WorldWideScience

Sample records for electrospun polyvinylpyrrolidone ultrafine

  1. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers

    International Nuclear Information System (INIS)

    Yu Dengguang; Shen Xiaxia; Zhu Limin; Branford-White, Chris; White, Kenneth; Annie Bligh, S W

    2009-01-01

    Oral fast-dissolving drug delivery membranes (FDMs) for poorly water-soluble drugs were prepared via electrospinning technology with ibuprofen as the model drug and polyvinylpyrrolidone (PVP) K30 as the filament-forming polymer and drug carrier. Results from differential scanning calorimetry, x-ray diffraction, and morphological observations demonstrated that ibuprofen was distributed in the ultrafine fibers in the form of nanosolid dispersions and the physical status of drug was an amorphous or molecular form, different from that of the pure drug and a physical mixture of PVP and ibuprofen. Fourier-transform infrared spectroscopy results illustrated that the main interactions between PVP and ibuprofen were mediated through hydrogen bonding. Pharmacotechnical tests showed that FDMs with different drug contents had almost the same wetting and disintegrating times, about 15 and 8 s, respectively, but significantly different drug dissolution rates due to the different physical status of the drug and the different drug-release-controlled mechanisms. 84.9% and 58.7% of ibuprofen was released in the first 20 s for FDMs with a drug-to-PVP ratio of 1:4 and 1:2, respectively. Electrospun ultrafine fibers have the potential to be used as solid dispersions to improve the dissolution profiles of poorly water-soluble drugs or as oral fast disintegrating drug delivery systems.

  2. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Quirós, Jennifer [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Borges, João P. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Boltes, Karina [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain); Rodea-Palomares, Ismael [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Rosal, Roberto [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain)

    2015-12-15

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  3. Directly electrospun ultrafine nanofibres with Cu grid spinneret

    International Nuclear Information System (INIS)

    Li Wenwang; Zheng Gaofeng; Wang Xiang; Wang Lingyun; Wang Han; Sun Daoheng; Zhang Yulong; Li Lei

    2011-01-01

    A hydrophobic Cu grid was used as an electrospinning spinneret to fabricate ultrafine organic nanofibres. The Cu grid used in this study was that which holds samples in TEM. Due to the hydrophobic surface and larger contact angle of the electrospinning solution on the Cu grid surface, the solution flow was divided into several finer ones by the holes in the Cu grid instead of accumulating. Each finer flow was stretched into individual jets and established a multi-jet mode by the electrical field force. The finer jets played an important role in decreasing the diameter of the nanofibre. The charge repulsion force among charged jets enhanced the whipping instability motion of the liquid jets, which improved the uniformity of the nanofibre and decreased the diameter of the nanofibre. An ultrafine uniform nanofibre of diameter less than 80 nm could be fabricated directly with the novel Cu grid spinneret without any additive. This study provided a unique way to promote the application of one-dimensional organic nanostructures in micro/nanosystems.

  4. Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm

    Science.gov (United States)

    Khan, Waseem S.; Hamadneh, Nawaf N.

    2017-01-01

    In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement. PMID:28934220

  5. Preparation of silica-sustained electrospun polyvinylpyrrolidone fibers with uniform mesopores via oxidative removal of template molecules by H2O2 treatment

    International Nuclear Information System (INIS)

    Kang, Haigang; Zhu, Yihua; Shen, Jianhua; Yang, Xiaoling; Chen, Cheng; Cao, Huimin; Li, Chungzhong

    2010-01-01

    Silica-sustained electrospun PVP fibers with uniform mesopores were synthesized via facile oxidative removal of template molecules by H 2 O 2 extraction. Tetraethyl orthosilicate, polyvinylpyrrolidone (PVP), and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer pluronic P 123 compose the electrospinning sol to fabricate the silica-sustained PVP hybrid fibers. The effect of different post-treatment methods on the pore size distribution was investigated by calcination and extraction, respectively. Experimental results showed that oxidative removal of structure-directing agent P 123 in the hybrid fibers by H 2 O 2 treatment can easily form narrow pore size distribution, and the incorporation of 3D silica skeleton built by hot steam aging facilitated preserving the original cylindrical morphology of fibers. Scanning electron microscopy (SEM), N 2 adsorption-desorption isotherm, transmission electron microscopy (TEM), X-ray diffraction (XRD), FT-IR spectra and thermogravimetric analysis (TGA) were used to characterize the hybrid fibers. The hybrid fibers can be expected to have potential applications in drug release or tissue engineering because of their suitable pore size, large surface area and good biocompatibility.

  6. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    International Nuclear Information System (INIS)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-01-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  7. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Ding, Bin [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600 (China)

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  8. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    Science.gov (United States)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  10. Electrospun Borneol-PVP Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2012-01-01

    Full Text Available The present work investigates the validity of electrospun borneol-polyvinylpyrrolidone (PVP nanocomposites in enhancing drug dissolution rates and improving drug physical stability. Based on hydrogen bonding interactions and via an electrospinning process, borneol and PVP can form stable nanofiber-based composites. FESEM observations demonstrate that composite nanofibers with uniform structure could be generated with a high content of borneol up to 33.3% (w/w. Borneol is well distributed in the PVP matrix molecularly to form the amorphous composites, as verified by DSC and XRD results. The composites can both enhance the dissolution profiles of borneol and increase its physical stability against sublimation for long-time storage by immobilization of borneol molecules with PVP. The incorporation of borneol in the PVP matrix weakens the tensile properties of nanofibers, and the mechanism is discussed. Electrospun nanocomposites can be alternative candidates for developing novel nano-drug delivery systems with high performance.

