WorldWideScience

Sample records for electrostatic discharge testing

  1. Electrostatic discharge attenuation test for the characterization of ESD protective materials

    International Nuclear Information System (INIS)

    Paasi, Jaakko; Viheriaekoski, Toni; Sutela, Lassi; Tamminen, Pasi K

    2008-01-01

    New experimental method has been developed to evaluate materials, tools, equipment and packaging used in the electronics production environment under Charged Device Model (CDM) type of electrostatic discharge (ESD) transients. The method is intended to characterize the ability of the material or object to attenuate ESD energy and peak discharge current when a charged device is discharged into the material under test. The test is supplementary for the standard quasi-static measurements of ESD control programs in the cases where standard measurements do not give sufficient information due to voltage non-linearity, complexity or shape of the material or object under test.

  2. Sandia's severe human body Electrostatic Discharge Tester (SSET)

    International Nuclear Information System (INIS)

    Barnum, J.R.

    1991-01-01

    This paper reports that the Electromagnetic Testing Division at Sandia National Laboratories (SNL) has developed a simulator to replicate a severe human body electrostatic discharge event. This simulator is referred to as Sandia's Severe Human Body Electrostatic Discharge Tester (SSET). The SSET is configured as a coaxial transmission line, which allows control of parasitic inductance and capacitance to achieve the desired waveform signature, and operates reliably at voltages up to 35 kV. It is constructed from off-the-shelf or easily fabricated components and costs approximately $750 for materials, not including the power supply. The output is very repeatable and provides good simulation fidelity of a severe human body discharge

  3. Acoustic effects of single electrostatic discharges

    International Nuclear Information System (INIS)

    Orzech, Łukasz

    2015-01-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(p a ) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details. (paper)

  4. Negative corona discharges modelling. Application to the electrostatic precipitation

    International Nuclear Information System (INIS)

    Gaychet, S.

    2010-01-01

    Electrostatic precipitation presents many advantages from the nuclear wastes treatment's point of view. Indeed, this kind of process can capture submicron particles without producing secondary wastes (no filter media) and without pressure looses in the exhaust circuit. The work presented in this thesis concerns the study of negative corona discharges in air at atmospheric pressure occurring in an electrostatic precipitator (ESP) developed by the CEA (Atomic Energy Committee). The aim of this study is to determine how the electrostatic precipitation dedicated phenomena, especially the specific high voltage generator, the gas temperature and the fact that particles are flowing through the gap then collapsing on the electrodes, modify the discharge to improve the efficiency of ESPs. This work is based on a fundamental experimental study of the negative corona discharge and on numerical simulations of this discharge under conditions close to those of the lab scale ESP developed by the CEA. (author) [fr

  5. Electrostatic discharge concepts and definitions

    Energy Technology Data Exchange (ETDEWEB)

    Borovina, Dan L [Los Alamos National Laboratory

    2008-01-01

    Many objects -like a human body, plastic wrap, or a rolling cart -that are electrically neutral, overall, can gain a net electrostatic charge by means of one of three methods: induction, physical transfer, or triboelectric charging (separation of conductive surfaces). The result is a voltage difference between the charged object and other objects, creating a situation where current flow is likely if two objects come into contact or close proximity. This current flow is known as electrostatic discharge, or ESD. The energy and voltage of the discharge can be influenced by factors such as the temperature and humidity in the room, the types of materials or flooring involved, or the clothing and footwear a person uses. Given the possible ranges of the current and voltage characteristic of an ESD pulse, it is important to consider the safety risks associated with detonator handling, assembly and disassembly, transportation and maintenance. For main charge detonators, these safety risks include high explosive violent reactions (HEVR) as well as inadvertent nuclear detonations (lND).

  6. Electrostatic Discharge Test of Multi-Junction Solar Array Coupons After Combined Space Environmental Exposures

    Science.gov (United States)

    Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George

    2010-01-01

    A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.

  7. Electrostatic Discharge Current Linear Approach and Circuit Design Method

    Directory of Open Access Journals (Sweden)

    Pavlos K. Katsivelis

    2010-11-01

    Full Text Available The Electrostatic Discharge phenomenon is a great threat to all electronic devices and ICs. An electric charge passing rapidly from a charged body to another can seriously harm the last one. However, there is a lack in a linear mathematical approach which will make it possible to design a circuit capable of producing such a sophisticated current waveform. The commonly accepted Electrostatic Discharge current waveform is the one set by the IEC 61000-4-2. However, the over-simplified circuit included in the same standard is incapable of producing such a waveform. Treating the Electrostatic Discharge current waveform of the IEC 61000-4-2 as reference, an approximation method, based on Prony’s method, is developed and applied in order to obtain a linear system’s response. Considering a known input, a method to design a circuit, able to generate this ESD current waveform in presented. The circuit synthesis assumes ideal active elements. A simulation is carried out using the PSpice software.

  8. The Electrostatic Environments of Mars: Atmospheric Discharges

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  9. Internal Electrostatic Discharge Monitor - IESDM

    Science.gov (United States)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  10. Electrostatic Discharge Testing of Carbon Composite Solar Array Panels for Use in the Jovian Environment

    Science.gov (United States)

    Green, Nelson W.; Dawson, Stephen F.

    2015-01-01

    nitrogen temperatures showed a marked increase in the magnitude of these discharges. The results indicate that dielectric discharges are primarily produced due to the presence of large regions of the non-conductive pre-preg on the surface of the carbon sheets. The frequency and magnitude of discharges decreased when layers of the pre-preg material were removed from the composite surface. These tests indicate that solar array panels may be used in the Jovian environment, but that electrostatic discharges can be expected on the carbon composite solar arrays.

  11. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    Science.gov (United States)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  12. Electrostatic Discharge (ESD and Electrical Overstress (EOS: The state of the art in components to systems

    Directory of Open Access Journals (Sweden)

    Steven H. Voldman

    2017-06-01

    Full Text Available Electrostatic Discharge (ESD, Electrical Overstress (EOS and electromagnetic compatibility (EMC continue to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics. The range of concern for components include semiconductor components, magnetic recording industry, MEMs, and for products from disk drives, cell phones, notebooks, tablets, laptops, and desktop computers. The objective of this lecture is to address the state of the art of electrostatic discharge (ESD and electrical overstress (EOS in today’s electronic components and systems. The tutorial provides a clear picture of ESD, EOS and EMC phenomena, sources, physics, failure mechanisms, testing and qualification of components and systems. The conclusion of this talk is that ESD and EOS continue to be a concern in technologies from micro-electronics to nano-structures, and will remain a reliability and quality issue in the future.

  13. Experimental study on detection of electrostatic discharges generated by polymer granules inside a metal silo

    Science.gov (United States)

    Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo

    2014-04-01

    To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.

  14. Desensitizing nano powders to electrostatic discharge ignition

    International Nuclear Information System (INIS)

    Steelman, Ryan; Daniels, Michael A.

    2015-01-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  15. Polyimide Nanocomposite Circuit Board Materials to Mitigate Internal Electrostatic Discharge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Sub-topic T8.02, NASA has identified a need for improved circuit boards to mitigate the hazards of internal electrostatic discharge (IESD) on missions where high...

  16. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  17. The purpose for GEO spacecraft deep charging and electrostatic discharging (ESD) experiment

    International Nuclear Information System (INIS)

    Yang Chuibai; Wang Shijin; Liang Jinbao

    2005-01-01

    This paper introduces the purpose for GEO spacecraft deep charging and electrostatic discharging (ESD) experiment. A method of experiment for the spacecraft deep charging and ESD aboard is proposed. Spacecraft deep charging and ESD event, frequency, energy and the level of pulse in wires due to EMP coupling into are measured. (authors)

  18. Investigating ESD sensitivity in electrostatic SiGe MEMS

    International Nuclear Information System (INIS)

    Sangameswaran, Sandeep; De Coster, Jeroen; Linten, Dimitri; Scholz, Mirko; Thijs, Steven; Groeseneken, Guido; De Wolf, Ingrid

    2010-01-01

    The sensitivity of electrostatically actuated SiGe microelectromechanical systems to electrostatic discharge events has been investigated in this paper. Torsional micromirrors and RF microelectromechanical systems (MEMS) actuators have been used as two case studies to perform this study. On-wafer electrostatic discharge (ESD) measurement methods, such as the human body model (HBM) and machine model (MM), are discussed. The impact of HBM ESD zap tests on the functionality and behavior of MEMS is explained and the ESD failure levels of MEMS have been verified by failure analysis. It is demonstrated that electrostatic MEMS devices have a high sensitivity to ESD and that it is essential to protect them.

  19. Report on the survey for electrostatic discharges on Mars using NASA's Deep Space Network (DSN)

    Science.gov (United States)

    Arabshahi, S.; Majid, W.; Geldzahler, B.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Mars atmosphere has strong dust activity. It is suggested that the larger regional storms are capable of producing electric fields large enough to initiate electrostatic discharges. The storms have charging process similar to terrestrial dust devils and have hot cores and complicated vortex winds similar to terrestrial thunderstorms. However, due to uncertainties in our understanding of the electrical environment of the storms and absence of related in-situ measurements, the existence (or non-existence) of such electrostatic discharges on the planet is yet to be confirmed. Knowing about the electrical activity on Mars is essential for future human explorations of the planet. We have recently launched a long-term monitoring campaign at NASA's Madrid Deep Space Communication Complex (MDSCC) to search for powerful discharges on Mars. The search occurs during routine tracking of Mars orbiting spacecraft by Deep Space Network (DSN) radio telescope. In this presentation, we will report on the result of processing and analysis of the data from the first six months of our campaign.

  20. A domain-decomposition method to implement electrostatic free boundary conditions in the radial direction for electric discharges

    Science.gov (United States)

    Malagón-Romero, A.; Luque, A.

    2018-04-01

    At high pressure electric discharges typically grow as thin, elongated filaments. In a numerical simulation this large aspect ratio should ideally translate into a narrow, cylindrical computational domain that envelops the discharge as closely as possible. However, the development of the discharge is driven by electrostatic interactions and, if the computational domain is not wide enough, the boundary conditions imposed to the electrostatic potential on the external boundary have a strong effect on the discharge. Most numerical codes circumvent this problem by either using a wide computational domain or by calculating the boundary conditions by integrating the Green's function of an infinite domain. Here we describe an accurate and efficient method to impose free boundary conditions in the radial direction for an elongated electric discharge. To facilitate the use of our method we provide a sample implementation. Finally, we apply the method to solve Poisson's equation in cylindrical coordinates with free boundary conditions in both radial and longitudinal directions. This case is of particular interest for the initial stages of discharges in long gaps or natural discharges in the atmosphere, where it is not practical to extend the simulation volume to be bounded by two electrodes.

  1. COMMENTS ON THE SEARCH FOR ELECTROSTATIC DISCHARGES ON MARS

    International Nuclear Information System (INIS)

    Renno, Nilton O.; Ruf, Christopher S.

    2012-01-01

    Ruf et al. used the Deep Space Network (DSN) to search for the emission of non-thermal radiation by martian dust storms, theoretically predicted by Renno et al. They detected the emission of non-thermal radiation that they were searching for, but were surprised that it contained spectral peaks suggesting modulation at various frequencies and their harmonics. Ruf et al. hypothesized that the emission of non-thermal radiation was caused by electric discharges in a deep convective dust storm, modulated by Schumann resonances (SRs). Anderson et al. used the Allen Telescope Array (ATA) to search for similar emissions. They stated that they found only radio frequency interference (RFI) during their search for non-thermal emission by martian dust storms and implicitly suggested that the signal detected by Ruf et al. was also RFI. However, their search was not conducted during the dust storm season when deep convective storms are most likely to occur. Here, we show that the ubiquitous dust devils and small-scale dust storms that were instead likely present during their observations are too shallow to excite SRs and produce the signals detected by Ruf et al. We also show that the spectral and temporal behavior of the signals detected by Anderson et al. corroborates the idea that they originated from man-made pulse-modulated telecommunication signals rather than martian electric discharges. In contrast, an identical presentation of the signals detected by Ruf et al. demonstrates that they do not resemble man-made signals. The presentation indicates that the DSN signals were consistent with modulation by martian SRs, as originally hypothesized by Ruf et al. We propose that a more comprehensive search for electrostatic discharges be conducted with either the ATA or DSN during a future martian dust storm season to test the hypothesis proposed by Ruf et al.

  2. Electro-Static Discharge (ESD) Sensitivity of Reactive Powders and its Mitigation

    Science.gov (United States)

    2016-03-16

    Al+CuO and Al+Bi2O3 by combining them with Viton A and guar gum , respectively [70, 71]. Similarly reduced ESD sensitivity resulted for the thermite...SECURITY CLASSIFICATION OF: This work followed our previous study characterizing ignition of pure metal powders by electrostatic discharge. Here, the...that ignition event for all materials can be described using two stages. First, a fraction of the powder struck by the spark is ignited directly

  3. Characterizing the Performance of the Wheel Electrostatic Spectrometer

    Science.gov (United States)

    Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Calle, C. I.; Clements, J. S.

    2013-01-01

    Insulators need to be discharged after each wheel revolution. Sensor responses repeatable within one standard deviation in the noise of the signal. Insulators may not need to be cleaned after each revolution. Parent Technology- Mars Environmental Compatibility Assessment/Electrometer Electrostatic sensors with dissimilar cover insulators Protruding insulators tribocharge against regolith simulant Developed for use on the scoop for the 2001 Mars Odyssey lander Wheel Electrostatic Spectrometer Embedded electrostatic sensors in prototype Martian rover wheel If successful, this technology will enable constant electrostatic testing on Mars Air ionizing fan used to neutralize the surface charge on cover insulators . WES rolled on JSClA lunar simulant Control experiment -Static elimination not conducted between trials -Capacitor discharged after each experiment Charge neutralization experiment -Static elimination conducted between trials -Capacitor discharged after each experiment. Air ionizing fan used on insulators after each wheel revolution Capacitor discharged after each trial Care was taken to roll WES with same speed/pressure Error bars represent one standard deviation in the noise of e ach sensor

  4. Electrostatic analyzer for electron and ion energy in glow discharge tube

    International Nuclear Information System (INIS)

    Bong Kil Yeon.

    1984-01-01

    The project, the construction and use of an electrostatic energy analyser (Faraday Cup) are described explaining physically its working mechanism. The analyser was used in a glow discharge tube with air and an air-argon mixture. A chapter with the theory of the glow discharge is included. The ion and electron temperatures, the plasma potential and the distribution function for ions and electrons were measured. The electron temperature and plasma potential were also measured using a Langmuir probe and the results show reasonable agreement with the results of the analyser. Good fits of the experimental electron and ion distribution functions were obtained with Maxwellian distributions centered values near the plasma potential. Finally, we discuss the performance of the analyser compared to Langmuir probes. (author) [pt

  5. Food waste management using an electrostatic separator with corona discharge

    Science.gov (United States)

    Lai, Koonchun; Lim, Sooking; Teh, Pehchiong

    2015-05-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  6. Food waste management using an electrostatic separator with corona discharge

    International Nuclear Information System (INIS)

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    2015-01-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm

  7. Food waste management using an electrostatic separator with corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Koonchun; Teh, Pehchiong [Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman (Malaysia); Lim, Sooking [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (Malaysia)

    2015-05-15

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  8. Method for improving the electrostatics perforation pattern using power controlled discharges

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, C; Miranda, E; GarcIa-Garcia, J [Departament d' Enginyeria Electronica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Martinez-Cisneros, C; Alonso, J, E-mail: carolina.garzon@uab.cat [Departament de Quimica Analitica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2011-06-23

    The aims of this work are to show the influence of adding a series resistance at the output of a discharge generator circuit and to point out that this component can be used to control the spark energy in electrostatic perforation systems. Analysis of the experimental results reveals that there exists a close connection between the resistor value and the obtained perforation pattern both in hole density and size. The use of a series resistor has a strong influence on the material porosity, which is an important industrial parameter for assessing the pattern perforation quality.

  9. Effects of electrostatic discharge on three cryogenic temperature sensor models

    Energy Technology Data Exchange (ETDEWEB)

    Courts, S. Scott; Mott, Thomas B. [Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, OH 43082 (United States)

    2014-01-29

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  10. Effects of electrostatic discharge on three cryogenic temperature sensor models

    International Nuclear Information System (INIS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure

  11. Electrostatic Studies for the 2008 Hubble Service Repair Mission

    Science.gov (United States)

    Buhler, C. R.; Clements, J. S.; Calle, C. I.

    2012-01-01

    High vacuum triboelectric testing of space materials was required to identify possible Electrostatic Discharge (ESD) concerns for the astronauts in space during electronics board replacement on the Hubble Space Telescope. Testing under high vacuum conditions with common materials resulted in some interesting results. Many materials were able to charge to high levels which did not dissipate quickly even when grounded. Certain materials were able to charge up in contact with grounded metals while others were not. An interesting result was that like materials did not exchange electrostatic charge under high vacuum conditions. The most surprising experimental result is the lack of brush discharges from charged insulators under high vacuum conditions.

  12. Test plan for engineering scale electrostatic enclosure demonstration

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1993-02-01

    This test plan describes experimental details of an engineering-scale electrostatic enclosure demonstration to be performed at the Idaho National Engineering Laboratory in fiscal year (FY)-93. This demonstration will investigate, in the engineering scale, the feasibility of using electrostatic enclosures and devices to control the spread of contaminants during transuranic waste handling operations. Test objectives, detailed experimental procedures, and data quality objectives necessary to perform the FY-93 experiments are included in this plan

  13. Physical and chemical test results of electrostatic safe flooring materials

    Science.gov (United States)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  14. Dynamic response of an electrostatically actuated microbeam to drop-table test

    International Nuclear Information System (INIS)

    Ouakad, Hassen M; Younis, Mohammad I; Alsaleem, Fadi

    2012-01-01

    In this paper, we present a theoretical and experimental investigation into the dynamic response of an electrostatically actuated microbeam when subjected to drop-table test. For the theoretical part, a reduced-order model based on an Euler–Bernoulli beam model is utilized. The model accounts for the electrostatic bias on the microbeam and the shock pulse of the drop-table test. Simulation results are presented showing the combined effect of electrostatic force and mechanical shock in triggering early pull-in instability of the cantilever microbeams. The analytical simulation results are validated by finite-element results for the static response. Dynamic pull-in threshold as a function of the mechanical shock amplitude is shown over a wide range of shock spanning hundreds of thousands of g up to zero g. For the experimental part, a micromachined cantilever beam made of gold of length 50 µm is subjected to drop-table tests while being biased by electrostatic loads. Several experimental data are shown demonstrating the phenomenon of collapse due to the combined shock and electrostatic forces. It is also demonstrated that by biasing short and too stiff microbeams with electrostatic voltages, their stiffness is weakened. This lowers their threshold of collapse considerably to the range of acceleration that enables testing them with in-house shock testing equipments, such as drop-table tests. (paper)

  15. Electric discharges in an electrostatic machine. Analysis of work by J.A. Staniforth and C.M. Cooke

    International Nuclear Information System (INIS)

    Frick, G.

    1988-04-01

    Electric discharges, stored energy, and transient phenomena in electrostatic accelerators are reviewed in the framework of the Vivitron project. Before discharge, predischarge phenomena governed by the value of the electric field and the geometry appear. Transient phenomena appear after discharge. The alternance lasts from 20 to 100 nsec. Waves propagating along the electrodes can cause other discharges, after a time lapse. Overvoltages of a factor of 1.5 to 2 can appear. If they provoke fresh discharges, formation times may be such that in many cases the overvoltages remain present throughout times of this order of magnitude. The behavior of a solid insulator under such conditions is unknown, and the behavior inside the tube is poorly understood. If the initial arc is produced outside the tube, a large part of the available energy will be dissipated before the arrival of the overvoltage at the sensitive part of the tube. If the discharge begins in the tube, it will propagate outside because of the short circuit created in the tube by the discharges. For rapid phenomena, it is possible that the spark gaps may not always operate efficiently, especially for vacuum discharges [fr

  16. Characterization of the Electrostatic Environment of Launchers

    Science.gov (United States)

    Soyah, Jamila; Mantion, Pascal; Herlem, Yannick

    2016-05-01

    The purpose of this study was to update knowledge in characterization of the electrostatic environment of launchers in order to be able to propose reductions of design constraints.The first part of this study showed that flashover discharges are the most energetic discharges likely to occur on a launcher. They are mostly due to accumulations of charges by triboelectricity on the external surface of the launcher while flying through clouds containing a lot of small solid particles.Actually flashover discharges are mitigated by limiting the surface's resistance of dielectric materials such as thermal protection set on the external skin of the launcher, thanks to antistatic paints that avoid significant accumulations of charges.But this specified limitation leads to a lot of non- conformances during production phases and, as a result, this leads to additional costs and delays in launches campaigns. That is why on-ground tests have been defined in order to assess the accessibility of a relaxation of those specifications, which would reduce non-conformances.On-ground tests have been carried out, in the second part, on samples of thermal protections covered with antistatic paints with different degraded values of surface resistance. These tests aimed at checking in which conditions a surface discharge can occur in order to deduce a relationship between characteristics of the samples (surface resistance, half-discharge time) and the occurrence of a surface discharge, at ambient pressure and at low pressure.In the third part, in-flight experiments have been defined in order to confirm some hypotheses considered in the study and to assess some parameters in a more accurate way like the incoming charges density per surface unit or the voltage between stages when they get separated, in order to assess more accurately whether the unwinding equalization wire dedicated to maintain the electrostatic balance between stages is necessary or not.

  17. The baseline pressure of intracranial pressure (ICP) sensors can be altered by electrostatic discharges.

    Science.gov (United States)

    Eide, Per K; Bakken, André

    2011-08-22

    The monitoring of intracranial pressure (ICP) has a crucial role in the surveillance of patients with brain injury. During long-term monitoring of ICP, we have seen spontaneous shifts in baseline pressure (ICP sensor zero point), which are of technical and not physiological origin. The aim of the present study was to explore whether or not baseline pressures of ICP sensors can be affected by electrostatics discharges (ESD's), when ESD's are delivered at clinically relevant magnitudes. We performed bench-testing of a set of commercial ICP sensors. In our experimental setup, the ICP sensor was placed in a container with 0.9% NaCl solution. A test person was charged 0.5-10 kV, and then delivered ESD's to the sensor by touching a metal rod that was located in the container. The continuous pressure signals were recorded continuously before/after the ESD's, and the pressure readings were stored digitally using a computerized system A total of 57 sensors were tested, including 25 Codman ICP sensors and 32 Raumedic sensors. When charging the test person in the range 0.5-10 kV, typically ESD's in the range 0.5-5 kV peak pulse were delivered to the ICP sensor. Alterations in baseline pressure ≥ 2 mmHg was seen in 24 of 25 (96%) Codman sensors and in 17 of 32 (53%) Raumedic sensors. Lasting changes in baseline pressure > 10 mmHg that in the clinical setting would affect patient management, were seen frequently for both sensor types. The changes in baseline pressure were either characterized by sudden shifts or gradual drifts in baseline pressure. The baseline pressures of commercial solid ICP sensors can be altered by ESD's at discharge magnitudes that are clinically relevant. Shifts in baseline pressure change the ICP levels visualised to the physician on the monitor screen, and thereby reveal wrong ICP values, which likely represent a severe risk to the patient.

  18. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A. [Korolev Samara National Research University (Russian Federation)

    2017-01-15

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

  19. A Study of Electrostatic Charge on Insulating Film by Electrostatic Force Microscopy

    International Nuclear Information System (INIS)

    Kikunaga, K; Toosaka, K; Kamohara, T; Sakai, K; Nonaka, K

    2011-01-01

    Electrostatic charge properties on polypropylene film have been characterized by atomic force microscopy and electrostatic force microscopy. The measurements have been carried out after the polypropylene film was electrified by contact and separation process in an atmosphere of controlled humidity. The negative and positive charge in concave surface has been observed. The correlation between concave surface and charge position suggests that the electrostatic charges could be caused by localized contact. On the other hand, positive charge on a flat surface has been observed. The absence of a relationship between surface profile and charge position suggests that the electrostatic charge should be caused by discharge during the separation process. The spatial migration of other positive charges through surface roughness has been observed. The results suggest that there could be some electron traps on the surface roughness and some potentials on the polypropylene film.

  20. Estimation of parameters for the electrostatic discharge current equation with real human discharge events reference using genetic algorithms

    International Nuclear Information System (INIS)

    Katsivelis, P S; Gonos, I F; Stathopulos, I A

    2010-01-01

    Thorough study of the electrostatic discharge (ESD) current equation shows that it may be different from the equation proposed in the IEC 61000-4-2 Standard. This problem is dealt with in this paper. Using a 2.5 GHz digital oscilloscope and a 50 Ω Pellegrini target as the measuring system, and a dc power supply to provide a charging voltage of 2 kVdc, a series of measurements were performed, so real human-to-metal ESD current waveforms were recorded. Treating the average waveform as a reference, a genetic algorithm (GA) was applied to the equation of the IEC 61000-4-2 Standard for the ESD current, in order to achieve its best fitting to the data set. Four different error norms were used for the GA applications. The best result of the applications of each of them was saved and compared to the others. Thus, a very satisfactory modification of the Standard's equation is presented, which is closer to the real ESD current waveform

  1. Development of Partial Discharging Simulation Test Equipment

    Science.gov (United States)

    Kai, Xue; Genghua, Liu; Yan, Jia; Ziqi, Chai; Jian, Lu

    2017-12-01

    In the case of partial discharge training for recruits who lack of on-site work experience, the risk of physical shock and damage of the test equipment may be due to the limited skill level and improper operation by new recruits. Partial discharge simulation tester is the use of simulation technology to achieve partial discharge test process simulation, relatively true reproduction of the local discharge process and results, so that the operator in the classroom will be able to get familiar with and understand the use of the test process and equipment.The teacher sets up the instrument to display different partial discharge waveforms so that the trainees can analyze the test results of different partial discharge types.

  2. Application of electrostatic prevention technology on polyethylene silos

    International Nuclear Information System (INIS)

    Gong, Hong; Liu, Quanzhen; Tan, Fenggui; Zhang, Yunpeng

    2013-01-01

    The main reasons of static electric explosion accidents in polyolefin plant silos were analyzed in this paper, and the study finds that the reasons include control failure of flammable gas content in the feed, high electrification caused by the wind supply, and frequent electrostatic discharge in silos. The electrostatic-reducing technologies of polyolefin powder were introduced, and its application performance in polyolefin plant silos was also clarified. In addition, the methods including FDCS and DGES for evaluation of electrostatic explosion in polyolefin plant silo were proposed. In the end, the risk of electrostatic explosion in PE plant blended silo was evaluated before and after application of electrostatic reducing technology.

  3. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-01-01

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators. (paper)

  4. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.

    Science.gov (United States)

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-07-07

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.

  5. Charging and absorption characteristics of small particulates under alternative and electrostatic voltages in an electrostatic precipitator

    International Nuclear Information System (INIS)

    Jiang Xue-Dong; Xu He; Wang Xin

    2014-01-01

    The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator (ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis. (physics of gases, plasmas, and electric discharges)

  6. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    Science.gov (United States)

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.

  7. The Contribution of Surface Potential to Diverse Problems in Electrostatics

    International Nuclear Information System (INIS)

    Horenstein, M

    2015-01-01

    Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric. (paper)

  8. Optical and electrostatic potential investigations of electrical breakdown phenomena in a low-pressure gas discharge lamp

    International Nuclear Information System (INIS)

    Gendre, M F; Haverlag, M; Kroesen, G M W

    2010-01-01

    The ignition phase is a critical stage in the operation of gas discharge lamps where the neutral gas enclosed between the electrodes undergoes a transformation from the dielectric state to a conducting phase, eventually enabling the production of light. The phenomena occurring during this phase transition are not fully understood and the related experimental studies are often limited to local optical measurements in environments prone to influencing these transient phenomena. In this work unipolar ignition phenomena at sub-kilovolt levels are investigated in a 3 Torr argon discharge tube. The lamp is placed in a highly controlled environment so as to prevent any bias on the measurements. A fast intensified CCD camera and a specially designed novel electrostatic probe are used simultaneously so as to provide a broad array of measured and computed parameters which are displayed in space-time diagrams for cross comparisons. Experiments show that three distinct phases exist during successful ignitions: upon the application of voltage a first ionization wave starts from the active electrode and propagates in the neutral gas towards the opposite electrode. A local front of high axial E field strength is associated with this process and causes a local ionization to occur, leading to the electrostatic charging of the lamp. Next, a second wave propagates from the ground electrode back towards the active electrode with a higher velocity, and in this process leads to a partial discharging of the lamp. This return stroke draws a homogeneous plasma column which eventually bridges both electrodes at the end of the wave propagation. At this point both electrode sheaths are formed and the common features of a glow discharge are observed. The third phase is an increase in the light intensity of the plasma column until the lamp reaches a steady-state operation. Failed ignitions present only the first phase where the first wave starts its propagation but extinguishes in the lamp

  9. Improvement of the performance of the electrostatic precipitators for coal thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, A. (ENEL, Pisa (IT)); Bogani, V.; Dinelli, G.; Mattachini, F.

    1986-10-01

    Electrostatic precipitators performances are greatly influenced by the physical and chemical characteristics of the particles which are to be collected; a very important role is played by electric resistivity of fly ash: when it is high we have a general increase in the number of discharges within the precipitator ,with a consequent decrease in collection efficiency and an increase in emissions. In order to avoid such a behaviour, a different kind of energization, based on the superposition of narrow voltage pulses to a DC voltage, may be used. A prototype of pulse power supply has been installed on the electrostatic precipitator of a coal burning 320 MWe thermal unit and some tests have been carried out to verify its performance with different operating conditions. Some results of the tests are presented here, together with the plan of the research which will develop on a new experimental electrostatic precipitator.

  10. Pending laboratory tests and the hospital discharge summary in patients discharged to sub-acute care.

    Science.gov (United States)

    Walz, Stacy E; Smith, Maureen; Cox, Elizabeth; Sattin, Justin; Kind, Amy J H

    2011-04-01

    Previous studies have noted a high (41%) prevalence and poor discharge summary communication of pending laboratory (lab) tests at the time of hospital discharge for general medical patients. However, the prevalence and communication of pending labs within a high-risk population, specifically those patients discharged to sub-acute care (i.e., skilled nursing, rehabilitation, long-term care), remains unknown. To determine the prevalence and nature of lab tests pending at hospital discharge and their inclusion within hospital discharge summaries, for common sub-acute care populations. Retrospective cohort study. Stroke, hip fracture, and cancer patients discharged from a single large academic medical center to sub-acute care, 2003-2005 (N = 564) Pending lab tests were abstracted from the laboratory information system (LIS) and from each patient's discharge summary, then grouped into 14 categories and compared. Microbiology tests were sub-divided by culture type and number of days pending prior to discharge. Of sub-acute care patients, 32% (181/564) were discharged with pending lab tests per the LIS; however, only 11% (20/181) of discharge summaries documented these. Patients most often left the hospital with pending microbiology tests (83% [150/181]), particularly blood and urine cultures, and reference lab tests (17% [30/181]). However, 82% (61/74) of patients' pending urine cultures did not have 24-hour preliminary results, and 19% (13/70) of patients' pending blood cultures did not have 48-hour preliminary results available at the time of hospital discharge. Approximately one-third of the sub-acute care patients in this study had labs pending at discharge, but few were documented within hospital discharge summaries. Even after considering the availability of preliminary microbiology results, these omissions remain common. Future studies should focus on improving the communication of pending lab tests at discharge and evaluating the impact that this improved

  11. Hazard of electrostatic generation in a pneumatic conveying system: electrostatic effects on the accuracy of electrical capacitance tomography measurements and generation of spark

    International Nuclear Information System (INIS)

    Zhang, Yan; Wang, Chi-Hwa; Liang, Yung Chii

    2008-01-01

    The study of the hazard of electrostatic generation in pneumatic conveying systems was attempted by examining the sensitivity of electrical capacitance tomography (ECT) and the phenomena of spark generation due to strong electrostatics. The influence on ECT measurement accuracy of an electrostatic charge was analysed with reference to a switch capacitor configuration model. Consequently, it was found that the electrostatic charge introduced at the bend with sharp angles influenced the ECT results most significantly in pneumatic conveying systems, especially for the cases where a spark was generated. The investigation of spark generation indicated that a strong electrostatic charge can cause major discharges inside or outside the pipeline to damage the experimental instrument in severe cases

  12. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    International Nuclear Information System (INIS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  13. Collection of low resistivity fly ash in an electrostatic precipitator

    International Nuclear Information System (INIS)

    Jędrusik, M; Świerczok, A; Jaworek, A

    2013-01-01

    Due to increasing restrictions on dust emission limits (IED directive), particularly in the fine particle size range, wider application of electrostatic precipitators (ESPs) in cleaning the combustion gases from stoker boilers can be anticipated. The objective of the model studies in this paper was to select the optimal construction of the discharge electrode in ESP for obtaining high collection efficiency of fly ash leaving stoker boilers. In these studies a test bench was constructed, which comprised one-stage model ESPs with a set of discharge and collecting electrodes. The main dimensions of the precipitator chamber were as follows: length of electric field 2.0 m; active height 0.45 m and spacing between the collecting electrodes 0.4 m. Four constructions of discharge electrode were tested for fly ash of different fractional sizes and chemical compositions. The aim of the tests was to determine the current-voltage characteristics and the discharge current distribution on the collection electrode so as to find out the optimal construction and ensure the maximal collection efficiency of ESP. The results of the collection efficiency measurements in these tests were compared with those obtained from an ordinary industrial ESP. The comparison shows that it is necessary to optimise the discharge electrode construction for a specific physico-chemical property of fly ash so as to obtain the highest collection efficiency.

