived and elucidated with examples corresponding to thermal equilibrium, the Kapchinskij endash Vladimirskij (KV) equilibrium, and the waterbag equilibrium. Linearized fluid equations are derived that describe the evolution of small-amplitude perturbations about an arbitrary equilibrium. Electrostatic stability properties are analyzed in detail for a cold beam with step-function density profile, and then for axisymmetric flute perturbations with ∂/∂θ=0 and ∂/∂z=0 about a warm-fluid KV beam equilibrium. The radial eigenfunction describing axisymmetric flute perturbations about the KV equilibrium is found to be identical to the eigenfunction derived in a full kinetic treatment. However, in contrast to the kinetic treatment, the warm-fluid model predicts stable oscillations. None of the instabilities that are present in a kinetic description are obtained in the fluid model. A careful comparison of the mode oscillation frequencies associated with the fluid and kinetic models is made in order to delineate which stability features of a KV beam are model-dependent and which may have general applicability. copyright 1998 American Institute of Physics

  9. Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.

    2009-01-01

    Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.

  10. Application of laser produced ion beams to nuclear analysis of materials

    International Nuclear Information System (INIS)

    Mima, K.; Fujita, K.; Azuma, H.; Yamazaki, A.; Kato, Y.; Okuda, C.; Ukyo, Y.; Sawada, H.; Gonzalez-Arrabal, R.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2013-01-01

    The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ∼1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for Li x Ni 0.8 Co 0.15 Al 0.05 O 2 (x = 0.75 ∼ 1.0) anodes have been taken. The PIGE images of Li x Ni 0.8 Co 0.15 Al 0.05 O 2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm). The images of the Li density distribution are very useful for the RandD of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams. (authors)

  11. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  12. Optimization of ion-optics system for x-ray quasi-monochromatic source on the basis of electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    S. O. Vershynskyi

    2010-06-01

    Full Text Available Ion-optics system with two doublets of electrostatic quadrupole lenses for X-ray quasimonochromatic source was selected. Two variants of lens excitation for stigmatic focusing with two and four independent power supplies are considered. It is shown that using of four independent power supplies leads to improvement of focused ion beam parameters at converter.

  13. New facility for ion beam materials characterization and modification at Los Alamos

    International Nuclear Information System (INIS)

    Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.

    1988-01-01

    The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs

  14. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    Eritt, Markus

    2008-01-01

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C n - n=2-12), aluminium (Al n - n=2-7) and silver clusters (Ag n - n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and

  15. Ion optics of a high resolution multipassage mass spectrometer with electrostatic ion mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Osaka Univ. (Japan). Dept. of Physics; Baril, M [Departement de Physique, Faculte des Sciences et de Genie, Universite Laval, Ste-Foy, Quebec G1K 7P4 (Canada)

    1995-09-01

    Ion trajectories in an electrostatic ion mirror are calculated. The interferences of the extended fringing fields of the mirror with finite aperture are studied. The results of the calculations are represented by three transfer matrices, which describe ion trajectories under the effects of a fringing field at the entrances, of an idealized mirror region, and of a fringing field at the exit. The focusing effects and ion-optical properties of mass spectrometers with electrostatic ion mirrors can be evaluated by using these transfer matrices. A high performance multipassage mass spectrometer is designed. The system has one magnet and four electrostatic sector analyzers and two ion mirrors. The double focusing condition and stigmatic focusing condition are achieved in any passage of the system. The mass resolution increases linearly with the number of passages in a magnet. (orig.).

  16. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, S., E-mail: stephanie.pellegrino@cea.fr [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, E.; Martin, H. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Chaabane, N.; Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Gallien, J.P.; Beck, L. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2012-02-15

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  17. Applications of laser produced ion beams to nuclear analysis of materials

    International Nuclear Information System (INIS)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-01-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ∼ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi 0.85 Co 0.15 O 2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  18. Installation of the advanced heavy ion beam probing diagnostic on the TJ-II stellarator

    International Nuclear Information System (INIS)

    Bondarenko, I.S.; Chmyga, A.A.; Dreval, N.B.

    2000-01-01

    An advanced heavy ion beam diagnostic has been developed for the TJ-II stellarator based on the simultaneous utilisation of two different detection systems for the secondary ions: a multiple cell array detector and a 30 deg Proca-Green electrostatic energy analyser. This innovative design aims at enlarging the HIBD capabilities to allow the instantaneous measurements of electron density and plasma potential profiles together with their respective fluctuations. This paper presents the detailed description of the main parts of HIBD and their characteristics obtained during the first operation on TJ-II. Special attention is paid to the control and data acquisition system built on two VME controllers. The results of the diagnostic beam propagating through the magnetic structure of TJ-II into electrostatic energy analyser are presented and compared with the trajectory calculations. The operation and calibration of a 30 deg electrostatic energy analyser free of guard rings and with a new biased split detector are described. High intensities of the caesium and thallium ions were obtained from thermionic source using new stable and long-time special operation regimes. (author)

  19. Image-projection ion-beam lithography

    International Nuclear Information System (INIS)

    Miller, P.A.

    1989-01-01

    Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He + ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified

  20. Fabrication and characterization of an electrostatic contraction beams micromotor

    NARCIS (Netherlands)

    Sarajlic, Edin; Berenschot, Johan W.; Tas, Niels Roelof; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2006-01-01

    We report on fabrication and experimental characterization of an electrostatic contraction beams motor that exhibits both reliable operation and high performance haracteristics. This electrostatic linear stepper micromotor is fabricated in a single polysilicon layer combining vertical trench

  1. Electrostatic probe diagnostics on the LBL 10 ampere neutral beam ion source

    International Nuclear Information System (INIS)

    Schoenberg, K.F.

    1978-08-01

    The experimental results of electrostatic probe measurements on the LBL 10 ampere ion source are presented. Data is obtained via a pulsed acquisition system which digitally records a probe characteristic and its first and second derivatives. The latter are shown to be proportional to the projected electron energy distribution function, and the isotropic electron energy distribution function, respectively. System performance for distribution function measurement is compared to the established technique of harmonic analysis. A complete analysis of the data acquisition system and its experimental accuracy is presented

  2. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  3. Compact RF ion source for industrial electrostatic ion accelerator

    Science.gov (United States)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  4. Electrostatic ion acoustic waves

    International Nuclear Information System (INIS)

    Hasegawa, A.

    1983-01-01

    In this paper, certain aspects of plasma physics are illustrated through a study of electrostatic ion acoustic waves. The paper consists of three Sections. Section II deals with linear properties of the ion acoustic wave including derivation of the dispersions relation with the effect of Landau damping and of an ambient magnetic field. The section also introduces the excitation processes of the ion acoustic wave due to an electron drift or to a stimulated Brillouin scattering. The nonlinear properties are introduced in Section III and IV. In Section III, incoherent nonlinear effects such as quasilinear and mode-coupling saturations of the instability are discussed. The coherent nonlinear effects such as the generation of ion acoustic solitons, shocks and weak double layers are presented in Section IV. (Auth.)

  5. Electrostatic coupling of ion pumps.

    Science.gov (United States)

    Nieto-Frausto, J; Lüger, P; Apell, H J

    1992-01-01

    In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation.

  6. Set-up with electrostatic analyzer for mass spectrometers

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Sysoev, A.A.; Samsonov, G.A.

    1977-01-01

    An attachment with an electrostatic analyzer that enables to implement a double focusing of ion beams when used in conjunction with a magnetic analyzer, is suggested. Used as the electrostatic analyzer is a cylindrical capacitor placed in a vacuum chamber. Apart from this, the attachment includes a vacuum pump, a nitrogen trap, a battery supply unit, one-beam ion receivers and a bellows inlet for capacitor adjustment. All assemblies and parts of the attachment are made of stainless steel. The test of a combined operation of the mass-spactrometer and the attachment indicate that the use of the attachment enables the utilization of sources which form ion beams with an energy dispersion of up to 1.5%, the mass-spectrometer resolving power being unchanged

  7. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  8. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Science.gov (United States)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  9. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  10. Analytical solutions of the electrostatically actuated curled beam problem

    KAUST Repository

    Younis, Mohammad I.

    2014-01-01

    This works presents analytical expressions of the electrostatically actuated initially deformed cantilever beam problem. The formulation is based on the continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We

  11. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  12. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  13. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  14. CSR: a new tool for storage and cooling of keV ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Froese, Michael; Blaum, Klaus; Crespo Lopez-Urrutia, Jose; Fellenberger, Florian; Grieser, Manfred; Kaiser, Dirk; Lange, Michael; Laux, Felix; Menk, Sebastian; Orlov, Dmitry A.; Repnow, Roland; Schroeter, Claus D.; Schwalm, Dirk; Sieber, Thomas; Ullrich, Joachim; Varju, Jozef; Hahn, Robert von; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Heber, Oded; Rappaport, Michael; Toker, Jonathan; Zajfman, Daniel [Weizman Institute of Science, Rehovot (Israel)

    2009-07-01

    An electrostatic Cryogenic Storage Ring (CSR) is currently being built in Heidelberg, Germany. The current status and final design of this ring, with a focus on the optimized 2 K chamber cooling, precision chamber suspension, and pumping down to extremely low pressures via cryogenic vacuum chambers will be presented. This ring will allow long storage times of highly charged ion and polyatomic molecular beams with energies in the range of keV per charge-state. Combining the long storage times with vacuum chamber temperatures approaching 2 K, infrared-active molecular ions will be radiatively cooled to their rotational ground states. Many aspects of this concept were experimentally tested with a cryogenic trap for fast ion beams (CTF), which has already demonstrated the storage of fast ion beams in a large cryogenic device. An upcoming test will investigate the effect of pre-baking the cryogenic vacuum chambers to 600 K on the cryogenic vacuum and the ion beam storage.

  15. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  16. Beam generated electrostatic electron waves in the magnetosphere

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1986-03-01

    The generation of growing electrostatic electron waves by electron beams in the ionosphere and magnetosphere is investigated. The auroral F-region, the high latitude exosphere, the auroral acceleration region around 1 Rsub(e), the outer plasmasphere and the plasmasheet are treated. It is found that auroral electron beams can amplify electrostatic waves in all these regions but in different k-ranges. The growth rate, in terms of ωsub(i)/ω, generally increases outward. The propagation direction range of the waves discussed varies from a narrow cone around the magnetic field lines to all directions except close to perpendicularity. Strong cyclotron resonance effects at propagation angles close to 90 degrees are not dealt with. The method used can easily be applied to any plasma system where free energy is available in the form of an electron beam, including laboratory plasma. (author)

  17. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  18. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  19. Electro-osmosis over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions

    Science.gov (United States)

    Ghosh, Uddipta; Chakraborty, Suman

    2016-06-01

    In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the "Zeta potential." Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.

  20. Electrode system design for acceleration of ion beam of given initial emittance

    International Nuclear Information System (INIS)

    Dzmuran, R.; Kuzmiak, M.; Novy, F.

    1986-01-01

    A method is described for calculating beam optical equipment, proceeding from the fact that the motion of the ion beam is in fact a transmission of emittance in the direction of the motion. The calculation of the transmission of emittance is simplified when we assume the transmission in the form of erect phase ellipses. The calculation procedure was used to design a system of electrodes for ion beam acceleration, consisting of three thick electrostatic lenses: an extracting, an accomodating and an accelerating lens. A graphical representation is given of the transmission of the erect phase ellipse through the individual lenses and through the whole system, and tabulated are values of the beam divergence, both in dependence on the voltage ratio on the electrodes. (A.K.)

  1. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  2. Invited review article: the electrostatic plasma lens.

    Science.gov (United States)

    Goncharov, Alexey

    2013-02-01

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  3. Electrostatic ion thrusters - towards predictive modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)

    2014-02-15

    The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. The Heidelberg CSR: Stored Ion Beams in a Cryogenic Environment

    International Nuclear Information System (INIS)

    Wolf, A.; Hahn, R. von; Grieser, M.; Orlov, D. A.; Fadil, H.; Welsch, C. P.; Andrianarijaona, V.; Diehl, A.; Schroeter, C. D.; Crespo Lopez-Urrutia, J. R.; Weber, T.; Mallinger, V.; Schwalm, D.; Ullrich, J.; Rappaport, M.; Urbain, X.; Haberstroh, Ch.; Quack, H.; Zajfman, D.

    2006-01-01

    A cryogenic electrostatic ion storage ring CSR is under development at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany. Cooling of the ultrahigh vacuum chamber is envisaged to lead to extremely low pressures as demonstrated by cryogenic ion traps. The ring will apply electron cooling with electron beams of a few eV up to 200 eV. Through long storage times of 1000 s as well as through the low wall temperature, internal cooling of infrared-active molecular ions to their rotational ground state will be possible and their collisions with merged collinear beams of electrons and neutral atoms can be detected with high energy resolution. In addition storage of slow highly charged ions is foreseen. Using a fixed in-ring gas target and a reaction microscope, collisions of the stored ions at a speed of the order of the atomic unit can be kinematically reconstructed. The layout and the cryogenic concept are introduced

  5. Ion-beam plasma and propagation of intense compensated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gabovich, M D [AN Ukrainskoj SSR, Kiev. Inst. Fiziki

    1977-02-01

    Discussed are the results of investigation of plasma properties received by neutralization of intense ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown that not only dynamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account in solving the problem of obtaining ''superdense'' compensated beams.

  6. Ion-beam plasma and propagation of intense compensated ion beams

    International Nuclear Information System (INIS)

    Gabovich, M.D.

    1977-01-01

    Discussed are the results of investigation of plasma properties recieved by neutralization of intensive ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown, that not only dinamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account at solving the problem of obtaining ''superdense'' compensated beams

  7. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  8. Performance Results for Building the 1 MV Electrostatic Accelerator at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    1 MV electrostatic accelerator of KOrea Multi-purpose Accelerator Complex (KOMAC) is being developed to satisfy the needs from the users, especially for the applications with a MeV range ion beam implantation. Table 1 shows specifications of the 1MV electrostatic accelerator. The accelerator consists of ion source, beam transport system and target chamber. The ion source and accelerating column are installed inside the pressure vessel of high voltage power supply. The layout of the system is shown in Fig. 1. A 1 MV electrostatic accelerator is being developed at KOMAC. The high voltage power supply is already developed. The 200 MHz RF ion source is now being tested in the 300 kV test-stand. In the test results, it is necessary to improve increasing RF power absorption into the plasma in order to supply 1 mA beam. For this goal, we need more reliable the matching circuit and should be modified the matching components.

  9. Properties of waves in an ion-beam plasma system

    International Nuclear Information System (INIS)

    Zank, G.P.; McKenzie, J.F.

    1988-01-01

    A multi-fluid approach is used to describe electrostatic interactions in an ion-beam plasma system. The structure of the wave equation governing the system exhibits the anisotropic and dispersive nature of the waves, whose properties are analysed in terms of the dispersion relation. The main purpose is to classify the different waves that can arise in an ion-beam plasma system in a systematic fashion. The classification is facilitated by introducing a three-parameter CMA diagram that illustrates the topological changes in not only the wavenumber, or refractive-index, surface but also the ray-velocity surface. Furthermore, an analytic expression governing wave amplification in an ion beam plasma is incorporated within the framework of a generalized CMA diagram. Such a description provides a simple interpretation for the onset of wave amplification in terms of a topological change in the refractive-index surface. It is hoped that by collating the wave properties in a unified form, many of the complicated wave features observed in an experiment may be interpreted more easily. (author)

  10. Heavy ion beam factory for material science based on the KEK digital accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Ken, E-mail: takayama@post.kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Tokyo Institute of Technology, Nagatusda, Yokohama, Knagawa 226-8502 (Japan); Adachi, Toshikazu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Arai, Teruo; Arakawa, Dai [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Asao, Hiroyuki [NEC Network-Sensor, Fuchu, Tokyo 183-8501 (Japan); Barata, Yuji; Harada, Shinya [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Tokyo City University, Todoroki, Tokyo 158-8586 (Japan); Horioka, Kazuhiko [Tokyo Institute of Technology, Nagatusda, Yokohama, Knagawa 226-8502 (Japan); Iwata, Taiki; Kadokura, Eiichi; Kwakubo, Tadamichi; Kubo, Tomio [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Leo, Kwee Wah [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Liu, Xingguaung [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Tokyo Institute of Technology, Nagatusda, Yokohama, Knagawa 226-8502 (Japan); Mochiki, Koichi [Tokyo City University, Todoroki, Tokyo 158-8586 (Japan); Munemoto, Naoya [Tokyo Institute of Technology, Nagatusda, Yokohama, Knagawa 226-8502 (Japan); Nakanishi, Hiroshi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Okada, Yoshihito [NEC Network-Sensor, Fuchu, Tokyo 183-8501 (Japan); Okamura, Katsuya [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); and others

    2013-11-01

    The KEK digital accelerator (DA) is an alternative to high-voltage electrostatic accelerators and conventional cyclotrons and synchrotrons, which are commonly used as swift heavy ion beam drivers. Compared with conventional accelerators, KEK-DA is capable of delivering a wider variety of ion species with various energies, as a result of its intrinsic properties. It is expected to serve as a heavy ion beam factory for research in materials science. Plans for its utilization include unique application programs, such as laboratory-based space science using virtual cosmic rays, heavy-ion mutagenesis in microorganisms, deep ion implantation, and modification of materials, which may be categorized into systematic studies of the spatial and temporal evolution of the locally and highly excited states of materials.

  11. Status of the SNS H- ion source and low-energy beam transport system

    International Nuclear Information System (INIS)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-01-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H - ion beams to the Spallation Neutron Source (SNS) Front End and the accelerator chain have been developed into a mature unit that will satisfy the operational needs through the commissioning and early operating phases of SNS. The ion source was derived from the SSC ion source, and many of its original features have been improved to achieve reliable operation at 6% duty factor, producing beam currents in the 35-mA range and above. The LEBT utilizes purely electrostatic focusing and includes static beam-steering elements and a pre-chopper. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on relevant commissioning results obtained with the SNS RFQ accelerator. Perspectives for further improvements will be outlined in concluding remarks

  12. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  13. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Asozu, T.; Sataka, M. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, {sup 132}Xe{sup 11+} and {sup 12}C{sup +}). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  14. Electrostatic quadrupole array for focusing parallel beams of charged particles

    International Nuclear Information System (INIS)

    Brodowski, J.

    1982-01-01

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators

  15. Development of three channel linear bipolar high voltage amplifier (±2 KV) for electrostatic steerer

    International Nuclear Information System (INIS)

    Rajesh Kumar; Mukesh Kumar; Suman, S.K.; Safvan, C.P.; Mandal, A.

    2011-01-01

    Electrostatic steerers and scanners are planned for low energy ion beam facilities at IUAC to steer and scan the ion beam on target. The power supplies for electrostatic steerers are high voltage bipolar DC amplifiers and for scanners are bipolar AC amplifiers. To fulfil the requirements a common unit has been designed and assembled for AC and DC applications. It can be used with electrostatic devices in scanning, steering and sweeping of low energy ion beams at high frequencies to attain uniform implantation. The unit consist of three independent limited bandwidth high voltage, linear bipolar amplifiers (for X-axis, Y-axis and Y1-dog leg plates). The unit has been provided with both local and remote control. (author)

  16. The beam bunching and transport system of the Argonne positive ion injector

    International Nuclear Information System (INIS)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (β ≤ .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/ΔM > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs

  17. The beam bunching and transport system of the Argonne positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  18. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  19. Electrostatic storage rings for atomic and molecular physics

    International Nuclear Information System (INIS)

    Schmidt, H T

    2015-01-01

    A significant number of electrostatic ion-storage rings have been built since the late 1990s or are currently in their construction or commisioning phases. In this short contribution, we attempt to supply an overview of these different facilities, while we also mention a selection of the electrostatic ion-beam traps that has been developed through the same time period and by some of the same research groups. (paper)

  20. Novel wave/ion beam interaction approach to isotope separation

    International Nuclear Information System (INIS)

    Post, R.F.; Lowder, R.S.; Schwager, L.A.; Barr, W.L.; Warner, B.E.

    1993-02-01

    Numerical simulations and experimental studies have been made related to the possibility of employing an externally imposed electrostatic potential wave to separate isotopes. This wave/ion interaction is a sensitive function of the wave/ion difference velocity and for the appropriate wave amplitude and wave speed, a lighter faster isotope will be reflected by the wave to a higher energy while leaving heavier, slower isotopes virtually undisturbed in energy -- allowing subsequent ion separation by simple energy discrimination. In these experiments, a set of some 200 individual, electrodes, which surrounded a microamp beam of neon ions, was used to generate the wave. Measurements of the wave amplitudes needed for ion reflection and measurements of the final energies of those reflected ions are consistent with values expected from simple kinetic arguments and with the more detailed results of numeric simulations

  1. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    OpenAIRE

    G. Fubiani; H. P. L. de Esch; A. Simonin; R. S. Hemsworth

    2008-01-01

    The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER) is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses). The resulting seco...

  2. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Areas, electrostatic septa in long straight sections 2 an 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, provide a vertical electric field to remove the ions created by the circulating beam in the residual gas. Here we see one of the electrostatic septa being assembled by Faustin Emery (left) and Jacques Soubeyran (right), in the clean room of building 867. See also 7501199, 7501201, 7801286 and further explanations there.

