WorldWideScience

Sample records for electrostatic dust fall

  1. Electrostatic Dust Detector with Improved Sensitivity

    International Nuclear Information System (INIS)

    Boyle, D.P.; Skinner, C.H.; Roquemore, A.L.

    2008-01-01

    Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks.

  2. Low-frequency electrostatic dust-modes in a non-uniform

    Indian Academy of Sciences (India)

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift ...

  3. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    International Nuclear Information System (INIS)

    Paul, S.K.; Duha, S.S.; Mamun, A.A.

    2004-07-01

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  4. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  5. Dissolution of heavy metals from electrostatic precipitator (ESP) dust ...

    African Journals Online (AJOL)

    Coal based sponge iron industries in India generate considerable quantity of solid waste, 40% of which is flue dust produced from the electrostatic precipitator (ESP) connected to rotary kiln. This paper reports the dissolution of Zn, Cu, Pb, Mn and Fe from the ESP dust using three fungal species, Aspergillus niger, ...

  6. Dissolution of heavy metals from electrostatic precipitator (ESP) dust ...

    African Journals Online (AJOL)

    SIBOO

    Key words: Fungal leaching, sponge iron, electrostatic precipitator (ESP) dust, metal dissolution. INTRODUCTION ... ability of micro organisms to transform solid compounds ..... of metals from spent lithium ion secondary batteries using A.

  7. The Electrostatic Environments of Mars and the Moon

    Science.gov (United States)

    Calle, Carlos I.

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  8. The electrostatic environments of Mars and the Moon

    International Nuclear Information System (INIS)

    Calle, C I

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  9. The dust acoustic wave in a bounded dusty plasma with strong electrostatic interactions between dust grains

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2011-01-01

    The dispersion relation for the dust acoustic wave (DAW) in an unmagnetized dusty plasma cylindrical waveguide is derived, accounting for strong electrostatic interactions between charged dust grains. It is found that the boundary effect limits the radial extent of the DAW. The present result should be helpful for understanding the frequency spectrum of the DAW in a dusty plasma waveguide with strongly coupled charged dust grains. - Highlights: → We study the dust acoustic wave (DAW) in a bounded plasma. → We account for interactions between dust grains. → The boundary effect limits the radial extent of the DAW.

  10. Efficiency determination of an electrostatic lunar dust collector by discrete element method

    Science.gov (United States)

    Afshar-Mohajer, Nima; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta

    2012-07-01

    Lunar grains become charged by the sun's radiation in the tenuous atmosphere of the moon. This leads to lunar dust levitation and particle deposition which often create serious problems in the costly system deployed in lunar exploration. In this study, an electrostatic lunar dust collector (ELDC) is proposed to address the issue and the discrete element method (DEM) is used to investigate the effects of electrical particle-particle interactions, non-uniformity of the electrostatic field, and characteristics of the ELDC. The simulations on 20-μm-sized lunar particles reveal the electrical particle-particle interactions of the dust particles within the ELDC plates require 29% higher electrostatic field strength than that without the interactions for 100% collection efficiency. For the given ELDC geometry, consideration of non-uniformity of the electrostatic field along with electrical interactions between particles on the same ELDC geometry leads to a higher requirement of ˜3.5 kV/m to ensure 100% particle collection. Notably, such an electrostatic field is about 103 times less than required for electrodynamic self-cleaning methods. Finally, it is shown for a "half-size" system that the DEM model predicts greater collection efficiency than the Eulerian-based model at all voltages less than required for 100% efficiency. Halving the ELDC dimensions boosts the particle concentration inside the ELDC, as well as the resulting field strength for a given voltage. Though a lunar photovoltaic system was the subject, the results of this study are useful for evaluation of any system for collecting charged particles in other high vacuum environment using an electrostatic field.

  11. Optimising a fall out dust monitoring sampling programme at a ...

    African Journals Online (AJOL)

    GREG

    Key words: Fall out dust monitoring, cement plant, optimising, air pollution sampling, fall out dust sampler locations. .... applied for those areas where controls are in place. Sampling ..... mass balance in the total cement manufacturing process.

  12. An electrostatic detector for dust measurement on HT-7 tokamak

    International Nuclear Information System (INIS)

    Ling, B.L.; Zhang, X.D.; Ti, A.; Gao, X.

    2007-01-01

    An electrostatic dust detector has been successfully developed to measure dust event in situ and in real time on the HT-7 tokamak. For measuring dust near the edge plasmas and preventing interference of electrons and ions, the shielding plates were designed and installed around the dust detector. The electric signal of dust has been successfully measured during LHCD discharges on HT-7 tokamak. The measured dust signal was in good agreement with bursts appeared on multi-channel H α radiation and on multi-channel ECE diagnostics. Diagnostics of the spectrum and the measurement of impurity emission during dust bursts were studied in detail. It is interesting that there is a delay between dust bursts and CIII line emission. It is observed that the delay time between dust signal and measured CIII line emission is about 0.3 ms in the HT-7 tokamak

  13. SPARCLE: Electrostatic Dust Control Tool Proof of Concept

    Science.gov (United States)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Marshall, J.; Nuth, J.; Calle, C.

    2010-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  14. Note: Electrostatic detection of stainless steel dust particles for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Landy, P. [Mechanical and Aerospace Engineering Department, Cornell University, Ithaca, New York 14853 (United States); Skinner, C. H.; Schneider, H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-03-15

    Dust accumulation inside next-step fusion devices poses a significant safety concern and dust diagnostics will be needed to assure safe operations. An electrostatic dust detection device has been successfully demonstrated in the National Spherical Torus Experiment, Tore Supra, and the Large Helical Device, and the detector's response to carbon particles was previously characterized in laboratory experiments. This paper presents laboratory results showing that detection of stainless steel particles at levels as low as several μg/cm{sup 2} is also possible.

  15. Electrostatic Dust Detection and Removal for ITER

    International Nuclear Information System (INIS)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-01-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 (micro)m spacing is biased to 30-50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm 2 with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations

  16. Electrostatic Transport and Manipulation of Lunar Soil and Dust

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki

    2008-01-01

    Transport and manipulation technologies of lunar soil and dust are under development utilizing the electrostatic force. Transport of particles is realized by an electrostatic conveyer consisting of parallel electrodes. Four-phase traveling electrostatic wave was applied to the electrodes to transport particles upon the conveyer and it was demonstrated that particles were efficiently transported under conditions of low frequency, high voltage, and the application of rectangular wave. Not only linear but also curved and closed transport was demonstrated. Numerical investigation was carried out with a three-dimensional hard-sphere model of the Distinct Element Method to clarify the mechanism of the transport and to predict performances in the lunar environment. This technology is expected to be utilized not only for the transport of bulk soil but also for the cleaning of a solar panel and an optical lens. Another technology is an electrostatic manipulation system to manipulate single particle. A manipulator consisted of two parallel pin electrodes. When voltage was applied between the electrodes, electrophoresis force generated in non-uniform electrostatic field was applied to the particle near the tip of the electrode. The particle was captured by the application of the voltage and released from the manipulator by turning off the voltage. It was possible to manipulate not only insulative but also conductive particles. Three-dimensional electrostatic field calculation was conducted to calculate the electrophoresis force and the Coulomb force

  17. Effect of dust on tilted electrostatic resistive instability in a Hall thruster

    Science.gov (United States)

    Tyagi, Jasvendra; Singh, Sukhmander; Malik, Hitendra K.

    2018-03-01

    Effect of negatively charged dust on resistive instability corresponding to the electrostatic wave is investigated in a Hall thruster plasma when this purely azimuthal wave is tilted and strong axial component of wave vector is developed. Analytical calculations are done to obtain the relevant dispersion equation, which is solved numerically to investigate the growth rate of the instability. The magnitude of the growth rate in the plasma having dust particles is found to be much smaller than the case of pure plasma. However, the instability grows faster for the increasing dust density and the higher charge on the dust particles. The higher magnetic field is also found to support the instability.

  18. Electrostatic Precipitation of Dust in the Martian Atmosphere: Implications for the Utilization of Resources During Future Manned Exploration Missions

    Science.gov (United States)

    Calle, Carlos I.; Clements, Judson S.; Thompson, Samuel M.; Cox, Nathan D.; Hogue, Michael D.; Johansen, Michael R.; Williams, Blakeley S.

    2011-01-01

    Future human missions to Mars will require the utilization of local resources for oxygen, fuel. and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere. composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to precipitate and collect previously charged dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures. the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily becomes biopolar. which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet

  19. Composition and source apportionment of dust fall around a natural lake.

    Science.gov (United States)

    Latif, Mohd Talib; Ngah, Sofia Aida; Dominick, Doreena; Razak, Intan Suraya; Guo, Xinxin; Srithawirat, Thunwadee; Mushrifah, Idris

    2015-07-01

    The aim of this study was to determine the source apportionment of dust fall around Lake Chini, Malaysia. Samples were collected monthly between December 2012 and March 2013 at seven sampling stations located around Lake Chini. The samples were filtered to separate the dissolved and undissolved solids. The ionic compositions (NO3-, SO4(2-), Cl- and NH4+) were determined using ion chromatography (IC) while major elements (K, Na, Ca and Mg) and trace metals (Zn, Fe, Al, Ni, Mn, Cr, Pb and Cd) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentration of total solids around Lake Chini was 93.49±16.16 mg/(m2·day). SO4(2-), Na and Zn dominated the dissolved portion of the dust fall. The enrichment factors (EF) revealed that the source of the trace metals and major elements in the rain water was anthropogenic, except for Fe. Hierarchical agglomerative cluster analysis (HACA) classified the seven monitoring stations and 16 variables into five groups and three groups respectively. A coupled receptor model, principal component analysis multiple linear regression (PCA-MLR), revealed that the sources of dust fall in Lake Chini were dominated by agricultural and biomass burning (42%), followed by the earth's crust (28%), sea spray (16%) and a mixture of soil dust and vehicle emissions (14%). Copyright © 2015. Published by Elsevier B.V.

  20. Air ionizer application for electrostatic discharge (ESD) dust removal in automotive painting industry

    Science.gov (United States)

    Yosri, M. H.; Muhamad, P.; Ismail, M. A.; Yatim, N. H. M.

    2018-01-01

    Dust and fiber have been identified among the highest contributor for the defect in automotive painting line with range from 40% to 50% of total defect breakdown. Eventually, those defects will effect on both visual appearance and also the performance of the parts. In addition, the significance of controlling dust in an assembly line is crucial in order to maintain the quality of the product, part performance yield and effect on workers’ health [1]. By considering the principle and technology applied in electronic clean room technology, the ionizer have been introduce to control dust contamination in automotive painting line. The first auto maker industry whom found the effectiveness of the clean room application to reduce the defect and production line downtime was Chrysler [2]. By doing so, it’s allowed the transmission plant to offer 50 000 mile guarantee on the transmission systems. The main objective of this research is to verify the effectiveness of ionizer device in order to reduce the rejection contribute by dust and fiber particle in the automotive painting line. Towards the main objective, a few sub areas will be explored, as a supporting factor to ensure the result gain from this study is solid and constructive. The experiment start by verifying the electrostatic value of the raw material (substrate) before and after the ionizer treatment. From here the correlation of the electrostatic value generated by the raw material that effect to production pass rate can be explored. At the meantime, the performance of the production pass rate after the ionizer treatment which related to the painted surface area can be determined.

  1. Linear and nonlinear low-frequency electrostatic waves in a nonuniform pair-ion-dust magnetoplasma

    International Nuclear Information System (INIS)

    Saleem, H; Shukla, P K; Eliasson, B

    2008-01-01

    Linear and nonlinear properties of the low-frequency (in comparison with the ion gyrofrequency) electrostatic oscillations in pair-ion-dust magnetoplasma are presented. In the linear limit, the Shukla-Varma mode is coupled with the ion oscillations while the nonlinearly coupled modes appear in the form of a dipolar or a monopolar vortex

  2. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  3. Dust Full Study In The Surrounding Area Of A Cement Factory And Determination Of The Major Elements Of The Dust Fall Using Neutron Activation Analysis (NAA)

    International Nuclear Information System (INIS)

    Meslmani, Y.; Al-Oudat, M.

    2004-01-01

    Dust fall of the Tartous cement factory and the surrounding area at the Syrian coast were measured. The results show that the dust fall concentrations were higher than the World Health Organization (WHO) Standard in the factory site as well as in the surrounding area within 5 to 6 km in the diameter. The value of the dust fall at the Reference sites was abut 4.5 t/km 2 /month and in the surrounding area of the factory values reached between 18 and 120 t/km 2 /month. This means the values exceed the standard around 3 and 13 times. The Neutron Activation Analysis (NAA) of cement dust showed a percentage of 27.5% ± 1.6 of calcium. By the presence of humidity calcium silicate occurs, which immediately dries and becomes a hard salt crust. Therefore in the regions near by the factory cement dust formed this kind of salt coat on the surface of the leaves. (Authors)

  4. A 900 electrostatic prism for microparticle beam steering on a 2 MV van der Graaff dust accelerator

    International Nuclear Information System (INIS)

    Dixon, D.G.; Clarke, C.D.; McDonnell, J.A.M.; Dickason, R.E.; Flavill, R.P.

    1984-01-01

    The design and construction of a 90 0 electrostatic prism is described. The device is used to deflect hypervelocity dust particles produced in a horizontal van der Graaff accelerator to simulate micrometeoroid impacts on dusty lunar and asteroidal surfaces where vertical incidence must be provided. (author)

  5. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    International Nuclear Information System (INIS)

    Friesen, F.Q.L.; John, B.; Skinner, C.H.; Roquemore, A.L.; Calle, C.I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  6. Electrostatic Dust Cloth: A Passive Screening Method to Assess Occupational Exposure to Organic Dust in Bakeries

    Directory of Open Access Journals (Sweden)

    Carla Viegas

    2018-02-01

    Full Text Available Organic dust is widespread in the environment including occupational settings, such as bakeries. Recently, a new collection device—the electrostatic dust cloth (EDC—has been described for the assessment of occupational exposures. The aim of this study was to investigate the suitability of EDC for identifying the distribution patterns and exposure concentrations of particulate matter and microbial contaminants such as fungi and bacteria in bakeries. Twelve bakeries were selected, and dust was allowed to settle for 13 to 16 days on EDCs (a total of 33 samples. Particle counts and size distribution (0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm were measured with direct-reading equipment. Higher EDC mass was significantly correlated (p values < 0.05 with higher fungal load on dichloran glycerol (DG18 and with particle size distribution in the 0.3 µm, 0.5 µm, 1.0 µm and 10.0 µm range. Fungal levels on malt extract agar (MEA ranged from 0 to 2886 CFU/m2 EDC in the warehouse setting, 0 to 500 CFU/m2 EDC in the production setting, and 0 to 3135 CFU/m2 EDC in the store. Penicillium sp. (42.56% was the most frequent fungi. Total bacterial load ranged from 0 to 18,859 CFU/m2 EDC in the warehouse, 0 to 71,656 CFU/m2 EDC in production, and 0 to 21,746 CFU/m2 EDC in the store. EDC assessment provided a longer-term integrated sample of organic dust, useful for identifying critical worksites in which particulate matter and bio-burden exposures are elevated. These findings suggest that EDC can be applied as a screening method for particulate matter-exposure assessment and as a complementary method to quantify exposures in occupational environments.

  7. Busting dust: from cosmic grains to terrestrial microbes

    International Nuclear Information System (INIS)

    Mendis, D.A.

    2001-01-01

    Electrostatic charging can have important consequences for both the growth and disruption of microparticulates immersed in a plasma. In this topical review, my emphasis is on the latter process, while I extend the term microparticulates not only to include ordinary inanimate cosmic or terrestrial dust but also to include terrestrial microbes whose sizes range from tens of nanometers (viruses) to tens of micrometers (bacteria). Following a description of the basic mechanism of electrostatic disruption of a solid body, I will discuss the role of size, shape and surface irregularity on the process. I will also consider the mitigating role of electric field emission of electrons on the disruption process of a negatively charged grain as its size falls below a critical size. I will conclude by reviewing some early evidence for the electrostatic disruption of cosmic grains, and the very recent evidence for the electrostatic disruption of the bacterial cell membranes in terrestrial sterilization experiments. (orig.)

  8. Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2010-01-01

    A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.

  9. Evaluation of some heavy metals loading in dust fall of three ...

    African Journals Online (AJOL)

    Generally for the three sites used, the heavy metal concentrations decreased in the following order: Mn>Zn>Pb>Ni>Cu>Cd. This implies that dust-fall in the parks are heavily loaded with some heavy metals that are of concentrations above Romania standard threshold limit for Cd and Pb while concentration values obtained ...

  10. Theory and uses of electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Descolas, M

    1974-01-01

    Factors influencing the efficiency of electrostatic precipitators, and the principal uses of this type of dust separator are reviewed. The counter-ionization caused by very high resistivity of the dust can be avoided theoretically by increasing the temperature. The resistance of the settled dust layer is determined not only by the inherent resistivity of the dust but also that of impurities adsorbed by the dust particles, such as water vapor and sulfur dioxide, which tend to decrease the resistance. The maximum possible current intensity decreases with increasing temperature. The current intensity decreases with increasing dust concentration in the waste gas. Electrostatic dust precipitators are successfully used in thermal power plants, waste incinerators, open-hearth furnaces, and oxygen converters. In the pulp industry, they are used to recover sodium sulfate and carbonate between the soda lye boiler and the economizer.

  11. 10Be in desert sands, falling dust and loess in China

    International Nuclear Information System (INIS)

    Shen, C.D.; Beer, J.; Kubik, P.W.; Sun, W.D.; Liu, T.S.; Liu, K.X.

    2010-01-01

    Cosmogenic 10 Be is produced in the atmosphere, and deposits onto the surface of the earth mainly through wet precipitation and dust. Based on the analysis of 10 Be in Chinese loess, we believe that 10 Be in loess is composed of two components: locally precipitated atmospheric 10 Be, and windblown 10 Be adsorbed on the surface of silt grains. On the Loess Plateau, 10 Be concentrations in loess and paleosol range from (1.4 to 2.8) x 10 8 atoms/g and (2.7 to 4.5) x 10 8 atoms/g, respectively. To investigate the sources of 10 Be in loess, we measured 10 Be in sand grains from deserts in western China and falling dust from the deposition regions. The results show that the 10 Be concentrations in sand and dust are (1.1-5.1) x 10 7 atoms/g and (1.3-2.8) x 10 8 atoms/g, respectively. Loess and paleosol on the Loess Plateau both contain inherited 10 Be adsorbed on silt grains from dust; most of the windblown deposited loess materials do not directly come from the Gobi and other sand deserts, but mainly from the loess-desert transitional zones, which are characterized by silt and dust holding areas.

  12. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of two new ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of both of these two electrostatic modes. It is also found that under certain conditions, this self-gravitational effect can destabilize these ultra-low-frequency electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  13. The Electrostatic Environments of Mars: Atmospheric Discharges

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  14. An Electrostatic Precipitator System for the Martian Environment

    Science.gov (United States)

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  15. Collection of Wet-Origin Footwear Impressions on Various Surfaces Using an Electrostatic Dust Print Lifter.

    Science.gov (United States)

    Hong, Sungwook; Park, Miseon

    2018-01-19

    Electrostatic dust print lift method is known to be able to recover only dry-origin footwear impression. However, the wet-origin footwear impression could also be recovered using this method. As the amount of dust accumulated before deposition of the wet-origin footwear impression increased, the intensity of the footwear impression lifted with this method became stronger. If the footwear impression is not affected by moisture after it is made, the 28-h old wet-origin footwear impression could be recovered using this method. The intensity of the lifted footwear impression did not decrease significantly even when the number of sequential steps increased as long as the shoe sole is wet. However, when the moisture on the shoe sole depleted, the intensity of the footwear impression decreased sharply. This method has the advantage of being able to enhance the footwear impression without being affected by the footwear impressions deposited in the past. © 2018 American Academy of Forensic Sciences.

  16. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating ...

    Indian Academy of Sciences (India)

    cantly modifies the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. Keywords. Dusty plasmas; dust-cyclotron waves; dust-lower-hybrid waves.

  17. Estimation of heavy metals in dust fall samples from three different industrial areas of Karachi

    International Nuclear Information System (INIS)

    Hashmi, D.R.; Khan, F.A.; Shareef, A.; Bano, A.B.; Munshi, A.B.

    2010-01-01

    The study of accumulation of heavy metals, Fe, Cu, Mn, Zn, Pb and Cd, in the dust fall samples, collected from three selected industrial areas of Karachi, showed the level of heavy metals to decrease gradually from sites of high activity to those of low activity such as from roundabouts to main roads to side roads. Concentration of heavy metal showed a variation of the order Fe>Zn>Pb>Mn>Cu>Cd. Iron had the highest concentration in all the sampling areas in the range of 1.947 +- 0.00 to 30.039 +- 0.01 mg/g. Lower values were observed for Cd with respective ranges of 0.001 +- 0.00 to 0.009 +- 0.01 mg/g. The results suggested that heavy metal pollution in the dust fall samples of industrial areas may be due to automobile and industrial exhaust from different industrial units. (author)

  18. The role of electrostatic charging of small and intermediate sized bodies in the solar system

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1981-01-01

    The role of electrostatic charging of small and intermediate sized bodies in the solar system is reviewed. These bodies include planetary, interplanetary and cometary dust as well as cometary nuclei (at large heliocentric distances), asteroids and the larger bodies in the Saturnian ring system. While this charging has both physical and dynamical consequences for the small dust grains, it has only physical consequences for the larger bodies. The main physical consequences for the small grains are electrostatic erosion (''chipping'') and disruption, whereas for the larger bodies they include electrostatic levitation and blow-off of fine loose dust from their surfaces. A large variety of solar system phenomena, recently observed by the Pioneer and Voyager deep space probes as well as the HEOS-2 earth satellite, are explained in terms of these processes. Certain peculiar features observed in the dust tails of comets as well as the spatial orientation of the zodiacal dust cloud may also be explained along these lines. The possible electrostatic erosion of the dust mantles of new comets as well as the electrostatic 'polishing' of the smaller asteroids are also discussed. (Auth.)

  19. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  20. Electrostatic forces on grains near asteroids and comets

    Directory of Open Access Journals (Sweden)

    Hartzell Christine

    2017-01-01

    Full Text Available Dust on and near the surface of small planetary bodies (e.g. asteroids, the Moon, Mars’ moons is subject to gravity, cohesion and electrostatic forces. Due to the very low gravity on small bodies, the behavior of small dust grains is driven by non-gravitational forces. Recent work by Scheeres et al. has shown that cohesion, specifically van der Waals force, is significant for grains on asteroids. In addition to van der Waals cohesion, dust grains also experience electrostatic forces, arising from their interaction with each other (through tribocharging and the solar wind plasma (which produces both grain charging and an external electric field. Electrostatic forces influence both the interactions of grains on the surface of small bodies as well as the dynamics of grains in the plasma sheath above the surface. While tribocharging between identical dielectric grains remains poorly understood, we have recently expanded an existing charge transfer model to consider continuous size distributions of grains and are planning an experiment to test the charge predictions produced. Additionally, we will present predictions of the size of dust grains that are capable of detaching from the surface of small bodies.

  1. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler

    DEFF Research Database (Denmark)

    Madsen, A. M.; Sharma, Anoop Kumar

    2008-01-01

    For studies of the biological effects of bioaerosols, large samples are necessary. To be able to sample enough material and to cover the variations in aerosol content during and between working days, a long sampling time is necessary. Recently, a high-volume transportable electrostatic field...... and 315 mg dust (net recovery of the lyophilized dust) was sampled during a period of 7 days, respectively. The sampling rates of the electrostatic field samplers were between 1.34 and 1.96 mg dust per hour, the value for the Gravikon was between 0.083 and 0.108 mg dust per hour and the values for the GSP...... samplers were between 0.0031 and 0.032 mg dust per hour. The standard deviations of replica samplings and the following microbial analysis using the electrostatic field sampler and GSP samplers were at the same levels. The exposure to dust in the straw storage was 7.7 mg m(-3) when measured...

  2. Ultra-low-frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Amin, M.R.; Roy Chowdhury, A.R.; Salahuddin, M.

    1997-11-01

    A study on the extremely low-frequency possible electrostatic modes in a finite temperature magnetized dusty plasma taking the charged dust grains as the third component has been carried out using the appropriate Vlasov-kinetic theory for the dynamics of the electrons, ions and the dust particles. It is found that the inequalities of charge and number density of plasma species, and the finite-Larmor-radius thermal kinetic effects of the mobile charged dust grains, introduce the existence of very low-frequency electrostatic eigenmodes in the three-component homogeneous magnetized dusty plasma. The relevance of the present investigation to space and astrophysical situations as well as laboratory experiments for dust Coulomb crystallization has been pointed out. (author)

  3. A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will develop a novel electrostatic/gecko-like adhesive that will demonstrate an order-of-magnitude improvement of electrostatic adhesion pressure coupled...

  4. A novel electrostatic precipitator

    International Nuclear Information System (INIS)

    Tang, Minkang; Wang, Liqian; Lin, Zhigui

    2013-01-01

    ESP (Electrostatic Precipitation) has been widely used in the mining, building materials, metallurgy and power industries. Dust particles or other harmful particles from the airstream can be precipitated by ESP with great collecting efficiency. Because of its' large size, high cost and energy consumption, the scope of application of ESP has been limited to a certain extent. By means of the theory of electrostatics and fluid dynamics, a corona assembly with a self-cleaning function and a threshold voltage automatic tracking technology has been developed and used in ESP. It is indicated that compared with conventional ESP, the electric field length has been reduced to 1/10 of the original, the current density on the collecting electrode increased 3-5 times at the maximum, the approach speed of dust particles in the electric field towards the collecting electrode is 4 times that in conventional ESP and the electric field wind speed may be enhanced by 2-3 times the original. Under the premise of ESP having a high efficiency of dust removal, equipment volume may be actually reduced to 1/5 to 1/10 of the original volume and energy consumption may be reduced by more than 50%.

  5. Preconceptual design for the electrostatic enclosure

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-09-01

    This report presents a preconceptual design (design criteria and assumptions) for electrostatic enclosures to be used during buried transuranic waste recovery operations. These electrostatic enclosures (along with the application of dust control products) will provide an in-depth contamination control strategy. As part of this preconceptual design, options for electrostatic curtain design are given including both hardwall and fabric enclosures. Ventilation systems, doors, air locks, electrostatic curtains, and supporting systems also are discussed. In addition to the conceptual design, engineering scale tests are proposed to be run at the Test Reactor Area. The planned engineering scale tests will give final material specifications for full-scale retrieval demonstrations

  6. Threshold separation distance for attractive interaction between dust particles

    International Nuclear Information System (INIS)

    Jabdaraghi, R. Najafi; Sobhanian, S.

    2008-01-01

    Interaction between dust grains in a dusty plasma could be both repulsive and attractive. The Coulomb interaction between two negatively charged dust particulates and the electrostatic force between them are repulsive, while the shadowing force affecting them is attractive. We show in this paper that in some experimental conditions, there is some grain separation zone for which the attractive shadowing force is larger than the repulsive forces between them. In experimental conditions, for the grains separation distance r = 0.4 cm the shadowing force is almost equal to the electrostatic force between them and for r>0.4 cm the shadowing force exceeds the electrostatic force. So the resultant interaction force will be attractive. The possibility of dust crystal formation in this zone and also the motion of dust particles in the resultant potential of the form V = -(a/r)+(b/r 2 ) will be discussed. This form of potential comes from the combination electrostatic (F es (c/r 3 )) and shadowing (F shadow = -(d/r 2 )) forces.

  7. A simple lead dust fall method predicts children's blood lead level: New evidence from Australia.

    Science.gov (United States)

    Gulson, Brian; Taylor, Alan

    2017-11-01

    We have measured dust fall accumulation in petri dishes (PDD) collected 6 monthly from inside residences in Sydney urban area, New South Wales, Australia as part of a 5-year longitudinal study to determine environmental associations, including soil. with blood lead (PbB) levels. The Pb loading in the dishes (n = 706) had geometric means (GM) of 24µg/m 2 /30d, a median value of 22µg/m 2 /30d with a range from 0.2 to 11,390µg/m 2 /30d. Observed geometric mean PbB was 2.4µg/dL at ages 2-3 years. Regression analyses showed a statistically significant relationship between predicted PbB and PDD. The predicted PbB values from dust in our study are consistent with similar analyses from the US in which floor dust was collected by wipes. Predicted PbB values from PDD indicate that an increase in PDD of about 100µg/m 2 /30d would increase PbB by about 1.5µg/dL or a doubling PbB at the low levels currently observed in many countries. Predicted PbB values from soil indicate that a change from 0 to 1000mg Pb/kg results in an increase of 1.7µg/dL in PbB, consistent with earlier investigations. Blood Pb levels can be predicted from dust fall accumulation (and soil) in cases where blood sampling is not always possible, especially in young children. Petri dish loading data could provide an alternative or complementary "action level" at about 100µg Pb/m 2 /30 days, similar to the suggested level of about 110µg Pb/m 2 for surface wipes, for use in monitoring activities such as housing rehabilitation, demolition or soil resuspension. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings.

    Science.gov (United States)

    Beamer, P I; Sugeng, A J; Kelly, M D; Lothrop, N; Klimecki, W; Wilkinson, S T; Loh, M

    2014-05-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites.

  9. Dust Transport And Force Equilibria In Magnetized Dusty DC Discharges

    International Nuclear Information System (INIS)

    Land, Victor; Thomas, Edward Jr.; Williams, Jeremaiah

    2005-01-01

    We have performed experiments on magnetized dusty Argon DC discharges. Here we report on the characterization of the plasma- and the dustparameters and on the response of the dust particles and the plasma to a change in the magnetic configuration inside the discharge. Finally, we show a case in which the balance of forces acting on the dust particles differs from the classical balance (in which the electrostatic force balances the downward force of gravity). In this case the electrostatic force acts as a downward force on the dust particles. From observations we will argue that the ion drag force might be the force that balances this downward electrostatic force

  10. Quasi-electrostatic waves in dusty plasma

    International Nuclear Information System (INIS)

    Das, A.C.; Goswami, K.S.; Misra, A.K.

    1997-01-01

    Low frequency quasi-electrostatic waves in cold dusty plasma are investigated taking account of liberation and absorption of electrons and ions by the dust and their momentum transfer mechanism. (author)

  11. Electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 μm) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters

  12. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  13. Advances in Electrostatic Dust Detection on Remote Surfaces

    International Nuclear Information System (INIS)

    Voinier, C.; Skinner, C.H.; Roquemore, A.L.

    2005-01-01

    The inventory of dust in next-step magnetic fusion devices will be regulated for safety reasons, however diagnostics to measure in-vessel dust are still in their infancy. Advances in dust particle detection on remote surfaces are reported. Two grids of interlocking circuit traces with spacing in the range 125 (micro)m to 25 (micro)m are biased to 30 V. Impinging dust creates a short circuit and the result current pulse is recorded. The detector response was measured with particles scraped from a carbon fiber composite tile and sorted by size category. The finest 25 (micro)m grid showed a sensitivity more than an order of magnitude higher than the 125 (micro)m grid. The response to the finest particle categories (5-30 (micro)m) was two orders of magnitude higher than the largest (125-250 (micro)m) category. Longer duration current pulses were observed from the coarser particles. The results indicate a detection threshold for fine particles below 1 (micro)g/cm 2

  14. Electrodynamic Dust Shield for Solar Panels on Mars

    Science.gov (United States)

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  15. Reduction of airborne radioactive dust by means of a charged water spray.

    Science.gov (United States)

    Bigu, J; Grenier, M G

    1989-07-01

    An electrostatic precipitator based on charged water spray technology has been used in an underground uranium mine to control long-lived radioactive dust and short-lived aerosol concentration in a mine gallery where dust from a rock breaking/ore transportation operation was discharged. Two main sampling stations were established: one upstream of the dust precipitator and one downstream. In addition, dust samplers were placed at different locations between the dust discharge and the end of the mine gallery. Long-lived radioactive dust was measured using cascade impactors and nylon cyclone dust samplers, and measurement of the radioactivity on the samples was carried out by conventional methods. Radon and thoron progeny were estimated using standard techniques. Experiments were conducted under a variety of airflow conditions. A maximum radioactive dust reduction of about 40% (approximately 20% caused by gravitational settling) at a ventilation rate of 0.61 m3/sec was obtained as a result of the combined action of water scrubbing and electrostatic precipitation by the charged water spray electrostatic precipitator. This represents the optimum efficiency attained within the range of ventilation rates investigated. The dust reduction efficiency of the charged water spray decreased with increasing ventilation rate, i.e., decreasing air residence time, and hence, reduced dust cloud/charged water droplets mixing time.