  14. Application of Glow Discharge Plasma to Alter Surface Properties of Materials

    Science.gov (United States)

    Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.

    2005-01-01

    Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.

  15. Electrostatic probes in luminescent discharges

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da.

    1980-01-01

    A system to produce luminescent type plasma by continuos discharge and ionization by high frequency was constructed. The ionization was done in the air and in the argon under pressures from 3 to 10 mmHg. The parameters of a non magnetized collisional plasma and the parameters of a magnetized plasma such as, density, eletron temperature and potential, using a Langmuir probe with plane geometry, were determined. (M.C.K.) [pt

  16. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  17. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  18. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Jeong-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yu-Seok [Dongguk Univ.., Gyeongju (Korea, Republic of)

    2014-10-15

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand.

  19. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    International Nuclear Information System (INIS)

    Park, Sae-Hoon; Kim, Jeong-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub; Kim, Yu-Seok

    2014-01-01

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand

  20. Electrostatic induction under the Tanashi test transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Kitani, Y; Yokata, S

    1964-06-01

    Experimental results are given on the electrostatic voltage induced in small and medium-sized motorcars under the Tanashi 800 kV Test Transmission Line, which is of horizontal arrangement, 200 m span, four bundle conductors and average height of 13.52 m. The induced voltage was measured between 1600 and 3000 V under the line voltage of 520 kV. The voltage and current were measured with four kinds of model motorcars in air and water, and results of the measurements are compared with those of actual measurements with good agreements. The values of capacity and leakage resistance, whose parallel circuit was considered to represent an equivalent circuit of the motorcar, were measured with a Maxwell-Wien bridge at frequencies between 30 and 1000 c/s. It was found that the values at 60 c/s were measured to be approximately six or seven times higher than its values at 1000 c/s, and that new tires have higher conductivities than the old ones, reducing the electrostatic induction voltage by a large amount.

  1. Study of drain-extended NMOS under electrostatic discharge stress in 28 nm and 40 nm CMOS process

    Science.gov (United States)

    Wang, Weihuai; Jin, Hao; Dong, Shurong; Zhong, Lei; Han, Yan

    2016-02-01

    Researches on the electrostatic discharge (ESD) performance of drain-extended NMOS (DeNMOS) under the state-of-the-art 28 nm and 40 nm bulk CMOS process are performed in this paper. Three distinguishing phases of avalanche breakdown stage, depletion region push-out stage and parasitic NPN turn on stage of the gate-grounded DeNMOS (GG-DeNMOS) fabricated under 28 nm CMOS process measured with transmission line pulsing (TLP) test are analyzed through TCAD simulations and tape-out silicon verification detailedly. Damage mechanisms and failure spots of GG-DeNMOS under both CMOS processes are thermal breakdown of drain junction. Improvements based on the basic structure adjustments can increase the GG-DeNMOS robustness from original 2.87 mA/μm to the highest 5.41 mA/μm. Under 40 nm process, parameter adjustments based on the basic structure have no significant benefits on the robustness improvements. By inserting P+ segments in the N+ implantation of drain or an entire P+ strip between the N+ implantation of drain and polysilicon gate to form the typical DeMOS-SCR (silicon-controlled rectifier) structure, the ESD robustness can be enhanced from 1.83 mA/μm to 8.79 mA/μm and 29.78 mA/μm, respectively.

  2. Development of coaxial speaker-like non-contact electrostatic sensor for aviation engine exhaust electrostatic character research

    Directory of Open Access Journals (Sweden)

    Du Zhaoheng

    2015-01-01

    Full Text Available Electrostatic sensor is the most important equipment in aero-engine exhaust electrostatic character research. By comparing a variety of sensor test programs, the coaxial speaker-like noncontact electrostatic sensor program is proposed. Numerical simulation analysis indicates the electric field distribution of electrostatic sensor, the influence principle of gap width, outer diameter, center diameter, angle and other factors on the sensor capacitance values which identify the key indicators of electrostatic sensor. The experiment test shows that the simulation analysis is in good agreement with the experimental results.

  3. Pressure dependence of electron temperature using rf-floated electrostatic probes in rf plasmas

    International Nuclear Information System (INIS)

    Cantin, A.; Gagne, R.R.J.

    1977-01-01

    A new technique, which eliminates ac between probe and plasma by means of a ''follower'', permits electrostatic probes to be used in rf plasmas with a degree of confidence and accuracy which is equal, if not better, to that for a dc discharge. Measurements in argon, using this technique, have shown that electron temperature (T/sub e/) in an rf discharge is not higher than in dc discharge. Moreover the values of T/sub e/ do not agree with von Engel's law, but are in close agreement with a theory based on free diffusion and extrapolated up to values of pR=20 Torr cm (pressure times tube radius). These results are in contradiction with published electrostatic probe results for a positive column, but agree with published results as determined by microwave radiometry and optical spectroscopy. The hypothesis is made that the supporting evidence in favor of von Engel's law, afforded by published electrostatic probe results, could be due to an artifact

  4. Optics elements for modeling electrostatic lenses and accelerator components: III. Electrostatic deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    2000-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the envelope (matrix) computer code TRACE 3-D as a part of the development of a suite of electrostatic beamline element models which includes lenses, acceleration columns, quadrupoles and prisms. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the first-order modeling of cylindrical, spherical and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low-energy beamline at the Center for Accelerator Mass Spectrometry. Although initial tests following installation of the new beamline showed that the new spherical electrostatic analyzer was not behaving as predicted by these first-order models, operational conditions were found under which the analyzer now works properly as a double-focusing spherical electrostatic prism

  5. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  6. Investigation of an Electrostatic Discharge Protective Biodegradable Packaging Foam in the Logistic Chain

    Directory of Open Access Journals (Sweden)

    Mojzes Ákos

    2014-11-01

    Full Text Available Since the beginning of the 20th century, logistics has undergone a huge technological development, which has, however, resulted in many negative effects as well. The industry, particularly in the packaging industry has been a massive waste producer, although recently it has forced the use of new materials and it started to focus on environmentally friendly technologies. During the transportation of finished and semi-finished Electrostatic Discharge (ESD sensitive products, the product packaging system has a vital role. These kind of packaging materials must be suitable to both logistic (protection against mechanical and environmental stresses and special ESD protection requirements. During the transportation of printed-circuit electronic products, ESD defense is then of primary significance. However there is a huge disadvantage for the use of various shield bags. Namely, this kind of associated packaging is particularly pollutant, it causes a lot of inconvenience in the form of waste. In order to rule out these materials from the packaging system, new innovative solutions have to be found. The investigated TPS (thermoplastic starch biodegradable foam is subjected to a validation, a long process to certify that this material unites properties of two types of packaging materials at the same time. On the one hand, this packaging foam has to meet the requirements product defense. On the other hand, the material must be anti-static under the logistic stress effects. In case it is found suitable, it can be an alternative of the conventional materials. In this article, we investigate the ESD characteristic of TPS foam. As this material sensitive for environmental parameters during transportation, we make the relevant Surface Resistance (Rs tests on different temperature and humidity conditions. Based on result, the decision of the application can be done, as an ESD packaging material.

  7. Dust Transport And Force Equilibria In Magnetized Dusty DC Discharges

    International Nuclear Information System (INIS)

    Land, Victor; Thomas, Edward Jr.; Williams, Jeremaiah

    2005-01-01

    We have performed experiments on magnetized dusty Argon DC discharges. Here we report on the characterization of the plasma- and the dustparameters and on the response of the dust particles and the plasma to a change in the magnetic configuration inside the discharge. Finally, we show a case in which the balance of forces acting on the dust particles differs from the classical balance (in which the electrostatic force balances the downward force of gravity). In this case the electrostatic force acts as a downward force on the dust particles. From observations we will argue that the ion drag force might be the force that balances this downward electrostatic force

  8. Preconceptual design for the electrostatic enclosure

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-09-01

    This report presents a preconceptual design (design criteria and assumptions) for electrostatic enclosures to be used during buried transuranic waste recovery operations. These electrostatic enclosures (along with the application of dust control products) will provide an in-depth contamination control strategy. As part of this preconceptual design, options for electrostatic curtain design are given including both hardwall and fabric enclosures. Ventilation systems, doors, air locks, electrostatic curtains, and supporting systems also are discussed. In addition to the conceptual design, engineering scale tests are proposed to be run at the Test Reactor Area. The planned engineering scale tests will give final material specifications for full-scale retrieval demonstrations

  9. Electrostatic discharges and their effect on the validity of registered values in intracranial pressure monitors

    DEFF Research Database (Denmark)

    Andresen, Morten; Thomsen, Ole Cornelius; Juhler, Marianne

    2013-01-01

    Object Intracranial pressure (ICP) monitoring is used extensively in clinical practice, and as such, the accuracy of registered ICP values is paramount. Clinical observations of nonphysiological changes in ICP have called into question the accuracy of registered ICP values. Subsequently, the auth......Object Intracranial pressure (ICP) monitoring is used extensively in clinical practice, and as such, the accuracy of registered ICP values is paramount. Clinical observations of nonphysiological changes in ICP have called into question the accuracy of registered ICP values. Subsequently......, the authors have tried to determine if the ICP monitors from major manufacturers were affected by electrostatic discharges (ESDs), if the changes were permanent or transient in nature, and if the changes were modified by the addition of different electrical appliances normally used in the neurointensive care....... Results Five pressure monitors from 4 manufacturers were evaluated. Three monitors containing electrical circuitry at the tip of the transducer were all affected by ESDs. Clinically significant permanent changes in the reported ICP values for 1 pressure monitor were observed, as well as temporary...

  10. Gas temperature of capacitance spark discharge in air

    International Nuclear Information System (INIS)

    Ono, Ryo; Nifuku, Masaharu; Fujiwara, Shuzo; Horiguchi, Sadashige; Oda, Tetsuji

    2005-01-01

    Capacitance spark discharge has been widely used for studying the ignition of flammable gas caused by electrostatic discharge. In the present study, the gas temperature of capacitance spark discharge is measured. The gas temperature is an important factor in understanding the electrostatic ignition process because it influences the reaction rate of ignition. Spark discharge is generated in air with a pulse duration shorter than 100 ns. The discharge energy is set to 0.03-1 mJ. The rotational and vibrational temperatures of the N 2 molecule are measured using the emission spectrum of the N 2 second positive system. The rotational and vibrational temperatures are estimated to be 500 and 5000 K, respectively, which are independent of the discharge energy. This result indicates that most of the electron energy is consumed in the excitation of vibrational levels of molecules rather than the heating of the gas. The gas temperature after discharge is also measured by laser-induced fluorescence of OH radicals. It is shown that the gas temperature increases after discharge and reaches approximately 1000 K at 3 μs after discharge. Then the temperature decreases at a rate in the range of 8-35 K/μs depending on the discharge energy

  11. Electrostatic Detumble of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrostatic Tractor Technology research explores the harmony of physics and engineering to develop and test electrostatic actuation methods for touchless detumble...

  12. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Anglaret, G.; Lasne, M.

    1983-08-01

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  13. The Influence of Three-Layer Knitted Fabrics’ Structure on Electrostatic and Comfort Properties

    Directory of Open Access Journals (Sweden)

    Sandra VARNAITĖ ŽURAVLIOVA

    2013-12-01

    Full Text Available In our times, when electricity and electrical devices are around us every day, it is very important to be protected from electrostatic discharge. The best protection from electric charge dissipation provides conductive textile materials. For the last few decades fine and flexible conductive yarns were developed, which ensure very good electrostatic properties. Unfortunately, due to their chemical nature, these yarns do not distinguish good comfort properties. The main purpose of development of such textiles is to determine the influence of conductive yarns and hollow fiber yarns arrangements in the middle layer of the three layer weft-knitted fabrics to electrostatic and comfort properties. So, in order to have flexible textile materials with good electrostatic and comfort properties, multifunctional three layer weft-knitted fabrics of combined pattern were designed and manufactured for this research work. Two groups of polyester based three layer knitted fabrics with different arrangement of conductive yarns (such as carbon core yarn and polyester silver coated yarn and polyester yarn of special design (Coolmax®, Thermolite® were investigated. The parameters of electrostatic characteristics, such as surface and vertical resistances as well as charge decay properties were measured. The results have showed that all tested fabrics have excellent shielding properties. The main influence on the electrostatic properties of tested fabrics has the arrangement of conductive carbon core yarns inserted in the knits. In order to evaluate the comfort of knitted fabrics the air permeability, hygroscopicity, time of absorption and drying degree of fabrics were evaluated. It was determined, that the values of comfort parameters depend on the quantity and distribution of Coolmax® and Thermolite® yarns in the fabrics.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2235

  14. Electrostatic Evaluation of the ARES I FTS Antenna Materials

    Science.gov (United States)

    Hogue, Michael D.; Calle, Carlos I.

    2010-01-01

    Surface resistivity and volume resistivity data show all the tested non-metallic materials of the Ares I FTS antenna assembly to be insulative. The external materials (White foam, phenolic) should be able to develop a large surface charge density upon tribocharging with ice crystal impingement. Dielectric breakdown tests on the FTS antenna housing materials show that each of the insulative materials are very resistive to electrical breakdown. The thicknesses of these materials in a nominal housing should protect the antenna from direct breakdown from external triboelectric charging potentials. Per data from the Air Force study, a maximum external electric potential in the range of 100kV can be developed on surfaces tribocharged by ice crystal impingement. Testing showed that under operational pressure ranges, this level of exterior voltage can result in a potential of about 6 kV induced on the electrically floating interior antenna vanes. Testing the vanes up to this voltage level showed that electrostatic discharges can occur between the electrically floating vanes and the center, grounded screw heads. Repeated tests with multiple invisible and visible discharges caused only superficial physical damage to the vanes. Fourier analysis of the discharge signals showed that the frequency range of credible discharges would not interfere with the nominal operation of the FTS antenna. However, due to the limited scope, short timetable, and limited funding of this study, a direct measurement of the triboelectric charge that could be generated on the Ares I antenna housing when the rocket traverses an ice cloud at supersonic speeds was not performed. Instead, data for the limited Air Force study [3] was used as input for our experiments. The Air Force data used was not collected with a sensor located to provide us with the best approximation at the geometry of the Ares I rocket, namely that of the windshield electrometer, because brush discharges to the metal frame of the

  15. Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. II: Particle-in-cell simulations

    International Nuclear Information System (INIS)

    Kurilenkov, Yu. K.; Tarakanov, V. P.; Gus'kov, S. Yu.

    2010-01-01

    Results of particle-in-sell simulations of ion acceleration by using the KARAT code in a cylindrical geometry in the problem formulation corresponding to an actual experiment with a low-energy vacuum discharge with a hollow cathode are presented. The fundamental role of the formed virtual cathode is analyzed. The space-time dynamics of potential wells related to the formation of the virtual cathode is discussed. Quasi-steady potential wells (with a depth of ∼80% of the applied voltage) cause acceleration of deuterium ions to energies about the electron beam energy (∼50 keV). In the well, a quasi-isotropic velocity distribution function of fast ions forms. The results obtained are compared with available data on inertial electrostatic confinement fusion (IECF). In particular, similar correlations between the structure of potential wells and the neutron yield, as well as the scaling of the fusion power density, which increases with decreasing virtual cathode radius and increasing potential well depth, are considered. The chosen electrode configuration and potential well parameters provide power densities of nuclear DD fusion in a nanosecond vacuum discharge noticeably higher than those achieved in other similar IECF systems.

  16. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    Science.gov (United States)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  17. Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

  18. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  19. PREFACE: 13th International Conference on Electrostatics

    Science.gov (United States)

    Taylor, D. Martin

    2011-06-01

    Electrostatics 2011 was held in the city of Bangor which is located in North West Wales in an area of outstanding natural beauty close to the Snowdonia mountain range and bordering the Irish Sea. The history of the area goes back into the mists of times, but a continuous technological thread can be traced from the stone- and bronze-age craftsmen, who inhabited the area several thousand years ago, via the civil engineering and fortifications of the Romans and Edward I of England, through Marconi's long-wave trans-Atlantic transmitter near Caernarfon to the conference host. The School of Electronic Engineering at Bangor University has contributed much to the discipline of Electrostatics not only in teaching and research but also in supporting industry. It was a great pleasure for me, therefore, to have the pleasure of welcoming the world's experts in Electrostatics to Bangor in April 2011. In my preface to the Proceedings of Electrostatics 1999, I reported that almost 90 papers were presented. Interestingly, a similar number were presented in 2011 testifying to the importance and endurance of the subject. The all-embracing nature of electrostatics is captured in the pictorial depiction used for the conference logo: a hand-held plasma ball with its close link to gaseous discharges and the superimposed Antarctic aurora highlighting the featured conference themes of atmospheric, planetary and environmental electrostatics. Leading these themes were three invited contributions, the first by Giles Harrison who delivered the Bill Bright Memorial Lecture 'Fair weather atmospheric electricity', Carlos Calle on 'The electrostatic environments of Mars and the Moon' and Istvan Berta on 'Lightning protection - challenges, solutions and questionable steps in the 21st century'. Leading other key sessions were invited papers by Atsushi Ohsawa on 'Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry' and Antonio

  20. Excitation of electrostatic ion cyclotron wave in electron beam plasma system

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1984-01-01

    The electrostatic ion cyclotron waves excited in an electron beam plasma system was investigated. The excitation condition of the waves was calculated by using Harris type dispersion relation under some assumption, and its comparison with the experimental result was made. Beam plasma discharge is a kind of RF discharge, and it is caused by the waves generated by the interaction of electron beam with plasma. It was shown that electrostatic ion cyclotron waves seemed to be the most probable as excited waves. But the excitation mechanism of these waves has not been concretely investigated. In this study, the excitation condition of electrostatic ion cyclotron waves was calculated as described above. The experimental apparatus and the results of potential, electric field and ion saturation current in beam plasma, electron drift motion in azimuthal direction and the waves excited in beam plasma are reported. The frequency of oscillation observed in beam plasma corresponds to the harmonics or subharmonics of ion cyclotron frequency. The calculation of Harris type dispersion relation, the numerical calculation and the comparison of the experimental result with the calculated result are described. (Kako, I.)

  1. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P. [Russian Academy of Sciences, High Energy Density Research Center, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3}, the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.

  2. Electrical discharge occurring between a negatively charged particle cloud and a grounded sphere electrode

    International Nuclear Information System (INIS)

    Higashiyama, Y; Migita, S; Toki, K; Sugimoto, T

    2008-01-01

    Electrostatic discharge occurring between a space-charge cloud and a grounded object was investigated using a large-scale charged particle cloud formed by using three set of cloud generators consisting of a blower and corona charger. The ejecting velocity of the particles affects the formation of the charged cloud. At the lower velocity, the charged cloud spread due to electrostatic repulsion force, while at the higher velocity cloud forms an elongated conical shape. To cause electrostatic discharge between the cloud and a grounded object, a grounded sphere electrode with 100 mm in diameter was set at the inside or outside of the cloud. The brush-like discharge channels reached the maximum length of 0.55 m. The discharge current has a waveform with single or multi-peak, a current peak of several amperes, the maximum charge quantity of 2 μC, and the duration of several microseconds. The relationship between the charge quantity and the current peak or the duration in each discharge was examined. The discharge between the cloud and the electrode placed at the outside of the cloud has relatively longer channels and multi-peak current with the longer duration, while that at the inside of the cloud has the lower charge quantity with single peak.

  3. Testing and analysis of a fast discharge homopolar machine (FDX)

    International Nuclear Information System (INIS)

    Bullion, T.M.; Zowarka, R.; Driga, M.D.; Gully, J.H.; Rylander, H.G.; Tolk, K.M.; Weldon, W.F.; Woodson, H.H.

    1979-01-01

    The Fast Discharge Experiment (FDX) is a 0.36 MJ, 200 V homopolar machine designed to discharge in one millisecond. This experiment is intended to establish the fundamental limitations involved in extracting energy in the shortest time from a flywheel using homopolar conversion. After initial testing of FDX was completed and data was analyzed, problems limiting performance were identified. Various components of the machine were redesigned and modified to correct these problems. A second set of tests, including short circuit discharges from various speeds, has recently been conducted. Results and analysis of these tests will be presented. New problems encountered as well as recommendations for additional work will also be given

  4. Magnetic and electrostatic fluctuation measurements on the ZT-40M reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.; Ingraham, J.C.; Munson, C.P.; Schoenberg, K.F.; Weber, P.G.; Tsui, H.Y.; Ritz, C.P.

    1990-01-01

    It is presently unknown whether anomalous transport in toroidal, magnetically confined plasma systems, if fluctuation induced, is dominated by electrostatic or magnetic turbulence. We are participating in a joint study of the edge plasmas of tokamak, stellarator, and RFP in an attempt to elucidate this issue. We measure magnetic and electrostatic fields using probes inserted into the edge of the ZT-40M RFP. Using the present technique, with stationary probes, these measurements can be done without damaging the probes only for low current discharges (60 kA). In this initial study, we find that both turbulent magnetic and electrostatic transport are of importance. (author) 10 refs., 2 figs., 1 tab

  5. Partial discharge testing of in-situ power cable accessories

    Energy Technology Data Exchange (ETDEWEB)

    Orban, H. E.

    2002-07-01

    An overview of commercially available diagnostic methods for in-situ power cable accessories is given and relevant field experiences with these diagnostics are described. The discussion includes both PILC and polymeric insulated cables. Two major types of degradation are most frequently involved in cable systems. One is an overall condition caused by chemical aging and /or water treeing. Diagnostics for this type of aging include dissipation factor (loss angle), harmonic analysis, return voltage, isothermal relaxation current, dielectric response, or dc leakage current. The second type of degradation is discrete or incremental; condition assessment utilizes dissipation factor measurements or partial discharge (PD) level measurements. The focus in this paper is on PD diagnostics, especially off-line methods such as the 60 Hz test, the combined AC and VLF diagnostic, and the oscillating wave test system test. Among on-line diagnostics, ultrasonic detection of partial discharge and measurement of partial discharge by installing direct, capacitive or inductive couplers near cable accessories, are described. Overall, partial discharge detection and location in cable accessories is considered inadequate, since interpretation of results is difficult due to the number of variables involved. 28 refs., 1 tab.

  6. Research on electrostatic electrification during jet kerosene spraying

    International Nuclear Information System (INIS)

    Liu, Quanzhen; Li, Yipeng; Zhang, Wentian; Sun, Keping

    2013-01-01

    Multiple electrostatic electrifications during aircraft fuelling process may cause a fire disaster or explosion, so study on the protection measure for electrostatic electrification is very important for the security of aircraft fuelling. This paper investigated the electrostatic voltage and charge of the fuel nozzle and metal parts during the fuel spraying by self-designed jet kerosene spraying electrostatic electrification test system. The experimental results indicate that the voltage on the fuel nozzle and metal parts is very dangerous for electrostatic safety if they are not reliably grounded.

  7. Propagation characteristics and relation between electrostatic and magnetic fluctuations in DITE

    International Nuclear Information System (INIS)

    Vayakis, G.

    1993-01-01

    An account is given of experiments on the DITE tokamak, using a fast reciprocating set of combined Langmuir and magnetic probes in the same discharge to compare the propagation characteristics of the turbulent electrostatic and magnetic perturbations with those expected from the measured local electric field and pressure gradient, and to investigate the effect of shear on cross-field transport. In addition, the relation between the electrostatic and magnetic aspects of the turbulence is investigated using direct cross-spectral measurements. The results are consistent with a picture in which magnetic fluctuations in the edge are due to currents driven by the basically electrostatic turbulence, whose own propagation behaviour is dominated by the effects of the sheared E X B/B 2 velocity. (author). 35 refs, 18 figs, 1 tab

  8. Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process

    International Nuclear Information System (INIS)

    Liu Qingming; Huang Jinxiang; Shao Huige; Zhang Yunming

    2017-01-01

    Ignition energy is one of the important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%–14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. (paper)

  9. Electrostatic Plasma Accelerator (EPA)

    Science.gov (United States)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  10. Some problems in the technique of high-voltage testing of the accelerating tube gaps in electrostatic accelerators

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Mukhametshin, V.I.; Dmitriev, E.P.; Kidalov, A.I.

    1983-01-01

    Problems arising during high-voltage testing and training of accelerating taubes of electrostatic accelrators are discussed. A rig and technique of the accelerating tube testing and program designed for the processing of the data obtained and sorting out of the samples investigated are described

  11. Method and apparatus for debris mitigation for an electrical discharge source

    Science.gov (United States)

    Klebanoff, Leonard E [San Clemente, CA; Rader, Daniel J [Albuquerque, NM; Silfvast, William T [Helena, CA

    2006-01-24

    Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

  12. Metod And Apparatus For Debris Mitigation For An Electrical Discharge Source

    Science.gov (United States)

    Klebanoff, Leonard E.; Silfvast, William T.; Rader, Daniel J.

    2005-05-03

    Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

  13. Development and feasibility testing of the Pediatric Emergency Discharge Interaction Coding Scheme.

    Science.gov (United States)

    Curran, Janet A; Taylor, Alexandra; Chorney, Jill; Porter, Stephen; Murphy, Andrea; MacPhee, Shannon; Bishop, Andrea; Haworth, Rebecca

    2017-08-01

    Discharge communication is an important aspect of high-quality emergency care. This study addresses the gap in knowledge on how to describe discharge communication in a paediatric emergency department (ED). The objective of this feasibility study was to develop and test a coding scheme to characterize discharge communication between health-care providers (HCPs) and caregivers who visit the ED with their children. The Pediatric Emergency Discharge Interaction Coding Scheme (PEDICS) and coding manual were developed following a review of the literature and an iterative refinement process involving HCP observations, inter-rater assessments and team consensus. The coding scheme was pilot-tested through observations of HCPs across a range of shifts in one urban paediatric ED. Overall, 329 patient observations were carried out across 50 observational shifts. Inter-rater reliability was evaluated in 16% of the observations. The final version of the PEDICS contained 41 communication elements. Kappa scores were greater than .60 for the majority of communication elements. The most frequently observed communication elements were under the Introduction node and the least frequently observed were under the Social Concerns node. HCPs initiated the majority of the communication. Pediatric Emergency Discharge Interaction Coding Scheme addresses an important gap in the discharge communication literature. The tool is useful for mapping patterns of discharge communication between HCPs and caregivers. Results from our pilot test identified deficits in specific areas of discharge communication that could impact adherence to discharge instructions. The PEDICS would benefit from further testing with a different sample of HCPs. © 2017 The Authors. Health Expectations Published by John Wiley & Sons Ltd.

  14. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    International Nuclear Information System (INIS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Taliercio, C.; Trevisan, L.; Schiesko, L.

    2014-01-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values

  15. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    Science.gov (United States)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  16. Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.

    Science.gov (United States)

    Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  17. High voltage tests of an electrostatic accelerator for different mixtures of gases at various pressures

    International Nuclear Information System (INIS)

    Hellborg, R.

    1996-01-01

    An account is given of high voltage tests of an electrostatic accelerator. High voltage conditioning is measured and is reported for the same accelerator tube after different periods of usage. Tests of different mixtures of sulphur hexafluoride and nitrogen have been performed. A considerable amount of data was obtained for various parameters connected with the high voltage system for different proportions of nitrogen in sulphur hexafluoride at various gas pressures. (orig.)

  18. Construction and Initial Tests of the Electrostatic Septa for MedAustron

    CERN Document Server

    Borburgh, J; Boucly, C; Kramer, T; Prost, A; Dorda, U; Stadlbauer, T

    2013-01-01

    For the MedAustron facility under construction in Wiener Neustadt/Austria, two electrostatic septa are built in collaboration with CERN. These septa will be used for the multi-turn injection of protons and ions, as well as for the slow extraction from the synchrotron. The power supplies are designed to combine the required precision with the capability to cycle sufficiently fast to keep up with the machine cycle. The septa are being assembled at CERN. Initial tests have been done on the remote displacement system to validate its precision and communication protocol with the MedAustron control system. Subsequently the septa are tested for vacuum performance and then HV conditioned. The construction of the septa, the requirements of the power supplies and the high voltage circuit will be described. Results of the initial laboratory tests, prior to installation in the accelerator, will be given.

  19. Modeling of discharge-triggered electric field redistribution on the interior components of a satellite

    International Nuclear Information System (INIS)

    Varga, L.; Horvath, E.B.

    1999-01-01

    This work examines an electrostatic charging/discharging cycle of a populated circuit board inside an equipment housing of a satellite at GEO. Component potentials and electric field strengths are examined before and after a common ground discharge event. Field reversal after the discharge suggests that favourable conditions exist for charge dissipation from dielectrics. (authors)

  20. Design, fabrication, and testing of a fast discharge homopolar machine (FDX)

    International Nuclear Information System (INIS)

    Gully, J.H.; Driga, M.D.; Grant, B.; Rylander, H.G.; Tolk, K.M.; Weldon, W.F.; Woodson, H.H.

    1977-01-01

    The Fast Discharge Experiment (FDX) is a 0.36 MJ, 200 V homopolar machine designed to discharge in one millisecond. All components, including dual brush actuation systems, a room-temperature 2 x 10 6 A-t pulsed copper coil, two aluminum rotors with copper slip rings, low inductance return conductors, coaxial transmission line, four fast closing (30 μsec), megamp switches, hydrostatic journal bearings, squeeze film thrust bearings and a fiberglass reinforced epoxy structure have been fabricated and assembled. The detail design of machine components is presented. Preliminary testing, including rotor spin-ups, brush actuation, switch making, and pulsed field coil tests have been concluded. A low speed, short-circuit discharge of FDX has recently been conducted. Experimental data from these tests are compared with theoretical predictions

  1. Recurrent plot analysis of discharge sequences in tracking test of polybutylene polymers

    Energy Technology Data Exchange (ETDEWEB)

    Du, B X; Gu, L; Dong, D S [Key Laboratory of Power System Simulation and Control of Ministry of Education, Department of Electrical Engineering, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Zheng, X L [Henan Electric Power Survey and Design Institute, Henan 450007 (China)], E-mail: duboxue@tju.edu.cn

    2008-10-07

    Polymers are required to use in radiation environments as insulation materials. However, they often suffer from tracking failure. There is an increasing demand to evaluate radiation effects on dielectric performance. This paper presents a recurrence plot (RP) approach to analyse surface discharge sequences of gamma-ray irradiated polymer materials based on tracking test. Studying the non-linear characteristics of discharge sequences can assist in understanding the underlying mechanism of the discharge process. Discharge sequences of the test are extended to m-dimensional phase space by using the phase space reconstructed method. As test samples, polybutylene terephthalate (PBT) and polybutylene naphthalate (PBN) were irradiated to 100 kGy and then up to 1 MGy with a dosage rate of 10 kGy h{sup -1} by using a {sup 60}Co gamma source. The tracking tests were carried out according to the test method described in IEC60112. It is found that the RPs can give visual recurrent patterns of discharge sequences for identification of the effects of gamma-ray radiation dosage on the resistance to tracking of the polymers. The detection of recurrent patterns together with comparative tracking index value results indicate that with the increase in the radiation dosage, the resistance to tracking of PBT decreases, but increases for PBN.

  2. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  3. Edge gradient and safety factor effects on electrostatic turbulent transport in tokamaks

    International Nuclear Information System (INIS)

    Tan, Ing Hwie.

    1992-05-01

    Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes

  4. Optimization of the shape of the HV electrode of the electrostatic deflectors for the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    De Martinis, C.; Ferrari, A.