  3. Ion beams provided by small accelerators for material synthesis and characterization

    Science.gov (United States)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  4. Nanostructures by ion beams

    Science.gov (United States)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  5. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Bergueiro, J.; Igarzabal, M.; Suarez Sandin, J.C.; Somacal, H.R.; Thatar Vento, V.; Huck, H.; Valda, A.A.; Repetto, M.

    2011-01-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  6. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  7. Studies for determining thermal ion extraction potential for aluminium plasma generated by electron beam evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V Dileep; Barnwal, Tripti A; Mukherjee, Jaya; Gantayet, L M, E-mail: dileepv@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2010-02-01

    For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.

  8. A Scaled Beam-Combining Experiment for Heavy Ion Inertial Fusion

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.; Henestroza, E.; MacLaren, S.; Peters, C.; Seidl, P.

    1997-01-01

    Transverse beam combining is a cost-saving option employed in many designs for induction linac heavy ion fusion drivers. The resultant transverse emittance increase, due predominantly to enharmonic space charge forces, must be kept minimal so that the beam remains focusable at the target. A prototype combining experiment has been built and preliminary results are presented. Four sources each produce up to 4.8 mA Cs+ beams at 160 keV. Focusing upstream of the merge consists of four quadruples and a final combined-function element (quadruple ampersand dipole). All lattice elements of the prototype are electrostatic. Due to the small distance between beams near the merge (-3-4 mm), the electrodes here are a cage of small rods, each at different voltage

  9. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  10. Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion

    International Nuclear Information System (INIS)

    Miller, D.A.C.

    1994-12-01

    The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted

  11. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Eylon, S.

    1995-04-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  12. Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks

    International Nuclear Information System (INIS)

    Dieckmann, M E; Sarri, G; Kourakis, I; Borghesi, M; Bret, A; Perez Alvaro, E

    2012-01-01

    The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low. (paper)

  13. Transverse-structure electrostatic charged particle beam lens

    Science.gov (United States)

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  14. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    Science.gov (United States)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  15. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  16. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  17. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Science.gov (United States)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  18. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    International Nuclear Information System (INIS)

    Chen Teng; Central Florida Univ., Orlando, FL; Elias, L.R. R.; Central Florida Univ., Orlando, FL

    1995-01-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  19. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen Teng [University of Central Florida, Orlando, FL (United States). Center for Research in Electro-Optics and Lasers (CREOL)]|[Central Florida Univ., Orlando, FL (United States). Dept. of Physics; Elias, L.R. R. [University of Central Florida, Orlando, FL (United States). Center for Research in Electro-Optics and Lasers (CREOL)]|[Central Florida Univ., Orlando, FL (United States). Dept. of Physics

    1995-01-30

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  20. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A new ion-beam laboratory for materials research at the Slovak University of Technology

    Science.gov (United States)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  2. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  3. Investigation of electrostatic ion chromatography for the separation of inorganic ions

    OpenAIRE

    Twohill, Eadaoin

    2002-01-01

    The new technique of ‘electrostatic ion chromatography’ (ion chromatography using a zwittenomc stationary phase) has been applied to the separation of ions using pure water as an eluent, without the addition of any inorganic buffers or organic modifiers. The nature of the separation, le cationic or anionic, is dependent upon the nature of the zwittenomc stationary phase. In the work presented here, the zwittenomc surfactant Zwittergent 3-14 was used to functionalise an octadecylsihca stationa...

  4. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    application range of the EBI diagnostic method and to benchmark the theoretical model. To achieve this goal a code has been developed in the programming language Python. Different charge distributions were considered and the simulation results have been compared with the theoretical model. The numerical investigations have shown a very good agreement with the theoretical model for deflection angles up to 20 mrad. This value defines the limit for the applicability of the theoretical model. Moreover, the magnetic field of the ion beam has also been taken into acount in the simulations. The results show that at high ion beam currents - starting at about 1 A - the electrons experience a non-negligible displacement along the ion beam axis, which has to be taken into consideration in experiments with intense heavy ion beams. The electrons suffer practically the same displacement under the influence of the magnetic field, regardless of their offset. At an offset of 10 mm the deviation from the shift at the ion beam axis is less than 3 %. For the experimental investigations of the EBI diagnostic method an offline experiment had been set up at the HHT experimental area at GSI in Darmstadt. The Coulomb field of the ion beam had been simulated by electrostatically charged wires. In case of a single wire, the experimental results are in good agreement with the theoretical model for deflection angles up to 20 mrad. This confirms the results of the numerical studies. To simulate the field within an ion beam, several wires have been clamped parallel to each other within a plane perpendicular to the electron beam. The electrons thus could pass through the spaces between the wires. The results of this experiments have quantitatively confirmed the prediction of the theoretical model that the derivative of the deflection angle with respect to the offset is proportional to the charge distribution in the cross section of the ion beam. Quantitatively, however, deviations from the theoretical model

  5. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may mot be possible by other techniques

  6. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques

  7. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  9. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    Science.gov (United States)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  10. Modeling of negative ion extraction from a magnetized plasma source: Derivation of scaling laws and description of the origins of aberrations in the ion beam

    Science.gov (United States)

    Fubiani, G.; Garrigues, L.; Boeuf, J. P.

    2018-02-01

    We model the extraction of negative ions from a high brightness high power magnetized negative ion source. The model is a Particle-In-Cell (PIC) algorithm with Monte-Carlo Collisions. The negative ions are generated only on the plasma grid surface (which separates the plasma from the electrostatic accelerator downstream). The scope of this work is to derive scaling laws for the negative ion beam properties versus the extraction voltage (potential of the first grid of the accelerator) and plasma density and investigate the origins of aberrations on the ion beam. We show that a given value of the negative ion beam perveance correlates rather well with the beam profile on the extraction grid independent of the simulated plasma density. Furthermore, the extracted beam current may be scaled to any value of the plasma density. The scaling factor must be derived numerically but the overall gain of computational cost compared to performing a PIC simulation at the real plasma density is significant. Aberrations appear for a meniscus curvature radius of the order of the radius of the grid aperture. These aberrations cannot be cancelled out by switching to a chamfered grid aperture (as in the case of positive ions).

  11. Electron beam propagation in the ion-focused and resistive regimes

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Lampe, M.; Fernsler, R.; Slinker, S.P.

    1993-01-01

    Pinched propagation of intense relativistic electron beams occurs in several distinct pressure regimes. In low density gases (∼ 1-100 mtorr), the beam propagates in the ion-focused regime (IFR). The beam ionizes the neutral gas, and plasma electrons are ejected, leaving behind a positive ion column which pinches the beam electrostatically. At gas densities near 1 atm, the beam-generated plasma is resistive and the pinch effect is provided by the self-magnetic field of the beam. Beam transport experiments in both regimes have been performed on the Advanced Test Accelerator (ATA) at Lawrence Livermore National Lab. and on SuperIBEX at the Naval Research Lab. IFR methods have been employed in both experiments to transport the beam prior to injection into the air and to introduce a head-to-tail taper in the beam radius. IFR simulations have shown how the resulting beam radius and emittance profiles are influenced by gas density, chamber dimensions and entrance and exit foils. Beam propagation in dense gas is subject to disruption by the resistive hose instability. However, both experiments and simulations have shown that the emittance variation introduced by IFR transport can substantially reduce the growth of the hose instability. Both experiments have also propagated beams in reduced-density channels. Simulations predict that the channel may in some cases produce a moderate stabilizing and tracking effect arising from plasma currents flowing at the edge of the channel

  12. Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomic fraction >90 percent was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D+ beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. We observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  13. Microwave Ion Source and Beam Injection for an Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm 2 and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D + beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  14. Surrey Ion Beam Centre: the EPSRC MRF for ion beam applications - 01002

    International Nuclear Information System (INIS)

    Webb, R.P.

    2016-01-01

    The SIBC (Surrey Ion Beam Centre) is an element of the Virtual Ion Beam Centre that coordinates 3 U.K. experimental facilities: SIBC (University of Surrey) for implantation and ion beam applications, Miami and MEIS facility (University of Huddersfield) and gamma ray and neutron irradiation emulation facility (University of Manchester). The SIBC works actively with industry, developing bespoke processes and services, particularly for the photonics industry and provides ion beam facilities to about 20 companies across the world. It operates a stringent quality control program and is one of the few ion beam laboratories in the world to operate under ISO 9001 certification. The equipment of SIBC is presented and some applications of ion beam analysis concerning the identification of gunshot residues, the determination of the origin of a painting, the analysis of proteins are described. Different techniques such as PIXE (Particle Induced X-ray Emission), RBS (Rutherford Backscattering Spectroscopy), NRA (Nuclear Reaction Analysis), SIMS (Secondary Ion Mass Spectrometry) are also explained in the slides of the presentation that have been added at the end of the paper

  15. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  16. Parametric Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Prost, Lionel Robert

    2007-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K + ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (∼80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics

  17. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  18. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  19. Existence domain of electrostatic solitary waves in the lunar wake

    Science.gov (United States)

    Rubia, R.; Singh, S. V.; Lakhina, G. S.

    2018-03-01

    Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a "forbidden gap," the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.

  20. Electrostatic ion confinement in a magnetic mirror field

    International Nuclear Information System (INIS)

    Nishida, Y.; Kawamata, S.; Ishii, K.

    1976-08-01

    The electrostatic ion stoppering at the mirror point is demonstrated experimentally in a magnetic mirror field. The ion losses from the mirror throat are decreased to about 15% of the initial losses in a rather high plasma density (10 10 0 13 cm -3 ). It is discussed as a confinement mechanism of ions that particles are reflected back adiabatically at the throat of the magnetic mirror field supplemented by DC electric field. (auth.)

  1. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  2. Excitation of low-frequency electrostatic instability on the auroral ...

    African Journals Online (AJOL)

    Low-Frequency Electrostatic Instability That Is Observed By Both Ground Facilities And Satellites Have Been Studied In The Auroral Acceleration Region Consisting Of Hot Precipitating Electron Beam From The Magnetosphere, Cold Background Electron And Ion Beam Moving Upward Away From The Earth Along The ...

  3. Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem

    KAUST Repository

    Younis, Mohammad I.

    2014-01-01

    We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions

  4. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    Science.gov (United States)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  5. Using an electrostatic accelerator to determine the stereochemical structures of molecular ions

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1980-01-01

    Recent high-resolution measurements on the energy and angle distributions of the fragments produced when fast (MeV) molecular-ion beams from an electrostatic accelerator dissociate (Coulomb explode) in thin foils and in gases, offer promising possibilities for deducing the stereochemical structures of the molecular ions constituting the incident beams. Bond lengths have been determined in this way for several diatomic projectiles (H 2 + , HeH + , CH + , NH + , OH + , N 2 + , O 2 + , etc.) with an accuracy of approx. 0.01 A. H 3 + has been demonstrated (for the first time) to be equilateral triangular and the interproton distance measured. Measurements on single fragments from CO 2 + , N 2 O + , C 3 H 3 + , and CH/sub n/ + have revealed the gross structures of the projectiles. An apparatus has recently been constructed at Argonne to permit precise measurements on fragments in coincidence. The apparatus has been tested on a known structure (OH 2 + ). The O-H bond length was found to be 1.0 +- 0.04 A and the H-O-H bond angle was measured as 110 +- 2 0 . These values are in excellent agreement with those found in optical experiments (0.999 A and 110.5 0 ). This Coulomb explosion technique can be expected to be refined in accuracy and to be extended to a wide range of molecular ions whose structures are inaccessible by other means

  6. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; McClements, K.G.; Lashmore Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-01-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed: for fusion products in the outer midplane edge of TFTR supershots, υ birth A ; for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. A separate mechanism is proposed for the excitation of beam driven ICE in TFTR: electrostatic ion cyclotron harmonic waves, supported by strongly sub-Alfvenic beam ions, can be destabilized by a low concentration of such ions with a very anrrow spread of velocities in the parallel direction. 25 refs, 14 figs

  7. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  8. Beam-plasma instability in ion beam systems used in neutral beam generation

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.

    1977-02-01

    The beam-plasma instability is analyzed for the ion beams used for neutral beam generation. Both positive and negative ion beams are considered. Stability is predicted when the beam velocity is less than the electron thermal velocity; the only exception occurs when the electron density accompanying a negative ion beam is less than the ion density by nearly the ratio of electron to ion masses. For cases in which the beam velocity is greater than the electron thermal velocity, instability is predicted near the electron plasma frequency

  9. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    International Nuclear Information System (INIS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-01-01

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  10. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    Science.gov (United States)

    Pusztai, I.; TenBarge, J. M.; Csapó, A. N.; Juno, J.; Hakim, A.; Yi, L.; Fülöp, T.

    2018-03-01

    The existence and properties of low Mach-number (M≳ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of the electron-to-ion temperature ratio and the presence of impurities on both the maximum shock potential and the Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.

  11. Transport channel of secondary ion beam of experimental setup for selective laser ionization with gas cell GALS

    Science.gov (United States)

    Gulbekyan, G. G.; Zemlyanoy, S. G.; Bashevoy, V. V.; Ivanenko, I. A.; Kazarinov, N. Yu; Kazacha, V. I.; Osipov, N. F.

    2017-07-01

    GALS is the experimental setup intended for production and research of isobaric and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with the energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U-400M to the Pb target for production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of the SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the beam line for the transportation of the ions from the magnet focal plane to a particle detector. The results of simulation of the particle dynamics and the basic parameters of all elements of the beam line are presented.

  12. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  13. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    Directory of Open Access Journals (Sweden)

    G. Fubiani

    2008-01-01

    Full Text Available The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses. The resulting secondary particles (positive ions, neutrals, and electrons are accelerated and deflected by the electric and magnetic fields inside the accelerator and may induce more secondaries after a likely impact with the accelerator grids. This chain of reactions is responsible for a non-negligible heat load on the grids and must be understood in detail. In this paper, we will provide a comprehensive summary of the physics involved in the process of secondary emission in a typical ITER-like negative ion electrostatic accelerator together with a precise description of the numerical method and approximations involved. As an example, the multiaperture-multigrid accelerator concept will be discussed.

  14. Linear electrostatic waves in a three-component electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mugemana, A., E-mail: mugemanaa@gmail.com; Moolla, S. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lazarus, I. J. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Durban 4000 (South Africa)

    2014-12-15

    Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.

  15. Design, operational experiences and beam results obtained with the SNS H- ion source and LEBT at Berkeley Lab

    International Nuclear Information System (INIS)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-01-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H - ion beams to the Spallation Neutron Source (SNS)** Front End and the accelerator chain have been developed into a mature unit that fully satisfies the operational requirements through the commissioning and early operating phases of SNS. Compared to the early R and D version, many features of the ion source have been improved, and reliable operation at 6% duty factor has been achieved producing beam currents in the 35-mA range and above. LEBT operation proved that the purely electrostatic focusing principle is well suited to inject the ion beam into the RFQ accelerator, including the steering and pre-chopping functions. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on commissioning results obtained with the SNS RFQ and Medium-Energy Beam Transport (MEBT) system. Prospects for further improvements will be outlined in concluding remarks

  16. Electrostatic ion trap and Fourier transform measurements for high-resolution mass spectrometry

    International Nuclear Information System (INIS)

    Bhushan, K. G.; Gadkari, S. C.; Yakhmi, J. V.; Sahni, V. C.

    2007-01-01

    We report on the development of an electrostatic ion trap for high-resolution mass spectrometry. The trap works on purely electrostatic fields and hence trapping and storing of ions is not mass restrictive, unlike other techniques based on Penning, Paul, or radio frequency quadrupole ion traps. It allows simultaneous trapping and studying of multiple mass species over a large mass range. Mass spectra were recorded in ''dispersive'' and ''self-bunching'' modes of ions. Storage lifetimes of about 100 ms and mass resolving power of about 20 000 could be achieved from the fifth harmonic Fourier transform spectrum of Xe ions recorded in the self-bunching mode

  17. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  18. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  19. Stripline fast faraday cup for measuring GHz structure of ion beams

    International Nuclear Information System (INIS)

    Bogaty, J.M.

    1992-01-01

    This patent describes an apparatus for measuring the structure on ion beams. It comprises a dielectric strip with an opening therethrough to create an air gap from one side of the dielectric strip to the other; a conductive stripeline bonded to one side of the dielectric strip and a groundplane bonded to the opposing side of the dielectric strip wherein the airgap remains open; a thin dielectric film coating the groundplane; a second groundplane adhering to the thin dielectric film wherein a portion of the thin dielectric film adjacent to the air gap is exposed; a fine mesh electrostatic screen bonded to the second groundplane directly over the air gap; means for matching the impedance at the electrostatic screen with that of the stripline; a Faraday cup mounted opposite the electrostatic screen with a drift space between the electrostatic screen and the Faraday cup; means for reducing RF reflections from the stripline through the use of a terminating impedance; means for biasing the electrostatic screen; means for outputting information to an amplifier; and a measuring device coupled to the amplifier where the measuring device receives information from the amplifier

  20. Beam Extraction and Transport

    CERN Document Server

    Kalvas, T.

    2013-12-16

    This chapter gives an introduction to low-energy beam transport systems, and discusses the typically used magnetostatic elements (solenoid, dipoles and quadrupoles) and electrostatic elements (einzel lens, dipoles and quadrupoles). The ion beam emittance, beam space-charge effects and the physics of ion source extraction are introduced. Typical computer codes for analysing and designing ion optical systems are mentioned, and the trajectory tracking method most often used for extraction simulations is described in more detail.

  1. Dynamical chaos of plasma ions in electrostatic waves

    International Nuclear Information System (INIS)

    Fasoli, A.; Kleiber, R.; Tran, M.Q.; Paris, P.J.; Skiff, F.

    1992-09-01

    Chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric response and the microscopic heating mechanisms have been investigated via optical diagnostic techniques based on laser induced fluorescence. Observations of test-particle dynamical evolution indicate an exponential separation of initially close ion trajectories. (author) 5 figs., 20 refs

  2. Reaching for highest ion beam intensities through laser ion acceleration and beam compression

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dennis; Brabetz, Christian; Blazevic, Abel; Bagnoud, Vincent; Weih, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Jahn, Diana; Ding, Johannes; Roth, Markus [TU Darmstadt (Germany); Kroll, Florian; Schramm, Ulrich; Cowan, Tom [Helmholtzzentrum Dresden Rossendorf (Germany); Collaboration: LIGHT-Collaboration

    2016-07-01

    Laser ion acceleration provides access to ion sources with unique properties. To use these capabilities the LIGHT collaboration (Laser Ion Generation Handling and Transport) was founded. The aim of this collaboration is the beam transport and manipulation of laser accelerated ions with conventional accelerator structures. Therefor a dedicated beam line has been build up at GSI Helmholtzzentrum fuer Schwerionenforschung. With this beam line the manipulation of the transversal and also the longitudinal beam parameters has been achieved. It has been shown that laser generated ion beams can be transported over more than 6 meters and pulses shorter than 300 ps can be generated at this distance. This Talk will give an overview over the recent developments and plans of the LIGHT collaboration.

  3. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  4. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  5. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  6. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  7. Ion-sorption pumps with an electrostatic field

    International Nuclear Information System (INIS)

    Larionov, L.S.; Leksakov, O.P.; Serbinov, A.N.

    1979-01-01

    Parameters are investigated and the choise of optimal operation regimes is made to develop the construction and production of an ion-sorption pump with an electrostatic field (orbitron). Described is the construction of ''Orbitron'' type and the results of bench marks, given are optimal operation regimes, dependence of pumping-out rate on pressure and other parameters. Operarion experience of these pumps on EG-8, EG-5 electrostatic accelerators, as well as on the KGE-300 accelerator in JINR showed their reliable operation during a long period of time and service simplicity. The parameters of the operation regime little differed from those, obtained earlier during bench marks

  8. Proton-beam writing channel based on an electrostatic accelerator

    Science.gov (United States)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  9. Development of focused ion beam systems with various ion species

    International Nuclear Information System (INIS)

    Ji Qing; Leung, K.-N.; King, Tsu-Jae; Jiang Ximan; Appleton, Bill R.

    2005-01-01

    Conventional focused ion beam systems employ a liquid-metal ion source (LMIS) to generate high-brightness beams, such as Ga + beams. Recently there has been an increased need for focused ion beams in areas like biological studies, advanced magnetic-film manufacturing and secondary-ion mass spectroscopy (SIMS). In this article, status of development on focused ion beam systems with ion species such as O 2 + , P + , and B + will be reviewed. Compact columns for forming focused ion beams from low energy (∼3keV), to intermediate energy (∼35keV) are discussed. By using focused ion beams, a SOI MOSFET is fabricated entirely without any masks or resist

  10. Accumulation of multicharged ions in plasma with electrostatic well induced by ECR

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.; Golovanivsky, K.S.; Schepilov, V.D.

    1978-01-01

    In a magnetic field of mirror configuration supplemented in its central part by a microwave field (lambda=12.6 cm, P=20 W) a steady-state plasma (n=1x10 10 cm -3 , Tsub(ec)=40 eV) was produced. ECR condition was fulfilled in a circular region spaced at 1 cm from the plasma axis. In this 'hot' zone the electron temperature was Tsub(eh) = 1.5 keV. The temperature gradient creates an electrostatic well for ions in the perpendicular plane. The anisotropy of electron temperature in a mirror field caused the formation of an axial electrostatic well for ions. Thus, three-dimensional electrostatic pit was produced and the ion's life-time was as long as their charge was high. With H.F. power absorbed by the plasma 8-10 W the authors obtained comparable quantities of Ar 1+ , Ar 2+ , Ar 3+ , Ar 4+ , Ar 5+ , Ar 6+ and also ions of impurities C + , C 2+ , C 3+ , H + , H + 2 . The total current density of ions extracted from plasma is of 20 mA cm -2 . (Auth.)