  11. Electrospun polyacrylonitrile nanofibrous biomaterials.

    Science.gov (United States)

    Ren, Xuehong; Akdag, Akin; Zhu, Changyun; Kou, Lei; Worley, S D; Huang, T S

    2009-11-01

    An N-halamine precursor, 3-(5'-methyl-5'-hydantoinyl)acetanilide (I), was synthesized in our laboratory and loaded onto electrospun polyacrylonitrile fiber to prepare nanosized biocidal materials, which could be rendered antimicrobial by exposure to household bleach. Differential scanning calorimetry was used to study the thermal properties of the nanofibers with and without the N-halamine precursor and its chlorinated derivative loaded. Scanning electron microscopy demonstrated that the ultrafine fibers formed with diameters from 250 to 600 nm. Chlorinated nanofibrous mats composed of the fibers were challenged with Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895); they showed promising inactivation efficacies against the two bacterial species within 5 minutes of contact. Potential uses of the antimicrobial fibers include filters for industrial water and air disinfection and protective clothing. (c) 2008 Wiley Periodicals, Inc.

  12. 21 CFR 173.55 - Polyvinylpyrrolidone.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.55 Polyvinylpyrrolidone. The food...

  13. A review on electrospun nanofibers for oral drug delivery

    Directory of Open Access Journals (Sweden)

    Abbas Akhgari

    2017-10-01

    Full Text Available Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics such as high porosity, high surface area to volume ratio, high loading capacity and encapsulation efficiency, delivery of multiple drugs, and enhancement of drug solubility. Due to these properties electrospun nanofibers have been extensively used for different biomedical applications including wound dressing, tissue engineering, enzyme immobilization, artificial organs, and drug delivery. Different synthetic and natural polymers have been successfully electrospun into ultrafine fibers. Using electrospun nanofibers as vehicles for oral drug delivery has been investigated in different release manners- fast, biphasic or sustained release. This article presents a review on application of electrospinning technique in oral drug delivery.

  14. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  15. Surface structure and adsorption properties of ultrafine porous carbon fibers

    International Nuclear Information System (INIS)

    Song Xiaofeng; Wang Ce; Zhang Dejiang

    2009-01-01

    Ultrafine porous carbon fibers (UPCFs) were successfully synthesized by chemical activation of electrospun polyacrylonitrile fibers. In the current approach, potassium hydroxide was adopted as activation reagent. UPCFs were systematically evaluated by scanning electron microscope and nitrogen adsorption. The mass ratio of potassium hydroxide to preoxidized fibers, activation temperature and activation time are crucial for producing high quality UPCFs. The relationships between porous structure and process parameters are explored. UPCFs were applied as adsorbent for nitrogen monoxide to be compared with commercial porous carbon fibers.

  16. Direct electrospinning of Ag/polyvinylpyrrolidone nanocables

    DEFF Research Database (Denmark)

    Song, Jie; Chen, Menglin; Havelund, Rasmus

    2011-01-01

    Core-sheath silver nanowire/polyvinylpyrrolidone (AgNW/PVP) nanocables have been fabricated via an efficient single-spinneret electrospinning method. The core-sheath structure is revealed by combining several characterization methods. A possible formation mechanism of the AgNW/PVP nanocable...... involving a strong stretching during the electrospinning process is proposed. Further, electrical measurements were performed on AgNW/PVP nanocables as well as bare AgNWs, which indicated the nanocables became insulating due to the isolation of highly conductive AgNWs by insulating PVP sheath. Therefore...

  17. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  18. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth

    International Nuclear Information System (INIS)

    Yuan, Huihua; Zhou, Qihui; Li, Biyun; Bao, Min; Lou, Xiangxin; Zhang, Yanzhong

    2015-01-01

    Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications. (paper)

  19. Ultrafine cementitious grout

    Science.gov (United States)

    Ahrens, Ernst H.

    1999-01-01

    An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  20. Study of electrical properties of polyvinylpyrrolidone/polyacrylamide ...

    Indian Academy of Sciences (India)

    /fulltext/boms/037/02/0273-0279. Keywords. PVP; PAM; conductivity; activation energy; relaxation time; electric modulus. Abstract. Electrical properties of polyvinylpyrrolidone, polyacrylamide and their blend thin films have been investigated as ...

  1. Effect of gamma radiation on polyvinylpyrrolidone hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.J.A.; Vásquez, P.A.S.; Alcântara, M.T.S.; Munhoz, M.M.L.; Lugão, A.B., E-mail: mariajhho@yahoo.com.br, E-mail: pavsalva@ipen.br, E-mail: ablugao@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Polyvinylpyrrolidone (PVP) hydrogels have been investigated as drug delivery matrices for the treatment of wounds, such as cutaneous leishmaniasis, and matrices with silver nanoparticles for chronic wounds and burns. The preparation of such hydrogels can occur by various cross-linking methods, such as gamma, chemical, physical, among others. The most feasible for wound dressings is gamma irradiation from cobalt-60, because gamma irradiation simultaneously promotes crosslinking and sterilization, leaving the wound dressing ready for use. The objective of this work was to investigate the effect on physico- chemical properties of gamma radiation on PVP hydrogel according to the radiation absorbed dose variation. The PVP hydrogels were irradiated with doses of 5, 15, 25, 35, 45, 55, 65, 75 and 95kGy at dose rate of 5 kGy/h and characterized by swelling, thermogravimetric and mechanical analysis. Results shown a favorable dose range window for processing of these hydrogels related to the application. The results showed that mechanical strength was affected at doses starting at 25 kGy. (author)

  2. Ultrafine particles in cities.

    Science.gov (United States)

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effect of acrylic acid on the properties of polyvinylpyrrolidone ...

    African Journals Online (AJOL)

    Hydrogels based on polyvinylpyrrolidone (PVP) networks grafted with acrylic acid (AAc) was prepared by using γ-rays from a Co-60 source at room temperature. The parameters like effect of radiation dose and concentration of AAc were studied. The properties such as gel content, swelling behavior and thermal stability ...

  4. Study of electrical properties of polyvinylpyrrolidone/polyacrylamide ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/boms/037/02/0273-0279. Keywords. PVP; PAM; conductivity; activation energy; relaxation time; electric modulus. Abstract. Electrical properties of polyvinylpyrrolidone, polyacrylamide and their blend thin films have been investigated as a function of temperature and frequency. The films ...