  16. Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Zafiu, C.; Melzer, A.; Piel, A.

    2003-01-01

    Experiments on the quantitative determination of the weaker forces (ion drag, thermophoresis, and electric field force) on free-falling dust particles in a rf discharge tube are presented. The strongest force, gravity, is balanced by gas friction and the weaker forces are investigated in the radial (horizontal) plane. Under most discharge conditions, the particles are found to be expelled from the central plasma region. A transition to a situation where the falling particles are focused into the plasma center is observed at low gas pressures using small particles. These investigations allow a quantitative understanding of the mechanism of unwanted dust-free areas (so-called voids) in dusty plasmas under microgravity. Good quantitative agreement with standard models of the ion drag is found

  17. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  18. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    Science.gov (United States)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  19. Dust in cosmic plasma environments

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1979-01-01

    Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)

  20. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  1. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  2. The equilibrium and oscillations of dust grains in a discharge

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    2000-01-01

    Full text: In a vertically oriented laboratory discharge plasma, dust particles are negatively charged and usually levitate in the sheath or pre-sheath region under the balance of gravitational, electrostatic (due to the sheath electric field) and plasma (such as the ion drag) forces. The ion flow, in addition to a direct (dragging) influence, is also responsible for the generation of associated collective plasma processes which can strongly affect the vertical arrangement of the grains, such as in the case of supersonic flows when a wake field is generated. Under some circumstances, the grains may form into a stable regular structure, the dust-plasma crystal, which can support a variety of lattice waves. The mechanism of formation of the crystal is still not well understood. The charge of the dust particles appears mainly due to electron and ion current onto the grain surfaces. The dependence of the dust particle charge on the sheath parameters has an important effect on the oscillations and equilibrium of dust grains in the vertical plane, leading to a possible disruption of the equilibrium position of the particle. Recent experiments at Sydney have shown the formation of the crystalline and liquid states of arrays of dust grains, and the self-excitation of vertical oscillations of the grains. To model these experiments, we have studied the interaction of dust grains with the plasma, including the charging of the grain, with a number of different models. A fluid model of the plasma to study the dust trapping, disruptions of the equilibrium, and the modes of transverse waves (vertically polarized) in arrays of grains in a dust-plasma crystal. It is found that for a grain radius greater than a critical value, there is no equilibrium position. Possible vertical oscillations about the stable equilibrium may develop high amplitudes, thus leading to a fall of the oscillating grain onto the electrode when the potential barrier is overcome. It is found that the charge

  3. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  4. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant

    International Nuclear Information System (INIS)

    Menezes-Filho, José Antonio; Souza, Karine O. Fraga de; Rodrigues, Juliana L. Gomes; Santos, Nathália Ribeiro dos; Bandeira, Matheus de Jesus; Koin, Ng Lai; Oliveira, Sérgio S. do Prado; Godoy, Ana Leonor P. Campos

    2016-01-01

    Previous studies have shown elevated airborne manganese (Mn) in villages adjacent to a Mn alloy production plant in Brazil and negative associations between biomarkers of Mn and children's cognition and behavior. Since small Mn particles may be carried for long distances, we measured manganese (Mn) and lead (Pb) dust fall accumulation in 15 elementary schools, located between 1.25 and 6.48 km from the plant in the municipality of Simões Filho, Bahia, Brazil. Passive samplers (polyethylene Petri dishes) were set in interior and exterior environments. After 30 days, the samplers’ content was solubilized with diluted nitric acid and Mn and Pb levels were analyzed by electrothermal absorption spectrometry. The overall geometric mean and range of Mn and Pb accumulation in dust fall (loading rates) were 1582 μg Mn/m 2 /30 days (37–37,967) and 43.2 μg Pb/m 2 /30 days (2.9–210.4). A logarithmic decrease in interior and exterior Mn loading rates was observed with distance from the ferro-manganese alloy plant. Multiple regression analyses of log-transformed Mn loading rate within the schools showed a positive association with Mn levels in outdoor dust, a negative association with distance from the plant; as well, wind direction (downwind>upwind) and school location (urban>rural) entered significantly into the model. For the interior school environments, located within a 2-km radius from the plant, loading rate was, on average, 190 times higher than the Mn levels reported by Gulson et al., (2014) in daycare centers in Sydney, Australia, using a similar method. Pb loading rates were not associated with distance from the plant and were lower than the rates observed in the same daycare centers in Sydney. Our findings suggest that a significant portion of the children in this town in Brazil may be exposed to airborne Mn at concentrations that may affect their neurodevelopment. - Highlights: • Manganese levels in settled dust in schools are inversely associated

  5. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant

    Energy Technology Data Exchange (ETDEWEB)

    Menezes-Filho, José Antonio, E-mail: antomen@ufba.br [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Souza, Karine O. Fraga de, E-mail: karinefraga11@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Rodrigues, Juliana L. Gomes, E-mail: juuhrodrigues@icloud.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Santos, Nathália Ribeiro dos, E-mail: nathalia-rib@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Bandeira, Matheus de Jesus, E-mail: matheusbandeira1@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Koin, Ng Lai, E-mail: nglaikoin@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Oliveira, Sérgio S. do Prado, E-mail: sergiosprado.33@gmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Godoy, Ana Leonor P. Campos, E-mail: leonor.godoy@ufba.br [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); and others

    2016-07-15

    Previous studies have shown elevated airborne manganese (Mn) in villages adjacent to a Mn alloy production plant in Brazil and negative associations between biomarkers of Mn and children's cognition and behavior. Since small Mn particles may be carried for long distances, we measured manganese (Mn) and lead (Pb) dust fall accumulation in 15 elementary schools, located between 1.25 and 6.48 km from the plant in the municipality of Simões Filho, Bahia, Brazil. Passive samplers (polyethylene Petri dishes) were set in interior and exterior environments. After 30 days, the samplers’ content was solubilized with diluted nitric acid and Mn and Pb levels were analyzed by electrothermal absorption spectrometry. The overall geometric mean and range of Mn and Pb accumulation in dust fall (loading rates) were 1582 μg Mn/m{sup 2}/30 days (37–37,967) and 43.2 μg Pb/m{sup 2}/30 days (2.9–210.4). A logarithmic decrease in interior and exterior Mn loading rates was observed with distance from the ferro-manganese alloy plant. Multiple regression analyses of log-transformed Mn loading rate within the schools showed a positive association with Mn levels in outdoor dust, a negative association with distance from the plant; as well, wind direction (downwind>upwind) and school location (urban>rural) entered significantly into the model. For the interior school environments, located within a 2-km radius from the plant, loading rate was, on average, 190 times higher than the Mn levels reported by Gulson et al., (2014) in daycare centers in Sydney, Australia, using a similar method. Pb loading rates were not associated with distance from the plant and were lower than the rates observed in the same daycare centers in Sydney. Our findings suggest that a significant portion of the children in this town in Brazil may be exposed to airborne Mn at concentrations that may affect their neurodevelopment. - Highlights: • Manganese levels in settled dust in schools are inversely

  6. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  7. Radio Emissions from Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  8. [Influence of traffic restriction on road and construction fugitive dust].

    Science.gov (United States)

    Tian, Gang; Li, Gang; Qin, Jian-Ping; Fan, Shou-Bin; Huang, Yu-Hu; Nie, Lei

    2009-05-15

    By monitoring the road and construction dust fall continuously during the "Good Luck Beijing" sport events, the reduction of road and construction dust fall caused by traffic restriction was studied. The contribution rate of road and construction dust to particulate matter of Beijing atmosphere environment, and the emission ratio of it to total local PM10 emission were analyzed. The results show that the traffic restriction reduces road and construction dust fall significantly. The dust fall average value of ring roads was 0.27 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.81 and 0.59 g x (m2 x d)(-1) 1 month and 7 days before. The dust fall average value of major arterial and minor arterial was 0.21 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.54 and 0.58 g x (m2 x d)(-1) 1 month and 7 days before. The roads emission reduced 60%-70% compared with before traffic restriction. The dust fall average values of civil architecture and utility architecture were 0.61 and 1.06 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 1.15 and 1.55 g x (m2 x d)(-1) 20 days before. The construction dust reduced 30%-47% compared with 20 days before traffic restriction. Road and construction dust emission are the main source of atmosphere particulate matter in Beijing, and its contribution to ambient PM10 concentration is 21%-36%. PM10 emitted from roads and constructions account for 42%-72% and 30%-51% of local emission while the local PM10 account for 50% and 70% of the total emission.

  9. Dust retaining properties of leaves of some tree species

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, M I

    1960-05-01

    A study was made in Tashkent, Russia of the dust-retaining power of leaves of several tree species. Investigations were made in a park where these tree species were growing in close proximity, exposed to the effects of dust from the main city street and from the highway passing through the park. Observations on the dust-retaining power of leaves were made mostly during the summer and fall months. The dust-retaining power of leaves of different tree species varied with the dust concentration in the air. In the summer and fall when rains are scarce a steady accumulation of dust was observed on the surface of the leaves. 1 table.

  10. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  11. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  12. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  13. Ion drag force on dust grains in the magnetized edge plasma

    International Nuclear Information System (INIS)

    Matyash, K.; Schneider, R.; Ikkurthi, V.R.; Melzer, A.

    2009-01-01

    A 3-dimensional Particle-Particle Particle-Mesh (P3M) code [K. Matyash, R. Schneider, F. Taccogna, D. Tskhakaya, J. Nucl. Mater. 363-365 (2007) 458] is applied to simulate a small-size (smaller than a Debye length) spherical dust grain confined in the magnetized plasma near the material wall of a tokamak. Plasma particles (electrons and ions) are treated kinetically (Particle-in-Cell with Monte Carlo Collisions (PIC MCC)), which allows to resolve self-consistently the electrostatic sheath in front of the wall. In order to describe accurately the plasma particles' motion close to the dust grain, the PIC technique is supplemented with Molecular Dynamics (MD), employing an analytic electrostatic potential for the interaction with the dust grain. The charging of a spherical, conducting dust grain confined in the sheath potential close to the wall of a tokamak is simulated. A magnetic field normal to the wall was investigated. The ion drag force resulting from dust grain collisions with the streaming ions is calculated. This force is critical for a realistic description of the dust particle dynamics and transport in fusion plasmas.

  14. Grain size effect on Sr and Nd isotopic compositions in eolian dust. Implications for tracing dust provenance and Nd model age

    International Nuclear Information System (INIS)

    Feng Jinliang; Zhu Liping; Zhen Xiaolin; Hu Zhaoguo

    2009-01-01

    Strontium (Sr) and neodymium (Nd) isotopic compositions enable identification of dust sources and reconstruction of atmospheric dispersal pathways. The Sr and Nd isotopic compositions in eolian dust change systematically with grain size in ways not yet fully understood. This study demonstrates the grain size effect on the Sr and Nd isotopic compositions in loess and 2006 dust fall, based on analyses of seven separated grain size fractions. The analytical results indicate that Sr isotopic ratios strongly depend on the grain size fractions in samples from all types of eolian dust. In contrast, the Nd isotopic ratios exhibit little variation in loess, although they vary significantly with grain size in samples from a 2006 dust fall. Furthermore, Nd model ages tend to increase with increasing grain size in samples from all types of eolian dust. Comparatively, Sr isotopic compositions exhibit high sensitively to wind sorting, while Nd isotopic compositions show greater sensitively to dust origin. The principal cause for the different patterns of Sr and Nd isotopic composition variability with grain size appears related to the different geochemical behaviors between rubidium (Rb) and Sr, and the similar geochemical behaviors between samarium (Sm) and Nd. The Nd isotope data indicate that the various grain size fractions in loess have similar origins for each sample. In contrast, various provenance components may separate into different grain size fractions for the studied 2006 dust fall. The Sr and Nd isotope compositions further confirm that the 2006 dust fall and Pleistocene loess in Beijing have different sources. The loess deposits found in Beijing and those found on the Chinese Loess Plateau also derive from different sources. Variations between Sr and Nd isotopic compositions and Nd model ages with grain size need to be considered when directly comparing analyses of eolian dust of different grain size. (author)

  15. Electrodynamic Dust Shield for Lunar/ISS Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the...

  16. Simulation on electrical field distribution and fiber falls in melt electrospinning.

    Science.gov (United States)

    Wang, Xin; Liu, Yong; Zhang, Chi; An, Ying; He, Xuetao; Yang, Weimin

    2013-07-01

    Electrospinning is now a typical way of direct and consecutive producing nanofibers. In order to comprehensively understand the change of fiber chains in falling process of electrospinning, the article import dissipative particle dynamics (DPD) mesoscale simulation method into electrospinning study. In current work, an electrical force formula is proposed after simulation of the distribution of electrostatic field in electrospinning using Finite Element Method. Then, various electrostatic force, temperature and viscosity in electrospinning system are qualitatively simulated by DPD simulation. Results showed that the falling velocity of fiber increased with the increase of electrostatic force. It was found that the lower the polymer viscosity, the quicker the fiber falls. And the diameter of fiber significantly increased with augment of viscosity. Both of above are agree with experimental results. We also found that the falling velocity of fiber is in contrast with length of polymer chains, which has not been found in experiments.

  17. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    International Nuclear Information System (INIS)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-01-01

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly

  18. The dust motion inside the magnetized sheath - The effect of drag forces

    International Nuclear Information System (INIS)

    Pandey, B. P.; Samarian, A.; Vladimirov, S. V.

    2010-01-01

    The isolated charged dust inside the magnetized plasma sheath moves under the influence of the electron and ion drag force and the sheath electrostatic field. The charge on the dust is a function of its radius as well as the value of the ambient sheath potential. It is shown that the charge on the dust determines its trajectory and dust performs the spiraling motion inside the sheath. The location of the turning spiral is determined by the number of negative charge on the dust, which in turn is a function of the dust radius. The back and forth spiraling motion finally causes the dust to move in a small, narrow region of the sheath. For a bigger dust particle, the dust moves closer to the sheath presheath boundary suggesting that the bigger grains, owing to the strong repulsion between the wall and dust, will be unable to travel inside the sheath. Only small, micron-sized grains can travel closer to the wall before repulsion pushes it back toward the plasma-sheath boundary. The temporal behavior of the spiraling dust motion appears like a damped harmonic oscillation, suggesting that the plasma drag force causes dissipation of the electrostatic energy. However, after initial damping, the grain keeps oscillating although with much smaller amplitude. The possible application of the present results to the ongoing sheath experiments is discussed.

  19. Dust grain charges in a nuclear-track plasma and the formation of dynamic vortex dust structures

    International Nuclear Information System (INIS)

    Rykov, V.A.; Khudyakov, A.V.; Filinov, V.S.; Vladimirov, V.I.; Deputatova, L.V.; Krutov, D.V.; Nefedov, A.P.; Fortov, V.E.

    2002-01-01

    Results are presented from Monte Carlo calculations of the electric charge of dust grains in a plasma produced during the slowing down of the radioactive decay products of californium nuclei in neon. The dust grain charging is explained for the first time as being due to the drift of electrons and ions in an external electric field. It is shown that the charges of the grains depend on their coordinates and strongly fluctuate with time. The time-averaged grain charges agree with the experimental data obtained on ordered liquidlike dust structures in a nuclear-track plasma. The time-averaged dust grain charges are used to carry out computer modeling of the formation of dynamic vortex structures observed in experiments. Evidence is obtained of the fact that the electrostatic forces experienced by the dust grains are potential in character

  20. High-power high-voltage pulse generator for supplying electrostatic precipitators of dust

    International Nuclear Information System (INIS)

    Radu, A.; Martin, D.

    1992-01-01

    The study and development of an experimental high voltage generator specialized in the supply of electrostatic precipitators are presented. The main parameters of the pulse generator are: U = -30 kV, I = 8.8 A, τ = 120μs, f r = 150 Hz. The pulse generator was tested on a laboratory electrostatic precipitator with nominal capacitance C = 25 nF, biased at -40 kV by means of a separate high voltage rectifier. The experimental results will be used for the creation of a more powerful pulse generator, a prototype for the supply of a real industrial electrostatic precipitator: U = -50 kV, I = 313 A, τ = 100μs, f r = 300 Hz, C = 100 nF. (Author)

  1. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    Science.gov (United States)

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  2. Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Russel, S.M.; Mendoza-Briceno, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K.

    1999-05-01

    A rigorous theoretical investigation has been made of multi-dimensional instability of obliquely propagating electrostatic solitary structures in a hot magnetized nonthermal dusty plasma which consists of a negatively charged hot dust fluid, Boltzmann distributed electrons, and nonthermally distributed ions. The Zakharov-Kuznetsov equation for the electrostatic solitary structures that exist in such a dusty plasma system is derived by the reductive perturbation method. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation expansion method. The nature of these solitary structures, the instability criterion, and their growth rate depending on dust-temperature, external magnetic field, and obliqueness are discussed. The implications of these results to some space and astrophysical dusty plasma situations are briefly mentioned. (author)

  3. Measurements of Lunar Dust Charging Properties by Electron Impact

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  4. A fast electrostatic chopper of low power consumption

    International Nuclear Information System (INIS)

    Bizzeti, P.G.; Fazzini, T.; Taccetti, N.

    1979-01-01

    An electrostatic chopper for the continuous beams of a 7.5 MV Van de Graaff accelerator is described. The electrostatic deflector uses complemetary transistors, driven by optoelectronic couplers, as voltage switches. The power consumption of the high voltage system at 30 kHz repetition frequency is approximately 3 W. Rise and fall times are symmetric and of the order of 0.4 μs. Experimental time spectra of prompt and delayed γ-rays are presented. (Auth.)

  5. Lithium Wall Conditioning And Surface Dust Detection On NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Allain, J.P.; Bell, M.G.; Friesen, F.Q.L.; Heim, B.; Jaworski, M.A.; Kugel, H.; Maingi, R.; Rais, B.; Taylor, C.N.

    2011-01-01

    Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors

  6. The nonlinear dustgrain-charging on large amplitude electrostatic waves in a dusty plasma with trapped ions

    Directory of Open Access Journals (Sweden)

    Y.-N. Nejoh

    1998-01-01

    Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.

  7. Upgrading of electrostatic precipitators in old thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurthy, H V

    1987-02-01

    Indian thermal power stations installed in the 60's and earlier had dust collectors whose efficiency was well below the acceptable level of emission under the Air (Prevention and Control of Pollution) Act 1981. This necessitates the need for higher efficiency dust collectors to be installed in old thermal power stations. Further, the poor quality of the coal being received at power stations presently causes severe environmental pollution in and around the plant. This paper deals with the retrofitting of electrostatic precipitators in existing units and the problems encountered in executing the same.

  8. Characteristics of the resonant instability of surface electrostatic-ion-cyclotron waves in a semi-bounded warm magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 38430 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2016-03-11

    The influence of magnetic field and dust rotation on the resonant instability of surface electrostatic-ion-cyclotron wave is kinetically investigated in a semi-bounded warm magnetized dusty plasma. The dispersion relation and the temporal growth rate of the surface electrostatic-ion-cyclotron wave are derived by the specular-reflection boundary condition including the magnetic field and dust rotation effects. It is found that the instability domain decreases with an increase of the rotation frequency of elongated dust grain. It is also found that the dependence of the propagation wave number on the temporal growth rate is more significant for small ion cyclotron frequencies. In addition, it is shown that the scaled growth rate increases with an increase of the strength of magnetic field. The variation of the domain and magnitude of temporal growth rate due to the change of plasma parameters is also discussed. - Highlights: • The resonant instability of surface electrostatic-ion-cyclotron wave is investigated in a semi-bounded magnetized dusty plasma. • The dispersion relation and the temporal growth rate are derived by the specular-reflection condition. • The influence of magnetic field and dust rotation on the resonant instability is discussed.

  9. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

    Science.gov (United States)

    Bezbaruah, P.; Das, N.

    2018-05-01

    The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

  10. The simplest model of a dust cloud in a plasma

    International Nuclear Information System (INIS)

    Ignatov, A.M.

    1998-01-01

    A cloud consisting of a finite number of dust grains in a plasma is considered. It is shown that the absorption of the plasma by the dust grains gives rise to the formation of a plasma flow toward to the cloud. The drag force produced by this flow acts upon the dust grains and counterbalances the electrostatic repulsing force. The distribution of the grain density inside the cloud is determined. The characteristic size of the cloud is estimated as r D 3/2 /a 1/2 , where r D is the plasma Debye radius, and a is the size of the dust grains

  11. Dynamics of Dust in a Plasma Sheath with Magnetic Field

    International Nuclear Information System (INIS)

    Duan Ping; Liu Jinyuan; Gon Ye; Liu Yue; Wang Xiaogang

    2007-01-01

    Dynamics of dust in a plasma sheath with a magnetic field was investigated using a single particle model. The result shows that the radius, initial position, initial velocity of the dust particles and the magnetic field do effect their movement and equilibrium position in the plasma sheath. Generally, the dust particles with the same size, whatever original velocity and position they have, will locate at the same position in the end under the net actions of electrostatic, gravitational, neutral collisional, and Lorentz forces. But the dust particles will not locate in the plasma sheath if their radius is beyond a certain value

  12. Nonplanar electrostatic shock waves in an opposite polarity dust ...

    Indian Academy of Sciences (India)

    M Amina

    2017-05-30

    May 30, 2017 ... comparison to electrons and ions) charged dust grains is called dusty ... and quark-gluon plasma [34], proton–neutron stars [35], dark-matter halos .... which is obtained by transforming the independent vari- ables ζ and τ to.

  13. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  14. Regularities of dust formation during stone cutting for construction works

    Directory of Open Access Journals (Sweden)

    V.G. Lebedev

    2016-09-01

    Full Text Available When cutting stone, a large amount of dust release, which is a mixture of small, mostly sharp, mineral particles. Shallow dry dust with inhalation causes the pathological changes in organs that are a consequence of infiltration of acute and solids particles. Despite the importance of this problem, the questions of dust generation during the various working processes and its fractions distribution are practically not considered. This determines the time of dust standing in the air and its negative impact on a person. Aim: The aim of this research is to study the process of dusting during stones cutting and dust distribution on fractions regularities and quantification of dust formation process in order to improve the production equipment, staff individual and collective safety equipment. Materials and Methods: Many types of cutting can be divided into two types - a “dry” cutting and cutting with fluid. During “dry” cutting a dust represents a set of micro-chips which are cut off by the abrasive grains. The size of such chips very small: from a micrometer to a few micrometers fraction. Thus, the size of chips causes the possibility of creating dust slurry with low fall velocity, and which is located in the working space in large concentrations. Results: The following characteristic dependences were obtained as a result of research: dependence of the dust fall from the size of the dust particles, size of dust particles from minute feeding and grain range wheel, the specific amount of dust from the number of grit abrasive wheel and the temperature of the dust particles from the feeding at wheel turnover. It was shown that the distribution of chips (dust by size will request of a normal distribution low. Dimensions of chips during cut are in the range of 0.4...6 μm. Thus, dust slurry is formed with time of particles fall of several hours. This creates considerable minute dust concentration - within 0.28∙10^8...1.68∙10^8 units/m3.

  15. Do new wipe materials outperform traditional lead dust cleaning methods?

    Science.gov (United States)

    Lewis, Roger D; Ong, Kee Hean; Emo, Brett; Kennedy, Jason; Brown, Christopher A; Condoor, Sridhar; Thummalakunta, Laxmi

    2012-01-01

    Government guidelines have traditionally recommended the use of wet mopping, sponging, or vacuuming for removal of lead-contaminated dust from hard surfaces in homes. The emergence of new technologies, such as the electrostatic dry cloth and wet disposable clothes used on mopheads, for removal of dust provides an opportunity to evaluate their ability to remove lead compared with more established methods. The purpose of this study was to determine if relative differences exist between two new and two older methods for removal of lead-contaminated dust (LCD) from three wood surfaces that were characterized by different roughness or texture. Standard leaded dust, coefficient of friction was performed for each wipe material. Analysis of variance was used to evaluate the surface and cleaning methods. There were significant interactions between cleaning method and surface types, p = 0.007. Cleaning method was found be a significant factor in removal of lead, p coefficient of friction, significantly different among the three wipes, is likely to influence the cleaning action. Cleaning method appears to be more important than texture in LCD removal from hard surfaces. There are some small but important factors in cleaning LCD from hard surfaces, including the limits of a Swiffer mop to conform to curved surfaces and the efficiency of the wetted shop towel and vacuuming for cleaning all surface textures. The mean percentage reduction in lead dust achieved by the traditional methods (vacuuming and wet wiping) was greater and more consistent compared to the new methods (electrostatic dry cloth and wet Swiffer mop). Vacuuming and wet wiping achieved lead reductions of 92% ± 4% and 91%, ± 4%, respectively, while the electrostatic dry cloth and wet Swiffer mops achieved lead reductions of only 89 ± 8% and  81 ± 17%, respectively.

  16. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  17. Agglomeration of dust in convective clouds initialized by nuclear bursts

    Science.gov (United States)

    Bacon, D. P.; Sarma, R. A.

    Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.

  18. Effect of Different Size Dust Grains on the Properties of Solitary Waves in Space Environments

    International Nuclear Information System (INIS)

    Elwakil, S.A.; Zahran, M.A.; El-Shewy, E.K.; Abdelwahed, H.G.

    2009-01-01

    Propagation of nonlinear dust-acoustic (DA) waves in an unmagnetized collisionless dusty plasma consisting of dust grains obey power law dust size distribution and nonthermal ions are investigated. For nonlinear DA waves, a reductive perturbation method was employed to obtain a Korteweg-de Vries (KdV) equation for the first-order potential. The effects of a dust size distribution, dust radius and the non-thermal distribution of ions on the soliton amplitude, width and energy of electrostatic solitary structures are presented

  19. Laser-induced mobilization of dust produced during fusion reactors operation

    International Nuclear Information System (INIS)

    Vatry, A.

    2010-01-01

    During tokamak operation, plasma-wall interactions lead to material erosion process and dusts production. These dusts are mainly composed by carbon and tungsten, with sizes ranging from 10 nm to 100 μm. For safety reasons and to guarantee an optimum reactor functioning, the dusts have to be kept in reasonable quantity. The dusts mobilization is a first step to collect them, and the laser is a promising technique for this application. To optimize the cleaning, physical mechanisms responsible for dust ejection induced by laser have been identified. Some particles, such as aggregates, are directly ablated by the laser. The metal droplets are ejected intact by an electrostatic force, induced by the photoelectrons. We also characterized the particles ejection to choose an appropriate collection device. (author) [fr

  20. Fuzzy-logic-based power control system for multifield electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Grass, N. [Siemens AG, Erlangen (Germany)

    2002-10-01

    The power consumption of large precipitators can be in the range of 1 MW and above. Depending on the dust load properties, the electrical power may be reduced by up to 50% by applying fuzzy logic, without significantly increasing the dust emissions. The new approach uses fuzzy logic for optimization of existing electrostatic precipitators. The software runs on a standard personal computer platform under the, Windows NT operating system. The controllers of the electrostatic precipitator power supplies are linked to the personal computer via an industrial network (e.g., PROFIBUS). The system determines online the differentials of emission versus electrical power of each field. This measurement is difficult because of overlaid events in the other zones, and process changes. The long response time of the resultant dust emission due to electrical power changes in the precipitator is an additional complication. Rules were defined for a coarse, but fast-response power adaptation of all zones. Fine tuning the running system after the coarse optimization increased the accuracy and reliability. When installed on a 4 x 5 zone precipitator in a power station, significant results were obtained. The power savings over three months of operation were in the range of 40%-60% depending on the load and fuel characteristics. Data were recorded over the test period of three months. The results are presented.

  1. First Real-Time Detection of Surface Dust in a Tokamak

    International Nuclear Information System (INIS)

    Skinner, C.; Rais, B.; Roquemore, A.L.; Kugel, H.W.; Marsala, R.; Provost, T.

    2010-01-01

    The first real-time detection of surface dust inside a tokamak was made using an electrostatic dust detector. A fine grid of interlocking circuit traces was installed in the NSTX vessel and biased to 50 v. Impinging dust particles created a temporary short circuit and the resulting current pulse was recorded by counting electronics. The techniques used to increase the detector sensitivity by a factor of x10,000 to match NSTX dust levels while suppressing electrical pickup are presented. The results were validated by comparison to lab measurements, by the null signal from a covered detector that was only sensitive to pickup, and by the dramatic increase in signal when Li particles were introduced for wall conditioning purposes.

  2. He Puff System For Dust Detector Upgrade

    International Nuclear Information System (INIS)

    Rais, B.; Skinner, C.H.; Roquemore, A.L.

    2010-01-01

    Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar.

  3. Development of an Electrostatic Dust Detector for use in a Tokamak Reactor

    International Nuclear Information System (INIS)

    Bader, A.; Skinner, C.H.; Roquemore, A.L.; Langish, S.

    2003-01-01

    Initial results from a novel device to detect dust particles settling on remote surfaces are presented. Dust particle inventories are a concern in next-step fusion devices. The increase in duty cycle will lead to a scale-up in the amount of particles generated by plasma material interactions. These particles will be chemically and radiologically hazardous and it will be important to establish that the in-vessel particle inventory is within regulatory limits. The detection device consists of two interlocking combs of closely spaced conductive traces on a Teflon circuit board. When a DC bias is applied impinging dust creates a transient short circuit between the traces. The increase in bias current generates a signal pulse that is counted by standard nuclear counting electronics. We present data on the response of the device in air and vacuum to carbon particles

  4. Long-range interaction between dust grains in plasma

    Directory of Open Access Journals (Sweden)

    D.Yu. Mishagli

    2014-03-01

    Full Text Available The nature of long-range interactions between dust grains in plasma is discussed. The dust grain interaction potential within a cell model of dusty plasma is introduced. The attractive part of inter-grain potential is described by multipole interaction between two electro-neutral cells. This allowed us to draw an analogy with molecular liquids where attraction between molecules is determined by dispersion forces. Also main ideas of the fluctuation theory for electrostatic field in cell model are formulated, and the dominating contribution to attractive part of inter-grain potential is obtained.

  5. Dynamic vortex dust structures in a nuclear-track plasma

    International Nuclear Information System (INIS)

    Rykov, V A; Khudyakov, A V; Filinov, V S; Vladimirov, V I; Deputatova, L V; Krutov, D V; Fortov, V E

    2003-01-01

    Results are presented from Monte Carlo calculations of the electric charge on dust grains in a plasma produced during the slowing down of radioactive decay products of californium nuclei in neon. The dust grain charging is explained as being due to the drift of electrons and ions in an external electric field. It is shown that the charges of the grains depend on their coordinates and strongly fluctuate with time. The time-averaged grain charges agree with the experimental data obtained on ordered liquid-like dust structures in a nuclear-track plasma. The time-averaged dust grain charges are used to carry out computer modelling of the formation of dynamic vortex structures observed in experiments. Evidence is obtained for the fact that the electrostatic forces experienced by the dust grains are potential in character. The paper is supplemented by a video clip showing the typical dynamics of the simulated vortex dust structure

  6. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  7. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    International Nuclear Information System (INIS)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-01-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations ≤ 50 mg m −3 , providing a new method for vibration controlling of ESP.