  11. The uses of electrostatic bending and focussing elements for auxiliary storage rings in large proton collider tunnels

    International Nuclear Information System (INIS)

    Winn, D.R.

    1987-01-01

    The authors discuss the possibility of using electrostatic elements, instead of magnets, for bending and focusing in auxiliary electron storage rings in the tunnels of large proton accelerators. For example, in the proposed SSC tunnel, electron beam energies of --100 GeV appear to be possible. Benefits of electrostatic systems over conventional magnets in cost, aperture, beam dynamics, radiation hardness, and power are presented. Electrostatic element designs are discussed, as are applications to electron, anti-proton and heavy ion beams

  12. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G V [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  13. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    Science.gov (United States)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  14. Development of a beam ion velocity detector for the heavy ion beam probe

    International Nuclear Information System (INIS)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-01-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  15. Development of a beam ion velocity detector for the heavy ion beam probe

    Energy Technology Data Exchange (ETDEWEB)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  16. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Becker, R. [Institut fur Angewandte Physik der Universitaet, D-60054 Frankfurt/M (Germany); Hamm, R. W. [R and M Technical Enterprises, Inc., 4725 Arlene Place, Pleasanton, California 94566 (United States); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  17. A specialized bioengineering ion beam line

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I.G.; Wiedemann, H.

    2007-01-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology

  18. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  19. Spatially-Resolved Ion Trajectory Measurements During Cl2 Reactive Ion Beam Etching and Ar Ion Beam Etching

    International Nuclear Information System (INIS)

    Vawter, G. Allen; Woodworth, Joseph R.; Zubrzycki, Walter J.

    1999-01-01

    The angle of ion incidence at the etched wafer location during RIBE and IBE using Cl 2 , Ar and O 2 ion beams has been characterized using an ion energy and angle analyzer. Effects of beam current and accelerator grid bias on beam divergence and the spatial uniformity of the spread of incident angles are measured. It is observed that increased total beam current can lead to reduced current density at the sample stage due to enhanced beam divergence at high currents. Results are related to preferred etch system design for uniform high-aspect-ratio etching across semiconductor wafers

  20. Determination of molecular-ion structures through the use of accelerated beams

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1987-01-01

    In this talk we report on recent research on molecular-ion structures using fast molecular-ion beams provided by Argonne's 5-MV Dynamitron accelerator. The method has become known as the ''Coulomb-explosion'' technique. When molecular-ion projectiles travelling at velocities of a few percent of the velocity of light strike a foil, the electrons that bind the molecular projectiles are almost always totally stripped off within the first few Angstroms of penetration into the solid target. This leaves a cluster of bare (or nearly bare) nuclei which separate rapidly as a result of their mutual Coulomb repulsion. This violent dissociation process in which the initial electrostatic potential energy is converted into kinetic energy of relative motion in the center-of-mass, has been termed a ''Coulomb explosion.'' 4 refs., 2 figs

  1. Spin characteristics of ion beams during the motion of electromagnetic elements

    Science.gov (United States)

    Zaika, N. I.; Magal, M. I.

    The matrix method for description of the polarization components for ions moving through different electromagnetic systems: dipole magnets, cycle accelerators, quadrupole lenses, solenoids, wine filters, and electrostatic mirrors is developed in the paper. The expressions for elements of the transportation matrixes for the above-mentioned systems taking account of the projective trajectories are obtained. The program, TRANSPIN, for calculation of the beam polarization components after motion by ions of arbitrary number of electromagnetic elements along any possible trajectory is presented. The calculation results made for some of transportation lines for the isochronous cyclotron U-240 are discussed (trajectories for the ion motion were calculated by CERN-program TRANSPORT). The conditions for decrease of the polarization component dispersion because of difference between trajectories of the particles motion are also defined.

  2. Ion beam generation and focusing

    International Nuclear Information System (INIS)

    Miller, P.A.; Mendel, C.W.; Swain, D.W.; Goldstein, S.A.

    1975-01-01

    Calculations have shown that efficiently generated and focused ion beams could have significant advantages over electron beams in achieving ignition of inertially-confined thermonuclear fuel. Efficient ion beam generation implies use of a good ion source and suppression of net electron current. Net electron flow can be reduced by allowing electrons to reflex through a highly transparent anode or by use of transverse magnetic fields (either beam self-fields or externally applied fields). Geometric focusing can be achieved if the beam is generated by appropriately shaped electrodes. Experimental results are presented which demonstrate ion beam generation in both reflexing and pinched-flow diodes. Spherically shaped electrodes are used to concentrate a proton beam, and target response to proton deposition is studied

  3. Ion beam probe plasma diagnostic system. Technical progress report, 1 February 1977--31 December 1978

    International Nuclear Information System (INIS)

    Hickok, R.L.; Jennings, W.C.; Woo, J.T.; connor, K.A.

    1979-01-01

    During this time, reliable operation of the research tokamak, RENTOR, has been established but thedischarge is characterized by a large runaway populaion producing a strong x-ray flux. An ion beam probe and a Thomson scattering diagnostic system have been installed on RENTOR, but no definitive results have been obtained due to the large noise signal generated by the x-ray flux. The ALICE baseball coil has been obtained on loan from LLL and is being set up as the ALEX mirror system. It will be used for particle beam diagnostic development in 3 dimensional magnetic well geometry. A heavy neutral beam diagnostic system has been designed and is under construction for measuring the space potential in ALEX. Improvements in the focusing properties of ion guns and in the sensitivity of the feedback controlled electrostatic energy analyzers have been obtained

  4. Focused proton beams propagating in reactor of fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Niu, K [Teikyo Heisei Univ., Uruido, Ichihara, Chiba (Japan)

    1997-12-31

    One of the difficult tasks of light ion beam fusion is to propagate the beam in the reactor cavity and to focus the beam on the target. The light ion beam has a certain local divergence angle because there are several causes for divergence at the diode. The electrostatic force induced at the leading edge causes beam divergence during propagation. To confine the beam within a small radius during propagation, the magnetic field must be employed. Here the electron beam is proposed to be launched simultaneously with the launching of the proton beam. If the electron beam has the excess current, the beam induces a magnetic field in the negative azimuthal direction, which confines the ion beam within a small radius by the electrostatic field as well as the electron beam by the Lorentz force. The metal guide around the beam path helps the beam confinement and reduces the total amount of magnetic field energy induced by the electron current. (author). 2 figs., 15 refs.

  5. Fusion at counterstreaming ion beams - ion optic fusion (IOF)

    International Nuclear Information System (INIS)

    Gryzinski, M.

    1981-01-01

    The results of investigation are briefly reviewed in the field of ion optic fusion performed at the Institute of Nuclear Research in Swierk. The ion optic fusion concept is based on the possibility of obtaining fusion energy at highly ordered motion of ions in counterstreaming ion beams. For this purpose TW ion beams must be produced and focused. To produce dense and charge-neutralized ion beams the selective conductivity and ballistic focusing ideas were formulated and used in a series of RPI devices with low-pressure cylindrical discharge between grid-type electrodes. 100 kA, 30 keV deuteron beams were successfully produced and focused into the volume of 1 cm 3 , yielding 10 9 neutrons per 200 ns shot on a heavy ice target. Cylindrically convergent ion beams with magnetic anti-defocusing were proposed in order to reach a positive energy gain at reasonable energy level. (J.U.)

  6. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  7. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Cartier, S.L.; D'Angelo, N.; Merlino, R.L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f> or approx. =f/sub c/i, where f/sub c/i is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism

  8. Upgrading the Lyon cluster ion accelerator by a radiofrequency quadrupole

    International Nuclear Information System (INIS)

    Moser, H.O.; Schempp, A.

    1987-02-01

    The design is presented of an RFQ with variable final energy suitable to post-accelerate cluster ions from the Lyon electrostatic cluster-ion accelerator in the mass ranges from 1 to 25 μ and 1 to 50 μ to kinetic energies of 1.32-2.5 MeV and 2.64-5.0 MeV for cw and pulsed operation, respectively. Furthermore, a beam line is described which matches the electrostatically preaccelerated beam to the RFQ by use of electrostatic quadrupole triplets. When used without RFQ this beam line serves to improve beam parameters on the target, such as the particle flux density or beam divergence. The estimated costs of this project are about DM 345 000.- or FF 1 200 000.- without VAT. (orig.) [de

  9. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight section 2 and 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, establish a vertical electrical field to remove the ions created by the circulating beam in the residual gas. See 7801286 for such a septum in its tank, and 7501201 for a detailed view of the wire suspension. See also 7501120X.

  10. Ion-Ion Plasmas Produced by Electron Beams

    Science.gov (United States)

    Fernsler, R. F.; Leonhardt, D.; Walton, S. G.; Meger, R. A.

    2001-10-01

    The ability of plasmas to etch deep, small-scale features in materials is limited by localized charging of the features. The features charge because of the difference in electron and ion anisotropy, and thus one solution now being explored is to use ion-ion plasmas in place of electron-ion plasmas. Ion-ion plasmas are effectively electron-free and consist mainly of positive and negative ions. Since the two ion species behave similarly, localized charging is largely eliminated. However, the only way to produce ion-ion plasmas at low gas pressure is to convert electrons into negative ions through two-body attachment to neutrals. While the electron attachment rate is large at low electron temperatures (Te < 1 eV) in many of the halogen gases used for processing, these temperatures occur in most reactors only during the afterglow when the heating fields are turned off and the plasma is decaying. By contrast, Te is low nearly all the time in plasmas produced by electron beams, and therefore electron beams can potentially produce ion-ion plasmas continuously. The theory of ion-ion plasmas formed by pulsed electron beams is examined in this talk and compared with experimental results presented elsewhere [1]. Some general limitations of ion-ion plasmas, including relatively low flux levels, are discussed as well. [1] See the presentation by D. Leonhardt et al. at this conference.

  11. Laboratory Measurements of Electrostatic Solitary Structures Generated by Beam Injection

    International Nuclear Information System (INIS)

    Lefebvre, Bertrand; Chen, Li-Jen; Gekelman, Walter; Pribyl, Patrick; Vincena, Stephen; Kintner, Paul; Pickett, Jolene; Chiang, Franklin; Judy, Jack

    2010-01-01

    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λ De ) enabled the measurement of positive potential pulses with half-widths 4 to 25λ De and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

  12. Nuclear fusion ion beam source composed of optimum channel wall

    International Nuclear Information System (INIS)

    Furukaw, T.

    2007-01-01

    Full text of publication follows: Numerical and experimental researches of the hall-type beam accelerator was conducted by highlighting both neutral species and material of acceleration channel wall. The hall-type beam accelerator is expected as ion beam source for nuclear fusion since it could product ion beam density over 10 3 times as high as that of electrostatic accelerator, which is used regularly as beam heating device, because it is proven that the beam heating method could accelerate ion to high energy beam by electric field and heat plasma to ultra high temperature of 100 million degrees or more. At high-voltage mode of DC regime that is normal operational condition, however, the various plasma MHD (magneto-hydrodynamic) instabilities are generated. In particular, the large-amplitude and low-frequency plasma MHD instability in the tens of kHz among them has been a serious problem that should be solved to improve the operational stability and the system durability. So, we propose a hall-type beam accelerator with new design concepts; both acquisition of simultaneous solution for reducing the plasma MHD instability and the accelerator core overheating and optimum combination of the acceleration channel wall material. The technologies for this concept are as follows: 1) To increase neutral species velocity-inlet in acceleration channel by preheating propellant through circularly propellant conduit line inside accelerator system could bring about the lower amplitude of the instability. 2) Through this method, the accelerator system is cooled, and the higher thrust and specific-impulse is produced with hardly changing thrust efficiency at the same time. 3) To select BN (Boron- Nitride) and Al 2 O 3 as wall material of ionization- and acceleration-zone in acceleration channel respectively having different secondary-electron emission-coefficient could achieve the higher-efficiency and -durability. The hall-type beam accelerator designed using these technologies

  13. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  14. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  15. Spin characteristics of ion beams during the motion of electromagnetic elements

    International Nuclear Information System (INIS)

    Zaika, N.I.; Magal', M.I.

    1991-01-01

    The matrix method for description of the polarization components for ions moving through different electromagnetic systems: dipole magnets, cycle accelerators, quadrupole lenses, solenoids, wine filters, electrostatic mirrors is developed in the paper. The expressions for elements of the transportation matrixes for the above-mentioned systems taking account of the projective trajectories are obtained. The programme TRANSPIN for calculation of the beam polarization components after motion by ions of arbitrary number of electromagnetic elements along any possible trajectory is worked out. The calculation results made for some of transportation lines for the isochronous cyclotron U-240 are discussed (trajectories for the ion motion were calculated by CERN-programme TRANSPORT). The conditions for decrease of the polarization component dispersion because of difference between trajectories of the particles motion are also defined. 6 refs.; 2 figs.; 4 tables. (author)

  16. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar{sup +} beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ∼5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  17. Nonlinear electrostatic structures in homogeneous and inhomogeneous pair-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.; Shah, A.; Haque, Q.

    2012-01-01

    The nonlinear electrostatic structures such as solitons, shocks were studied in homogeneous, unmagnetized pair-ion plasma. The dissipation in the system was taken through kinematic viscosities of both pair-ion species. The one dimensional (Korteweg-de Vries-Burgers) KdVB equation was derived using reductive perturbation method. The analytical solution of KdVB equation was obtained using tanh method. It was found that solitons and monotonic shocks structures were formed in such type of plasmas depending on the value of dissipation in the system. Both compressive and refractive structures of solitons and monotonic shocks were obtained depending on the temperatures of negative and positive ions. The oscillatory shock structures in pair-ion plasmas were also obtained and its necessary conditions of formation were discussed. The acoustic solitons were also investigated in inhomogeneous unmagnetized pair-ion plasmas. The Korteweg-de Vries (KdV) like equation with an additional term due to density gradients was obtained by employing the reductive perturbation technique. It was found that amplitude of both compressive and refractive solitons was found to be enhanced as the density gradient parameter was increased. The Landau damping rates of electrostatic ion waves were studied for non-Maxwellian or Lorentzian pair-ion plasmas. The Val sov equation was solved analytically for weak damping effects in pair-ion plasma. It was found that Landau damping rate of ion plasma wave was increased in Lorentzian case in comparison with Maxwellian pair-ion plasmas. The numerical results were obtained by taking into account the parameters of pair-ion plasmas produced in laboratory experiments in Japan. (orig./A.B.)

  18. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    Science.gov (United States)

    Margarone, D.; Krása, J.; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, A.; Prokůpek, J.; Láska, L.; Mocek, T.; Ullschmied, J.; Rus, B.

    2011-05-01

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  19. Quadrupole beam-transport experiment for heavy ions under extreme space charge conditions

    International Nuclear Information System (INIS)

    Chupp, W.; Faltens, A.; Hartwig, E.C.

    1983-03-01

    A Cs ion-beam-transport experiment is in progress to study beam behavior under extreme space-charge conditions. A five-lens section matches the beam into a periodic electrostatic quadrupole FODO channel and its behavior is found to agree with predictions. With the available parameters (less than or equal to 200 keV, less than or equal to 20 mA, πepsilon/sub n/ greater than or equal to 10 - 7 π rad-m, up to 41 periods) the transverse (betatron) occillation frequency (nu) can be depressed down to one-tenth of its zero current value (nu/sub 0/), where nu/sup 2/ = nu/sub 0//sup 2/ -#betta#/sub p/ 2 /2, and #betta#/sub p/ is the beam plasma frequency. The current can be controlled by adjustment of the gun and the emittance can be controlled independently by means of a set of charged grids

  20. Laboratory of ion beam applications at ATOMKI

    International Nuclear Information System (INIS)

    Borbely-Kiss, I.; Huszank, R.; Kertesz, Zs.; Kiss, A.Z.; Koltay, E.; Rajta, I.; Simon, A.; Szabo, Gy.; Szikszai, Z.; Szilasi, S.Z.; Szoboszlai, Z.; Uzonyi, I.

    2008-01-01

    Introduction. The Laboratory of Ion Beam Applications of ATOMKI is devoted to applications of atomic and nuclear physics in the fields of environmental research, biomedicine, geology, materials and surface science (including ion beam induced damage investigations and proton beam lithography) and cultural heritage research. We perform our work in the frame of various projects and collaborations: EU, IAEA, R and D, OTKA, etc. Our laboratory provides service for external (national and international) and internal users and contributes to higher education, as well. The Laboratory is based on the home-made 5 MV Van de Graaff (VdG) electrostatic accelerator of the institute. The accelerator was put into operation in 1971 and in the beginning it supplied ion beams exclusively for nuclear physics. A few years later with the measurements of K-shell ionization cross sections the door became open also for basic atomic physics. In parallel with this basic study, the application of proton induced X-ray emission (PIXE) for the elemental analysis of biological (hair, erythrocyte and blood plasma) samples and atmospheric aerosols also started. The first paper on PIXE, a methodological one, was published in 1978. The experience gained on these applications and later on archaeology led to the construction of complex PIXE chambers, which were sold, together with the corresponding know-how, to institutions in China, Portugal, Bangladesh, Jordan, North Korea, Singapore, Cuba and Mexico through the International Atomic Energy Agency (IAEA). For the evaluation of PIXE spectra the laboratory has been continuously developing its own computer programme package. The first version of this continuous development was published in 1988. In the meantime a second IBA analysis method, the proton induced gamma ray emission (PIGE), was introduced in the laboratory and was applied simultaneously with PIXE. Application of deuteron induced gamma ray emission (DIGE) started more than a decade later. A

  1. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  2. Noncontact measurement of electrostatic fields: Verification of modeled potentials within ion mobility spectrometer drift tube designs

    International Nuclear Information System (INIS)

    Scott, Jill R.; Tremblay, Paul L.

    2007-01-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity

  3. Investigation of beam transmission in A 9SDH-2 3.0 MV NEC pelletron tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Deoli, Naresh T.; Kummari, Venkata C.; Pacheco, Jose L.; Duggan, Jerome L.; Glass, Gary A.; McDaniel, Floyd D.; Reinert, Tilo; Rout, Bibhudutta; Weathers, Duncan L. [Ion Beam Modification And Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-04-19

    Electrostatic tandem accelerators are widely used to accelerate ions for experiments in materials science such as high energy ion implantation, materials modification, and analyses. Many applications require high beam current as well as high beam brightness at the target; thus, maximizing the beam transmission through such electrostatic accelerators becomes important. The Ion Beam Modification and Analysis Laboratory (IBMAL) at University of North Texas is equipped with four accelerators, one of which is a 9SDH-2 3.0 MV National Electrostatic Corporation (NEC) Pelletron Registered-Sign tandem accelerator. The tandem accelerator is equipped with three ion sources: one radio frequency-He ion source (Alphatross) and two ion sources of Cs-sputter type, the SNICS II (Source of Negative Ions by Cesium Sputtering) and a Cs-sputter source for trace-element accelerator based mass spectrometry. This work presents a detailed study of the beam transmission of hydrogen, silicon, and silver ions through the accelerator using the SNICS ion source with injection energies ranging from 20 keV to 70 keV. The beam transmission is quantified for three different terminal voltages: 1.5 MV, 2.0 MV and 2.5 MV. For a given terminal voltage, it has been found that beam transmission is strongly dependent on the ion source injector potential. Details of experiments and data analysis are presented.

  4. Control of colliding ion beams

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to a method and system for enhancing the power-producing capability of a nuclear fusion reactor, and more specifically to methods and structure for enhancing the ion density in a directed particle fusion reactor. In accordance with the invention, oppositely directed ion beams constrained to helical paths pass through an annular reaction zone. The object is to produce fusion reactions due to collisions between the ion beams. The reaction zone is an annulus as between an inner-cylindrical electrode and an outer-cylindrical coaxial electrode. The beams are enhanced in ion density at spaced points along the paths by providing spline structures protruding from the walls of the electrodes into the reaction zone. This structure causes variations in the electric field along the paths followed by the ion beams. Such fields cause the beams to be successively more and less concentrated as the beams traverse the reaction zone. Points of high concentration are the points at which fusion-producing collisions are most likely to take place

  5. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  6. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  7. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  8. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  9. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-01-01

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H − extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  10. Ion beams in materials processing and analysis

    CERN Document Server

    Schmidt, Bernd

    2012-01-01

    This book covers ion beam application in modern materials research, offering the basics of ion beam physics and technology and a detailed account of the physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning.