  5. Fabrication of Polyvinylpyrrolidone Micro-/Nanostructures Utilizing Microcontact Printing

    Science.gov (United States)

    Sanders, Wesley C.

    2015-01-01

    This paper describes a laboratory exercise that provides students enrolled in introductory nanotechnology courses with an opportunity to synthesize polymer structures with micro- and nanoscale dimensions. Polyvinylpyrrolidone (PVP) films deposited on corrugated PDMS stamps using student-built spin coaters were transferred to clean, dry substrates…

  6. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    been made from the contraction of a manganese oxide sol gel upon solvent evaporation, as well as from zinc oxide and silicon dioxide using vapor...H.; Shin, Y.M.; Terai, H.; Vacanti, J.P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering...D.L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3115–3124. 28. Zhang, Y.Z.; Ouyang, H.W.; Lim, C.T

  7. Electrospun complexes - functionalised nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wolf, M.; Dreyer, B.; Unruh, D.; Krüger, C.; Menze, M. [Leibniz University Hannover, Institute of Inorganic Chemistry (Germany); Sindelar, R. [University of Applied Science Hannover, Faculty II (Germany); Klingelhöfer, G. [Gutenberg-University, Institute of Inorganic and Analytic Chemistry (Germany); Renz, F., E-mail: renz@acd.uni-hannover.de [Leibniz University Hannover, Institute of Inorganic Chemistry (Germany)

    2016-12-15

    Here we present a new approach of using iron-complexes in electro-spun fibres. We modify poly(methyl methacrylate) (PMMA) by replacing the methoxy group with Diaminopropane or Ethylenediamine. The complex is bound covalently via an imine-bridge or an amide. The resulting polymer can be used in the electrospinning process without any further modifications in method either as pure reagent or mixed with small amounts of not functionalised polymer resulting in fibres of different qualities (Fig. 1).

  8. Ultrafine particles in the atmosphere

    CERN Document Server

    Brown, L M; Harrison, R M; Maynard, A D; Maynard, R L

    2003-01-01

    Following the recognition that airborne particulate matter, even at quite modest concentrations, has an adverse effect on human health, there has been an intense research effort to understand the mechanisms and quantify the effects. One feature that has shone through is the important role of ultrafine particles as a contributor to the adverse effects of airborne particles. In this volume, many of the most distinguished researchers in the field provide a state-of-the-art overview of the scientific and medical research on ultrafine particles. Contents: Measurements of Number, Mass and Size Distr

  9. Nanomaterials vs Ambient Ultrafine Particles

    DEFF Research Database (Denmark)

    Stone, Vicki; Miller, Mark R.; Clift, Martin J. D.

    2017-01-01

    BACKGROUND: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology ...

  10. Detection of Ultrafine Anaphase Bridges

    DEFF Research Database (Denmark)

    Bizard, Anna H; Nielsen, Christian F; Hickson, Ian D

    2018-01-01

    Ultrafine anaphase bridges (UFBs) are thin DNA threads linking the separating sister chromatids in the anaphase of mitosis. UFBs are thought to form when topological DNA entanglements between two chromatids are not resolved prior to anaphase onset. In contrast to other markers of defective...

  11. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  12. Electrospun Fibers for Composites Applications

    Science.gov (United States)

    2014-02-01

    composite density using Archimedes principle (table 3), enabled by a balance equipped with both a standard-weighing pan as well as a weighing cradle...Electrospun Fibers for Composites Applications by Joshua A. Orlicki, Joshua Steele, André A. Williams, George R. Martin, Eugene Napadensky...Proving Ground, MD 21005-5069 ARL-TR-6800 February 2014 Electrospun Fibers for Composites Applications Joshua A. Orlicki and Eugene

  13. Direct Electrospinning of Ultrafine Fibers with Interconnected Macropores Enabled by in Situ Mixing Microfluidics.

    Science.gov (United States)

    Liu, Wanjun; Zhu, Lei; Huang, Chen; Jin, Xiangyu

    2016-12-21

    Porous ultrafine fibers are of great importance to various applications. Herein, we report a method to directly fabricate macro-porous ultrafine fibers by an in situ mixing microfluidics which allows for the simultaneous electrospinning of solution immediately after mixing. The formation mechanism of macro-pores should be attributed to the incomplete mixing coupled with nonsolvent-induced phase separation, which was elucidated by systematical investigation of various solvent systems and mixing solvents. The diameter of the macro-porous fibers can be tuned from 1.80 ± 0.40 to 6.75 ± 0.48 μm by adjusting the solution concentration and the feeding rate of mixing solvent. The results indicated that macro-porous fibers exhibited higher specific surface area (48.66 ± 8.30 m 2 g -1 ), larger pore size (116.73 nm) and pore volume (0.169 ± 0.007 cm 3 g -1 ) than conventional electrospun porous fibers, enabling the high oil absorption capacities of 95.68, 57.98, and 34.82 g g -1 for silicon oil, motor oil, and peanut oil, respectively. Our method has greatly expanded the solution scope for electrospinning from stable solution systems to unstable or substable solution systems, thus providing intriguing opportunities for the investigation and fabrication of heterogeneous fibers by in situ mixing of various immiscible solvents/solutions. Our findings can serve as guidelines for the electrospinning of ultrafine fibers with interconnected macro-pores (>50 nm).