    1987-01-01

    The electrostatic deflectors for the extraction of the beam from the Milan Superconducting Cyclotron are presently under development. The early tests showed that major troubles arise from the modifications induced in the discharge mechanism by the presence of the magnetic field, resulting in a drastic reduction of the deflector performances. Therefore a detailed analysis of the electric field configuration of the deflector has been carried out in order to improve its performances. In this paper the results so far obtained in the optimization of the shape of the electrode and insulator fixing are reported

  5. Take-Home Electrostatics Experiments

    Science.gov (United States)

    Brown, Michael H.

    1997-10-01

    Important concepts in electrostatics can be taught using apparatus that students can find or build at home. A TV or monitor screens serves as the source of a strong electric field (10,000 V/m). It can be used to charge a capacitor made from foil-covered cardboard plates supported by the bottom of a plastic pop bottle. A foil ball suspended between the plates transfers charges in a version of Franklin's experiment. An electric dipole compass,made of carnauba wax polarized in the electric field of the TV, can be used to map the fringing field of the capacitor. Discharge of charged foil-covered balls produces ``static'' that can be detected with an AM radio. *supported in part by NSF CCD grant DUE-9555215

  6. Study and optimization of the partial discharges in capacitor model ...

    African Journals Online (AJOL)

    The initial potential as well as the temperature are known to influence the partial discharge ... The development of electrostatic industry has ... the liquid impregnation. One of the ..... the Surface of Corona charged Uniforms layers of HIPS.

  7. Lessons learned from implementation of a computerized application for pending tests at hospital discharge.

    Science.gov (United States)

    Dalal, Anuj K; Poon, Eric G; Karson, Andrew S; Gandhi, Tejal K; Roy, Christopher L

    2011-01-01

    Patients are often discharged from the hospital before test results are finalized. Awareness of these results is poor and therefore an important patient safety concern. Few computerized systems have been deployed at care transitions to address this problem. We describe an attempt to implement a computerized application to help inpatient physicians manage these test results. We modified an ambulatory electronic medical record (EMR)-based results management application to track pending tests at hospital discharge (Hospitalist Results Manager, HRM). We trained inpatient physicians at 2 academic medical centers to track these tests using this application. We surveyed inpatient physicians regarding usage of and satisfaction with the application, barriers to use, and the characteristics of an ideal system to track pending tests at discharge. Of 29 survey respondents, 14 (48%) reported never using HRM, and 13 (45%) used it 1 to 2 times per week. A total of 23 (79%) reported barriers prohibiting use, including being inundated with clinically "irrelevant" results, not having sufficient time, and a lack of integration of post-discharge test result management into usual workflow. Twenty-one (72%) wanted to receive notification of abnormal and clinician-designated pending test results. Twenty-seven physicians (93%) agreed that an ideally designed computerized application would be valuable for managing pending tests at discharge. Although inpatient physicians would highly value a computerized application to manage pending tests at discharge, the characteristics of an ideal system are unclear and there are important barriers prohibiting adoption and optimal usage of such systems. We outline suggestions for future electronic systems to manage pending tests at discharge. Copyright © 2010 Society of Hospital Medicine.

  8. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The

  9. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  10. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  11. The measurement and analysis of electric fields in glow discharge plasmas

    International Nuclear Information System (INIS)

    Lawler, J.E.; Doughty, D.A.

    1994-01-01

    Interest in glow discharge plasmas has remained high for many decades because of their widespread application as a source of incoherent and coherent light, in plasma processing materials, in pulsed power devices, and in other technologies. Plasma etching of semiconductors and various plasma deposition process emerged as major applications during the 1980s. The technological significance of plasma processing is described in Plasma Processing of Materials. More fundamental work on glow discharges also advanced greatly during the 1980s. For example, substantial progress was made through the use of laser diagnostics to study glow discharges and as a result of the dramatically increased computing power that became available in the 1980s to model glow discharges. Many of the laser diagnostics are described in Radiative Processes in Discharge Plasmas. Kinetic theory models, in particular, became far more sophisticated and realistic during the 1980s. This article is a review of recent work that used optical diagnostics to study electric fields in glow discharge plasmas. Alternative methods for measuring electric electric fields in plasmas include electron beam deflection and electrostatic probes. Optical techniques have important advantages over these methods: They can be used at higher pressures and discharge current densities than electron beam deflection; and they are noninvasive, unlike electrostatic probes. In addition, optical techniques are usually easier to apply in a highly pure system than either of the alternative methods. 46 refs., 23 figs., 1 tab

  12. PREFACE: Electrostatics 2015

    Science.gov (United States)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  13. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna

    Science.gov (United States)

    Gu, Yongzhen; Duan, Baoyan; Du, Jingli

    2018-05-01

    The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.

  14. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  15. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    International Nuclear Information System (INIS)

    Woodhead, S R; Denham, J C; Armour-Chelu, D I

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results

  16. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  17. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  18. A Small Area In-Situ MEMS Test Structure to Accurately Measure Fracture Strength by Electrostatic Probing

    Energy Technology Data Exchange (ETDEWEB)

    Bitsie, Fernando; Jensen, Brian D.; de Boer, Maarten

    1999-07-15

    We have designed, fabricated, tested and modeled a first generation small area test structure for MEMS fracture studies by electrostatic rather than mechanical probing. Because of its small area, this device has potential applications as a lot monitor of strength or fatigue of the MEMS structural material. By matching deflection versus applied voltage data to a 3-D model of the test structure, we develop high confidence that the local stresses achieved in the gage section are greater than 1 GPa. Brittle failure of the polycrystalline silicon was observed.

  19. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  20. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  1. Using computerized provider order entry to enforce documentation of tests with pending results at hospital discharge.

    Science.gov (United States)

    Cadwallader, J; Asirwa, C; Li, X; Kesterson, J; Tierney, W M; Were, M C

    2012-01-01

    Small numbers of tests with pending results are documented in hospital discharge summaries leading to breakdown in communication and medical errors due to inadequate followup. Evaluate effect of using a computerized provider order entry (CPOE) system to enforce documentation of tests with pending results into hospital discharge summaries. We assessed the percent of all tests with pending results and those with actionable results that were documented before (n = 182 discharges) and after (n = 203 discharges) implementing the CPOE-enforcement tool. We also surveyed providers (n = 52) about the enforcement functionality. Documentation of all tests with pending results improved from 12% (87/701 tests) before to 22% (178/812 tests) (p = 0.02) after implementation. Documentation of tests with eventual actionable results increased from 0% (0/24) to 50% (14/28)(ppending results into discharge summaries significantly increased documentation rates, especially of actionable tests. However, gaps in documentation still exist.

  2. Charge measurement and mitigation for the main test masses of the GEO 600 gravitational wave observatory

    International Nuclear Information System (INIS)

    Hewitson, M; Danzmann, K; Grote, H; Hild, S; Hough, J; Lueck, H; Rowan, S; Smith, J R; Strain, K A; Willke, B

    2007-01-01

    Spurious charging of the test masses in gravitational wave interferometers is a well-known problem. Typically, concern arises due to the possibility of increased thermal noise due to a lowering of the quality factor of modes of the test-mass suspension, or due to the potential for increased displacement noise arising from charge migration on the surface of the test masses. Recent experience gained at the GEO 600 gravitational wave detector has highlighted an additional problem. GEO 600 uses electrostatic actuators to control the longitudinal position of the main test masses. The presence of charge on the test masses is shown to strongly affect the performance of the electrostatic actuators. This paper reports on a measurement scheme whereby the charge state of the GEO 600 test masses can be measured using the electrostatic actuators. The resulting measurements are expressed in terms of an effective bias voltage on the electrostatic actuators. We also describe attempts to remove the charge from the test masses and we show that the use of UV illumination was the most successful. Using UV illumination we were able to discharge and re-charge the test masses

  3. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  4. Thermal energy harvesters with piezoelectric or electrostatic transducer

    Science.gov (United States)

    Prokaryn, Piotr; Domański, Krzysztof; Marchewka, Michał; Tomaszewski, Daniel; Grabiec, Piotr; Puscasu, Onoriu; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    This paper describes the idea of the energy harvester which converts thermal gradient present in environment into electricity. Two kinds of such devices are proposed and their prototypes are shown and discussed. The main parts of harvesters are bimetallic spring, piezoelectric transducer or electrostatic transducer with electret. The applied piezomembrane was commercial available product but electrets was made by authors. In the paper a fabrication procedure of electrets formed by the corona discharge process is described. Devices were compared in terms of generated power, charging current, and the voltage across a storage capacitor.

  5. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  6. Performance of a CW double electric discharge for supersonic CO lasers

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.

  7. Partial Discharge Tests using the Cigré II method

    DEFF Research Database (Denmark)

    Casale, M. Di Lorenzo del; Schifani, R.; Holbøll, Joachim

    2000-01-01

    In this paper, the results of an experimental project on insulating material aging, performed in both Denmark and Italy, are reported. This study was concerned with partial discharge (PD) behavior at temperatures between 30 and 80°C using CIGRE method II. The material tested was a commercial...... polymethylmethacrylate (PMMA) which was chosen not for its good dielectric properties but rather because much of its discharge resistance data at ambient temperature is already well documented. A description is given of the theoretical and experimental methodology followed in this work. Mixed Weibull analysis techniques...... in terms of the PD amplitude and phase distribution characteristics were employed to distinguish the presence of different aging mechanisms. Such a difference was observed at 30 and at 80°C. At 30°C the analysis inferred a single discharge aging process acting until breakdown, while at 80°C the results...

  8. The energy distribution structure and dynamic characteristics of energy release in electrostatic discharge process

    OpenAIRE

    Liu, Qingming; Shao, Huige; Zhang, Yunming

    2015-01-01

    The detail structure of energy output and the dynamic characteristics of electric spark discharge process have been studied to calculate the energy of electric spark induced plasma under different discharge condition accurately. A series of electric spark discharge experiments were conducted with the capacitor stored energy in the range of 10J 100J and 1000J respectively. And the resistance of wire, switch and plasma between electrodes were evaluated by different methods. An optimized method ...

  9. Microscopic models for bridging electrostatics and currents

    Science.gov (United States)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  10. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  11. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    Science.gov (United States)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  12. Transient voltage suppressor diode designed for the protection of high-brightness GaN-based LEDs from various electrostatic discharge shocks

    International Nuclear Information System (INIS)

    Bouangeune, Daoheung; Lee, Yeji; Cho, Jaehee; Shim, Kyuhwan; Choi, Cheljong; Choi, Sangsik; Cho, Deokho

    2014-01-01

    Transient voltage suppressor (TVS) diodes were fabricated using low-temperature epitaxy technology and were employed to improve the electrostatic discharge (ESD) strength of GaN light emitting diodes (LEDs). The ESD performance and the protection capability of the TVS diodes were investigated using various ESD simulators of the human body model (HBM), the IEC (International Electrotechnical Commission) 61000-4-2 (IEC), and a transmission line pulse (TLP) analysis. According to the IEC, the manufactured TVS diode could withstand in excess of ±30 kV without any degradation in the I-V characteristics; meanwhile, the GaN LED itself exhibited catastrophic degradation caused by weak ESD power. The GaN LED assembled with the TVS diode had improved ESD robustness from ±3.8 kV to ±8 kV according to the HBM, from ±1.2 kV to > ±30 kV according to the IEC, and from 4.3 A to > ±30 A according to the TLP analysis. Furthermore, its performance was maintained perfect I-V manner with negligible changes in radiant power, leakage current and breakdown voltage up to the limit of the ESD simulators. Namely, the manufactured TVS diodes were effective in the protection of sensitive GaN LEDs from very strong ESD shocks.

  13. Transient voltage suppressor diode designed for the protection of high-brightness GaN-based LEDs from various electrostatic discharge shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bouangeune, Daoheung; Lee, Yeji; Cho, Jaehee; Shim, Kyuhwan; Choi, Cheljong [Chonbuk National University, Jeonju (Korea, Republic of); Choi, Sangsik; Cho, Deokho [Sigetronics, Inc., Jeonju (Korea, Republic of)

    2014-10-15

    Transient voltage suppressor (TVS) diodes were fabricated using low-temperature epitaxy technology and were employed to improve the electrostatic discharge (ESD) strength of GaN light emitting diodes (LEDs). The ESD performance and the protection capability of the TVS diodes were investigated using various ESD simulators of the human body model (HBM), the IEC (International Electrotechnical Commission) 61000-4-2 (IEC), and a transmission line pulse (TLP) analysis. According to the IEC, the manufactured TVS diode could withstand in excess of ±30 kV without any degradation in the I-V characteristics; meanwhile, the GaN LED itself exhibited catastrophic degradation caused by weak ESD power. The GaN LED assembled with the TVS diode had improved ESD robustness from ±3.8 kV to ±8 kV according to the HBM, from ±1.2 kV to > ±30 kV according to the IEC, and from 4.3 A to > ±30 A according to the TLP analysis. Furthermore, its performance was maintained perfect I-V manner with negligible changes in radiant power, leakage current and breakdown voltage up to the limit of the ESD simulators. Namely, the manufactured TVS diodes were effective in the protection of sensitive GaN LEDs from very strong ESD shocks.

  14. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly...

  15. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr; Kumar, K. Kishor; Arnas, C. [Laboratoire de Physique des Interactions Ioniques et Moléculaires, CNRS, Aix-Marseille Université, 13397 Marseille (France)

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

  16. Space-time electrostatic probing of low-pressure discharge lamps during the early stages of electrical breakdown

    NARCIS (Netherlands)

    Gendre, M.F.; Bowden, M.D.; Haverlag, M.; Nieuwenhuizen, van den H.C.M.; Gielen, J.W.A.M.; Kroesen, G.M.W.

    2005-01-01

    The lime and space evolution of the electrostatic potential of a low-pressure lamp is investigated during ignition with a special capacitive probe. Observations show that ionisation waves propagate back and forth in the lamp, coinciding with the displacement of a local region of strong potential

  17. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  18. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  19. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  20. Potential of electrical gas discharges for pollution control of large gas volumes

    International Nuclear Information System (INIS)

    Kogelschatz, U.

    1997-01-01

    Non-equilibrium gas discharges in many cases offer an innovative approach to the solution cf industrial air pollution problems. Negative corona discharges are used in electrostatic precipitators to collect dust and fly ash particles. Pulsed positive streamer coronas, dielectric-barrier discharges and possibly also flow-stabilised high pressure glow discharges are emerging technologies for the destruction of air pollutants like nitrogen oxides and sulfur dioxide in flue gases and volatile organic compounds (VOCs) in industrial effluents. The different discharge types are discussed with special emphasis on their potential for upscaling. Major applications are expected particularly in the removal of dilute concentrations of air pollutants, in odour control and in the simultaneous removal of different pollutants. Dielectric-barrier discharges exhibit disposal efficiencies similar to those of pulsed positive streamer coronas and require less sophisticated feeding circuits in large-scale industrial applications. (author)

  1. Designing, developing, and testing an app for parents being discharged early postnatally

    DEFF Research Database (Denmark)

    Danbjørg, Dorthe Boe; Wagner, Lis; Clemensen, Jane

    2014-01-01

    In Denmark and internationally, earlier discharge of postnatal patients presents a challenge to find innovative ways of providing follow-up support to new mothers who may be discharged early. The purpose of this participatory design study is to describe the process of the design, development, and...... testing. •We designed, developed, and testet an app for the iPad.•The app was viable, but the app requires refinements and wider testing.•The app met the new families' needs for follow-up support.•There is a potential for ensuring postnatal security with the use of technology....

  2. Air ionizer application for electrostatic discharge (ESD) dust removal in automotive painting industry

    Science.gov (United States)

    Yosri, M. H.; Muhamad, P.; Ismail, M. A.; Yatim, N. H. M.

    2018-01-01

    Dust and fiber have been identified among the highest contributor for the defect in automotive painting line with range from 40% to 50% of total defect breakdown. Eventually, those defects will effect on both visual appearance and also the performance of the parts. In addition, the significance of controlling dust in an assembly line is crucial in order to maintain the quality of the product, part performance yield and effect on workers’ health [1]. By considering the principle and technology applied in electronic clean room technology, the ionizer have been introduce to control dust contamination in automotive painting line. The first auto maker industry whom found the effectiveness of the clean room application to reduce the defect and production line downtime was Chrysler [2]. By doing so, it’s allowed the transmission plant to offer 50 000 mile guarantee on the transmission systems. The main objective of this research is to verify the effectiveness of ionizer device in order to reduce the rejection contribute by dust and fiber particle in the automotive painting line. Towards the main objective, a few sub areas will be explored, as a supporting factor to ensure the result gain from this study is solid and constructive. The experiment start by verifying the electrostatic value of the raw material (substrate) before and after the ionizer treatment. From here the correlation of the electrostatic value generated by the raw material that effect to production pass rate can be explored. At the meantime, the performance of the production pass rate after the ionizer treatment which related to the painted surface area can be determined.

  3. Magnetosheath electrostatic turbulence

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1979-01-01

    By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath

  4. BWR recirculation loop discharge line break LOCA tests with break areas of 50 and 100% assuming HPCS failure at ROSA-III test facility

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Yonomoto, Taisuke; Anoda, Yoshinari; Kumamaru, Hiroshige; Nakamura, Hideo; Murata, Hideo; Shiba, Masayoshi; Iriko, Masanori.

    1985-03-01

    This report presents the experimental results of RUN 962 and RUN 963 in ROSA-III program, which are 50 and 100 % break LOCA tests at the BWR recirculation pump discharge line, respectively. The ROSA-III test facility simulates a volumetrically scaled (1/424) BWR system and has four half-length electrically heated fuel bundles, two active recirculation loops, three types of ECCSs and steam and feedwater systems. The experimental data of RUN 962 and RUN 963 were compared with those of RUN 961, a 200 % discharge line break test to study the break area effects on the transient thermal hydraulic phenomena. The least flow areas at the jet pump drive nozzles and recirculation pump discharge nozzle in the broken recirculation loop limitted the discharge flows from the pressure vessel and the depressurization rate in the 100 and 200 % break tests, whereas the least flow area at break nozzle limitted the depressurization rate in the 50 % break test. The highest PCT was observed in the 50 % break test among the three tests. (author)

  5. Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators

    International Nuclear Information System (INIS)

    Brocilo, D; Podlinski, J; Chang, J S; Mizeraczyk, J; Findlay, R D

    2008-01-01

    The collection efficiency of electrostatic precipitators for the submicron particles ranging from 0.1 to 1 μm and ultrafine particles smaller than 0. lμm is below the requirements of new PM2.5 emission regulations. In this work, numerical and experimental studies were conducted to examine the effect of discharge and collecting electrode geometries on the ion density and electric field profiles and consequently their effect on the particle surface charge and collection efficiency. The collection efficiency prediction was based on a modified Deutsche's equation after calculation of three dimensional electric field and ion density profiles. Whereas, the particle surface charge was obtained from diffusion and field charging models. Results show that the collection efficiency of fine particles for the spike-type discharge electrode when compared to the conventional wire-type was improved. Experimental validations were conducted on a bench scale electrostatic precipitator for total and partial collection efficiency of particles ranging in size from 0.01 to 20 μm and the results indicated that the model can be effectively applied for prototype design, modification, and scale-up of collecting and discharge electrodes.

  6. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  7. Revised electrostatic model of the LISA Pathfinder inertial sensor

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Nico [Astrium GmbH, 88039 Friedrichshafen (Germany); Fichter, Walter, E-mail: nico.brandt@astrium.eads.ne [iFR, Universitaet Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart (Germany)

    2009-03-01

    A comprehensive electrostatic finite-element (FE) analysis of the LISA Pathfinder Inertial Sensor (IS) has been carried out at Astrium GmbH. Starting with a detailed geometrical model of the IS housing and test mass (TM) flight units, FE results were derived from multiple analyses runs applying the Maxwell 3D field simulation software. The electrostatic forces and torques on the TM in 6DoF, as well as all non-negligible capacitances between the TM, the 18 electrodes, and the housing, have been extracted for different TM translations and rotations. The results of the FE analyses were expected to confirm the existing IS electrostatic model predictions used for performance analysis, simulations, and on-board algorithms. Major discrepancies were found, however, between the results and the model used so far. In general, FE results give considerably larger capacitance values than the equivalent infinite non-parallel plate estimates. In contrast, the FE derived forces and torques are in general significantly lower compared to the analytic IS electrostatic model predictions. In this paper, these results are discussed in detail and the reasons for the deviations are elaborated. Based on these results, an adapted analytic IS electrostatic model is proposed that reflects the electrostatic forces, torques, and stiffness values in the LISA Pathfinder IS significantly more accurate.

  8. Revised electrostatic model of the LISA Pathfinder inertial sensor

    International Nuclear Information System (INIS)

    Brandt, Nico; Fichter, Walter

    2009-01-01

    A comprehensive electrostatic finite-element (FE) analysis of the LISA Pathfinder Inertial Sensor (IS) has been carried out at Astrium GmbH. Starting with a detailed geometrical model of the IS housing and test mass (TM) flight units, FE results were derived from multiple analyses runs applying the Maxwell 3D field simulation software. The electrostatic forces and torques on the TM in 6DoF, as well as all non-negligible capacitances between the TM, the 18 electrodes, and the housing, have been extracted for different TM translations and rotations. The results of the FE analyses were expected to confirm the existing IS electrostatic model predictions used for performance analysis, simulations, and on-board algorithms. Major discrepancies were found, however, between the results and the model used so far. In general, FE results give considerably larger capacitance values than the equivalent infinite non-parallel plate estimates. In contrast, the FE derived forces and torques are in general significantly lower compared to the analytic IS electrostatic model predictions. In this paper, these results are discussed in detail and the reasons for the deviations are elaborated. Based on these results, an adapted analytic IS electrostatic model is proposed that reflects the electrostatic forces, torques, and stiffness values in the LISA Pathfinder IS significantly more accurate.

  9. Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips

    Science.gov (United States)

    Gomez, A.; Puig, T.; Obradors, X.

    2018-05-01

    Piezoresponse Force Microscopy is a powerful but delicate nanoscale technique that measures the electromechanical response resulting from the application of a highly localized electric field. Though mechanical response is normally due to piezoelectricity, other physical phenomena, especially electrostatic interaction, can contribute to the signal read. We address this problematic through the use of longer ultra-stiff probes providing state of the art sensitivity, with the lowest electrostatic interaction and avoiding working in high frequency regime. In order to find this solution we develop a theoretical description addressing the effects of electrostatic contributions in the total cantilever vibration and its quantification for different setups. The theory is subsequently tested in a Periodically Poled Lithium Niobate (PPLN) crystal, a sample with well-defined 0° and 180° domains, using different commercial available conductive tips. We employ the theoretical description to compare the electrostatic contribution effects into the total phase recorded. Through experimental data our description is corroborated for each of the tested commercially available probes. We propose that a larger probe length can be a solution to avoid electrostatic forces, so the cantilever-sample electrostatic interaction is reduced. Our proposed solution has great implications into avoiding artifacts while studying soft biological samples, multiferroic oxides, and thin film ferroelectric materials.

  10. Modification of 300kV RF Ion Source for 1-MV Electrostatic Accelerator at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The specifications of the 1-MV electrostatic accelerator are shown as below. High voltage power supply is electron transformer rectifier (ELV) type which was developed in Nuclear Physics Institute (Novosibirsk) for industrial electron accelerators. And accelerator column consists of alumina and metal electrode rings were 0.5m-long brazed structure which can be installed horizontally. In case of ion source for 1-MV electrostatic accelerator, it is chosen a thonemann type rf ion source and 300-kV test-stand was made up to confirm the stable operating conditions. High voltage power supply is fabricated by domestic company, and its operation has been confirming at KOMAC site. Equally, the ion source of 300-kV test-stand should be modified to install into the high voltage power supply. In this paper, modification of ion source of 300-kV test-stand for 1-MV electrostatic accelerator is presented and its processes are considered. 300-kV RF ion source and power supply are testing for the 1-MV electrostatic accelerator and trying for combination between them. The 1-MV electrostatic accelerator will be fabricated with domestic companies and tested in the beam application research building at KOMAC.

  11. Modification of 300kV RF Ion Source for 1-MV Electrostatic Accelerator at KOMAC

    International Nuclear Information System (INIS)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub

    2015-01-01

    The specifications of the 1-MV electrostatic accelerator are shown as below. High voltage power supply is electron transformer rectifier (ELV) type which was developed in Nuclear Physics Institute (Novosibirsk) for industrial electron accelerators. And accelerator column consists of alumina and metal electrode rings were 0.5m-long brazed structure which can be installed horizontally. In case of ion source for 1-MV electrostatic accelerator, it is chosen a thonemann type rf ion source and 300-kV test-stand was made up to confirm the stable operating conditions. High voltage power supply is fabricated by domestic company, and its operation has been confirming at KOMAC site. Equally, the ion source of 300-kV test-stand should be modified to install into the high voltage power supply. In this paper, modification of ion source of 300-kV test-stand for 1-MV electrostatic accelerator is presented and its processes are considered. 300-kV RF ion source and power supply are testing for the 1-MV electrostatic accelerator and trying for combination between them. The 1-MV electrostatic accelerator will be fabricated with domestic companies and tested in the beam application research building at KOMAC

  12. Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)

    2010-09-01

    One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.

  13. Electrostatics of spherical metallic particles in cylinder electrostatic separators/sizers

    International Nuclear Information System (INIS)

    Lu Hongzhou; Li Jia; Guo Jie; Xu Zhenming

    2006-01-01

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/sizers (ESSs). A computational algorithm is employed to depict the cylinder-type electrode arrangements applied in some electrostatic processes generating non-uniform electric fields. The ESS consists of a pair of conducting cylinders. The upper cylinder is energized by HVdc, while the lower one is grounded and mounted horizontally on a revolvable axis. The aim of this paper is to present a new electrode configuration and demonstrate the usefulness of numerical techniques for the evaluation of the particle's motion. A computer program was employed for analysing the behavior of spherical particles in a two-dimensional electrode arrangement that models the actual electric field configuration of cylinder-type electrostatic separators/sizers. The analysis is needed for the development of any new application of this cylinder-type electrode arrangement as an electrostatic separation method. The results reveal that the particle's motion depends on its radius and density and amplitude of the applied voltage. The actual granular mixtures with different specific mass and radius could be separated applying this cylinder-type electrostatic separation method; the lift voltage is an important parameter for separation. With a program for two-dimensional analysis of the electric field, the computational procedure presented in this paper could be employed for any particle shapes

  14. The Bohm Criterion for Radiofrequency Discharges - a Numerical Verification Based on Poisson Equation

    NARCIS (Netherlands)

    Meijer, P. M.; W. J. Goedheer,

    1993-01-01

    Recently it was shown that, by using the analysis of electrostatic waves entering the plasma-sheath edge, the direct-current (dc) Bohm criterion also holds for discharges under radio-frequency (rf) conditions. In this paper, the influence of Bohm's criterion on the sheath characteristics for

  15. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture shows such an electrostatic septum in its tank. See 7501120X, 7501199 and 7501201 for more detailed pictures.

  16. Multipolar electrostatics.

    Science.gov (United States)

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  17. A Systematic Review of Interventions to Follow-Up Test Results Pending at Discharge.

    Science.gov (United States)

    Darragh, Patrick J; Bodley, T; Orchanian-Cheff, A; Shojania, K G; Kwan, J L; Cram, P

    2018-05-01

    Patients are frequently discharged from the hospital before all test results have been finalized. Thirty to 40% of tests pending at discharge (TPADs) return potentially actionable results that could necessitate change in the patients' management, often unbeknownst to their physicians. Delayed follow-up of TPADs can lead to patient harm. We sought to synthesize the existing literature on interventions intended to improve the management of TPADs, including interventions designed to enhance documentation of TPADs, increase physician awareness when TPAD results finalize post-discharge, decrease adverse events related to missed TPADs, and increase physician satisfaction with TPAD management. We searched Medline, EMBASE, CINAHL, Cochrane Database of Systematic Reviews, Cochrane Database of Controlled Clinical Trials and Medline (January 1, 2000-November 10, 2016) for randomized controlled trials and prospective, controlled observational studies that evaluated interventions to improve follow-up of TPADs for adult patients discharged from acute care hospitals or emergency department settings. From each study we extracted characteristics of the intervention being evaluated and its impact on TPAD management. Nine studies met the criteria for inclusion. Six studies evaluated electronic discharge summary templates with a designated field for documenting TPADs, and three of six of these studies reported a significant improvement in documentation of TPADs in discharge summaries in pre- and post-intervention analysis. One study reported that auditing discharge summaries and providing feedback to physicians were associated with improved TPAD documentation in discharge summaries. Two studies found that email alerts when TPADs were finalized improved physicians' awareness of the results and documentation of their follow-up actions. Of the four studies that assessed patient morbidity, two showed a positive effect; however, none specifically measured the impact of their interventions

  18. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  19. A spectroscopic study of ion channels in a prototype inertial electrostatic confinement reactor

    International Nuclear Information System (INIS)

    Collis, S.; Khachan, J.

    2000-01-01

    Inertial Electrostatic Confinement (IEC) involves using a semi-transparent and negatively biased grid to accelerate light nuclei towards a common centre for the purpose of generating neutrons through fusion reactions. This project investigated the plasma properties in a small prototype IEC device that was operated using a relatively low grid bias in a discharge of hydrogen. Electrostatic lenses, which are the product of the geometry of the grid, create ion channels. Doppler shift spectroscopy was performed on the emission produced by charge exchange reactions in these channels. Using the spectra we obtained, we were able to determine energies, ratios of hydrogen species (H + :H 2 + :H 3 + ) and thermal properties of ions present in these channels. A discussion of results will be presented with particular emphasis on the implications of our findings to the construction of a portable neutron production device. (author)

  20. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  1. Infrasound pulses from lightning and electrostatic field changes: Observation and discussion

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Diendorfer, G.; Šindelářová, Tereza; Baše, Jiří; Hruška, František

    2013-01-01

    Roč. 118, č. 19 (2013), s. 10653-10664 ISSN 2169-897X R&D Projects: GA ČR GA205/09/1253; GA ČR(CZ) GAP209/12/2440; GA MŠk 7E12020 Grant - others:RF EU(XE) ARISE 284387 Institutional support: RVO:68378289 Keywords : Infrasound * Lightning * Thunder * Slowness method * Electrostatic mechanism Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50805/abstract

  2. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    Waldschmidt, G. J.

    1998-01-01

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  3. Edutainment Science: Electrostatics

    Science.gov (United States)

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  4. Self-organization of single filaments and diffusive plasmas during a single pulse in dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2014-01-01

    Self-organization of filaments in dielectric-barrier discharges (DBDs) probably has many origins. However, the dominant cause is proposed to be the accumulation of charge on the surfaces of the bounding dielectrics that reinforces successive discharge pulses to occur at the same locations. A secondary cause is the electrostatic repulsion of individual plasma filaments. Self-organization typically develops over many discharge pulses. In this paper, we discuss the results of a computational investigation of plasma filaments in overvoltage DBDs that, under select conditions, display self-organized patterns (SOPs) of plasma density during a single discharge pulse. (Overvoltage refers to the rapid application of a voltage in excess of the quasi-dc breakdown voltage.) The origin of the SOPs is a synergistic relationship between the speed of the surface-ionization waves that propagate along each dielectric and the rate at which avalanche occurs across the gap. For our test conditions, SOPs were not observed at lower voltages and gradually formed at higher voltages. The same conditions that result in SOPs, i.e. the application of an overvoltage, also produce more diffuse discharges. A transition from a single narrow filament to a more diffuse structure was observed as overvoltage was approached. The sensitivity of SOPs to the orientation and permittivity of the bounding dielectrics is discussed. (paper)

  5. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.

    Science.gov (United States)

    Liqiang, Qi; Yajuan, Zhang

    2013-07-15

    Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  7. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  8. Performance Results for Building the 1 MV Electrostatic Accelerator at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    1 MV electrostatic accelerator of KOrea Multi-purpose Accelerator Complex (KOMAC) is being developed to satisfy the needs from the users, especially for the applications with a MeV range ion beam implantation. Table 1 shows specifications of the 1MV electrostatic accelerator. The accelerator consists of ion source, beam transport system and target chamber. The ion source and accelerating column are installed inside the pressure vessel of high voltage power supply. The layout of the system is shown in Fig. 1. A 1 MV electrostatic accelerator is being developed at KOMAC. The high voltage power supply is already developed. The 200 MHz RF ion source is now being tested in the 300 kV test-stand. In the test results, it is necessary to improve increasing RF power absorption into the plasma in order to supply 1 mA beam. For this goal, we need more reliable the matching circuit and should be modified the matching components.