  8. XRF analysis of soils contaminated by dust falls

    International Nuclear Information System (INIS)

    Marumo, Katsumi; Onoki, Yuka; Wada, Nobuhiko; Okano, Hideki

    2013-01-01

    Dust falls from the chimneys of waste incineration plants, coal-fired power plants, and refineries may contaminate soil over vast areas. Using an auger machine at 72 sites around a refinery in the Kanto area, Japan, we obtained 216 soil samples for a screening survey of potentially contaminated land. Qualitative and quantitative chemical analyses of zinc, lead, and cadmium were performed using a transmission X-ray fluorescence spectrometer (TXRF). X-ray fluorescence (XRF) chemical analytical data suggested that contaminated soil extends up to 3 km away from the chimneys of the refinery. Using calibration curves for the intensity ratios of Zn Kα X-ray to Mo Kβ Compton scatter X-ray [(Zn Kα)/(Mo-Kβ-Compton)], Pb Lβ X-ray to Mo-Kβ-Compton scatter X-ray [(Pb Lβ)/(Mo-Kβ-Compton)], and Cd Kα X-ray to Mo-Kβ Compton scatter X-ray [(Cd Kβ)/(Mo-Kβ-Compton)] of 30 reference materials, we obtained the Zn, Pb, and Cd concentrations of these 216 soil samples. The Pb and Cd concentrations from the XRF chemical analytical data were very similar to the Pb and Cd leachabilities determined by 1 M HC1 leaching test (MOE-approved method No. 19), suggesting that the chemical forms in which Pb and Cd occur are an adsorbed phase and a carbonate phase, which can be easily dissolved by 1 M HC1. XRF spectra of individual soil particles, obtained by spot-sized X-ray beams passed through a 1.5-mm-diameter and a 0.5-mm-diameter collimators, suggested that most of the soil fractions contained Zn and Pb. The levels of brightness of the X-ray images of these Zn- and Pb-bearing fractions were monitored with an X-ray CCD camera attached to the TXRF. Most of the soil fractions were transparent at the maximum X-ray tube voltage (50 kV), suggesting that the soil samples are suitable for the quantitative XRF chemical analysis of Zn and Pb. (author)

  9. Induced charge of spherical dust particle on plasma-facing wall in non-uniform electric field

    International Nuclear Information System (INIS)

    Tomita, Y.; Smirnov, R.; Zhu, S.

    2005-01-01

    Induced charge of a spherical dust particle on a plasma-facing wall is investigated analytically, where non-uniform electric field is applied externally. The one-dimensional non-uniform electrostatic potential is approximated by the polynomial of the normal coordinate toward the wall. The bipolar coordinate is introduced to solve the Laplace equation of the induced electrostatic potential. The boundary condition at the dust surface determines the unknown coefficients of the general solution of the Laplace equation for the induced potential. From the obtained potential the surface induced charge can be calculated. This result allows estimating the effect of the surrounding plasma, which shields the induced charge. (author)

  10. "EGM" (Electrostatics of Granular Matter): A Space Station Experiment to Examine Natural Particulate Systems

    Science.gov (United States)

    Marshall, J.; Sauke, T.; Buehler, M.; Farrell, W.; Green, R.; Birchenough, A.

    1999-09-01

    A granular-materials experiment is being developed for a 2002 launch for Space Station deployment. The experiment is funded by NASA HQ and managed through NASA Lewis Research Center. The experiment will examine electrostatic aggregation of coarse granular materials with the goals of (a) obtaining proof for an electrostatic dipole model of grain interactions, and (b) obtaining knowledge about the way aggregation affects the behavior of natural particulate masses: (1) in unconfined dispersions (clouds such as nebulae, aeolian dust palls, volcanic plumes), (2) in semi-confined, self-loaded masses as in fluidized flows (pyroclastic surges, avalanches) and compacted regolith, or (3) in semi-confined non-loaded masses as in dust layers adhering to solar cells or space suits on Mars. The experiment addresses both planetary/astrophysical issues as well as practical concerns for human exploration of Mars or other solar system bodies. Additional information is contained in the original.

  11. Cosmic gamma-ray burst from intergalactic relativistic dust grains

    International Nuclear Information System (INIS)

    Dasgupta, A.K.

    1979-01-01

    Charged dust grains of radii a approximately 3 x 10 -6 approximately 3 x 10 -5 cm may acquire relativistic energy (>10 18 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out ('scattering') of the magnetic field of the medium. A relativistic grain of radius a -5 cm with Lorentz factor γ approximately 10 3 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150 approximately 100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts. (Auth.)

  12. Nonlinear dust acoustic waves in a charge varying dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Bacha, Mustapha

    2010-01-01

    Arbitrary amplitude dust acoustic waves in a dusty plasma with a high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from the Boltzmann distribution on the dust acoustic soliton are then considered. The dust charge variation makes the dust acoustic soliton more spiky. The dust grain surface collects less electrons as the latter evolves far away from their thermodynamic equilibrium. The dust accumulation caused by a balance of the electrostatic forces acting on the dust grains is more effective for lower values of the electron spectral index. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. Our results may explain the strong spiky waveforms observed in auroral plasmas.

  13. Study on the alternative mitigation of cement dust spread by capturing the dust with fogging method

    Science.gov (United States)

    Purwanta, Jaka; Marnoto, Tjukup; Setyono, Prabang; Handono Ramelan, Ari

    2017-12-01

    The existence of a cement plant impact the lives of people around the factory site. For example the air quality, which is polluted by dust. Cement plant has made various efforts to mitigate the generated dust, but there are still alot of dust fly inground either from the cement factory chimneys or transportation. The purpose of this study was to conduct a review of alternative mitigation of the spread of dust around the cement plant. This study uses research methods such as collecting secondary data which includes data of rain density, the average rains duration, wind speed and direction as well as data of dust intensity quality around PT. Semen Gresik (Persero) Tbk.Tuban plant. A soft Wind rose file is used To determine the wind direction propensity models. The impact on the spread of dust into the environment is determined using secondary data monitoring air quality. Results of the study is that the mitigation of dust around the cement plant is influenced by natural factors, such as the tendency of wind direction, rain fall and rainy days, and the rate of dust emission from the chimney. The alternative means proposed is an environmental friendly fogging dust catcher.

  14. The dust-acoustic mode in two-temperature electron plasmas with ...

    Indian Academy of Sciences (India)

    and the Poisson equation. ∇2ϕ1 = −. [. 4π e (ni1 − nec1 − neh1) + 4πqd0nd1 + 4πqd1nd0. ] ,. (3) where nd1, nec1, neh1 and ni1 are the perturbed dust, cold electron, hot electron and ion number density, vd1, ϕ1 are the perturbed dust fluid velocity and the electrostatic poten- tial, nd0 and qd0 are the equilibrium number ...

  15. Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.

    2016-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. Such electrical activity poses serious risks to any Human exploration of the planet and the lack of sufficient data to characterize any such activity has been identified by NASA's MEPAG as a key human safety knowledge gap. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, frequency of occurrence, and the strength of the generated electric fields. We will describe a recently deployed detection engine using NASA's Deep Space Network (DSN) to carry out a long term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The resulting knowledge of Mars electrical activity would allow NASA to plan risk mitigation measures to ensure human safety during Mars exploration. In addition, these measurements will also allow us to place limits on presence of oxidants such as H2O2 that may be produced by such discharges, providing another measurement point for models describing Martian atmospheric chemistry and habitability. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the DSN is the only instrument in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity at Mars from the ground.

  16. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-01-01

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B 0 . It is noted that the growth rate is proportional to the unperturbed electron number density n oe and is independent of inhomogeneity beyond L e =2 cm. An extraordinary growth rate is observed with the quantum effect.

  17. Charged dust structures in plasmas

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    1999-01-01

    We report here on theoretical investigations of the mechanical-electrostatic modes of vibration of a dust-plasma crystal, extending earlier work on the transverse modes of a horizontal line of grains (where the ions flow vertically downward to a plane horizontal cathode), the modes of two such lines of grains, and the modes of a vertical string of grains. The last two arrangements have the unique feature that the effect of the background plasma on the mutual grain interaction is asymmetric because of the wake downstream of the grains studied in. The characteristic frequencies of the vibrations are dependent on the parameters of the plasma and the dust grains, such as the Debye length and the grain charge, and so measurement of the frequencies could provide diagnostics of these quantities. Although the current boom in dusty plasma research is driven mainly by such industrial applications as plasma etching, sputtering and deposition, the physical outcomes of investigations in this rapidly expanding field cover many important topics in space physics and astrophysics as well. Examples are the interaction of dust with spacecraft, the structure of planetary rings, star formation, supernova explosions and shock waves. In addition, the study of the influence of dust in environmental research, such as in the Earth's ionosphere and atmosphere, is important. The unique binding of dust particles in a plasma opens possibilities for so-called super-chemistry, where the interacting bound elements are not atoms but dust grains

  18. Nonlinear Electrostatic Properties of Lunar Dust

    Science.gov (United States)

    Irwin, Stacy A.

    2012-01-01

    A laboratory experiment was designed to study the induction charging and charge decay characteristics of small dielectric particles, or glass beads. Initially, the goal of the experiment was further understanding of induction charging of lunar dust particles. However, the mechanism of charging became a point of greater interest as the project continued. Within an environmentally-controlled acrylic glove box was placed a large parallel plate capacitor at high-voltage (HV) power supply with reversible polarity. Spherical 1-mm and 0.5-mm glass beads, singly, were placed between the plates, and their behaviors recorded on video and quantified. Nearly a hundred trials at various humidities were performed. The analysis of the results indicated a non-linear relationship between humidity and particle charge exchange time (CET), for both sizes of beads. Further, a difference in CET for top-resting beads and bottom-resting beads hinted at a different charging mechanism than that of simple induction. Results from the I-mm bead trials were presented at several space science and physics conferences in 2008 and 2009, and were published as a Master's thesis in August 2009. Tangential work stemming from this project resulted in presentations at other international conferences in 2010, and selection to attend workshop on granular matter flow 2011.

  19. Low frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hassan, M.H.A.

    1991-09-01

    The dispersion properties of low frequency electrostatic modes in a dusty plasma in the presence of a static homogeneous magnetic field are examined. It is found that the presence of the dust particles and the static magnetic field have significant effects on the dispersion relations. For the parallel propagation the electrostatic mode is slightly modified by the magnetic field for the ion acoustic branch. A new longitudinal mode arises at the extreme low frequency limit, which is unaffected by the magnetic field for the parallel propagation. For the transverse propagation the ion acoustic mode is not affected by the magnetic field. However, the undamped extreme low frequency mode is significantly modified by the presence of the magnetic field for the propagation transverse to the direction of the magnetic field. (author). 23 refs

  20. Solar-Panel Dust Accumulation and Cleanings

    Science.gov (United States)

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels. This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  1. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    Science.gov (United States)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  2. Separation of submicron particles from biofuel combustion with flue gas condensation or wet condensing electrostatic precipitator. Analysis of possibilities; Avskiljning av submikrona partiklar vid biobraenslefoerbraenning med roekgaskondensering eller kondenserande vaata elfilter. Analys av moejligheterna

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    Dust particles in flue gas larger than 1 {mu}m are well separated by conventional techniques, while submicron particles are poorly separated. As the use of biofuels with high ash content is increasing, as well as knowledge about negative health effects from inhalation of submicron particles, the interest for reduction of emissions of submicron particles will probably increase. The aim of this project is to investigate possible techniques for separation of submicron particles during flue gas condensation through modification of conventional technique, or with available techniques not usually used with combustion of biofuels, e.g. a wet electrostatic precipitator. Mechanisms for separation of dust particles are briefly described. Cyclones separates particles larger than about 1 {mu}m. Fabric filters separates all particles sizes, but the efficiency reduces as the size reduces. In flue gas condensers and scrubbers the speed and size of water droplets are important for the reduction efficiency. Dry electrostatic precipitators work for all particle sizes, but with reduced efficiency for sizes between 0.1 and 3 {mu}m. Wet electrostatic precipitators separates submicron particles much better. One reason for this is that the potential between the electrodes can be higher. Among conventional flue gas condensers and scrubbers there are two types that, properly designed, can separate submicron particles, namely 'type venturi scrubbers', i.e. a scrubber where a high flue gas velocity is used to form many, small water droplets by friction forces in a nozzle, and 'type scrubber with nozzles', i.e. a scrubber where nozzles supply droplets to the flue gas. For a scrubber with nozzles, the falling velocity of the droplets must be lower and the size smaller than is common today. Also the wet electrostatic precipitator separates submicron particles with high efficiency. They are used today mainly for problematic particles, e.g. sticky or corrosive ones, or for

  3. Child-Langmuir flow in a planar diode filled with charged dust impurities

    International Nuclear Information System (INIS)

    Tang Xiaoyan; Shukla, Padma Kant

    2008-01-01

    The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D -2 (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V 3/2 (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density

  4. Report on the survey for electrostatic discharges on Mars using NASA's Deep Space Network (DSN)

    Science.gov (United States)

    Arabshahi, S.; Majid, W.; Geldzahler, B.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Mars atmosphere has strong dust activity. It is suggested that the larger regional storms are capable of producing electric fields large enough to initiate electrostatic discharges. The storms have charging process similar to terrestrial dust devils and have hot cores and complicated vortex winds similar to terrestrial thunderstorms. However, due to uncertainties in our understanding of the electrical environment of the storms and absence of related in-situ measurements, the existence (or non-existence) of such electrostatic discharges on the planet is yet to be confirmed. Knowing about the electrical activity on Mars is essential for future human explorations of the planet. We have recently launched a long-term monitoring campaign at NASA's Madrid Deep Space Communication Complex (MDSCC) to search for powerful discharges on Mars. The search occurs during routine tracking of Mars orbiting spacecraft by Deep Space Network (DSN) radio telescope. In this presentation, we will report on the result of processing and analysis of the data from the first six months of our campaign.

  5. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    Science.gov (United States)

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  6. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Collette, Andrew; Drake, Keith; Northway, Paige [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Gruen, Eberhard [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Mocker, Anna [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Munsat, Tobin [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Srama, Ralf [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  7. The experimental study of residual radioactivity induced in electrostatic deflector

    Directory of Open Access Journals (Sweden)

    Xu Chong

    2017-01-01

    Full Text Available As one of the key components of Sector Focusing Cyclotron at the Institute of Modern Physics, Chinese Academy of Sciences, the electrostatic deflector can be activated by primary and secondary particles, because of a mismatch between the actual value and the design value of the emittance and emergence angle. In addition, it will be struck by more particles, since there is a stray magnetic field and outgas from the surface of the electrostatic deflector. The residual radioactivity in the electrostatic deflector has been studied in two aspects: specific activity and residual dose rate, based on the gamma-ray spectrometry and Fluke 451p ionization chamber, respectively. The specific activity of radionuclides in the main components and the dust on the enclosure have been investigated by using gamma-ray spectrometry. The residual dose rate around the electrostatic deflector has been obtained by Fluke 451p ionization chamber. The results of the study show that there is a non-negligible radiological risk to the staff. This result can be provided as guidance for making a maintenance schedule, so that the dose received by staff can be kept as low as reasonably achievable. Based on the results, advice for "hands-on" maintenance and decommissioning of the SFC have been provided.

  8. Present Trends In The Configurations And Applications Of Electrostatic Accelerator Systems

    International Nuclear Information System (INIS)

    Norton, Gregory A.; Klody, George M.

    2011-01-01

    Despite the worldwide economic meltdown during the past two years and preceding any stimulus program projects, the market for electrostatic accelerators has increased on three fronts: new applications developed in an expanding range of fields; technical enhancements that increase the range, precision, and sensitivity of existing systems; and new accelerator projects in a growing number of developing countries. From the single application of basic nuclear structure research from the 1930's into the 1970's, the continued expansion of new applications and the technical improvements in electrostatic accelerators have dramatically affected the configurations and capabilities of accelerator systems to meet new requirements. This paper describes examples of recent developments in cosmology, exotic materials, high resolution RBS, compact AMS, dust acceleration, ion implantation, etc.

  9. Observation of dusts by laser scattering method in the JIPPT-IIU tokamak

    International Nuclear Information System (INIS)

    Narihara, K.; Toi, K.; Hamada, Y.

    1997-03-01

    Laser scattering signals which indicate the presence of small dusts (diameter ≤ 2 μm) were occasionally observed in the JIPPT-IIU tokamak chamber. This phenomenon was reproduced by deliberately spreading carbon dusts from the top of the vacuum chamber. No noticeable effect on the plasma was observed for dust-fall of up to at least 10 6 dusts (10 μg) in 20 ms during discharge. Dusts fallen just before the plasma start-up seemed to be confined but soon be ejected in less than 30 ms. (author)

  10. Scrubber-Integrated Wet Electrostatic Precipitator; Skrubberintegrerat vaatt elektrofilter, WESP

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Baefver, Linda; Davidsson, Kent; Pettersson, Jens; Schmidt, Hans; Strand, Michael; Yngvesson, Johan

    2011-07-01

    Combustion processes for heat and power production are an important source of sub-micron particle emissions, which cause enhanced health risks and premature deaths. To meet future requirements of economical and robust dust cleaning equipment, the Wet Electrostatic Precipitation (WESP) technology has been further developed in this project. A pilot scale slip stream WESP unit, installed by Goetaverken Miljoe, has been successfully installed and tested at the Renova Waste-to-Energy plant in Goeteborg, Sweden. The particles in the gas are charged by an ionizing electrode and collected in a concentric cylinder geometry. The WESP pilot consists of a unique combination of several existing technologies: it is integrated with a packed bed scrubber which means an ideally uniformly distributed gas flow in the WESP inlet. Furthermore, the WESP unit has a water cooled condensing collector, which facilitates continuous formation of a water film. The downward flowing water film transports the collected dust counter current to the upward flowing flue gas in order to minimize particle re-entrainment. The WESP is equipped with a high frequency transformer for stable voltage output and is fabricated in electrically conductive corrosion resistant Fibre Reinforced Plastic (FRP). The concentration of dust upstream of the WESP unit varied between 6.2 and 28 mg/Nm{sup 3} dry gas. All measured outlet dust concentrations were below 0.3 mg/Nm{sup 3} (dry gas, 11% O{sub 2}), which equals 3% of the applicable emission limit. The dust removal efficiency has been higher than 97% in all the dust measurements. The mean value of all the dust measurements was 15.2 mg/Nm{sup 3} upstream and 0.14 mg/Nm{sup 3} in downstream (both as dry gas, 11% O{sub 2}), which gives an average removal efficiency of slightly more than 99%. The removal efficiency increased with increasing inlet dust concentration, SO{sub 2} concentration and {Delta}T of the collector cooling. Chlorine, potassium, sodium, silicon and

  11. Small amplitude two dimensional electrostatic excitations in a magnetized dusty plasma with q-distributed electrons

    Science.gov (United States)

    Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad

    2016-07-01

    The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.

  12. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  13. Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma

    International Nuclear Information System (INIS)

    Ali, S.; Nasim, M.H.; Murtaza, G.

    2003-01-01

    The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential

  14. Dust-Lower-Hybrid Surface Waves in Classical and Degenerate Plasmas

    International Nuclear Information System (INIS)

    Ayub, M.; Shah, H.A.; Qureshi, M.N.S.; Salimullah, M.

    2013-01-01

    The dispersion relation for general dust low frequency electrostatic surface waves propagating on an interface between a magnetized dusty plasma region and a vacuum is derived by using specular reflection boundary conditions both in classical and quantum regimes. The frequency limit ω ≪ ω ci ≪ ω ce is considered and the dispersion relation for the Dust-Lower-Hybrid Surface Waves (DLHSW's) is derived for both classical and quantum plasma half-space and analyzed numerically. It is shown that the wave behavior changes as the quantum nature of the problem is considered. (physics of gases, plasmas, and electric discharges)

  15. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  16. Models of surface convection and dust clouds in brown dwarfs

    International Nuclear Information System (INIS)

    Freytag, B; Allard, F; Ludwig, H-G; Homeier, D; Steffen, M

    2008-01-01

    The influence of dust grains on the atmospheres of brown dwarfs is visible in observed spectra. To investigate what prevents the dust grains from falling down, or how fresh condensable material is mixed up in the atmosphere to allow new grains to form, we performed 2D radiation-hydrodynamics simulations with CO5BOLD of the upper part of the convection zone and the atmosphere containing the dust cloud layers. We find that unlike in models of Cepheids, the convective overshoot does not play a major role. Instead, the mixing in the dust clouds is controlled by gravity waves.

  17. Regional and climatic controls on seasonal dust deposition in the southwestern U.S.

    Science.gov (United States)

    Reheis, M.C.; Urban, F.E.

    2011-01-01

    Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.

  18. Study of air pollution with cement dust and its effect on plants cover in the surrounding area of Tartous cement factory

    International Nuclear Information System (INIS)

    Meslmani, Y.; Al-Oudat, M.; Al-Kharfan, K.

    2000-06-01

    Cement dust fall, concentration of total suspended particulate (TSP) and particulate less than 10 micron (PM10), were measured in different sites in the surrounding area of Tartus cement factory. The effects of cement dust emission on the growth of olive trees have been investigated. The results show that the dust fall, TSP and PM10 concentration were higher than The World Health Organization (WHO) standard at the factory site as well as in the surrounding area within 3 to 4 km in the diameter.The study shows that, the cement dust fall decreases the growth of olive trees by 34.5, 33 and 21% regarding the I, II, III sites respectively in comparison with the reference site. The branch length, branch weight, amount of chlorophyll and leaves quantity were decreased significantly. The mean weight of dust fall were 34.5, 26.4 and 10.9 g/m 2 on the leaves area at the site I, II, III respectively while the reference site has a value of 1.9 g/m 2 .(Author)

  19. Study of air pollution with cement dust and its effect on plants cover in the surrounding area of Tartous cement factory

    Energy Technology Data Exchange (ETDEWEB)

    Meslmani, Y; Al-Oudat, M; Al-Kharfan, K [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Protection and Safety

    2000-06-01

    Cement dust fall, concentration of total suspended particulate (TSP) and particulate less than 10 micron (PM10), were measured in different sites in the surrounding area of Tartus cement factory. The effects of cement dust emission on the growth of olive trees have been investigated. The results show that the dust fall, TSP and PM10 concentration were higher than The World Health Organization (WHO) standard at the factory site as well as in the surrounding area within 3 to 4 km in the diameter.The study shows that, the cement dust fall decreases the growth of olive trees by 34.5, 33 and 21% regarding the I, II, III sites respectively in comparison with the reference site. The branch length, branch weight, amount of chlorophyll and leaves quantity were decreased significantly. The mean weight of dust fall were 34.5, 26.4 and 10.9 g/m{sup 2} on the leaves area at the site I, II, III respectively while the reference site has a value of 1.9 g/m{sup 2}.(Author)

  20. COMMENTS ON THE SEARCH FOR ELECTROSTATIC DISCHARGES ON MARS

    International Nuclear Information System (INIS)

    Renno, Nilton O.; Ruf, Christopher S.

    2012-01-01

    Ruf et al. used the Deep Space Network (DSN) to search for the emission of non-thermal radiation by martian dust storms, theoretically predicted by Renno et al. They detected the emission of non-thermal radiation that they were searching for, but were surprised that it contained spectral peaks suggesting modulation at various frequencies and their harmonics. Ruf et al. hypothesized that the emission of non-thermal radiation was caused by electric discharges in a deep convective dust storm, modulated by Schumann resonances (SRs). Anderson et al. used the Allen Telescope Array (ATA) to search for similar emissions. They stated that they found only radio frequency interference (RFI) during their search for non-thermal emission by martian dust storms and implicitly suggested that the signal detected by Ruf et al. was also RFI. However, their search was not conducted during the dust storm season when deep convective storms are most likely to occur. Here, we show that the ubiquitous dust devils and small-scale dust storms that were instead likely present during their observations are too shallow to excite SRs and produce the signals detected by Ruf et al. We also show that the spectral and temporal behavior of the signals detected by Anderson et al. corroborates the idea that they originated from man-made pulse-modulated telecommunication signals rather than martian electric discharges. In contrast, an identical presentation of the signals detected by Ruf et al. demonstrates that they do not resemble man-made signals. The presentation indicates that the DSN signals were consistent with modulation by martian SRs, as originally hypothesized by Ruf et al. We propose that a more comprehensive search for electrostatic discharges be conducted with either the ATA or DSN during a future martian dust storm season to test the hypothesis proposed by Ruf et al.

  1. Tracking shocked dust: State estimation for a complex plasma during a shock wave

    International Nuclear Information System (INIS)

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry

    2012-01-01

    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.

  2. Destructive role of hot ions in the formation of electrostatic density humps and dips in dusty plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Saleem, H.

    2003-01-01

    It is shown that the ion thermal energy is destructive for the ion acoustic solitons in the presence of dust, and it decreases the value of Mach number for the formation of solitary structures. The regions of ion density humps and dips are produced simultaneously, corresponding to positive and negative values of the electrostatic potential. The nonlinear electron density also behaves in a similar fashion as that of ions. However, the dust density increases in the regions where the ion and electron densities are depleted and vice versa

  3. SIZE REDUCTION OF ELECTROSTATIC PRECIPITATOR CHAMBER BY MODIFICATION OF GAS FLOW DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Beata Sładkowska-Rybka

    2014-10-01

    Full Text Available Electrostatic precipitators (ESP are one of the most effective devices for particulate emission control, removing from the exhaust gases even 99,9 % of dust particles. The collection efficiency of the ESP depends on a number of factors: mechanical design and electrical operating parameters, physical and chemical properties of cleaned gas, characteristic of dust particles suspended in the gas. Among the most important factors affecting the ESP effectiveness, the velocity and the distribution of gas flow in the ESP chamber should be also indicated. Significant increase in ESP efficiency is possible thanks to the application of Skewed Gas Flow Technology (SGFT. In this paper the computer simulations results are shown. Authors investigated the possibility of ESP chamber size reduction by modification of gas flow distribution.

  4. In situ measurement of electrostatic charge and charge distribution on flyash particles in power station exhaust stream

    Energy Technology Data Exchange (ETDEWEB)

    Guang, D.

    1992-01-01

    The electrostatic charges and charge distributions on individual flyash particles were experimentally measured in situ at four power stations in New South Wales and in the laboratory with an Electrostatic Charge Classifier. The global charge of these flyashes was also measured. The electrostatic charge on flyash particles of four power stations was found to be globally native. The median charge on the flyash particles varies linearly with particle diameter for all four flyashes. The electrostatic charge on the Tallawarra flyash particles was found to increase after passage through the air heater having huge metal surface areas, suggesting that triboelectrification was the primary charging mechanism for flyash particles. Distinctly different characteristics of the electrostatic charge, particle size and particle shape were found between the Eraring and the Tallawarra flyashes. The spherical Eraring ash has the highest proportion of lines and positively charged particles, but the lowest global charge level among the four flyashes. In contrast, the Tallawarra flyash has just the opposite. It is the distinct characteristics of the flyashes from Eraring and Tallawarra power stations that are responsible for the significant differences in their baghouse performance. The napping feature on the surface of the filter bags used in the Eraring and Tallawarra power stations provides an upstream surface of low fibre density above the fabric bulk. This feature presents and advantage to highly charged particles, like the Tallawarra flyash particles. Highly charged particles tend to deposit on such an upstream surface resulting in a porous dust cake with much less contact areas with the fabric medium than would otherwise be formed. This cake is easy to remove and provides less resistance to the gas flow. After singeing the naps on the filter bag surface at the Eraring power station, the problems of high pressure drop and retention of dust cake on the bas surface have been resolved.

  5. Electrostatic Positioning System for a free fall test at drop tower Bremen and an overview of tests for the Weak Equivalence Principle in past, present and future

    Science.gov (United States)

    Sondag, Andrea; Dittus, Hansjörg

    2016-08-01

    The Weak Equivalence Principle (WEP) is at the basis of General Relativity - the best theory for gravitation today. It has been and still is tested with different methods and accuracies. In this paper an overview of tests of the Weak Equivalence Principle done in the past, developed in the present and planned for the future is given. The best result up to now is derived from the data of torsion balance experiments by Schlamminger et al. (2008). An intuitive test of the WEP consists of the comparison of the accelerations of two free falling test masses of different composition. This has been carried through by Kuroda & Mio (1989, 1990) with the up to date most precise result for this setup. There is still more potential in this method, especially with a longer free fall time and sensors with a higher resolution. Providing a free fall time of 4.74 s (9.3 s using the catapult) the drop tower of the Center of Applied Space Technology and Microgravity (ZARM) at the University of Bremen is a perfect facility for further improvements. In 2001 a free fall experiment with high sensitive SQUID (Superconductive QUantum Interference Device) sensors tested the WEP with an accuracy of 10-7 (Nietzsche, 2001). For optimal conditions one could reach an accuracy of 10-13 with this setup (Vodel et al., 2001). A description of this experiment and its results is given in the next part of this paper. For the free fall of macroscopic test masses it is important to start with precisely defined starting conditions concerning the positions and velocities of the test masses. An Electrostatic Positioning System (EPS) has been developed to this purpose. It is described in the last part of this paper.

  6. DC Glow Discharge Plasma, Containing Dust Particles: Self Organization and Peculiarities of Behavior

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Pustyl'nik, M.Y.; Torchinskij, V.M.; Fortov, V.E.

    2003-01-01

    Dust particles, immersed in a plasma, acquire charge due to which they may be electrostatically trapped in a plasma. The energy of the interaction of the dust particles may be enough to transfer the dust component to nonideal and even crystalline state. This phenomenon is observed in various plasmas. In the present work a review of the investigations of strongly nonideal dusty plasma of the dc glow discharge striations is given. The formation of plasma crystals, liquids and plasma liquid crystals is considered. Typical phenomenon a for the dc discharge dusty plasma, such as coexistence of different phases in a single structure, convective motions, dust acoustic instability, are underlined. Results of the experiments on different external influences on dusty plasma structures are stated. It is shown that external influences may be used for measuring of the particle charge and field of forces acting on a dust grain levitating in a plasma. (author)

  7. Influence of the forces on the adhesion behavior of graphite dust in HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Sun Xiaokai; Zhang Tianqi; Yu Suyuan

    2015-01-01

    The behavior of the graphite dust is important to the safety of High Temperature Gas-cooled Reactors. The present study focuses on the forces which make the graphite dust attach or detach from the surface in HTGR. The effect of graphite dust size, the fluid velocity and the surface energy between the particles and the substrate were investigated. The result showed that van der Waals adhesion force is the main factors affecting the dust attach on the surface, the gravity force and the electrostatic force were much smaller than it. For small particles, both the aerodynamic lift and drag are smaller than van der Waals adhesion force. While for the large particles, the coupled effects of aerodynamic lift and drag can make the dust detach from the substrate easier. Both the aerodynamic lift and drag forces will increase quickly as the fluid velocity increases. The surface energy is an important parameter for van der Waals adhesion force, which will decrease as the surface energy decreases. (author)

  8. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.

    Science.gov (United States)

    Badger, Marc; Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Smiley, Ashley; Dudley, Robert

    2015-01-01

    Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.

  9. Large-amplitude dust acoustic shocklets in non-Maxwellian dusty plasmas

    Science.gov (United States)

    Ali, S.; Naeem, Ismat; Mirza, Arshad M.

    2017-10-01

    The formation and propagation of fully nonlinear dust-acoustic (DA) waves and shocks are studied in a non-Maxwellian thermal dusty plasma which is composed of Maxwellian electrons and nonthermal energetic ions with a neutralizing background of negatively charged dust grains. For this purpose, we have solved dust dynamical equations along with quasineutrality equation by using a diagonalization matrix technique. A set of two characteristic wave equations is obtained, which admits both analytical and numerical solutions. Taylor expansion in the small-amplitude limit ( Φ ≪ 1 ) leads to nonlinear effective phase and shock speeds accounting for nonthermal energetic ions. It is numerically shown that DA pulses can be developed into DA shocklets involving the negative electrostatic potential, dust fluid velocity, and dust number density. These structures are significantly influenced by the ion-nonthermality, dust thermal correction, and temporal variations. However, the amplitudes of solitary and shock waves are found smaller in case of Cairns-distributed ions as compared to Kappa-distributed ions due to smaller linear and nonlinear effective phase speeds that cause smaller nonlinearity effects. The present results should be useful for understanding the nonlinear characteristics of large-amplitude DA excitations and nonstationary shocklets in a laboratory non-Maxwellian dusty plasma, where nonthermal energetic ions are present in addition to Maxwellian electrons.

  10. Development of dust removal system using static electricity for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Ueda, Yasutoshi; Oda, Yasushi; Takahashi, Kenji [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao; Ueda, Shuzo; Kurihara, Ryoichi

    1997-11-01

    Tests to collect and transport metallic and non-metallic dust particles have been conducted using static electricity in a vacuum environment to investigate the applicability of a static electricity dust removal system for fusion experimental reactors. The dust particles are charged by electrostatic induction, floated and collected due to the Coulomb force generated by the AC electric field. They are then transported due to the gradient force induced by the electric curtain of the non-uniform travelling-wave electric field. Using a fully insulated electrode with a single-phase AC voltage up to 15 kV, aluminum and carbon dust were successfully collected. The highest collection rates for the aluminum and carbon dust were around 30 and 2 g/min, respectively. The linear-type electrodes, using as high as 22 kV of the three-phase AC voltage, transported aluminum dust up to an angle of 60deg. Applying a guide electrode to the linear-type electrode, the transportation rate was approximately doubled and almost constant at every angle, including a 90deg angle. The system transported aluminum dust up to the rate of 13 g/min. The influence of the 0.15 T magnetic field on the dust collection and transportation efficiencies was found to be negligible. (author)

  11. Development of dust removal system using static electricity for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Ueda, Yasutoshi; Oda, Yasushi; Takahashi, Kenji; Seki, Yasushi; Aoki, Isao; Ueda, Shuzo; Kurihara, Ryoichi.