  14. Surgical smoke and ultrafine particles

    Directory of Open Access Journals (Sweden)

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  15. Influence of polyvinylpyrrolidone on the interaction between water and methanol

    Directory of Open Access Journals (Sweden)

    M. Guettari

    2013-09-01

    Full Text Available The present work aims to determine the influence of a dissolved polymer, polyvinylpyrrolidone, on the interaction between water and methanol. First, the dynamic viscosities were measured for polymer solutions by a rotational concentric cylinder at 25 ºC and for the polymer concentration range from 0.1 to 0.6 g/dl. The results show a polynomial dependence of the viscosity on polymer concentration. On the hypothesis of a quasi-binary system, a pseudo Grumberg-Nissan constant, d'p, was introduced to quantify the interaction between unlike molecules in the presence of polymer. The interaction between unlike molecules due to the presence of the polymer was quantified by the deviation of the Grumberg-Nissan constant, δd'p= d p. Generally, this constant is negative which means that the interactions between water and methanol decrease in the presence of polyvinylpyrrolidone at 25 ºC. The presence of the polymer induces a perturbation of the dynamic equilibrium between free and complexed molecules

  16. Ultrafine particle emissions from waterpipes.

    Science.gov (United States)

    Monn, Ch; Kindler, Ph; Meile, A; Brändli, O

    2007-12-01

    Ultrafine particle emissions from waterpipes and their impact on human health have not been extensively studied. The aim of this study was to characterise the inhalation pattern of waterpipe smokers, and (a) construct apparatus to simulate waterpipe smoking in the laboratory, and (b) characterise mainstream emissions from waterpipes under different smoking conditions. Real life waterpipe smoking patterns were first measured with a spirometer. The average smoking pattern was then mechanically simulated in apparatus. Total particle number concentrations were determined with a condensation particle counter (CPC) for particles between 0.02 microm and 1 microm (P-Trak UPC, Model 8525, TSI) and the particle size fraction was determined with a differential mobility analyser (DMA) for particles from 0.01 microm to 0.5 microm. This instrument was coupled with a laser particle spectrometer for particles between 0.35 microm and 10 microm (Wide Range Particle Spectrometer, Model 1000XP, MSC Corp). Carbon monoxide levels were determined with an electrochemical sensor (Q-Trak monitor, Model 8554, TSI). The tidal volume of an average waterpipe breath of 5 seconds was found to be 1 (SD 0.47) litre. The intervals between breaths on average were 25.5 (SD 10.2) seconds. Particle number concentrations of ultrafine particles in mainstream smoke during waterpipe smoking ranged up to 70 x 10(9) particles per litre. The median diameter of the particles in a full smoking set with charcoal, tobacco and water was 0.04 microm. Smoke from the heated tobacco contributed to particles in the size range between 0.01 microm and 0.2 microm. The glowing piece of charcoal only contributed to particles smaller than 0.05 microm. Waterpipe smoking emits large amounts of ultrafine particles. With regard to particle emissions, smoking waterpipes may carry similar health risks to smoking cigarettes.

  17. Electrical and Thermal Characterization of Electrospun PVP Nanocomposite Fibers

    Directory of Open Access Journals (Sweden)

    Waseem S. Khan

    2013-01-01

    Full Text Available Polyvinylpyrrolidone (PVP solutions incorporated with multiwall carbon nanotubes (MWCNTs were electrospun at various weight percentages, and then the electrical resistance and some thermal properties of these nanocomposite fibers were determined using a high-accuracy electrical resistance measurement device. During the electrospinning process, system and process parameters, such as concentrations, applied voltage, tip-to-collector distance, and pump speeds, were optimized to receive the consistent nanocomposite fibers. When polymers are used in many industrial applications, they require high electrical and thermal conductivities. Most polymers exhibit low electrical conductivity values; however, in the presence of conductive inclusions, the electrical resistance of the MWCNT fibers was reduced from 50 MΩ to below 5 MΩ, which may be attributed to the higher electrical conductivities of these nanoscale inclusions and fewer voids under the applied loads. This study may open up new possibilities in the field for developing electrically conductive novel nanomaterials and devices for various scientific and technological applications.

  18. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  19. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-01-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH 3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  20. Synthesis and characterizations of Pt nanorods on electrospun polyamide-6 nanofibers templates

    International Nuclear Information System (INIS)

    Nirmala, R.; Navamathavan, R.; Won, Jeong Jin; Jeon, Kyung Soo; Yousef, Ayman; Kim, Hak Yong

    2012-01-01

    Highlights: ► Electrospun polyamide-6 nanofibers were used as the templates for synthesis Pt nanorods. ► Polyamide-6 nanofibers surfaces were plasma treated to coat Pt. ► High quality Pt nanorods were obtained by calcinations process. ► Pt nanorods with a diameter of few hundred nanometers were obtained. ► Polyamide-6 nanofibers template based Pt nanorods synthesis are a feasible method. - Abstract: We report on the synthesis of platinum (Pt) nanorods by using ultrafine polyamide-6 nanofibers templates produced via electrospinning technique. These ultrafine polyamide-6 nanofibers can be utilized as the templates for growing Pt nanorods after modifying them optimally by plasma passivations. The morphological, structural, optical and electrical properties of the template assisted Pt nanorods were studied by field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), photoluminescence (PL) and current–voltage (I–V) characteristics. The ability to fabricate the ultrafine size controlled Pt nanorods on polyamide-6 templates with optimized growth parameters in real time can be utilized for the variety of technological applications. Therefore, it is possible to obtain high quality with size control Pt nanorods. Once obtaining the high quality metal nanorods on polymer templates, the same can be adapted for the electronic device fabrication.

  1. Nanomechanics of electrospun phospholipid fiber

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Nikogeorgos, Nikolaos; Lee, Seunghwan

    2015-01-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 +/- 2.7 mu m. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 +/- 1MPa....

  2. ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kanyuk M. I.

    2014-07-01

    Full Text Available The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

  3. Ultracentrifugation for ultrafine nanodiamond fractionation

    Science.gov (United States)

    Koniakhin, S. V.; Besedina, N. A.; Kirilenko, D. A.; Shvidchenko, A. V.; Eidelman, E. D.