  9. Free double layers in mercury-arc discharges

    International Nuclear Information System (INIS)

    Maciel, H.S.; Allen, J.E.

    1989-01-01

    A study has been carried out of free double layers formed within the plasma volume of a low-pressure mercury-arc discharge at high current densities. The free double layer is observed to form as a visible boundary, which drifts slowly from the central section of the discharge. Current-driven instabilities are observed as the discharge current is gradually increased to a critical value, at which current limitation is observed to occur. This process, which is accompanied by high-current spikes, ceases when the free double layer becomes visible as a sharp boundary dividing the discharge column into two regions of different luminosities. The layer is observed to form in the later stages of current limitation, the onset of which occurs for a ratio of drift to thermal speed of electrons of about unity. Electrical energy is converted by the layer into kinetic energy of the changed particles. Accordingly high-energy ions were measured by means of an electrostatic energy analyser. The multiple-sheath character of the free 'double layer'', which is inferred from probe measurements of potential profiles, is discussed and comparisons with other space-charge structures with the same topology are made. (author)

  10. Yukawa multipole electrostatics and nontrivial coupling between electrostatic and dispersion interactions in electrolytes

    International Nuclear Information System (INIS)

    Kjellander, Roland; Ramirez, Rosa

    2008-01-01

    An exact treatment of screened electrostatics in electrolyte solutions is presented. In electrolytes the anisotropy of the exponentially decaying electrostatic potential from a molecule extends to the far field region. The full directional dependence of the electrostatic potential from a charged or uncharged molecule remains in the longest range tail (i.e. from all multipole moments). In particular, the range of the potential from an ion and that from an electroneutral polar particle is generally exactly the same. This is in contrast to the case in vacuum or pure polar liquids, where the potential from a single charge is longer ranged than that from a dipole, which is, itself, longer ranged than the one from a quadrupole etc. The orientational dependence of the exponentially screened electrostatic interaction between two molecules in electrolytes is therefore rather complex even at long distances. These facts are formalized in Yukawa multipole expansions of the electrostatic potential and the pair interaction free energy based on the Yukawa function family exp(-κr)/r m , where r is the distance, κ is a decay parameter and m is a positive integer. The expansion is formally exact for electrolytes with molecular solvent and in the primitive model, provided the non-Coulombic interactions between the particles are sufficiently short ranged. The results can also be applied in the Poisson-Boltzmann approximation. Differences and similarities to the ordinary multipole expansion of electrostatics are pointed out. On the other hand, when the non-Coulombic interactions between the constituent particles of the electrolyte solution contain a dispersion 1/r 6 potential, the electrostatic potential from a molecule decays like a power law for long distances rather than as a Yukawa function. This is due to nontrivial coupling between the electrostatic and dispersion interactions. There remains an exponentially decaying component in the electrostatic potential, but it becomes

  11. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  12. Electrostatic risk to reticles in the nanolithography era

    Science.gov (United States)

    Rider, Gavin C.

    2016-04-01

    Reticles can be damaged by electric field as well as by the conductive transfer of charge. As device feature sizes have moved from the micro- into the nano-regime, reticle sensitivity to electric field has been increasing owing to the physics of field induction. Hence, the predominant risk to production reticles today is from exposure to electric field. Measurements of electric field that illustrate the extreme risk faced by today's production reticles are presented. It is shown that some of the standard methods used for prevention of electrostatic discharge in semiconductor manufacturing, being based on controlling static charge and voltage, do not offer reticles adequate protection against electric field. In some cases, they actually increase the risk of reticle damage. Methodology developed specifically to protect reticles against electric field is required, which is described in SEMI Standard E163. Measurements are also presented showing that static dissipative plastic is not an ideal material to use for the construction of reticle pods as it both generates and transmits transient electric field. An appropriate combination of insulating material and metallic shielding is shown to provide the best electrostatic protection for reticles, with fail-safe protection only being possible if the reticle is fully shielded within a metal Faraday cage.

  13. Testing of compact electrostatic precipitator for removal of hygroscopic ammonium salts from flue gases

    International Nuclear Information System (INIS)

    Iller, E.; Chmielewska, D.K.; Koczy, B.; Rygula, Cz.

    2002-01-01

    Among many new technologies for purification of flue gases the process using electron beam for simultaneous removal of SO 2 and NO x is developing successfully and is entering to industrial applications. The product being the mixture of ammonium sulfate and nitrate is formed during the process of pollution reduction. Solid particles of this product are hydroscopic aerosol with submicron size. Results of investigation of ammonium aerosol salts removal by electrostatic precipitator of special construction co-operating with irradiation purification of the flue gas installation placed in EC 'Kaweczyn' area have been presented in the report. Influence of different parameters on the efficiency is discussed as well. Maximum removal efficiency was equal to 99.7%. Particulate emission and aerosol particle sizes distribution in the electrostatic precipitator inlet and outlet were measured using universal cascade impactor Andersen Mark III. Chemical composition of the soluble part of the by-product collected in electrostatic precipitator was examined with ion chromatography. The insoluble part and water content of the samples was measured as well. (author)

  14. Enhanced Cycling Stability of Lithium–Sulfur batteries by Electrostatic-Interaction

    International Nuclear Information System (INIS)

    Ma, Zhaoling; Huang, Xiaobing; Jiang, Qianqian; Huo, Jia; Wang, Shuangyin

    2015-01-01

    Highlights: • Electrostatic interaction is utilized to hinder the shuttling of polysulfides. • Directly functionalizing SG can better prolong the cycle life of Li–S batteries. • SG/PDDA showed significantly improved capacity retention. - Abstract: Lithiums–sulfur battery is considered as one of the most promising energy storage devices to replace the current Li ion batteries because of its high theoretical capacity of 1675 mA h g −1 . However, the poor cycle stability hinders the further development of this battery system. In order to improve the stability of Li–S batteries, the diffusion of polysulfides from electrodes into electrolyte should be suppressed. Herein, we utilize a positively charged polyelectrolyte to functionalize the electrode materials with the aim to hamper the polysulfides dissolution via electrostatic interaction between strong positively charged polyelectrolyte and negatively charged polysulfides anion. The effect of the functionalization quantity of poly(diallyl dimethylammonium) chloride (PDDA) and functionalization sequence on cycling performances is investigated in detail. It is found that the sulfur–graphene composite (SG) directly functionalized with 10 times PDDA exhibited best cycling stability. At a discharge current density of 0.2 C, much higher capacity retention was realized on the functionalized electrodes than the unfunctionalized (81% vs. 47.3%) after 120 cycles. The as-observed results demonstrate that the electrostatic interaction can effectively prolong the cycling life of Li–S batteries, which provides a new promising strategy for improving the electrochemical performance of Li–S batteries.

  15. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    characteristics and applications of the electrostatic potential of many-electron atoms, ions and molecules are discussed. Electrostatic Potential of Atoms and Singly. Charged ..... [6] R K Pathak and S R Gadre,J. Chat. Phys., 93, 1770, 1990. [7] S R Gadre, S A Kalkarni and I H Shrivastava,J. Chern. Phys., 96,52;3,. 1992. ~ .1.

  16. Improving the treatment of coarse-grain electrostatics: CVCEL

    Energy Technology Data Exchange (ETDEWEB)

    Ceres, N.; Lavery, R., E-mail: richard.lavery@ibcp.fr [Bioinformatics: Structures and Interactions, Institut de Biologie et Chimie des Protéines, BMSSI UMR CNRS 5086/Université Lyon I, 7 Passage du Vercors, Lyon 69367 (France)

    2015-12-28

    We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.

  17. Improving the treatment of coarse-grain electrostatics: CVCEL

    International Nuclear Information System (INIS)

    Ceres, N.; Lavery, R.

    2015-01-01

    We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding

  18. Improving the treatment of coarse-grain electrostatics: CVCEL.

    Science.gov (United States)

    Ceres, N; Lavery, R

    2015-12-28

    We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.

  19. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  20. Electrostatic fuel conditioning of internal combustion engines

    Science.gov (United States)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  1. Beam Extraction for 1-MV Electrostatic Accelerator at the 300 kV Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Seoul (Korea, Republic of); Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. A beam extraction experiment for the test stand was performed, and the beam current was measured using a faraday cup in the chamber. A beam extraction results for the RF ion source will be presented. Beam extraction from the RF ion source of the test stand is verified by measuring the beam current with a faraday cup in the chamber. Thus far NI Labview, PLC and faraday cup have been used to measure the beam current. The OPC server is useful for monitoring the PLC values. The average beam current of (a), (b) and (c) shown in figure 2 are 110.241µA, 105.8597µA and 103.5278µA respectively.

  2. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, A., E-mail: Atefeh.Fathi115@gmail.com [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H.; Sadati, S.M. [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Ebrahimibasabi, E. [Department of Physics, Shahrood University of Technology, 3619995161, Shahrood (Iran, Islamic Republic of)

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  3. An electrostatic RF modulator for Moessbauer gamma-rays

    International Nuclear Information System (INIS)

    Ognjanov, N.I.; Tsankov, L.T.; Ivanov, P.V.

    1983-01-01

    A new device is proposed for rf acoustic modulation of Moessbauer gamma-radiation, based on the principle of the electrostatic speaker. Certain features of the construction are discussed and results from tests are presented. (orig.)

  4. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  5. Electrostatic Properties of Selected Personal Protective Equipment Regarding Explosion Hazard

    Directory of Open Access Journals (Sweden)

    Marcin Jachowicz

    2013-01-01

    Full Text Available In industries such as the mining, petrochemistry or power industries, personal protective equipment is often used in explosive atmospheres. What causes the occurrence of explosive hazards is ever-present in the work environment they include, electrostatic phenomena as well as the build-up of electrical charges on the surface of the protective equipment used. This paper presents the results of studies which were aimed at determining the fundamental electrostatic parameters of protective helmets as well as eye and face protection, surface resistance and the voltage of electrostatic fields. Examinations on the typical structure of the above mentioned equipment was conducted including the variable values of ambient humidity, which can occur in the working environment and with the use of various types of materials used to generate a charge. The adopted methods and testing equipment have been presented. Using the current, general requirements regarding the electrostatic properties of materials, the examined helmets and eye protection were assessed for their use in explosive atmospheres.

  6. A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields

    Science.gov (United States)

    Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.

    2012-01-01

    Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663

  7. Experimental Study on Indoor Air Cleaning Technique of Nano-Titania Catalysis Under Plasma Discharge

    International Nuclear Information System (INIS)

    Gao Deli; Yang Xuechang; Zhou Fei; Wu Yuhuang

    2008-01-01

    In this study, a new technique of air cleaning by plasma combined with catalyst was proposed, which consisted of electrostatic precipitation, volatile organic compounds (VOCs) decomposition and sterilization. A novel indoor air purifier based on this technique was adopted. The experimental results showed that formaldehyde decomposition by the plasma-catalyst hybrid system was more efficient than that by plasma only. Positive discharge was better than negative discharge in formaldehyde removal. Meanwhile, the outlet concentration of ozone byproduct was effectively reduced by the nano-titania catalyst.

  8. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  9. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G.; Di Giugno, R.; Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F. P. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Celona, L.; Gammino, S.; Lanaia, D.; Ciavola, G. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Di Bartolo, F. [Universita di Messina, Ctr. da Papardo-Sperone, 98100 Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); IET-Institute of Energy Technology, LEC-Laboratory for Energy Conversion, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electrons will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.

  10. Electrostatic field in inhomogeneous dielectric media. I. Indirect boundary element method

    International Nuclear Information System (INIS)

    Goel, N.S.; Gang, F.; Ko, Z.

    1995-01-01

    A computationally fast method is presented for calculating electrostatic field in arbitrary inhomogeneous dielectric media with open boundary condition. The method involves dividing the whole space into cubical cells and then finding effective dielectric parameters for interfacial cells consisting of several dielectrics. The electrostatic problem is then solved using either the indirect boundary element method described in this paper or the so-called volume element method described in the companion paper. Both methods are tested for accuracy by comparing the numerically calculated electrostatic fields against those analytically obtained for a dielectric sphere and dielectric ellipsoid in a uniform field and for a dielectric sphere in a point charge field

  11. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  12. The first step in layer-by-layer deposition: Electrostatics and/or non-electrostatics?

    NARCIS (Netherlands)

    Lyklema, J.; Deschênes, L.

    2011-01-01

    A critical discussion is presented on the properties and prerequisites of adsorbed polyelectrolytes that have to function as substrates for further layer-by-layer deposition. The central theme is discriminating between the roles of electrostatic and non-electrostatic interactions. In order to

  13. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume III: Test protocol

    Energy Technology Data Exchange (ETDEWEB)

    Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Inc., Toronto, Ontario (Canada)

    1996-04-01

    The American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] has been awarded a subcontract by the National Renewable Energy Laboratory [NREL] to demonstrate the technical performance and viability of flue gas temperature control in combination with dry acid gas reagent and activated carbon injection at an existing electrostatic precipitator [ESP] equipped municipal waste combustor [MWC]. The objective of this proof-of-concept demonstration test is to economically and reliably meet 40 CFR 60 Subpart Cb Emissions Guidelines for MWC's at existing ESP equipped facilities. The effort is being directed by a Subcommittee of tile ASME Research Committee on Industrial and Municipal Wastes [RCIMW] chaired by Dave Hoecke. Mr. Greg Barthold of ASME/CRTD is the Project Manager. ASME/CRTD contracted with Rigo & Rigo Associates, Inc. in cooperation with A.J. Chandler & Associates, Ltd. to be the Principal Investigator for the project and manage the day-t o-day aspects of the program, conduct the testing reduce and interpret the data and prepare the report. Testing will be conducted at the 2 by 210 TPD, ESP equipped MWC at the Davis County Resource Recovery Facility in Layton, Utah. The test plan calls for duplicate metals (Cd, Pb and Hg), dioxin and acid gas runs.

  14. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  15. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  16. Design and implementation of an automated email notification system for results of tests pending at discharge.

    Science.gov (United States)

    Dalal, Anuj K; Schnipper, Jeffrey L; Poon, Eric G; Williams, Deborah H; Rossi-Roh, Kathleen; Macleay, Allison; Liang, Catherine L; Nolido, Nyryan; Budris, Jonas; Bates, David W; Roy, Christopher L

    2012-01-01

    Physicians are often unaware of the results of tests pending at discharge (TPADs). The authors designed and implemented an automated system to notify the responsible inpatient physician of the finalized results of TPADs using secure, network email. The system coordinates a series of electronic events triggered by the discharge time stamp and sends an email to the identified discharging attending physician once finalized results are available. A carbon copy is sent to the primary care physicians in order to facilitate communication and the subsequent transfer of responsibility. Logic was incorporated to suppress selected tests and to limit notification volume. The system was activated for patients with TPADs discharged by randomly selected inpatient-attending physicians during a 6-month pilot. They received approximately 1.6 email notifications per discharged patient with TPADs. Eighty-four per cent of inpatient-attending physicians receiving automated email notifications stated that they were satisfied with the system in a brief survey (59% survey response rate). Automated email notification is a useful strategy for managing results of TPADs.

  17. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    Science.gov (United States)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  18. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    International Nuclear Information System (INIS)

    Wu, Yishan; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei; Li, Jun

    2017-01-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation. (paper)

  19. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  20. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    Electrostatic Levitator (ESL) general layout with captions. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  1. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  2. Limiting assumptions in molecular modeling: electrostatics.

    Science.gov (United States)

    Marshall, Garland R

    2013-02-01

    Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.

  3. Electrostatic/magnetic ion acceleration through a slowly diverging magnetic nozzle between a ring anode and an on-axis hollow cathode

    Directory of Open Access Journals (Sweden)

    A. Sasoh

    2017-06-01

    Full Text Available Ion acceleration through a slowly diverging magnetic nozzle between a ring anode and a hollow cathode set on the axis of symmetry has been realized. Xenon was supplied as the propellant gas from an annular slit along the inner surface of the ring anode so that it was ionized near the anode, and the applied electric potential was efficiently transformed to an ion kinetic energy. As an electrostatic thruster, within the examined operation conditions, the thrust, F, almost scaled with the propellant mass flow rate; the discharge current, Jd, increased with the discharge voltage, Vd. An important characteristic was that the thrust also exhibited electromagnetic acceleration performance, i.e., the so-called “swirl acceleration,” in which F≅JdBRa ∕2, where B and Ra were a magnetic field and an anode inner radius, respectively. Such a unique thruster performance combining both electrostatic and electromagnetic accelerations is expected to be useful as another option for in-space electric propulsion in its broad functional diversity.

  4. Testing the electrostatic characteristics of polypropylene fabric with metallic yarns, intended for use in coal mines threatened by the explosion hazard. Part 2: Tests in coal mine

    International Nuclear Information System (INIS)

    Talarek, M; Orzech, L

    2011-01-01

    The aim of this paper was to assess the electrostatic safety of polypropylene fabric with metallic yarns intended for use in coal mines. Such fabrics have not been used in the Polish mining industry yet. The tests conducted have been divided into two subgroups: laboratory tests and tests in a coal mine. This paper presents the results of tests in a coal mine, where we have focused on the resistance-to-ground in some specific situations. Bags made of fabric at the roadway face were tested, as well as the roll of fabric during transport and carried by a miner. The results obtained allow the reliable assessment of the risk of using fabrics with metallic yarns in the explosive atmosphere which often occurs in coal mines.

  5. Electrostatic potential map modelling with COSY Infinity

    International Nuclear Information System (INIS)

    Maloney, J.A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-01-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY’s existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  6. Imaging indicator for ESD safety testing.

    Energy Technology Data Exchange (ETDEWEB)

    Whinnery, LeRoy L.,; Nissen, April; Keifer, Patrick N.; Tyson, Alexander

    2013-05-01

    This report describes the development of a new detection method for electrostatic discharge (ESD) testing of explosives, using a single-lens reflex (SLR) digital camera and a 200-mm macro lens. This method has demonstrated several distinct advantages to other current ESD detection methods, including the creation of a permanent record, an enlarged image for real-time viewing as well as extended periods of review, and ability to combine with most other Go/No-Go sensors. This report includes details of the method, including camera settings and position, and results with wellcharacterized explosives PETN and RDX, and two ESD-sensitive aluminum powders.

  7. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  8. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  9. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  10. Guidelines for confirmatory inplant tests of safety-relief valve discharges for BWR plants

    International Nuclear Information System (INIS)

    Su, T.M.

    1981-05-01

    Inplant tests of safety/relief valve (SRV) discharges may be required to confirm generically established specifications for SRV loads and the maximum suppression pool temperature, and to evaluate possible effects of plant-unique parameters. These tests are required in those plants which have features that differ substantially from those previously tested. Guidelines for formulating appropriate test matrices, establishing test procedures, selecting necessary instrumentation, and reporting the test results are provided in this report. Guidelines to determine if inplant tests are required on the basis of the plant unique parameters are also included in the report

  11. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  12. Supersonic CO electric-discharge lasers

    Science.gov (United States)

    Hason, R. K.; Mitchner, M.; Stanton, A.

    1975-01-01

    Laser modeling activity is described which involved addition of an option allowing N2 as a second diatomic gas. This option is now operational and a few test cases involving N2/CO mixtures were run. Results from these initial test cases are summarized. In the laboratory, a CW double-discharge test facility was constructed and tested. Features include: water-cooled removable electrodes, O-ring construction to facilitate cleaning and design modifications, increased discharge length, and addition of a post-discharge observation section. Preliminary tests with this facility using N2 yielded higher power loadings than obtained in the first-generation facility. Another test-section modification, recently made and as yet untested, will permit injection of secondary gases into the cathode boundary layer. The objective will be to vary and enhance the UV emission spectrum from the auxiliary discharge, thereby influencing the level of photoionization in the main discharge region.

  13. Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection

    International Nuclear Information System (INIS)

    Collins, L; Rodriguez, B J; Okatan, M B; Li, Q; Kravenchenko, I I; Lavrik, N V; Kalinin, S V; Jesse, S

    2015-01-01

    Kelvin probe force microscopy (KPFM) is a powerful characterization technique for imaging local electrochemical and electrostatic potential distributions and has been applied across a broad range of materials and devices. Proper interpretation of the local KPFM data can be complicated, however, by convolution of the true surface potential under the tip with additional contributions due to long range capacitive coupling between the probe (e.g. cantilever, cone, tip apex) and the sample under test. In this work, band excitation (BE)-KPFM is used to negate such effects. In contrast to traditional single frequency KPFM, multifrequency BE-KPFM is shown to afford dual sensitivity to both the electrostatic force and the force gradient detection, analogous to simultaneous amplitude modulated and frequency modulated KPFM imaging. BE-KPFM is demonstrated on a Pt/Au/SiO x test structure and electrostatic force gradient detection is found to lead to an improved lateral resolution compared to electrostatic force detection. Finally, a 3D-KPFM imaging technique is developed. Force volume (FV) BE-KPFM allows the tip–sample distance dependence of the electrostatic interactions (force and force gradient) to be recorded at each point across the sample surface. As such, FVBE-KPFM provides a much needed pathway towards complete tip–sample capacitive de-convolution in KPFM measurements and will enable quantitative surface potential measurements with nanoscale resolution. (paper)

  14. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Areas, electrostatic septa in long straight sections 2 an 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, provide a vertical electric field to remove the ions created by the circulating beam in the residual gas. Here we see one of the electrostatic septa being assembled by Faustin Emery (left) and Jacques Soubeyran (right), in the clean room of building 867. See also 7501199, 7501201, 7801286 and further explanations there.

  15. Explosion safety in industrial electrostatics

    Science.gov (United States)

    Szabó, S. V.; Kiss, I.; Berta, I.

    2011-01-01

    Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.

  16. Computational Methods for Biomolecular Electrostatics

    Science.gov (United States)

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  17. Formation of electrostatic double-layers and electron-holes in a low pressure mercury plasma column

    International Nuclear Information System (INIS)

    Petraconi, G; Maciel, Homero S

    2003-01-01

    Experimental studies of the formation of electrostatic double layers (DLs) and electron-holes (e-holes) are reported. The measurements were performed in the positive column of a mercury arc discharge operating in the low-pressure range of (2.0-14.0) x 10 -2 Pa with current density in the range of (3.0-8.0) x 10 3 A m -2 . Stable and unstable modes of the discharge were identified as the current was gradually increased, keeping constant the vapour pressure. The discharge remains stable until a critical current from which a slight increase of the current leads to an unstable regime characterized by high discharge impedance and strong oscillations. This mode ceased after a DL was formed in the plasma column. To induce the DL formation and to transport it smoothly along the discharge column, a low intensity B-field (7-10) x 10 -3 T produced by a movable single coil was used. The B-field locally increases the electron current density and makes the DL form at the centre of the magnetic constriction where it remained at rest. Electrostatic potential structures compatible with ordinary DLs and multiple-layers could be formed in the plasma column by dealing with the combined effects of the operational parameters of the discharge. It is noticeable that a pure e-hole, which is a symmetric triple-layer having a bell shape potential profile, could easily be formed by means of this experimental technique. A partial kinetic description, based on the space charge structure derived from an experimental e-hole, is presented in order to infer the charged particle populations that could contribute to the space charge of the e-hole. Evidence is shown that strong e-hole formation might be driven by an ion beam, therefore it could not be formed in isolation since its formation requires a nearby ion accelerating potential structure. Probe measurements of the plasma properties, at various radial positions of the stable positive column, are also presented. In the stable mode, prior to

  18. Electrostatic energy of KHF2

    NARCIS (Netherlands)

    Gool, W. van; Bruinink, J.; Bottelberghs, P.H.

    1972-01-01

    Electrostatic lattice energies are calculated in KHF2. Fractional charges occurring in the complex anions are treated with a general procedure and the results are compared to a specialized approach reported earlier. Interstitial potentials are calculated to obtain the electrostatic field through

  19. Electrolyte effects in a model of proton discharge on charged electrodes

    Science.gov (United States)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  20. High-power high-voltage pulse generator for supplying electrostatic precipitators of dust

    International Nuclear Information System (INIS)

    Radu, A.; Martin, D.

    1992-01-01

    The study and development of an experimental high voltage generator specialized in the supply of electrostatic precipitators are presented. The main parameters of the pulse generator are: U = -30 kV, I = 8.8 A, τ = 120μs, f r = 150 Hz. The pulse generator was tested on a laboratory electrostatic precipitator with nominal capacitance C = 25 nF, biased at -40 kV by means of a separate high voltage rectifier. The experimental results will be used for the creation of a more powerful pulse generator, a prototype for the supply of a real industrial electrostatic precipitator: U = -50 kV, I = 313 A, τ = 100μs, f r = 300 Hz, C = 100 nF. (Author)

  1. Electrostatic ion thrusters - towards predictive modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)

    2014-02-15

    The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Studies of low current back-discharge in point-plane geometry with dielectric layer

    International Nuclear Information System (INIS)

    Jaworek, A.; Rajch, E.; Czech, T.; Lackowski, M

    2005-01-01

    The paper presents results of spectroscopic investigations of back-discharge generated in the point-plane electrode geometry in air at atmospheric pressure, with the plane covered with fly ash layer. Four forms of the discharges were studied: onset streamers, glow, breakdown streamers and low-current back-arc discharge. Both polarities of the active discharge electrode, positive and negative, were tested. The back discharge is a type of DC electrical discharge, which take place when the passive plane electrode is covered with a dielectric layer. The layer can be made of solid material or a packed bed of dust or powder of low conductivity. The charge produced due to ionisation processes in the vicinity of the active point electrode is accumulated on the dielectric surface, and generates high electric field through this layer. When critical electric field through the layer is attained an electrical breakdown of the layer take place. The point of breakdown becomes a new source of ions of polarity opposite to those generated by the active electrode. The dielectric layer on the passive electrode causes that gaseous discharges such as breakdown streamers or arc start at lower voltages than they could in the case of normal corona discharge. The visual forms of the discharge were recorded and correlated with the current-voltage characteristics and optical emission spectra. Emission spectra of the discharge were measured in the light wavelength range of 200 to 600 nm to get information about excitation and ionisation processes. The light spectra were analysed by monochromator SPM-2 Karl-Zeiss-Jena with diffraction grating of 1302 grooves/mm and photomultiplier R375 (Hamamatsu) and signal preamplifier unit C7319 (Hamamatsu). The spectral analysis showed that the nitrogen molecular bands were dominant, but the emission of negative ions from the dielectric layer material were also detected. The most noticeable light emission in the range from 280 to 490 nm due to second

  3. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating

    DEFF Research Database (Denmark)

    Koivisto, Antti J.; Jensen, Alexander C. Ø.; Kling, Kirsten I.

    2017-01-01

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm ...

  4. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    International Nuclear Information System (INIS)

    Park, Sae-Hoon; Kim, Yu-Seok; Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2015-01-01

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber

  5. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  6. Electrostatic fluctuations in soap films

    International Nuclear Information System (INIS)

    Dean, D.S.; Horgan, R.R.

    2002-01-01

    A field theory to describe electrostatic interactions in soap films, described by electric multilayers with a generalized thermodynamic surface-charging mechanism, is studied. In the limit where the electrostatic interactions are weak, this theory is exactly soluble. The theory incorporates in a consistent way, the surface-charging mechanism and the fluctuations in the electrostatic field that correspond to the zero-frequency component of the van der Waals force. It is shown that these terms lead to a Casimir-like attraction that can be sufficiently large to explain the transition between the common black film to a Newton black film

  7. Electrostatic correlations: from plasma to biology

    International Nuclear Information System (INIS)

    Levin, Yan

    2002-01-01

    Electrostatic correlations play an important role in physics, chemistry and biology. In plasmas they result in thermodynamic instability similar to the liquid-gas phase transition of simple molecular fluids. For charged colloidal suspensions the electrostatic correlations are responsible for screening and colloidal charge renormalization. In aqueous solutions containing multivalent counterions they can lead to charge inversion and flocculation. In biological systems the correlations account for the organization of cytoskeleton and the compaction of genetic material. In spite of their ubiquity, the true importance of electrostatic correlations has come to be fully appreciated only quite recently. In this paper, we will review the thermodynamic consequences of electrostatic correlations in a variety of systems ranging from classical plasmas to molecular biology

  8. Set-up with electrostatic analyzer for mass spectrometers

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Sysoev, A.A.; Samsonov, G.A.

    1977-01-01

    An attachment with an electrostatic analyzer that enables to implement a double focusing of ion beams when used in conjunction with a magnetic analyzer, is suggested. Used as the electrostatic analyzer is a cylindrical capacitor placed in a vacuum chamber. Apart from this, the attachment includes a vacuum pump, a nitrogen trap, a battery supply unit, one-beam ion receivers and a bellows inlet for capacitor adjustment. All assemblies and parts of the attachment are made of stainless steel. The test of a combined operation of the mass-spactrometer and the attachment indicate that the use of the attachment enables the utilization of sources which form ion beams with an energy dispersion of up to 1.5%, the mass-spectrometer resolving power being unchanged

  9. Development of an Electrostatically Clean Solar Array Panel

    Science.gov (United States)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  10. Ultraviolet and infrared emission from lightning discharges observed at Aragats

    International Nuclear Information System (INIS)

    Chilingarian, A.; Karapetyan, T.; Pokhsraryan, D.; Bogomolov, V.; Garipov, G.; Panasyuk, M.; Svertilov, S.; Saleev, K.

    2016-01-01

    The ultraviolet and infrared optical sensors previously used at RELEC space missions were installed at the high altitude research station Aragats at 3200 m above the sea level. The spectral composition and temporal structure of the recorded optical signals and measurements of the electrostatic field and atmospheric discharges obtained by “fast” and “slow” field sensors have been compared. Measurements of lightning and related to them phenomena observed at the mountain altitude and on board of orbiting satellites are compared. (author)

  11. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  12. Get Real!--Physically Reasonable Values for Teaching Electrostatics

    Science.gov (United States)

    Morse, Robert A.

    2016-01-01

    Students get a sense of realistic values for physical situations from texts, but more importantly from solving problems. Therefore, problems should use realistic values for quantities to provide needed practice. Unfortunately, some problems on tests and in textbooks do not use realistic values. Physical situations in electrostatics seem to be…

  13. Electrostatics in pharmaceutical aerosols for inhalation.

    Science.gov (United States)

    Wong, Jennifer; Chan, Hak-Kim; Kwok, Philip Chi Lip

    2013-08-01

    Electrostatics continues to play an important role in pharmaceutical aerosols for inhalation. Despite its ubiquitous nature, the charging process is complex and not well understood. Nonetheless, significant advances in the past few years continue to improve understanding and lead to better control of electrostatics. The purpose of this critical review is to present an overview of the literature, with an emphasis on how electrostatic charge can be useful in improving pulmonary drug delivery.

  14. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  15. Improvement of proton source based on cylindrical inertial electrostatic confinement fusion with ion source

    International Nuclear Information System (INIS)

    Yamauchi, Kunihito; Ohura, Sonoe; Tashiro, Atsushi; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-01-01

    Inertial Electrostatic Confinement Fusion (IECF) device is a compact fusion proton/neutron source with an extremely simple configuration, high controllability, and hence high safety. Therefore, it has been studied for practical use as a portable neutron/proton source for various applications such as landmine detection and medical positron emission tomography. However, some problems remain for the practical use, and the most critical one is the insufficiency of absolute neutron/proton yields. In this study, a new IECF device was designed and tested to obtain high neutron/proton yields. The key features of the new device are the cylindrical electrode configuration in consideration of better electrostatic confinement of ions and extraction of protons, and an integrated ion source that consists of sixteen ferrite magnets and biasing the grid anode. To investigate the performance characteristics of the device and the effect of the ion source, three kinds of experimental setup were used for comparison. At first, the device was operated with the basic setup. Then a cusp magnetic field was applied by using ferrite magnets, and the grid anode was negatively biased. As a result, it was confirmed that the ion source works effectively. At the same voltage and current, the obtained neutron production rate was about one order of magnitude higher than that of the conventional spherical IECF device. The maximum neutron production rate of 6.8x10 9 n/s was obtained at a pulsed discharge of -70 kV and 10 A with an anode bias voltage of -1.0 kV. (author)

  16. End points in discharge cleaning on TFTR [Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; Bell, M.G.

    1989-07-01

    It has been found necessary to perform a series of first-wall conditioning steps prior to successful high power plasma operation in the Tokamak Fusion Test Reactor (TFTR). This series begins with glow discharge cleaning (GDC) and is followed by pulse discharge cleaning (PDC). During machine conditioning, the production of impurities is monitored by a Residual Gas Analyzer (RGA). PDC is made in two distinct modes: Taylor discharge cleaning (TDC), where the plasma current is kept low (15--50 kA) and of short duration (50 ms) by means of a relatively high prefill pressure and aggressive PDC, where lower prefill pressure and higher toroidal field result in higher current (200--400 kA) limited by disruptions at q(a) approx 3 at approx 250 ms. At a constant repetition rate of 12 discharges/minute, the production rate of H 2 O, CO, or other impurities has been found to be an unreliable measure of progress in cleaning. However, the ability to produce aggressive PDC with substantial limiter heating, but without the production of x-rays from runaway electrons, is an indication that TDC is no longer necessary after approx 10 5 pulses. During aggressive PDC, the uncooled limiters are heated by the plasma from the bakeout temperature of 150 degree C to about 250 degree C over a period of three to eight hours. This limiter heating is important to enhance the rate at which H 2 O is removed from the graphite limiter. 14 refs., 3 figs., 1 tab

  17. End points in discharge cleaning on TFTR (Tokamak Fusion Test Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.; Dylla, H.F.; Bell, M.G.; Blanchard, W.R.; Bush, C.E.; Gettelfinger, G.; Hawryluk, R.J.; Hill, K.W.; Janos, A.C.; Jobes, F.C.