    1997-01-01

    Tests to collect and transport metallic and non-metallic dust particles have been conducted using static electricity in a vacuum environment to investigate the applicability of a static electricity dust removal system for fusion experimental reactors. The dust particles are charged by electrostatic induction, floated and collected due to the Coulomb force generated by the AC electric field. They are then transported due to the gradient force induced by the electric curtain of the non-uniform travelling-wave electric field. Using a fully insulated electrode with a single-phase AC voltage up to 15 kV, aluminum and carbon dust were successfully collected. The highest collection rates for the aluminum and carbon dust were around 30 and 2 g/min, respectively. The linear-type electrodes, using as high as 22 kV of the three-phase AC voltage, transported aluminum dust up to an angle of 60deg. Applying a guide electrode to the linear-type electrode, the transportation rate was approximately doubled and almost constant at every angle, including a 90deg angle. The system transported aluminum dust up to the rate of 13 g/min. The influence of the 0.15 T magnetic field on the dust collection and transportation efficiencies was found to be negligible. (author)

  12. Evaluation of cost-effective dust collectors for single fireplaces and central heating boilers; Bewertung kostenguenstiger Staubabscheider fuer Einzelfeuerstaetten und Zentralheizungskessel

    Energy Technology Data Exchange (ETDEWEB)

    Kiener, Susanne; Turowski, Peter; Hartmann, Hans [Kompetenzzentrum fuer Nachwachsende Rohstoffe, Straubing (Germany). Technologie- und Foerderzentrum; Schmoeckel, Gerhard [Bayerisches Landesamt fuer Umwelt, Augsburg (Germany)

    2010-09-15

    The contribution under consideration reports on the performance of dust collectors for wood fires with respect to various parameters. Thus, the knowledge of the possibilities of the reduction of dust emissions should be improved by means of electrostatic deposition methods, and the assessment of practicability is to be enabled. To this end, several months of field testing of ten representative fireplaces was performed.

  13. Improvement of cement plant dust emission by bag filter system

    Science.gov (United States)

    Wahyu Purnomo, Chandra; Budhijanto, Wiratni; Alfisyah, Muziibu; Triyono

    2018-03-01

    The limestone quarry in PT Indocement Tunggal Prakarsa (ITP) in Cirebon is considered as a complex quarry in terms of chemical composition and material hardness. From the beginning of the plant operation up to the end of 2015, the dust removal was rely on electrostatic precipitator (EP) system. Whenever limestone from specific quarry zones were incorporated into Raw Mill (RM) feed or there was an upset condition, the dust emission increased significantly. Beside higher demand of electricity, an EP system requires lower gas inlet temperature in order to remove the dust effectively which requires larger cooling water in the previous gas conditioning tower to cool down gas from 400 °C to about 100 °C. By considering the drawbacks, the EP system was replaced by a bag filter (BF) system. The BF allows higher temperature of gas inlet and it has higher dust removal efficiency. In this study, the efficiency of the two different dust removal systems is compared. The effect of process variables i.e. RM feed, kiln feed, inlet temperature and pressure, and small size particle fraction to the dust emission are studied by multivariate linier regression analysis. It is observed that the BF system can reduce significantly the dust emission from 30 to 6 mg/m3 and in the same time reducing CO2 emission by 0.24 ton/year from the electricity consumption saving.

  14. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    Science.gov (United States)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including

  15. Water supply impacts of nuclear fall

    International Nuclear Information System (INIS)

    Hobbs, B.F.; Luo, Y.; Maciejowski, M.E.; Chester, C.V.

    1989-01-01

    “Nuclear winter,” more properly called “nuclear fall,” could be caused by injection of large amounts of dust into the atmosphere. Besides causing a decrease in temperature, it could be accompanied by “nuclear drought,” a catastrophic decrease in precipitation. Dry land agriculture would then be impossible, and municipal, industrial, and irrigation water supplies would be diminished. It has been argued that nuclear winter/fall poses a much greater threat to human survival than do fall out or the direct impacts of a conflict. However, this does not appear to be true, at least for the U.S. Even under the unprecedented drought that could result from nuclear fall, water supplies would be available for many essential activities. For the most part, ground water supplies would be relatively invulnerable to nuclear drought, and adequate surface supplies would be available for potable uses. This assumes that conveyance facilities and power supplies survive a conflict largely intact or can be repaired

  16. After the Fall: The Dust and Gas in E+A Post-starburst Galaxies

    Science.gov (United States)

    Smercina, A.; Smith, J. D. T.; Dale, D. A.; French, K. D.; Croxall, K. V.; Zhukovska, S.; Togi, A.; Bell, E. F.; Crocker, A. F.; Draine, B. T.; Jarrett, T. H.; Tremonti, C.; Yang, Yujin; Zabludoff, A. I.

    2018-03-01

    The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant interstellar medium (ISM) in many post-starburst galaxies raise important questions. Are they truly quiescent, and if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 E+A post-starbursts selected by the Sloan Digital Sky Survey, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances and total gas and dust masses significantly higher than expected from stellar recycling alone. Both polycyclic aromatic hydrocarbon (PAH)/total infrared (TIR) and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H2 rotational emission, and deep [C II] deficits. There is substantial scatter among star formation rate (SFR) indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a decline of more than two orders of magnitude since the starburst and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was not completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a “high-soft” radiation field that seemingly dominates the E+A galaxies’ unusual ISM energetics.

  17. Coupling the Mars Dust and Water Cycles: Investigating the Role of Clouds in Controlling the Vertical Distribution of Dust During N. H. Summer

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Wilson, R. J.

    2014-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer

  18. Meteors, meteorites and cosmic dust

    International Nuclear Information System (INIS)

    Lebedinets, V.N.

    1987-01-01

    The problem of meteorite origin and meteorite composition is discussed. Nowadays, most scientists suppose that the giant Oort cloud consisting of ice comet nuclei is the sourse of the meteor matter. A principle unity of the matter of meteorites falling to the Earth and cosmic dust is noted as well as that of meteorite bodies evaporating in the atmosphere and bearing meteors and bodies

  19. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    International Nuclear Information System (INIS)

    Sobrado, J. M.; Martín-Soler, J.; Martín-Gago, J. A.

    2015-01-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration

  20. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM–CSIC), Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  1. Dust grain dynamics due to nonuniform and nonstationary high-frequency radiations in cold magnetoplasmas

    Directory of Open Access Journals (Sweden)

    A. K. Nekrasov

    2006-03-01

    Full Text Available A general nonlinear theory for low-frequency electromagnetic field generation due to high-frequency nonuniform and nonstationary electromagnetic radiations in cold, uniform, multicomponent, dusty magnetoplasmas is developed. This theory permits us to consider the nonlinear action of all waves that can exist in such plasmas. The equations are derived for the dust grain velocities in the low-frequency nonlinear electric fields arising due to the presence of electromagnetic cyclotron waves travelling along the background magnetic field. The dust grains are considered to be magnetized as well as unmagnetized. Different regimes for the dust particle dynamics, depending on the spatio-temporal change of the wave amplitudes and plasma parameters, are discussed. It is shown that induced nonlinear electric fields can have both an electrostatic and electromagnetic nature. Conditions for maximum dust acceleration are found. The results obtained may be useful for understanding the possible mechanisms of dust grain dynamics in astrophysical, cosmic and laboratory plasmas under the action of nonuniform and nonstationary electromagnetic waves.

  2. Road fugitive dust emission characteristics in Beijing during Olympics Game 2008 in Beijing, China

    Science.gov (United States)

    Shou-bin, Fan; Gang, Tian; Gang, Li; Yu-hu, Huang; Jian-ping, Qin; Shui-yuan, Cheng

    2009-12-01

    Eighty road dust-fall (DF) monitoring sites and 14 background monitoring sites were established in the Beijing metropolitan area, and monitoring was conducted from January 2006 to December 2008. The dust-fall attributable to roads (ΔDF) showed a clear decline from 2006 to 2008. Dust-fall levels decreased across different road types from freeway > major arterial roads > minor arterial roads > collector roads > background sites. The ΔDF showed declines of 65%, 55%, 65% and 84% respectively for freeways, major arterial, minor arterial and collector roads from August 2007 to August 2008, and declines of 77%, 76%, 82% and 82% between August 2006 and August 2008. The ΔDF declined by 80%, 79%, 82% and 69% for freeways, major arterial, minor arterial and collector roads respectively between September 2007 and September 2008, and declined by 84%, 88%, 80% and 81% between September 2006 and September 2008. Eighty samples were collected in August 2007 and August 2008 and analyzed for silt loading. PM 10 emission factors and emission strengths were calculated using the AP-42 model. The silt loading reduced by 77%, 35%, 61%, 59% and 75% for freeways, major arterial, minor arterial, collector and local roads respectively. The PM 10 emission factors were reduced by 57%, 15%, 36%, 51% and 61% and the PM 10 emission strength declined by 70%, 40%, 55%, 65% and 72% for freeways, major arterial, minor arterial, collector and local roads respectively between August 2007 and August 2008. The decline is consistent with the reduction in road dust-fall.

  3. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  4. Dust Studies in DIII-D and TEXTOR

    International Nuclear Information System (INIS)

    Rudakov, D.L.; Litnovsky, A.; West, W.P.; Yu, J.H.; Boedo, J.A.; Bray, B.D.; Brezinsek, S.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Hollmann, E.M.; Huber, A.; Hyatt, A.W.; Krasheninnikov, S.I.; Lasnier, C.J.; Moyer, R.A.; Pigarov, A.Y.; Philipps, V.; Pospieszczyk, A.; Smirnov, R.D.; Sharpe, J.P.; Solomon, W.M.; Watkins, J.G.; Wong, C.C.

    2009-01-01

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Direct heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust. Large flakes or debris falling into the plasma may result in a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micron-size dust in plasma discharges. In DIII-D, a sample holder filled with ∼30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure (∼0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. At the given configuration of the launch, the dust did not penetrate the core plasma and only moderately perturbed the edge plasma, as evidenced by an increase of the edge carbon content.

  5. Evaluation of some Heavy Metals Loading in Dust Fall of Three ...

    African Journals Online (AJOL)

    PROF HORSFALL

    are detrimental to health status of users of the park. The monthly mean .... The high Cu content could also cause bad odour to water bodies in this vicinity. However, in terms of .... Chemical composition of traffic generated dust and its impact on ...

  6. Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas

    Science.gov (United States)

    Arshad, K.; Poedts, S.; Lazar, M.

    2017-12-01

    The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and

  7. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.

    Directory of Open Access Journals (Sweden)

    Marc Badger

    Full Text Available Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC. Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp., and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.

  8. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  9. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    Science.gov (United States)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  10. Study of effect of grain size on dust charging in an RF plasma using three-dimensional PIC-MCC simulations

    International Nuclear Information System (INIS)

    Ikkurthi, V. R.; Melzer, A.; Matyash, K.; Schneider, R.

    2008-01-01

    A 3-dimensional Particle-Particle Particle-Mesh (P 3 M) code is applied to study the charging process of micrometer size dust grains confined in a capacitive RF discharge. In our model, particles (electrons and ions) are treated kinetically (Particle-in-Cell with Monte Carlo Collisions (PIC-MCC)). In order to accurately resolve the plasma particles' motion close to the dust grain, the PIC technique is supplemented with Molecular Dynamics (MD), employing an an analytic electrostatic potential for the interaction with the dust grain. This allows to self-consistently resolve the dust grain charging due to absorption of plasma electrons and ions. The charging of dust grains confined above lower electrode in a capacitive RF discharge and its dependence on the size and position of the dust is investigated. The results have been compared with laboratory measurements

  11. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  12. A note on dust grain charging in space plasmas

    Science.gov (United States)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  13. The UK market for dust and particulate removal equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The report has a market overview of dust and particulate removal equipment, 1995-1999 and has specific market reports, by value, of fabric, ceramic and sintered filters, electrostatic precipitators, wet scrubbers (venturi, plate and others) and cyclones. It gives environmental expenditure by UK industry and discusses factors affecting supply, demand and success in the market. An overview is given of the industry structure and profiles are presented of 15 companies. Lists of contracts, trade associations and relevant journals are included. 33 tabs.

  14. Dust collection capacity of plants growing in coal mining areas

    International Nuclear Information System (INIS)

    Maiti, S.K.

    1993-01-01

    Plant can act as living filter of dust pollution in coal mining areas, where the amount of suspended particulate matter and dust fall rate is very high. Therefore, plant species growing in coal mining areas are classified as evergreen or deciduous with simple and compound leaf basis. The dust arresting capacity of each leaf is measured and expressed in g/m 2 . The study indicated that evergreen plants with simple, pilose surface, like - Alstonia, Ficus cunea, F. benghalensis and Mangifera indica are good dust catcher than evergreen compound leaves of Cassia siamea, Acacia arabica and Leucaena leucocephala. Deciduous with simple leaves, such as Zizyphus mauritiana, F. religiosa, Psidium guyava are also good dust collectors. Suitable plant species also help in quick reclamation of mined out areas; one practical difficulty for establishment of trees as green belts or reclamation purpose, has been incidence of cattle grazing. This study suggested a systematic way of selecting plant species on the basis of their efficiency in dust control and resistance to cattle grazing. (author). 16 refs., 3 tabs

  15. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  16. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  17. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van De Graaff Generator

    Science.gov (United States)

    Slisko, Josip; García-Molina, Rafael; Abril, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, comb, or rod as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water…

  18. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    . Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

  19. Optics elements for modeling electrostatic lenses and accelerator components: III. Electrostatic deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    2000-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the envelope (matrix) computer code TRACE 3-D as a part of the development of a suite of electrostatic beamline element models which includes lenses, acceleration columns, quadrupoles and prisms. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the first-order modeling of cylindrical, spherical and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low-energy beamline at the Center for Accelerator Mass Spectrometry. Although initial tests following installation of the new beamline showed that the new spherical electrostatic analyzer was not behaving as predicted by these first-order models, operational conditions were found under which the analyzer now works properly as a double-focusing spherical electrostatic prism

  20. Controlling fugitive dust emissions in material handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, G E

    1992-05-01

    The primary mechanism of fugitive dust generation in bulk material handling transfer operations is by dispersion of dust in turbulent air induced to flow with falling or projected material streams. This paper returns to basic theories of particle dynamics and fluid mechanics to quantify the dust generating mechanism by rational analysis. Calculations involving fluid mechanisms are made easier by the availability of the personal computer and the many math manipulating programs. Rational analysis is much more cost effective when estimating collection air volumes to control fugitive emissions; especially in enclosed material handling transfers transporting large volumes of dusty material. Example calculations, using a typical enclosed conveyor-to-conveyor transfer operation are presented to illustrate and highlight the key parameters that determine the magnitude of induced air flow that must be controlled. The methods presented in this paper for estimating collection air volumes apply only enclosed material handling transfers, exhausted to a dust collector. Since some assistance to the control of dust emissions must be given by the material handling transfer chute design, a discussion of good transfer chute design practice is presented. 4 refs., 2 figs., 2 tabs.

  1. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  2. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  3. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  4. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  5. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  6. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  7. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  8. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  9. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  10. Inertia-Centric Stability Analysis of a Planar Uniform Dust Molecular Cloud with Weak Neutral-Charged Dust Frictional Coupling

    Science.gov (United States)

    K. Karmakar, P.; Borah, B.

    2014-05-01

    This paper adopts an inertia-centric evolutionary model to study the excitation mechanism of new gravito-electrostatic eigenmode structures in a one-dimensional (1-D) planar self-gravitating dust molecular cloud (DMC) on the Jeans scale. A quasi-neutral multi-fluid consisting of warm electrons, warm ions, neutral gas and identical inertial cold dust grains with partial ionization is considered. The grain-charge is assumed not to vary at the fluctuation evolution time scale. The neutral gas particles form the background, which is weakly coupled with the collapsing grainy plasma mass. The gravitational decoupling of the background neutral particles is justifiable for a higher inertial mass of the grains with higher neutral population density so that the Jeans mode frequency becomes reasonably large. Its physical basis is the Jeans assumption of a self-gravitating uniform medium adopted for fiducially analytical simplification by neglecting the zero-order field. So, the equilibrium is justifiably treated initially as “homogeneous”. The efficacious inertial role of the thermal species amidst weak collisions of the neutral-charged grains is taken into account. A standard multiscale technique over the gravito-electrostatic equilibrium yields a unique pair of Korteweg-de Vries (KdV) equations. It is integrated numerically by the fourth-order Runge-Kutta method with multi-parameter variation for exact shape analyses. Interestingly, the model is conducive for the propagation of new conservative solitary spectral patterns. Their basic physics, parametric features and unique characteristics are discussed. The results go qualitatively in good correspondence with the earlier observations made by others. Tentative applications relevant to space and astrophysical environments are concisely highlighted.

  11. Levitation and dynamics of a collection of dust particles in a fully ionized plasma sheath

    International Nuclear Information System (INIS)

    Nitter, T.; Aslaksen, T.K.; Melandsoe, F.; Havnes, O.

    1994-01-01

    The authors have examined the dynamics of a collection of charged dust particles in the plasma sheath above a large body in a fully ionized space plasma when the radius of the large body is much larger than the sheath thickness. The dust particles are charged by the plasma, and the forces on the dust particles are assumed to be from the electric field in the sheath and from gravitation only. These forces will often act in opposite direction and may balance, making dust suspension and collection possible. The dust particles are supplied by injection or by electrostatic levitation. The ability of the sheath to collect dust particles, will be optimal for a certain combination of gravitation and plasma and dust particle parameters. In a dense dust sheath, the charges on the dust particles contribute significantly to the total space charge, and collective effects become important. These effects will reduce the magnitude of the sheath electric field strength and the charge on the dust particles. As dust particles are collected, the dust sheath is stretched and the largest dust particles may drop out, because the sheath is no longer able to suspend them. In a tenuous dust sheath, the inner layer, from the surface and about one Debye length thick, will be unstable for dust particle motion, and dust will not collect there. In a dense dust sheath, collective effects will decrease the thickness of this inner dust-free layer, making dust collection closer to the surface possible. By linearization of the force and current equations, they find the necessary and sufficient conditions which resemble those of planetary system bodies, but the results may also be of relevance to some laboratory plasmas

  12. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  13. Charge and potential of a dust grain versus the intergrain distance and establishment of the latter in a low-pressure plasma

    International Nuclear Information System (INIS)

    Sysun, A. V.; Sysun, V. I.; Khakhaev, A. D.; Shelestov, A. S.

    2008-01-01

    Results from experimental studies of ordered dust structures in plasma are reviewed. The experimental conditions and the data on the grain size and intergrain distance in plasma dust crystals are analyzed. It is shown that intergrain distance is a function of the grain size. The range of the ratio of the dust grain size to the Debye radius within which plasma dust crystals can form is determined. A volume cell surrounding a dust grain in plasma is considered. It is found that the potential and charge of the grain depend substantially on the intergrain distance. The charge, potential, and potential energy of a dust grain in a plasma dust crystal, as well as the electrostatic force exerted by the plasma field on the grain, are calculated by the method of molecular dynamics as functions of the intergrain distance. The corresponding analytic approximations and the criterion for the establishment of a steady-state intergrain distance are proposed.

  14. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    Science.gov (United States)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  15. Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes

    Science.gov (United States)

    Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun

    2017-10-01

    Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.

  16. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    Science.gov (United States)

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. © The Author 2015

  17. Modulation instability of ion thermal waves in a pair-ion plasma containing charged dust impurities

    International Nuclear Information System (INIS)

    Sabry, R.

    2008-01-01

    Modulation instability of ion thermal waves (ITWs) is investigated in a plasma composed of positive and negative ions as well as a fraction of stationary charged (positive or negative) dust impurities. For this purpose, a linear dispersion relation and a nonlinear Schroedinger equation are derived. The latter admits localized envelope solitary wave solutions of bright (pulses) and dark (holes, voids) type. The envelope soliton depends on the intrinsic plasma parameters. It is found that modulation instability of ITWs is significantly affected by the presence of positively/negatively charged dust grains. The findings of this investigation should be useful in understanding the stable electrostatic wave packet acceleration mechanisms in pair-ion plasma, and also enhances our knowledge on the occurrence of instability associated to the existence of charged dust impurities in pair-ion plasmas. Our results should be of relevance for laboratory plasmas.

  18. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  19. An analysis of the dust deposition on solar photovoltaic modules.

    Science.gov (United States)

    Styszko, Katarzyna; Jaszczur, Marek; Teneta, Janusz; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia; Samek, Lucyna

    2018-03-29

    Solid particles impair the performance of the photovoltaic (PV) modules. This results in power losses which lower the efficiency of the system as well as the increases of temperature which additionally decreases the performance and lifetime. The deposited dust chemical composition, concentration and formation of a dust layer on the PV surface differ significantly in reference to time and location. In this study, an evaluation of dust deposition on the PV front cover glass during the non-heating season in one of the most polluted European cities, Kraków, was performed. The time-dependent particle deposition and its correlation to the air pollution with particulate matter were analysed. Dust deposited on several identical PV modules during variable exposure periods (from 1 day up to 1 week) and the samples of total suspended particles (TSP) on quartz fibre filters using a low volume sampler were collected during the non-heating season in the period of 5 weeks. The concentration of TSP in the study period ranged between 12.5 and 60.05 μg m -3 while the concentration of PM10 observed in the Voivodeship Inspectorate of Environmental Protection traffic station, located 1.2 km from the TSP sampler, ranged from 14 to 47 μg m -3 . It was revealed that dust deposition density on a PV surface ranged from 7.5 to 42.1 mg m -2 for exposure periods of 1 day while the measured weekly dust deposition densities ranged from 25.8 to 277.0 mg m -2 . The precipitation volume and its intensity as well as humidity significantly influence the deposited dust. The rate of dust accumulation reaches approximately 40 mg m -2 day -1 in the no-precipitation period and it was at least two times higher than fluxes calculated on the basis of PM10 and TSP concentrations which suggest that additional forces such as electrostatic forces significantly influence dust deposition.

  20. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  1. Mitigation of soiling losses in solar collectors: Removal of surface-adhered dust particles using an electrodynamic screen

    Science.gov (United States)

    Sayyah, Arash

    Particulate contamination of the optical surfaces of solar collectors, often called "soiling", can have a significant deteriorating impact on energy yield due to the absorption and scattering of incident light. Soiling has more destructive effect on concentrated solar systems than on flat-plate photovoltaic panels, as the former are incapable of converting scattered sunlight. The first part of this thesis deals with the soiling losses of flat-plate photovoltaic (PV), concentrated solar power (CSP), and concentrated photovoltaic (CPV) systems in operation in several regions of the world. Influential parameters in dust accumulation losses, as well as different cleaning mechanisms in pursuit of restoring the efficiency of soiled systems, have been thoroughly investigated. In lieu of the most commonly-practiced manual cleaning method of using high-pressure water jets, the concept of automatic dust removal using the electrostatic forces of electrodynamic screen (EDS) technology is in a developmental stage and on its way toward commercialization. This thesis provides comprehensive analytical solutions for the electric potential and electric field distribution in EDS devices having different configurations. Numerical simulations developed using finite element analysis (FEA) software have corroborated the analytical solutions which can easily be embedded into software programs for particle trajectory simulations while also providing flexibility and generality in the study on the effect of different parameters of the EDS on the electric field and ensuing dust-removal performance. Evaluation and comparison of different repelling and attracting forces exerted on dust particles is of utmost importance to a detailed analysis of EDS performance in dust removal. Hence, the balance of electrostatic and adhesion forces, including van der Waals and capillary forces, have received significant attention in this dissertation. Furthermore, different numerical analyses have been

  2. Air pollution study in dust and suspended particulate materials in phosphate mines and Palmyra city

    International Nuclear Information System (INIS)

    Othman, I.; Sabra, Sh.; Al-Kharfan, K.

    1994-01-01

    A study was made during July 1991 in the phosphate mines (Khnifees and Sharqeh) and Palmyra city, total suspended particulate materials (SPM) were collected from these mines and Palmyra city. Also SPM of less than 10μ distribution were measured. The quantity of dust fall in phosphate mines and Palmyra city was estimated. The results show increase in the concentrations, especially the SPM of more than 10μ diameter. The highest value was in Khnifees administration and Sharqeh laboratory. Active traffic in Palmyra streets raised the SPM less than 10μ to a double value in Khnifees and Sharqeh villages. The quantity of dust-fall in mines area agrees with the concentration of total SPM. (author). 2 figs., 2 tabs

  3. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that

  4. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    International Nuclear Information System (INIS)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  5. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  6. An analysis of the correlation between dust storms in Korea and 137Cs nuclide concentration

    International Nuclear Information System (INIS)

    Choi, Soo-won; Kim, Jeong-hun; Shin, Sang-hwa; Hwang, Joo-ho

    2008-01-01

    Dust storms occur in Korea during spring time when fine dust is blown in from the far western regions of western China and Mongolia. A fine powdery dust is blown up into the sky and enters the upper reaches of the atmosphere where it is carried easterly across China then slowly falls to the ground on the Korean peninsula and Japan. The dust originates mostly in the Gobi dessert of China, as well as the yellow earth regions in the middle and upper streams of the Yellow river in China. Previous studies on dust storms have been limited to following or estimating their courses, distribution and frequency, or distribution of the heavy metals they transmit. However, since radionuclides exist in the dust, they must also exist in the dust storms. In this study, we analyzed the correlation of :1 37 Cs nuclide concentration based on a count of annual dust storm occurrence in the city of Suwon, South Korea and assessed seasonal differences of 137 Cs nuclide concentration

  7. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  8. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  9. Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation

    Science.gov (United States)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2

  10. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  11. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  12. Numerical and experimental investigation of industrial electrostatic precipitators; Etude numerique et experimentale d`electrofiltres industriels

    Energy Technology Data Exchange (ETDEWEB)

    Tochon, P.

    1997-10-17

    This work deals with electrostatic precipitators or ESP used for gas-solid particles separation. By means of a dust-controlled testing loop created and realised at the GRETh`s plate-form (Research Group on Heat Exchangers) and a numerical model developed during this work from TRIO software, the study of the performances of different ESP geometries has been carried out. Many electrical, hydraulic and particular parameters governing solid particles collection under ionised electric field have been identified, measured and modelled. The numerical model, ratified with experimental data obtained during this study and from literature, allows to describe local and global phenomena occurring in any geometries. Furthermore, parametric studies have been carried out in order to propose some optimised geometries. allowing to increase collection efficiencies. At least, on-site measurements with CETIAT (Centre Technique des Industries Aerauliques et Thermiques) allow to identify dust particles likely to be thrown out to the atmosphere, and troubles peculiar to large scales industrial plants. The numerical model has also been tested on these data. At the end of this study, an efficient dust-controlled experimental tool, PACIFIC loop, and a numerical simulation allowing ESP sizing are available. (author)

  13. Corneal permeability for cement dust: prognosis for occupational safety

    Science.gov (United States)

    Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.

    2018-02-01

    The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.

  14. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    Science.gov (United States)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  15. Magnetosheath electrostatic turbulence

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1979-01-01

    By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath

  16. Dust removal in power plant. Practical experiences with textile filter media in the flue gas purification coal-fired plants; Entstaubung von Kraftwerken. Praxiserfahrungen mit textilen Filtermedien in der Rauchgasreinigung von kohlegefeuerten Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Binnig, Joachim [BWF Envirotec, Offingen (Germany)

    2009-10-15

    Beside carbon dioxide, coal-fired power plants also produce particle emissions which have to be removed by filtering units from the flue gas. In the Federal Republic of Germany, this is enabled by means of electrostatic filters. In South Africa, the bag filter is the preferential method of dust removal. In the People's Republic of China, already large power plants with bag filters are dedusted. With regard to the cost structure, no significant differences between bag filters and electrostatic filters appear. Suitable measures can prevent the destruction of bag filters by an excess temperature in the case of disturbances of operation. Bag filters offer a higher efficiency of separation with fine dust and very fine dust. Using a professional conception of a filter plant, an operation of bag filters for the dedusting of coal-fired power plants is possible without problems. A service life of several years can be achieved.

  17. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  18. Contribution to the study of the accretion of cosmic dust on earth

    International Nuclear Information System (INIS)

    Grjebine, Tovy

    1971-01-01

    The study of the accretion of cosmic dust has been carried out by different ways and techniques. The measurements of the presently falling cosmic dust must be limited to that stratospheric contribution which has spent only a short time in the stratosphere, otherwise it can be mixed with a possible terrestrial dust of very small size. The discrimination between those different components can be made by studying the geographical and time distribution, correlated or anti-correlated with other phenomena such as radio-meteor statistics, meteorological phenomena statistics (rain or nuclear bomb debris fallout). It is impossible to measure directly the weight of the falling dust but the weight must be deduced from the measurements of some other characteristics such as magnetism, which are not characteristic of terrestrial dust. The 'magnetism ratio/weight' or 'chemical iron/weight' has therefore been established for stratospheric collection, and then used for soil level collection. The collection of spherules is another approach to measure the accretion in the size range of some micron particles. Spherules are considered as cosmic for their non-terrestrial type average chemical composition, non terrestrial association of elements and presence of cosmogenic nuclei. The knowledge of their average chemical composition enables their utilisation as a geochemical model to calculate the total weight of matter which should be associated with the content of nickel and cobalt found in the deep sea bottoms. Depending on the collection method, the total mass accreted yearly by the earth is estimated around 10 4 if only microscopic spherules are considered, around 10 8 if all size collection is performed or if deep sea sediments nickel and cobalt are used with spherules as a geochemical model. (author) [fr

  19. Electrostatics of spherical metallic particles in cylinder electrostatic separators/sizers

    International Nuclear Information System (INIS)

    Lu Hongzhou; Li Jia; Guo Jie; Xu Zhenming

    2006-01-01

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/sizers (ESSs). A computational algorithm is employed to depict the cylinder-type electrode arrangements applied in some electrostatic processes generating non-uniform electric fields. The ESS consists of a pair of conducting cylinders. The upper cylinder is energized by HVdc, while the lower one is grounded and mounted horizontally on a revolvable axis. The aim of this paper is to present a new electrode configuration and demonstrate the usefulness of numerical techniques for the evaluation of the particle's motion. A computer program was employed for analysing the behavior of spherical particles in a two-dimensional electrode arrangement that models the actual electric field configuration of cylinder-type electrostatic separators/sizers. The analysis is needed for the development of any new application of this cylinder-type electrode arrangement as an electrostatic separation method. The results reveal that the particle's motion depends on its radius and density and amplitude of the applied voltage. The actual granular mixtures with different specific mass and radius could be separated applying this cylinder-type electrostatic separation method; the lift voltage is an important parameter for separation. With a program for two-dimensional analysis of the electric field, the computational procedure presented in this paper could be employed for any particle shapes

  20. Influence of dust on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, M F

    1959-01-01

    Further experiments were made at Kuibyshev with seedlings of Caragana aurantiaca and Prunus maackii. Some the plants were treated with a mixture of fine dust and soot at 2-2.5 g/sq m of leaf surface, and this treatment was repeated as necessary, at intervals during the growing season. Height growth of C. aurantiaca was 26.6%, and that of P. maackii 15.9% less than that of clean controls. Leaf surface area, measured shortly before fall, was 35.3% less than the controls in C. aurantiaca, and 20% less in P. maackii.

  1. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture shows such an electrostatic septum in its tank. See 7501120X, 7501199 and 7501201 for more detailed pictures.

  2. Vertical transport of desert particulates by dust devils and clear thermals

    International Nuclear Information System (INIS)

    Sinclair, P.C.