  11. Vacuum system of tandem type electrostatic accelerator of Kyushu University

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1981-01-01

    In the tandem type electrostatic accelerator of Kyushu University, the problem of vacuum in the beam transport system including the accelerator tube has been considered as one of the important elements for the performance of the electrostatic accelerator from the beginning of construction. Though the three-stage tandem accelerating scheme was considered as the beam transport system at the beginning of the program, in which the existing 6 MV Van de Graaf accelerator was to be used as the injector, three types of ion sources are prepared at present; the sputter ion source to generate negative heavy ions, the polarizing ion source to generate negative polarized protons or deuterons, and direct extraction type negative ion source. Ultrahigh evacuating system, in which the sputter ion pump is mainly employed, and the turbo-molecular pump is used supplementarily, was installed in the vacuum system. The vacuum of approximately 10 - 9 Torr level off-beam at the inlet or outlet of the accelerator tube and approximately 10 - 8 Torr level in the tubing section in the center terminal were achieved. Since the upper limit of withstand voltage of the accelerating tube was not able to be satisfied for the insufficient baking at the beginning, it was finally decided that the accelerating tube should be heated by directly supplying power to the electrode through low voltage discharge in the tube. This method enabled the generated voltage at the terminal to exceed 10 MV. (Wakatsuki, Y.)

  12. The nuclear interaction analysis methods for diagnostics of high power ion beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhkov, V A; Grushin, I I; Remnev, G E [Nuclear Physics Inst., Tomsk (Russian Federation)

    1997-12-31

    The complex of Nuclear Interaction Analysis Methods including charged particle activation analysis (CPAA and HIAA), spectrometry of ion induced gamma-emission (PIGE and HIIGE) , characteristic X-ray emission (PIXE), and Rutherford Backscattering Spectrometry (RBS), have been used for diagnostics of the High Power Ion Beam (HPIB) assisted technologies. Accelerated ion beams from the EG-2.5 electrostatic generator and U-120 cyclotron were used for implementation of the techniques. The complex allows a lot of problems of elemental and isotopic analysis to be addressed. First, it is the determination of micro- and macrocomponents of modified materials; second, determination of surface density of thin films, multilayers and coatings, total surface gaseous contamination and amounts of the elements implanted in specimens; third, measurement of concentration depth profiles of the elements. Experiments have shown that the preferable application of nuclear analysis methods allows us to avoid the considerable errors arising when the concentration depth profiles of elements are measured by SIMS or AES in studies of mass transfer processes induced by HPIBs. (author). 1 tab., 2 figs., 3 refs.

  13. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1993-05-01

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T i ∼ 1/40 eV. Taking advantage of the relatively high field and long device length of L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas

  14. Heavy ion beams from the new Hungarian ECR ion source

    International Nuclear Information System (INIS)

    Biri, S.; Valek, A.; Ditroi, F.; Koivisto, H.; Arje, J.; Stiebing, K.; Schmidt, L.

    1998-01-01

    The first beams of highly charged ions in Hungary were obtained in fall of 1996. The new 14.5 GHz ECR ion source of ATOMKI produced beams of multiply charged ions with remarkable intensities at first experiments. Since then, numerous further developments were carried out. An external electrondonor electrode drastically increased the plasma density and, consequently, the intensity of highly charged ions. These upgrades concentrated mainly on beams from gaseous elements and were carried out by the ECRIS team of ATOMKI. Another series of experiments - ionising from solids - however, was done in the framework of an international collaboration. The first metal ion beam has been extracted from the ECRIS in November 1997 using the known method of Metal Ions from Volatile Compounds (MIVOC). The possibility to put the MIVOC chamber inside the ion source was also tested and the dosing regulation problem of metal vapours inside the ion source was solved. As a result, beams of more than 10 μA of highly charged Fe and Ni ions were produced. (author)

  15. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    Science.gov (United States)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  16. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Daudin, L., E-mail: daudin@cenbg.in2p3.fr [Université Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Barberet, Ph.; Serani, L.; Moretto, Ph. [Université Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA’s nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  17. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Jeong-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yu-Seok [Dongguk Univ.., Gyeongju (Korea, Republic of)

    2014-10-15

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand.

  18. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    International Nuclear Information System (INIS)

    Park, Sae-Hoon; Kim, Jeong-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub; Kim, Yu-Seok

    2014-01-01

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand

  19. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    International Nuclear Information System (INIS)

    Maschke, A. W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly

  20. Observation of High-Frequency Electrostatic Waves in the Vicinity of the Reconnection Ion Diffusion Region by the Spacecraft of the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.

  1. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  2. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Directory of Open Access Journals (Sweden)

    Minárik Stanislav

    2015-08-01

    Full Text Available A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage.

  3. Transferability of polarizable models for ion-water electrostatic interaction

    International Nuclear Information System (INIS)

    Masia, Marco

    2009-01-01

    Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li + - water and Cl - -water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.

  4. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  5. First results from negative ion beam extraction in ROBIN in surface mode

    Science.gov (United States)

    Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.

    2017-08-01

    ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the

  6. Demonstration of electronic pattern switching and 10x pattern demagnification in a maskless micro-ion beam reduction lithography system

    International Nuclear Information System (INIS)

    Ngo, V.V.; Akker, B.; Leung, K.N.; Noh, I.; Scott, K.L.; Wilde, S.

    2002-01-01

    A proof-of-principle ion projection lithography (IPL) system called Maskless Micro-ion beam Reduction Lithography (MMRL) has been developed and tested at the Lawrence Berkeley National Laboratory (LBNL) for future integrated circuits (ICs) manufacturing and thin film media patterning [1]. This MMRL system is aimed at completely eliminating the first stage of the conventional IPL system [2] that contains the complicated beam optics design in front of the stencil mask and the mask itself. It consists of a multicusp RF plasma generator, a multi-beamlet pattern generator, and an all-electrostatic ion optical column. Results from ion beam exposures on PMMA and Shipley UVII-HS resists using 75 keV H+ are presented in this paper. Proof-of-principle electronic pattern switching together with 10x reduction ion optics (using a pattern generator made of nine 50-(micro)m switchable apertures) has been performed and is reported in this paper. In addition, the fabrication of a micro-fabricated pattern generator [3] on an SOI membrane is also presented

  7. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  8. Cornell electron beam ion source

    International Nuclear Information System (INIS)

    Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.

    1981-01-01

    An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies

  9. Analytical solutions of the electrostatically actuated curled beam problem

    KAUST Repository

    Younis, Mohammad I.

    2014-07-24

    This works presents analytical expressions of the electrostatically actuated initially deformed cantilever beam problem. The formulation is based on the continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximation. In such cases, multi-mode reduced order models are shown to yield accurate results. © 2014 Springer-Verlag Berlin Heidelberg.

  10. Optimization of 200 kV electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    M Nazmabadi

    2015-09-01

    Full Text Available Optimizations on 200 kV electrostatic accelerator have been done in order to increasing ion current on target, improving vacuum condition and reduction in x-rays emission, increasing stability of high voltage power supply and reaching much greater achievable voltage value. The accelerator tube has most important effect on beam tracing in the electrostatic accelerators. So precautions most be considered in designing and constructing of this part. In order to finding permissible tolerances in construction and assembling of 200 kV electrostatic accelerator column, first the effects of angle deviation of a part from accelerator axis on beam track in the accelerator tube was simulated with Simion 7.0 computer program. We found that in order to prevent beam lost, the tolerances of balancing and co-centering of each part should be smaller than 0.1 mm. Each part of accelerator tube constructed by tolerances lower than 0.05 mm. Ultrasonic cleaning method used in pre-assembling process of parts. Because of its excellences, in the new tube we used borosilicate glass instead of high density alumina as insulators between the metallic electrodes. After three days of working vacuum pumps the system reached to 8.0×10-7 and after months to 5.0×10-7 ultimate pressure values. Measurements showed that by these considerations the maximum of reachable ion current on target was 1.1 mA which increased 50% compared to old machine, while x-ray emission intensity was increased by 25%. Optimizations of high voltage power supply are now under studies and tests

  11. Pseudo ribbon metal ion beam source

    International Nuclear Information System (INIS)

    Stepanov, Igor B.; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-01-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface

  12. Pseudo ribbon metal ion beam source.

    Science.gov (United States)

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  13. Ion-beam Plasma Neutralization Interaction Images

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  14. Ion-beam Plasma Neutralization Interaction Images

    International Nuclear Information System (INIS)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-01

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented

  15. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  16. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  17. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  18. Broad beam ion sources and some surface processes

    International Nuclear Information System (INIS)

    Neumann, H.; Scholze, F.; Tarz, M.; Schindler, A.; Wiese, R.; Nestler, M.; Blum, T.

    2005-01-01

    Modern broad-beam multi-aperture ion sources are widely used in material and surface technology applications. Customizing the generated ion beam properties (i. e. the ion current density profile) for specific demands of the application is a main challenge in the improvement of the ion beam technologies. First we introduce ion sources based on different plasma excitation principles shortly. An overview of source plasma and ion beam measurement methods deliver input data for modelling methods. This beam profile modelling using numerical trajectory codes and the validation of the results by Faraday cup measurements as a basis for ion beam profile design are described. Furthermore possibilities for ex situ and in situ beam profile control are demonstrated, like a special method for in situ control of a linear ion source beam profile, a grid modification for circular beam profile design and a cluster principle for broad beam sources. By means of these methods, the beam shape may be adapted to specific technological demands. Examples of broad beam source application in ion beam figuring of optical surfaces, modification of stainless steel, photo voltaic processes and deposition of EUVL-multilayer stacks are finally presented. (Author)

  19. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  20. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  1. Properties of an ionised-cluster beam from a vaporised-cluster ion source

    International Nuclear Information System (INIS)

    Takagi, T.; Yamada, I.; Sasaki, A.

    1978-01-01

    A new type of ion source vaporised-metal cluster ion source, has been developed for deposition and epitaxy. A cluster consisting of 10 2 to 10 3 atoms coupled loosely together is formed by adiabatic expansion ejecting the vapour of materials into a high-vacuum region through the nozzle of a heated crucible. The clusters are ionised by electron bombardment and accelerated with neutral clusters toward a substrate. In this paper, mechanisms of cluster formation experimental results of the cluster size (atoms/cluster) and its distribution, and characteristics of the cluster ion beams are reported. The size is calculated from the kinetic equation E = (1/2)mNVsub(ej) 2 , where E is the cluster beam energy, Vsub(ej) is the ejection velocity, m is the mass of atom and N is the cluster size. The energy and the velocity of the cluster are measured by an electrostatic 127 0 energy analyser and a rotating disc system, respectively. The cluster size obtained for Ag is about 5 x 10 2 to 2 x 10 3 atoms. The retarding potential method is used to confirm the results for Ag. The same dependence on cluster size for metals such as Ag, Cu and Pb has been obtained in previous experiments. In the cluster state the cluster ion beam is easily produced by electron bombardment. About 50% of ionised clusters are obtained under typical operation conditions, because of the large ionisation cross sections of the clusters. To obtain a uniform spatial distribution, the ionising electrode system is also discussed. The new techniques are termed ionised-cluster beam deposition (ICBD) and epitaxy (ICBE). (author)

  2. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    Science.gov (United States)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  3. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  4. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    Science.gov (United States)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  5. Maskless, resistless ion beam lithography

    International Nuclear Information System (INIS)

    Ji, Qing

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O 2 + , BF 2 + , P + etc., for surface modification and doping applications. With optimized source condition, around 85% of BF 2 + , over 90% of O 2 + and P + have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He + beam is as high as 440 A/cm 2 · Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O 2 + ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O 2 + ions with the dose of 10 15 cm -2 . The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P

  6. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  7. Diffuse ions produced by electromagnetic ion beam instabilities

    International Nuclear Information System (INIS)

    Winske, D.; Leroy, M.M.

    1984-01-01

    The evolution of the electromagnetic ions beam instability driven by the reflected ion component backstreaming away from the earth's how shock into the foreshock region is studied by means computer simulation. The linear the quasi-linear states of the instability are found to be in good agreement with known results for the resonant model propagating parallel to the beam along the magnetic field and with theory developed in this paper for the nonresonant mode, which propagates antiparallel to the beam direction. The quasi-linear stage, which produces large amplitude 8Bapprox.B, sinusoidal transverse waves and ''intermediate'' ion distribution, is terminated by a nonlinear phase in which strongly nonlinear, compressive waves and ''diffuse'' ion distributions are produced. Additional processes by which the diffuse ions are accelerated to observed high energies are not addressed. The results are discussed in terms of the ion distributions and hydromagnetic waves observed in the foreshock of the earth's bow shock and of interplanetary shocks

  8. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  9. Large area ion and plasma beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Waldorf, J. [IPT Ionen- und Plasmatech. GmbH, Kaiserslautern (Germany)

    1996-06-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.).

  10. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    Waldorf, J.

    1996-01-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  11. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    Science.gov (United States)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  12. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  13. Design aspects of an electrostatic electron cooler for low-energy RHIC operation

    International Nuclear Information System (INIS)

    Fedotov, A.; Ben-Zvi, I.; Brodowski, J.; Chang, X.Y.; Gassner, D.; Hoff, L.; Kayran, D.; Kewisch, J.; Oerter, B.; Pendzick, A.; Tepikian, S.; Thieberger, P.; Prost, L.; Shemyakin, A.

    2011-01-01

    Electron cooling was proposed to increase the luminosity of the Relativistic Heavy Ion Collider (RHIC) operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator to produce electrons for cooling heavy ions in RHIC was evaluated in detail. In this paper, we describe the requirements and options which were considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such an electron cooling system are also discussed.

  14. Ion-beam texturing of uniaxially textured Ni films

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2005-01-01

    The formation of biaxial texture in uniaxially textured Ni thin films via Ar-ion irradiation is reported. The ion-beam irradiation was not simultaneous with deposition. Instead, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux, which differs from conventional ion-beam-assisted deposition. The uniaxial texture is established via a nonion beam process, with the in-plane texture imposed on the uniaxial film via ion beam bombardment. Within this sequential ion beam texturing method, grain alignment is driven by selective etching and grain overgrowth

  15. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    International Nuclear Information System (INIS)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-01-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV

  16. Numerical simulation of the generation of electrostatic turbulence in the magnetotail

    International Nuclear Information System (INIS)

    Swift, D.W.

    1981-01-01

    A two-dimensional plasma model is used to investigate the development of electrostatic turbulence in a magnetized plasma from plasma instabilities. The simulation consists of following the motion of 10 5 ions in their self-consistent electrostatic field. The electrons are treated as a constant neutralizing background. The instabilities modeled are driven by a ring-type velocity distribution and by interpenetrating ion beams in a time variable magnetic field. Instability growth times are the order of an ion gyroperiod in the case of the ring distribution and of the order of an ion plasma period in the case of the beam simulation. Maximum potential differences generated are of the order of the ion kinetic energies. These simulations demonstrate the cascade of wave energy to long wavelengths, thus showing that E x B turbulence can be generated from plasma microinstabilities. After the free energy feeding, the instabilities are exhausted, and wave energy at wavelengths less than an ion gyrodiameter decays quickly to equilibrium levels, while longer wavelength modes persist for much longer times. In one model with a time dependent, but spatially uniform, magnetic field, the electric field energy at long wavelengths appeared to increase as a result of the increase of the magnetic field

  17. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  18. Ion Beam Materials Analysis and Modifications at keV to MeV Energies at the University of North Texas

    Science.gov (United States)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Lakshantha, Wickramaarachchige J.; Manuel, Jack E.; Bohara, Gyanendra; Szilasi, Szabolcs Z.; Glass, Gary A.; McDaniel, Floyd D.

    2014-02-01

    The University of North Texas (UNT) Ion Beam Modification and Analysis Laboratory (IBMAL) has four particle accelerators including a National Electrostatics Corporation (NEC) 9SDH-2 3 MV tandem Pelletron, a NEC 9SH 3 MV single-ended Pelletron, and a 200 kV Cockcroft-Walton. A fourth HVEC AK 2.5 MV Van de Graaff accelerator is presently being refurbished as an educational training facility. These accelerators can produce and accelerate almost any ion in the periodic table at energies from a few keV to tens of MeV. They are used to modify materials by ion implantation and to analyze materials by numerous atomic and nuclear physics techniques. The NEC 9SH accelerator was recently installed in the IBMAL and subsequently upgraded with the addition of a capacitive-liner and terminal potential stabilization system to reduce ion energy spread and therefore improve spatial resolution of the probing ion beam to hundreds of nanometers. Research involves materials modification and synthesis by ion implantation for photonic, electronic, and magnetic applications, micro-fabrication by high energy (MeV) ion beam lithography, microanalysis of biomedical and semiconductor materials, development of highenergy ion nanoprobe focusing systems, and educational and outreach activities. An overview of the IBMAL facilities and some of the current research projects are discussed.

  19. Ion source for ion beam deposition employing a novel electrode assembly

    Science.gov (United States)

    Hayes, A. V.; Kanarov, V.; Yevtukhov, R.; Hegde, H.; Druz, B.; Yakovlevitch, D.; Cheesman, W.; Mirkov, V.

    2000-02-01

    A rf inductively coupled ion source employing a novel electrode assembly for focusing a broad ion beam on a relatively small target area was developed. The primary application of this ion source is the deposition of thin films used in the fabrication of magnetic sensors and optical devices. The ion optics consists of a three-electrode set of multiaperture concave dished grids with a beam extraction diameter of 150 mm. Also described is a variation in the design providing a beam extraction diameter of 120 mm. Grid hole diameters and grid spacing were optimized for low beamlet divergence and low grid impingement currents. The radius of curvature of the grids was optimized to obtain an optimally focused ion beam at the target location. A novel grid fabrication and mounting design was employed which overcomes typical limitations of such grid assemblies, particularly in terms of maintaining optimum beam focusing conditions after multiple cycles of operation. Ion beam generation with argon and xenon gases in energy ranges from 0.3 to 2.0 keV was characterized. For operation with argon gas, beam currents greater than 0.5 A were obtained with a beam energy of 800 eV. At optimal beam formation conditions, beam profiles at distances about equal to the radius of curvature were found to be close to Gaussian, with 99.9% of the beam current located within a 150 mm target diameter. Repeatability of the beam profile over long periods of operation is also reported.

  20. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  1. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  2. Complex of electrostatic accelerators for simulation and diagnostics of radiation damage

    International Nuclear Information System (INIS)

    Antuf'ev, Yu.P.; Belyaev, V.Kh.; Vergunov, A.D.

    1983-01-01

    The installation for simulation and diagnostics of radiation damage of materials is described. The installation consists of two electrostatic accelerators of vertical type for 5 MV and horizontal type for 800 kV. The accelerating complex ensures accelerated ion beam production in the independent operation regime as well as in the two beams target simultaneous irradiation regime, energy range of accelerated single-charged ions is 80 keV ... 5 MeV, homogeneity is better than +-0.05%. Oilless vacuum pumping out system is realized at the accelerating complex

  3. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    Science.gov (United States)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and

  4. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D. [Ion Beam Modification and Analysis Laboratory, University of North Texas, Department of Physics, 1155 Union Circle 311427, Denton, Texas 76203 (United States)

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and

  5. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fracti...

  6. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  7. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  8. Consideration of beam plasma ion-source

    International Nuclear Information System (INIS)

    Sano, Fumimichi; Kusano, Norimasa; Ishida, Yoshihiro; Ishikawa, Junzo; Takagi, Toshinori

    1976-01-01

    Theoretical and experimental analyses and their comparison were made on the plasma generation and on the beam extraction for the beam plasma ion-source. The operational principle and the structure of the ion-source are explained in the first part. Considerations are given on the electron beam-plasma interaction and the resulting generation of high frequency or microwaves which in turn increases the plasma density. The flow of energy in this system is also explained in the second part. The relation between plasma density and the imaginary part of frequency is given by taking the magnetic flux density, the electron beam energy, and the electron beam current as parameters. The relations between the potential difference between collector and drift tube and the plasma density or the ion-current are also given. Considerations are also given to the change of the plasma density due to the change of the magnetic flux density at drift tube, the change of the electron beam energy, and the change of the electron beam current. The third part deals with the extraction characteristics of the ion beam. The structure of the multiple-aperture electrode and the relation between plasma density and the extracted ion current are explained. (Aoki, K.)

  9. Electrostatic injection kicker for the KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    Toshikazu Adachi

    2013-05-01

    Full Text Available An electrostatic injection kicker (ES-Kicker has been developed and installed in the KEK digital accelerator, which is a synchrotron aimed at accelerating all ion species. The ES-Kicker kicks an injected ion beam horizontally into the ring orbit and consists of two main electrodes for electric field generation and three intermediate electrodes to correct field homogeneity. In our single-turn injection scheme, the circulating beam and the injected beam both pass through the electrode aperture of the kicker, so the kicker field must be turned off before arrival of the first circulating beam. The ES-Kicker is therefore operated in a pulse mode. This means that the excitation circuit for the ES-Kicker must be carefully designed, since the falling edge of the electric field is strongly affected by parasitic capacitance of this circuit, and any remaining field may disturb the circulating beam. This paper describes performance of the ES-Kicker on the basis of simulations and measurement results.

  10. Modified betatron for ion beam fusion

    International Nuclear Information System (INIS)

    Rostoker, N.; Fisher, A.