    1989-07-01

    It has been found necessary to perform a series of first-wall conditioning steps prior to successful high power plasma operation in the Tokamak Fusion Test Reactor (TFTR). This series begins with glow discharge cleaning (GDC) and is followed by pulse discharge cleaning (PDC). During machine conditioning, the production of impurities is monitored by a Residual Gas Analyzer (RGA). PDC is made in two distinct modes: Taylor discharge cleaning (TDC), where the plasma current is kept low (15--50 kA) and of short duration (50 ms) by means of a relatively high prefill pressure and aggressive PDC, where lower prefill pressure and higher toroidal field result in higher current (200--400 kA) limited by disruptions at q(a) /approx/ 3 at /approx/ 250 ms. At a constant repetition rate of 12 discharges/minute, the production rate of H/sub 2/O, CO, or other impurities has been found to be an unreliable measure of progress in cleaning. However, the ability to produce aggressive PDC with substantial limiter heating, but without the production of x-rays from runaway electrons, is an indication that TDC is no longer necessary after /approx/ 10/sup 5/ pulses. During aggressive PDC, the uncooled limiters are heated by the plasma from the bakeout temperature of 150/degree/C to about 250/degree/C over a period of three to eight hours. This limiter heating is important to enhance the rate at which H/sub 2/O is removed from the graphite limiter. 14 refs., 3 figs., 1 tab.

  18. Electrostatic forces on grains near asteroids and comets

    Directory of Open Access Journals (Sweden)

    Hartzell Christine

    2017-01-01

    Full Text Available Dust on and near the surface of small planetary bodies (e.g. asteroids, the Moon, Mars’ moons is subject to gravity, cohesion and electrostatic forces. Due to the very low gravity on small bodies, the behavior of small dust grains is driven by non-gravitational forces. Recent work by Scheeres et al. has shown that cohesion, specifically van der Waals force, is significant for grains on asteroids. In addition to van der Waals cohesion, dust grains also experience electrostatic forces, arising from their interaction with each other (through tribocharging and the solar wind plasma (which produces both grain charging and an external electric field. Electrostatic forces influence both the interactions of grains on the surface of small bodies as well as the dynamics of grains in the plasma sheath above the surface. While tribocharging between identical dielectric grains remains poorly understood, we have recently expanded an existing charge transfer model to consider continuous size distributions of grains and are planning an experiment to test the charge predictions produced. Additionally, we will present predictions of the size of dust grains that are capable of detaching from the surface of small bodies.

  19. Measurement of the electrostatic charge in airborne particles: I - development of the equipment and preliminary results

    Directory of Open Access Journals (Sweden)

    Marra Jr. W.D.

    2000-01-01

    Full Text Available The design and construction of a equipment capable of measuring the electrostatic charges in aerosols, named the electrostatic charge classifier, were carried out. They were based on the concept of particle electromobility and the charge classifier was intended to classify the nature and the distribution of electrostatic charges as a function of particle size. The resulting piece of equipment is easy to dismount, which facilitates its cleaning and transport, and easy to operate. Early results indicate that the values of electrostatic charge measured on test particles are inside the range reported in the literature, indicating the adequacy of the technique utilized.

  20. Microwave-induced electrostatic etching: generation of highly reactive magnesium for application in Grignard reagent formation.

    Science.gov (United States)

    van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A

    2010-04-07

    A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.

  1. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Niedermeyer, H; Giannone, L.; Holzhauer, E; Rudyj, A; Theimer, G; Tsois, N [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); ASDEX Team

    1995-11-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H{sub {alpha}} light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the `anomalous` radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above {approx} 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs.

  2. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Niedermeyer, H.; Giannone, L.; Holzhauer, E.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H α light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the 'anomalous' radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above ∼ 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs

  3. Electrostatic effect for the collisionless tearing mode

    International Nuclear Information System (INIS)

    Hoshino, M.

    1987-01-01

    Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987

  4. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  5. Radial transport effects on ECCD in the TCV and DIII-D tokamaks and on Ohmic discharges in the MST RFP

    International Nuclear Information System (INIS)

    Harvey, R.W.; Sauter, O.; Nikkola, P.; Prater, R.; O'Connell, R.; Forest, C.B.

    2003-01-01

    The comprehensive CQL3D Fokker-Planck/Quasilinear simulation code has been benchmarked against experiment over a wide range of electron cyclotron conditions in the DIII-D tokamak (C.C. Petty et al., 14. Topical Conf. on RF Power in Plasmas, 2002). The same code, in disagreement with experiment, gives 560 kA of ECCD for a well documented, completely ECCD-driven, 100 kA TCV shot [O. Sauter et al, PRL, 2000]. Recent work (R.W. Harvey et al, Phys. Rev. Lett., 2002) has resolved the differences as due to radial transport at a level closely consistent with ITER scaling. Transport does not substantially affect DIII-D ECCD, but at similar ECH power has an overwhelming effect on the much smaller TCV. The transport is consistent with electrostatic-type diffusion (D ρρ constant in velocity space) and not with a magnetic-type diffusion (D ρρ ∝ |v || |). Fokker-Planck simulation of Ohmic reversed field pinch (RFP) discharges in the MST device reveals transport velocity dependence stronger than |v || |) will give agreement with current and soft X-ray spectra in standard discharges, but in the higher confinement, current profile controlled PPCD discharges, transport is again electrostatic-like. This is consistent with the object of PPCD, which is to replace magnetic turbulence driven current with auxiliary CD to improve transport. The tokamak and high-confinement RFP results mutually reinforce the constant-in-velocity-space 'electrostatic-type turbulence' conclusion. The steady-state energy and toroidal current are governed by the same radial transport equation. (authors)

  6. RADIAL TRANSPORT EFFECTS ON ECCD IN THE TCV AND DIII-D TOKAMAKS AND ON OHMIC DISCHARGES IN THE MST RFP

    International Nuclear Information System (INIS)

    HARVEY, R.W.; SAUTER, O.; PRATER, R.; NIKKOLA, P.; O'CONNELL, R.; FOREST, C.B.

    2002-01-01

    The comprehensive CQL3D Fokker-Planck/Quasilinear simulation code has been benchmarked against experiment over a wide range of electron cyclotron conditions in the DIII-D tokamak (C.C. Petty et al., 14th Topical Conf. on RF Power in Plasmas, 2002). The same code, in disagreement with experiment, gives 560 kA of ECCD for a well documented, completely ECCD-driven, 100 kA TCV shot [O. Sauter et al, PRL, 2000]. Recent work (R.W. Harvey et al, Phys. Rev. Lett., 2002) has resolved the differences as due to radial transport at a level closely consistent with ITER scaling. Transport does not substantially affect DIII-D ECCD, but at similar ECH power has an overwhelming effect on the much smaller TCV. The transport is consistent with electrostatic-type diffusion (D ρρ constant in velocity-space) and not with a magnetic-type diffusion (D ρρ ∝ |v(parallel)|). Fokker-Planck simulation of Ohmic reversed field pinch (RFP) discharges in the MST device reveals transport velocity dependence stronger than |v(parallel)| will give agreement with current and soft X-ray spectra in standard discharges, but in the higher confinement, current profile controlled PPCD discharges, transport is again electrostatic-like. This is consistent with the object of PPCD, which is to replace magnetic turbulence driven current with auxiliary CD to improve transport. The tokamak and high-confinement RFP results mutually reinforce the constant-in-velocity-space ''electrostatic-type turbulence'' conclusion. The steady-state energy and toroidal current are governed by the same radial transport equation

  7. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography.

    Science.gov (United States)

    Rowlands, J A; Hunter, D M; Araj, N

    1991-01-01

    A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.

  8. Operating manual for the electrostatic glove-box prefilter installed inside the filter glove box No. 046 at Rocky Flats, Building 776

    International Nuclear Information System (INIS)

    Bergman, W.; Kaifer, R.C.; Hebard, H.D.; Taylor, R.D.; Lum, B.Y.; Boling, R.M.; Buttedahl, O.I.; Woodard, R.W.; Terada, K.

    1979-01-01

    Objective of the evaluation is to evaluate the effectiveness of the electrostatic prefilter in prolonging the life of HEPA (high-efficiency particulate-air) filters. The theory of the electrostatic filter is reviewed, and Glove Box Number 046 is described in detail, followed by a description of the electrostatic prefilter used in the present application. Engineering drawings of the electrostatic prefilter are included. The procedure for evaluating the electrostatic prefilter includes the steps for conducting five different tests: evaluating (1) the HEPA filter alone, (2 and 3) the HEPA filter with a standard prefilter treated both as disposable and reusable, and (4 and 5) the HEPA filter with the electrostatic prefilter, again treated as disposable and reusable. Procedures for flowmeter calibrations and measurements of particle-size distributions are also included. Long-term maintenence of the system during the evaluation program is outlined, and estimates of component durability are given. An electrical engineering safety note describes the high-voltage operational hazard of the electrostatic prefilter and the testing of safety devices

  9. Electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 μm) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters

  10. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  11. Experimental study of the polymer powder film thickness uniformity produced by the corona discharge

    Science.gov (United States)

    Fazlyyyakhmatov, Marsel

    2017-01-01

    The results of an experimental study of the polymer powder film thickness uniformity are presented. Polymer powder films are produced by the electrostatic field of corona discharge. Epoxy and epoxy-polyester powder films with thickness in the range of 30-120 microns are studied. Experimentally confirmed possibility of using these coatings as protective matching layer of piezoceramic transducers at frequencies of 0.5-15 MHz.

  12. Testing Ionizers for Nitrogen Discharge of Interferometer Optics

    Science.gov (United States)

    Amen, Timothy; Ugolini, Dennis

    2010-10-01

    Interferometric gravitational-wave observatories consist of suspended optics in a vacuum chamber. Charge can build up on and then discontinuously jump across an optic, creating a changing electric field, causing the optic to sway, creating a false signal. We studied possible ways to discharge an optic without damaging their reflective coatings. We tried two types of electron guns. The first was built at the University of Washington and uses an ultraviolet LED to free electrons from a magnesium target. We found the current to be three orders of magnitude less than necessary for discharge in a reasonable time. The second gun used was a Bayard-Alpert gauge. To eliminate sputtering caused by the gauge above 10-4 torr, we employed a differential pumping system. We were able to flow nitrogen gas through the main chamber at pressures between 10-2 and 10-3 torr while the gauge chamber was kept two orders of magnitude lower. We successfully discharged the optic. The discharge rate varied exponentially with charge level and operating current and nearly linearly with acceleration voltage, and peaked when the pressure was 8 x 10-3 torr in the main chamber.

  13. Continuous electrodeionization through electrostatic shielding

    International Nuclear Information System (INIS)

    Dermentzis, Konstantinos

    2008-01-01

    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency

  14. State Waste Discharge Permit Application: Electric resistance tomography testing

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  15. State Waste Discharge Permit Application: Electric resistance tomography testing

    International Nuclear Information System (INIS)

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks

  16. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  17. Introduction to numerical electrostatics using MATLAB

    CERN Document Server

    Dworsky, Lawrence N

    2014-01-01

    The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers

  18. Specific Electrostatic Molecular Recognition in Water

    DEFF Research Database (Denmark)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne

    2016-01-01

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide......-bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen-bond complementarities. From MD...

  19. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    International Nuclear Information System (INIS)

    1996-07-01

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ''Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility'' issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan

  20. Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing

    Science.gov (United States)

    Chung, Deborah D. L.; Shui, Xiaoping; Frysz, Christine A.

    1993-01-01

    Hairy carbon is a new material developed by growing submicron carbon filaments on conventional carbon substrates. Typical substrate materials include carbon black, graphite powder, carbon fibers, and glassy carbon. A catalyst is used to initiate hair growth with carbonaceous gases serving as the carbon source. To study the electrochemical behavior of hairy carbons, cyclic voltammetry (CV) and discharge testing were conducted. In both cases, hairy carbon results surpassed those of the substrate material alone.

  1. Suppression of X-radiation from 2 MeV ion electrostatic accelerator

    International Nuclear Information System (INIS)

    Ignat'ev, I.G.; Miroshnichenko, V.I.; Sirenko, A.M.; Storizhko, V.E.

    2008-01-01

    The paper presents results concerning studies of X-radiation from 2 MeV ion electrostatic accelerator 'Sokol' used for nuclear microprobe analysis. The radiation protection system of the accelerator was developed and tested. Tests of the system of the accelerator show that it reduces doses rate by two orders of magnitude

  2. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.; Sarff, J.S.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10 19 - 10 20 m -3 ), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm 2 . The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications

  3. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    Science.gov (United States)

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-05

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings.

  4. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  5. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    International Nuclear Information System (INIS)

    Kozlovskij, K I; Shikanov, A E; Vovchenko, E D; Shatokhin, V L; Isaev, A A; Martynenko, A S

    2016-01-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10 -3 -10 -1 Torr and at the accelerating voltage up to 200 kV was observed. (paper)

  6. Geometry-Dependent Electrostatics near Contact Lines

    International Nuclear Information System (INIS)

    Chou, Tom

    2001-01-01

    Long-ranged electrostatic interactions in electrolytes modify contact angles on charged substrates in a scale and geometry-dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle as functions of the electrostatic potential only at the three phase contact line. Analytic expressions are found in certain limits and compared with predictions for contact angles measured with lower resolution. An estimate for electrostatic contributions to line tension is also given

  7. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  8. Compact RF ion source for industrial electrostatic ion accelerator

    Science.gov (United States)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  9. Electrostatic chuck consisting of polymeric electrostatic inductive fibers for handling of objects with rough surfaces

    International Nuclear Information System (INIS)

    Dhelika, Radon; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio; Takarada, Wataru; Kikutani, Takeshi

    2013-01-01

    An electrostatic chuck (ESC) is a type of reversible dry adhesive which clamps objects by means of electrostatic force. Currently an ESC is used only for objects having flat surfaces because the attractive force is reduced for rough surfaces. An ESC that can handle objects with rough surfaces will expand its applications to MEMS (micro electro mechanical system) or optical parts handling. An ESC consisting of compliant electrostatic inductive fibers which conform to the profile of the surface has been proposed for such use. This paper aims at furthering previous research by observing the attractive force/pressure generated, both theoretically and experimentally, through step-by-step fabrication and analysis. Additionally, how the proposed fiber ESC behaves toward rough surfaces is also observed. The attractive force/pressure of the fiber ESC is theoretically investigated using a robust mechano-electrostatic model. Subsequently, a prototype of the fiber ESC consisting of ten fibers arranged at an angle is employed to experimentally observe its attractive force/pressure for objects with rough surfaces. The attractive force of the surface which is modeled as a sinusoidal wave with various amplitudes is observed, through which the feasibility of a fiber ESC is justified. (paper)

  10. Electrostatic precipitators for coal thermal power plants energized by means of narrow pulse voltage

    Energy Technology Data Exchange (ETDEWEB)

    Dinelli, G.; Mattachini, F.; Bogani, V.; Baldacci, A.; Tarli, R. (ENEL-CRTN, Direzione Studi e Ricerche, Milan (Italy) ENEL, VDT Settore Tecnico, Direzione Produzione e Trasmissione, Rome (Italy))

    1990-09-01

    The efficiency of electrostatic precipitators, widely used in thermal power plants to clean flue gases from solid particulate, is strongly dependent both on the way particles are electrically charged and on the characteristics of the electric field within the interelectrodic space of the precipitator. Such operating may become inadequate under varying particle characteristics and operating conditions of the thermal plant, therefore bringing to a reduction in the precipitator collection efficiency. An innovative technique, by generating a pulsed corona in the precipitator, allows a substantial improvement of both the particle charging and the collection processes and an increase in the operation flexibility of the electrostatic precipitator. The narrow pulse voltage energization has been extensively tested at a coal thermal unit having the electrostatic precipitators equipped with both conventional and pulse power sets. The long duration tests confirmed the following results: 1) high reliability of the pulse power sets and a considerable improvement in the precipitator collection efficiency; 2) a decrease in the particulate emissions, with coals whose ashes are of difficult collection, ranging between 75% and 85% of those with conventional energization; 3) a reduction by a factor of about 5 in the consumption of electric power by the electrostatic precipitation process.

  11. 77 FR 47380 - Final National Pollutant Discharge Elimination System (NPDES) General Permit for Discharges From...

    Science.gov (United States)

    2012-08-08

    ... test fluids, sanitary waste, domestic waste and miscellaneous discharges is authorized. More stringent... permit. Major changes also include definition of ``operator'', acute toxicity test for produced water, spill prevention best management practices, and electronic reporting requirements. To obtain discharge...

  12. Potential well formation in electrostatic confinement devices. Technical progress report

    International Nuclear Information System (INIS)

    Cherrington, B.E.; Verdeyen, J.T.

    1975-01-01

    A large (2' diameter) spherical electrostatic confinement device has been constructed to test the feasibility of using inertial electrostatic forces to confine energetic plasmas capable of sustaining fusion reactions. Electron injection under high vacuum has produced negative wells that completely depress the potential in the center and approach the classical Langmuir virtual cathode. Electron injection into low pressure deuterium reproduces our previous results of an ion rich region within the negative well. Additional theoretical studies incorporating electrons with very narrow angular momentum (corresponding to trapped electrons in the center) has shown that an additional electron rich region (or ion rich if the polarities are reversed) can be produced within the ion rich region for presumably realistic ranges of parameters

  13. Mechanical behavior analysis on electrostatically actuated rectangular microplates

    Science.gov (United States)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Dai, Lu; Zhao, Yulong

    2015-03-01

    Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices.

  14. Conservation and Role of Electrostatics in Thymidylate Synthase.

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C

    2015-11-27

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  15. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  16. Electrostatic Climber for Space Elevator and Launcher

    OpenAIRE

    Bolonkin, A.

    2007-01-01

    Author details research on the new, very prospective, electrostatic Space Elevator climber based on a new electrostatic linear engine previously offered at the 42nd Joint Propulsion Conference (AIAA-2006-5229) and published in AEAT, Vol.78, No.6, 2006, pp. 502-508. The electrostatic climber discussed can have any speed (and braking), the energy for climber movement is delivered by a lightweight high-voltage line into a Space Elevator-holding cable from Earth electric generator. This electric ...

  17. Design space of electrostatic chuck in etching chamber

    International Nuclear Information System (INIS)

    Sun Yuchun; Cheng Jia; Lu Yijia; Hou Yuemin; Ji Linhong

    2015-01-01

    One of the core semiconductor devices is the electrostatic chuck. It has been widely used in plasma-based and vacuum-based semiconductor processing. The electrostatic chuck plays an important role in adsorbing and cooling/heating wafers, and has technical advantages on non-edge exclusion, high reliability, wafer planarity, particles reduction and so on. This article extracts key design elements from the existing knowledge and techniques of electrostatic chuck by the method proposed by Paul and Beitz, and establishes a design space systematically. The design space is composed of working objects, working principles and working structures. The working objects involve electrostatic chuck components and materials, classifications, and relevant properties; the working principles involve clamping force, residual force, and temperature control; the working structures describe how to compose an electrostatic chuck and to fulfill the overall functions. The systematic design space exhibits the main issues during electrostatic chuck design. The design space will facilitate and inspire designers to improve the design quality and shorten the design time in the conceptual design. (paper)

  18. Preliminary study on the modelling of negative leader discharges

    International Nuclear Information System (INIS)

    Arevalo, L; Cooray, V

    2011-01-01

    Nowadays, there is considerable interest in understanding the physics underlying positive and negative discharges because of the importance of improving lightning protection systems and of coordinating the insulation for high voltages. Numerical simulations of positive switching impulses made in long spark gaps in a laboratory are achievable because the physics of the process is reasonably well understood and because of the availability of powerful computational methods. However, the existing work on the simulation of negative switching discharges has been held up by a lack of experimental data and the absence of a full understanding of the physics involved. In the scientific community, it is well known that most of the lightning discharges that occur in nature are of negative polarity, and because of their complexity, the only way to understand them is to generate the discharges in laboratories under controlled conditions. The voltage impulse waveshape used in laboratories is a negative switching impulse. With the aim of applying the available information to a self-consistent physical method, an electrostatic approximation of the negative leader discharge process is presented here. The simulation procedure takes into consideration the physics of positive and negative discharges, considering that the negative leader propagates towards a grounded electrode and the positive leader towards a rod electrode. The simulation considers the leader channel to be thermodynamic, and assumes that the conditions required to generate a thermal channel are the same for positive and negative leaders. However, the magnitude of the electrical charge necessary to reproduce their propagation and thermalization is different, and both values are based on experimental data. The positive and negative streamer development is based on the constant electric field characteristics of these discharges, as found during experimental measurements made by different authors. As a computational tool

  19. Particle-In-Cell Simulations of Asymmetric Dual Frequency Capacitive Discharge Physics

    Science.gov (United States)

    Wu, Alan; Lichtenberg, A. J.; Lieberman, M. A.; Verboncoeur, J. P.

    2003-10-01

    Dual frequency capacitive discharges are finding increasing use for etching in the microelectronics industry. In the ideal case, the high frequency power (typically 27.1-160 MHz) controls the plasma density and the low frequency power (typically 2-13.56 MHz) controls the ion energy. The electron power deposition and the dynamics of dual frequency rf sheaths are not well understood. We report on particle-in-cell computer simulations of an asymmetric dual frequency argon discharge. The simulations are performed in 1D (radial) geometry using the bounded electrostatic code XPDP1. Operating parameters are 27.1/2 MHz high/low frequencies, 10/13 cm inner/outer radii, 3-200 mTorr pressures, and 10^9-10^11 cm-3 densities. We determine the power deposition and sheath dynamics for the high frequency power alone, and with various added low frequency powers. We compare the simulation results to simple global models of dual frequency discharges. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  20. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Glow-discharge-created electron beams and beam-excited lasers

    International Nuclear Information System (INIS)

    Meyer, J.D.

    1989-01-01

    Efficiently created glow discharge electron beams have been developed and studied in detail. The beam mode of operation occurs in the abnormal glow adjacent to the glow-to-arc transition regime. In contrast to electron beams generated in high vacuum from thermionic electron emitting sources, this type of discharge creates electrons directly in soft vacuum by secondary electron emission from cold cathode surfaces following the bombardment of the cathode surface by fast ions and neutral atoms. Factors influencing the efficient electron emission from cold cathodes are presented with emphasis on cathode materials. Sintered ceramic-metal cathodes and oxide-coated cathodes are presented, both of which can produce high power, efficiently generated, d.c. electron beams with discharge currents up to 1 amp (∼130 mA/cm 2 ) at volt ages of up to 6 kV. Novel cathode designs and discharge geometries are presented with specific emphasis on both self-focussed beams emitted from circular cathodes and line-source electron beams emitted from rectangular cathodes forming a thin sheet of electrons. Electrostatically focussed line-source electron beams are spatially characterized by experimentally measuring the effect of discharge parameters and cathode design upon the focussed beam width, focal point, and uniformity. This is achieved by scanning a current collecting detector in three dimensions in order to profile the distribution of electron beam current. Discharge electron beams are further characterized by their electron energy distribution. Measured electron flux energy distributions of transmitted beam electrons in the negative glow are compared to theoretical models. The relative effects of elastic and inelastic collisions mechanisms upon both the overall form and detailed structure of the energy distribution are discussed

  2. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  3. Dynamical chaos of plasma ions in electrostatic waves

    International Nuclear Information System (INIS)

    Fasoli, A.; Kleiber, R.; Tran, M.Q.; Paris, P.J.; Skiff, F.

    1992-09-01

    Chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric response and the microscopic heating mechanisms have been investigated via optical diagnostic techniques based on laser induced fluorescence. Observations of test-particle dynamical evolution indicate an exponential separation of initially close ion trajectories. (author) 5 figs., 20 refs

  4. Computerized precision control of a synchronous high voltage discharge switch for the beam separation system of the LEP e+/e- collider

    International Nuclear Information System (INIS)

    Dieperink, J.H.; Finnigan, A.; Kalbreier, W.; Keizer, R.L.; Laffin, M.; Mertens, V.

    1989-01-01

    Electrostatic separators are used to separate the beams in LEP. The counter-rotating beams are eventually brought into collision in the four low beta insertions, using switches to discharge simultaneously four high voltage (HV) circuits. Each switch consists of four spark gaps mounted in a pressure vessel. A reduction of the gap widths below the self ignition instance by electric motors results in the initiation of the discharges. Synchronization is ensured by the electrical coupling of the electrodes connected to the ground. The design and performance of the computerized precision control of the discharge switch are described. The dynamic characteristics of the prototype switch are also presented. 5 refs., 5 figs

  5. Electrostatic Precipitation of Dust in the Martian Atmosphere: Implications for the Utilization of Resources During Future Manned Exploration Missions

    Science.gov (United States)

    Calle, Carlos I.; Clements, Judson S.; Thompson, Samuel M.; Cox, Nathan D.; Hogue, Michael D.; Johansen, Michael R.; Williams, Blakeley S.

    2011-01-01

    Future human missions to Mars will require the utilization of local resources for oxygen, fuel. and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere. composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to precipitate and collect previously charged dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures. the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily becomes biopolar. which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet

  6. Mechanical behavior analysis on electrostatically actuated rectangular microplates

    International Nuclear Information System (INIS)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Zhao, Yulong; Dai, Lu

    2015-01-01

    Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices. (paper)

  7. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    International Nuclear Information System (INIS)

    Chabert, P

    2007-01-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries. (topical review)

  8. Vacuum system of tandem type electrostatic accelerator of Kyushu University

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1981-01-01

    In the tandem type electrostatic accelerator of Kyushu University, the problem of vacuum in the beam transport system including the accelerator tube has been considered as one of the important elements for the performance of the electrostatic accelerator from the beginning of construction. Though the three-stage tandem accelerating scheme was considered as the beam transport system at the beginning of the program, in which the existing 6 MV Van de Graaf accelerator was to be used as the injector, three types of ion sources are prepared at present; the sputter ion source to generate negative heavy ions, the polarizing ion source to generate negative polarized protons or deuterons, and direct extraction type negative ion source. Ultrahigh evacuating system, in which the sputter ion pump is mainly employed, and the turbo-molecular pump is used supplementarily, was installed in the vacuum system. The vacuum of approximately 10 - 9 Torr level off-beam at the inlet or outlet of the accelerator tube and approximately 10 - 8 Torr level in the tubing section in the center terminal were achieved. Since the upper limit of withstand voltage of the accelerating tube was not able to be satisfied for the insufficient baking at the beginning, it was finally decided that the accelerating tube should be heated by directly supplying power to the electrode through low voltage discharge in the tube. This method enabled the generated voltage at the terminal to exceed 10 MV. (Wakatsuki, Y.)

  9. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    constricted mode suggests that electrostatic forces may also play an important role in supersonic plasma-flow actuation phenomena. Analytical estimates using cathode sheath theory indicates that ion pressure within the cathode sheath can be significant resulting in gas compression in the sheath and a corresponding expansion above it. The expansion in turn may fully negate the dilatational effect in the constricted case resulting in an apparent absence of forcing in the constricted case. Plasma-induced flow velocity reaches about 1 m/s in stagnant air at the discharge current of order tens of milliamps. This electrostatic forcing in the direction from anode to cathode can play an important role in the boundary layer of supersonic flow.

  10. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    fundamental concepts of electrostatics as applied to atoms and molecules. The electric ... chemistry, the chemistry of the covalent bond, deals with the structures ..... the position of an asteroid named Ceres ... World Scientific. Singapore, 1992.

  11. Electrostatic coating technologies for food processing.

    Science.gov (United States)

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  12. Electrostatic micromotor based on ferroelectric ceramics

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2004-11-01

    A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.

  13. Study of asymmetrical electric discharges using particle simulation

    International Nuclear Information System (INIS)

    Alves, M.V.

    1990-11-01

    Asymmetrical electric discharges are been widely used in the microelectronic industry. The asymmetry in the electrode areas determines the magnitude of the plasma-to-electrode voltage, V sub(a), at the powered electrode, which determines the ion bombarding energy, a critical plasma processing parameter. Two many-particle simulation codes, called P D C 1 and P D S 1, were developed. These codes are electrostatic, one-dimensional (radial) and model (a bounded plasma between two infinite cylinders or two concentric spheres that can be connected to a RLC external circuit. Both codes consider asymmetrical electrodes areas. In order to simulate electrical discharges, Monte-Carlo simulation of electron-neutral and ion-neutral collisions were included. These codes were used to study the relationship between the voltage area ratio across the sheaths, V sub(a) / V sub(b), and the electrode area ratio A sub(b) / A sub(a). Simulation results agree with experimental results and also with the analytical model that includes local ionization near the electrodes, observed to occur in almost all our simulations. (author)

  14. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  15. Sensitivity of SWOT discharge algorithm to measurement errors: Testing on the Sacramento River

    Science.gov (United States)

    Durand, Micheal; Andreadis, Konstantinos; Yoon, Yeosang; Rodriguez, Ernesto

    2013-04-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on the sensitivity of the algorithm accuracy to the uncertainty in AirSWOT measurements of height, width, and slope.

  16. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  17. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    Science.gov (United States)

    Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  18. Realising traceable electrostatic forces despite non-linear balance motion

    International Nuclear Information System (INIS)

    Stirling, Julian; Shaw, Gordon A

    2017-01-01

    Direct realisation of force, traceable to fundamental constants via electromagnetic balances, is a key goal of the proposed redefinition of the international system of units (SI). This will allow small force metrology to be performed using an electrostatic force balance (EFB) rather than subdivision of larger forces. Such a balance uses the electrostatic force across a capacitor to balance an external force. In this paper we model the capacitance of a concentric cylinder EFB design as a function of the displacement of its free electrode, accounting for the arcuate motion produced by parallelogram linkages commonly used in EFB mechanisms. From this model we suggest new fitting procedures to reduce uncertainties arising from non-linear motion as well as methods to identify misalignment of the mechanism. Experimental studies on both a test capacitor and the NIST EFB validate the model. (paper)

  19. Optimization of 200 kV electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    M Nazmabadi

    2015-09-01

    Full Text Available Optimizations on 200 kV electrostatic accelerator have been done in order to increasing ion current on target, improving vacuum condition and reduction in x-rays emission, increasing stability of high voltage power supply and reaching much greater achievable voltage value. The accelerator tube has most important effect on beam tracing in the electrostatic accelerators. So precautions most be considered in designing and constructing of this part. In order to finding permissible tolerances in construction and assembling of 200 kV electrostatic accelerator column, first the effects of angle deviation of a part from accelerator axis on beam track in the accelerator tube was simulated with Simion 7.0 computer program. We found that in order to prevent beam lost, the tolerances of balancing and co-centering of each part should be smaller than 0.1 mm. Each part of accelerator tube constructed by tolerances lower than 0.05 mm. Ultrasonic cleaning method used in pre-assembling process of parts. Because of its excellences, in the new tube we used borosilicate glass instead of high density alumina as insulators between the metallic electrodes. After three days of working vacuum pumps the system reached to 8.0×10-7 and after months to 5.0×10-7 ultimate pressure values. Measurements showed that by these considerations the maximum of reachable ion current on target was 1.1 mA which increased 50% compared to old machine, while x-ray emission intensity was increased by 25%. Optimizations of high voltage power supply are now under studies and tests

  20. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  1. Influence of start-ups with fuel-oil on the operation of electrostatic precipitators in pulverised coal boilers

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, B.; Vilches, L.F.; Canadas, L.; Salvador, L. [University of Seville, Seville (Spain)

    2004-04-01

    This article describes the results of a series of tests carried out in a pilot fly ash electrostatic precipitation facility operating with real gases from a 550 MWe pulverized coal-fired power station. The main goal of these tests was to determine the effects of boiler start-ups on the performance of the electrostatic preciptator. The tests were carried out during start-ups of the power station boiler. All tests were carried out with the same fuel. An evaluation was made of the effects of the use of fuel-oil as auxillary fuel in start-ups and shut-downs of the boiler, and different electrostatic precipitators operation procedures were tested during start-ups and shut-downs. The results of the experiments made it possible to assess the relative importance of different variables on the possible deterioration of the efficiency of the precipitators. Also evaluated were operational modes that have demonstrated an improvement in the performance of the precipitators after the transient stage of these operations. As a result of this study, a number of important operational recommendations are made on boiler start-up and shut-down procedures.