    2018-01-01

    In this paper we propose a method for ultrafine fractionation of nanodiamonds using the differential centrifugation in the fields up to 215000g. The developed protocols yield 4-6 nm fraction giving main contribution to the light scattering intensity. The desired 4-6 nm fraction can be obtained from various types of initial nanodiamonds: three types of detonation nanodiamonds differing in purifying methods, laser synthesis nanodiamonds and nanodiamonds made by milling. The characterization of the obtained hydrosols was conducted with Dynamic Light Scattering, Zeta potential measurements, powder XRD and TEM. According to powder XRD and TEM data ultracentrifugation also leads to a further fractionation of the primary diamond nanocrystallites in the hydrosols from 4 to 2 nm.

  4. Polyvinylpyrrolidone Matrix as an Effective Reducing Agent and Stabilizer during Reception of Silver Nanoparticles in Composites

    OpenAIRE

    Semenyuk, Nataliya; Kostiv, Ulyana; Dudok, Galyna; Nechay, Jaroslav; Skorokhoda, Volodymyr

    2013-01-01

    The use of polyvinylpyrrolidone matrix as an effective reducing agent and stabilizer during reception of silver nanoparticles in composites is substantiated. The influence of various factors on patterns of obtaining silver nanoparticles and their size.

  5. Electrospun Nanofibers Applications in Dentistry

    Directory of Open Access Journals (Sweden)

    Seog-Jin Seo

    2016-01-01

    Full Text Available Nanofibrous structures exhibit many interesting features, such as high surface area and surface functionalization and porosity in the range from submicron to nanoscale, which mimics the natural extracellular matrix. In particular, electrospun nanofibers have gained great attention in the field of tissue engineering due to the ease of fabrication and tailorability in pore size, scaffold shape, and fiber alignment. For the reasons, recently, polymeric nanofibers or bioceramic nanoparticle-incorporated nanofibers have been used in dentistry, and their nanostructure and flexibility have contributed to highly promotive cell homing behaviors, resulting in expecting improved dental regeneration. Here, this paper focuses on recently applied electrospun nanofibers in dentistry in the range from the process to the applications.

  6. Polyvinylpyrrolidone as a New Fluorescent Sensor for Nitrate Ion

    International Nuclear Information System (INIS)

    Tang, I.H.; Lintang, H.O.; Leny Yuliati

    2016-01-01

    In this study, non-conjugated polyvinylpyrrolidone (PVP) was investigated for the first time as the potential polymeric material to sense nitrate ions by fluorescence spectroscopy. The PVP was diluted into various concentrations (3-10 %) and they were used to sense the nitrate ions in different concentrations (0.1-100 mM). The PVP showed two excitation peaks at 285 and 330 nm due to the presence of C=O and N-C groups, respectively. One strong emission at 400 or 408 nm was observed with the excitation at 285 or 330 nm. The higher value of quenching constant at excitation wavelength of 285 nm indicated that C=O site was more favored for NO 3 - ions sensing than the N-C site. The PVP 7 % gave the highest quenching constant; where the KSV value was 9.89 x 10 -3 mM -1 and 2.44 x 10 -3 mM -1 for excitation at 285 and 330 nm, respectively. The sensing capability was evaluated in the presence of interference ions (SO 4 2- , HCO 3 - , Cl - , and OH - ). It was observed that the interference ions interacted strongly with the C=O, but weakly with the N-C. Therefore, in the presence of the interference ions, the PVP would be a potential fluorescent sensor when it is excited at 330 nm. (author)

  7. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    Science.gov (United States)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  8. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  9. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.

    Science.gov (United States)

    Dufficy, Martin K; Geiger, Mackenzie T; Bonino, Christopher A; Khan, Saad A

    2015-11-17

    Fumed silica (FS) particles with hydrophobic (R805) or hydrophilic (A150) surface functionalities are incorporated in polyacrylonitrile (PAN) fibers by electrospinning to produce mats with controlled wettability. Rheological measurements are conducted to elucidate the particle-polymer interactions and characterize the system while microscopic and analytic tools are used to examine FS location within both fibers and films to aid in the fundamental understanding of wetting behavior. Unlike traditional polymers, we find these systems to be gel-like, yet electrospinnable; the fumed silica networks break down into smaller aggregates during the electrospinning process and disperse both within and on the surface of the fibers. Composite nanofiber mats containing R805 FS exhibit an apparent contact angle over 130° and remain hydrophobic over 30 min, while similar mats with A150 display rapid surface-wetting with a static contact angle of ∼30°. Wicking experiments reveal that the water absorption properties can be further manipulated, with R805 FS-impregnated mats taking up only 8% water relative to mat weight in 15 min. In contrast, PAN fibers containing A150 FS absorb 425% of water in the same period, even more than the pure PAN fiber (371%). The vastly different responses to water demonstrate the versatility of FS in surface modification, especially for submicron fibrous mats. The role of fumed silica in controlling wettability is discussed in terms of their surface functionality, placement on nanofibers and induced surface roughness.

  10. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    Directory of Open Access Journals (Sweden)

    R. T. De Silva

    2017-01-01

    Full Text Available Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol (PVA polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm at a predetermined concentration (10% (w/w, is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P<0.05. In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

  11. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends

    International Nuclear Information System (INIS)

    Chen, Changzhong; Wang, Linge; Huang, Yong

    2011-01-01

    Highlights: → Ultrafine PEG/CA phase change fibers were fabricated by electrospinning. → PEG content dramatically influenced the fiber morphology and phase change behaviors. → The electrospun fibers have excellent thermal properties for thermal energy storage. - Abstract: Ultrafine phase change fibers based on polyethylene glycol (PEG)/cellulose acetate (CA) blends in which PEG acts as a model phase change material (PCM) and CA acts as a supporting material, were successfully prepared via electrospinning. The effect of PEG content on the morphology, crystalline properties, phase change behaviors and tensile properties of the composite fibers was studied systematically by field-emission scanning electron microscopy (FE-SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and a tensile tester, respectively. The SEM observation indicates that maximum PEG content in the fibers could reach up to 70 wt%, and the morphology and average diameter of the composite fibers vary with PEG content. Thermal analysis results show that the latent heats of the phase change fibers increase with the increasing of PEG content in the fibers, and the PEG/CA fibers with high enthalpies have a good capability to regulate their interior temperature as the ambient temperature alters. Therefore, the developed phase change fibers have enormous applicable potentials in thermal energy storage and temperature regulation.