    1986-01-01

    An intense neutralized ion beam can be injected and trapped in magnetic mirror or tokamak geometry. The details of the process involve beam polarization so that the beam crosses the fringing fields without deflection and draining the polarization when the beam reaches the plasma. Equilibrium requires that a large betatron field be added in tokamak geometry. In mirror geometry a toroidal field must be added by means of a current along the mirror axis. In either case, the geometry becomes that of the modified betatron which has been studied experimentally and theoretically in recent years. We consider beams of d and t ions with a mean energy of 500 kev and a temperature of about 50 kev. The plasma may be a proton plasma with cold ions. It is only necessary for beam trapping or to carry currents. The ion energy for slowing down is initially 500 kev and thermonuclear reactions depend only on the beam temperature of 50 kev which changes very slowly. This new configuration for magnetic confinement fusion leads to an energy gain of 10--20 for d-t reactions whereas previous studies of beam target interaction predicted a maximum energy gain of 3--4. The high beam energy available with pulsed ion diode technology is also essential for advanced fuels. 16 refs., 3 figs

  11. Helicon plasma potential measurements using a heavy ion beam probe

    International Nuclear Information System (INIS)

    P. Schoch; K. Connor; J. Si

    2005-01-01

    A Heavy Ion Beam Probe, HIBP, has been installed on a helicon plasma device. The objective was to measure plasma fluctuations at the 13.55MHz RF frequency. This offers a unique challenge for the HIBP, because the transit time of the probing ion is long compared to the fluctuations of interest. For previous HIBPs, the transit time has been short compared to the period of the fluctuations which permits one to assume that the magnetic and electric fields are static. Modeling has shown that the diagnostic will still accurately measure the average potential. The fluctuating potential was to be detected but the absolute magnitude is difficult to determine with signal from a single point. However, modeling indicates multipoint measurements will allow one to resolve the absolute fluctuation magnitude. Work supported by DOE Grant No. DE-FG02-99ER5452985 During the funding of this grant, a helicon plasma discharge device was built and operated. A Heavy Ion Beam Probe primary system was installed and operated. A primary beam detector was installed and primary beam was detected both with and without plasma. Attempts were made to detect secondary ions using the primary beam detector, without success. Given the lack of a detectable signal, the energy analyzer of the HIBP system was never installed. It is available for installation if there is a reason to do so in the future. Analysis of the system indicated that the plasma electron temperature, estimated to be a few eV, was the likely reason for the lack of detectable secondary ions. A change of ion species to either Boron or Magnesium would greatly increase the signal, but neither of these ions have been used in a HIBP system. The ion source used in this system is made by using a charge exchange process to create a zeolite loaded with the desired ion. Attempts were made to use charge exchange to load Magnesium into a zeolite, and were not successful. It is felt that Magnesium and/or Boron zeolite sources could be created, but

  12. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  13. Applications of ion beam analysis workshop. Workshop handbook

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on applications of ion beam analysis was held at ANSTO, immediate prior to the IBMM-95 Conference in Canberra. It aims was to review developments and current status on use of ion beams for analysis, emphasizing the following aspects: fundamental ion beam research and secondary effects of ion beams; material sciences, geological, life sciences, environmental and industrial applications; computing codes for use in accelerator research; high energy heavy ion scattering and recoil; recent technological development using ion beams. The handbook contains the workshop's program, 29 abstracts and a list of participants

  14. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  15. A beam profile monitor for heavy ion beams at high impact energies

    International Nuclear Information System (INIS)

    Hausmann, A.; Stiebing, K.E.; Bethge, K.; Froehlich, O.; Koehler, E.; Mueller, A.; Rueschmann, G.

    1994-01-01

    A beam profile monitor for heavy ion beams has been developed for the use in experiments at the Heavy Ion Synchrotron SIS at Gesellschaft fuer Schwerionenforschung Darmstadt (GSI). Four thin scintillation fibres are mounted on one wheel and scan the ion beam sequentially in two linearly independent directions. They are read out via one single photomultiplier common to all four fibres into one time spectrum, which provides all information about beam position, beam extension, time structure and lateral homogeneity of the beam. The system operates in a wide dynamic range of beam intensities. ((orig.))

  16. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  17. Constraints on ion beam handling for intersecting beam experiments

    International Nuclear Information System (INIS)

    Kruse, T.

    1981-01-01

    The intense synchrotron radiation beams from the NSLS uv or x-ray storage rings still do not compare in monochromatized photon flux with a laser beam, a fact which becomes apparent in considering reaction rates for interaction of photon and ion beams. There are two prototypical interaction geometries, parallel and perpendicular. Calculations should properly be done in the rest frame of the ion beam; however, expected beta values are small, so the lab frame will be employed and aberration and Doppler shift effects neglected

  18. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  19. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  20. Negative ion beam formation using thermal contact ionization type plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Fukuura, Yoshiyuki; Murakami, Kazutugu; Masuoka, Toshio; Katsumata, Itsuo [Osaka City Univ. (Japan). Faculty of Engineering

    1997-02-01

    The small ion sources utilizing thermal ionization have been already developed, and at present, in order to increase ion yield, that being developed to the cylindrical plasma prototype having the inner surface of a Re foil cylinder as the ionization surface, and stably functioning at 3,000 K has been developed, and by using this plasma source, the research on the formation of various ions has been carried out. At present, the research on the formation of Li negative ion beam is carried out. The separation of negative ions from electrons is performed with the locally limited magnetic field using a small iron core electromagnet placed behind the electrostatic accelerating lens system. So for, the formation of about 2 {mu}A at maximum of negative ions was confirmed. It was decided to identify the kinds of ions by time of flight (TOF) process, and the various improvements for this purpose were carried out. The experimental setup, the structure of the plasma source, the circuits for TOF measurement and so on are explained. The experimental results are reported. The problems are the possibility of the formation of alkali metals, the resolution of the time axis of the TOF system and so on. (K.I.)

  1. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Grisham, Larry R.

    2002-01-01

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10 -5 torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing

  2. Ion beam studies

    International Nuclear Information System (INIS)

    Freeman, J.H.; Chivers, D.J.; Gard, G.A.; Temple, W.

    1977-04-01

    A description of techniques for the production of intense beams of heavy ions is given. A table of recommended operational procedures for most elements is included. The ionisation of boron is considered in some detail because of its particular importance as a dopant for ion implantation. (author)

  3. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  4. Ion beam texturing

    Science.gov (United States)

    Hudson, W. R.

    1977-01-01

    A microscopic surface texture was created by sputter-etching a surface while simultaneously sputter-depositing a lower sputter yield material onto the surface. A xenon ion-beam source was used to perform the texturing process on samples as large as 3-cm diameter. Textured surfaces have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, stainless steel, Au, and Ag. A number of texturing parameters are studied including the variation of texture with ion-beam powder, surface temperature, and the rate of texture growth with sputter etching time.

  5. Studies on the nondestructive emittance measurement at a negative-hydrogen-ion beam; Untersuchungen zur zerstoerungsfreien Emittanzmessung an einem negativen Wasserstoffionenstrahl

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, C.

    2007-07-01

    In the present thesis the already known idea to apply photodetechment for the diagnosis at a H{sup -} beam has be newly interpretated and improved. Thereby a nondestructive emittance measurement method was developed, which is especially suited for future high-current accelerator projects. For emittance measurements thereby mechanical components can be totally abandoned, if at a small part of the H{sup -} ions the additional with only 0.754 eV weak bound electron is separated by photodetachment {Dirac_h}{omega}+H{sup -}{yields}H{sup 0}+e{sup -}. The neutralized H{sup -} ions can be magnetically or electrostatically separated from the electrons and the remaining H{sup -} ions. Especially the neutral particles are offered by their insensitivity against external electromagnetic fields for the determination of the phase-space distribution of the ion beam. Also the momentum transfer by photodetechment can be neglected at the neutralized ions. The detection of the divergence angle has been pursued by a scintillator with a CCD camera. For the calculation of the number of neutralized particles a simplified model under assumption of homogeneous density distributions was developed. The aim of the approximation was to make statements about the requirement on the laser system and the detector. Thereby especially the suitability of the measurement for high beam currents and beam parameters, as they are typically present behind a RFQ. Further aspects like the influence of the angle between laser and ion beams, relativistic ion beam, as well as the position and angular resolution have been also object of the discussion.

  6. Ion beam techniques for analyzing polymers irradiated by ions

    International Nuclear Information System (INIS)

    Rickards, J.; Zironi, E.P.; Andrade, E.; Dominguez, B.

    1992-01-01

    In the study of the effects of ion beam irradiation of polymers very large doses can be administered in short times. Thousands of MGy can be produced in a small volume of a sample in a few minutes by bombarding with typical ion beam currents. For instance, in an experiment done to observe the effects of 750 keV proton irradiation PVC, using a collimator of 1 mm diameter, 1 μC of charge integration deposits a dose of 50 MGy. The use of ion beams also opens up the possibility of using the same beam for irradiation and for analysis of the effects, using the well known ion beam analysis techniques. PIXE allows the measurement of chlorine in PVC. Polymers containing fluorine can be measured with the resonant nuclear reaction (RNR) technique, which is specific only to certain elements. The amount of hydrogen in the sample and its profile can be obtained using energy recoil detection analysis (ERDA); carbon, oxygen, and nitrogen can be measured and profiled using Rutherford backscattering (RBS) and also using the (d,p) and (d, α) nuclear reactions (NR). Loss of mass is one effect that can be studied using these techniques. It was studied in two different polymers, PVC and CR-39, in order to determine carbon buildup during ion irradiation. It was concluded that carbon builds up following different mechanisms in these two materials, due to the different possibilities of forming volatile compounds. It is also suggested that CR-39 should be a good material for ion beam lithography. (author)

  7. Ion sources for initial use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surfaceionization sources are also under design consideration for generating negative radioactive ion beams from high electron-affinity elements. A brief review of the HRIBF will be presented, followed by a detailed description of the design features, operational characteristics, ionization efficiencies, and beam qualities (emittances) of these sources

  8. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  9. Present status of TIARA electrostatic accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Saito, Yuichi; Uno, Sadanori; Okoshi, Kiyonori; Ishii, Yasuyuki; Nakajima, Yoshinori; Sakai, Takuro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    The electrostatic accelerator, 3 MV tandem accelerator, 3 MV single end accelerator and 400 kV ion implantation equipment, which were installed in Takasaki Ion Irradiation Research Facility (TIARA) of Japan Atomic Energy Research Institute, have been used for the research on the advanced utilization of radiation mainly in material science by ion beam. The utilization is open to other researchers, and in fiscal year 1995, about 40% was the utilization by outsiders. The number of the experimental subjects adopted in fiscal year 1995 was 47, and the fields of research were space and environment materials, nuclear fusion reactor materials, new functional materials, biotechnology and base technology. The operation time in fiscal year 1995 was 1201, 1705 and 1505 hours for the tandem accelerator, single end accelerator and ion implantation equipment, respectively. The methods of experiment are reported. The troubles occurred in the tandem accelerator and single end accelerator are reported. As the diversification of beam utilization in the tandem accelerator, the utilizations of high energy molecular ions, low energy negative ions, multivalent ions by post stripper and low intensity ions by mesh attenuator have been attempted. These utilizations are described. (K.I.)

  10. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  11. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  12. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  13. The Holifield Radioactive Ion Beams Facility (HRIBF) - getting ready to do experiments

    International Nuclear Information System (INIS)

    Shapira, D.; Lewis, T.A.

    1998-01-01

    The conversion of the HHIRF facility to a Radioactive Ion Beam facility started in 1994. In this ISOL type facility the Cyclotron has been re-fitted as a driver providing high intensity proton beams which react with the target from which the radioactive products are extracted and then accelerated in the Tandem Electrostatic Accelerator to the desired energy for nuclear science studies. Facilities for nuclear physics experiments are at different stages of development: A Recoil Mass Spectrometer (RMS) with a complement of detectors at the focal plane and around the target is used primarily for nuclear structure studies. A large recoil separator combining velocity and momentum selection, with its complement of focal plane detectors, will be dedicated to measurements relevant to nuclear astrophysics. The Enge Split Pole spectrograph is being re-fitted for operation in a gas filled mode, making it a more versatile tool for nuclear reaction studies. With the new experimental equipment being commissioned and the prospects of running experiments with low intensity radioactive beams a significant effort to develop equipment for beam diagnostics is underway. Some of the efforts and results in developing beam diagnostic tools will be described

  14. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  15. Advances in electrostatic energy analyzers for ion beam probe diagnostic systems

    International Nuclear Information System (INIS)

    Bird, L.A.; Glowienka, J.C.; Jennings, W.C.; Hickok, R.L.

    1974-01-01

    Two new concepts are discussed for feedback controlled electrostatic energy analyzers; a dual gain analyzer for current density measurements, and bottom plate coupling to provide dc stability and better frequency response. An analyzer incorporating both of these concepts was built and preliminary measurements of its performance were made. These measurements are not reported here. (U.S.)

  16. Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams

    International Nuclear Information System (INIS)

    Alexander, K.F.; Hintze, W.

    1976-01-01

    Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)

  17. Two-dimensional hydrodynamics of uniform ion plasma in electrostatic field

    International Nuclear Information System (INIS)

    Mahdieh, M. H.; Gavili, A.

    2005-01-01

    Two-dimensional hydrodynamics of ion extraction from uniform quasi-neutral plasma, in electrostatic field has been simulated numerically. Experimentally, tunable pulsed lasers produce non-uniform plasma through stepwise photo-excitation and photo-ionization or multi-photo-ionization processes. Poisson's equation was solved simultaneously with the equations of mass, and momentum, assuming the Maxwell-Boltzmann distribution for electrons. In the calculation, the initial density profile at the boundaries has been assumed to be very steep for the ion plasma. In these calculations dynamics of electric potential and the ions density were assessed. The ion extraction time was also estimated from the calculation. The knowledge of spatial distribution of the ions across the cathode is very important for the practical purposes. In this simulation, the spatial distribution of the ion current density across the cathode as well as its temporal distribution was calculated

  18. Focusing properties of a square electrostatic rainbow lens

    International Nuclear Information System (INIS)

    Telečki, I.; Petrović, S.; Beličev, P.; Rađenović, B.; Balvanović, R.; Bojović, B.; Nešković, N.

    2012-01-01

    This paper is devoted to the focusing properties of a square electrostatic rainbow lens, which is a novel ion beam optical element. We consider the transmission of parallel and non-parallel proton beams of the initial kinetic energy of 10 keV through this lens. The potential of the electrodes of the lens is chosen to be 2 kV. The electrostatic potential and components of the electric field in the region of the lens are calculated using a three-dimensional finite element computer code. We investigate the spatial and angular distributions of protons propagating through the lens and in the drift space after it. It is confirmed that the evolutions of these distributions are determined by the evolutions of the corresponding rainbow lines, generated using the theory of crystal rainbows. The beam is separated into two components. One beam component, appearing as a beam core, is generated dominantly by the focused protons. Its boundary line in the transverse position plane can be very well approximated by a hypotrochoid. The other beam component is generated dominantly by the defocused protons. We present the focusing coefficient of the lens, the confining coefficients of the lens for the focused and defocused protons, the density of the beam core, the vertical or horizontal emittance of the beam core, and the brightness of the beam core.

  19. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Breese, M.B.H.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  20. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A; Breese, M B.H.; Legge, G L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  1. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  2. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    Kutner, V.B.

    1981-01-01

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe 48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe 26+ approximately 4x10 10 h/s, Asub(r)sup(12+) approximately 10 12 h/s intensive ion beams are produced. In the laser source a full number of C 6+ ions during one laser pulse constitutes not less than 10 10 from the 5x10mm 2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe 15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached [ru

  3. Linear and nonlinear low-frequency electrostatic waves in a nonuniform pair-ion-dust magnetoplasma

    International Nuclear Information System (INIS)

    Saleem, H; Shukla, P K; Eliasson, B

    2008-01-01

    Linear and nonlinear properties of the low-frequency (in comparison with the ion gyrofrequency) electrostatic oscillations in pair-ion-dust magnetoplasma are presented. In the linear limit, the Shukla-Varma mode is coupled with the ion oscillations while the nonlinearly coupled modes appear in the form of a dipolar or a monopolar vortex

  4. From field evaporation to focused ion beams

    International Nuclear Information System (INIS)

    Forbes, R.G.

    2004-01-01

    Full text: This paper report various items of recent progress in the theory of field evaporation and the theory of the liquid-metal ion source. The research has, in part, been driven by a desire to find out how to reduce the beam-spot size in a focused ion beam machine, which is developing as a significant tool of nanotechnology. A major factor in determining beam spot size seems to be the behavior of the liquid-metal ion source (LMIS), and one route might be to reduce the minimum emission current of a LMIS, if this is possible. Theories of LMIS minimum emission current have been re-examined. Some progress has been made, but development of more accurate theory has been constrained by several factors, include the long-known limitations of the present theory of field evaporation (FEV). This, in turn, has stimulated a wider re-examination of FEV theory. As part of some general theoretical remarks, the following items of recent progress will be covered. Various results concerning the prediction of the field F e at which the activation energy Q for field evaporation is zero, including calculations in which vacuum electrostatic energy changes are taken into account, and another look at the views of Kingham and Tsong concerning escape charge-state. Some years ago, the following approximate formula was derived for the dependence of FEV activation energy on field F: Q=B(F e /F - 1) 2 . It has recently been possible to show that the parameter B can be estimated as B= βYΩ/8, where Y is Young's modulus, Ω is the atomic volume, and β is a correction factor of order. In the framework of the charge-draining mechanism, another look at how the activation-energy hump can be modelled, in order to predict/explain the conditions under which FEV becomes dominated by ion tunnelling rather than field evaporation. A review of the changes in LMIS theory that result from applying the equation of continuity to the metal/vacuum interface, including modifications to the theory of minimum

  5. The nonlinear dustgrain-charging on large amplitude electrostatic waves in a dusty plasma with trapped ions

    Directory of Open Access Journals (Sweden)

    Y.-N. Nejoh

    1998-01-01

    Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.

  6. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1992-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long-pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle energy distributions in large, dense, ignited tokamaks such as ITER

  7. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1993-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle distributions in large, dense, ignited tokamaks such as ITER

  8. Development of ion/proton beam equipment for industrial uses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho; Lee, J. H.; Cho, Y. S.; Joo, P. K.; Kang, S. S.; Song, W. S.; Kim, H. J.; Chang, G. H.; Bang, S. W

    1999-12-01

    KAERI has possessed design and fabrication technologies of various ion sources including Duoplasmatron and DuoPiGatron developed by R and D projects of the long-term nuclear technology development program. In order to industrialize ion beam equipments utilizing these ion sources, a technology transfer project for a technology transfer project for a domestic firm has been performed. Under this project, engineers of the firm have been trained through classroom lectures of ion beam principles and OJT, an ion/proton beam equipment (DEMO equipment) has been designed, assembled and commissioned jointly with the engineers. Quality of the ion sources has been quantified, and technologies for ion beam equipment construction, functional test and application research have been developed. The DEMO equipment, which consists of an ion source, power supplies, vacuum, cooling and target systems, has been fabricated and tested to secure stability and reliability for industrial uses. Various characteristic tests including high voltage insulation, beam extraction, beam current measuring, etc. have been performed. This DEMO can be utilized for ion sources development as well as ion beam process development for various industrial products. Engineers of the firm have been trained for the industrialization of ion beam equipment and joined in beam application technology development to create industrial needs of beam equipment. (author)

  9. Temperature-dependent ion beam mixing

    International Nuclear Information System (INIS)

    Rehn, L.E.; Alexander, D.E.

    1993-08-01

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to 'radiation-enhanced diffusion' (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results

  10. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  11. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M. E. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Department of Science and Technology, Linkoeping University, SE-60174 Norrkoeping (Sweden); Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Romagnani, L. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Pohl, M. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); DESY, D-15738 Zeuthen (Germany)

    2013-04-15

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  12. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    International Nuclear Information System (INIS)

    Dieckmann, M. E.; Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M.; Romagnani, L.; Pohl, M.

    2013-01-01

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  13. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  14. Ion sources development at GANIL for radioactive beams and high charge state ions

    International Nuclear Information System (INIS)

    Leroy, R.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Saint-Laurent, M.G.; Villari, A.C.C.; Maunoury, L.

    2001-01-01

    The GANIL laboratory has in charge the production of ion beams for nuclear and non nuclear physics. This article reviews the last developments that are underway in the fields of radioactive ion beam production, increase of the metallic ion intensities and production of highly charges ion beams. (authors)

  15. Beam emittance measurements on multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Lee, Y.; Leung, K.N. [and others

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 {mu}m patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma.

  16. Beam emittance measurements on multicusp ion sources

    International Nuclear Information System (INIS)

    Sarstedt, M.; Lee, Y.; Leung, K.N.

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 μm patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma

  17. Colliding-beams polarized ion source

    International Nuclear Information System (INIS)

    Trainor, T.A.; Douglas, J.G.; Badt, D.; Christiensen, C.; Herron, A.; Leach, D.; Olsen, J.; Osborne, J.L.; Zeps, V.

    1985-01-01

    This ion source was to be purchased from ANAC, Inc., a New Zealand-based supplier of beam optics hardware and atomic beam polarized ion sources in December 1982. Shortly before scheduled delivery ANAC went into receivership. During 1983 little work was done on the project as various steps were taken by us, first to get the ion source completed at ANAC, and then, failing that, to obtain the existing parts. In early 1984 we began work to finish the ion source in Seattle. The project is nearly complete, and this article presents progress to date. 2 refs

  18. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  19. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    Torab, S.I.R.

    2011-01-01

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  20. Electrohydrodynamic emitters of ion beams

    International Nuclear Information System (INIS)

    Dudnikov, V.G.; Shabalin, A.L.