    1974-01-01

    While the vertical and horizontal transport of natural surface material by dust devils is not in itself a critical environmental problem, the transport and downwind fallout of toxic or hazardous materials from dust devil activity may be a contributing factor in the development of future ecological-biological problems. Direct quantitative measurements of the dust particle size distribution near and within the visible dust devil vortex and analyses of the upper level clear thermal plume have been made to provide estimates of the vertical and horizontal transport of long half-life radioactive substances such as plutonium. Preliminary measurements and calculations of dust concentrations within dust devils indicate that over 7 x 10 3 tons of desert dust and sand may be transported downwind from an area 285 km 2 during an average dust devil season (May to August). Near the ground these dust concentrations contain particles in the size range from approximately 1 μm to 250 μm diameter. Since the vertical velocity distribution greatly exceeds the particle(s) fall velocities, the detrainment of particles within the vortex is controlled primarily by the spatial distribution of the radial (v/sub r/) and tangential (v/sub theta/) velocity fields. Above the visible dust devil vortex, a clear thermal plume may extend upward to 15,000 to 18,000 ft MSL. A new airborne sampling and air data system has been developed to provide direct measurements of the dust concentration and air motion near and within the upper thermal plume. The air sampler has been designed to operate isokinetically over a considerable portion of the low-speed flight regime of a light aircraft. A strapped down, gyro-reference platform and a boom-vane system is used to determine the vertical air motions as well as the temperature and turbulence structure within the thermal plume. (U.S.)

  3. Multipolar electrostatics.

    Science.gov (United States)

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  4. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  5. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  6. Thermal tides and Martian dust storms: Direct evidence for coupling

    International Nuclear Information System (INIS)

    Leovy, C.B.; Zurek, R.W.

    1979-01-01

    Observations of surface pressure oscillations at the Viking 1 and Viking 2 lander sites on Mars indicate that the thermally driven global atmospheric tides were closely coupled to the dust content of the Martian atmosphere, especially during northern fall and winter, when two successive global dust storms occurred. The onset of each of these global storms was marked by substantial, nearly simultaneous increases in the dust opacity and in the range of the daily surface pressure variation observed at both lander sites. Although both the diurnal and semidiurnal tidal surface pressure components were amplified at Lander 1 during the onset of a global dust storm, the semidiurnal component was greatly enhanced in relation to the diurnal tide. Semidiurnal wind components were prominent at both lander sites during the height of the global dust storm. We have attempted to interpret these observations using simplified dynamical models. In particular, the semidiurnal wind component can be successfully related to the observed surface pressure variation using a simplified model of a semidiurnally forced Ekman boundary layer. On the other hand, a classical atmospheric tidal model shows that the preferential enhancement of the semidiurnal surface pressure oscillation at Lander 1 can be produced by a tidal heating distribution which places most of the heating (per unit mass) above 10-km altitude. Furthermore, when a dust storm expands to global scale, it does so rather quickly, and the total atmospheric heating at the peak of the dust storm can represent more than 50% of the available insolation. The Viking observations suggest that a number of mechanisms are important for the generation and decay of these episodic Martian global dust storms

  7. Edutainment Science: Electrostatics

    Science.gov (United States)

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  8. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  9. Development of coaxial speaker-like non-contact electrostatic sensor for aviation engine exhaust electrostatic character research

    Directory of Open Access Journals (Sweden)

    Du Zhaoheng

    2015-01-01

    Full Text Available Electrostatic sensor is the most important equipment in aero-engine exhaust electrostatic character research. By comparing a variety of sensor test programs, the coaxial speaker-like noncontact electrostatic sensor program is proposed. Numerical simulation analysis indicates the electric field distribution of electrostatic sensor, the influence principle of gap width, outer diameter, center diameter, angle and other factors on the sensor capacitance values which identify the key indicators of electrostatic sensor. The experiment test shows that the simulation analysis is in good agreement with the experimental results.

  10. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  11. Intercomparison and determination of trace elements in urban dust by neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Park, Kwang Won; Kang, Sang Hun

    2000-01-01

    Trace elements in air samples artificially loaded on filters with urban dust and the bulk material of urban dust as an environmental sample were determined non-destructively using instrumental neutron activation analysis. Standard reference material (Urban Dust, SRM 1648) of the National Institute of Standard and Technology was used for the analytical quality control. The relative error for 37 elements was less than 15% and the standard deviation was less than 10%. 29 elements in the urban dust and 21 elements in the loaded filter sample were determined respectively. To evaluate the proficiency and reliability of the measurement, data intercomparison was performed and 39 analytical laboratories participated in the analysis using different analytical methods; neutron activation analysis, particle induced X-ray emission analysis, X-ray fluorescence analysis and atomic absorption spectrometry. Z-scores were calculated using the standard deviation of the laboratory's mean as target standard deviation, and a good result was obtained that the values fall between-1 and +1 except some elements. (author)

  12. Yukawa multipole electrostatics and nontrivial coupling between electrostatic and dispersion interactions in electrolytes

    International Nuclear Information System (INIS)

    Kjellander, Roland; Ramirez, Rosa

    2008-01-01

    An exact treatment of screened electrostatics in electrolyte solutions is presented. In electrolytes the anisotropy of the exponentially decaying electrostatic potential from a molecule extends to the far field region. The full directional dependence of the electrostatic potential from a charged or uncharged molecule remains in the longest range tail (i.e. from all multipole moments). In particular, the range of the potential from an ion and that from an electroneutral polar particle is generally exactly the same. This is in contrast to the case in vacuum or pure polar liquids, where the potential from a single charge is longer ranged than that from a dipole, which is, itself, longer ranged than the one from a quadrupole etc. The orientational dependence of the exponentially screened electrostatic interaction between two molecules in electrolytes is therefore rather complex even at long distances. These facts are formalized in Yukawa multipole expansions of the electrostatic potential and the pair interaction free energy based on the Yukawa function family exp(-κr)/r m , where r is the distance, κ is a decay parameter and m is a positive integer. The expansion is formally exact for electrolytes with molecular solvent and in the primitive model, provided the non-Coulombic interactions between the particles are sufficiently short ranged. The results can also be applied in the Poisson-Boltzmann approximation. Differences and similarities to the ordinary multipole expansion of electrostatics are pointed out. On the other hand, when the non-Coulombic interactions between the constituent particles of the electrolyte solution contain a dispersion 1/r 6 potential, the electrostatic potential from a molecule decays like a power law for long distances rather than as a Yukawa function. This is due to nontrivial coupling between the electrostatic and dispersion interactions. There remains an exponentially decaying component in the electrostatic potential, but it becomes

  13. A Study of Electrostatic Charge on Insulating Film by Electrostatic Force Microscopy

    International Nuclear Information System (INIS)

    Kikunaga, K; Toosaka, K; Kamohara, T; Sakai, K; Nonaka, K

    2011-01-01

    Electrostatic charge properties on polypropylene film have been characterized by atomic force microscopy and electrostatic force microscopy. The measurements have been carried out after the polypropylene film was electrified by contact and separation process in an atmosphere of controlled humidity. The negative and positive charge in concave surface has been observed. The correlation between concave surface and charge position suggests that the electrostatic charges could be caused by localized contact. On the other hand, positive charge on a flat surface has been observed. The absence of a relationship between surface profile and charge position suggests that the electrostatic charge should be caused by discharge during the separation process. The spatial migration of other positive charges through surface roughness has been observed. The results suggest that there could be some electron traps on the surface roughness and some potentials on the polypropylene film.

  14. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment.

    Science.gov (United States)

    Delory, Gregory T; Farrell, William M; Atreya, Sushil K; Renno, Nilton O; Wong, Ah-San; Cummer, Steven A; Sentman, Davis D; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars.

  15. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  16. Dust extraction from gas in cement kilns, using bag filters; Depoussierage des gaz de four cimentier par les filtres a manches

    Energy Technology Data Exchange (ETDEWEB)

    Harmegnies, M. [CALCIA, 78 - Guerville (France). Direction Technique

    1996-12-31

    After a review of regulations concerning cement plant emissions, the two main cement production techniques (dry and semi-dry processes) are described and the electrostatic and bag filter de-dusting techniques are compared. Examples of pilot applications of these techniques in two French cement plants are presented and operating results (performances, transient procedures, costs) are discussed

  17. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    characteristics and applications of the electrostatic potential of many-electron atoms, ions and molecules are discussed. Electrostatic Potential of Atoms and Singly. Charged ..... [6] R K Pathak and S R Gadre,J. Chat. Phys., 93, 1770, 1990. [7] S R Gadre, S A Kalkarni and I H Shrivastava,J. Chern. Phys., 96,52;3,. 1992. ~ .1.

  18. Ion trapping within the dust grain plasma sheath

    International Nuclear Information System (INIS)

    Jovanovic, D.; Shukla, P.K.

    2002-01-01

    One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)

  19. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr; Kumar, K. Kishor; Arnas, C. [Laboratoire de Physique des Interactions Ioniques et Moléculaires, CNRS, Aix-Marseille Université, 13397 Marseille (France)

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

  20. In vitro release of arachidonic acid and in vivo responses to respirable fractions of cotton dust

    International Nuclear Information System (INIS)

    Thomson, T.A.; Edwards, J.H.; Al-Zubaidy, T.S.; Brown, R.C.; Poole, A.; Nicholls, P.J.

    1986-01-01

    It was considered that the fall in lung function seen after exposure to cotton dust may be attributable in part to the activity of arachidonic acid metabolites, such as leucotrienes as well as to the more established release of histamine by cotton dust. However, we found that cotton and barley dusts elicited poor release of arachidonic acid from an established macrophage like cell line compared with that observed with other organic dusts. In the experimental animal, pulmonary cellular responses to both cotton and barley dust were similar to those evoked by moldy hay and pigeon dropping dusts, although after multiple doses a more severe response was seen to cotton and barley. Since both moldy hay and pigeon droppings elicit a greater arachidonic acid release than cotton or barley, a role for arachidonic acid in inducing the cellular response is less likely than other factors. There are limitations to our conclusions using this system, i.e., the arachidonic acid may be released in a nonmetabolized form, although it is noted that the two dusts with the greatest arachidonic acid release produce their clinical responses in humans largely by hypersensitivity mechanisms

  1. Theoretical aspects of an electrostatic aerosol filter for civilian turbofan engines

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-03-01

    Full Text Available The paper addresses the problem of aerosol filtration in turbofan engines. The current problem of very fine aerosol admission is the impossibility for mechanical filtration; another aspect of the problem is the high mass flow of air to be filtered. Non-attended, the aerosol admission can -and usually does- lead to clogging of turbine cooling passages and can damage the engine completely. The approach is theoretical and relies on the principles of electrostatic dust collectors known in other industries. An estimative equation is deduced in order to quantify the electrical charge required to obtain the desired filtration. Although the device still needs more theoretical and experimental work, it could one day be used as a means of increasing the safety of airplanes passing trough an aerosol laden mass of air.

  2. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  3. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  4. The first step in layer-by-layer deposition: Electrostatics and/or non-electrostatics?

    NARCIS (Netherlands)

    Lyklema, J.; Deschênes, L.

    2011-01-01

    A critical discussion is presented on the properties and prerequisites of adsorbed polyelectrolytes that have to function as substrates for further layer-by-layer deposition. The central theme is discriminating between the roles of electrostatic and non-electrostatic interactions. In order to

  5. Effect of Gas Velocity on the Dust Sediment Layer in the Coupled Field of Corona Plasma and Cyclone

    International Nuclear Information System (INIS)

    Wei Mingshan; Ma Chaochen; Li Minghua; Danish, S N

    2006-01-01

    A dust sediment layer was found on the outer tube wall when the ESCP (electrostatic centrifugal precipitator) trapped diesel particulates or ganister sand. The Compton back scatter method was used to measure the sediment thickness during the experiment. The effect of the inlet gas velocity on the dust sediment layer was investigated. PIV (Particle Image Velocimetry) was used to measure the velocity field between the inner barb tube wall and the outer tube wall. Experiments showed that the thickness of the sediment increased with time, and the sediment layer at the lower end was much thicker than that at the upper end. The agglomeration on the outer tube wall could be removed when the inlet gas velocity was increased to a certain value

  6. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  7. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  8. Electrostatic Detumble of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrostatic Tractor Technology research explores the harmony of physics and engineering to develop and test electrostatic actuation methods for touchless detumble...

  9. Dust particles investigation for future Russian lunar missions.

    Science.gov (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    emission. Dust analyzer instrument PmL for future Russian lender missons intends for investigation the dynamics of dusty plasma near lunar surface. PmL consist of three blocks: Impact Sensor and two Electric Field Sensors. Dust Experiment goals are: 1) Impact sensor to investigate the dynamics of dust particles near the lunar surface (speed, charge, mass, vectors of a fluxes) a) high speed micrometeorites b) secondary particles after micrometeorites soil bombardment c) levitating dust particles due to electrostatic fields PmL instrument will measure dust particle impulses. In laboratory tests we used - min impulse so as 7•10-11 N•c, by SiO2 dust particles, 20-40 µm with velocity about 0,5 -2,5 m/c, dispersion 0.3, and - max impulse was 10-6 N•c with possibility increased it by particles Pb-Sn 0,7 mm with velocity 1 m/c, dispersion ±0.3. Also Impact Sensor will measure the charge of dust particle as far as 10-15 C ( 1000 electrons). In case the charge and impulse of a dust particle are measured we can obtain velocity and mass of them. 2) Electric field Sensor will measure the value and dynamics of the electric fields the lunar surface. Two Electric Field Sensors both are measured the concentration and temperature of charged particles (electrons, ions, dust particles). Uncertainty of measurements is 10%. Electric Field Sensors contain of Lengmure probe. Using Lengmure probe to dark and light Moon surface we can obtain the energy spectra photoelectrons in different period of time. PmL instrument is developing, working out and manufacturing in IKI. Simultaneously with the PmL dust instrument to study lunar dust it would be very important to use an onboard TV system adjusted for imaging physical properties of dust on the lunar surface (adhesion, albedo, porosity, etc), and to collect dust particles samples from the lunar surface to return these samples to the Earth for measure a number of physic-chemical properties of the lunar dust, e.g. a quantum yield of

  10. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    Electrostatic Levitator (ESL) general layout with captions. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  11. Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains

    Science.gov (United States)

    Lee, Victor

    In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on

  12. History and Flight Devleopment of the Electrodynamic Dust Shield

    Science.gov (United States)

    Johansen, Michael R.; Mackey, Paul J.; Hogue, Michael D.; Cox, Rachel E.; Phillips, James R., III; Calle, Carlos I.

    2015-01-01

    The surfaces of the moon, Mars, and that of some asteroids are covered with a layer of dust that may hinder robotic and human exploration missions. During the Apollo missions, for example, lunar dust caused a number of issues including vision obscuration, false instrument readings, contamination, and elevated temperatures. In fact, some equipment neared failure after only 75 hours on the lunar surface due to effects of lunar dust. NASA's Kennedy Space Center has developed an active technology to remove dust from surfaces during exploration missions. The Electrodynamic Dust Shield (EDS), which consists of a series of embedded electrodes in a high dielectric strength substrate, uses a low power, low frequency signal that produces an electric field wave that travels across the surface. This non-uniform electric field generates dielectrophoretic and electrostatic forces capable of moving dust out of these surfaces. Implementations of the EDS have been developed for solar radiators, optical systems, camera lenses, visors, windows, thermal radiators, and fabrics The EDS implementation for transparent applications (solar panels, optical systems, windows, etc.) uses transparent indium tin oxide electrodes on glass or transparent lm. Extensive testing was performed in a roughly simulated lunar environment (one-sixth gravity at 1 mPa atmospheric pressure) with lunar simulant dust. EDS panels over solar radiators showed dust removal that restored solar panel output reaching values very close to their initial output. EDS implementations for thermal radiator protection (metallic spacecraft surfaces with white thermal paint and reflective films) were also extensively tested at similar high vacuum conditions. Reflectance spectra for these types of implementations showed dust removal efficiencies in the 96% to 99% range. These tests indicate that the EDS technology is now at a Technology Readiness Level of 4 to 5. As part of EDS development, a flight version is being prepared for

  13. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  14. Limiting assumptions in molecular modeling: electrostatics.

    Science.gov (United States)

    Marshall, Garland R

    2013-02-01

    Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.

  15. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.

    Science.gov (United States)

    Clack, Herek L

    2017-08-01

    Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.

  16. Electrostatic potential map modelling with COSY Infinity

    International Nuclear Information System (INIS)

    Maloney, J.A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-01-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY’s existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  17. Meteorites and cosmic dust: Interstellar heritage and nebular processes in the early solar system

    Directory of Open Access Journals (Sweden)

    Engrand C.

    2012-01-01

    Full Text Available Small solar system bodies like asteroids and comets have escaped planetary accretion. They are the oldest and best preserved witnesses of the formation of the solar system. Samples of these celestial bodies fall on Earth as meteorites and interplanetary dust. The STARDUST mission also recently returned to Earth cometary dust from comet 81P/Wild 2, a Jupiter Family Comet (JFC. These samples provide unique insights on the physico-chemical conditions and early processes of the solar system. They also contain some minute amount of materials inherited from the local interstellar medium that have survived the accretion processes in the solar system.

  18. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    Science.gov (United States)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding

  19. Three-phase current transformer rectifier sets. High-voltage power supplies for difficult conditions in electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Stackelberg, Josef von [Rico-Werk Eiserlo und Emmrich GmbH, Toenisvorst (Germany)

    2013-04-01

    The precipitation rate of electrostatic precipitators (ESP) highly depends on the consistency of waste gas. Among other things, electrical conductivity plays an important role as well as the ability of particles to be electrically charged or ionised. Within certain limits, common ESPs are able to clean waste gas satisfactorily. If the dust attributes exceed these limits, more sophisticated technical solutions are required in the ESP to meet the demands for the gas cleaning equipment. In these cases, a three phase transformer rectifier system offers an alternative to the conventional single phase system, as it delivers a smooth direct current voltage over a wide voltage range. (orig.)

  20. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  1. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  2. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  3. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  4. Large area gridded ionisation chamber and electrostatic precipitator. Application to low-level alphaspectrometry of environmental air samples

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1978-01-01

    A high-resolution, parallel plate Frisch grid ionisation chamber with an efficient area of 300 cm 2 and a large area electrostatic precipitator were developed and applied to direct alpha-particle spectrometry of air dust. The aerosols were deposited on circular tin-plate dishes of 300 cm 2 by the electrostatic precipitator, which was constructed for continuous operation at an air flow rate of 2 m 3 /h. Collection efficiency is found to be 0.78 for the natural Rn- and Tn-daughter products. Using an argon-methane mixture (P-10 gas) at atmospheric pressure, the resolution of the detector system is 22 keV fwhm at 5.15 MeV. The integral background is typically 15.7 counts/h between 4 and 6 MeV. After sampling for one week and decay of short-lived natural activity, the sensitivity of the procedure for long-lived alpha-emitters is about 0.1 fCi/m 3 based on 3s of background as detection limit and 1000 min counting time. (Auth.)

  5. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  6. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  7. THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Michael Chun-Yuan; Francesco, J. Di; Johnstone, D.; Broekhoven-Fiene, H. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Sadavoy, S. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Hatchell, J. [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Mottram, J. C.; Hogerheijde, M. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Kirk, H. [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Buckle, J.; Salji, C. [Astrophysics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Berry, D. S.; Currie, M. J.; Jenness, T. [Joint Astronomy Centre, 660 North A‘ohōkū Place, University Park, Hilo, HI-96720 (United States); Fich, M.; Tisi, S. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Nutter, D.; Quinn, C. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Pattle, K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Pineda, J. E. [European Southern Observatory (ESO), Garching (Germany); and others

    2016-07-20

    The dust emissivity spectral index, β , is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β , dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μ m bands. Most of the derived β and dust temperature values fall within the ranges of 1.0–2.7 and 8–20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low- β regions correlate with local temperature peaks, hinting at the possible origins of low- β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.

  8. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Areas, electrostatic septa in long straight sections 2 an 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, provide a vertical electric field to remove the ions created by the circulating beam in the residual gas. Here we see one of the electrostatic septa being assembled by Faustin Emery (left) and Jacques Soubeyran (right), in the clean room of building 867. See also 7501199, 7501201, 7801286 and further explanations there.

  9. Explosion safety in industrial electrostatics

    Science.gov (United States)

    Szabó, S. V.; Kiss, I.; Berta, I.

    2011-01-01

    Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.

  10. Computational Methods for Biomolecular Electrostatics

    Science.gov (United States)

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  11. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  12. Electrostatic energy of KHF2

    NARCIS (Netherlands)

    Gool, W. van; Bruinink, J.; Bottelberghs, P.H.

    1972-01-01

    Electrostatic lattice energies are calculated in KHF2. Fractional charges occurring in the complex anions are treated with a general procedure and the results are compared to a specialized approach reported earlier. Interstitial potentials are calculated to obtain the electrostatic field through

  13. An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Park, C.; Whitten, R. C.; Pollack, J. B.; Noerdlinger, P.

    1982-01-01

    An analysis is presented of the physical characteristics and photochemical aftereffects of the 1908 Tunguska explosive cometary meteor, whose physical manifestations are consistent with a five million ton object's entry into the earth's atmosphere at 40 km/sec. Aerodynamic calculations indicate that the shock waves emanating from the falling meteor could have generated up to 30 million tons of nitric oxide in the stratosphere and mesosphere. A fully interactive one-dimensional chemical-kinetics model of atmospheric trace constituents is used to estimate the photochemical consequences of such a large NO injection. The 35-45% hemispherical ozone depletion predicted by the model is in keeping with the 30 + or - 15% ozone variation reported for the first year after the Tunguska fall. Attention is also given to the optical anomalies which followed the event for indications of NO(x)-O(x) chemiluminescent emissions, NO2 solar absorption, and meteoric dust turbidity, along with possible climate changes due to the nearly one million tons of pulverized dust deposited in the mesosphere and stratosphere by the meteor.

  14. Operating experience - electrostatic precipitators as deduster for circulating fluidized bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.J.; Bork, G. [Lurgi Lentjes Bischoff GmbH (Germany)

    1999-07-01

    Electrostatic precipitators (ESPs) are widely used for dedusting flue gases generated by steam generators with circulating fluidized bed (CFB) furnaces. In such applications, limestone is used as a desulphurisation additive in the furnace, eliminating the need for further desulphurisation systems downstream. However, the additive changes the physical properties of the particulate matter to be removed by the ESP, mostly unfavourably as regards ash resistivity. In this paper, design criteria and operating experiences are discussed, showing the main influences attributable to the additive and the CFB operating regime. Specific reference is made to the Heizkraftwerk 1 CFB power plant (Germany). Designed for domestic coals, on switching to import coals boiler output at the plant had to be limited due to unacceptably high dust emissions. ESP efficiency was optimised in two ways: (1) flow distribution was improved; and (2) new microprocessor controllers installed. Results of the modifications are discussed.

  15. Electrostatic fluctuations in soap films

    International Nuclear Information System (INIS)

    Dean, D.S.; Horgan, R.R.

    2002-01-01

    A field theory to describe electrostatic interactions in soap films, described by electric multilayers with a generalized thermodynamic surface-charging mechanism, is studied. In the limit where the electrostatic interactions are weak, this theory is exactly soluble. The theory incorporates in a consistent way, the surface-charging mechanism and the fluctuations in the electrostatic field that correspond to the zero-frequency component of the van der Waals force. It is shown that these terms lead to a Casimir-like attraction that can be sufficiently large to explain the transition between the common black film to a Newton black film

  16. Electrostatic correlations: from plasma to biology

    International Nuclear Information System (INIS)

    Levin, Yan

    2002-01-01

    Electrostatic correlations play an important role in physics, chemistry and biology. In plasmas they result in thermodynamic instability similar to the liquid-gas phase transition of simple molecular fluids. For charged colloidal suspensions the electrostatic correlations are responsible for screening and colloidal charge renormalization. In aqueous solutions containing multivalent counterions they can lead to charge inversion and flocculation. In biological systems the correlations account for the organization of cytoskeleton and the compaction of genetic material. In spite of their ubiquity, the true importance of electrostatic correlations has come to be fully appreciated only quite recently. In this paper, we will review the thermodynamic consequences of electrostatic correlations in a variety of systems ranging from classical plasmas to molecular biology

  17. Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators

    International Nuclear Information System (INIS)

    Brocilo, D; Podlinski, J; Chang, J S; Mizeraczyk, J; Findlay, R D

    2008-01-01

    The collection efficiency of electrostatic precipitators for the submicron particles ranging from 0.1 to 1 μm and ultrafine particles smaller than 0. lμm is below the requirements of new PM2.5 emission regulations. In this work, numerical and experimental studies were conducted to examine the effect of discharge and collecting electrode geometries on the ion density and electric field profiles and consequently their effect on the particle surface charge and collection efficiency. The collection efficiency prediction was based on a modified Deutsche's equation after calculation of three dimensional electric field and ion density profiles. Whereas, the particle surface charge was obtained from diffusion and field charging models. Results show that the collection efficiency of fine particles for the spike-type discharge electrode when compared to the conventional wire-type was improved. Experimental validations were conducted on a bench scale electrostatic precipitator for total and partial collection efficiency of particles ranging in size from 0.01 to 20 μm and the results indicated that the model can be effectively applied for prototype design, modification, and scale-up of collecting and discharge electrodes.

  18. Research on electrostatic electrification during jet kerosene spraying

    International Nuclear Information System (INIS)

    Liu, Quanzhen; Li, Yipeng; Zhang, Wentian; Sun, Keping

    2013-01-01

    Multiple electrostatic electrifications during aircraft fuelling process may cause a fire disaster or explosion, so study on the protection measure for electrostatic electrification is very important for the security of aircraft fuelling. This paper investigated the electrostatic voltage and charge of the fuel nozzle and metal parts during the fuel spraying by self-designed jet kerosene spraying electrostatic electrification test system. The experimental results indicate that the voltage on the fuel nozzle and metal parts is very dangerous for electrostatic safety if they are not reliably grounded.

  19. Charging and absorption characteristics of small particulates under alternative and electrostatic voltages in an electrostatic precipitator

    International Nuclear Information System (INIS)

    Jiang Xue-Dong; Xu He; Wang Xin

    2014-01-01

    The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator (ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis. (physics of gases, plasmas, and electric discharges)

  20. Electrostatics in pharmaceutical aerosols for inhalation.

    Science.gov (United States)

    Wong, Jennifer; Chan, Hak-Kim; Kwok, Philip Chi Lip

    2013-08-01

    Electrostatics continues to play an important role in pharmaceutical aerosols for inhalation. Despite its ubiquitous nature, the charging process is complex and not well understood. Nonetheless, significant advances in the past few years continue to improve understanding and lead to better control of electrostatics. The purpose of this critical review is to present an overview of the literature, with an emphasis on how electrostatic charge can be useful in improving pulmonary drug delivery.

  1. Electrostatic injection kicker for the KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    Toshikazu Adachi

    2013-05-01

    Full Text Available An electrostatic injection kicker (ES-Kicker has been developed and installed in the KEK digital accelerator, which is a synchrotron aimed at accelerating all ion species. The ES-Kicker kicks an injected ion beam horizontally into the ring orbit and consists of two main electrodes for electric field generation and three intermediate electrodes to correct field homogeneity. In our single-turn injection scheme, the circulating beam and the injected beam both pass through the electrode aperture of the kicker, so the kicker field must be turned off before arrival of the first circulating beam. The ES-Kicker is therefore operated in a pulse mode. This means that the excitation circuit for the ES-Kicker must be carefully designed, since the falling edge of the electric field is strongly affected by parasitic capacitance of this circuit, and any remaining field may disturb the circulating beam. This paper describes performance of the ES-Kicker on the basis of simulations and measurement results.

  2. Electrostatic effect for the collisionless tearing mode

    International Nuclear Information System (INIS)

    Hoshino, M.

    1987-01-01

    Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987

  3. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  4. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  5. PREFACE: Electrostatics 2015

    Science.gov (United States)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  6. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  7. Continuous electrodeionization through electrostatic shielding

    International Nuclear Information System (INIS)

    Dermentzis, Konstantinos

    2008-01-01

    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency

  8. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    International Nuclear Information System (INIS)

    Woodhead, S R; Denham, J C; Armour-Chelu, D I

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results

  9. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  10. Achieving a Prioritized Research and Technology Development Portfolio for the Dust Management Project

    Science.gov (United States)

    Hyatt, Mark J.; Abel, Phillip; Delaune, Paul; Fishman, Julianna; Kohli, Rajiv

    2009-01-01

    Mission architectures for human exploration of the lunar surface continue to advance as well as the definitions of capability needs, best practices and engineering design to mitigate the impact of lunar dust on exposed systems. The NASA DMP has been established as the agency focal point for dust characterization, technology, and simulant development. As described in this paper, the DMP has defined a process for selecting and justifying its R&T portfolio. The technology prioritization process, which is based on a ranking system according to weighted criteria, has been successfully applied to the current DMP dust mitigation technology portfolio. Several key findings emerged from this assessment. Within the dust removal and cleaning technologies group, there are critical technical challenges that must be overcome for these technologies to be implemented for lunar applications. For example, an in-situ source of CO2 on the moon is essential to the CO2 shower technology. Also, significant development effort is required to achieve technology readiness level TRL 6 for the electrostatic cleaning system for removal of particles smaller than 50 pm. The baseline materials related technologies require considerable development just to achieve TRL 6. It is also a nontrivial effort to integrate the materials in hardware for lunar application. At present, there are no terrestrial applications that are readily adaptable to lunar surface applications nor are there any obvious leading candidates. The unique requirements of dust sealing systems for lunar applications suggest an extensive development effort will be necessary to mature dust sealing systems to TRL 6 and beyond. As discussed here, several alternate materials and technologies have achieved high levels of maturity for terrestrial applications and warrant due diligence in ongoing assessment of the technology portfolio. The present assessment is the initial step in an ongoing effort to continually evaluate the DMP technology

  11. Introduction to numerical electrostatics using MATLAB

    CERN Document Server

    Dworsky, Lawrence N

    2014-01-01

    The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers

  12. Specific Electrostatic Molecular Recognition in Water

    DEFF Research Database (Denmark)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne

    2016-01-01

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide......-bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen-bond complementarities. From MD...

  13. Application of electrostatic prevention technology on polyethylene silos

    International Nuclear Information System (INIS)

    Gong, Hong; Liu, Quanzhen; Tan, Fenggui; Zhang, Yunpeng

    2013-01-01

    The main reasons of static electric explosion accidents in polyolefin plant silos were analyzed in this paper, and the study finds that the reasons include control failure of flammable gas content in the feed, high electrification caused by the wind supply, and frequent electrostatic discharge in silos. The electrostatic-reducing technologies of polyolefin powder were introduced, and its application performance in polyolefin plant silos was also clarified. In addition, the methods including FDCS and DGES for evaluation of electrostatic explosion in polyolefin plant silo were proposed. In the end, the risk of electrostatic explosion in PE plant blended silo was evaluated before and after application of electrostatic reducing technology.

  14. Higher order nonlinear equations for the dust-acoustic waves in a dusty plasma with two temperature-ions and nonextensive electrons

    International Nuclear Information System (INIS)

    Emamuddin, M.; Yasmin, S.; Mamun, A. A.

    2013-01-01

    The nonlinear propagation of dust-acoustic waves in a dusty plasma whose constituents are negatively charged dust, Maxwellian ions with two distinct temperatures, and electrons following q-nonextensive distribution, is investigated by deriving a number of nonlinear equations, namely, the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV), and the Gardner equations. The basic characteristics of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two temperature ions and electron nonextensivity on the basic features of DA K-dV, mK-dV, and Gardner solitons are also examined. It has been observed that the DA Gardner solitons exhibit negative (positive) solitons for q c (q>q c ) (where q c is the critical value of the nonextensive parameter q). The implications of our results in understanding the localized nonlinear electrostatic perturbations existing in stellar polytropes, quark-gluon plasma, protoneutron stars, etc. (where ions with different temperatures and nonextensive electrons exist) are also briefly addressed.

  15. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  16. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  17. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  18. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    Science.gov (United States)

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-05

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings.

  19. Nonlinear waves in viscoelastic magnetized complex astroplasmas with polarized dust-charge variations

    Directory of Open Access Journals (Sweden)

    Papari Das

    2018-01-01

    Full Text Available A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed astro-structure formation, such as stellesimals, planetsimals, etc.