  12. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Costa, Paula de M.; Tavares, Maria I.B.

    2005-01-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  13. Fatigue mechanisms in ultrafine-grained copper

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2009-01-01

    Roč. 47, č. 1 (2009), s. 1-9 ISSN 0023-432X R&D Projects: GA AV ČR(CZ) 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained copper * effect of purity * effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.345, year: 2007

  14. Ultrafine particle characteristics in seven industrial plants.

    Science.gov (United States)

    Elihn, Karine; Berg, Peter

    2009-07-01

    Ultrafine particles are considered as a possible cause of some of the adverse health effects caused by airborne particles. In this study, the particle characteristics were measured in seven Swedish industrial plants, with a special focus on the ultrafine particle fraction. Number concentration, size distribution, surface area concentration, and mass concentration were measured at 10 different job activities, including fettling, laser cutting, welding, smelting, core making, moulding, concreting, grinding, sieving powders, and washing machine goods. A thorough particle characterization is necessary in workplaces since it is not clear yet which choice of ultrafine particle metric is the best to measure in relation to health effects. Job activities were given a different order of rank depending on what particle metric was measured. An especially high number concentration (130 x 10(3) cm(-3)) and percentage of ultrafine particles (96%) were found at fettling of aluminium, whereas the highest surface area concentration (up to 3800 mum(2) cm(-3)) as well as high PM10 (up to 1 mg m(-3)) and PM1 (up to 0.8 mg m(-3)) were found at welding and laser cutting of steel. The smallest geometric mean diameter (22 nm) was found at core making (geometric standard deviation: 1.9).

  15. Personal exposure to ultrafine particles.

    Science.gov (United States)

    Wallace, Lance; Ott, Wayne

    2011-01-01

    Personal exposure to ultrafine particles (UFP) can occur while people are cooking, driving, smoking, operating small appliances such as hair dryers, or eating out in restaurants. These exposures can often be higher than outdoor concentrations. For 3 years, portable monitors were employed in homes, cars, and restaurants. More than 300 measurement periods in several homes were documented, along with 25 h of driving two cars, and 22 visits to restaurants. Cooking on gas or electric stoves and electric toaster ovens was a major source of UFP, with peak personal exposures often exceeding 100,000 particles/cm³ and estimated emission rates in the neighborhood of 10¹² particles/min. Other common sources of high UFP exposures were cigarettes, a vented gas clothes dryer, an air popcorn popper, candles, an electric mixer, a toaster, a hair dryer, a curling iron, and a steam iron. Relatively low indoor UFP emissions were noted for a fireplace, several space heaters, and a laser printer. Driving resulted in moderate exposures averaging about 30,000 particles/cm³ in each of two cars driven on 17 trips on major highways on the East and West Coasts. Most of the restaurants visited maintained consistently high levels of 50,000-200,000 particles/cm³ for the entire length of the meal. The indoor/outdoor ratios of size-resolved UFP were much lower than for PM₂.₅ or PM₁₀, suggesting that outdoor UFP have difficulty in penetrating a home. This in turn implies that outdoor concentrations of UFP have only a moderate effect on personal exposures if indoor sources are present. A time-weighted scenario suggests that for typical suburban nonsmoker lifestyles, indoor sources provide about 47% and outdoor sources about 36% of total daily UFP exposure and in-vehicle exposures add the remainder (17%). However, the effect of one smoker in the home results in an overwhelming increase in the importance of indoor sources (77% of the total).

  16. Distributed feedback imprinted electrospun fiber lasers.

    Science.gov (United States)

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influence of the collector and heat treatment in the structure of BiFeO3 electrospun nanofibers

    International Nuclear Information System (INIS)

    Melo, G.H.F.; Santos, J.P.F.; Bretas, R.E.S.

    2016-01-01

    The objective of this work was to analyze the influence of the collector type and heat treatment on the morphology and crystalline phases of BiFeO 3 electrospun nanofibers. A solution containing (Fe(NO 3 ) 3.9 H 2 O and Bi(NO 3 ) 3.5 H 2 O) as precursors together with a polyvinylpyrrolidone solution was electrospun using 2.8KV/cm as electrical field. The collector type was however, changed (aluminum and glass). After the electrospinning, the as-spun nanofibers were submitted to two different heat treatments: one at 550°C and the other at 750°C, both during 2h. The collector type changed the morphology of the nanofibers; while in the glass collector, a non-woven mat of flat and rough nanofibers was obtained, in the aluminum collector, mats of circular and smooth nanofibers were obtained. The thermal treatment also changed the morphology and amount of crystalline phases; at 550°C, the nanofiber morphology was maintained and only one crystalline phase (BiFeO 3 ) was detected. On the other hand, at 750°C, flakes were obtained of two crystalline phases (BiFeO 3 and Bi 2 Fe 4 O 9 ). (author)

  18. Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection

    Directory of Open Access Journals (Sweden)

    D. Matatagui

    2014-01-01

    Full Text Available The goal of this work has been to study the polyvinylpyrrolidone (PVP fibers deposited by means of the electrospinning technique for using as sensitive layer in surface acoustic wave (SAW sensors to detect volatile organic compounds (VOCs. The electrospinning process of the fibers has been monitored and RF characterized in real time, and it has been shown that the diameters of the fibers depend mainly on two variables: the applied voltage and the distance between the needle and the collector, since all the electrospun fibers have been characterized by a scanning electron microscopy (SEM. Real-time measurement during the fiber coating process has shown that the depth of penetration of mechanical perturbation in the fiber layer has a limit. It has been demonstrated that once this saturation has been reached, the increase of the thickness of the fibers coating does not improve the sensitivity of the sensor. Finally, the parameters used to deposit the electrospun fibers of smaller diameters have been used to deposit fibers on a SAW device to obtain a sensor to measure different concentrations of toluene at room temperature. The present sensor exhibited excellent sensitivity, good linearity and repeatability, and high and fast response to toluene at room temperature.