    1990-01-01

    Physical processes determining generation of ion beams with high emission current density in electrohydrodynamic emitters are considered. Electrohydrodynamic effects developing in ion emission features and kinetics of ion interaction in beams with high density are discussed. Factors determining the size of the emission zone, emission stability at high and low currents, cluster generation, increase of energy spread and decrease of brightness are analyzed. Problems on practical provision of stable EHD emitter functioning are considered. 94 refs.; 8 figs.; 1 tab

  1. Accelerating tube for the ''EG-1'' electrostatic accelerator

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Krupnov, E.P.; Debin, V.K.; Dudkin, N.I.; Volodin, V.I.

    1980-01-01

    A design of an accelerating tube (AT) for an electrostatic accelerator of the EG-1 type is described. Primary consideration in the development of the AT has been given to increasing the electric strength of accelerating gaps, the vacuum conductivity and better insulator screening from charged particles. After AT vacuum and high-voltage ageing in the accelerator, a hydrogen ions beam of up to 80 μA has been produced. The beam was adequately shaped in the energy range from 1.8 to 5.0 MeV [ru

  2. ORNL positive ion neutral beam program

    International Nuclear Information System (INIS)

    Whealton, J.H.; Haselton, H.H.; Barber, G.C.

    1978-01-01

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  3. A very large Paul trap system for in-line capture of high-energy DC radioactive ion beams

    International Nuclear Information System (INIS)

    Dezfuli, A.M. Ghalambor; Moore, R.B.; Varfalvy, P.; Schwarz, S.

    2002-01-01

    A very large Paul trap (VLPTRAP) has built to test in-flight collection of DC ion beams. An iterative design process led to a Paul trap that was basically a cylindrical electrode of internal diameter 120 mm with two symmetrically placed coaxial end electrodes that approximated hyperboloids of revolution separated by 106 mm. The trap was operated at up to 20 kV pp at 1 MHz on the ring cylindrical electrode relative to the end electrodes with buffer gas pressures up to 40 mPa. Ions were delivered to the trap from a 60 keV + Cs ion gun and electrostatically decelerated to about 100 eV for entrance. After a cooling time of the order of 1 ms, the ions were extracted by biasing the end electrodes. Beam pulses of less than 1 s could be extracted, at repetition rates down to 1 Hz. An overall bunching efficiency of about 0.4% was obtained, resulting from a collection efficiency of 2% and an extraction efficiency of 20%. The trap could hold up to 10 7 ions at a temperature of 1000 K

  4. A Markov chain approach to modelling charge exchange processes of an ion beam in monotonically increasing or decreasing potentials

    International Nuclear Information System (INIS)

    Shrier, O; Khachan, J; Bosi, S

    2006-01-01

    A Markov chain method is presented as an alternative approach to Monte Carlo simulations of charge exchange collisions by an energetic hydrogen ion beam with a cold background hydrogen gas. This method was used to determine the average energy of the resulting energetic neutrals along the path of the beam. A comparison with Monte Carlo modelling showed a good agreement but with the advantage that it required much less computing time and produced no numerical noise. In particular, the Markov chain method works well for monotonically increasing or decreasing electrostatic potentials. Finally, a good agreement is obtained with experimental results from Doppler shift spectroscopy on energetic beams from a hollow cathode discharge. In particular, the average energy of ions that undergo charge exchange reaches a plateau that can be well below the full energy that might be expected from the applied voltage bias, depending on the background gas pressure. For example, pressures of ∼20 mTorr limit the ion energy to ∼20% of the applied voltage

  5. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  6. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    2001-01-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  7. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  8. Production of microbunched beams of very highly charged ions with an electron beam ion source

    International Nuclear Information System (INIS)

    Stoeckli, M.P.

    1998-01-01

    Electron beam ion sources produce very highly charged ions most efficiently in a batch mode as the confinement time can be directly optimized for the production of the desired charge state. If, after confinement, the voltage of the ion-confining downstream dam is lowered rapidly, all ions escape and form an ion beam pulse with a length of a few tens of μs. Raising the main trap voltage while maintaining a constant dam voltage in a open-quotes spill-over expulsionclose quotes reduces the energy spread of the expelled ions. The longer time periods of open-quotes slow-,close quotes open-quotes leaky batch mode-,close quotes and open-quotes direct current (dc) batch mode-close quotes expulsions allow for increasing the ion beam duty cycle. Combining the rapid expulsion with one of the latter methods allows for the expulsion of the ions of a single batch in many small microbunches with variable intervals, maintaining the low energy spread and the increased duty cycle of slow expulsions. Combining the open-quotes microbunchingclose quotes with open-quotes dc batch mode productionclose quotes and a multitrap operation will eventually allow for the production of equally intense ion bunches over a wide range of frequencies without any deadtime, and with minimal compromise on the most efficient production parameters. copyright 1998 American Institute of Physics

  9. Influence of ion beam and geometrical parameters on properties of Si thin films grown by Ar ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, Carsten; Feder, Rene; Neumann, Horst [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Leipzig (Germany)

    2012-07-01

    Ion beam sputtering (IBS) offers, in contrast to other physical vapour deposition techniques, such as magnetron sputtering or electron beam evaporation, the opportunity to change the properties of the layer forming particles (sputtered and scattered particles) by varying ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, emission angle). Consequently, these effects can be utilized to tailor thin film properties [1]. The goal is to study systematically the correlations between the primary and secondary parameters and, at last, the effects on the properties of Si thin films, such as optical properties, stress, surface topography and composition. First experimental results are presented for Ar-ion sputtering of Si.

  10. Meqalac Results - Multichannel Rf Acceleration of Nitrogen-Ions to 1 Mev

    NARCIS (Netherlands)

    Wojke, R. G. C.; Bannenberg, J. G.; Vijftigschild, A. J. M.; Giskes, F. G.; Ficke, H. G.; Klein, H.; Thomae, R. W.; Schempp, A.; Weis, T.; van Amersfoort, P. W.; Urbanus, W. H.

    1991-01-01

    In the MEQALAC (Multiple Electrostatic Quadrupole Linear Accelerator) multiple N+ ion beams are accelerated in 32 rf gaps, which are part of a modified interdigital-H-resonator operating at 25 MHz. The transverse focusing of the intense ion beams is achieved by means of sets of miniaturized

  11. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  12. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    OpenAIRE

    Minárik Stanislav

    2015-01-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensit...

  13. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, Roger.

    1986-01-01

    The nearly endless variety of interesting and challenging problems makes physics research enjoyable. Most of us would choose to be physicists even if physics had no practical applications. However, physics does have practical applications. This workshop deals with one of those applications, namely ion beam fusion. Not all interesting and challenging atomic physics questions are important for ion beam fusion. This paper suggests some questions that may be important for ion beam fusion. It also suggests some criteria for determining if a question is only interesting, or both interesting and important. Importance is time dependent and, because of some restrictions on the flow of information, also country dependent. In the early days of ion beam fusion, it was important to determine if ion beam fusion made sense. Approximate answers and bounds on various parameters were required. Accurate, detailed answers were not needed. Because of the efforts of many people attending this workshop, we now know that ion beam fusion does make some sense. We must still determine if ion beam fusion truly makes good sense. If it does make good sense, we must determine how to make it work. Accurate detailed answers are becoming increasingly important. (author)

  14. The application of ion beams to corrosion science

    International Nuclear Information System (INIS)

    Ashworth, V.; Grant, W.A.; Proctor, R.P.M.

    1976-01-01

    Briefly, the paper provides some basic information on the use of ion beams for surface alloying and surface analysis. After a brief historical review of those fields in which the techniques are already widely applied the important features of typical ion beam machines are described. The basic processes that occur when an ion beam strikes a solid are then considered. Selected ion beam analysis techniques are then discussed. Attention is drawn, wherever possible, to applications in corrosion science and engineering. (author)

  15. High-powered pulsed-ion-beam acceleration and transport

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  16. High-powered pulsed-ion-beam acceleration and transport

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  17. Ion beam modification of solids ion-solid interaction and radiation damage

    CERN Document Server

    Wesch, Werner

    2016-01-01

    This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for ins...

  18. Focused ion beam damage to MOS integrated circuits

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Campbell, Ann N.; Hembree, Charles E.; Tangyunyong, Paiboon; Jessing, Jeffrey R.; Soden, Jerry M.

    2000-01-01

    Commercial focused ion beam (FIB) systems are commonly used to image integrated circuits (ICS) after device processing, especially in failure analysis applications. FIB systems are also often employed to repair faults in metal lines for otherwise functioning ICS, and are being evaluated for applications in film deposition and nanofabrication. A problem that is often seen in FIB imaging and repair is that ICS can be damaged during the exposure process. This can result in degraded response or out-right circuit failure. Because FIB processes typically require the surface of an IC to be exposed to an intense beam of 30--50 keV Ga + ions, both charging and secondary radiation damage are potential concerns. In previous studies, both types of effects have been suggested as possible causes of device degradation, depending on the type of device examined and/or the bias conditions. Understanding the causes of this damage is important for ICS that are imaged or repaired by a FIB between manufacture and operation, since the performance and reliability of a given IC is otherwise at risk in subsequent system application. In this summary, the authors discuss the relative roles of radiation damage and charging effects during FIB imaging. Data from exposures of packaged parts under controlled bias indicate the possibility for secondary radiation damage during FIB exposure. On the other hand, FIB exposure of unbiased wafers (a more common application) typically results in damage caused by high-voltage stress or electrostatic discharge. Implications for FIB exposure and subsequent IC use are discussed

  19. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    Science.gov (United States)

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  20. Ion Beams in Nanoscience and Technology

    CERN Document Server

    Hellborg, Ragnar

    2010-01-01

    Energetic ion beam irradiation is the basis of a wide plethora of powerful research- and fabrication-techniques for materials characterisation and processing on a nanometre scale. This book is suitable for practitioners, researchers and graduate students working in the field of ion beams and application

  1. Tool steel ion beam assisted nitrocarburization

    International Nuclear Information System (INIS)

    Zagonel, L.F.; Alvarez, F.

    2007-01-01

    The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used to bombard the sample with low energy nitrogen ions. The results show that the presence of carbon has an important impact on the crystalline and microstructural properties of the material without modification of the case depth

  2. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  3. Multi-ampere heavy ion injector for linear induction accelerators using periodic electrostatic focusing

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1978-10-01

    Two configurations for ion source and drift-tube-linac combinations that could provide the energy and intensity of accelerated ions needed for the HIF applications are described. The focusing for the systems is provided by a periodic structure of rectangular electrostatic lenses. Scaling rules and extensions of the ideas will be briefly described. Example systems are described that could provide 150 μC of uranium or cesium ions at 12 MeV

  4. Radial focusing of a relativistic electron beam in a bipotential electrostatic lens

    International Nuclear Information System (INIS)

    Genoni, T.C.

    1994-01-01

    The focusing of a relativistic electron beam in a bipotential electrostatic lens is discussed. An iterative scheme for the solution of the paraxial ray equation is used to derive approximate analytic formulas for the lens parameters and lens transfer matrix elements. The formulas are compared to results of direct numerical integration of the paraxial ray equation

  5. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, Pierluigi, E-mail: pierluigi.veltri@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy); INFN—Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy)

    2016-06-15

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment.

  6. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    International Nuclear Information System (INIS)

    Veltri, Pierluigi; Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi

    2016-01-01

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment

  7. Beam modulation for heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Kanai, T.; Minohara, S.; Sudou, M.

    1993-01-01

    The first clinical trial of heavy ion radiation therapy is scheduled in 1994 by using the heavy ion medical accelerator in Chiba (HIMAC). In order to start the clinical trial, first, it is necessary to know the physical characteristics of high energy heavy ions in human bodies, for example, dose and linear energy transfer (LET) distribution. Also the knowledge on the biological effectiveness of heavy ions is required. Based on these biophysical properties of heavy ions, monoenergetic heavy ion beam should be modulated so as to make the spread Bragg peak suitable to heavy ion radiation therapy. In order to establish a methodology to obtain the most effective spread Bragg peak for heavy ion radiation therapy, a heavy ion irradiation port at the RIKEN ring cyclotron facility was constructed. By using a 135 MeV/u carbon beam, the biophysical properties of the heavy ions were investigated, and a range modulator was designed to have uniform biological response in the spread Bragg peak. The physical and biological rationality of the spread Bragg peak were investigated. The dose, LET and biological effect of a monoenergetic heavy ion beam, the design of the range modulator, and the distributions of LET and biological dose for the spread Bragg peak are reported. (K.I.)

  8. Lithium ion beam driven hohlraums for PBFA II

    International Nuclear Information System (INIS)

    Dukart, R.J.

    1994-01-01

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities

  9. Negative ion beam extraction in ROBIN

    International Nuclear Information System (INIS)

    Bansal, Gourab; Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren; Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak

    2013-01-01

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10 12 cm −3 is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm 2 as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10 11 cm −3 has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated

  10. The low-field permanent magnet electrostatic plasma lens

    International Nuclear Information System (INIS)

    Goncharov, A.; Gorshkov, V.; Maslov, V.; Zadorozhny, V.; Brown, I.

    2004-01-01

    We describe the status of ongoing research and development of the electrostatic plasma lens as used for the manipulation of high current broad beams of heavy ions of moderate energy. In some collaborative work at Lawrence Berkeley National Laboratory the lens was used to good effect for carrying out high dose ion implantation processing. In the process of this work a very narrow range of low magnetic field was found for which the ion-optical characteristics of the lens improved markedly. Subsequent theoretical analysis and computer modeling has led to an understanding of this phenomenon. These serendipitous results open up some attractive possibilities for the development of a new compact and low cost plasma lens based on permanent magnets rather than on current-driven field coils surrounding the lens volume. The development of this kind of lens, including both very low noise and minimal spherical aberration effects, may lead to a tool suitable for use in the injection beam lines of high current heavy ion linear accelerators. Here we briefly review the lens fundamentals, some characteristics of focusing heavy ion beams at low magnetic fields, and summarize recent theoretical and experimental developments, with emphasis on the relevance and suitability of the lens for accelerator injection application

  11. Ion beam modification of biological materials in nanoscale

    Science.gov (United States)

    Yu, L. D.; Anuntalabhochai, S.

    2012-07-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  12. Ion beam modification of biological materials in nanoscale

    International Nuclear Information System (INIS)

    Yu, L.D.; Anuntalabhochai, S.

    2012-01-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  13. Technical Aspects of Delivering Simultaneous Dual and Triple Ion Beams to a Target at the Michigan Ion Beam Laboratory

    Science.gov (United States)

    Toader, O.; Naab, F.; Uberseder, E.; Kubley, T.; Taller, S.; Was, G.

    The Michigan Ion Beam Laboratory (MIBL) at the University of Michigan in Ann Arbor, Michigan, USA, plays a significant role in supporting the mission of the U.S. DOE Office of Nuclear Energy. MIBL is a charter laboratory of the NSUF (National Scientific User Facility - US DoE) and hosts users worldwide. The laboratory has evolved from a single accelerator laboratory to a highly versatile facility with three accelerators (3 MV Tandem, a 400 kV Ion Implanter and a 1.7 MV Tandem), seven beam lines and five target chambers that together, provide unique capabilities to capture the extreme environment experienced by materials in reactor systems. This capability now includes simultaneous multiple (dual, triple) ion irradiations, an irradiation accelerated corrosion cell, and soon, in-situ dual beam irradiation in a transmission electron microscope (TEM) for the study of radiation damage coupled with injection of transmutation elements. The two beam lines that will connect to the 300 kV FEI Tecnai G2 F30 microscope are expected to be operational by the end of 2017. Multiple simultaneous ion beam experiments involving light and heavy ions are already in progress. This paper will outline the current equipment and will focus on the new capability of running dual and triple ion beam experiments.

  14. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  15. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  16. VIVITRON beam transport

    International Nuclear Information System (INIS)

    Nadji, A.

    1989-07-01

    The VIVITRON is a new 35 MV particle accelerator which presents a great number of innovations. One of the major problem is the beam transport in this electrostatic machine of 50 m length for ions with masses between 1 and 200. Our work consisted in the study of various experimental and theoretical aspects of the beam transport in Tandem accelerators from the ion source to the analysing magnet. Calculations of the beam optics were performed with a Strasbourg version of the computer code Transport. They allowed us to optimize the beam transport parameters of the VIVITRON elements. Special attention has been focused on the design of the charge state selector to be installed in the terminal of the new machine. Beam transmission measurements were carried out in the Strasbourg MP 10 Tandem accelerator for ions beams of masses between 1 and 127 and for terminal voltages from 9 to 15 MV. Partial and total transmissions were obtained and explanations of the beam losses were proposed in terms of the vacuum pressure and/or the optics of the beam accelerator system. The results have been extrapolated to the VIVITRON for which the best working conditions are now clearly defined [fr

  17. Self-pinched transport of intense ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Neri, J.M.; Stephanakis, S.J.

    1999-01-01

    Electron beams with substantial net currents have been routinely propagated in the self-pinched mode for the past two decades. However, as the physics of gas breakdown and beam neutralization is different for ion beams, previous predictions indicated insufficient net current for pinching so that ion beam self-pinched transport (SPT) was assumed impossible. Nevertheless, recent numerical simulations using the IPROP code have suggested that ion SPT is possible. These results have prompted initial experiments to investigate SPT of ion beams. A 100-kA, 1.2-MeV, 3-cm-radius proton beam, generated on the Gamble II pulsed-power accelerator at NRL, has been injected into helium in the 30- to 250-mTorr regime to study this phenomenon. Evidence of self-pinched ion beam transport was observed in the 35- to 80-mTorr SPT pressure window predicted by IPROP. Measured signals from a time- and space-resolved scattered proton diagnostic and a time-integrated Li(Cu) nuclear activation diagnostic, both of which measure protons striking a 10-cm diameter target 50 cm into the transport region, are significantly larger in this pressure window than expected for ballistic transport. These results are consistent with significant self-magnetic fields and self-pinching of the ion beam. On the other hand, time-integrated signals from these same two diagnostics are consistent with ballistic transport at pressures above and below the SPT window. Interferometric electron line-density measurements, acquired during beam injection into the helium gas, show insignificant ionization below 35 mTorr, a rapidly rising ionization fraction with pressure in the SPT window, and a plateau in ionization fraction at about 2% for pressures above 80 mTorr. These and other results are consistent with the physical picture for SPT. IPROP simulations, which closely model the Gamble II experimental conditions, produce results that are in qualitative agreement with the experimental results. The advantages of SPT for

  18. Suppression of X-radiation from 2 MeV ion electrostatic accelerator

    International Nuclear Information System (INIS)

    Ignat'ev, I.G.; Miroshnichenko, V.I.; Sirenko, A.M.; Storizhko, V.E.

    2008-01-01

    The paper presents results concerning studies of X-radiation from 2 MeV ion electrostatic accelerator 'Sokol' used for nuclear microprobe analysis. The radiation protection system of the accelerator was developed and tested. Tests of the system of the accelerator show that it reduces doses rate by two orders of magnitude

  19. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1980-04-01

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm 2 have been obtained for pulse lengths on the order of 10 -7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  20. Revised data taking schedule with ion beams

    CERN Document Server

    Gazdzicki, Marek; Aduszkiewicz, A; Andrieu, B; Anticic, T; Antoniou, N; Argyriades, J; Asryan, A G; Baatar, B; Blondel, A; Blumer, J; Boldizsar, L; Bravar, A; Brzychczyk, J; Bubak, A; Bunyatov, S A; Choi, K U; Christakoglou, P; Chung, P; Cleymans, J; Derkach, D A; Diakonos, F; Dominik, W; Dumarchez, J; Engel, R; Ereditato, A; Feofilov, G A; Fodor, Z; Ferrero, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Hasegawa, T; Haungs, A; Igolkin, S; Ivanov, A S; Ivashkin, A; Kadija, K; Katrynska, N; Kielczewska, D; Kikola, D; Kisiel, J; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kolevatov, R S; Kondratiev, V P; Kowalski, S; Kurepin, A; Lacey, R; Laszlo, A; Lyubushkin, V V; Majka, Z; I Malakhov, A; Marchionni, A; Marcinek, A; Maris, I; Matveev, V; Melkumov, G L; Meregaglia, A; Messina, M; Mijakowski, P; Mitrovski, M; Montaruli, T; Mrówczynski, St; Murphy, S; Nakadaira, T; Naumenko, P A; Nikolic, V; Nishikawa, K; Palczewski, T; Pálla, G; Panagiotou, A D; Peryt, W; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Przewlocki, P; Rauch, W; Ravonel, M; Renfordt, R; Röhrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rybczynski, M; Sadovskii, A; Sakashita, K; Schuster, T; Sekiguchi, T; Seyboth, P; Shibata, M; Sissakian, A N; Skrzypczak, E; Slodkowski, M; Sorin, A S; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Szuba, M; Tada, M; Taranenko, A; Tsenov, R; Ulrich, R; Unger, M; Vassiliou, M; Vechernin, V V; Vesztergombi, G; Wlodarczyk, Z; Wojtaszek, A; Zipper, W; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2009-01-01

    This document presents the revised data taking schedule of NA61 with ion beams. The revision takes into account limitations due to the new LHC schedule as well as final results concerning the physics performance with secondary ion beams. It is proposed to take data with primary Ar and Xe beams in 2012 and 2014, respectively, and to test and use for physics a secondary B beam from primary Pb beam fragmentation in 2010, 2011 and 2013.