  2. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance. Copyright © 2013 Wiley Periodicals, Inc.

  3. Electrostatic beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  4. High-energy capacitance electrostatic micromotors

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  5. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  6. Anode wire in cylindrical cathode tube : destabilizing electrostatic force

    CERN Document Server

    Wertelaers, P

    2017-01-01

    A two-dimensional -- cross-sectional -- discussion suffices. The tube is offset, and the electrostatic potential is found analytically with perturbative methods. Then, the force is established with the Maxwell stress tensor. Alternatively, trying to find the force with energy methods, fails. Finally, finite element tests are performed in order to report on the degree of non-linearity for large offsets.

  7. Electrostatic atomization--Experiment, theory and industrial applications

    Science.gov (United States)

    Okuda, H.; Kelly, Arnold J.

    1996-05-01

    Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.

  8. Quantitative nanoscale electrostatics of viruses.

    Science.gov (United States)

    Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J

    2015-11-07

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.

  9. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    Science.gov (United States)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  10. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  11. Particle-in-cell simulations of anomalous transport in a Penning discharge

    Science.gov (United States)

    Carlsson, Johan; Kaganovich, Igor; Powis, Andrew; Raitses, Yevgeny; Romadanov, Ivan; Smolyakov, Andrei

    2018-06-01

    Electrostatic particle-in-cell simulations of a Penning discharge are performed in order to investigate azimuthally asymmetric, spoke-like structures previously observed in experiments. Two-dimensional simulations show that for Penning-discharge conditions, a persistent nonlinear spoke-like structure forms readily and rotates in the direction of E × B and electron diamagnetic drifts. The azimuthal velocity is within about a factor of 2 of the ion acoustic speed. The spoke frequency follows the experimentally observed scaling with ion mass, which indicates the importance of ion inertia in spoke formation. The spoke provides enhanced (anomalous) radial electron transport, and the effective cross-field conductivity is several times larger than the classical (collisional) value. The level of anomalous current obtained in the simulations is in good agreement with the experimental data. The rotating spoke channels most of the radial current, observable by an edge probe as short pulses.

  12. An electrostatic detector for dust measurement on HT-7 tokamak

    International Nuclear Information System (INIS)

    Ling, B.L.; Zhang, X.D.; Ti, A.; Gao, X.

    2007-01-01

    An electrostatic dust detector has been successfully developed to measure dust event in situ and in real time on the HT-7 tokamak. For measuring dust near the edge plasmas and preventing interference of electrons and ions, the shielding plates were designed and installed around the dust detector. The electric signal of dust has been successfully measured during LHCD discharges on HT-7 tokamak. The measured dust signal was in good agreement with bursts appeared on multi-channel H α radiation and on multi-channel ECE diagnostics. Diagnostics of the spectrum and the measurement of impurity emission during dust bursts were studied in detail. It is interesting that there is a delay between dust bursts and CIII line emission. It is observed that the delay time between dust signal and measured CIII line emission is about 0.3 ms in the HT-7 tokamak

  13. Visible Photodetectors Based on Organic-Inorganic Hybrids Using Electrostatic Spraying Technology

    Directory of Open Access Journals (Sweden)

    Liang-Wen Ji

    2013-12-01

    Full Text Available This paper discusses an organic-inorganic hybrid white photodetector with the structure of ITO /AZO/ZnO NWs:P3HT: PCBM/PEDOT: PSS/Al produced with an electrostatic spraying method. The method of production was as follows: First, different spraying methods (continuous spraying, discontinuous spraying and different spraying times were tested before the final electrostatic spraying. Then, different annealing times (10 min and 20 min were tested to anneal the coated film. Lastly, we investigated the photoelectric properties, including transparency analysis of the film surface topography through XRD, OM, FE-SEM, AFM and UV-VIS. The results showed that the detector with discontinuous spraying and 20 mins annealing had a photocurrent of approx. 22.1×10-4A, dark current (drain current of approx. 1.94×10-7A, and a ratio of photocurrent to dark current of approximately 1.14×104, which produced optimal photoelectric characteristics.

  14. Electrostatic Induced Stretch Growth of Homogeneous β-Ni(OH)2 on Graphene with Enhanced High-Rate Cycling for Supercapacitors

    Science.gov (United States)

    Wu, Zhong; Huang, Xiao-Lei; Wang, Zhong-Li; Xu, Ji-Jing; Wang, Heng-Guo; Zhang, Xin-Bo

    2014-01-01

    Supercapacitors, as one of alternative energy devices, have been characterized by the rapid rate of charging and discharging, and high power density. But they are now challenged to achieve their potential energy density that is related to specific capacitance. Thus it is extremely important to make such materials with high specific capacitances. In this report, we have gained homogenous Ni(OH)2 on graphene by efficiently using of a facile and effective electrostatic induced stretch growth method. The electrostatic interaction triggers advantageous change in morphology and the ordered stacking of Ni(OH)2 nanosheets on graphene also enhances the crystallization of Ni(OH)2. When the as-prepared Ni(OH)2/graphene composite is applied to supercapacitors, they show superior electrochemical properties including high specific capacitance (1503 F g−1 at 2 mV s−1) and excellent cycling stability up to 6000 cycles even at a high scan rate of 50 mV s−1. PMID:24413283

  15. An efficient numerical approach to electrostatic microelectromechanical system simulation

    International Nuclear Information System (INIS)

    Pu, Li

    2009-01-01

    Computational analysis of electrostatic microelectromechanical systems (MEMS) requires an electrostatic analysis to compute the electrostatic forces acting on micromechanical structures and a mechanical analysis to compute the deformation of micromechanical structures. Typically, the mechanical analysis is performed on an undeformed geometry. However, the electrostatic analysis is performed on the deformed position of microstructures. In this paper, a new efficient approach to self-consistent analysis of electrostatic MEMS in the small deformation case is presented. In this approach, when the microstructures undergo small deformations, the surface charge densities on the deformed geometry can be computed without updating the geometry of the microstructures. This algorithm is based on the linear mode shapes of a microstructure as basis functions. A boundary integral equation for the electrostatic problem is expanded into a Taylor series around the undeformed configuration, and a new coupled-field equation is presented. This approach is validated by comparing its results with the results available in the literature and ANSYS solutions, and shows attractive features comparable to ANSYS. (general)

  16. Flue gas conditioning for improved particle collection in electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of [le] 10 [mu]m dia.

  17. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Electrostatics in Chemistry - Basic Principles. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 2 February 1999 pp 8-19. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  19. Evaluation of Electrostatic Force on Bipolar Charged Electret

    International Nuclear Information System (INIS)

    Sonoda, K; Minami, K; Miwatani, N; Fujita, T; Kanda, K; Maenaka, K

    2014-01-01

    This paper presents an evaluation of an electrostatic vibration energy harvester with the bipolar charged electret. The energy harvester with the size of 13 × 12 × 1.2 mm 3 was fabricated. The output power of the bipolar charged with ±250 V harvester was 9 μW when the acceleration was 1.4 g at 352 Hz with 0.9 MΩ load resistance. The effectiveness against the velocity-damped resonant-generator (VDRG) limit was 2.5%. The electrostatic forces of the actual device with DC bias, which simulates charged electret with monopolar and bipolar were experimentally and numerically verified. We estimated the electrostatic force by measuring the vibration amplitude versus applied acceleration of the electret mass. As a result, we investigated the bipolar charged device can reduce the effect of electrostatic force as low as no bias condition. The numerical model of the energy harvester considering the electrostatic force by FEM static analysis was also established. The comparison between the numerical model and the measurement results showed a similar inclination

  20. Proposed test method for determining discharge rates from water closets

    DEFF Research Database (Denmark)

    Nielsen, V.; Fjord Jensen, T.

    At present the rates at which discharge takes place from sanitary appliances are mostly known only in the form of estimated average values. SBI has developed a measuring method enabling determination of the exact rate of discharge from a sanitary appliance as function of time. The methods depends...

  1. Manufacture of electrostatic septum for extracting particle beam

    International Nuclear Information System (INIS)

    Tokumoto, Shuichi

    1979-01-01

    In the main ring of National Laboratory for High Energy Physics, fast and slow extractions of accelerated proton beam are carried out by using electrostatic septa. The electrostatic septum is an apparatus to deflect beam by an electrostatic field, basically composed of a couple of parallel plate electrodes installed in a vacuum chamber. The electrostatic septum is required to satisfy the following two conditions: it must be very thin and flat to reduce the loss of extracted beam, and sufficiently high electric field must be generated to deflect beam in a limited length. The structure and manufacture of electrostatic septa are described. The manufacturing is explained by dividing a septum into an anode and a cathode, terminals introducing high voltage, a vacuum chamber, and high voltage circuit. The performance is also described on the experiments for no-beam condition and beam extraction. Beam extraction has been carried out over 1500 hours thus far, the average beam intensity being 1 x 10 12 ppp, and extraction efficiency more than 90%. There have been no serious failure to affect the performance nor metal wire breakage. They have satisfied their purposes, being used for both fast and slow extractions. Presently, lengthening of the electrostatic field region is being planned to increase the length of the septa to 1.5 m per unit. (Wakatsuki, Y.)

  2. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liqiang, QI, E-mail: qi_liqiang@163.com; Yajuan, Zhang

    2013-07-15

    Highlights: • The influence mechanism of water vapor humidification on SO{sub 2} oxidation was analyzed. •The effects of water vapor on the specific resistance in fly ash in ESPs were reported. • The effects of water vapor on the size distribution and specific surface area of fly ash were discussed. • The adhesive characteristic of fly ash in different water vapor was experimented. -- Abstract: Sulfur dioxide (SO{sub 2}) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5 μm in diameter from flue gas. SO{sub 2} removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO{sub 3}{sup −} to SO{sub 4}{sup 2−}. Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased.

  3. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  4. Treatment of discharge water from hydrostatic testing of natural gas pipelines. Volume 4. Topical report, January 1989-June 1992

    International Nuclear Information System (INIS)

    Tallon, J.T.; Lee-Ryan, P.B.; Volpi, K.A.; Fillo, J.P.

    1992-06-01

    The report presents results developed from bench- and full-scale treatment testing conducted on discharge water from hydrostatic testing of natural gas pipelines. Bench-scale testing examined sedimentation with and without chemical coagulants for reducing iron and total suspended solids, aeration for removal of volatile organics, and activated carbon adsorption for removal of organic constituents. Treatment results are provided for a full-scale treatment process, which utilized a hay bale structure and adsorbent booms for removing suspended solids and oil from the discharge water. Detailed characterization results are presented for test water collected before and after treatment. Results developed from an economic analysis of other potential treatment/disposal alternatives are also presented. A total of eight approaches that may be applied for managing constituents present in hydrostatic test waters are examined. The report is Volume 4 of a five-volume report series

  5. An experimental study on anti-electrostatic gauge rulers

    International Nuclear Information System (INIS)

    Lou, Renjie; Dai, Liping; Sun, Hong

    2013-01-01

    The process of oil filling will produce electrostatic phenomena which may cause fire accidents. There were no reports about research on the danger of static electricity generation in the process of gauging operation to date. This paper presents an experiment on charge transferring quantity of gauge rulers, and calculates the charge transferring quantity of an anti-electrostatic gauge ruler and a metal one, respectively. The results indicate that the charge transferring quantity can be more than 0.1 μC for a metal gauge ruler, while it is less than 0.1 μC for an antistatic gauge ruler. Therefore, this experimental research proves that using an anti-electrostatic gauge ruler is safer than using a metal one. This study also provides some theoretical and experimental evidence for making anti-electrostatic gauge rulers.

  6. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  7. Shuffle motor: a high force, high precision linear electrostatic stepper motor

    NARCIS (Netherlands)

    Tas, Niels Roelof; Wissink, Jeroen; Sander, A.F.M.; Sander, Louis; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1997-01-01

    The shuffle motor is a electrostatic stepper motor that employs a mechanical transformation to obtain high forces and small steps. A model has been made to calculate the driving voltage, step size and maximum load to pull as well as the optimal geometry. Tests results are an effective step size of

  8. Electrostatic Deposition of Large-Surface Graphene

    Directory of Open Access Journals (Sweden)

    Charles Trudeau

    2018-01-01

    Full Text Available This work describes a method for electrostatic deposition of graphene over a large area using controlled electrostatic exfoliation from a Highly Ordered Pyrolytic Graphite (HOPG block. Deposition over 130 × 130 µm2 with 96% coverage is achieved, which contrasts with sporadic micro-scale depositions of graphene with little control from previous works on electrostatic deposition. The deposition results are studied by Raman micro-spectroscopy and hyperspectral analysis using large fields of view to allow for the characterization of the whole deposition area. Results confirm that laser pre-patterning of the HOPG block prior to cleaving generates anchor points favoring a more homogeneous and defect-free HOPG surface, yielding larger and more uniform graphene depositions. We also demonstrate that a second patterning of the HOPG block just before exfoliation can yield features with precisely controlled geometries.

  9. Orientation of KRb molecules in a switched electrostatic field

    International Nuclear Information System (INIS)

    Huang Yun-Xia; Xu Shu-Wu; Yang Xiao-Hua

    2013-01-01

    We theoretically investigate the orientation of the cold KRb molecules induced in a switched electrostatic field by numerically solving the full time-dependent Schrödinger equation. The results show that the periodic field-free molecular orientation can be realized for the KRb molecules by rapidly switching off the electrostatic field. Meanwhile, by varying the switching times of the electrostatic field, the adiabatic and nonadiabatic interactions of the molecules with the applied field can be realized. Moreover, the influences of the electrostatic field strength and the rotational temperature to the degree of the molecular orientation are studied. The investigations show that increasing the electrostatic field will increase the degree of the molecular orientation, both in the constant-field regime and in the field-free regime, while the increasing of the rotational temperature of the cold molecules will greatly decrease the degree of the molecular orientation. (atomic and molecular physics)

  10. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

    Science.gov (United States)

    Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.

    2013-01-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  11. Energy Balance in an Electrostatic Accelerator

    OpenAIRE

    Zolotorev, Max S.; McDonald, Kirk T.

    2000-01-01

    The principle of an electrostatic accelerator is that when a charge e escapes from a conducting plane that supports a uniform electric field of strength E_0, then the charge gains energy e E_0 d as it moves distance d from the plane. Where does this energy come from? We that the mechanical energy gain of the electron is balanced by the decrease in the electrostatic field energy of the system.

  12. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  13. Embedding beyond electrostatics-The role of wave function confinement.

    Science.gov (United States)

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob

    2016-09-14

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.

  14. Nitrile bonds as infrared probes of electrostatics in ribonuclease S.

    Science.gov (United States)

    Fafarman, Aaron T; Boxer, Steven G

    2010-10-28

    Three different nitrile-containing amino acids, p-cyanophenylalanine, m-cyanophenylalanine, and S-cyanohomocysteine, have been introduced near the active site of the semisynthetic enzyme ribonuclease S (RNase S) to serve as probes of electrostatic fields. Vibrational Stark spectra, measured directly on the probe-modified proteins, confirm the predominance of the linear Stark tuning rate in describing the sensitivity of the nitrile stretch to external electric fields, a necessary property for interpreting observed frequency shifts as a quantitative measure of local electric fields that can be compared with simulations. The X-ray structures of these nitrile-modified RNase variants and enzymatic assays demonstrate minimal perturbation to the structure and function, respectively, by the probes and provide a context for understanding the influence of the environment on the nitrile stretching frequency. We examine the ability of simulation techniques to recapitulate the spectroscopic properties of these nitriles as a means to directly test a computational electrostatic model for proteins, specifically that in the ubiquitous Amber-99 force field. Although qualitative agreement between theory and experiment is observed for the largest shifts, substantial discrepancies are observed in some cases, highlighting the ongoing need for experimental metrics to inform the development of theoretical models of electrostatic fields in proteins.

  15. Competing processes of whistler and electrostatic instabilities in the magnetosphere

    International Nuclear Information System (INIS)

    Omura, Y.; Matsumoto, H.

    1987-01-01

    Competing processes of whistler mode and electrostatic mode instabilities induced by an electron beam are studied by a linear growth rate analysis and by an electromagnetic particle simulation. In addition to a background cold plasma we assumed an electron beam drifting along a static magnetic field. We studied excitation of whistler and electrostatic mode waves in the direction of the static magnetic field. We first calculated linear growth rates for the whistler mode and electrostatic mode instabilities, assuming various possible parameters in the equatorial magnetosphere. We found that the growth rate for the electrostatic instability is always larger than that of the whistler mode instability. A short simulation run with a monoenergetic electron beam demonstrates that a monoenergetic beam can hardly give energy to whistler mode waves as a result of competition with faster growing electrostatic waves, because the beam electrons are trapped and diffused by the electrostatic waves, and hence the growth rates for whistler mode waves become very small. A long simulation run starting with a warm electron beam demonstrates that whistler mode waves are excited in spite of the small growth rates and the coexisting quasi-linear electrostatic diffusion process

  16. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

  17. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    International Nuclear Information System (INIS)

    Simeni Simeni, Marien; Frederickson, Kraig; Lempert, Walter R; Adamovich, Igor V; Goldberg, Benjamin M; Zhang, Cheng

    2017-01-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  18. Testing of man-made overland-flow and wetlands systems for the treatment of discharged waters from oil and gas production operations in Wyoming

    International Nuclear Information System (INIS)

    Caswell, P.C.; Gelb, D.; Marinello, S.A.; Emerick, J.C.; Cohen, R.R.H.

    1992-01-01

    The quality of produced and discharged waters is of increasing concern as the overall quality of potable waters within many regions of the country becomes a critical issue. The impact of discharged waters on the downstream water quality, as well as the flora and fauna within a discharge zone, is dependent on the quality of the water ultimately released into the system. In many regions of the country, discharge permits are being re-evaluated and sometimes recalled due to the actual and perceived impact upon surface and subsurface waters, particularly those providing water utilized by the human population. The engineering, design and testing of a system to treat produced waters from oil operations in Wyoming is addressed in this study. This work was designed and performed by students and faculty in the Environmental Science and Engineering and Petroleum Engineering departments at the Colorado School of Mines. The system consists of overland flow units and a constructed wetlands unit. The system units can be independently evaluated. The water is drawn from active settling ponds above the test site. Produced waters are actively being discharged into the drainage basin. Waters flowing through the test units are likewise discharged after treatment. The system has been operational since June, 1991 and monthly sampling and testing will continue through March, 1992. Initial results having been very promising. Aeration, precipitation and bacterial activity in the overland flow and wetland units appears to nearly eliminate the sulfide problem present and significantly reduce the released radium concentration. These are the constituents of major concern although testing for other chemicals of concern, including hydrocarbon content is also analyzed

  19. Flexures for large stroke electrostatic actuation in MEMS

    International Nuclear Information System (INIS)

    Krijnen, B; Brouwer, D M

    2014-01-01

    The stroke of a microelectromechanical systems (MEMS) stage suspended by a flexure mechanism and actuated by electrostatic comb-drives is limited by pull-in. A method to analyze the electrostatic stability of a flexure mechanism and to optimize the stroke with respect to the footprint of flexure mechanisms is presented. Four flexure mechanisms for large stroke are investigated; the standard folded flexure, the slaved folded flexure, the tilted folded flexure and the Watt flexure. Given a certain stroke and load force, the flexures are optimized to have a minimum wafer footprint. From these optimizations it is concluded that the standard folded flexure mechanism is the best flexure mechanism for relatively small strokes (up to ±40 μm) and for larger strokes it is better to use the tilted folded flexure. Several optimized flexure mechanisms have been fabricated and experimentally tested to reach a stroke of ±100 μm. The displacement of the fabricated stages as a function of the actuation voltage could be predicted with 82% accuracy, limited by the fairly large tolerances of our fabrication process. (paper)

  20. TOPICAL REVIEW: Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    Science.gov (United States)

    Chabert, P.

    2007-02-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries.

  1. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture is a detail of 7501199, and shows the suspension of the wires. 7801286 shows a septum in its tank. See also 7501120X.

  2. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    Science.gov (United States)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  3. SIMION, Electrostatic Lens Analysis and Design

    International Nuclear Information System (INIS)

    Dahl, David A.

    2001-01-01

    1 - Description of program or function: SIMION is an electrostatic lens analysis and design program. In SIMION an electrostatic lens is defined as a two-dimensional electrostatic potential array containing both electrode and non-electrode points. The potential array is refined using over-relaxation methods allowing voltage contours and ion trajectories to be computed and plotted. Planar and cylindrical symmetry assumptions allow the two-dimensional fields to support three-dimensional ion trajectory calculations. In addition, the user has the option of writing simple programs which can among other actions control field scale factors, dynamically adjust electrodes, and define explicit three-dimensional field functions (e.g. a quadrupole) used in lieu of array fields in specified portions of the potential array. Magnetic fields can be specified for computing ion trajectories in many electrostatic and magnetic field environments. An interactive graphics interface that uses a high resolution color display and mouse allows the user to view electrodes, trajectories, and contours on the screen prior to plotting, and a memory zoom feature permits expansion of selected areas in the current view. The mouse can be operated to edit the potential array, initialize voltage gradients, or resize the potential array. 2 - Method of solution: SIMION is designed to model the electrostatic fields and forces created by a collection of shaped electrodes given certain symmetry assumptions. The electrostatic fields are modeled as boundary value problem solutions of a Laplace elliptical partial differential equation. A finite difference technique called dynamically self-adjusting over-relaxation is applied to the two-dimensional potential array of points representing electrode and non-electrode regions to obtain a best estimate of the voltages for those points within the array that depict non-electrode regions. A standard fourth-order Runge-Kutta method is used for numerical integration of

  4. Direct measurement of the plasma response to electrostatic ion waves

    International Nuclear Information System (INIS)

    Sarfaty, M.; DeSouza-Machado, S.; Skiff, F.

    1995-01-01

    Plasma wave-wave and wave-particle interactions are studied in a linear magnetized plasma. The relatively quiet plasma is produced by an argon gas-discharge. The plasma density is n e ≅ 10 9 cm -3 and the electron/ion temperatures are T e ≅ 5eV and T i = 0.05eV. A grid and a four ring antenna, both mounted on a scanning carriage, are used to launch electrostatic ion waves in the plasma. Laser Induced Fluorescence measurements of both the linear and the nonlinear plasma response to the wave fields are presented. The Vlasov-Poisson equations are used to explain the measured zero, first and second order terms of the ion distribution function in the presence of wave fields. In addition to the broadening (heating) of the ion distribution as the authors increase the wave amplitudes, induced plasma flows are observed both along and across the magnetic field

  5. Reducing Plasma Perturbations with Segmented Metal Shielding on Electrostatic Probes

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Electrostatic probes are widely used to measure spatial plasma parameters in the quasi-neutral plasma created in Hall thrusters and similar E x B electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In an attempt to reduce these perturbations in Hall thrusters, the perturbations were examined by varying the component material, penetration distance, and residence time of various probe designs. This study leads us to a conclusion that secondary electron emission from insulator ceramic tubes of the probe can affect local changes of the plasma parameters causing plasma perturbations. A probe design, which consists of a segmented metal shielding of the probe insulator, is suggested to reduce these perturbations. This new probe design can be useful for plasma applications in which the electron temperature is sufficient to produce secondary electron emission by interaction of plasma electrons with dielectric materials

  6. A small-gap electrostatic micro-actuator for large deflections

    Science.gov (United States)

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  7. Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.

    2009-01-01

    Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.

  8. Orbital dynamics in a storage ring with electrostatic bending

    International Nuclear Information System (INIS)

    Mane, S.R.

    2008-01-01

    A storage ring where electrostatic fields contribute to the bending and focusing of the orbital motion has some novel features because, unlike a magnetostatic field, an electrostatic field can change the kinetic energy of the particles. I present analytical formulas to calculate the linear focusing gradient, dispersion, momentum compaction and natural chromaticity for a storage ring with a radial electrostatic field. I solve the formulas explicitly for a weak focusing model.

  9. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  10. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  11. Limits of applicability of the quasilinear approximation to the electrostatic wave-plasma interaction

    Science.gov (United States)

    Zacharegkas, Georgios; Isliker, Heinz; Vlahos, Loukas

    2016-11-01

    The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, that is, in both regimes, where QLT is valid and where it clearly breaks down.

  12. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  13. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  14. Electrostatic atomization emdash Experiment, theory and industrial applications

    International Nuclear Information System (INIS)

    Okuda, H.; Kelly, A.J.

    1996-01-01

    Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle. copyright 1996 American Institute of Physics

  15. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  16. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  17. Review on the Modeling of Electrostatic MEMS

    Directory of Open Access Journals (Sweden)

    Wan-Chun Chuang

    2010-06-01

    Full Text Available Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices.

  18. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  19. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  20. Electrostatic tuning of permeation and selectivity in aquaporin water channels

    DEFF Research Database (Denmark)

    Jensen, Mogens O Stibius; Tajkhorshid, E.; Schulten, K.

    2003-01-01

    Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/ 18:1c9...... with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel...... stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite...

  1. A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will develop a novel electrostatic/gecko-like adhesive that will demonstrate an order-of-magnitude improvement of electrostatic adhesion pressure coupled...

  2. Charge sniffer for electrostatics demonstrations

    Science.gov (United States)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  3. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  4. Efficient optimization of electrostatic interactions between biomolecules.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Altman, M. D.; White, J. K.; Tidor, B.; Mathematics and Computer Science; MIT

    2007-01-01

    We present a PDE-constrained approach to optimizing the electrostatic interactions between two biomolecules. These interactions play important roles in the determination of binding affinity and specificity, and are therefore of significant interest when designing a ligand molecule to bind tightly to a receptor. Using a popular continuum model and physically reasonable assumptions, the electrostatic component of the binding free energy is a convex, quadratic function of the ligand charge distribution. Traditional optimization methods require exhaustive pre-computation, and the expense has precluded a full exploration of the promise of electrostatic optimization in biomolecule analysis and design. In this paper we describe an approach in which the electrostatic simulations and optimization problem are solved simultaneously; unlike many PDE- constrained optimization frameworks, the proposed method does not incorporate the PDE as a set of equality constraints. This co-optimization approach can be used by itself to solve unconstrained problems or those with linear equality constraints, or in conjunction with primal-dual interior point methods to solve problems with inequality constraints. Model problems demonstrate that the co-optimization method is computationally efficient and can be used to solve realistic problems.

  5. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  6. Continuous capacitive deionization-electrodialysis reversal through electrostatic shielding for desalination and deionization of water

    Energy Technology Data Exchange (ETDEWEB)

    Dermentzis, Konstantinos [Technological Education Institute, T.E.I. of Kavala, School of Technological Applications, Department of Science, Laboratory of Chemical Technology and Electrochemistry, Agios Loucas, 65404 Kavala (Greece); Ouzounis, Konstantinos [Democritus University of Thrace, School of Engineering, Department of Environmental Engineering, Laboratory of Environmental Chemistry, 67100 Xanthi (Greece)

    2008-10-15

    We report a new concept for capacitive deionization with simple and cheap porous bipolar intermediate graphite electrodes which is operated continuously by constant or alternating polarity without any down time for electrode saturation, regeneration and rinsing steps and certainly without any permselective ion exchange membranes. The proposed process utilizes the advantages of the classical electrodeionization technologies combining them all to a unified continuous capacitive deionization-continuous electrodeionization-electrodialysis-electrodialysis reversal process. Separate and unchanged diluate and concentrate compartments are created in two modes, first by periodical charging/discharging the bipolar intermediate electrodes through a pulsating electric field and second by simultaneous charging/discharging them through a constant or pulsating electric field and electrostatic shielding. Because of coion permeation and the convenience of alternating the polarity without any negative impact on the deionization process, the new technique is less affected by the known membrane associated limitation, such as concentration polarization, limiting current density or scaling. The new electrochemical deionization technique is suitable for regeneration of ion exchange resins and production of high purity deionized water, removal of heavy metal ions from industrial effluents and desalination of brackish or seawater. (author)

  7. Computerized study of several electrostatic, surface-ionization ion-source configurations

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, S.J.; Schuster, B.G.

    1984-08-01

    A computer-based method is presented whereby the optics of electrostatic, surface-ionization ion-source designs can be analyzed theoretically. The analysis solves for the luminosity and disperstion of a beam of charged particles at the final collimating slit and at locations preceding the slit. The performance of an ion source tested in 1960 and also some newer optical configurations are compared with theory.

  8. Three numerical methods for the computation of the electrostatic energy

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Galeriu, D.

    1975-01-01

    The FORTRAN programs for computation of the electrostatic energy of a body with axial symmetry by Lawrence, Hill-Wheeler and Beringer methods are presented in detail. The accuracy, time of computation and the required memory of these methods are tested at various deformations for two simple parametrisations: two overlapping identical spheres and a spheroid. On this basis the field of application of each method is recomended

  9. Factors affecting the electrostatic charge of ceramic powders

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J.; Fernandez, J. F.

    2011-01-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  10. A versatile electrostatic trap with open optical access

    Science.gov (United States)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  11. Inertial electrostatic confinement fusion neutron source R ampersand D and issues

    International Nuclear Information System (INIS)

    Ohnishi, Masami; Yamamoto, Yasushi; Hasegawa, Mitsunori

    1997-01-01

    An inertial electrostatic confinement (IEC) fusion is the scheme of injecting the ions and electrons toward the spherical center, trapping both species in the electrostatic self-field and giving rise to fusion reactions in the dense core. An IEC is expected to have wide application from a small neutron source to a D- 3 He fusion reactor. Hirsch reported 10 9 n/s deuterium-tritium (D-T) neutron production in the device equipped with ion guns. Recently, Gu et al. measured 10 6 n/s using a D 2 gas discharge between the spherical wire cathode and the anode vacuum vessel, where the applied voltage is 60 kV and the current is 15 mA. We have also obtained similar neutron production at a lower voltage, ∼45 kV in a single-grid IEC device. Fusion reaction rates obtained by IEC experiments so far cannot be explained by a model of a simple potential well structure because the electrical potential peaked at the center prevents making a dense core. Hirsch proposed a multiwell structure called open-quotes poissorsclose quotes to explain the experiments. It is generally believed that there may be some correlation between the potential well structure and the neutron production rate. The scaling of neutron production on the injected ion current is a most important aspect of the problem for the prospect of utilizing IEC for fusion energy. The potential structure and its behavior are keys to the physics in understanding the principle of an IEC

  12. Electrostatic Properties and Characterization of Textile Materials Affected by Ion Flux

    Directory of Open Access Journals (Sweden)

    Pranas Juozas ŽILINSKAS

    2013-03-01

    Full Text Available This work analyzes the opportunities of wider characterization of textile materials, fabrics, upholstery fabrics, fibers, yarns or others, which may accumulate electric charge. A non-contact way for electrostatic properties measurement based on affecting those materials by ions with positive or negative charge is described. The method allows to measure simultaneously the time dependences of the surface voltage and the electric charge during the charging process and the time dependences of the surface voltage during the discharging process. From the measured dependencies the following set of parameters was measured or calculated: the surface voltage limiting value, the surface voltage semi-decay time, the maximum deposited charge, the layer capacitance, the energy of the accumulated charge and others. The surface voltage distribution measurement method when the investigated textile material is affected by ion flux was also described. To verify the applicability of the proposed methods for characterization of textile materials in order to determine the above-mentioned parameters of cotton, linen, wool, viscose, acetate, polyester, polyester coated with polytetrafluoroethylene, a series of experiments were performed. The surface voltage distribution measurement method based on affecting textile materials by ions with positive charge was described and a surface voltage distribution of a polyester-cotton upholstery fabric produced by a Jacquard mechanism was presented. The performed experiments demonstrate the possibilities of method application for comparison of the electrostatic properties of different textile materials used for the same tasks or the same materials produced by different technological processes.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3828

  13. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  14. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian; Younis, Mohammad I.