  19. Enzyme-carrying electrospun nanofibers.

    Science.gov (United States)

    Jia, Hongfei

    2011-01-01

    Compared to other nanomaterials as supports for enzyme immobilization, nanofibers provide a promising configuration in balancing the key factors governing the catalytic performance of the immobilized enzymes including surface area-to-volume ratio, mass transfer resistance, effective loading, and the easiness to recycle. Synthetic and natural polymers can be fabricated into nanofibers via a physical process called electrospinning. The process requires only simple apparatus to operate, yet has proved to be very flexible in the selection of feedstock materials and also effective to control and manipulate the properties of the resulting nanofibers such as size and surface morphology, which are typically important parameters for enzyme immobilization supports. This chapter describes a protocol for the preparation of nanofibrous enzyme, involving the synthesis and end-group functionalization of polystyrene, production of electrospun nanofibers, and surface immobilization of enzyme via covalent attachment.

  20. Poly(vinylpyrrolidone) as dispersing agent for cerium-gadolinium oxide (CGO) suspensions

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Nielsen, Lotte

    2016-01-01

    The behaviour of selected poly(vinylpyrrolidone) grades to act as dispersant for ethanol-based ceriumgadolinium oxide suspensions was investigated and related to the molecular weight characteristics. The number, weight, and z-average molecular weights Mn, Mw, and Mz were determined by gel...

  1. Mixed adsorption of poly(vinylpyrrolidone) and sodium dodecylbenzenesulphonate on kaolinite

    NARCIS (Netherlands)

    Torn, L.A.; Keizer, de A.; Koopal, L.K.; Lyklema, J.

    2003-01-01

    The mixed adsorption of the nonionic polymer poly(vinylpyrrolidone) (PVP) and the anionic surfactant sodium dodecylbenzenesulfonate (SDBS) on kaolinite has been studied. Both components adsorb from their mixture onto the clay mineral. The overall adsorption process is sensitive to the pH, the

  2. Electrospinning of oriented and nonoriented ultrafine fibers of biopolymers

    Science.gov (United States)

    Vu, David

    2005-07-01

    Chitosan has long been known as a biocompatible and biodegradable material suitable for tissue engineering applications. Unfortunately, conventional chitosan solutions cannot be used for electrospinning due to their high conductivity, viscosity and surface tension. We have developed a method to produce clear chitosan solutions with conductivities, surface tension and viscosities that facilitate their processing into micron and submicron fibers via electrospinning. Acetic acid, carbon dioxide and organic solvents are key ingredients in preparing the chitosan solutions. Oriented and non oriented chitosan fibers were produced with the ultimate goal of designing a suitable tissue engineering scaffold. Circularly oriented, continuous, and aligned nanofibers were produced via this technique in the form of a thin membrane or fibrous "mat". Chitosan fiber diameters ranged from 5 micrometers down to 100 nanometers. The structure and mechanical properties of oriented and randomly aligned chitosan fiber deposits could potentially be exploited for cartilage tissue engineering. Ultrafine fibers of starch acetate (SA) also were prepared by the electrospinning process. In this study, solvent mixtures based on DMF, DMSO, pyrindine, acetic acid, acetone, THF, DMC, chloroform were used. A two-solvent formulation was used to study the effect of viscosity, surface tension, and conductivity to the fiber diameter. Also, water and ethanol were used to decrease the boiling point of the solvent, and to make bundled fibers. Several techniques such as scanning electron microscopy, conductmetry, viscometry, and tensiometry were used in this study. The results showed that the combined effects of viscosity, surface tension, and conductivity are of great importance in controlling the diameter of the fibers. We were able to produce SA fibers that was less than 40 nm in diameter. The dependence of fiber diameter on flow-rate, electric field and solvents also was investigated. A rotating disk and a

  3. A chemical analyzer for charged ultrafine particles

    OpenAIRE

    S. G. Gonser; A. Held

    2013-01-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable...

  4. A chemical analyzer for charged ultrafine particles

    OpenAIRE

    S. G. Gonser; A. Held

    2013-01-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of ana...

  5. [Ultrafine particle emissions from laser printers].

    Science.gov (United States)

    Grana, Mario; Vicentini, Laura; Pietroiusti, Antonio; Magrini, Andrea

    2015-01-01

    In recent years there has been growing attention to the importance of indoor air quality on which scientist and experts have no doubts since in modern society we tend to spend most of the time in various types of indoor environments (office, private homes, etc.). Laser printers, in particular, release an aerosol into the environment including solid and liquid particles and gaseous compounds. The measurement of all these components is not practically feasible. Therefore, it is necessary to identify a marker which, when measured, shows accurately the frequency, duration and magnitude of the exposure. The measure with an optical particle counter (OPC) and a condensation particle counter (CPC) is an indicator with high sensitivity and representativeness. The major advantage of using these tools is the ability to detect the presence of ultrafine particles and also detect the particles in the liquid phase. The continuous recording of submicron particulate matter emitted during the printing activity allows to measure the exposure of personnel, while the ratio between the peak values and the values without printing activity can be used to classify the printers according to their emissivity. The particulate generated during the processes of printing has size less than 0.3 micron and therefore extends in the size range of nanoparticles (ultrafine particles less than 100 nm). These activities lead to high concentrations of ultrafine particles with a variability related to factors such as type of printer, toner, paper type, frequency of maintenance and air exchange. The concentrations of ultrafine particles in office environments can be reduced by proper choice of the printers, with the use of appropriate filtration techniques and placing the equipment away from workstations.