  1. Local in-depth analysis of ceramic materials by neutral beam secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Borchardt, G.; Scherrer, H.; Weber, S.; Scherrer, S.

    1980-01-01

    Local microanalysis of non-conducting surfaces by means of modern physical methods which use charged low-energy primary particles brings about severe problems because of the electrostatic charge accumulated on the sample surface. This is also true of secondary ion mass spectrometry (SIMS) where ions are usually used as primary particles. In the present work the basic features for production of neutral primary beams in commercial SIMS instruments by a simple technique are described. With suitably high sputtering rates, surface analyses and in-depth profiles can be made in reasonable measuring times. Results are given for chemical concentration distributions in the near-surface regions of an oxide glass and for the isotopic diffusion of Si-30 in a crystalline silicate with olivine structure (Co 2 SiO 4 ). (orig.)

  2. Atomic processes in Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1993-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  3. The emittance of high current heavy ion beams

    International Nuclear Information System (INIS)

    White, N.R.; Devaney, A.S.

    1989-01-01

    Ion implantation is the main application for high current heavy ion beams. Transfer ratio is defined as the ratio of the total ion current leaving the ion source to the current delivered to the endstation. This ratio is monitored and logged and its importance is explained. It is also affected by other factors, such as the isotopic and molecular composition of the total ion beam. The transfer ratio reveals the fraction of ions which are intercepted by parts of the beamline system. The effects of these ions are discussed in two categories: processing purity and reliability. In discussing the emittance of ribbon beams, the two orthogonal planes are usually considered separately. Longitudinal emittance is determined by slot length and by plasma ion temperature. It has already been revealed that the longitudinal divergence of the beams from BF3 is perhaps double that of the beam from arsenic vapour or argon, at the same total perveance from the ion source. This poses the question: why is the ion temperature higher for BF3 than for As or Ar? The transverse emittance is in practical terms dominated by the divergence. It is the most fruitful area for improvement in most real-world systems. There is an intrinsic divergence arising from initial ion energies within the plasma, and there is emittance growth that can occur as a result of aberration in the beam extraction optics. (N.K.)

  4. Characterization of ion beam induced nanostructures

    International Nuclear Information System (INIS)

    Ghatak, J.; Satpati, B.; Umananda, M.; Kabiraj, D.; Som, T.; Dev, B.N.; Akimoto, K.; Ito, K.; Emoto, T.; Satyam, P.V.

    2006-01-01

    Tailoring of nanostructures with energetic ion beams has become an active area of research leading to the fundamental understanding of ion-solid interactions at nanoscale regime and with possible applications in the near future. Rutherford backscattering spectrometry (RBS), high resolution transmission electron microscopy (HRTEM) and asymmetric X-ray Bragg-rocking curve experimental methods have been used to characterize ion-induced effects in nanostructures. The possibility of surface and sub-surface/interface alloying at nano-scale regime, ion-beam induced embedding, crater formation, sputtering yield variations for systems with isolated nanoislands, semi-continuous and continuous films of noble metals (Au, Ag) deposited on single crystalline silicon will be reviewed. MeV-ion induced changes in specified Au-nanoislands on silicon substrate are tracked as a function of ion fluence using ex situ TEM. Strain induced in the bulk silicon substrate surface due to 1.5 MeV Au 2+ and C 2+ ion beam irradiation is determined by using HRTEM and asymmetric Bragg X-ray rocking curve methods. Preliminary results on 1.5 MeV Au 2+ ion-induced effects in nanoislands of Co deposited on silicon substrate will be discussed

  5. Surface characterization after subaperture reactive ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Miessler, Andre; Arnold, Thomas; Rauschenbach, Bernd [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Leipzig (Germany)

    2010-07-01

    In usual ion beam etching processes using inert gas (Ar, Xe, Kr..) the material removal is determined by physical sputtering effects on the surface. The admixture of suitable gases (CF{sub 4}+O{sub 2}) into the glow discharge of the ion beam source leads to the generation of reactive particles, which are accelerated towards the substrate where they enhance the sputtering process by formation of volatile chemical reaction products. During the last two decades research in Reactive Ion Beam Etching (RIBE) has been done using a broad beam ion source which allows the treatment of smaller samples (diameter sample < diameter beam). Our goal was to apply a sub-aperture Kaufman-type ion source in combination with an applicative movement of the sample with respect to the source, which enables us to etch areas larger than the typical lateral dimensions of the ion beam. Concerning this matter, the etching behavior in the beam periphery plays a decisive role and has to be investigated. We use interferometry to characterize the final surface topography and XPS measurements to analyze the chemical composition of the samples after RIBE.

  6. Observation of the backward electrostatic ion-cyclotron wave

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Wong, K.L.

    1985-01-01

    The backward branch of the electrostatic ion-cyclotron wave has been observed for the first time. The wave, which was driven by a phased antenna structure inserted in a neon plasma, exists in the parameter ranges 2T/sub i//m/sub i/ 2 or approx. =T/sub i/, and ω/sub p/i > Ω/sub i/. Double-tip probe interferometry data agree with the theoretical dispersion relation. The antenna couples into the wave more readily on the side of the antenna where it has its smallest wavenumber

  7. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  8. Optics calculations and beam line design for the JANNuS facility in Orsay

    International Nuclear Information System (INIS)

    Chauvin, N.; Henry, S.; Flocard, H.; Fortuna, F.; Kaitasov, O.; Pariset, P.; Pellegrino, S.; Ruault, M.O.; Serruys, Y.; Trocelier, P.

    2007-01-01

    JANNuS (Joint Accelerators for Nano-Science and Nuclear Simulation) will be a unique user facility in Europe dedicated to material modification by ion beam implantation and irradiation. The main originality of the project is that it will be possible to perform implantation and irradiation with simultaneous multiple ions beams and in situ characterization by transmission electron microscopy (TEM) observation or ion beam analysis. This facility will be composed of two experimental platforms located in two sites: the CEA-SRMP in Saclay and the CNRS-CSNSM in Orsay. This paper will focus on the design of two new transport beam lines for the Orsay site. One of the most challenging parts of the JANNuS project (Orsay site) is to design two new beam lines in order to inject, into a 200 kV TEM, two different ion beams (low and medium energy) coming from two existing pieces of equipment: a 2 MV Tandem accelerator and a 190 kV ion implanter. For these new beam lines, first order beam calculations have been done using transfer matrix formalism. A genetic algorithm has been written and adapted to perform the optimization of the beam line parameters. Then, using the SIMION code, field maps of the electrostatic elements (quadrupoles, spherical sectors) have been calculated and ion trajectories have been simulated. We studied specifically the optical aberrations induced by the electrostatic spherical deflectors. Finally, the results of the first order calculations and the field map simulations show a good agreement

  9. Ion beam processing of bio-ceramics

    International Nuclear Information System (INIS)

    Ektessabi, A.M.

    1995-01-01

    Thin films of bio-inert (TiO 2+α , Al 2 O 3+α ) and bio-active (compounds of calcium and phosphorus oxides, hydroxy-apatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate. (orig.)

  10. Ion beam processing of bio-ceramics

    Science.gov (United States)

    Ektessabi, A. M.

    1995-05-01

    Thin films of bio-inert (TiO 2+α, Al 2O 3+α) and bio-active (compounds of calcium and phosphorus oxides, hydroxyapatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate.

  11. Performance of positive ion based high power ion source of EAST neutral beam injector

    International Nuclear Information System (INIS)

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-01-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST

  12. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  13. Electrostatic ion cyclotron waves and ion energy diffusion in a mirror machine

    International Nuclear Information System (INIS)

    Turner, W.C.

    1977-01-01

    Measurements of ion cyclotron fluctuations and ion energy diffusion in the neutral beam injected 2XIIB mirror machine are presented. A narrow band single mode spectrum is always observed. When the plasma is de-stabilized by turning off axially injected streaming plasma, the wave amplitude increases and a simultaneous increase in ion-energy diffusion is observed. The spectral properties of the wave do not change. The data are in accord with a wave particle saturation of the drift cyclotron loss cone (DCLC) mode

  14. DC and RF ion accelerators for MeV energies

    International Nuclear Information System (INIS)

    Urbanus, W.H.

    1990-01-01

    This thesis deals with the transport and acceleration of intense ion beams in single-ended Van de Graaff accelerators and the multiple beam rf accelerator MEQALAC (Multiple Electrostatic Quadrupole Array Linear Accelerator). Ch. 2 discusses several beam-envelope calculation techniques and describes the ion-optical components of a 1 MV, high-current, heavy-ion implantation facility and a 2 MV facility for analyzing purposes. The X-ray level of these accelerators is kept low, such that no shielding is needed, by keeping the energy of the secondary electrons sufficiently low, which is accomplished by a suppression system of small permanent magnets built in the acceleration tubes (ch. 3). Ch.'s 4,5 and 6 cover various aspects of stage II of the MEQALAC project. This stage deals with the parallel acceleration of four high-current N + beams from 40 keV to 1 MeV. Acceleration takes place in 32 rf gaps which are part of a modified interdigital H-resonator. In between the accelerating gaps, small electrostatic quadrupoles are mounted, which oppose the space charge forces of the intense ion beams. The lenses are arranged in a periodic focusing structure. A bucket-type plasma ion source is used, which produces both N + and N 2 + ions. In between the ion source and the MEQALAC section, a Low Energy Beam Transport (LEBT) section is mounted which provides for the drift space for a buncher. The latter device transforms the extracted dc beams into bunched beams which are accepted by the MEQALAC section. In ch. 4 the transport of ion beams that contain both N + and N 2 + ions, so-called mixed beams, through the LEBT section is discussed and equations for the current limit of a mixed beam are derived. Bunching of mixed N + , N 2 + beams is discussed in ch. 5. Multichannel acceleration of N + ions with the MEQALAC is discussed in ch. 6. (author). 122 refs.; 67 figs.; 1 tab

  15. A pencil beam algorithm for helium ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar [Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); PEG MedAustron, 2700 Wiener Neustadt (Austria); Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria)

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  16. Status of radioactive ion beams at the HRIBF

    CERN Document Server

    Stracener, D W

    2003-01-01

    Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using sup 1 sup 7 F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include sup 2 sup 5 Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.

  17. Preliminary results of spatially resolved ECR ion beam profile investigations

    International Nuclear Information System (INIS)

    Panitzsch, L.; Stalder, M.; Wimmer-Schweingruber, R.F.

    2012-01-01

    The profile of an ion beam produced in an Electron Cyclotron Resonance Ion Source (ECRIS) can vary greatly depending on the source settings and the ion-optical tuning. Strongly focussed ion beams form circular structures (hollow beams) as predicted by simulations and observed in experiments. Each of the rings is predicted to be dominated by ions with same or at least similar m/q-ratios due to ion-optical effects. To check this we performed a series of preliminary investigations to test the required tuning capabilities of our ion source. This includes beam focussing (A) and beam steering (B) using a 3D-movable extraction. Having tuned the source to deliver a beam of strongly focussed ions of different ion species and having steered this beam to match the transmittance area of the sector magnet we also recorded the ion charge state distribution of the strongly focussed beam profile at different, spatially limited positions (C). The preliminary results will be introduced within this paper: it appears that our 3D-movable extraction is very efficient to steer and to focus the beam strongly. The paper is followed by the slides of the presentation. (authors)

  18. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  19. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-01-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  20. Performance test results of ion beam transport for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M R; Mattoo, S K [Institute for Plasma Research Bhat, Gandhinagar-382428, Gujarat (India); Uhlemann, R, E-mail: mukti@ipr.res.i [Forschungszentrum Juelich, Institute fur Energieforschung IEF-4, Plasmaphysik D-52425 Juelich (Germany)

    2010-02-01

    A neutral beam injector is built at IPR to heat the plasma of SST-1 and its upgrade. It delivers a maximum beam power of 1.7 MW for 55 kV Hydrogen beam or 80 kV Deuterium beam. At lower beam voltage, the delivered power falls to 500 kW at 30 kV Hydrogen beam which is adequate to heat SST-1 plasma ions to {approx} 1 keV. Process of acceleration of ions to the required beam voltage, conversion of ions to neutrals and removal of un-neutralized ions and the beam diagnostic systems occupy a large space. The consequence is that linear extent of the neutral beam injector is at least a few meters. Also, port access provides a very narrow duct. Even a very good injector design and fabrication practices keep beam divergence at a very low but finite value. The result is beam transport becomes an important issue. Since a wide area beam is constructed by hundreds of beam lets, it becomes essential they be focused in such a way that beam transport loss is minimized. Horizontal and vertical focal lengths are two parameters, in addition to beam divergence, which give a description of the beam transport. We have obtained these two parameters for our injector by using beam transport code; making several hundred simulation runs by varying optical parameters of the beam. The selected parameters set has been translated into the engineering features of the extractor grid set of the ion source. Aperture displacement technique is used to secure the horizontal beam focusing at 5.4 m. Combination of both aperture displacement and inclining of two grid halves to {approx} 17 mrad are secured for vertical beam focusing at 7 m from earth grid of the ion source. The gaps between the design, engineered and performance tested values usually arise due to lack of exercising control over fabrication processes or due to inaccuracies in the assumption made in the model calculations of beam optics and beam transport. This has been the case with several injectors, notably with JET injector. To overcome

  1. Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

  2. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  3. Mutation induction by ion beams in arabidopsis

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    1999-01-01

    An investigation was made on characteristics of ion beams for the biological effects and the induction of mutation using Arabidopsis plant as a model plant for the molecular genetics. Here, the characteristics of mutation at the molecular level as well as new mutants induced by ion beams were described. The ast and sep1 were obtained from the offspring of 1488 carbon ion-irradiated seeds respectively. The uvi1-uvi4 mutants were also induced from 1280 M 1 lines. Thus, ion beams can induce not only known mutants such as tt, gl and hy but also novel mutants with high frequency. Even in the tt phenotype, two new mutant loci other than known loci were found. In chrysanthemum, several kinds of single, complex or stripped flower-color mutants that have been never induced by γirradiation, indicating that ion beams could produce a variety of mutants with the same phenotype. In conclusion, ion beams for the mutation induction are characterized by 1) to induce mutants with high frequency, 2) to show broad mutation spectrum and 3) to produce novel mutants. For these reasons, chemical mutagens such as EMS and low LET ionizing radiation such as X-rays and γ-rays will predominantly induce many but small modifications or DNA damages on the DNA strands. As the result, several point mutations will be produced on the genome. On the contrary, ion beams as a high LET ionizing radiation will not cause so many but large and irreparable DNA damage locally, resulting in production of limited number of null mutation. (M.N.)

  4. Mutation induction by ion beams in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1999-07-01

    An investigation was made on characteristics of ion beams for the biological effects and the induction of mutation using Arabidopsis plant as a model plant for the molecular genetics. Here, the characteristics of mutation at the molecular level as well as new mutants induced by ion beams were described. The ast and sep1 were obtained from the offspring of 1488 carbon ion-irradiated seeds respectively. The uvi1-uvi4 mutants were also induced from 1280 M{sub 1} lines. Thus, ion beams can induce not only known mutants such as tt, gl and hy but also novel mutants with high frequency. Even in the tt phenotype, two new mutant loci other than known loci were found. In chrysanthemum, several kinds of single, complex or stripped flower-color mutants that have been never induced by {gamma}irradiation, indicating that ion beams could produce a variety of mutants with the same phenotype. In conclusion, ion beams for the mutation induction are characterized by 1) to induce mutants with high frequency, 2) to show broad mutation spectrum and 3) to produce novel mutants. For these reasons, chemical mutagens such as EMS and low LET ionizing radiation such as X-rays and {gamma}-rays will predominantly induce many but small modifications or DNA damages on the DNA strands. As the result, several point mutations will be produced on the genome. On the contrary, ion beams as a high LET ionizing radiation will not cause so many but large and irreparable DNA damage locally, resulting in production of limited number of null mutation. (M.N.)

  5. BEARS: Radioactive ion beams at LBNL

    International Nuclear Information System (INIS)

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-01-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron's Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min 11 C and 70-sec 14 O, produced by (p,n) and (p,α) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial 11 C beams of up to 2.5 x 10 7 ions/sec and 14 O beams of 3 x 10 5 ions/sec

  6. Efficient, radiation-hardened, 800-keV neutral beam injection system

    International Nuclear Information System (INIS)

    Anderson, O.A.; Cooper, W.S.; Goldberg, D.A.; Ruby, L.; Soroka, L.; Fink, J.H.

    1982-10-01

    Recent advances and new concepts in negative ion generation, transport, acceleration, and neutrailzation make it appear likely that an efficient, radiation-hardened neutral beam injection system could be developed in time for the proposed FED-A tokamak. These new developments include the operation of steady-state H - ion sources at over 5 A per meter of source length, the concept of using strong-focussing electrostatic structures for low-gradient dc acceleration of high-current sheet beams of negative ions and the transport of these beams around corners, and the development of powerful oxygen-iodine chemical lasers which will make possible the efficient conversion of the negative ions to neutrals using a photodetachment scheme in which the ion beam passes through the laser cavity

  7. Polarization Studies in Fast-Ion Beam Spectroscopy

    International Nuclear Information System (INIS)

    Trabert, E

    2001-01-01

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams

  8. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  9. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  10. Variable-spot ion beam figuring

    International Nuclear Information System (INIS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-01-01

    This paper introduces a new scheme of ion beam figuring (IBF), or rather variable-spot IBF, which is conducted at a constant scanning velocity with variable-spot ion beam collimated by a variable diaphragm. It aims at improving the reachability and adaptation of the figuring process within the limits of machine dynamics by varying the ion beam spot size instead of the scanning velocity. In contrast to the dwell time algorithm in the conventional IBF, the variable-spot IBF adopts a new algorithm, which consists of the scan path programming and the trajectory optimization using pattern search. In this algorithm, instead of the dwell time, a new concept, integral etching time, is proposed to interpret the process of variable-spot IBF. We conducted simulations to verify its feasibility and practicality. The simulation results indicate the variable-spot IBF is a promising alternative to the conventional approach.

  11. Three dimensional simulations of space charge dominated heavy ion beams with applications to inertial fusion energy

    International Nuclear Information System (INIS)

    Grote, D.P.

    1994-01-01

    Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator's lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement

  12. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  13. Ion beam heating for fast ignition

    International Nuclear Information System (INIS)

    Gus'kov, S.Yu.; Limpouch, J.; Klimo, O.

    2010-01-01

    Complete text of publication follows. The characteristics features of the formation of the spatial distribution of the energy transferred to the plasma from a beam of ions with different initial energies, masses and charges under fast ignition conditions are determined. The motion of the Bragg peak is extended with respect to the spatial distribution of the temperature of the ion-beam-heated medium. The parameters of the ion beams are determined to initiate different regimes of fast ignition of thermonuclear fuel precompressed to a density of 300-500 g/cm 3 - the edge regime, in which the ignition region is formed at the outer boundary of the fuel, and the internal regime, in which the ignition region is formed in central parts of the fuel. The conclusion on the requirements for fast ignition by light and heavy ion beams is presented. It is shown that the edge heating with negative temperature gradient is described by a self-similar solution. Such a temperature distribution is the reason of the fact that the ignited beam energy at the edge heating is larger than the minimal ignition energy by factor 1.65. The temperature Bragg peak may be produced by ion beam heating in the reactor scale targets with pR-parameter larger than 3-4 g/cm 2 . In particular, for central ignition of the targets with pR-parameters in the range of 4-8 g/cm 2 the ion beam energy should be, respectively, from 5 to 7 times larger than the minimal ignition energy. The work by S.Ye. Gus'kov, D.V. Il'in, and V.E. Sherman was supported by the Ministry of Education and Science of the Russian Federation under the program 'Development of the Scientific Potential of High Education for 2009-2010' (project no. 2.1.1/1505) and the Russian Foundation for Basic Research (project no. 08-02-01394 a ). The work by J. Limpouch and O. Klimo was supported by the Czech Ministry of Education (project no. LC528, MSM6840770022).

  14. Study of electrostatic acceleration of H and D negative ion beams. Application to the 1 MeV SINGAP accelerator; Etude de l`acceleration electrostatique de faisceaux d`ions negatifs H / D de haute puissance. Application a l`accelerateur SINGAP de 1MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bucalossi, J [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; [Paris-6 Univ., 75 (France)

    1998-04-01

    In the framework of the development of a neutral beam injection system for ITER (International Thermonuclear Experimental Reactor), the electrostatic acceleration of negative ion H/D beams up to an energy of 1 MeV has been studied. With the support of 3-D beam trajectory calculations, the limitations of the multi-aperture multi-grid acceleration concept, ITER reference concept, ar shown and the relevance of a new concept, called SINGAP, is demonstrated. In a SINGAP accelerator, beamlets are pre-accelerated with a classical triode multi-apertures system up to {approx} 50 keV. The pre-accelerated beamlets are then merged into a single beam and post-accelerated at high energy through a large SINGle APerture using one SINgle GAP. The optics of one pre-accelerated beamlet has been studied on the INCA triode accelerator at the Ecole Polytechnique. A diagnostic has been developed to measure the emittance of the pre-accelerated beamlet. A diagnostic has been developed to measure the emittance of the pre-accelerated beamlet. Values of {approx} 0.03{pi}.mrad.cm for the effective normalized emittance and {approx} 12 mrad for the minimal beam divergence have been found (Hbeams). Besides, the effects of co-extracted electrons and pressure in the transport region on the beam optics are shown and experiment is compared to beam numerical simulation. On the Cadarache 1 MeV, 100 mA, D- SINGAP accelerator, beams of 1 s pulse were produced at a level of 900 keV (without observing breakdowns between electrodes). SINGAP optics has been investigated using an infrared calorimetric beam profile diagnostic (2-D) and a neutral beam profile diagnostic (1-D). The control of the beam optics is very satisfying: a divergence of {approx} 10 mrad has been measured, and 3-D simulations and experimentation are in good agreement. (author) 117 refs.