    2015-01-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction

  15. Electrostatic Transport and Manipulation of Lunar Soil and Dust

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki

    2008-01-01

    Transport and manipulation technologies of lunar soil and dust are under development utilizing the electrostatic force. Transport of particles is realized by an electrostatic conveyer consisting of parallel electrodes. Four-phase traveling electrostatic wave was applied to the electrodes to transport particles upon the conveyer and it was demonstrated that particles were efficiently transported under conditions of low frequency, high voltage, and the application of rectangular wave. Not only linear but also curved and closed transport was demonstrated. Numerical investigation was carried out with a three-dimensional hard-sphere model of the Distinct Element Method to clarify the mechanism of the transport and to predict performances in the lunar environment. This technology is expected to be utilized not only for the transport of bulk soil but also for the cleaning of a solar panel and an optical lens. Another technology is an electrostatic manipulation system to manipulate single particle. A manipulator consisted of two parallel pin electrodes. When voltage was applied between the electrodes, electrophoresis force generated in non-uniform electrostatic field was applied to the particle near the tip of the electrode. The particle was captured by the application of the voltage and released from the manipulator by turning off the voltage. It was possible to manipulate not only insulative but also conductive particles. Three-dimensional electrostatic field calculation was conducted to calculate the electrophoresis force and the Coulomb force

  16. Optimization of key factors of the electrostatic separation for crushed PCB wastes using roll-type separator

    International Nuclear Information System (INIS)

    Wu Jiang; Li Jia; Xu Zhenming

    2008-01-01

    For the electrostatic separation process, the separator is most crucial. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycle of waste electrical and electronic equipment (WEEE). Some researches have been done in this field and shown that there was a complex correlation between its configuration and the efficiency of the separation. In this paper, a fractional factorial design (2 v 1-5 ) was built and 32 tests were performed on a roll-type corona-electrostatic separator. The sample of granular mixture got from crushed PCB wastes (size 0.3-0.45 mm, containing 25% metal and 75% nonmetal). The experimental data were discussed and used to analyze the factors' main effect, interaction and optimization of the process. Three liner-interaction mathematical models were derived to describe the mass of middling fraction (M), conductor fraction (C) and Nonconductor fraction (NC), respectively. The results show that the efficiency of the PCB waste electrostatic separation process has a significant correlation with not only factors' main effects, but also the interaction between them

  17. Experiment data of 200% recirculation pump discharge line break integral test run 961 with HPCS failure at ROSA-III and comparison with results of suction line break tests

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Nakamura, Hideo; Anoda, Yoshinari; Kumamaru, Hiroshige; Murata, Hideo; Yonomoto, Taisuke; Shiba, Masayoshi

    1984-03-01

    This report presents the experimental data of RUN 961, a 200% double-ended break test at the recirculation pump discharge line in the ROSA-III test facility. The ROSA-III test facility is a volumetrically scaled (1/424) system of the BWR/6. The facility has the electrically heated core, the break simulator and the scaled ECCS (Emergency Core Cooling System). The MSIV (Main Steam Isolation Valve) closure and the ECCS actuation were tripped by the liquid level in the upper downcomer. The PCT (Peak Cladding Temperature) was 894 K, which was 107 K higher than a 200% pump suction line break test (RUN 926) due to the smaller depressurization rate. The effect of break location on transient LOCA phenomena was clarified by comparing the discharge and suction break tests. The whole core was quenched 71 s after LPCI actuation and the effectiveness of ECCS has been confirmed. (author)

  18. Field distribution in a coaxial electrostatic wiggler

    Directory of Open Access Journals (Sweden)

    Shi-Chang Zhang

    2010-09-01

    Full Text Available The field distribution in a coaxial electrostatic wiggler corresponds to the special solution of a Laplace equation in a cylindrical coordinate system with a boundary value problem of sinusoidal ripples. This paper is devoted to the physical and mathematical treatment for an analytical solution of the field distribution in the coaxial electrostatic wiggler. The explicit expression of the solution indicates that the field distribution in the coaxial electrostatic wiggler varies according to a periodic function in the longitudinal direction, and is related to the first and second kinds of modified Bessel functions in the radial direction, respectively. Comparison shows excellent agreement between the analytical formula and the computer simulation technology (CST results. The physical application of the considered system and its analytical solution are discussed.

  19. A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna

    Science.gov (United States)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne 18 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.

  20. Development of Electrostatically Clean Solar Array Panels

    Science.gov (United States)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  1. Engineering Design of Electrostatic Quadrupole for ISOL Beam Lines

    International Nuclear Information System (INIS)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S.

    2014-01-01

    In the ISOL system, the RI beam should be transported from the target ion source to post accelerator through various analyzing and charge-breeding systems such as PS (pre-seperator), HRMS (High Resolution Mass Seperator), RF cooler and A/q separator. A reference particle for the beam dynamics calculation is 132 Sn 1+ . After charge breeder system, the charge state is boosted from +1 to +19 with ECR charge breeder and to +33 with EBIS charge breeder. Because the beam energy is as low as 50 keV, the electrostatic optics was adopted rather than the magnetic optics. The electrostatic quadrupole triplets were used for the beam focusing and the electrostatic bender is used for 90-degree bending. In this paper, the design procedure and engineering design of the electrostatic quadrupole are presented

  2. Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge

    International Nuclear Information System (INIS)

    Metel, A. S.; Grigoriev, S. N.; Melnik, Yu. A.; Panin, V. V.

    2009-01-01

    Experimental study of a glow discharge with electrostatic confinement of electrons is carried out in the vacuum chamber volume V ∼ 0.12 m 3 of a technological system 'Bulat-6' in argon pressure range 0.005-5 Pa. The chamber is used as a hollow cathode of the discharge with the inner surface area S ∼ 1.5 m 2 . It is equipped with two feedthroughs, which make it possible to immerse in the discharge plasma interchangeable anodes with surface area S a ranging from ∼0.001 to ∼0.1 m 2 , as well as floating electrodes isolated from both the chamber and the anode. Dependences of the cathode fall U c = 0.4-3 kV on the pressure p at a constant discharge current in the range I = 0.2-2 A proved that aperture of the electron escape out of the electrostatic trap is equal to the sum S o = S a + S f of the anode surface S a and the floating electrode surface S f . The sum S o defines the lower limit p o of the pressure range, in which U c is independent of p. At p o the cathode fall U c grows up dramatically, when the pressure decreases, and the pressure p tends to the limit p ex , which is in fact the discharge extinction pressure. At p ∼ p ex electrons emitted by the cathode and the first generation of fast electrons produced in the cathode sheath spend almost all their energy up to 3 keV on heating the anode and the floating electrode up to 600-800 o C and higher. In this case the gas in the chamber is being ionized by the next generations of electrons produced in the cathode sheath, their energy being one order of magnitude lower. When S a 1/2 S, where m is the electron mass and M is the ion mass, the anode may be additionally heated by plasma electrons accelerated by the anode fall of potential U a up to 0.5 kV.

  3. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    Science.gov (United States)

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  4. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  5. Frontier applications of electrostatic accelerators

    Science.gov (United States)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  6. Fabrication and characterization of an electrostatic contraction beams micromotor

    NARCIS (Netherlands)

    Sarajlic, Edin; Berenschot, Johan W.; Tas, Niels Roelof; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2006-01-01

    We report on fabrication and experimental characterization of an electrostatic contraction beams motor that exhibits both reliable operation and high performance haracteristics. This electrostatic linear stepper micromotor is fabricated in a single polysilicon layer combining vertical trench

  7. NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  8. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  9. Electromechanical coupling in electrostatic micro-power generators

    International Nuclear Information System (INIS)

    Mahmoud, M A E; El-Saadany, E F; Mansour, R R; Abdel-Rahman, E M

    2010-01-01

    Electrostatic micro-power generators (MPGs) are modeled and analyzed with particular emphasis on electromechanical coupling and its impact on the system dynamics. We identify two qualitatively different regimes in the MPG response, dubbed slow and fast. A linearized electromechanically coupled model of an electrostatic MPG and two simplified linear models are used to study the response of the MPG. Linear models are found adequate to represent the dynamic response of fast MPGs but inadequate to represent the response of slow and mixed domain MPGs. A nonlinear model is developed and validated to describe the response of those MPGs under moderately large excitations. On the basis of this analysis, we describe a method and provide design rules for realizing wideband electrostatic MPGs, and develop closed-form formulae for the extracted power for MPGs under moderately large excitations

  10. Creation of Magnetic Fields by Electrostatic and Thermal Fluctuations

    International Nuclear Information System (INIS)

    Saleem, Hamid

    2009-01-01

    It is pointed out that the electrostatic and thermal fluctuations are the main source of magnetic fields in unmagnetized inhomogeneous plasmas. The unmagnetized inhomogeneous plasmas can support a low frequency electromagnetic ion wave as a normal mode like Alfven wave of magnetized plasmas. But this is a coupled mode produced by the mixing of longitudinal and transverse components of perturbed electric field due to density inhomogeneity. The ion acoustic wave does not remain electrostatic in non-uniform plasmas. On the other hand, a low frequency electrostatic wave can also exist in the pure electron plasmas and it couples with ion acoustic wave when ions are dynamic. These waves can become unstable when density and temperature gradients are parallel to each other as can be the case of laser plasmas and is the common situation in stellar cores. The main instability condition for the electrostatic and electromagnetic modes is the same (2/3)κ n T (where κ n and κ T are inverse of the scale lengths of gradients of density and electron temperature, respectively). This indicates that the electrostatic and magnetic field fluctuations are strongly coupled in unmagnetized nonuniform plasmas.

  11. A Study on Measurement Variations in Resonant Characteristics of Electrostatically Actuated MEMS Resonators

    Directory of Open Access Journals (Sweden)

    Faisal Iqbal

    2018-04-01

    Full Text Available Microelectromechanical systems (MEMS resonators require fast, accurate, and cost-effective testing for mass production. Among the different test methods, frequency domain analysis is one of the easiest and fastest. This paper presents the measurement uncertainties in electrostatically actuated MEMS resonators, using frequency domain analysis. The influence of the applied driving force was studied to evaluate the measurement variations in resonant characteristics, such as the natural frequency and the quality factor of the resonator. To quantify the measurement results, measurement system analysis (MSA was performed using the analysis of variance (ANOVA method. The results demonstrate that the resonant frequency ( f r is mostly affected by systematic error. However, the quality (Q factor strongly depends on the applied driving force. To reduce the measurement variations in Q factor, experiments were carried out to study the influence of DC and/or AC driving voltages on the resonator. The results reveal that measurement uncertainties in the quality factor were high for a small electrostatic force.

  12. Developing and testing an intervention to prevent homelessness among individuals discharged from psychiatric wards to shelters and 'No Fixed Address'.

    Science.gov (United States)

    Forchuk, C; MacClure, S K; Van Beers, M; Smith, C; Csiernik, R; Hoch, J; Jensen, E

    2008-09-01

    Shelter data in a recent study revealed discharges from psychiatric facilities to shelters or the street occurred at least 194 times in 2002 in London, Ontario, Canada. This problem must be addressed to reduce the disastrous effects of such discharge, including re-hospitalization and prolonged homelessness. An intervention was developed and tested to prevent homelessness associated with discharge directly to no fixed address. A total of 14 participants at-risk of being discharged without housing were enrolled, with half randomized into the intervention group. The intervention group was provided with immediate assistance in accessing housing and assistance in paying their first and last month's rent. The control group received usual care. Data was collected from participants prior to discharge, at 31 and 6-months post-discharge. All the individuals in the intervention group maintained housing after 3 and 6 months. All but one individual in the control group remained homeless after 3 and 6 months. The exception joined the sex trade to avoid homelessness. The results of this pilot were so dramatic that randomizing to the control group was discontinued. Discussions are underway to routinely implement the intervention. Systemic improvements can prevent homelessness for individuals being discharged from psychiatric wards.

  13. Method of electrostatic filtration

    International Nuclear Information System (INIS)

    Devienne, F.M.

    1975-01-01

    Electrostatic filtration of secondary ions of mass m in a given mass ratio with a primary ion of mass M which has formed the secondary ions by fission is carried out by a method which consists in forming a singly-charged primary ion of the substance having a molecular mass M and extracting the ion at a voltage V 1 with respect to ground. The primary ion crosses a potential barrier V 2 , in producing the dissociation of the ion into at least two fragments of secondary ions and in extracting the fragment ion of mass m at a voltage V 2 . Filtration is carried out in an electrostatic analyzer through which only the ions of energy eV'' are permitted to pass, detecting the ions which have been filtered. The mass m of the ions is such that (M/m) = (V 1 - V 2 )/(V'' - V 2 )

  14. Modelling and calibration of a ring-shaped electrostatic meter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianyong [University of Teesside, Middlesbrough TS1 3BA (United Kingdom); Zhou Bin; Xu Chuanlong; Wang Shimin, E-mail: zhoubinde1980@gmail.co [Southeast University, Sipailou 2, Nanjing 210096 (China)

    2009-02-01

    Ring-shaped electrostatic flow meters can provide very useful information on pneumatically transported air-solids mixture. This type of meters are popular in measuring and controlling the pulverized coal flow distribution among conveyors leading to burners in coal-fired power stations, and they have also been used for research purposes, e.g. for the investigation of electrification mechanism of air-solids two-phase flow. In this paper, finite element method (FEM) is employed to analyze the characteristics of ring-shaped electrostatic meters, and a mathematic model has been developed to express the relationship between the meter's voltage output and the motion of charged particles in the sensing volume. The theoretical analysis and the test results using a belt rig demonstrate that the output of the meter depends upon many parameters including the characteristics of conditioning circuitry, the particle velocity vector, the amount and the rate of change of the charge carried by particles, the locations of particles and etc. This paper also introduces a method to optimize the theoretical model via calibration.

  15. Realistic electrostatic potentials in a neutron star crust

    International Nuclear Information System (INIS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-01-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner–Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas–Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential. (paper)

  16. The Effect of Residual Stress on the Electromechanical Behavior of Electrostatic Microactuators

    Directory of Open Access Journals (Sweden)

    Ming-Hung Hsu

    2008-01-01

    Full Text Available This work simulates the nonlinear electromechanical behavior of different electrostatic microactuators. It applies the differential quadrature method, Hamilton's principle, and Wilson-θ integration method to derive the equations of motion of electrostatic microactuators and find a solution to these equations. Nonlinear equation difficulties are overcome by using the differential quadrature method. The stresses of electrostatic actuators are determined, and the residual stress effects of electrostatic microactuators are simulated.

  17. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    Science.gov (United States)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the

  18. Development and Application Prospects of Pneumatic Electrostatic Sprayer in Orchard

    OpenAIRE

    Zhou, Yan; Qi, Li-jun; Jia, Shou-xing; Zheng, Xuan; Meng, Xiang-jin; Tang, Zhi-hui; Shen, Cong-ju

    2012-01-01

    We firstly introduce existing situations of development of electrostatic spraying technology both at home and abroad. On the basis of such problems as serious drift, loss and deterioration of environment during orchard spraying in Xinjiang, we design and develop a new electrostatic sprayer which can effectively reduce the pesticide, improve the adhesion rate of pesticide in the target, and reduce pollution on human body and environment. Using electrostatic induction principle, this electrosta...

  19. [Automatic adjustment control system for DC glow discharge plasma source].

    Science.gov (United States)

    Wan, Zhen-zhen; Wang, Yong-qing; Li, Xiao-jia; Wang, Hai-zhou; Shi, Ning

    2011-03-01

    There are three important parameters in the DC glow discharge process, the discharge current, discharge voltage and argon pressure in discharge source. These parameters influence each other during glow discharge process. This paper presents an automatic control system for DC glow discharge plasma source. This system collects and controls discharge voltage automatically by adjusting discharge source pressure while the discharge current is constant in the glow discharge process. The design concept, circuit principle and control program of this automatic control system are described. The accuracy is improved by this automatic control system with the method of reducing the complex operations and manual control errors. This system enhances the control accuracy of glow discharge voltage, and reduces the time to reach discharge voltage stability. The glow discharge voltage stability test results with automatic control system are provided as well, the accuracy with automatic control system is better than 1% FS which is improved from 4% FS by manual control. Time to reach discharge voltage stability has been shortened to within 30 s by automatic control from more than 90 s by manual control. Standard samples like middle-low alloy steel and tin bronze have been tested by this automatic control system. The concentration analysis precision has been significantly improved. The RSDs of all the test result are better than 3.5%. In middle-low alloy steel standard sample, the RSD range of concentration test result of Ti, Co and Mn elements is reduced from 3.0%-4.3% by manual control to 1.7%-2.4% by automatic control, and that for S and Mo is also reduced from 5.2%-5.9% to 3.3%-3.5%. In tin bronze standard sample, the RSD range of Sn, Zn and Al elements is reduced from 2.6%-4.4% to 1.0%-2.4%, and that for Si, Ni and Fe is reduced from 6.6%-13.9% to 2.6%-3.5%. The test data is also shown in this paper.

  20. Automated High-Speed Video Detection of Small-Scale Explosives Testing

    Science.gov (United States)

    Ford, Robert; Guymon, Clint

    2013-06-01

    Small-scale explosives sensitivity test data is used to evaluate hazards of processing, handling, transportation, and storage of energetic materials. Accurate test data is critical to implementation of engineering and administrative controls for personnel safety and asset protection. Operator mischaracterization of reactions during testing contributes to either excessive or inadequate safety protocols. Use of equipment and associated algorithms to aid the operator in reaction determination can significantly reduce operator error. Safety Management Services, Inc. has developed an algorithm to evaluate high-speed video images of sparks from an ESD (Electrostatic Discharge) machine to automatically determine whether or not a reaction has taken place. The algorithm with the high-speed camera is termed GoDetect (patent pending). An operator assisted version for friction and impact testing has also been developed where software is used to quickly process and store video of sensitivity testing. We have used this method for sensitivity testing with multiple pieces of equipment. We present the fundamentals of GoDetect and compare it to other methods used for reaction detection.

  1. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2013-01-01

    Full Text Available Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by series expansions in terms of solutions of the Laplace function. Based on this model, the electrostatic adhesion force was calculated using the Maxwell stress tensor formulation. Several important factors which may influence the electrostatic adhesion force were analysed and discussed by both FEM simulation and theoretical calculation. In addition, experiments on the adhesion performance of the electrode panel and the climbing performance of the robot on various wall materials were carried out. Both the simulation and experiment results verify the feasibility of electrostatic adhesion technology being applied on wall climbing robots. The theoretical model and calculation method for the electrostatic adhesion force proposed in this paper are also justified.

  3. DC Glow Discharge Plasma, Containing Dust Particles: Self Organization and Peculiarities of Behavior

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Pustyl'nik, M.Y.; Torchinskij, V.M.; Fortov, V.E.

    2003-01-01

    Dust particles, immersed in a plasma, acquire charge due to which they may be electrostatically trapped in a plasma. The energy of the interaction of the dust particles may be enough to transfer the dust component to nonideal and even crystalline state. This phenomenon is observed in various plasmas. In the present work a review of the investigations of strongly nonideal dusty plasma of the dc glow discharge striations is given. The formation of plasma crystals, liquids and plasma liquid crystals is considered. Typical phenomenon a for the dc discharge dusty plasma, such as coexistence of different phases in a single structure, convective motions, dust acoustic instability, are underlined. Results of the experiments on different external influences on dusty plasma structures are stated. It is shown that external influences may be used for measuring of the particle charge and field of forces acting on a dust grain levitating in a plasma. (author)

  4. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P

    2013-01-01

    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  5. Comparison of magnetic and electrostatic Schottky pick-up in the CERN AD

    CERN Document Server

    Federmann, S

    2013-01-01

    The present note is intended to exploit the possibility of using a dedicated electrostatic beam pick-up for Schottky diagnostics in the future ELENA ring. A test setup is described allowing the evaluation of its performance compared to the extra low-noise beam current transformer used successfully in the AD. The results of this experiment are summarized and discussed.

  6. Electrostatic turbulence with finite parallel correlation length and radial electric field generation

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Misguich, J.H.; Balescu, R.

    2001-01-01

    Particle diffusion in a given electrostatic turbulence with a finite correlation length along the confining magnetic field is studied in the test particle approach. An anomalous diffusion regime of amplified diffusion coefficients is found in the conditions when particle trapping in the structure of the stochastic potential is effective. The auto-generated radial electric field is calculated. (author)

  7. Interventions to Improve Follow-Up of Laboratory Test Results Pending at Discharge: A Systematic Review.

    Science.gov (United States)

    Whitehead, Nedra S; Williams, Laurina; Meleth, Sreelatha; Kennedy, Sara; Epner, Paul; Singh, Hardeep; Wooldridge, Kathleene; Dalal, Anuj K; Walz, Stacy E; Lorey, Tom; Graber, Mark L

    2018-02-28

    Failure to follow up test results pending at discharge (TPAD) from hospitals or emergency departments is a major patient safety concern. The purpose of this review is to systematically evaluate the effectiveness of interventions to improve follow-up of laboratory TPAD. We conducted literature searches in PubMed, CINAHL, Cochrane, and EMBASE using search terms for relevant health care settings, transition of patient care, laboratory tests, communication, and pending or missed tests. We solicited unpublished studies from the clinical laboratory community and excluded articles that did not address transitions between settings, did not include an intervention, or were not related to laboratory TPAD. We also excluded letters, editorials, commentaries, abstracts, case reports, and case series. Of the 9,592 abstracts retrieved, 8 met the inclusion criteria and reported the successful communication of TPAD. A team member abstracted predetermined data elements from each study, and a senior scientist reviewed the abstraction. Two experienced reviewers independently appraised the quality of each study using published LMBP™ A-6 scoring criteria. We assessed the body of evidence using the A-6 methodology, and the evidence suggested that electronic tools or one-on-one education increased documentation of pending tests in discharge summaries. We also found that automated notifications improved awareness of TPAD. The interventions were supported by suggestive evidence; this type of evidence is below the level of evidence required for LMBP™ recommendations. We encourage additional research into the impact of these interventions on key processes and health outcomes. © 2018 Society of Hospital Medicine.

  8. On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries

    Science.gov (United States)

    Bennett, Trevor J.

    In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns

  9. VHDL-AMS modelling and simulation of a planar electrostatic micromotor

    Science.gov (United States)

    Endemaño, A.; Fourniols, J. Y.; Camon, H.; Marchese, A.; Muratet, S.; Bony, F.; Dunnigan, M.; Desmulliez, M. P. Y.; Overton, G.

    2003-09-01

    System level simulation results of a planar electrostatic micromotor, based on analytical models of the static and dynamic torque behaviours, are presented. A planar variable capacitance (VC) electrostatic micromotor designed, fabricated and tested at LAAS (Toulouse) in 1995 is simulated using the high level language VHDL-AMS (VHSIC (very high speed integrated circuits) hardware description language-analog mixed signal). The analytical torque model is obtained by first calculating the overlaps and capacitances between different electrodes based on a conformal mapping transformation. Capacitance values in the order of 10-16 F and torque values in the order of 10-11 N m have been calculated in agreement with previous measurements and simulations from this type of motor. A dynamic model has been developed for the motor by calculating the inertia coefficient and estimating the friction-coefficient-based values calculated previously for other similar devices. Starting voltage results obtained from experimental measurement are in good agreement with our proposed simulation model. Simulation results of starting voltage values, step response, switching response and continuous operation of the micromotor, based on the dynamic model of the torque, are also presented. Four VHDL-AMS blocks were created, validated and simulated for power supply, excitation control, micromotor torque creation and micromotor dynamics. These blocks can be considered as the initial phase towards the creation of intellectual property (IP) blocks for microsystems in general and electrostatic micromotors in particular.

  10. Optical klystron FELs based on tandem electrostatic accelerators

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  11. Nonlinear electrostatic wave equations for magnetized plasmas - II

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....

  12. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    Science.gov (United States)

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.

  13. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  14. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014

  15. Meeting the Grand Challenge of Protecting Astronaut's Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will seek to test and validate an electrostatic gossamer structure to provide radiation shielding. It will provide guidelines for energy requirements,...

  16. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    Science.gov (United States)

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  17. AESOP: A Python Library for Investigating Electrostatics in Protein Interactions.

    Science.gov (United States)

    Harrison, Reed E S; Mohan, Rohith R; Gorham, Ronald D; Kieslich, Chris A; Morikis, Dimitrios

    2017-05-09

    Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Holes in magneto electrostatic traps

    International Nuclear Information System (INIS)

    Jones, R.

    1996-01-01

    We observe that in magneto electrostatic confinement (MEC) devices the magnetic surfaces are not always equipotentials. The lack of symmetry in the equipotential surfaces can result in holes in MEC plasma traps. (author)

  19. Low-frequency electrostatic dust-modes in a non-uniform

    Indian Academy of Sciences (India)

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift ...

  20. Electrostatics-driven shape transitions in soft shells.

    Science.gov (United States)

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  1. Electrostatic afocal-zoom lens design using computer optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sise, Omer, E-mail: omersise@gmail.com

    2014-12-15

    Highlights: • We describe the detailed design of a five-element electrostatic afocal-zoom lens. • The simplex optimization is used to optimize lens voltages. • The method can be applied to multi-element electrostatic lenses. - Abstract: Electron optics is the key to the successful operation of electron collision experiments where well designed electrostatic lenses are needed to drive electron beam before and after the collision. In this work, the imaging properties and aberration analysis of an electrostatic afocal-zoom lens design were investigated using a computer optimization technique. We have found a whole new range of voltage combinations that has gone unnoticed until now. A full range of voltage ratios and spherical and chromatic aberration coefficients were systematically analyzed with a range of magnifications between 0.3 and 3.2. The grid-shadow evaluation was also employed to show the effect of spherical aberration. The technique is found to be useful for searching the optimal configuration in a multi-element lens system.

  2. [Severe vaginal discharge following rectal surgery

    NARCIS (Netherlands)

    Burg, L.C.; Bremers, A.J.A.; Heesakkers, J.P.; Kluivers, K.B.

    2018-01-01

    BACKGROUND: Almost 50% of women who have had rectal surgery subsequently develop vaginal discharge. Due to the recurrent and unexpected nature of this heavy discharge, they often experience it as very distressing. Many of these women undergo extensive diagnostic tests that are mainly focused on

  3. A multi-electrode and pre-deformed bilayer spring structure electrostatic attractive MEMS actuator with large stroke at low actuation voltage

    International Nuclear Information System (INIS)

    Hu, Fangrong; Li, Zhi; Xiong, Xianming; Niu, Junhao; Peng, Zhiyong; Qian, Yixian; Yao, Jun

    2012-01-01

    This paper presents a multi-electrode and pre-deformed bilayer spring structure electrostatic attractive microelectromechanical systems (MEMS) actuator; it has large stroke at relatively low actuation voltage. Generally, electrostatic-attractive-force-based actuators have small stroke due to the instability resulted from the electrostatic ‘pull-in’ phenomenon. However, in many applications, the electrostatic micro-actuator with large stroke at low voltage is more preferred. By introducing a multi-electrode and a pre-deformed bilayer spring structure, an electrostatic attractive MEMS actuator with large stroke at very low actuation voltage has been successfully demonstrated in this paper. The actuator contains a central plate with a size of 300 µm × 300 µm × 1.5 µm and it is supported by four L-shaped bilayer springs which are pre-deformed due to residual stresses. Each bilayer spring is simultaneously attracted by three adjacent fixed electrodes, and the factors affecting the electrostatic attractive force are analyzed by a finite element analysis method. The prototype of the actuator is fabricated by poly-multi-user-MEMS-process (PolyMUMP) and the static performance is tested using a white light interferometer. The measured stroke of the actuator reaches 2 µm at 13 V dc, and it shows a good agreement with the simulation. (paper)

  4. A non-electrostatic spacer for aerosol delivery

    DEFF Research Database (Denmark)

    Bisgaard, H; Anhøj, J; Klug, B

    1995-01-01

    to 6 years, suspected to have asthma the non-electrostatic spacer delivered a mean total dose of budesonide aerosol of 39% of the nominal dose, which was significantly higher than the Babyhaler (28%), the Nebuhaler (21%), and the AeroChamber (19%). These differences were most pronounced in children......A pear shaped non-electrostatic spacer, composed of steel with a volume of 250 ml and equipped with a facemask containing integrated inlet and outlet valves for inspiration and expiration, was compared with three plastic spacers. The plastic spacers were primed with repeated puffs from a budesonide...... was 27 seconds and independent of the use of p-MDI. In vitro the maximum dose of budesonide from a p-MDI, expressed as a percentage of the nominal dose, was 56% from the non-electrostatic spacer, 61% from the Nebuhaler, 45% from the Babyhaler, and 30% from the AeroChamber. In 124 children, age 6 months...

  5. A non-electrostatic spacer for aerosol delivery

    DEFF Research Database (Denmark)

    Bisgaard, H; Anhøj, J; Klug, B

    1995-01-01

    A pear shaped non-electrostatic spacer, composed of steel with a volume of 250 ml and equipped with a facemask containing integrated inlet and outlet valves for inspiration and expiration, was compared with three plastic spacers. The plastic spacers were primed with repeated puffs from a budesonide...... pressurised metered dose inhaler (p-MDI) to minimise the electrostatic charge on the plastic. The procedure prolonged the half life (t1/2) of the aerosol in the Nebuhaler from nine to 32 seconds. A normal cleaning procedure reduced the aerosol t1/2 back to baseline. The t1/2 of the aerosol in the metal spacer...... was 27 seconds and independent of the use of p-MDI. In vitro the maximum dose of budesonide from a p-MDI, expressed as a percentage of the nominal dose, was 56% from the non-electrostatic spacer, 61% from the Nebuhaler, 45% from the Babyhaler, and 30% from the AeroChamber. In 124 children, age 6 months...

  6. Biomolecular electrostatics and solvation: a computational perspective.

    Science.gov (United States)

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G; Schnieders, Michael J; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A

    2012-11-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.

  7. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  8. Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy

    International Nuclear Information System (INIS)

    Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee

    2016-01-01

    Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface. Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.

  9. Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage

    International Nuclear Information System (INIS)

    Kuzmenko, V; Saleem, A M; Bhaskar, A; Staaf, H; Desmaris, V; Enoksson, P

    2015-01-01

    The problem of energy storage and its continuous delivery on demand needs new effective solutions. Supercapacitors are viewed as essential devices for solving this problem since they can quickly provide high power basically countless number of times. The performance of supercapacitors is mostly dependent on the properties of electrode materials used for electrostatic charge accumulation, i.e. energy storage. This study presents new sustainable cellulose-derived materials that can be used as electrodes for supercapacitors. Nanofibrous carbon nanofiber (CNF) mats were covered with vapor-grown carbon nanotubes (CNTs) in order to get composite CNF/CNT electrode material. The resulting composite material had significantly higher surface area and was much more conductive than pure CNF material. The performance of the CNF/CNT electrodes was evaluated by various analysis methods such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy and cyclic stability. The results showed that the cellulose-derived composite electrodes have fairly high values of specific capacitance and power density and can retain excellent performance over at least 2 000 cycles. Therefore it can be stated that sustainable cellulose-derived CNF/CNT composites are prospective materials for supercapacitor electrodes. (paper)

  10. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    Science.gov (United States)

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effects of electrostatic trapping on neoclassical transport in an impure plasma

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Ware, A.A.

    1976-01-01

    Contamination of a toroidally confined plasma by highly charged impurity ions can produce substantial variation of the electrostatic potential within a magnetic surface. The resulting electrostatic trapping and electrostatic drifts, of hydrogen ions and electrons, yields significant alterations in neoclassical transport theory. A transport theory which includes these effects is derived from the drift-kinetic equation, with an ordering scheme modeled on the parameters of recent tokamak experiments. The theory self-consistently predicts that electrostatic trapping should be fully comparable to magnetic trapping, and provides transport coefficients which, depending quadratically upon the temperature and pressure gradients, differ markedly from the standard neoclassical coefficients for a pure plasma

  12. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  13. High-current beam transport in electrostatic accelerator tubes

    International Nuclear Information System (INIS)

    Ramian, G.; Elais, L.