  20. Nonlinear waves in viscoelastic magnetized complex astroplasmas with polarized dust-charge variations

    Science.gov (United States)

    Das, Papari; Karmakar, Pralay Kumar

    2018-01-01

    A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV) equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed) astro-structure formation, such as stellesimals, planetsimals, etc.

  1. Aeolian transport of biota with dust: A wind tunnel experiment

    Science.gov (United States)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  2. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    Science.gov (United States)

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  3. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  4. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  5. Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications

    Science.gov (United States)

    Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.

    2012-12-01

    algorithm flags pixels that fall into the glint region so sun glint is not picked up as dust. The algorithm also has a spatial variability test that uses reflectances at 0.86 μm to screen for clouds over water. Analysis of one granule for a known dust event on May 2, 2012 shows that the agreement between VIIRS and MODIS is 82% and VIIRS and CALIPSO is 71%. The probability of detection for VIIRS when compared to MODIS and CALIPSO is 53% and 45% respectively whereas the false alarm ratio for VIIRS when compared to MODIS and CALIPSO is 20% and 37% respectively. The algorithm details, results from the test cases, and the use of the dust flag product in NWS applications will be presented.

  6. Geometry-Dependent Electrostatics near Contact Lines

    International Nuclear Information System (INIS)

    Chou, Tom

    2001-01-01

    Long-ranged electrostatic interactions in electrolytes modify contact angles on charged substrates in a scale and geometry-dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle as functions of the electrostatic potential only at the three phase contact line. Analytic expressions are found in certain limits and compared with predictions for contact angles measured with lower resolution. An estimate for electrostatic contributions to line tension is also given

  7. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  8. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna

    Science.gov (United States)

    Gu, Yongzhen; Duan, Baoyan; Du, Jingli

    2018-05-01

    The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.

  9. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    Science.gov (United States)

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  10. Electrostatic chuck consisting of polymeric electrostatic inductive fibers for handling of objects with rough surfaces

    International Nuclear Information System (INIS)

    Dhelika, Radon; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio; Takarada, Wataru; Kikutani, Takeshi

    2013-01-01

    An electrostatic chuck (ESC) is a type of reversible dry adhesive which clamps objects by means of electrostatic force. Currently an ESC is used only for objects having flat surfaces because the attractive force is reduced for rough surfaces. An ESC that can handle objects with rough surfaces will expand its applications to MEMS (micro electro mechanical system) or optical parts handling. An ESC consisting of compliant electrostatic inductive fibers which conform to the profile of the surface has been proposed for such use. This paper aims at furthering previous research by observing the attractive force/pressure generated, both theoretically and experimentally, through step-by-step fabrication and analysis. Additionally, how the proposed fiber ESC behaves toward rough surfaces is also observed. The attractive force/pressure of the fiber ESC is theoretically investigated using a robust mechano-electrostatic model. Subsequently, a prototype of the fiber ESC consisting of ten fibers arranged at an angle is employed to experimentally observe its attractive force/pressure for objects with rough surfaces. The attractive force of the surface which is modeled as a sinusoidal wave with various amplitudes is observed, through which the feasibility of a fiber ESC is justified. (paper)

  11. Mechanical behavior analysis on electrostatically actuated rectangular microplates

    Science.gov (United States)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Dai, Lu; Zhao, Yulong

    2015-03-01

    Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices.

  12. Conservation and Role of Electrostatics in Thymidylate Synthase.

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C

    2015-11-27

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  13. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  14. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  15. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  16. Electrostatic Climber for Space Elevator and Launcher

    OpenAIRE

    Bolonkin, A.

    2007-01-01

    Author details research on the new, very prospective, electrostatic Space Elevator climber based on a new electrostatic linear engine previously offered at the 42nd Joint Propulsion Conference (AIAA-2006-5229) and published in AEAT, Vol.78, No.6, 2006, pp. 502-508. The electrostatic climber discussed can have any speed (and braking), the energy for climber movement is delivered by a lightweight high-voltage line into a Space Elevator-holding cable from Earth electric generator. This electric ...

  17. Oxidant enhancement in martian dust devils and storms: implications for life and habitability.

    Science.gov (United States)

    Atreya, Sushil K; Wong, Ah-San; Renno, Nilton O; Farrell, William M; Delory, Gregory T; Sentman, Davis D; Cummer, Steven A; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.

  18. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  19. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    Science.gov (United States)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  20. Design space of electrostatic chuck in etching chamber

    International Nuclear Information System (INIS)

    Sun Yuchun; Cheng Jia; Lu Yijia; Hou Yuemin; Ji Linhong

    2015-01-01

    One of the core semiconductor devices is the electrostatic chuck. It has been widely used in plasma-based and vacuum-based semiconductor processing. The electrostatic chuck plays an important role in adsorbing and cooling/heating wafers, and has technical advantages on non-edge exclusion, high reliability, wafer planarity, particles reduction and so on. This article extracts key design elements from the existing knowledge and techniques of electrostatic chuck by the method proposed by Paul and Beitz, and establishes a design space systematically. The design space is composed of working objects, working principles and working structures. The working objects involve electrostatic chuck components and materials, classifications, and relevant properties; the working principles involve clamping force, residual force, and temperature control; the working structures describe how to compose an electrostatic chuck and to fulfill the overall functions. The systematic design space exhibits the main issues during electrostatic chuck design. The design space will facilitate and inspire designers to improve the design quality and shorten the design time in the conceptual design. (paper)

  1. Large area gridded ionisation chamber and electrostatic precipitator and their application to low-level alpha-spectrometry of environmental air samples

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1977-01-01

    A high-resolution, parallel plate Frisch grid ionization chamber with an efficient area of 3000 cm 2 , and a large area electrostatic precipitator were developed and applied to direct alpha spectrometry of air dust. Using an argon-methane mixture (P-10 gas) at atmospheric pressure the resolution of the detector system is 22 keV FWHM at 5 MeV. After sampling for one week and decay of short-lived natural activity, the sensitivity of the procedure for long-lived alpha emitters is about 0.1 fCi/m 3 taking 3 Σσ of background as the detection limit with 1000 min counting time. (author)

  2. Field observations of the electrostatic charges of blowing snow in Hokkaido, Japan

    Science.gov (United States)

    Omiya, S.; Sato, A.

    2011-12-01

    : Omiya and Sato,(2010):An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface. AGU Abstract Database, 2010 Fall Meeting.

  3. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  5. Mechanical behavior analysis on electrostatically actuated rectangular microplates

    International Nuclear Information System (INIS)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Zhao, Yulong; Dai, Lu

    2015-01-01

    Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices. (paper)

  6. Properties and effects of dust particles suspended in the martian atmosphere

    International Nuclear Information System (INIS)

    Pollack, J.B.; Colburn, D.S.; Flasar, M.; Kahn, R.; Carlston, C.E.; Pidek, D.

    1979-01-01

    Direct measurements of the optical depth above the two Viking landers are reported for a period of covering the summer, fall, and winter seasons in the northern hemisphere, a time period during which two global dust storms occurred. The optical depth had a value of about 1 just before the onset of each storm; it increased very rapidly, on a time scale of a few days, to peak values of about 3 and 6 with the arrival of the first and second storms, respectively; and its steadily decreased shortly thereafter (> or approx. = few days to few weeks) for both storms, with the decay occurring more rapidly during the initial period of decay. We have also carried out further analyses of observations of the sky brightness made with the lander cameras during the summer season to obtain improved estimates of other dust particle parameters, including the cross section weighted mean particle radius, several shape factors, and the imaginary indices of refraction. These results have been used to define the radiative properties of the suspended dust particles at solar wavelenths. The derived radiative properties of the dust were incorporated into a 1D radiative convective model. Satisfactory agreement with the temperature structure determined during the descent of the landers to the surface. Is achieved when allowance is made for the effects of vertical motions induced by large scale atmospheric dynamics. The diurnal temperature variations predicted by the 1D calculations for the observed optical depths are also in crude agreement with values inferred from orbiter and lander measurements. The 1D model predicts that the diurnal temperature change and daily mean temperature, averaged over the entire atmospheric vertical column, steadily increase as the optical depth of the dust increases to a value of several, and then subsequently change little

  7. Falls following discharge after an in-hospital fall

    Directory of Open Access Journals (Sweden)

    Kessler Lori A

    2009-12-01

    Full Text Available Abstract Background Falls are among the most common adverse events reported in hospitalized patients. While there is a growing body of literature on fall prevention in the hospital, the data examining the fall rate and risk factors for falls in the immediate post-hospitalization period has not been well described. The objectives of the present study were to determine the fall rate of in-hospital fallers at home and to explore the risk factors for falls during the immediate post-hospitalization period. Methods We identified patients who sustained a fall on one of 16 medical/surgical nursing units during an inpatient admission to an urban community teaching hospital. After discharge, falls were ascertained using weekly telephone surveillance for 4 weeks post-discharge. Patients were followed until death, loss to follow up or end of study (four weeks. Time spent rehospitalized or institutionalized was censored in rate calculations. Results Of 95 hospitalized patients who fell during recruitment, 65 (68% met inclusion criteria and agreed to participate. These subjects contributed 1498 person-days to the study (mean duration of follow-up = 23 days. Seventy-five percent were African-American and 43% were women. Sixteen patients (25% had multiple falls during hospitalization and 23 patients (35% suffered a fall-related injury during hospitalization. Nineteen patients (29% experienced 38 falls at their homes, yielding a fall rate of 25.4/1,000 person-days (95% CI: 17.3-33.4. Twenty-three patients (35% were readmitted and 3(5% died. One patient experienced a hip fracture. In exploratory univariate analysis, persons who were likely to fall at home were those who sustained multiple falls in the hospital (p = 0.008. Conclusion Patients who fall during hospitalization, especially on more than one occasion, are at high risk for falling at home following hospital discharge. Interventions to reduce falls would be appropriate to test in this high-risk population.

  8. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  9. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    fundamental concepts of electrostatics as applied to atoms and molecules. The electric ... chemistry, the chemistry of the covalent bond, deals with the structures ..... the position of an asteroid named Ceres ... World Scientific. Singapore, 1992.

  10. Plasma kinetics around a dust grain in an ion flow

    International Nuclear Information System (INIS)

    Maiorov, S.A.; Vladimirov, S.V.; Cramer, N.F.

    2000-01-01

    Full text: In a typical laboratory discharge, dust particles are negatively charged and usually levitate in the sheath or pre-sheath region under the balance of gravitational, electrostatic (due to the sheath electric field) and plasma (such as the ion drag) forces. The ion flow provides not only a direct (dragging) influence, but is also responsible for the generation of associated collective plasma processes which can strongly affect the vertical arrangement of the dust grains. The complete problem of the plasma dynamics around a macroscopic body in the presence of plasma flows is highly nonlinear and therefore its numerical analysis is of major importance. Among various numerical methods, direct integration of the equations of motion of the plasma particles represents a numerical experiment whose significance approaches experiments in the laboratory. Here, we present for the first time the results of a self-consistent molecular dynamics (MD) three-dimensional (3D) simulation of the kinetics of plasma particles (electrons and ions) around a dust grain, taking into account the dust charging. The core of the method includes consideration of the time evolution of the system consisting of positively ('ions') and negatively ('electrons') charged particles confined in a simulation box together with a macroscopic absorbing grain ('dust particle') with infinite mass and an initial (negative) charge. The ions are introduced in the system as a uniform flow defined by its Mach number and the ion temperature. The paths of the ions and electrons are determined through numerical integration of the equations of motion. We demonstrate that the plasma kinetics around a dust grain in the presence of an ion flow involves a strong ion focusing behind the grain. We have also confirmed that the most important of the processes involved is the ion time-scale; the kinetics of the electrons follows a Boltzmann distribution with good agreement. We note that the time constraints involved

  11. Electrostatic coating technologies for food processing.

    Science.gov (United States)

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  12. Electrostatic micromotor based on ferroelectric ceramics

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2004-11-01

    A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.

  13. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  14. Women's perspectives on falls and fall prevention during pregnancy.

    Science.gov (United States)

    Brewin, Dorothy; Naninni, Angela

    2014-01-01

    Falls are the leading cause of unintentional injury in women. During pregnancy, even a minor fall can result in adverse consequences. Evidence to inform effective and developmentally appropriate pregnancy fall prevention programs is lacking. Early research on pregnancy fall prevention suggests that exercise may reduce falls. However, acceptability and effectiveness of pregnancy fall prevention programs are untested. To better understand postpartum women's perspective and preferences on fall prevention strategies during pregnancy to formulate an intervention. Focus groups and individual interviews were conducted with 31 postpartum women using descriptive qualitative methodology. Discussion of falls during pregnancy and fall prevention strategies was guided by a focus group protocol and enhanced by 1- to 3-minute videos on proposed interventions. Focus groups were audio recorded, transcribed, and analyzed using NVivo 10 software. Emerging themes were environmental circumstances and physical changes of pregnancy leading to a fall, prevention strategies, barriers, safety concerns, and marketing a fall prevention program. Wet surfaces and inappropriate footwear commonly contributed to falls. Women preferred direct provider counseling and programs including yoga and Pilates. Fall prevention strategies tailored to pregnant women are needed. Perspectives of postpartum women support fall prevention through provider counseling and individual or supervised exercise programs.

  15. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  16. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    Science.gov (United States)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern

  17. Investigating ESD sensitivity in electrostatic SiGe MEMS

    International Nuclear Information System (INIS)

    Sangameswaran, Sandeep; De Coster, Jeroen; Linten, Dimitri; Scholz, Mirko; Thijs, Steven; Groeseneken, Guido; De Wolf, Ingrid

    2010-01-01

    The sensitivity of electrostatically actuated SiGe microelectromechanical systems to electrostatic discharge events has been investigated in this paper. Torsional micromirrors and RF microelectromechanical systems (MEMS) actuators have been used as two case studies to perform this study. On-wafer electrostatic discharge (ESD) measurement methods, such as the human body model (HBM) and machine model (MM), are discussed. The impact of HBM ESD zap tests on the functionality and behavior of MEMS is explained and the ESD failure levels of MEMS have been verified by failure analysis. It is demonstrated that electrostatic MEMS devices have a high sensitivity to ESD and that it is essential to protect them.

  18. How large is the cosmic dust flux into the Earth's atmosphere?

    Science.gov (United States)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    , ionization and radar detection can be used to compute the probability of detecting a specified meteoroid in the Arecibo beam; an upper limit to the cosmic dust input of 16 t d ^{-1} has been obtained from the radar observations. Underpinning this modelling work is a novel laboratory experiment at the University of Leeds, where a novel Meteor Ablation Simulator is used to study the evaporation of metals from cosmic dust particles that are flash heated to over 3000 K. Finally, rocket-borne measurements of charged meteoric smoke particles indicate that about 5 t d ^{-1} of this cosmic dust ablates in the atmosphere, and another 6 t d ^{-1} fall to the surface as cosmic spherules.

  19. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  20. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    Science.gov (United States)

    Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  1. Hazard of electrostatic generation in a pneumatic conveying system: electrostatic effects on the accuracy of electrical capacitance tomography measurements and generation of spark

    International Nuclear Information System (INIS)

    Zhang, Yan; Wang, Chi-Hwa; Liang, Yung Chii

    2008-01-01

    The study of the hazard of electrostatic generation in pneumatic conveying systems was attempted by examining the sensitivity of electrical capacitance tomography (ECT) and the phenomena of spark generation due to strong electrostatics. The influence on ECT measurement accuracy of an electrostatic charge was analysed with reference to a switch capacitor configuration model. Consequently, it was found that the electrostatic charge introduced at the bend with sharp angles influenced the ECT results most significantly in pneumatic conveying systems, especially for the cases where a spark was generated. The investigation of spark generation indicated that a strong electrostatic charge can cause major discharges inside or outside the pipeline to damage the experimental instrument in severe cases

  2. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  3. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance. Copyright © 2013 Wiley Periodicals, Inc.

  4. Electrostatic beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  5. High-energy capacitance electrostatic micromotors

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  6. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  7. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  8. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  9. Electrostatic atomization--Experiment, theory and industrial applications

    Science.gov (United States)

    Okuda, H.; Kelly, Arnold J.

    1996-05-01

    Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.

  10. Quantitative nanoscale electrostatics of viruses.

    Science.gov (United States)

    Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J

    2015-11-07

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.

  11. Relationship between subjective fall risk assessment and falls and fall-related fractures in frail elderly people.

    Science.gov (United States)

    Shimada, Hiroyuki; Suzukawa, Megumi; Ishizaki, Tatsuro; Kobayashi, Kumiko; Kim, Hunkyung; Suzuki, Takao

    2011-08-12

    Objective measurements can be used to identify people with risks of falls, but many frail elderly adults cannot complete physical performance tests. The study examined the relationship between a subjective risk rating of specific tasks (SRRST) to screen for fall risks and falls and fall-related fractures in frail elderly people. The SRRST was investigated in 5,062 individuals aged 65 years or older who were utilized day-care services. The SRRST comprised 7 dichotomous questions to screen for fall risks during movements and behaviours such as walking, transferring, and wandering. The history of falls and fall-related fractures during the previous year was reported by participants or determined from an interview with the participant's family and care staff. All SRRST items showed significant differences between the participants with and without falls and fall-related fractures. In multiple logistic regression analysis adjusted for age, sex, diseases, and behavioural variables, the SRRST score was independently associated with history of falls and fractures. Odds ratios for those in the high-risk SRRST group (≥ 5 points) compared with the no risk SRRST group (0 point) were 6.15 (p fall, 15.04 (p falls, and 5.05 (p fall-related fractures. The results remained essentially unchanged in subgroup analysis accounting for locomotion status. These results suggest that subjective ratings by care staff can be utilized to determine the risks of falls and fall-related fractures in the frail elderly, however, these preliminary results require confirmation in further prospective research.

  12. Electrons scattered inside small dust grains of various materials

    International Nuclear Information System (INIS)

    Richterova, Ivana; Beranek, Martin; Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana

    2010-01-01

    The dust grain charge in an electron beam is given by a difference in numbers of electrons that fall onto the grain and those leaving it. Electrons with energies exceeding 1 keV can penetrate through submicron-sized dust grains. If the grain is small enough, a yield of these electrons reaches unity but they leave a part of their energy inside the grain and this energy excites secondary electrons. The paper presents a hybrid Monte Carlo code that simulates paths of the primary electrons inside a spherical grain and provides the yield of scattered electrons and their energy spectrum as a function of the grain size and material. This code is based on the Richterovaet al. [Phys. Rev. B 74, 235430 (2006)] model but it includes several corrections important for light materials like carbon or ice. The model was verified using experimental results obtained on large planar samples. For spherical samples, we have found that the yield of scattered electrons reaches unity for 50 nm Au grains illuminated by 5 keV electrons, whereas the same effect can be observed on ≅1000 nm carbon grains.

  13. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    Science.gov (United States)

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  14. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  15. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  16. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  17. Characterisation of bio-aerosols during dust storm period in N-NW India

    Science.gov (United States)

    Yadav, Sudesh; Chauhan, M. S.; Sharma, Anupam

    Bio-investigations for pollen and spores were performed on dry free-fall dust and PM 10 aerosol samples, collected from three different locations separated by a distance of 600 km, situated in dust storm hit region of N-NW India. Presence of pollen of trees namely Prosopis ( Prosopis juliflora and Prosopis cinearia), Acacia, Syzygium, Pinus, Cedrus, Holoptelea and shrubs namely Ziziphus, Ricinus, Ephedra and members of Fabaceae, Oleaceae families was recorded but with varying proportions in the samples of different locations. Poaceae, Chenopodiaceae/Amaranthaceae, Caryophyllaceae, Brassicaceae and Cyperaceae (sedges) were some of the herb pollen identified in the samples. Among the fungal spores Nigrospora was seen in almost all samples. Nigrospora is a well known allergen and causes health problems. The concentration of trees and shrubs increases in the windward direction just as the climate changes from hot arid to semiarid. The higher frequency of grasses (Poaceae) or herbs could either be a result of the presence of these herbs in the sampling area and hence the higher production of pollen/spores or due to the resuspension from the exposed surface by the high-intensity winds. But we cannot ascertain the exact process at this stage. The overall similarity in the pollen and spore assemblage in our dust samples indicates a common connection or source(s) to the dust in this region. Presence of the pollen of the species of Himalayan origin in our entire samples strongly point towards a Himalayan connection, could be direct or indirect, to the bioaerosols and hence dust in N-NW India. In order to understand the transport path and processes involved therein, present study needs further extension with more number of samples and with reference to meteorological parameters.

  18. An efficient numerical approach to electrostatic microelectromechanical system simulation

    International Nuclear Information System (INIS)

    Pu, Li

    2009-01-01

    Computational analysis of electrostatic microelectromechanical systems (MEMS) requires an electrostatic analysis to compute the electrostatic forces acting on micromechanical structures and a mechanical analysis to compute the deformation of micromechanical structures. Typically, the mechanical analysis is performed on an undeformed geometry. However, the electrostatic analysis is performed on the deformed position of microstructures. In this paper, a new efficient approach to self-consistent analysis of electrostatic MEMS in the small deformation case is presented. In this approach, when the microstructures undergo small deformations, the surface charge densities on the deformed geometry can be computed without updating the geometry of the microstructures. This algorithm is based on the linear mode shapes of a microstructure as basis functions. A boundary integral equation for the electrostatic problem is expanded into a Taylor series around the undeformed configuration, and a new coupled-field equation is presented. This approach is validated by comparing its results with the results available in the literature and ANSYS solutions, and shows attractive features comparable to ANSYS. (general)

  19. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Electrostatics in Chemistry - Basic Principles. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 2 February 1999 pp 8-19. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  1. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  2. Evaluation of Electrostatic Force on Bipolar Charged Electret

    International Nuclear Information System (INIS)

    Sonoda, K; Minami, K; Miwatani, N; Fujita, T; Kanda, K; Maenaka, K

    2014-01-01

    This paper presents an evaluation of an electrostatic vibration energy harvester with the bipolar charged electret. The energy harvester with the size of 13 × 12 × 1.2 mm 3 was fabricated. The output power of the bipolar charged with ±250 V harvester was 9 μW when the acceleration was 1.4 g at 352 Hz with 0.9 MΩ load resistance. The effectiveness against the velocity-damped resonant-generator (VDRG) limit was 2.5%. The electrostatic forces of the actual device with DC bias, which simulates charged electret with monopolar and bipolar were experimentally and numerically verified. We estimated the electrostatic force by measuring the vibration amplitude versus applied acceleration of the electret mass. As a result, we investigated the bipolar charged device can reduce the effect of electrostatic force as low as no bias condition. The numerical model of the energy harvester considering the electrostatic force by FEM static analysis was also established. The comparison between the numerical model and the measurement results showed a similar inclination

  3. Numerical simulations of windblown dust over complex terrain: the Fiambalá Basin episode in June 2015

    Directory of Open Access Journals (Sweden)

    L. A. Mingari

    2017-06-01

    Full Text Available On 13 June 2015, the London Volcanic Ash Advisory Centre (VAAC warned the Buenos Aires VAAC about a possible volcanic eruption from the Nevados Ojos del Salado volcano (6879 m, located in the Andes mountain range on the border between Chile and Argentina. A volcanic ash cloud was detected by the SEVIRI instrument on board the Meteosat Second Generation (MSG satellites from 14:00 UTC on 13 June. In this paper, we provide the first comprehensive description of this event through observations and numerical simulations. Our results support the hypothesis that the phenomenon was caused by wind remobilization of ancient pyroclastic deposits (ca. 4.5 ka Cerro Blanco eruption from the Bolsón de Fiambalá (Fiambalá Basin in northwestern Argentina. We have investigated the spatiotemporal distribution of aerosols and the emission process over complex terrain to gain insight into the key role played by the orography and the condition that triggered the long-range transport episode. Numerical simulations of windblown dust were performed using the ARW (Advanced Research WRF core of the WRF (Weather Research and Forecasting model (WRF-ARW and FALL3D modeling system with meteorological fields downscaled to a spatial resolution of 2 km in order to resolve the complex orography of the area. Results indicate that favorable conditions to generate dust uplifting occurred in northern Fiambalá Basin, where orographic effects caused strong surface winds. According to short-range numerical simulations, dust particles were confined to near-ground layers around the emission areas. In contrast, dust aerosols were injected up to 5–6 km high in central and southern regions of the Fiambalá Basin, where intense ascending airflows are driven by horizontal convergence. Long-range transport numerical simulations were also performed to model the dust cloud spreading over northern Argentina. Results of simulated vertical particle column mass were compared with the

  4. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    Science.gov (United States)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; hide

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  5. Manufacture of electrostatic septum for extracting particle beam

    International Nuclear Information System (INIS)

    Tokumoto, Shuichi

    1979-01-01

    In the main ring of National Laboratory for High Energy Physics, fast and slow extractions of accelerated proton beam are carried out by using electrostatic septa. The electrostatic septum is an apparatus to deflect beam by an electrostatic field, basically composed of a couple of parallel plate electrodes installed in a vacuum chamber. The electrostatic septum is required to satisfy the following two conditions: it must be very thin and flat to reduce the loss of extracted beam, and sufficiently high electric field must be generated to deflect beam in a limited length. The structure and manufacture of electrostatic septa are described. The manufacturing is explained by dividing a septum into an anode and a cathode, terminals introducing high voltage, a vacuum chamber, and high voltage circuit. The performance is also described on the experiments for no-beam condition and beam extraction. Beam extraction has been carried out over 1500 hours thus far, the average beam intensity being 1 x 10 12 ppp, and extraction efficiency more than 90%. There have been no serious failure to affect the performance nor metal wire breakage. They have satisfied their purposes, being used for both fast and slow extractions. Presently, lengthening of the electrostatic field region is being planned to increase the length of the septa to 1.5 m per unit. (Wakatsuki, Y.)

  6. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  7. Polybrominated diphenyl ethers and “novel” brominated flame retardants in floor and elevated surface house dust from Iraq: Implications for human exposure assessment

    Directory of Open Access Journals (Sweden)

    Layla Salih Al-Omran

    2016-03-01

    Full Text Available Concentrations of polybrominated diphenyl ethers (PBDEs and selected novel brominated flame retardants (NBFRs were measured in indoor dust from the living areas of 18 homes in Basrah, Iraq. This is the first report of contamination of the Iraqi environment with these chemicals. To evaluate the implications for human exposure, samples were collected from both the floor and from elevated surfaces like tables, shelves and chairs. When normalised for the organic carbon content of the dust sample, concentrations in elevated surface dust of BDE-99, BDE-209, pentabromoethylbenzene (PBEB, bis (2-ethylhexyl 3,4,5,6-tetrabromophthalate (BEH-TEBP, and decabromodiphenylethane (DBDPE exceeded significantly (p < 0.05 those in floor dust from the same rooms. This suggests that previous studies that base estimates of adult exposure via dust ingestion on floor dust, may underestimate exposure. Such underestimation is less likely for toddlers who are far more likely to ingest floor dust. Concentrations of PBDEs and NBFRs in indoor dust from Basrah, Iraq are at the lower end of levels reported elsewhere. The PBDE contamination pattern in our samples suggests that use in Iraq of the Deca-BDE formulation, exceeds substantially that of Penta-BDE, but that use of the Octa-BDE formulation has been higher in Iraq than in some other regions. Reassuringly, our estimates of exposure to our target BFRs via dust ingestion for the Iraqi population fall well below the relevant health-based limit values.

  8. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  9. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  10. Relationship between subjective fall risk assessment and falls and fall-related fractures in frail elderly people

    Directory of Open Access Journals (Sweden)

    Shimada Hiroyuki

    2011-08-01

    Full Text Available Abstract Background Objective measurements can be used to identify people with risks of falls, but many frail elderly adults cannot complete physical performance tests. The study examined the relationship between a subjective risk rating of specific tasks (SRRST to screen for fall risks and falls and fall-related fractures in frail elderly people. Methods The SRRST was investigated in 5,062 individuals aged 65 years or older who were utilized day-care services. The SRRST comprised 7 dichotomous questions to screen for fall risks during movements and behaviours such as walking, transferring, and wandering. The history of falls and fall-related fractures during the previous year was reported by participants or determined from an interview with the participant's family and care staff. Results All SRRST items showed significant differences between the participants with and without falls and fall-related fractures. In multiple logistic regression analysis adjusted for age, sex, diseases, and behavioural variables, the SRRST score was independently associated with history of falls and fractures. Odds ratios for those in the high-risk SRRST group (≥ 5 points compared with the no risk SRRST group (0 point were 6.15 (p Conclusion These results suggest that subjective ratings by care staff can be utilized to determine the risks of falls and fall-related fractures in the frail elderly, however, these preliminary results require confirmation in further prospective research.

  11. An experimental study on anti-electrostatic gauge rulers

    International Nuclear Information System (INIS)

    Lou, Renjie; Dai, Liping; Sun, Hong

    2013-01-01

    The process of oil filling will produce electrostatic phenomena which may cause fire accidents. There were no reports about research on the danger of static electricity generation in the process of gauging operation to date. This paper presents an experiment on charge transferring quantity of gauge rulers, and calculates the charge transferring quantity of an anti-electrostatic gauge ruler and a metal one, respectively. The results indicate that the charge transferring quantity can be more than 0.1 μC for a metal gauge ruler, while it is less than 0.1 μC for an antistatic gauge ruler. Therefore, this experimental research proves that using an anti-electrostatic gauge ruler is safer than using a metal one. This study also provides some theoretical and experimental evidence for making anti-electrostatic gauge rulers.

  12. Fusion oriented plasma research in Bangladesh: theoretical study on low-frequency dust modes and edge plasma control experiment in tandem mirror

    International Nuclear Information System (INIS)

    Khairul Islam, Md.; Salimullah, Mohammed; Yatsu, Kiyoshi; Nakashima, Yousuke; Ishimoto, Yuki

    2003-01-01

    A collaboration with a Japanese institute in the field of plasma-wall interaction and dusty plasma has been formed in order to understand the physical properties of edge plasma. Results of the theoretical study on dusty plasma and the experimental study on GAMMA10 plasma are presented in this paper. Part A deals with the results obtained from the theoretical investigation of the properties and excitation of low-frequency electrostatic dust modes, e.g. the dust-acoustic (DA) and dust-lower-hybrid (DLH) waves, using the fluid models. In this study, dust grain charge is considered as a dynamic variable in streaming magnetized dusty plasmas with a background of neutral atoms. Dust charge fluctuation, collisional and streaming effects on DA and DLH modes are discussed. Part B deals with the results of the plasma control experiment in a non-axisymmetric magnetic field region of the anchor cell of GAMMA10. The observations, which indicate the comparatively low-temperature plasma formation in the anchor cell, are explained from the viewpoint of enhanced outgassing from the wall due to the interaction of the drifted-out ions. The drifting of ions is thought to be due to the effect of a local non-axisymmetric magnetic field. Experimental results on the control of the wall-plasma interaction by covering the flux tube of a non-axisymmetric magnetic field region by conducting plates are given. Possible influences of the asymmetric magnetic field and conducting plates on the GAMMA10 plasma parameters are discussed. (author)

  13. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  14. Patient centered fall risk awareness perspectives: clinical correlates and fall risk

    Science.gov (United States)

    Verghese, Joe

    2016-01-01

    Background While objective measures to assess risk of falls in older adults have been established; the value of patient self-reports in the context of falls is not known. Objectives To identify clinical correlates of patient centered fall risk awareness, and their validity for predicting falls. Design Prospective cohort study. Setting and Participants 316 non-demented and ambulatory community-dwelling older adults (mean age 78 years, 55% women). Measurements Fall risk awareness was assessed with a two-item questionnaire, which asked participants about overall likelihood and personal risk of falling over the next 12 months. Incident falls were recorded over study follow-up. Results Fifty-three participants (16.8%) responded positively to the first fall risk awareness question about being likely to have a fall in the next 12 months, and 100 (31.6%) reported being at personal risk of falling over the next 12 months. There was only fair correlation (kappa 0.370) between responses on the two questions. Prior falls and depressive symptoms were associated with positive responses on both fall risk awareness questions. Age and other established fall risk factors were not associated with responses on both fall risk awareness questions. The fall risk awareness questionnaire did not predict incident falls or injurious falls. Conclusion Fall risk awareness is low in older adults. While patient centered fall risk awareness is not predictive of falls, subjective risk perceptions should be considered when designing fall preventive strategies as they may influence participation and behaviors. PMID:27801936

  15. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  16. Fall-related activity avoidance in relation to a history of falls or near falls, fear of falling and disease severity in people with Parkinson's disease.