  15. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection

    International Nuclear Information System (INIS)

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Schardt, Dieter; Rietzel, Eike

    2010-01-01

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to ±28 mm on degrader were performed which resulted in a range adaptation of up to ±15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  16. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  17. Ion beam collimating grid to reduce added defects

    Science.gov (United States)

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  18. Ion Dynamics at Shocks: Ion Reflection and Beam Formation at Quasi-perpendicular Shocks

    International Nuclear Information System (INIS)

    Kucharek, Harald; Moebius, Eberhard

    2005-01-01

    The physics of collisionless shocks is controlled by the ion dynamics. The generation of gyrating ions by reflection as well as the formation of field-aligned ion beams are essential parts of this dynamic. On the one hand reflection is most likely the first interaction of ions with the shock before they undergo the downstream thermalization process. On the other hand field-aligned ion beams, predominately found at the quasi-perpendicular bow shock, propagate into the distant foreshock region and may create wave activity. We revisit ion reflection, the source and basic production mechanism of field-aligned ion beams, by using multi-spacecraft measurements and contrast these observations with existing theories. Finally, we propose an alternative production mechanism

  19. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  20. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  1. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  2. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, Andriy; Prokůpek, Jan; Láska, Leoš; Mocek, Tomáš; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 109, č. 10 (2011), "103302-1"-"103302-8" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk(CZ) 7E09092 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : aluminium * chemical sensors * diamond * electrostatics * iodine * ion beams * thin films * lasers * time of flight spectrometers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.168, year: 2011 http://jap.aip.org/ resource /1/japiau/v109/i10/p103302_s1

  3. Guiding center simulations of strong ion beams with applications to the Counterstreaming Ion Torus

    International Nuclear Information System (INIS)

    Tull, C.

    1978-03-01

    In the proposed Counterstreaming Ion Torus (CIT) steady state rather than pulsed operation may be possible if all of the plasma power density is provided by neutral beam injection. After the neutral beams have penetrated the magnetic field, strong ion beam currents are produced. A major concern with the relatively strong counterstreaming ion currents is the effect of the beam self-magnetic fields on the macroscopic equilibrium of the system. Pinching and self focusing of the individual beams may occur, or the repulsive interaction of the two oppositely directed beam currents may destroy the equilibrium entirely. We investigate this macroscopic behavior of the ion beams with a guiding center plasma particle simulation model and we describe a model we have developed to simulate steady state behavior in an ideal CIT configuration

  4. Ion sources for heavy ion fusion

    International Nuclear Information System (INIS)

    Yu, S.S.; Eylon, S.; Chupp, W.

    1995-09-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K + ions of 950 mA peak from a 6.7 inch curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 micros. The measured normalized edge emittance of less than 1 π mm-mr is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described

  5. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  6. Selection and design of ion sources for use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Haynes, D.L.; Mills, G.D.; Olsen, D.K.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25 MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies, and species versatility, and because it has been engineered for remote installation, removal, and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low electron affinities. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report

  7. Radiation effects of ion beams on polymers

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1993-01-01

    Recent progress in the radiation effects of ion beams on polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on polystyrene thin films on silicon wafers and time resolved emission studies on polymers are described. (orig.)

  8. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  9. A spectroscopic study of ion channels in a prototype inertial electrostatic confinement reactor

    International Nuclear Information System (INIS)

    Collis, S.; Khachan, J.

    2000-01-01

    Inertial Electrostatic Confinement (IEC) involves using a semi-transparent and negatively biased grid to accelerate light nuclei towards a common centre for the purpose of generating neutrons through fusion reactions. This project investigated the plasma properties in a small prototype IEC device that was operated using a relatively low grid bias in a discharge of hydrogen. Electrostatic lenses, which are the product of the geometry of the grid, create ion channels. Doppler shift spectroscopy was performed on the emission produced by charge exchange reactions in these channels. Using the spectra we obtained, we were able to determine energies, ratios of hydrogen species (H + :H 2 + :H 3 + ) and thermal properties of ions present in these channels. A discussion of results will be presented with particular emphasis on the implications of our findings to the construction of a portable neutron production device. (author)

  10. Chromatic aberrations of electrostatic axisymmetric lenses produced by circular cylinders

    International Nuclear Information System (INIS)

    Baranova, L.A.; Ul'yanova, N.S.; Yavor, S.Ya.

    1989-01-01

    Ion beams both to test material and for technological processes have being used lately in science and technology more and more. Electrostatic lenses are used, as a rule, for such beam production. Coefficients of chromatic aberrration for a wide range of changes in lense parameters are calculated on the basis of analytical expressions to determine the potential in immerse and isolated lenses. The chromatic aberration coefficient is presented as a polynomial according to the degrees of reverse increase, that permits to calculate a circle of blurring of subject arbitrary position

  11. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  12. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward

    2001-01-01

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed

  13. Rotating light ion beam-plasma system in inertial confinement fusion

    International Nuclear Information System (INIS)

    Murakami, H.; Okada, T.

    1997-01-01

    The stabilizing mechanism of filamentation instability in light ion beam propagation is studied numerically by using a particle-in-cell code. Rotating light ion beam scheme has been proposed for the light ion beam propagation. The filamentation instability is stabilized by the external magnetic field which is induced by the rotating light ion beams. From a dispersion relation, linear growth rates of filamentation instabilities are obtained in a light ion beam-plasma system with an external magnetic field. The theory and simulation comparisons illustrate the results. (author)

  14. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  15. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Jamieson, D. N.; Prawer, S.; Allen, M.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  16. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A A; Jamieson, D N; Prawer, S; Allen, M G [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  17. Development of Emittance Analysis Software for Ion Beam Characterization

    International Nuclear Information System (INIS)

    Padilla, M.J.; Liu, Yuan

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a figure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally, a high-quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifield Radioactive Ion Beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profiles, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fitting are also incorporated into the software. The software will provide a simplified, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate

  18. DEVELOPMENT OF EMITTANCE ANALYSIS SOFTWARE FOR ION BEAM CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, M. J.; Liu, Y.

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a fi gure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally a high quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifi eld Radioactive Ion beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profi les, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fi tting are also incorporated into the software. The software will provide a simplifi ed, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate.

  19. Electrostatic instabilities and nonlinear structures of low-frequency waves in nonuniform electron-positron-ion plasmas with shear flow

    International Nuclear Information System (INIS)

    Mirza, Arshad M.; Hasan, Asma; Azeem, M.; Saleem, H.

    2003-01-01

    It is found that the low-frequency ion acoustic and electrostatic drift waves can become unstable in uniform electron-ion and electron-positron-ion plasmas due to the ion shear flow. In a collisional plasma a drift-dissipative instability can also take place. In the presence of collisions the temporal behavior of nonlinear drift-dissipative mode can be represented in the form of well-known Lorenz and Stenflo type equations that admit chaotic trajectories. On the other hand, a quasi-stationary solution of the mode coupling equations can be represented in the form of monopolar vortex. The results of the present investigation can be helpful in understanding electrostatic turbulence and wave phenomena in laboratory and astrophysical plasmas

  20. Continuous electrodeionization through electrostatic shielding

    International Nuclear Information System (INIS)

    Dermentzis, Konstantinos

    2008-01-01

    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency

  1. Design status of heavy ion injector program

    International Nuclear Information System (INIS)

    Ballard, E.O.; Meyer, E.A.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.; Riepe, K.B.

    1985-01-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10 -7 torr) high voltage (HV) accelerating column

  2. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  3. High harmonic ion cyclotron heating in DIII-D: Beam ion absorption and sawtooth stabilization

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Fredrickson, E.D.; Mau, T.K.; Petty, C.C.; Pinsker, R.I.; Porkolab, M.; Rice, B.W.

    1999-01-01

    Combined neutral beam injection and fast wave heating at the fourth cyclotron harmonic produce an energetic deuterium beam ion tail in the DIII-D tokamak. When the concentration of thermal hydrogen exceeds ∼ 5%, the beam ion absorption is suppressed in favour of second harmonic hydrogen absorption. As theoretically expected, the beam absorption increases with beam ion gyro-radius; also, central absorption at the fifth harmonic is weaker than central absorption at the fourth harmonic. For central heating at the fourth harmonic, an energetic, perpendicular, beam population forms inside the q = 1 surface. The beam ion tail transiently stabilizes the sawtooth instability but destabilizes toroidicity induced Alfven eigenmodes (TAEs). Saturation of the central heating correlates with the onset of the TAEs. Continued expansion of the q = 1 radius eventually precipitates a sawtooth crash; complete magnetic reconnection is observed. (author)

  4. Exact evaluation of the rates of electrostatic decay and scattering off thermal ions for an unmagnetized Maxwellian plasma

    Energy Technology Data Exchange (ETDEWEB)

    Layden, B.; Cairns, Iver H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-15

    Electrostatic decay of Langmuir waves into Langmuir and ion sound waves (L→L′+S) and scattering of Langmuir waves off thermal ions (L+i→L′+i′, also called “nonlinear Landau damping”) are important nonlinear weak-turbulence processes. The rates for these processes depend on the quadratic longitudinal response function α{sup (2)} (or, equivalently, the quadratic longitudinal susceptibility χ{sup (2)}), which describes the second-order response of a plasma to electrostatic wave fields. Previous calculations of these rates for an unmagnetized Maxwellian plasma have relied upon an approximate form for α{sup (2)} that is valid where two of the wave fields are fast (i.e., v{sub φ}=ω/k≫V{sub e} where ω is the angular frequency, k is the wavenumber, and V{sub e} is the electron thermal speed) and one is slow (v{sub φ}≪V{sub e}). Recently, an exact expression was derived for α{sup (2)} that is valid for any phase speeds of the three waves in an unmagnetized Maxwellian plasma. Here, this exact α{sup (2)} is applied to the calculation of the three-dimensional rates for electrostatic decay and scattering off thermal ions, and the resulting exact rates are compared with the approximate rates. The calculations are performed using previously derived three-dimensional rates for electrostatic decay given in terms of a general α{sup (2)}, and newly derived three-dimensional rates for scattering off thermal ions; the scattering rate is derived assuming a Maxwellian ion distribution, and both rates are derived assuming arc distributions for the wave spectra. For most space plasma conditions, the approximate rate is found to be accurate to better than 20%; however, for sufficiently low Langmuir phase speeds (v{sub φ}/V{sub e}≈3) appropriate to some spatial domains of the foreshock regions of planetary bow shocks and type II solar radio bursts, the use of the exact rate may be necessary for accurate calculations. The relative rates of electrostatic decay

  5. Barium ion beam. Annual progress report

    International Nuclear Information System (INIS)

    Lazar, N.; Dandl, R.; Rynn, N.; Wickham, M.

    1985-01-01

    The barium ion beam Zeeman diagnostic is an in situ nonperturbing diagnostic designed to measure both the plasma electric and magnetic fields in devices such as STM and EBT. The diagnostic satisfies the requirements of high precision, spatial resolution and nonperturbation of the plasma. The technique uses resonance absorption of light from a single moded laser in a beam of energetic barium ions to measure the Zeeman effect in the absorption spectrum (to measure changes in the magnetic field) and to observe the changes in beam velocity by the Doppler shift of the absorption lines

  6. Experimental studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Sastry, D.L.; Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.

    1991-01-01

    The sources of information presented are essentially taken from the papers reported at several international seminars and those appeared in the Journal of Nuclear Instruments and Methods in Physics Research. Production and usage of radioactive ion beams (RIB) in research have received the attention of scientists all over the world during the past six years. The first radioactive ion beams ( 19 Ne) were produced at Bevalac for the purpose of medical research using a primary beam of energy 800 MeV/a.m.u. (author). 19 refs., 2 figs., 3 tabs

  7. Advanced characterization of materials using swift ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tabacniks, Manfredo H. [Universidade de Sao Paulo (USP), SP (Brazil)

    2011-07-01

    Swift ion beams are powerful non destructive tools for material analysis especially thin films. In spite of their high energy, usually several MeV/u, little energy is deposited by the ion on the sample. Energetic ions also use to stop far away (or outside) the inspected volume, hence producing negligible damage to the sample. Ion beam methods provide quantitative trace element analysis of any atomic element (and some isotopes) in a sample and are able to yield elemental depth profiles with spatial resolution of the order of 10mm. Relying on nuclear properties of the atoms, these methods are insensitive to the chemical environment of the element, consequently not limited by matrix effects. Ion beam methods are multielemental, can handle insulating materials, are quick (an analysis usually takes less than 15 minutes), and need little (if any) sample preparation. Ion beams are also sensitive to surface roughness and sample porosity and can be used to quickly inspect these properties in a sample. The Laboratory for Ion Beam Analysis of the University of Sao Paulo, LAMFI, is a multi-user facility dedicated to provide Ion Beam Methods like PIXE, RBS, FRS and NRA techniques for the analysis of materials and thin films. Operating since 1994, LAMFI is being used mostly by many researchers from within and outside USP, most of them non specialists in ion beam methods, but in need of ion beam analysis to carry out their research. At LAMFI, during the last 9 years, more than 50% of the accelerator time was dedicated to analysis, usually PIXE or RBS. 21% was down time and about 14% of the time was used for the development of ion beam methods which includes the use of RBS for roughness characterization exploring the shading of the beam by structures on the surface and by modeling the RBS spectrum as the product of a normalized RBS spectrum and a height density distribution function of the surface. Single element thick target PIXE analysis is being developed to obtain the thin

  8. Advanced characterization of materials using swift ion beams

    International Nuclear Information System (INIS)

    Tabacniks, Manfredo H.

    2011-01-01

    Swift ion beams are powerful non destructive tools for material analysis especially thin films. In spite of their high energy, usually several MeV/u, little energy is deposited by the ion on the sample. Energetic ions also use to stop far away (or outside) the inspected volume, hence producing negligible damage to the sample. Ion beam methods provide quantitative trace element analysis of any atomic element (and some isotopes) in a sample and are able to yield elemental depth profiles with spatial resolution of the order of 10mm. Relying on nuclear properties of the atoms, these methods are insensitive to the chemical environment of the element, consequently not limited by matrix effects. Ion beam methods are multielemental, can handle insulating materials, are quick (an analysis usually takes less than 15 minutes), and need little (if any) sample preparation. Ion beams are also sensitive to surface roughness and sample porosity and can be used to quickly inspect these properties in a sample. The Laboratory for Ion Beam Analysis of the University of Sao Paulo, LAMFI, is a multi-user facility dedicated to provide Ion Beam Methods like PIXE, RBS, FRS and NRA techniques for the analysis of materials and thin films. Operating since 1994, LAMFI is being used mostly by many researchers from within and outside USP, most of them non specialists in ion beam methods, but in need of ion beam analysis to carry out their research. At LAMFI, during the last 9 years, more than 50% of the accelerator time was dedicated to analysis, usually PIXE or RBS. 21% was down time and about 14% of the time was used for the development of ion beam methods which includes the use of RBS for roughness characterization exploring the shading of the beam by structures on the surface and by modeling the RBS spectrum as the product of a normalized RBS spectrum and a height density distribution function of the surface. Single element thick target PIXE analysis is being developed to obtain the thin

  9. Sawtooth activity of the ion cloud in an electron-beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.

    2003-01-01

    The dynamics of an ensemble of highly charged Ar and Ba ions in an electron-beam ion trap (EBIT) was studied by recording time-resolved x-ray spectra emitted from trapped ions. Sawtoothlike signatures manifest in the spectra for a variety of EBIT operating conditions indicating a sudden collapse of the ion inventory in the trap. The collapse occurs on a time scale of approximately 100 ms and the evolution of the sawteeth is very sensitive to parameters such as electron-beam current and axial trap depth. Analysis of the measurements is based on a time-dependent calculation of the trapping process showing that sawtooth activity is caused by the feedback between the low-Z argon and high-Z barium ions. This unexpected behavior demonstrates the importance of nonlinear effects in electron-beam traps containing more than a single ion species

  10. Feasibility of a Heavy Ion Beam Probe for W7-X

    Science.gov (United States)

    Crowley, T. P.; Demers, D. R.; Fimognari, P. J.; Grulke, O.; Laube, R.

    2017-10-01

    A feasibility study of a Heavy Ion Beam Probe (HIBP) diagnostic for the Wendelstein 7-X (W7-X) superconducting stellarator, incorporating the accelerator and energy analyzer (currently in Greifswald) from the 2 MeV TEXT-U HIBP, is being carried out. The study's results are positive: beam trajectory simulations in the W7-X standard magnetic configuration, with central densities up to 1020 m-3, predict that it will be possible to measure the equilibrium plasma potential and Er at all radii, and simultaneously measure temporally and spatially resolved fluctuations of ne and potential for r / a >0.5. This will provide a unique capability to advance understanding of neoclassical and turbulent particle and energy transport in W7-X. Within this feasibility study, the beam is injected and detected through the K11 and N11 ports respectively, and the toroidal magnetic field is in the ` + φ ' direction. Additional beam simulations reveal that most radii can be accessed in 7 other paradigm magnetic configurations. It's anticipated that electrostatic beam steering suitable for studying all these configurations is plausible; it will have plate dimensions comparable to TEXT-U's with smaller electric fields and higher voltages. Initial estimates of anticipated heat load from the W7-X plasma on the steering systems indicate it will be significant, but tractable. Our conclusion from these studies is that an HIBP diagnostic for W7-X is feasible. This work is supported by US DoE Award DE-SC0013918.

  11. Direct measurement of the plasma response to electrostatic ion waves

    International Nuclear Information System (INIS)

    Sarfaty, M.; DeSouza-Machado, S.; Skiff, F.

    1995-01-01

    Plasma wave-wave and wave-particle interactions are studied in a linear magnetized plasma. The relatively quiet plasma is produced by an argon gas-discharge. The plasma density is n e ≅ 10 9 cm -3 and the electron/ion temperatures are T e ≅ 5eV and T i = 0.05eV. A grid and a four ring antenna, both mounted on a scanning carriage, are used to launch electrostatic ion waves in the plasma. Laser Induced Fluorescence measurements of both the linear and the nonlinear plasma response to the wave fields are presented. The Vlasov-Poisson equations are used to explain the measured zero, first and second order terms of the ion distribution function in the presence of wave fields. In addition to the broadening (heating) of the ion distribution as the authors increase the wave amplitudes, induced plasma flows are observed both along and across the magnetic field

  12. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  13. Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem

    KAUST Repository

    Younis, Mohammad I.

    2014-08-17

    We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data in the literature and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximations they are based on. In such cases, multi-mode reduced order models need to be utilized.

  14. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Science.gov (United States)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  15. Heavy ion fusion notes 94-1 through 94-9

    International Nuclear Information System (INIS)

    Judd, D.; Rintamaki, J.; Lund, S.

    1995-01-01

    This report contains information on the following topics dealing with heavy ion fusion accelerators: steering errors and corrections in a small recirculator; evaluation of a capacitive beam position monitor diagnostic for use on the heavy ion recirculator; beam steering with dipole biased electrostatic quadrupoles; estimate of emittance growth; c-probes for the recirculator; analysis of the dipole plate shape and location; and generation of electric dipole waveforms

  16. Heavy ion fusion notes 94-1 through 94-9

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D.; Rintamaki, J.; Lund, S. [and others

    1995-03-13

    This report contains information on the following topics dealing with heavy ion fusion accelerators: steering errors and corrections in a small recirculator; evaluation of a capacitive beam position monitor diagnostic for use on the heavy ion recirculator; beam steering with dipole biased electrostatic quadrupoles; estimate of emittance growth; c-probes for the recirculator; analysis of the dipole plate shape and location; and generation of electric dipole waveforms.

  17. The influence of beam divergence on ion-beam induced surface patterns

    International Nuclear Information System (INIS)

    Kree, R.; Yasseri, T.; Hartmann, A.K.

    2009-01-01

    We present a continuum theory and a Monte Carlo model of self-organized surface pattern formation by ion-beam sputtering including effects of beam profiles. Recently, it has turned out that such secondary ion-beam parameters may have a strong influence on the types of emerging patterns. We first discuss several cases, for which beam profiles lead to random parameters in the theory of pattern formation. Subsequently we study the evolution of the averaged height profile in continuum theory and find that the typical Bradley-Harper scenario of dependence of ripple patterns on the angle of incidence can be changed qualitatively. Beam profiles are implemented in Monte Carlo simulations, where we find generic effects on pattern formation. Finally, we demonstrate that realistic beam profiles, taken from experiments, may lead to qualitative changes of surface patterns.

  18. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R. [Southwestern Institute of Physics, Chengdu, 610041 (China)

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  19. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    Science.gov (United States)

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  20. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.