    1987-01-01

    The UCSB Free Electron Laser (FEL) has successfully demonstrated the use of a commercial 6 megavolt electrostatic accelerator as a high current beam source in a recirculating configuration. The accelerator, manufactured by National Electrostatics Corp. (NEC), Middleton WI, uses two standard high gradient accelerator tubes. Suppression of ion multiplication was accomplished by NEC with apertures and a shaped electrostatic field. This field shaping has fortuitously provided a periodically reversing radial field component with sufficient focusing strength to transport electron beams of up to 3 Amps current. Present two-stage FEL work requires a 20 Amp beam and proposed very high voltage FEL designs require currents as high as 100 Amps. A plan to permit transport of such high current beams by the addition of solenoidal focussing elements is described

  14. Theory of electrostatics and electrokinetics of soft particles

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2009-01-01

    Full Text Available We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  15. Validation of a CFD model simulating charge and discharge of a small heat storage test module based on a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Dannemand, Mark; Fan, Jianhua; Furbo, Simon

    2014-01-01

    Experimental and theoretical investigations are carried out to study the heating of a 302 x 302 x 55 mm test box of steel containing a sodium acetate water mixture. A thermostatic bath has been set up to control the charging and discharging of the steel box. The charging and discharging has been...... for a Computational Fluid Dynamics (CFD) model. The CFD calculated temperatures are compared to measured temperatures internally in the box to validate the CFD model. Four cases are investigated; heating the test module with the sodium acetate water mixture in solid phase from ambient temperature to 52˚C; heating...... the module starting with the salt water mixture in liquid phase from 72˚C to 95˚C; heating up the module from ambient temperature with the salt water mixture in solid phase, going through melting, ending in liquid phase at 78˚C/82˚C; and discharging the test module from liquid phase at 82˚C, going through...

  16. Potential well formation in electrostatic confinement devices. Technical summary report

    International Nuclear Information System (INIS)

    Cherrington, B.E.; Verdeyen, J.T.

    1978-01-01

    The experimental and theoretical studies on Inertial Electrostatic Plasma Confinement that have been performed in the Gaseous Electronics Laboratory of the University of Illinois are reviewed. There has been experimental confirmation of the production of a multiple potential structure in both small and large spherical devices and the theoretical analysis has indicated the parameter range that is necessary in order to explain such results. Further experimental and theoretical approaches to testing the IEPC concept are suggested

  17. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An electrostatic x-ray imaging system is a device intended for medical... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrostatic x-ray imaging system. 892.1630... visible image. This generic type of device may include signal analysis and display equipment, patient and...

  18. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  19. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  20. [Severe vaginal discharge following rectal surgery].

    Science.gov (United States)

    Burg, L C; Bremers, A J A; Heesakkers, J P F A; Kluivers, K B

    2018-01-01

    Almost 50% of women who have had rectal surgery subsequently develop vaginal discharge. Due to the recurrent and unexpected nature of this heavy discharge, they often experience it as very distressing. Many of these women undergo extensive diagnostic tests that are mainly focused on identifying fistula formation. If no fistula is found, in most cases no other cause for severe vaginal discharge can be demonstrated. In our practice, we saw three patients (49-, 54- and 74-years-old, respectively) with similar severe vaginal discharge after rectal surgery and in whom no explanation for the vaginal discharge could be found. For this reason we conducted a literature search into this condition. Anatomical changes appear to be responsible for heavy vaginal discharge following rectal surgery. Changes in pelvic floor muscles and compression of the distal part of the vagina may lead to pooling of fluid in the proximal part of the vagina, resulting in severe discharge. Symptomatic treatment may reduce the symptoms.

  1. Hazardous gas treatment by atmospheric discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, J.

    2005-01-01

    The emissions of NO x ; SO x , CO 2 and volatile organic compounds (VOCs) including fluorocarbons to the atmosphere influence heavily our environment, NO x and SO x emitted to the atmosphere are the major cause of acid rains, while CO 2 and VOCs emissions cause the greenhouse effect which leads to abnormal global heating of the atmosphere and creating in a temperature inversion layer that traps gaseous pollutants. Therefore, there is an increasing interest in controlling these emissions. A new technique, which uses the plasma processes induced by energetic electrons, emerges as one of the most effective methods of reducing concentrations of the emitted gaseous pollutants. Various plasma techniques have been tested for gaseous pollution control. The electron bean irradiation was found to be physically and economically efficient for NO x and SO x reduction in the exhaust gases from electrical and heat power plants. The capability of the non-thermal plasmas, produced in atmospheric pressure electrical discharges, for decomposition of the gaseous pollutants has been widely tested. These atmospheric pressure electrical discharges are dielectric barrier discharges, pulsed and de corona discharges (in the reactors with the point-to-plate, wire-cylinder and wire-plate geometries, in the reactors with flow stabilized corona torch and corona radical shower), gliding discharges, inductively coupled high-frequency discharges, ac surface discharges, ac discharges in the packed bed reactors, and microwave torch discharges. In this paper, after reviewing the methods and devices used for producing the non-thermal plasmas for gaseous pollutant control, some results of the laboratory experiments on the plasmas abatement of NO x ; SO x and various VOCs will be presented, followed by a discussion on the energy efficiency and by-products. Also some results obtained in the pilot-plants will be given. finally other possible applications of the presented plasma devices for controlling

  2. Characteristics of electrostatic gas micro-pump with integrated polyimide passive valves

    International Nuclear Information System (INIS)

    Han, Jeahyeong; Yeom, Junghoon; Mensing, Glennys; Flachsbart, Bruce; Shannon, Mark A

    2012-01-01

    We report on the fabrication and characterization of electrostatic gas micro-pumps integrated with polyimide check valves. Touch-mode capacitance actuation, enabled by a fixed silicon electrode and a metal/polyimide diaphragm, creates the suction and push-out of the ambient gas; the gas flow is rectified by the check valves located at the inlet and outlet of the pump. The fabricated pumps were tested with various actuation voltages at different frequencies and duty cycles; an emphasis was placed on investigating the effect of valve flow conductance on the gas pumping characteristics. The pump with higher valve conductance could increase the operating frequency of the pump and affect the pumping characteristics from a pulsating flow to a continuous flow, leading to a higher gas flow rate. This electrostatic pump has a flow control resolution of 1 µL min −1 ; it could generate a gas flow up to 106 µL min −1 . (paper)

  3. Electrostatic storage rings for atomic and molecular physics

    International Nuclear Information System (INIS)

    Schmidt, H T

    2015-01-01

    A significant number of electrostatic ion-storage rings have been built since the late 1990s or are currently in their construction or commisioning phases. In this short contribution, we attempt to supply an overview of these different facilities, while we also mention a selection of the electrostatic ion-beam traps that has been developed through the same time period and by some of the same research groups. (paper)

  4. Nanoparticle electrostatic loss within corona needle charger during particle-charging process

    International Nuclear Information System (INIS)

    Huang Chenghsiung; Alonso, Manuel

    2011-01-01

    A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.

  5. Validation and analysis of the coupled multiple response Colorado upper-division electrostatics diagnostic

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2015-11-01

    Full Text Available Standardized conceptual assessment represents a widely used tool for educational researchers interested in student learning within the standard undergraduate physics curriculum. For example, these assessments are often used to measure student learning across educational contexts and instructional strategies. However, to support the large-scale implementation often required for cross-institutional testing, it is necessary for these instruments to have question formats that facilitate easy grading. Previously, we created a multiple-response version of an existing, validated, upper-division electrostatics diagnostic with the goal of increasing the instrument’s potential for large-scale implementation. Here, we report on the validity and reliability of this new version as an independent instrument. These findings establish the validity of the multiple-response version as measured by multiple test statistics including item difficulty, item discrimination, and internal consistency. Moreover, we demonstrate that the majority of student responses to the new version are internally consistent even when they are incorrect and provide an example of how the new format can be used to gain insight into student difficulties with specific content in electrostatics.

  6. Glow discharge based device for solving mazes

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D. [Russian Federal Nuclear Center − All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation); Sarov Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Sarov, Nizhni Novgorod region 607188 (Russian Federation); Maksimov, Artem N.; Pylayev, Nikolay A. [Russian Federal Nuclear Center − All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation)

    2014-09-15

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  7. Electrostatic coupling of ion pumps.

    Science.gov (United States)

    Nieto-Frausto, J; Lüger, P; Apell, H J

    1992-01-01

    In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation.

  8. Electrostatic dry powder prepregging of carbon fiber

    Science.gov (United States)

    Throne, James L.; Sohn, Min-Seok

    1990-01-01

    Ultrafine, 5-10 micron polymer-matrix resin powders are directly applied to carbon fiber tows by passing then in an air or nitrogen stream through an electrostatic potential; the particles thus charged will strongly adhere to grounded carbon fibers, and can be subsequently fused to the fiber in a continuously-fed radiant oven. This electrostatic technique derived significant end-use mechanical property advantages from the obviation of solvents, binders, and other adulterants. Additional matrix resins used to produce prepregs to date have been PMR-15, Torlon 40000, and LaRC TPI.

  9. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  10. Status of the planar electrostatic gradiometer GREMLIT for airborne geodesy

    Science.gov (United States)

    Lebat, V.; Foulon, B.; Christophe, B.; Huynh, P. A.; Liorzou, F.; Boulanger, D.

    2017-12-01

    Taking advantage of technologies, developed by ONERA for the GRACE, GOCE and GRACE FOLLOW-ON space missions, the GREMLIT airborne gravity gradiometer is based of a planar electrostatic gradiometer configuration. The feasibility of the instrument and of its performance was proved by realistic simulations, based on actual data and recorded environmental aircraft perturbations, with performance of about one Eötvös along the two horizontal components of the gravity gradient. The performance of the gradiometer is directly linked to the stabilized platform, controlled by the common mode outputs of the instrument itself, in order to reject the perturbations induced by the airborne environment in the horizontal directions. After the definition of the architecture of the stabilized platform to achieve the global performance of the gradiometer, the platform has been manufactured and integrated. In order to assess the operation of the electrostatic gradiometer on its associated stabilized platform, a one axis prototype has also been built. The poster will emphasize the status of realization and first tests of the instrument and of its stabilized platform.

  11. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  12. Fabrication, characterization and modelling of electrostatic micro-generators

    International Nuclear Information System (INIS)

    Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2009-01-01

    This paper presents an electrostatic energy-harvesting device for electrical energy extraction from vibrations. We successfully fabricated prototypes of completely packaged micro-generators with a chip size of 5 mm by 6 mm. This was achieved using a modified SOI technology developed for inertial sensors at HSG-IMIT. Micro-generators produce a maximum rms power of 3.5 µW when they are excited at their resonance frequency with an input excitation of 13 g. During a long-term experiment over a period of 2 h, the electrostatic energy harvester generated a total net energy of 13.38 mJ corresponding to an average power of 1.58 µW. The effect of mechanical stoppers and the bias voltage on the generated power is also evaluated. In order to get a more profound understanding of the dynamic behaviour of the micro-generator, we have developed a signal-flow model for numerical simulation of the electrostatic transducer on system level. This model includes a mechanical and an electrical domain which are coupled by electrostatic forces. The limited displacement of the proof mass is also considered using an elastic stopper model. We show that the numerical model is capable of providing good predictions of the device behaviour

  13. Investigation on Electrostatical Breakup of Bio-Oil Droplets

    Directory of Open Access Journals (Sweden)

    John Z. Wen

    2012-10-01

    Full Text Available In electrostatic atomization, the input electrical energy causes breaking up of the droplet surface by utilizing a mutual repulsion of net charges accumulating on that surface. In this work a number of key parameters controlling the bio-oil droplet breakup process are identified and these correlations among the droplet size distribution, specific charges of droplets and externally applied electrical voltages are quantified. Theoretical considerations of the bag or strip breakup mechanism of biodiesel droplets experiencing electrostatic potential are compared to experimental outcomes. The theoretical analysis suggests the droplet breakup process is governed by the Rayleigh instability condition, which reveals the effects of droplets size, specific charge, surface tension force, and droplet velocities. Experiments confirm that the average droplet diameters decrease with increasing specific charges and this decreasing tendency is non-monotonic due to the motion of satellite drops in the non-uniform electrical field. The measured specific charges are found to be smaller than the theoretical values. And the energy transformation from the electrical energy to surface energy, in addition to the energy loss, Taylor instability breakup, non-excess polarization and some system errors, accounts for this discrepancy. The electrostatic force is the dominant factor controlling the mechanism of biodiesel breakup in electrostatic atomization.

  14. Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts

    Directory of Open Access Journals (Sweden)

    Christian Holm

    2013-10-01

    Full Text Available Coarse-grained models of soft matter are usually combined with implicit solvent models that take the electrostatic polarizability into account via a dielectric background. In biophysical or nanoscale simulations that include water, this constant can vary greatly within the system. Performing molecular dynamics or other simulations that need to compute exact electrostatic interactions between charges in those systems is computationally demanding. We review here several algorithms developed by us that perform exactly this task. For planar dielectric surfaces in partial periodic boundary conditions, the arising image charges can be either treated with the MMM2D algorithm in a very efficient and accurate way or with the electrostatic layer correction term, which enables the user to use his favorite 3D periodic Coulomb solver. Arbitrarily-shaped interfaces can be dealt with using induced surface charges with the induced charge calculation (ICC* algorithm. Finally, the local electrostatics algorithm, MEMD(Maxwell Equations Molecular Dynamics, even allows one to employ a smoothly varying dielectric constant in the systems. We introduce the concepts of these three algorithms and an extension for the inclusion of boundaries that are to be held fixed at a constant potential (metal conditions. For each method, we present a showcase application to highlight the importance of dielectric interfaces.

  15. Investigations of electrostatic ion waves in a collisionless plasma

    International Nuclear Information System (INIS)

    Michelsen, P.

    1980-06-01

    The author reviews a series of publications concerning theoretical and experimental investigations of electrostatic ion waves in a collisionless plasma. The experimental work was performed in the Risoe Q-machine under various operational conditions. Besides a description of this machine and the diagnostic techniques used for the measurements, two kinds of electrostatic waves are treated, namely, ion-acoustic waves and ion-cyclotron waves. Due to the relative simplicity of the ion-acoustic waves, these were treated in detail in order to get a more general understanding of the behaviour of the propagation properties of electrostatic waves. The problem concerning the difficulties in describing waves excited at a certain position and propagating in space by a proper mathematical model was especially considered in depth. Furthermore, ion-acoustic waves were investigated which propagated in a plasma with a density gradient, and afterwards in a plasma with an ion beam. Finally, a study of the electrostatic ion-cyclotron waves was undertaken, and it was shown that these waves were unstable in a plasma traversed by an ion beam. (Auth.)

  16. Response of an electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Rerup, T; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...

  17. Atomic processes in Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1993-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  18. Effects of electrostatic interactions on electron transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    The fast reactions of electron transfer are studied by pulse radiolysis. This technique allows the creation in about 10 -8 second radicals and radical ions with high redox potentials. For solvated electrons electrostatic interaction on the kinetics of reactions limited by diffusion is described by Debye's equation when ion mobility is known. Deviation from theory can occur in ion pairs formation. This is evidenced experimentally for anions by cation complexation with a cryptate. Relatively slow reactions are more sensitive to electrostatic interactions than limited by diffusion. If ion pairs are not formed kinetics constant depends on dielectric constant of solvent and reaction radius. Experimentally is studied the effect of electrostatic interaction on the rate constants of solvated electrons with anions and cations in water-ethanol mixtures where the dielectric constant change from 80 to 25 at room temperature. 17 refs

  19. Simulation of particle diffusion in a spectrum of electrostatic turbulence. Low frequency Bohm or percolation scaling

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1996-02-01

    An important point for turbulent transport consists in determining the scaling law for the diffusion coefficient D due to electrostatic turbulence. It is well-known that for weak amplitudes or large frequencies, the reduced diffusion coefficient has a quasi-linear like (or gyro-Bohm like) scaling, while for large amplitudes or small frequencies it has been traditionally believed that the scaling is Bohm-like. The aim of this work consists to test this prediction for a given realistic model. This problem is studied by direct simulation of particle trajectories. Guiding centre diffusion in a spectrum of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized code RADIGUET 2. The results indicate a continuous transition for large amplitudes toward a value which is compatible with the Isichenko percolation prediction. (author)

  20. The Electromechanical Behavior of a Micro-Ring Driven by Traveling Electrostatic Force

    Science.gov (United States)

    Ye, Xiuqian; Chen, Yibao; Chen, Da-Chih; Huang, Kuo-Yi; Hu, Yuh-Chung

    2012-01-01

    There is no literature mentioning the electromechanical behavior of micro structures driven by traveling electrostatic forces. This article is thus the first to present the dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The traveling electrostatic force may be induced by sequentially actuated electrodes which are arranged around the flexible micro-ring. The analysis is based on a linearized distributed model considering the electromechanical coupling effects between electrostatic force and structure. The micro-ring will resonate when the traveling speeds of the electrostatic force approach some critical speeds. The critical speeds are equal to the ratio of the natural frequencies to the wave number of the correlative natural mode of the ring. Apart from resonance, the ring may be unstable at some unstable traveling speeds. The unstable regions appear not only near the critical speeds, but also near some fractions of some critical speeds differences. Furthermore the unstable regions expand with increasing driving voltage. This article may lead to a new research branch on electrostatic-driven micro devices. PMID:22438705

  1. Industrial Electrostatic-Gecko Gripper, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics is developing an innovative product, the Electrostatic Gecko Gripper? (ESG Gripper), for the industrial automation market. This unique gripping...

  2. Industrial Electrostatic-Gecko Gripper, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics is developing an innovative product, the "Electrostatic Gecko Gripper" (ESG Gripper), for the industrial automation market. This unique gripping...

  3. Fabrication of a New Electrostatic Linear Actuator

    Science.gov (United States)

    Matsunaga, Takashi; Kondoh, Kazuya; Kumagae, Michihiro; Kawata, Hiroaki; Yasuda, Masaaki; Murata, Kenji; Yoshitake, Masaaki

    2000-12-01

    We propose a new electrostatic linear actuator with a large stroke and a new process for fabricating the actuator. A moving slider with many teeth on both sides is suspended above lower electrodes on a substrate by two bearings. A photoresist is used as a sacrificial layer. Both the slider and the bearings are fabricated by Ni electroplating. The bearings are fabricated by the self-alignment technique. Bearings with 0.6 μm clearance can be easily fabricated. All processes are performed at low temperatures up to 110°C. It is confirmed that the slider can be moved mechanically, and also can be moved by about 10 μm when a voltage pulse of 50 V is applied between the slider and the lower electrodes when the slider is upside down. However, the slider cannot move continuously because of friction. We also calculate the electrostatic force acting on one slider tooth. The simulation result shows that the reduction of the electrostatic force to the vertical direction is very important for mechanical movement of the actuator.

  4. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ya' akobovitz, A. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva (Israel); Bedewy, M. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. J. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  5. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    International Nuclear Information System (INIS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-01-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices

  6. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    Science.gov (United States)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  7. Corrective Action Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 151 consists of eight Corrective Action Sites (CASs) located in Areas 2, 12, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada

  8. Transverse confinement of an ion beam in a purely electrostatic configuration

    International Nuclear Information System (INIS)

    Correa, J.R.; Ordonez, C.A.; Weathers, D.L.

    2005-01-01

    The transverse confinement of an ion beam in a purely electrostatic configuration is studied. Analytical expressions for the electric potential of three different electrode configurations are found. Each configuration may be described as consisting of many closely spaced Einzel lenses, such that the focusing periodicity length is much smaller than the transverse size of the beam. Classical trajectory computer simulations are used to obtain a map of the phase space co-ordinates for which transverse electrostatic confinement occurs with one of the configurations. The results indicate that confinement should occur for a large range of conditions. It is speculated that the configurations studied can be used for transverse confinement of ion beams in either electrostatic ion traps or electrostatic ion storage rings

  9. Charge Management in LISA Pathfinder: The Continuous Discharging Experiment

    Science.gov (United States)

    Ewing, Becca Elizabeth

    2018-01-01

    Test mass charging is a significant source of excess force and force noise in LISA Pathfinder (LPF). The planned design scheme for mitigation of charge induced force noise in LISA is a continuous discharge by UV light illumination. We report on analysis of a charge management experiment on-board LPF conducted during December 2016. We discuss the measurement of test mass charging noise with and without continuous UV illumination, in addition to the dynamic response in the continuous discharge scheme. Results of the continuous discharge system will be discussed for their application to operating LISA with lower test mass charge.

  10. Coulomb torque - a general theory for electrostatic forces in many-body systems

    International Nuclear Information System (INIS)

    Khachatourian, Armik V M; Wistrom, Anders O

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force

  11. Coulomb torque - a general theory for electrostatic forces in many-body systems

    CERN Document Server

    Khachaturian, A V M

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force.

  12. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    Science.gov (United States)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  13. Bidirectional electrostatic linear shuffle motor with two degrees of freedom

    NARCIS (Netherlands)

    Sarajlic, Edin; Berenschot, Johan W.; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2005-01-01

    We report on an electrostatic linear inchworm micromotor with two translational degrees-of-freedom. The motor employs built-in mechanical leverage to convert normal deflection of a flexible cross-plate into a small in-plane step and four electrostatic clamps to enable bidirectional inchworm motion

  14. Coal-fired power plant: airborne routine discharges

    International Nuclear Information System (INIS)

    Zeevaert, T.

    2005-01-01

    The radiological impact from non-nuclear industries is a growing matter of concern to stake holders and regulators. It has been demonstrated that atmospheric discharges from coal-fired power plants can lead to higher dose-impacts to critical groups of the population than nuclear power plants. In Belgium, in the frame of an agreement between electricity producers and national authorities, measures were taken in conventional power plants to restrict airborne discharges of SO 2 , NO x and suspended particles. In the 500 MWe coal-fired power plant of Langerlo, a flue gas purification system was installed, consisting of a denitrification unit and a desulphurization unit, next to the electrostatic dust filter units. These measures have also an important effect on the radioactive atmospheric discharges. The objective of this study was to assess the radiological impact of the airborne releases of the power plant under normal working conditions and in particular the influence of the installation of the flue gas purification system. As a first step, we measured the natural radioactivity content of the coal and the radium content of the fly ash . The quantities of the other radioelements discharged through the chimney, were estimated, assuming the same behaviour as radium, except for the more volatile lead and polonium, which will condense preferably on finer ash particles, against which the electro filters are less effective. (A concentration factor of 4 has been adopted). The radon, present in the coal, is assumed to be discharged completely through the chimney. The atmospheric transport, dispersion and deposition of the discharged radionuclides were modelled, applying the bi-Gaussian plume model IFDM. For the calculations, we used hourly averages of the meteorological observations at Mol over the year 1991. The transfers of the radionuclides from air and soil to the biospheric media, exposing man, were calculated with our biosphere model and the radiological impact to the

  15. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight section 2 and 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, establish a vertical electrical field to remove the ions created by the circulating beam in the residual gas. See 7801286 for such a septum in its tank, and 7501201 for a detailed view of the wire suspension. See also 7501120X.

  16. Study on the shrinkage behavior and conductivity of silver microwires during electrostatic field assisted sintering

    Science.gov (United States)

    Shangguan, Lei; Ma, Liuhong; Li, Mengke; Peng, Wei; Zhong, Yinghui; Su, Yufeng; Duan, Zhiyong

    2018-05-01

    An electrostatic field was applied to sintering Ag microwires to achieve a more compact structure and better conductivity. The shrinkage behavior of Ag microwires shows anisotropy, since bigger particle sizes, less micropores and smoother surfaces were observed in the direction of the electrostatic field in comparsion with the direction perpendicular to the electrostatic field, and the shrinkage rate of Ag microwires in the direction of electrostatic field improves about 2.4% with the electrostatic field intensity of 800 V cm‑1. The electrostatic field assisted sintering model of Ag microwires is proposed according to thermal diffuse dynamics analysis and experimental research. Moreover, the grain size of Ag microwres sintered with electrostatic field increases with the electrostatic field intensity and reaches 113 nm when the electrostatic field intensity is 800 V cm‑1, and the resistivity decreases to 2.07  ×  10‑8 Ω m as well. This method may overcome the restriction of metal wires which fabricated by the pseudoplastic metal nanoparticle fluid and be used as interconnects in nanoimprint lithography.

  17. Improvement of the voltage properties of the Fermilab electrostatic septa

    International Nuclear Information System (INIS)

    Trbojevic, D.; Crawford, C.; Childress, S.; Tinsely, D.

    1985-01-01

    In the Fermilab Tevatron Switchyard proton beam splits are initiated by a wire array electrostatic septum. At 1 TeV energy, and with fields limited to 50 kV/cm, and electrostatic septum more than 20 meters in length is required to produce the required angular separation between the beams for the Proton and Neutrino/Meson lines. New techniques have been investigated that will allow reliable operation at fields above 75 kV/cm with resultant beam line economy. Changes in construction and conditioning procedures have been studied using a short sample of an electrostatic septum

  18. A fast electrostatic chopper of low power consumption

    International Nuclear Information System (INIS)

    Bizzeti, P.G.; Fazzini, T.; Taccetti, N.

    1979-01-01

    An electrostatic chopper for the continuous beams of a 7.5 MV Van de Graaff accelerator is described. The electrostatic deflector uses complemetary transistors, driven by optoelectronic couplers, as voltage switches. The power consumption of the high voltage system at 30 kHz repetition frequency is approximately 3 W. Rise and fall times are symmetric and of the order of 0.4 μs. Experimental time spectra of prompt and delayed γ-rays are presented. (Auth.)

  19. Quantitative characterization of pulverized coal and biomass–coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    International Nuclear Information System (INIS)

    Qian, Xiangchen; Wang, Chao; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao

    2012-01-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass–coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass–coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow. (paper)

  20. Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    Science.gov (United States)

    Qian, Xiangchen; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao; Wang, Chao

    2012-08-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass-coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass-coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow.

  1. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  2. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  3. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai

    2009-03-14

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  4. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Knepley, M. G.; Anitescu, M. (Biosciences Division); ( MCS); (Rush Univ.)

    2009-03-01

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  5. Transport properties of a discrete helical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Meitzler, C.R.; Antes, K.; Datte, P.; Huson, F.R.; Xiu, L.

    1991-01-01

    The helical electrostatic quadrupole (HESQ) lens has been proposed as a low energy beam transport system which permits intense H - beams to be focused into an RFQ without seriously increasing the beam's emittance. A stepwise continuous HESQ lens has been constructed, and preliminary tests have shown that the structure does provide focusing. In order to understand the transport properties of this device, further detailed studies have been performed. Emittances were measured 3.5 cm from the end of the HESQ at two different voltages on the HESQ electrodes. A comparison of these experimental results with a linear model of the HESQ beam transport is made. 4 refs., 5 figs

  6. Electrostatic energies of crystals in space of arbitrary dimension

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Tohsaki, Akihiro

    2005-01-01

    We present a new method to evaluate electrostatic energies under periodic boundary conditions. The lattice sum of Coulomb potentials is expressed through the elliptic Q function of the third kind. This enables us to evaluate electrostatic energies of ionic crystals very accurately and with very rapid convergence. In particular, we study the dimensionality of the electrostatic energies of NaCl-type and CsCl-type crystals, whose expressions are functions of the spatial dimension treated as a real number. Furthermore, the expressions we obtain are applicable to computational simulations using molecular dynamics and Monte Carlo methods. We generate random distributions of point charges under periodic boundary conditions, and we analyze the randomness and its anisotropy on the basis of potential distributions. (author)

  7. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    Science.gov (United States)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  8. Modernization of the electrostatic accelerator ESA-2 used for fundamental and applied investigations

    International Nuclear Information System (INIS)

    Komarov, F.F.; Kamyshan, A.S.; Lagutin, A.E.

    2005-01-01

    The directions of indispensable modernization of the Van de Graaff electrostatic accelerator ESA-2 are indicated. Design and results of reconstruction of the electrostatic accelerator are described and discussed. The ion source constructed is described too. Design of the new acceleration tube with flat electrodes was investigated. There are many characteristics for the electrostatic accelerator tube presented. The main attention was paid to the upgrading of the charging system. There are many characteristics for the electrostatic accelerator charging belt discussed as well. (authors)

  9. Evaluation of Type II Fast Packs for Electrostatic Discharge Properties.

    Science.gov (United States)

    1983-08-01

    34 x 8" x 1 3/4") consisting of a reclosable cushioned carrier which mates into an outer fiberboard sleeve. A cushioning insert is used consisting of a... RECLOSABLE CUSHIONED CARRIER TEST LOAD FIGURE 1: Cancel Caddy Pack * CONVOLUTED 4* CUSHIONED I FIGURE 2: Type II Fast Pack (PPP-B-1672) TYPE II FAST PACK

  10. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  11. Low power interface IC's for electrostatic energy harvesting applications

    Science.gov (United States)

    Kempitiya, Asantha

    The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of

  12. Quasi-electrostatic waves in dusty plasma

    International Nuclear Information System (INIS)

    Das, A.C.; Goswami, K.S.; Misra, A.K.

    1997-01-01

    Low frequency quasi-electrostatic waves in cold dusty plasma are investigated taking account of liberation and absorption of electrons and ions by the dust and their momentum transfer mechanism. (author)

  13. Same-day discharge after laparoscopic hysterectomy.

    Science.gov (United States)

    Perron-Burdick, Misa; Yamamoto, Miya; Zaritsky, Eve

    2011-05-01

    To estimate readmission rates and emergency care use by patients discharged home the same day after laparoscopic hysterectomy. This was a retrospective case series of patients discharged home the same-day after total or supracervical laparoscopic hysterectomy in a managed care setting. Chart reviews were performed for outcomes of interest which included readmission rates, emergency visits, and surgical and demographic characteristics. The two hysterectomy groups were compared using χ² tests for categorical variables and t tests or Wilcoxon rank-sum tests for continuously measured variables. One-thousand fifteen laparoscopic hysterectomies were performed during the 3-year study period. Fifty-two percent (n=527) of the patients were discharged home the same-day; of those, 46% (n=240) had total laparoscopic hysterectomies and 54% (n=287) had supracervical. Cumulative readmission rates were 0.6%, 3.6%, and 4.0% at 48 hours, 3 months, and 12 months, respectively. The most common readmission diagnoses included abdominal incision infection, cuff dehiscence, and vaginal bleeding. Less than 4% of patients presented for emergency care within 48 or 72 hours, most commonly for nausea or vomiting, pain, and urinary retention. Median uterine weight was 155 g, median blood loss was 70 mL, and median surgical time was 150 minutes. There was no difference in readmission rates or emergency visits for the total compared with the supracervical laparoscopic hysterectomy group. Same-day discharge after laparoscopic hysterectomy is associated with low readmission rates and minimal emergency visits in the immediate postoperative period. Same-day discharge may be a safe option for healthy patients undergoing uncomplicated laparoscopic hysterectomy.

  14. Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts

    Science.gov (United States)

    Goyal, R.; Sharma, R. P.; Gupta, D. N.

    2017-12-01

    A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.

  15. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  16. Excitation of electrostatic wave instability by dc electric field in earth's magnetoplasma

    International Nuclear Information System (INIS)

    Mishra, S.P.; Misra, K.D.; Pandey, R.P.; Singh, K.M.

    1992-01-01

    The dispersion relation for electrostatic wave propagation in an anisotropic warm collisionless magnetoplasma, in the presence of weak parallel (d c) electric field, has been derived analytically. An expression for the growth rate of the electrostatic wave and the marginal stability condition are also derived. The modifications introduced in the growth rate by the electric field and the temperature anisotropy are discussed using plasma parameters observed in the magnetospheric region (4 < L < 10). The effect of the electric field is to increase the growth rate of electrostatic waves at different electron cyclotron harmonics, whereas the effect of the temperature anisotropy is to decrease the growth rate. The presence of parallel electric field may excite the electrostatic emissions at different electron cyclotron harmonics. The most unstable band of wave frequencies obtained with the aid of computations lies between 5 kHz and 10 kHz. These wave frequencies are well within the experimentally observed frequencies of electrostatic emissions. Therefore such a study would not only explain the observed satellite features of the electrostatic wave emissions but would also account for the diagnostics of the magnetospheric plasma parameters

  17. CFD simulation of air discharge tests in the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, V.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k epsilon-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  18. CFD simulation of air discharge tests in the PPOOLEX facility

    International Nuclear Information System (INIS)

    Tanskanen, V.; Puustinen, M.

    2008-07-01

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k ε-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  19. The Electrostatic Environments of Mars and the Moon

    Science.gov (United States)

    Calle, Carlos I.

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  20. The electrostatic environments of Mars and the Moon

    International Nuclear Information System (INIS)

    Calle, C I

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.