    Science.gov (United States)

    Kader, Manzur; Iwarsson, Susanne; Odin, Per; Nilsson, Maria H

    2016-06-02

    There is limited knowledge concerning fall-related activity avoidance in people with Parkinson's disease (PD); such knowledge would be of importance for the development of more efficient PD-care and rehabilitation. This study aimed to examine how fall-related activity avoidance relates to a history of self-reported falls/near falls and fear of falling (FOF) as well as to disease severity in people with PD. Data were collected from 251 (61 % men) participants with PD; their median (min-max) age and PD duration were 70 (45-93) and 8 (1-43) years, respectively. A self-administered postal survey preceded a home visit which included observations, clinical tests and interview-administered questionnaires. Fall-related activity avoidance was assessed using the modified Survey of Activities and Fear of Falling in the Elderly (mSAFFE) as well as by using a dichotomous (Yes/No) question. Further dichotomous questions concerned: the presence of FOF and the history (past 6 months) of falls or near falls, followed by stating the number of incidents. Disease severity was assessed according to the Hoehn and Yahr (HY) stages. In the total sample (n = 251), 41 % of the participants reported fall-related activity avoidance; the median mSAFFE score was 22. In relation to a history of fall, the proportions of participants (p fall-related activity avoidance were: non-fallers (30 %), single fallers (50 %) and recurrent fallers, i.e. ≥ 2 falls (57 %). Among those that reported near falls (but no falls), 51 % (26 out of 51) reported fall-related activity avoidance. Of those that reported FOF, 70 % reported fall-related activity avoidance. Fall-related activity avoidance ranged from 24 % in the early PD-stage (HY I) to 74 % in the most severe stages (HY IV-V). Results indicate that fall-related activity avoidance may be related to a history of self-reported falls/near falls, FOF and disease severity in people with PD. Importantly, fall-related activity avoidance is

  17. Mitigating fall risk: A community fall reduction program.

    Science.gov (United States)

    Reinoso, Humberto; McCaffrey, Ruth G; Taylor, David W M

    One fourth of all American's over 65 years of age fall each year. Falls are a common and often devastating event that can pose a serious health risk for older adults. Healthcare providers are often unable to spend the time required to assist older adults with fall risk issues. Without a team approach to fall prevention the system remains focused on fragmented levels of health promotion and risk prevention. The specific aim of this project was to engage older adults from the community in a fall risk assessment program, using the Stopping Elderly Accidents, Deaths & Injuries (STEADI) program, and provide feedback on individual participants' risks that participants could share with their primary care physician. Older adults who attended the risk screening were taking medications that are known to increase falls. They mentioned that their health care providers do not screen for falls and appreciated a community based screening. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Electrostatic Deposition of Large-Surface Graphene

    Directory of Open Access Journals (Sweden)

    Charles Trudeau

    2018-01-01

    Full Text Available This work describes a method for electrostatic deposition of graphene over a large area using controlled electrostatic exfoliation from a Highly Ordered Pyrolytic Graphite (HOPG block. Deposition over 130 × 130 µm2 with 96% coverage is achieved, which contrasts with sporadic micro-scale depositions of graphene with little control from previous works on electrostatic deposition. The deposition results are studied by Raman micro-spectroscopy and hyperspectral analysis using large fields of view to allow for the characterization of the whole deposition area. Results confirm that laser pre-patterning of the HOPG block prior to cleaving generates anchor points favoring a more homogeneous and defect-free HOPG surface, yielding larger and more uniform graphene depositions. We also demonstrate that a second patterning of the HOPG block just before exfoliation can yield features with precisely controlled geometries.

  19. Person-Centered Fall Risk Awareness Perspectives: Clinical Correlates and Fall Risk.

    Science.gov (United States)

    Verghese, Joe

    2016-12-01

    To identify clinical correlates of person-centered fall risk awareness and their validity for predicting falls. Prospective cohort study. Community. Ambulatory community-dwelling older adults without dementia (N = 316; mean age 78, 55% female). Fall risk awareness was assessed using a two-item questionnaire that asked participants about overall likelihood of someone in their age group having a fall and their own personal risk of falling over the next 12 months. Incident falls were recorded over study follow-up. Fifty-three participants (16.8%) responded positively to the first fall risk awareness question about being likely to have a fall in the next 12 months, and 100 (31.6%) reported being at personal risk of falling over the next 12 months. There was only fair correlation (κ = 0.370) between responses on the two questions. Prior falls and depressive symptoms were associated with positive responses on both fall risk awareness questions. Age and other established fall risk factors were not associated with responses on either fall risk awareness question. The fall risk awareness questionnaire did not predict incident falls or injurious falls. Fall risk awareness is low in older adults. Although person-centered fall risk awareness is not predictive of falls, subjective risk perceptions should be considered when designing fall preventive strategies because they may influence participation and behaviors. © 2016, Copyright the Author Journal compilation © 2016, The American Geriatrics Society.

  20. Orientation of KRb molecules in a switched electrostatic field

    International Nuclear Information System (INIS)

    Huang Yun-Xia; Xu Shu-Wu; Yang Xiao-Hua

    2013-01-01

    We theoretically investigate the orientation of the cold KRb molecules induced in a switched electrostatic field by numerically solving the full time-dependent Schrödinger equation. The results show that the periodic field-free molecular orientation can be realized for the KRb molecules by rapidly switching off the electrostatic field. Meanwhile, by varying the switching times of the electrostatic field, the adiabatic and nonadiabatic interactions of the molecules with the applied field can be realized. Moreover, the influences of the electrostatic field strength and the rotational temperature to the degree of the molecular orientation are studied. The investigations show that increasing the electrostatic field will increase the degree of the molecular orientation, both in the constant-field regime and in the field-free regime, while the increasing of the rotational temperature of the cold molecules will greatly decrease the degree of the molecular orientation. (atomic and molecular physics)

  1. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  2. Energy Balance in an Electrostatic Accelerator

    OpenAIRE

    Zolotorev, Max S.; McDonald, Kirk T.

    2000-01-01

    The principle of an electrostatic accelerator is that when a charge e escapes from a conducting plane that supports a uniform electric field of strength E_0, then the charge gains energy e E_0 d as it moves distance d from the plane. Where does this energy come from? We that the mechanical energy gain of the electron is balanced by the decrease in the electrostatic field energy of the system.

  3. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  4. Embedding beyond electrostatics-The role of wave function confinement.

    Science.gov (United States)

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob

    2016-09-14

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.

  5. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A

    2003-01-01

    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  6. Falls and Fear of Falling After Stroke: A Case-Control Study.

    Science.gov (United States)

    Goh, Hui-Ting; Nadarajah, Mohanasuntharaam; Hamzah, Norhamizan Binti; Varadan, Parimalaganthi; Tan, Maw Pin

    2016-12-01

    Falls are common after stroke, with potentially serious consequences. Few investigations have included age-matched control participants to directly compare fall characteristics between older adults with and without stroke. Further, fear of falling, a significant psychological consequence of falls, has only been examined to a limited degree as a risk factor for future falls in a stroke population. To compare the fall history between older adults with and without a previous stroke and to identify the determinants of falls and fear of falling in older stroke survivors. Case-control observational study. Primary teaching hospital. Seventy-five patients with stroke (mean age ± standard deviation, 66 ± 7 years) and 50 age-matched control participants with no previous stroke were tested. Fall history, fear of falling, and physical, cognitive, and psychological function were assessed. A χ 2 test was performed to compare characteristics between groups, and logistic regression was performed to determine the risk factors for falls and fear of falling. Fall events in the past 12 months, Fall Efficacy Scale-International, Berg Balance Scale, Functional Ambulation Category, Fatigue Severity Scale, Montreal Cognitive Assessment, and Patient Healthy Questionnaire-9 were measured for all participants. Fugl-Meyer Motor Assessment was used to quantify severity of stroke motor impairments. Twenty-three patients and 13 control participants reported at least one fall in the past 12 months (P = .58). Nine participants with stroke had recurrent falls (≥2 falls) compared with none of the control participants (P falling than did nonstroke control participants (P falls in the nonstroke group, whereas falls in the stroke group were not significantly associated with any measured outcomes. Fear of falling in the stroke group was associated with functional ambulation level and balance. Functional ambulation level alone explained 22% of variance in fear of falling in the stroke group

  7. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z ∼ 2 DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-01-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ∼3 x 10 8 M sun . In comparison to other dusty z ∼ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10 13 L sun versus 6 x 10 12 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ∼30 K) and lower inferred dust masses (3 x 10 8 M sun versus 3 x 10 9 M sun ). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ∼ 2 involves a submillimeter bright, cold-dust, and star

  8. Competing processes of whistler and electrostatic instabilities in the magnetosphere

    International Nuclear Information System (INIS)

    Omura, Y.; Matsumoto, H.

    1987-01-01

    Competing processes of whistler mode and electrostatic mode instabilities induced by an electron beam are studied by a linear growth rate analysis and by an electromagnetic particle simulation. In addition to a background cold plasma we assumed an electron beam drifting along a static magnetic field. We studied excitation of whistler and electrostatic mode waves in the direction of the static magnetic field. We first calculated linear growth rates for the whistler mode and electrostatic mode instabilities, assuming various possible parameters in the equatorial magnetosphere. We found that the growth rate for the electrostatic instability is always larger than that of the whistler mode instability. A short simulation run with a monoenergetic electron beam demonstrates that a monoenergetic beam can hardly give energy to whistler mode waves as a result of competition with faster growing electrostatic waves, because the beam electrons are trapped and diffused by the electrostatic waves, and hence the growth rates for whistler mode waves become very small. A long simulation run starting with a warm electron beam demonstrates that whistler mode waves are excited in spite of the small growth rates and the coexisting quasi-linear electrostatic diffusion process

  9. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  10. Fear of falling as seen in the Multidisciplinary falls consultation.

    Science.gov (United States)

    Gaxatte, C; Nguyen, T; Chourabi, F; Salleron, J; Pardessus, V; Delabrière, I; Thévenon, A; Puisieux, F

    2011-06-01

    Fear of falling may be as debilitating as the fall itself, leading to a restriction in activities and even a loss of autonomy. The main objective was to evaluate the prevalence of the fear of falling among elderly fallers. The secondary objectives were to determine the factors associated with the fear of falling and evaluate the impact of this fear on the activity "getting out of the house". Prospective study conducted between 1995 and 2006 in which fallers and patients at high risk for falling were seen at baseline by the multidisciplinary falls consultation team (including a geriatrician, a neurologist and a physical medicine and rehabilitation physician) and then, again 6 month later, by the same geriatrician. The fear of falling was evaluated with a yes/no question: "are you afraid of falling?". Out of 635 patients with a mean age of 80.6 years, 502 patients (78%) expressed a fear of falling. Patients with fear of falling were not older than those who did not report this fear, but the former were mostly women (Pfear of falling were not going out alone as much as the fearless group (31% vs 53%, Pfearful group admitted to avoiding going out because they were afraid of falling. The strong prevalence of the fear of falling observed in this population and its consequences in terms of restricted activities justifies systematically screening for it in fallers or patients at risk for falling. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture is a detail of 7501199, and shows the suspension of the wires. 7801286 shows a septum in its tank. See also 7501120X.

  12. SIMION, Electrostatic Lens Analysis and Design

    International Nuclear Information System (INIS)

    Dahl, David A.

    2001-01-01

    1 - Description of program or function: SIMION is an electrostatic lens analysis and design program. In SIMION an electrostatic lens is defined as a two-dimensional electrostatic potential array containing both electrode and non-electrode points. The potential array is refined using over-relaxation methods allowing voltage contours and ion trajectories to be computed and plotted. Planar and cylindrical symmetry assumptions allow the two-dimensional fields to support three-dimensional ion trajectory calculations. In addition, the user has the option of writing simple programs which can among other actions control field scale factors, dynamically adjust electrodes, and define explicit three-dimensional field functions (e.g. a quadrupole) used in lieu of array fields in specified portions of the potential array. Magnetic fields can be specified for computing ion trajectories in many electrostatic and magnetic field environments. An interactive graphics interface that uses a high resolution color display and mouse allows the user to view electrodes, trajectories, and contours on the screen prior to plotting, and a memory zoom feature permits expansion of selected areas in the current view. The mouse can be operated to edit the potential array, initialize voltage gradients, or resize the potential array. 2 - Method of solution: SIMION is designed to model the electrostatic fields and forces created by a collection of shaped electrodes given certain symmetry assumptions. The electrostatic fields are modeled as boundary value problem solutions of a Laplace elliptical partial differential equation. A finite difference technique called dynamically self-adjusting over-relaxation is applied to the two-dimensional potential array of points representing electrode and non-electrode regions to obtain a best estimate of the voltages for those points within the array that depict non-electrode regions. A standard fourth-order Runge-Kutta method is used for numerical integration of

  13. A small-gap electrostatic micro-actuator for large deflections

    Science.gov (United States)

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  14. Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.

    2009-01-01

    Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.

  15. Orbital dynamics in a storage ring with electrostatic bending

    International Nuclear Information System (INIS)

    Mane, S.R.

    2008-01-01

    A storage ring where electrostatic fields contribute to the bending and focusing of the orbital motion has some novel features because, unlike a magnetostatic field, an electrostatic field can change the kinetic energy of the particles. I present analytical formulas to calculate the linear focusing gradient, dispersion, momentum compaction and natural chromaticity for a storage ring with a radial electrostatic field. I solve the formulas explicitly for a weak focusing model.

  16. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  17. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  18. Acoustic effects of single electrostatic discharges

    International Nuclear Information System (INIS)

    Orzech, Łukasz

    2015-01-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(p a ) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details. (paper)

  19. Falling and fall risk in adult patients with severe haemophilia.

    Science.gov (United States)

    Rehm, Hanna; Schmolders, Jan; Koob, Sebastian; Bornemann, Rahel; Goldmann, Georg; Oldenburg, Johannes; Pennekamp, Peter; Strauss, Andreas C

    2017-05-10

    The objective of this study was to define fall rates and to identify possible fall risk factors in adult patients with severe haemophilia. 147 patients with severe haemophilia A and B were evaluated using a standardized test battery consisting of demographic, medical and clinical variables and fall evaluation. 41 (27.9 %) patients reported a fall in the past 12 months, 22 (53.7 %) of them more than once. Young age, subjective gait insecurity and a higher number of artificial joints seem to be risk factors for falling. Falls seem to be a common phenomenon in patients with severe haemophilia. Fall risk screening and fall prevention should be implemented into daily practice.

  20. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  1. Revised electrostatic model of the LISA Pathfinder inertial sensor

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Nico [Astrium GmbH, 88039 Friedrichshafen (Germany); Fichter, Walter, E-mail: nico.brandt@astrium.eads.ne [iFR, Universitaet Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart (Germany)

    2009-03-01

    A comprehensive electrostatic finite-element (FE) analysis of the LISA Pathfinder Inertial Sensor (IS) has been carried out at Astrium GmbH. Starting with a detailed geometrical model of the IS housing and test mass (TM) flight units, FE results were derived from multiple analyses runs applying the Maxwell 3D field simulation software. The electrostatic forces and torques on the TM in 6DoF, as well as all non-negligible capacitances between the TM, the 18 electrodes, and the housing, have been extracted for different TM translations and rotations. The results of the FE analyses were expected to confirm the existing IS electrostatic model predictions used for performance analysis, simulations, and on-board algorithms. Major discrepancies were found, however, between the results and the model used so far. In general, FE results give considerably larger capacitance values than the equivalent infinite non-parallel plate estimates. In contrast, the FE derived forces and torques are in general significantly lower compared to the analytic IS electrostatic model predictions. In this paper, these results are discussed in detail and the reasons for the deviations are elaborated. Based on these results, an adapted analytic IS electrostatic model is proposed that reflects the electrostatic forces, torques, and stiffness values in the LISA Pathfinder IS significantly more accurate.

  2. Revised electrostatic model of the LISA Pathfinder inertial sensor

    International Nuclear Information System (INIS)

    Brandt, Nico; Fichter, Walter

    2009-01-01

    A comprehensive electrostatic finite-element (FE) analysis of the LISA Pathfinder Inertial Sensor (IS) has been carried out at Astrium GmbH. Starting with a detailed geometrical model of the IS housing and test mass (TM) flight units, FE results were derived from multiple analyses runs applying the Maxwell 3D field simulation software. The electrostatic forces and torques on the TM in 6DoF, as well as all non-negligible capacitances between the TM, the 18 electrodes, and the housing, have been extracted for different TM translations and rotations. The results of the FE analyses were expected to confirm the existing IS electrostatic model predictions used for performance analysis, simulations, and on-board algorithms. Major discrepancies were found, however, between the results and the model used so far. In general, FE results give considerably larger capacitance values than the equivalent infinite non-parallel plate estimates. In contrast, the FE derived forces and torques are in general significantly lower compared to the analytic IS electrostatic model predictions. In this paper, these results are discussed in detail and the reasons for the deviations are elaborated. Based on these results, an adapted analytic IS electrostatic model is proposed that reflects the electrostatic forces, torques, and stiffness values in the LISA Pathfinder IS significantly more accurate.

  3. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  4. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  5. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  6. Electrostatic atomization emdash Experiment, theory and industrial applications

    International Nuclear Information System (INIS)

    Okuda, H.; Kelly, A.J.

    1996-01-01

    Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle. copyright 1996 American Institute of Physics

  7. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  8. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  9. Review on the Modeling of Electrostatic MEMS

    Directory of Open Access Journals (Sweden)

    Wan-Chun Chuang

    2010-06-01

    Full Text Available Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices.

  10. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  11. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  12. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  13. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  14. Electrostatic tuning of permeation and selectivity in aquaporin water channels

    DEFF Research Database (Denmark)

    Jensen, Mogens O Stibius; Tajkhorshid, E.; Schulten, K.

    2003-01-01

    Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/ 18:1c9...... with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel...... stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite...

  15. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  16. Charge sniffer for electrostatics demonstrations

    Science.gov (United States)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  17. Study of airborne particle generated by free falling powder

    International Nuclear Information System (INIS)

    Jacquelin, M.

    2007-10-01

    This study comes within the general framework of industrial facilities' safety research. Indeed, industrial processes, notably in the nuclear field, handle hazardous materials in powder form and can produce large quantities of fugitive dust. The study of the particles resuspension from powders is of interest of first order in order to estimate the consequences of this source term of contamination on the operator, the neighbouring installations and, if necessary, the environment. Up to now, there are very few reliable data in the scientific literature on the particulate emission in case of a scenario with an accidental free fall spill of powder. The powder dustiness evaluation is carried out using coefficients obtained in experiments, or using empirical correlations. The objective of the present work is to study the influence of some parameters involved in the airborne particles production by a free fall of powder. For that purpose, experiments are carried out in order to study the influence of parameters such as the type of discharge, the powder nature, the type of surface on which occurs the powder impaction, the system diameter used for discharge, and the falling mass. The results of mass fractions and number concentrations obtained highlighted the dominating parameters according to the type of discharge employed. Thereafter, the comparisons between our results and the empirical correlations available in the literature showed that those led to an undervaluation of the powder dustiness. This thus led us to develop, starting from the whole of experimental data, empirical correlations taking into account the various parameters studied as well as the interactions. (author)

  18. The falls and the fear of falling among elderly institutionalized

    Directory of Open Access Journals (Sweden)

    Patrícia Almeida

    2013-06-01

    Full Text Available In the present study it is intended to characterize the history of falls and to evaluate the fear to fall in aged institutionalized. The sample is composed for 113 institutionalized aged people, 32 men and 81 women with a average 82,96 ± 7,03 age of years. The data had been collected by means of a questionnaire and statistical analyzed (descriptive statistics, parametric tests - Test T and Anova - Test U-Mann Whitney, and Test of Kruskal-Wallis – and the Test of Tukey. The results point in the direction of that the women present a bigger number of falls (24.8% and greater fear to fall (Med=55. The falls had occurred in its majority in the context of the room of the institutions. It was verified that people who had at least a fall experience present greater fear to fall comparatively (Med=55 with that they had not the same had no incident of fall in period of time (Med=77. Our results come to strengthen the hypothesis of the changeable sex to be able to be considered a factor of fall risk. Aged that they present a history of falls seems to be more vulnerable to develop the fear to fall.

  19. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  20. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  1. Efficient optimization of electrostatic interactions between biomolecules.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Altman, M. D.; White, J. K.; Tidor, B.; Mathematics and Computer Science; MIT

    2007-01-01

    We present a PDE-constrained approach to optimizing the electrostatic interactions between two biomolecules. These interactions play important roles in the determination of binding affinity and specificity, and are therefore of significant interest when designing a ligand molecule to bind tightly to a receptor. Using a popular continuum model and physically reasonable assumptions, the electrostatic component of the binding free energy is a convex, quadratic function of the ligand charge distribution. Traditional optimization methods require exhaustive pre-computation, and the expense has precluded a full exploration of the promise of electrostatic optimization in biomolecule analysis and design. In this paper we describe an approach in which the electrostatic simulations and optimization problem are solved simultaneously; unlike many PDE- constrained optimization frameworks, the proposed method does not incorporate the PDE as a set of equality constraints. This co-optimization approach can be used by itself to solve unconstrained problems or those with linear equality constraints, or in conjunction with primal-dual interior point methods to solve problems with inequality constraints. Model problems demonstrate that the co-optimization method is computationally efficient and can be used to solve realistic problems.

  2. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-11-15

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1–4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m{sup 2}) with the highest lead in surface dust (59,900 μg/m{sup 2}) and post-play hand wipes (60,900 μg/m{sup 2}) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 207}Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. - Highlights: 1.Playground soils and surface dust in a mining town have high metal concentrations. 2.Elevated levels of As, Cd, Pb and Zn dust are found on playground users′ hands. 3.Pb isotope analysis shows that the source of playground dust is ore body Pb. 4.Surface mine operations must be contained to reduce childhood lead exposure risks. 5.Mine environmental licences need to set trigger values for As, Cd, Pb and Zn dust.

  3. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health

    International Nuclear Information System (INIS)

    Taylor, Mark Patrick; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-01-01

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1–4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m 2 ) with the highest lead in surface dust (59,900 μg/m 2 ) and post-play hand wipes (60,900 μg/m 2 ) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ( 206 Pb/ 207 Pb, 208 Pb/ 207 Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. - Highlights: 1.Playground soils and surface dust in a mining town have high metal concentrations. 2.Elevated levels of As, Cd, Pb and Zn dust are found on playground users′ hands. 3.Pb isotope analysis shows that the source of playground dust is ore body Pb. 4.Surface mine operations must be contained to reduce childhood lead exposure risks. 5.Mine environmental licences need to set trigger values for As, Cd, Pb and Zn dust

  4. Falls efficacy, postural balance, and risk for falls in older adults with falls-related emergency department visits: prospective cohort study.

    Science.gov (United States)

    Pua, Yong-Hao; Ong, Peck-Hoon; Clark, Ross Allan; Matcher, David B; Lim, Edwin Choon-Wyn

    2017-12-21

    Risk for falls in older adults has been associated with falls efficacy (self-perceived confidence in performing daily physical activities) and postural balance, but available evidence is limited and mixed. We examined the interaction between falls efficacy and postural balance and its association with future falls. We also investigated the association between falls efficacy and gait decline. Falls efficacy, measured by the Modified Falls Efficacy Scale (MFES), and standing postural balance, measured using computerized posturography on a balance board, were obtained from 247 older adults with a falls-related emergency department visit. Six-month prospective fall rate and habitual gait speed at 6 months post baseline assessment were also measured. In multivariable proportional odds analyses adjusted for potential confounders, falls efficacy modified the association between postural balance and fall risk (interaction P = 0.014): increasing falls efficacy accentuated the increased fall risk related to poor postural balance. Low baseline falls efficacy was strongly predictive of worse gait speed (0.11 m/s [0.06 to 0.16] slower gait speed per IQR decrease in MFES; P falls efficacy but poor postural balance were at greater risk for falls than those with low falls efficacy; however, low baseline falls efficacy was strongly associated with worse gait function at follow-up. Further research into these subgroups of older adults is warranted. ClinicalTrials.gov identifier: NCT01713543 .

  5. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    Energy Technology Data Exchange (ETDEWEB)

    Pinte, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago (Chile); Dent, W. R. F.; Hales, A.; Hill, T.; Cortes, P.; Gregorio-Monsalvo, I. de, E-mail: christophe.pinte@obs.ujf-grenoble.fr [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago (Chile)

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.

  6. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  7. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  8. Factors affecting the electrostatic charge of ceramic powders

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J.; Fernandez, J. F.

    2011-01-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  9. A versatile electrostatic trap with open optical access

    Science.gov (United States)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  10. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  11. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian; Younis, Mohammad I.

    2015-01-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction

  12. A piece of paper falling faster than free fall

    International Nuclear Information System (INIS)

    Vera, F; Rivera, R

    2011-01-01

    We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls with acceleration g. To test if the paper falls behind the book in a nearly free fall motion or if it is dragged by the book, we designed a version of this experiment that includes a ball and a piece of paper over a book that is forced to fall using elastic cords. We recorded a video of our experiment using a high-speed video camera at 300 frames per second that shows that the book and the paper fall faster than the ball, which falls well behind the book with an acceleration approximately equal to g. Our experiment shows that the piece of paper is dragged behind the book and therefore the paper and book demonstration should not be used to show that all objects fall with acceleration g independently of their mass.

  13. A piece of paper falling faster than free fall

    Energy Technology Data Exchange (ETDEWEB)

    Vera, F; Rivera, R, E-mail: fvera@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de ValparaIso, Av. Universidad 330, Curauma, ValparaIso (Chile)

    2011-09-15

    We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls with acceleration g. To test if the paper falls behind the book in a nearly free fall motion or if it is dragged by the book, we designed a version of this experiment that includes a ball and a piece of paper over a book that is forced to fall using elastic cords. We recorded a video of our experiment using a high-speed video camera at 300 frames per second that shows that the book and the paper fall faster than the ball, which falls well behind the book with an acceleration approximately equal to g. Our experiment shows that the piece of paper is dragged behind the book and therefore the paper and book demonstration should not be used to show that all objects fall with acceleration g independently of their mass.

  14. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  15. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  16. Effect of non-Maxwellian particle trapping and dust grain charging on dust acoustic solitary waves

    International Nuclear Information System (INIS)

    Rubab, N.; Murtaza, G.; Mushtaq, A.

    2006-01-01

    The role of adiabatic trapped ions on a small but finite amplitude dust acoustic wave, including the effect of adiabatic dust charge variation, is investigated in an unmagnetized three-component dusty plasma consisting of electrons, ions and massive micron sized negatively charged dust particulates. We have assumed that electrons and ions obey (r,q) velocity distribution while the dust species is treated fluid dynamically. It is found that the dynamics of dust acoustic waves is governed by a modified r dependent Korteweg-de Vries equation. Further, the spectral indices (r,q) affect the charge fluctuation as well as the trapping of electrons and ions and consequently modify the dust acoustic solitary wave

  17. The global distribution of mineral dust

    International Nuclear Information System (INIS)

    Tegen, I; Schepanski, K

    2009-01-01

    Dust aerosol particles produced by wind erosion in arid and semi arid regions affect climate and air quality, but the magnitude of these effects is largely unquantified. The major dust source regions include the Sahara, the Arabian and Asian deserts; global annual dust emissions are currently estimated to range between 1000 and 3000 Mt/yr. Dust aerosol can be transported over long distances of thousands of kilometers, e.g. from source regions in the Saharan desert over the North Atlantic, or from the Asian deserts towards the Pacific Ocean. The atmospheric dust load varies considerably on different timescales. While dust aerosol distribution and dust effects are important on global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales.

  18. Field distribution in a coaxial electrostatic wiggler

    Directory of Open Access Journals (Sweden)

    Shi-Chang Zhang

    2010-09-01

    Full Text Available The field distribution in a coaxial electrostatic wiggler corresponds to the special solution of a Laplace equation in a cylindrical coordinate system with a boundary value problem of sinusoidal ripples. This paper is devoted to the physical and mathematical treatment for an analytical solution of the field distribution in the coaxial electrostatic wiggler. The explicit expression of the solution indicates that the field distribution in the coaxial electrostatic wiggler varies according to a periodic function in the longitudinal direction, and is related to the first and second kinds of modified Bessel functions in the radial direction, respectively. Comparison shows excellent agreement between the analytical formula and the computer simulation technology (CST results. The physical application of the considered system and its analytical solution are discussed.

  19. Dust in H II regions

    International Nuclear Information System (INIS)

    Isobe, S.

    1977-01-01

    Several pieces of evidence indicate that H II regions may contain dust: 1) the continuum light scattered by dust grains (O'Dell and Hubbard, 1965), 2) thermal radiation from dust grains at infrared wavelengths (Ney and Allen, 1969), 3) the abnormal helium abundance in some H II regions (Peimbert and Costero, 1969), etc. Although observations of the scattered continuum suggest that the H II region cores may be dust-free, dust grains and gas must be well mixed in view of the infrared observations. This difficulty may be solved by introducing globules with sizes approximately 0.001 pc. These globules and the molecular clouds adjacent to H II regions are the main sources supplying dust to H II regions. (Auth.)

  20. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  1. Engineering Design of Electrostatic Quadrupole for ISOL Beam Lines

    International Nuclear Information System (INIS)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S.

    2014-01-01

    In the ISOL system, the RI beam should be transported from the target ion source to post accelerator through various analyzing and charge-breeding systems such as PS (pre-seperator), HRMS (High Resolution Mass Seperator), RF cooler and A/q separator. A reference particle for the beam dynamics calculation is 132 Sn 1+ . After charge breeder system, the charge state is boosted from +1 to +19 with ECR charge breeder and to +33 with EBIS charge breeder. Because the beam energy is as low as 50 keV, the electrostatic optics was adopted rather than the magnetic optics. The electrostatic quadrupole triplets were used for the beam focusing and the electrostatic bender is used for 90-degree bending. In this paper, the design procedure and engineering design of the electrostatic quadrupole are presented

  2. Dust in Snow in the Colorado River Basin: Spatial Variability in Dust Concentrations, Radiative Forcing, and Snowmelt Rates

    Science.gov (United States)

    Skiles, M.; Painter, T.; Deems, J. S.; Landry, C.; Bryant, A.

    2012-12-01

    Since the disturbance of the western US that began with the Anglo settlement in the mid 19th century, the mountain snow cover of the Colorado River Basin (CRB) has been subject to five-fold greater dust loading. This dust deposition accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. We have previously quantified the impacts of dust in snow using a 6-year record of dust concentration and energy balance fluxes at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. Dust loading exhibited interannual variability, and end of year dust concentrations were not necessarily related to the number of dust deposition events. Radiative forcing enhanced springtime melt by 21 to 51 days with the magnitude of advanced loss being linearly related to total dust concentration at the end of snow cover. To expand our understanding of dust on snow deposition patterns we utilize collections of dust concentration at the Colorado Dust on Snow (CODOS) study sites, established in 2009 along the western side of the CRB, to assess spatial variability in dust loading. In situ sampling of dust stratigraphy and concentration occurs twice each season, once over peak snow water equivalent (15 April), and again during melt (15 May). Dust loading occurs at all sites; dust concentrations are always higher in May, vary between sites, and the highest and lowest dust years were 2009 and 2012, respectively. In the absence of regular sampling and energy balance instrumentation these sites do not allow us to quantify the advanced melt due to dust. To facilitate this a new energy balance site, Grand Mesa Study plot (GMSP), was established for water year 2010 in west central Colorado, 150 km north of SBBSA. Back trajectories indicate similar Colorado Plateau dust sources at both SBBSA and GMSP, yet GMSP exhibits slightly lower dust

  3. Dust control at Yucca Mountain project

    International Nuclear Information System (INIS)

    Kissell, F.; Jurani, R.; Dresel, R.; Reaux, C.

    1999-01-01

    This report describes actions taken to control silica dust at the Yucca Mountain Exploratory Studies Facility, a tunnel located in Southern Nevada that is part of a scientific program to determine site suitability for a potential nuclear waste repository. The rock is a volcanic tuff containing significant percentages of both quartz and cristobalite. Water use for dust control was limited because of scientific test requirements, and this limitation made dust control a difficult task. Results are reported for two drifts, called the Main Loop Drift and the Cross Drift. In the Main Loop Drift, dust surveys and tracer gas tests indicated that air leakage from the TBM head, the primary ventilation duct, and movement of the conveyor belt were all significant sources of dust. Conventional dust control approaches yielded no significant reductions in dust levels. A novel alternative was to install an air cleaning station on a rear deck of the TBM trailing gear. It filtered dust from the contaminated intake air and discharged clean air towards the front of the TBM. The practical effect was to produce dust levels below the exposure limit for all TBM locations except close to the head. In the Cross Drift, better ventilation and an extra set of dust seals on the TBM served to cut down the leakage of dust from the TBM cutter head. However, the conveyor belt was much dustier than the belt in the main loop drift. The problem originated with dirt on the bottom of the belt return side and much spillage from the belt top side. Achieving lower dust levels in hard rock tunneling operations will require new approaches as well as a more meticulous application of existing technology. Planning for dust control will require specific means to deal with dust that leaks from the TBM head, dust that originates with leaky ventilation systems, and dust that comes from conveyor belts. Also, the application of water could be more efficient if automatic controls were used to adjust the water flow

  4. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    Science.gov (United States)

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  5. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  6. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  7. Towards a physical model of dust tori in Active Galactic Nuclei. Radiative transfer calculations for a hydrostatic torus model

    Science.gov (United States)

    Schartmann, M.; Meisenheimer, K.; Camenzind, M.; Wolf, S.; Henning, Th.

    2005-07-01

    We explore physically self-consistent models of dusty molecular tori in Active Galactic Nuclei (AGN) with the goal of interpreting VLTI observations and fitting high resolution mid-IR spectral energy distributions (SEDs). The input dust distribution is analytically calculated by assuming hydrostatic equilibrium between pressure forces - due to the turbulent motion of the gas clouds - and gravitational and centrifugal forces as a result of the contribution of the nuclear stellar distribution and the central black hole. For a fully three-dimensional treatment of the radiative transfer problem through the tori we employ the Monte Carlo code MC3D. We find that in homogeneous dust distributions the observed mid-infrared emission is dominated by the inner funnel of the torus, even when observing along the equatorial plane. Therefore, the stratification of the distribution of dust grains - both in terms of size and composition - cannot be neglected. In the current study we only include the effect of different sublimation radii which significantly alters the SED in comparison to models that assume an average dust grain property with a common sublimation radius, and suppresses the silicate emission feature at 9.7~μm. In this way we are able to fit the mean SED of both type I and type II AGN very well. Our fit of special objects for which high angular resolution observations (≤0.3´´) are available indicates that the hottest dust in NGC 1068 reaches the sublimation temperature while the maximum dust temperature in the low-luminosity AGN Circinus falls short of 1000 K.

  8. Frontier applications of electrostatic accelerators

    Science.gov (United States)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  9. Strongly coupled Coulomb systems with positive dust grains: thermal and UV-induced plasmas

    International Nuclear Information System (INIS)

    Samarian, A.A.

    2000-01-01

    different materials. Since the calculated values of Γ give an upper estimate, liquid-like structures are most likely to form in thermal plasma. Based on the results of the analysis, it is stated that an increase in the parameter Γ and, accordingly, the formation of plasma-crystal structures in thermal plasma can only occur for positively charged grains. We provide theoretical analysis and experimental measurements of the photoemission charging of dust grains. In our experiments, the photoemission is induced by Ar-eximer lamp. We obtained the charge of isolated grains in vacuum. The particles tested are conducting and non-conducting and 1-15 microns in diameter. The method of grain charge determination is based on analysis of grain trajectories in the known electric field. In our experiment, the trapping of positive dust grains in the anode region of the abnormal DC glow discharge was observed. A conjecture is made that the grains have a positive charge due to photoemission and secondary electron emission. We provide an estimate of the particle charge taking in to account the photoemission and secondary electron emission. The value obtained. Z p =8600e was in good agreement with the value obtained from the probe measurements. The dynamics of the formation of ordered structures of dust grains charged by photoemission under the action of solar radiation under microgravity conditions without the use of electrostatic traps to confine the grains, has been studied experimentally and theoretically. The behaviour of an ensemble of dust under the effect of solar radiation is observed experimentally on board the Mir space station. An analysis and comparison of the results of the experimental and theoretical investigations permit conclusions regarding the possibility of the existence of extended ordered formations of the dust grains charged by photoemission in interplanelary space

  10. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    Science.gov (United States)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  11. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  12. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  13. Fabrication and characterization of an electrostatic contraction beams micromotor

    NARCIS (Netherlands)

    Sarajlic, Edin; Berenschot, Johan W.; Tas, Niels Roelof; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2006-01-01

    We report on fabrication and experimental characterization of an electrostatic contraction beams motor that exhibits both reliable operation and high performance haracteristics. This electrostatic linear stepper micromotor is fabricated in a single polysilicon layer combining vertical trench

  14. Effects of dust grain charge fluctuation on obliquely propagating dust-acoustic potential in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Hassan, M.H.A.

    1999-05-01

    Effects of dust grain charge fluctuation, obliqueness and external magnetic field on finite amplitude dust-acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge fluctuating dust grains, have been investigated by the reductive perturbation method. It has been shown that such a magnetized dusty plasma system may support dust-acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self-consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust-acoustic solitary potential significantly. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  15. Optimal fall indicators for slip induced falls on a cross-slope.

    Science.gov (United States)

    Domone, Sarah; Lawrence, Daniel; Heller, Ben; Hendra, Tim; Mawson, Sue; Wheat, Jonathan

    2016-08-01

    Slip-induced falls are among the most common cause of major occupational injuries in the UK as well as being a major public health concern in the elderly population. This study aimed to determine the optimal fall indicators for fall detection models which could be used to reduce the detrimental consequences of falls. A total of 264 kinematic variables covering three-dimensional full body model translation and rotational measures were analysed during normal walking, successful recovery from slips and falls on a cross-slope. Large effect sizes were found for three kinematic variables which were able to distinguish falls from normal walking and successful recovery. Further work should consider other types of daily living activities as results show that the optimal kinematic fall indicators can vary considerably between movement types. Practitioner Summary: Fall detection models are used to minimise the adverse consequences of slip-induced falls, a major public health concern. Optimal fall indicators were derived from a comprehensive set of kinematic variables for slips on a cross-slope. Results suggest robust detection of falls is possible on a cross-slope but may be more difficult than level walking.

  16. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    Science.gov (United States)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  17. Falling chains

    OpenAIRE

    Wong, Chun Wa; Yasui, Kosuke

    2005-01-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is inco...

  18. NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  19. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  20. Electromechanical coupling in electrostatic micro-power generators

    International Nuclear Information System (INIS)

    Mahmoud, M A E; El-Saadany, E F; Mansour, R R; Abdel-Rahman, E M

    2010-01-01

    Electrostatic micro-power generators (MPGs) are modeled and analyzed with particular emphasis on electromechanical coupling and its impact on the system dynamics. We identify two qualitatively different regimes in the MPG response, dubbed slow and fast. A linearized electromechanically coupled model of an electrostatic MPG and two simplified linear models are used to study the response of the MPG. Linear models are found adequate to represent the dynamic response of fast MPGs but inadequate to represent the response of slow and mixed domain MPGs. A nonlinear model is developed and validated to describe the response of those MPGs under moderately large excitations. On the basis of this analysis, we describe a method and provide design rules for realizing wideband electrostatic MPGs, and develop closed-form formulae for the extracted power for MPGs under moderately large excitations

  1. Creation of Magnetic Fields by Electrostatic and Thermal Fluctuations

    International Nuclear Information System (INIS)

    Saleem, Hamid

    2009-01-01

    It is pointed out that the electrostatic and thermal fluctuations are the main source of magnetic fields in unmagnetized inhomogeneous plasmas. The unmagnetized inhomogeneous plasmas can support a low frequency electromagnetic ion wave as a normal mode like Alfven wave of magnetized plasmas. But this is a coupled mode produced by the mixing of longitudinal and transverse components of perturbed electric field due to density inhomogeneity. The ion acoustic wave does not remain electrostatic in non-uniform plasmas. On the other hand, a low frequency electrostatic wave can also exist in the pure electron plasmas and it couples with ion acoustic wave when ions are dynamic. These waves can become unstable when density and temperature gradients are parallel to each other as can be the case of laser plasmas and is the common situation in stellar cores. The main instability condition for the electrostatic and electromagnetic modes is the same (2/3)κ n T (where κ n and κ T are inverse of the scale lengths of gradients of density and electron temperature, respectively). This indicates that the electrostatic and magnetic field fluctuations are strongly coupled in unmagnetized nonuniform plasmas.

  2. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.

    2010-11-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  3. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    International Nuclear Information System (INIS)

    Masood, W.; Mirza, Arshad M.

    2010-01-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  4. Method of electrostatic filtration

    International Nuclear Information System (INIS)

    Devienne, F.M.

    1975-01-01

    Electrostatic filtration of secondary ions of mass m in a given mass ratio with a primary ion of mass M which has formed the secondary ions by fission is carried out by a method which consists in forming a singly-charged primary ion of the substance having a molecular mass M and extracting the ion at a voltage V 1 with respect to ground. The primary ion crosses a potential barrier V 2 , in producing the dissociation of the ion into at least two fragments of secondary ions and in extracting the fragment ion of mass m at a voltage V 2 . Filtration is carried out in an electrostatic analyzer through which only the ions of energy eV'' are permitted to pass, detecting the ions which have been filtered. The mass m of the ions is such that (M/m) = (V 1 - V 2 )/(V'' - V 2 )

  5. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  6. Characterizing the Performance of the Wheel Electrostatic Spectrometer

    Science.gov (United States)

    Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Calle, C. I.; Clements, J. S.

    2013-01-01

    Insulators need to be discharged after each wheel revolution. Sensor responses repeatable within one standard deviation in the noise of the signal. Insulators may not need to be cleaned after each revolution. Parent Technology- Mars Environmental Compatibility Assessment/Electrometer Electrostatic sensors with dissimilar cover insulators Protruding insulators tribocharge against regolith simulant Developed for use on the scoop for the 2001 Mars Odyssey lander Wheel Electrostatic Spectrometer Embedded electrostatic sensors in prototype Martian rover wheel If successful, this technology will enable constant electrostatic testing on Mars Air ionizing fan used to neutralize the surface charge on cover insulators . WES rolled on JSClA lunar simulant Control experiment -Static elimination not conducted between trials -Capacitor discharged after each experiment Charge neutralization experiment -Static elimination conducted between trials -Capacitor discharged after each experiment. Air ionizing fan used on insulators after each wheel revolution Capacitor discharged after each trial Care was taken to roll WES with same speed/pressure Error bars represent one standard deviation in the noise of e ach sensor

  7. Realistic electrostatic potentials in a neutron star crust

    International Nuclear Information System (INIS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-01-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner–Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas–Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential. (paper)

  8. Increasing fall risk awareness using wearables: A fall risk awareness protocol.

    Science.gov (United States)

    Danielsen, Asbjørn; Olofsen, Hans; Bremdal, Bernt Arild

    2016-10-01

    Each year about a third of elderly aged 65 or older experience a fall. Many of these falls may have been avoided if fall risk assessment and prevention tools where available in a daily living situation. We identify what kind of information is relevant for doing fall risk assessment and prevention using wearable sensors in a daily living environment by investigating current research, distinguishing between prospective and context-aware fall risk assessment and prevention. Based on our findings, we propose a fall risk awareness protocol as a fall prevention tool integrating both wearables and ambient sensing technology into a single platform. Copyright © 2016. Published by Elsevier Inc.

  9. Relationship between subjective fall risk assessment and falls and fall-related fractures in frail elderly people

    OpenAIRE

    Shimada, Hiroyuki; Suzukawa, Megumi; Ishizaki, Tatsuro; Kobayashi, Kumiko; Kim, Hunkyung; Suzuki, Takao

    2011-01-01

    Abstract Background Objective measurements can be used to identify people with risks of falls, but many frail elderly adults cannot complete physical performance tests. The study examined the relationship between a subjective risk rating of specific tasks (SRRST) to screen for fall risks and falls and fall-related fractures in frail elderly people. Methods The SRRST was investigated in 5,062 individuals aged 65 years or older who were utilized day-care services. The SRRST comprised 7 dichotom...

  10. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  11. Communication plan for windblown dust.

    Science.gov (United States)

    2015-05-01

    Windblown dust events occur in Arizona, and blowing dust has been considered a contributing factor to serious crashes on the : segment of Interstate 10 (I10) between Phoenix and Tucson, as well as on other Arizona roadways. Arizonas dust events...

  12. House dust in seven Danish offices

    Science.gov (United States)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  13. Fall Protection Introduction, #33462

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-23

    The proper use of fall prevention and fall protection controls can reduce the risk of deaths and injuries caused by falls. This course, Fall Protection Introduction (#33462), is designed as an introduction to various types of recognized fall prevention and fall protection systems at Los Alamos National Laboratory (LANL), including guardrail systems, safety net systems, fall restraint systems, and fall arrest systems. Special emphasis is given to the components, inspection, care, and storage of personal fall arrest systems (PFASs). This course also presents controls for falling object hazards and emergency planning considerations for persons who have fallen.

  14. Neutron activation analysis of size-separated airborne dust particles, (2)

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1976-01-01

    The size distribution of the component element concentration in particle floating matters contained in the atmosphere is related closely to atmospheric pollution. In this paper, the results of the neutron activation analysis and the measurement of size distribution of component element concentration are reported, which were carried out in Minami-ku, Kyoto, in May and November, 1975, by collecting airbone dust with Andersen air samples. The activation of samples was carried out with the research reactor in Kyoto University. The gamma-ray spectra of the samples were measured with a Ge(Li) semiconductor detector. The size distributions of Al, Sc, Th and Ti showed the similar pattern. The concentration of Zn was abnormally high as compared with that in other districts, and it is related to the local industry in this district. The size distribution of airborne dust usually follows the logarithmic normal distribution when it is not affected by atmospheric pollution. Accordingly, the size distribution of the concentration also follows the same distribution. The accumulated percentages of the concentrations of Al, Sc and Th fall on the same straight line, and it means that these elements were contained in the same particles as the components. Also it was decided that the particles of Al, Sc, Th, Fe and Ti were soil particles. (Kako, I.)

  15. The clinical practice guideline for falls and fall risk

    OpenAIRE

    Vance, Jacqueline

    2011-01-01

    Falling is a significant cause of injury and death in frail older adults. Residents in long-term care (LTC) facilities fall for a variety of reasons and are more likely to endure injuries after a fall than those in the community The American Medical Directors Association (AMDA) Clinical Practice Guideline is written to give LTC staff an understanding of risk factors for falls and provide guidance for a systematic approach to patient assessment and selection of appropriate interventions. It is...

  16. Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas

    International Nuclear Information System (INIS)

    Liu Zongming; Duan Wenshan; He Guangjun

    2008-01-01

    A Zakharov-Kuznetsov (ZK) equation, a modified ZK (mZK) equation, and a coupled ZK (cZK) equation for small but finite amplitude dust acoustic waves in a magnetized two-ion-temperature dusty plasma with dust size distribution have been investigated in this paper. The variations of the linear dispersion relation and group velocity, nonlinear solitary wave amplitude, and width with an arbitrary dust size distribution function are studied numerically. We conclude that they all increase as the total number density of dust grains increases, and they are greater for unusual dusty plasma (the number density of larger dust grains is greater than that of smaller dust grains) than that of usual dusty plasma (the number density of smaller dust grains is greater than that of larger dust grains). It is noted that the frequency of the linear wave increases as the wave number along the magnetic direction increases. Furthermore, the width of the nonlinear waves increases but its amplitude decreases as the wave number along the magnetic direction increases

  17. The flow of interstellar dust through the solar system: the role of dust charging

    International Nuclear Information System (INIS)

    Sterken, V. J.; Altobelli, N.; Schwehm, G.; Kempf, S.; Srama, R.; Strub, P.; Gruen, E.

    2011-01-01

    Interstellar dust can enter the solar system through the relative motion of the Sun with respect to the Local Interstellar Cloud. The trajectories of the dust through the solar system are not only influenced by gravitation and solar radiation pressure forces, but also by the Lorentz forces due to the interaction of the interplanetary magnetic field with the charged dust particles. The interplanetary magnetic field changes on two major time scales: 25 days (solar rotation frequency) and 22 years (solar cycle). The short-term variability averages out for regions that are not too close (>∼2 AU) to the Sun. This interplanetary magnetic field variability causes a time-variability in the interstellar dust densities, that is correlated to the solar cycle.In this work we characterize the flow of interstellar dust through the solar system using simulations of the dust trajectories. We start from the simple case without Lorentz forces, and expand to the full simulation. We pay attention to the different ways of modeling the interplanetary magnetic field, and discuss the influence of the dust parameters on the resulting flow patterns. We also discuss the possibilities of using this modeling for prediction of dust fluxes for different space missions or planets, and we pay attention to where simplified models are justified, and where or when a full simulation, including all forces is necessary. One of the aims of this work is to understand measurements of spacecraft like Ulysses, Cassini and Stardust.

  18. Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties

    Science.gov (United States)

    Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl

    2017-12-01

    We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.

  19. The Effect of Residual Stress on the Electromechanical Behavior of Electrostatic Microactuators

    Directory of Open Access Journals (Sweden)

    Ming-Hung Hsu

    2008-01-01

    Full Text Available This work simulates the nonlinear electromechanical behavior of different electrostatic microactuators. It applies the differential quadrature method, Hamilton's principle, and Wilson-θ integration method to derive the equations of motion of electrostatic microactuators and find a solution to these equations. Nonlinear equation difficulties are overcome by using the differential quadrature method. The stresses of electrostatic actuators are determined, and the residual stress effects of electrostatic microactuators are simulated.

  20. Excitation of collective plasma modes during collisions between dust grains and the formation of dust plasma crystals

    International Nuclear Information System (INIS)

    Goree, J.A.; Morfill, G.; Tsytovich, V.N.

    1998-01-01

    Dust plasma crystals have recently been produced in experiments in a number of laboratories. For dust crystallization to occur, there should exist an efficient mechanism for the cooling of the dust plasma component. It is shown that the excitation of collective plasma modes during collisions between the grains may serve as the required cooling mechanism. The excitation of dust sound waves is found to be most efficient. It is shown that the cooling of dust grains via the excitation of collective plasma modes can be even more efficient than that due to collisions with neutral particles, which was previously considered to be the only mechanism for cooling of the dust plasma component. At present, the first experiments are being carried out to study collisions between individual dust grains. High efficiency of the excitation of plasma modes caused by collisions between dust grains is attributed to the coherent displacement of the plasma particles that shield the grains. it is shown that the excitation efficiency is proportional to the fourth power of the charge of the dust grains and to a large power of their relative velocity, and is independent of their mass. The results obtained can be checked in experiments studying how the binary collisions between dust grains and the pressure of the neutral component influence the dust crystallization

  1. Using 87Sr/86Sr Ratios of Carbonate Minerals in Dust to Quantify Contributions from Desert Playas to the Urban Wasatch Front, Utah, USA

    Science.gov (United States)

    Goodman, M.; Carling, G. T.; Fernandez, D. P.; Rey, K.; Hale, C. A.; Nelson, S.; Hahnenberger, M.

    2017-12-01

    Desert playas are important dust sources globally, with potential harmful health impacts for nearby urban areas. The Wasatch Front (population >2 million) in western Utah, USA, is located directly downwind of several playas that contribute to poor air quality on dust event days. Additionally, the exposed lakebed of nearby Great Salt Lake is a growing dust source as water levels drop in response to drought and river diversions. To investigate contributions of playa dust to the Wasatch Front, we sampled dust emissions from the exposed lakebed of Great Salt Lake and seven playas in western Utah, including Sevier Dry Lake, and dust deposition at four locations stretching 160 km from south to north along the Wasatch Front, including Provo, Salt Lake City, Ogden, and Logan. The samples were analyzed for mineralogy, bulk chemistry, and 87Sr/86Sr ratios for source apportionment. The mineralogy of playa dust and Wasatch Front dust samples was dominated by quartz, feldspar, chlorite and calcite. Bulk geochemical composition was similar for all playa dust sources, with higher anthropogenic metal concentrations in the Wasatch Front. Strontium isotope (87Sr/86Sr) ratios in the carbonate fraction of the dust samples were variable in the playa dust sources, ranging from 0.7105 in Sevier Dry Lake to 0.7150 in Great Salt Lake, providing a powerful tool for apportioning dust. Based on 87Sr/86Sr mixing models, Great Salt Lake contributed 0% of the dust flux at Provo, 20% of the dust flux at Salt Lake City, and 40% of the dust flux at Ogden and Logan during Fall 2015. Contrastingly, Great Salt Lake dust was less important in Spring of 2016, contributing 0% of the dust flux at Provo and City and Logan. Two major dust events that occurred on 3 November 2015 and 23 April 2016 had similar wind and climate conditions as understood by HYSPLIT backward trajectories, meaning that seasonal variability in dust emissions is due to playa surface conditions rather than meteorologic conditions

  2. Dust characterisation for hot gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.; Erickson, T.; Henderson, A.; Hurley, J.; Kuehnel, V.; Katrinak, K.; Nowok, J.; O`Keefe, C.; O`Leary, E.; Swanson, M.; Watne, T. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center (UNDEERC)

    1998-03-01

    Hot gas filtration to remove particulates from the gas flow upstream of the gas turbine is critical to the development of many of the advanced coal-fired power generation technologies such as the Air Blown Gasification Cycle (ABGC), a hybrid gasification combined cycle being developed in the UK. Ceramic candle filters are considered the most promising technology for this purpose. Problems of mechanical failure and of `difficult-to-clean` dusts causing high pressure losses across the filter elements need to be solved. The project investigated the behaviour of high-temperature filter dusts, and the factors determining the ease with which they can be removed from filters. The high-temperature behaviour of dusts from both combustion and gasification systems was investigated. Dust samples were obtained from full-scale demonstration and pilot-scale plant operating around the world. Dust samples were also produced from a variety of coals, and under several different operating conditions, on UNDEERC`s pilot-scale reactor. Key factors affecting dust behaviour were examined, including: the rates of tensile strength developing in dust cakes; the thermochemical equilibria pertaining under filtration conditions; dust adhesivity on representative filter materials; and the build-up and cleaning behaviour of dusts on representative filter candles. The results obtained confirmed the importance of dust temperature, dust cake porosity, cake liquid content, and particle size distribution in determining the strength of a dust cake. An algorithm was developed to indicate the likely sticking propensity of dusts as a function of coal and sorbent composition and combustion conditions. This algorithm was incorporated into a computer package which can be used to judge the degree of difficulty in filter cleaning that can be expected to arise in a real plant based on operating parameters and coal analyzes. 6 figs.

  3. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    Science.gov (United States)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the

  4. Development and Application Prospects of Pneumatic Electrostatic Sprayer in Orchard

    OpenAIRE

    Zhou, Yan; Qi, Li-jun; Jia, Shou-xing; Zheng, Xuan; Meng, Xiang-jin; Tang, Zhi-hui; Shen, Cong-ju

    2012-01-01

    We firstly introduce existing situations of development of electrostatic spraying technology both at home and abroad. On the basis of such problems as serious drift, loss and deterioration of environment during orchard spraying in Xinjiang, we design and develop a new electrostatic sprayer which can effectively reduce the pesticide, improve the adhesion rate of pesticide in the target, and reduce pollution on human body and environment. Using electrostatic induction principle, this electrosta...

  5. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  6. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health

    Directory of Open Access Journals (Sweden)

    Eva Mračková

    2015-11-01

    Full Text Available Mechanical separators and fabric filters are being used to remove airborne fine particles generated during the processing and handling of wood. Such particles might have a harmful effect on employee health, not only in small- but also in large-scale wood processing facilities. The amount of wood dust and its dispersion conditions vary according to geometric boundary conditions. Thus, the dispersion conditions could be changed by changing the linear size of the particles. Moreover, the smaller the particles are, the more harmful they can be. It is necessary to become familiar with properties, from a health point of view, of wood dust generated from processing. Wood dust has to be sucked away from the processing area. The fractional separation efficiency of wood dust can be improved using exhaust and filtering devices. Filtration efficiency depends on moisture content, particle size, and device performance. Because of the carcinogenicity of wood dust, the concentration of wood dust in air has to be monitored regularly. Based on the results hereof, a conclusion can be made that both mechanical separators of types SEA and SEB as well as the fabric filters with FINET PES 1 textile are suitable for the separation of wet saw dust from all types of wooden waste produced within the process.

  7. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  8. Prediction of falls and/or near falls in people with mild Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Beata Lindholm

    Full Text Available To determine factors associated with future falls and/or near falls in people with mild PD.The study included 141 participants with PD. Mean (SD age and PD-duration were 68 (9.7 and 4 years (3.9, respectively. Their median (q1-q3 UPDRS III score was 13 (8-18. Those >80 years of age, requiring support in standing or unable to understand instructions were excluded. Self-administered questionnaires targeted freezing of gait, turning hesitations, walking difficulties in daily life, fatigue, fear of falling, independence in activities of daily living, dyskinesia, demographics, falls/near falls history, balance problems while dual tasking and pain. Clinical assessments addressed functional balance performance, retropulsion, comfortable gait speed, motor symptoms and cognition. All falls and near falls were subsequently registered in a diary during a six-month period. Risk factors for prospective falls and/or near falls were determined using logistic regression.Sixty-three participants (45% experienced ≥ 1 fall and/or near fall. Three factors were independent predictors of falls and/or near falls: fear of falling (OR = 1.032, p<0.001 history of near falls (OR = 3.475, p = 0.009 and retropulsion (OR = 2.813, p = 0.035. The strongest contributing factor was fear of falling, followed by a history of near falls and retropulsion.Fear of falling seems to be an important issue to address already in mild PD as well as asking about prior near falls.

  9. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2013-01-01

    Full Text Available Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by series expansions in terms of solutions of the Laplace function. Based on this model, the electrostatic adhesion force was calculated using the Maxwell stress tensor formulation. Several important factors which may influence the electrostatic adhesion force were analysed and discussed by both FEM simulation and theoretical calculation. In addition, experiments on the adhesion performance of the electrode panel and the climbing performance of the robot on various wall materials were carried out. Both the simulation and experiment results verify the feasibility of electrostatic adhesion technology being applied on wall climbing robots. The theoretical model and calculation method for the electrostatic adhesion force proposed in this paper are also justified.

  11. Effects of grain dust on lungs prior to and following dust remediation.

    Science.gov (United States)

    Pahwa, Punam; Dosman, James A; McDuffie, Helen H

    2008-12-01

    To determine longitudinal estimates of pulmonary function decline in Canadian grain elevator workers before and after dust control by analyzing data collected from five regions of Canada over 15 years. Declines in forced expired volume in one second and forced vital capacity before and after dust control were estimated by using a generalized estimating equations approach. For grain workers who were in the grain industry for 20 or more years both before and after dust control: the mean annual loss of forced expired volume in one second was greatest among current smoking grain workers followed by ex-smokers and nonsmokers, respectively. Similar results were obtained for forced vital capacity. Grain dust control was effective in reducing decline in the lung function measurements among grain workers in all smoking and exposure categories.

  12. Simulation study of spheroidal dust gains charging: Applicable to dust grain alignment

    International Nuclear Information System (INIS)

    Zahed, H.; Sobhanian, S.; Mahmoodi, J.; Khorram, S.

    2006-01-01

    The charging process of nonspherical dust grains in an unmagnetized plasma as well as in the presence of a magnetic field is studied. It is shown that unlike the spherical dust grain, due to nonhomogeneity of charge distribution on the spheroidal dust surface, the resultant electric forces on electrons and ions are different. This process produces some surface charge density gradient on the nonspherical grain surface. Effects of a magnetic field and other plasma parameters on the properties of the dust particulate are studied. It has been shown that the alignment direction could be changed or even reversed with the magnetic field and plasma parameters. Finally, the charge distribution on the spheroidal grain surface is studied for different ambient parameters including plasma temperature, neutral collision frequency, and the magnitude of the magnetic field

  13. Dust Studies in DIII-D and TEXTOR

    International Nuclear Information System (INIS)

    Rudakov, D.; Litnovsky, A.; West, W.; Yu, J.; Boedo, J.; Bray, B.; Brezinsek, S.; Brooks, N.; Fenstermacher, M.; Groth, M.; Hollmann, E.; Huber, A.; Hyatt, A.; Krasheninnikov, S.; Lasnier, C.; Moyer, R.; Pigarov, A.; Philipps, V.; Pospieszezyk, A.; Smirnov, R.; Sharpe, J.; Solomon, W.; Watkins, J.; Wong, C.

    2008-01-01

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Energetic plasma disruptions produce significant amounts of dust. However, dust production by disruptions alone is insufficient to account for the estimated in-vessel dust inventory in DIII-D. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by injecting micron-size dust in plasma discharges. In DIII-D, a sample holder filled with ∼30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure (∼0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. Individual dust particles are observed moving at velocities of 10-100 m/s, predominantly in the toroidal direction, consistent with the drag force from the deuteron flow and in agreement with modeling by the 3D DustT code. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. Dust is launched either in the beginning of a discharge or at the initiation of NBI, preferentially in a direction perpendicular to the toroidal magnetic field. At the given configuration of the launch, the dust did not penetrate

  14. Electrostatic potentials and energy loss due to a projectile propagating through a non-Maxwellian dusty plasma

    International Nuclear Information System (INIS)

    Deeba, F.; Ahmad, Zahoor; Murtaza, G.

    2006-01-01

    The electrostatic potentials (Debye and wake) and energy loss due to a charged projectile propagating through an unmagnetized collisionless dusty plasma are derived employing kappa and generalized (r,q) velocity distributions for the dust acoustic wave. It is found that these quantities in general differ from their Maxwellian counterparts and are sensitive to the values of spectral index, κ in the case of kappa distribution and to r, q in the case of generalized (r,q) distribution. The amplitudes of these quantities are less for small values of the spectral index (κ, r=0, q) but approach the Maxwellian in the limit κ→∞ (for kappa distribution) and for r=0, q→∞ [for generalized (r,q) distribution]. For any nonzero value of r, the potential and the energy loss grow beyond the Maxwellian results. The effect of kappa and generalized (r,q) distributions on potential and energy loss is also studied numerically and the results are compared with those of the Maxwellian distribution

  15. Unexplained Falls Are Frequent in Patients with Fall-Related Injury Admitted to Orthopaedic Wards: The UFO Study (Unexplained Falls in Older Patients).

    Science.gov (United States)

    Chiara, Mussi; Gianluigi, Galizia; Pasquale, Abete; Alessandro, Morrione; Alice, Maraviglia; Gabriele, Noro; Paolo, Cavagnaro; Loredana, Ghirelli; Giovanni, Tava; Franco, Rengo; Giulio, Masotti; Gianfranco, Salvioli; Niccolò, Marchionni; Andrea, Ungar

    2013-01-01

    To evaluate the incidence of unexplained falls in elderly patients affected by fall-related fractures admitted to orthopaedic wards, we recruited 246 consecutive patients older than 65 (mean age 82 ± 7 years, range 65-101). Falls were defined "accidental" (fall explained by a definite accidental cause), "medical" (fall caused directly by a specific medical disease), "dementia-related" (fall in patients affected by moderate-severe dementia), and "unexplained" (nonaccidental falls, not related to a clear medical or drug-induced cause or with no apparent cause). According to the anamnestic features of the event, older patients had a lower tendency to remember the fall. Patients with accidental fall remember more often the event. Unexplained falls were frequent in both groups of age. Accidental falls were more frequent in younger patients, while dementia-related falls were more common in the older ones. Patients with unexplained falls showed a higher number of depressive symptoms. In a multivariate analysis a higher GDS and syncopal spells were independent predictors of unexplained falls. In conclusion, more than one third of all falls in patients hospitalized in orthopaedic wards were unexplained, particularly in patients with depressive symptoms and syncopal spells. The identification of fall causes must be evaluated in older patients with a fall-related injury.

  16. Dust: Small-scale processes with global consequences

    Science.gov (United States)

    Okin, G.S.; Bullard, J.E.; Reynolds, R.L.; Ballantine, J.-A.C.; Schepanski, K.; Todd, M.C.; Belnap, J.; Baddock, M.C.; Gill, T.E.; Miller, M.E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored. ?? Author(s) 2011.

  17. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  18. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  19. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  20. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...