  6. The photoluminescence enhancement of electrospun poly(ethylene oxide) fibers with CdS and polyaniline inoculations

    Energy Technology Data Exchange (ETDEWEB)

    Yu Guo [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Li Xiaohong [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: xhli@swjtu.edu.cn; Cai Xiaojun; Cui Wenguo; Zhou Shaobing; Weng Jie [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-11-15

    Blending electrospinning of cadmium sulfide (CdS) quantum dots (QD) with poly(ethylene oxide) (PEO) solution was employed to fabricate one-dimensional ultrafine fibers with an average diameter of 450 nm. This study focused on systematic investigations into the role of the matrix polymer and the optimal electrospinning parameters for enhancing the photoluminescence properties of fibrous composites. CdS QDs showed a homogeneous distribution within the composite fibers, and fluorescence spectra showed that PEO successfully passivated the interface defects and quenched the visible emission of CdS QDs. The QDs concentration and electrospinning voltage were found to play important roles in enhancing the passivation effect of PEO and adjusting the photoluminescence intensity of the composite fibers. Furthermore, the addition of polyaniline enhanced the photoluminescence intensity of the electrospun fibers, and an electron-hole mechanism was proposed.

  7. The photoluminescence enhancement of electrospun poly(ethylene oxide) fibers with CdS and polyaniline inoculations

    International Nuclear Information System (INIS)

    Yu Guo; Li Xiaohong; Cai Xiaojun; Cui Wenguo; Zhou Shaobing; Weng Jie

    2008-01-01

    Blending electrospinning of cadmium sulfide (CdS) quantum dots (QD) with poly(ethylene oxide) (PEO) solution was employed to fabricate one-dimensional ultrafine fibers with an average diameter of 450 nm. This study focused on systematic investigations into the role of the matrix polymer and the optimal electrospinning parameters for enhancing the photoluminescence properties of fibrous composites. CdS QDs showed a homogeneous distribution within the composite fibers, and fluorescence spectra showed that PEO successfully passivated the interface defects and quenched the visible emission of CdS QDs. The QDs concentration and electrospinning voltage were found to play important roles in enhancing the passivation effect of PEO and adjusting the photoluminescence intensity of the composite fibers. Furthermore, the addition of polyaniline enhanced the photoluminescence intensity of the electrospun fibers, and an electron-hole mechanism was proposed

  8. Preparation of ultrafine poly(sodium 4-styrenesulfonate) fibres via ...

    Indian Academy of Sciences (India)

    The ultrafine poly (sodium 4-styrenesulfonate) (NaPSS) fibres have been prepared for the first time by electrospinning. The spinning solutions (NaPSS aqueous solutions) in varied concentrations were studied for electrospinning into ultrafine fibres. The results indicated that the smooth fibre could be formed when the ...

  9. Preparation of ultrafine poly (sodium 4-styrenesulfonate) fibres via ...

    Indian Academy of Sciences (India)

    The ultrafine poly (sodium 4-styrenesulfonate) (NaPSS) fibres have been prepared for the first time by electrospinning. The spinning solutions (NaPSS aqueous solutions) in varied concentrations were studied for electrospinning into ultrafine fibres. The results indicated that the smooth fibre could be formed when the ...

  10. Transparent nanostructured electrodes: Electrospun NiO nanofibers/NiO films

    Energy Technology Data Exchange (ETDEWEB)

    Lamastra, F.R. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy); Nanni, F. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy); Department of Enterprise Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy); Menchini, F. [ENEA, CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy); Nunziante, P. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy); Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Grilli, M.L., E-mail: marialuisa.grilli@enea.it [ENEA, CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy)

    2016-02-29

    Polyvinylpyrrolidone (PVP)/nickel(II) acetate precursor fibers were deposited by electrospinning directly on radio frequency sputtered thin Ni and NiO films grown on quartz substrate, starting from Ni(II) acetate and PVP solution in ethanol. The samples were calcined in air in the temperature range 400–500 °C to obtain transparent and conductive p-type NiO nanofibers on NiO films. A higher density of nanofibers was obtained on Ni/quartz substrates, as compared to NiO/quartz ones, demonstrating the feasibility of fiber adhesion directly to an insulating substrate previously coated by a thin Ni layer. Samples were characterized by field emission-scanning electron microscopy, X-ray diffraction, spectrophotometric and resistance measurements. - Highlights: • Nanostructured electrodes: electrospun NiO nanofibers/NiO films were fabricated. • NiO fibers were directly grown on insulating substrate coated by thin Ni or NiO films. • Good quality crystalline fibers were obtained at low calcination temperatures. • Transparent and conductive p-type electrodes were fabricated.

  11. Electrospun water-soluble polymer nanofibers for the dehydration and storage of sensitive reagents

    International Nuclear Information System (INIS)

    Dai, Minhui; Nugen, Sam R; Senecal, Andre

    2014-01-01

    The ability to preserve and deliver reagents remains an obstacle for the successful deployment of self-contained diagnostic microdevices. In this study we investigated the ability of bacteriophage T7 to be encapsulated and preserved in water soluble nanofibers. The bacteriophage T7 was added to mixtures of polyvinylpyrrolidone and water and electrospun onto a grounded plate. Trehalose and magnesium salts were added to the mixtures to determine their effect on the infectivity of the bacteriophage following electrospinning and during storage. The loss of T7 infectivity was determined immediately following electrospinning and during storage using agar overlay plating and plaque counting. The results indicate that the addition of magnesium salts protects the bacteriophage during the relatively violent and high voltage electrospinning process, but is not as effective as a protectant during storage of the dried T7. Conversely, the addition of trehalose into the electrospinning mix has little effect on the electrospinning, but a more significant role as a protectant during storage. (papers)

  12. Comparison of the enthalpy recovery and free volume of polyvinylpyrrolidone during anomalous glassy to rubbery transition.

    Science.gov (United States)

    Zelkó, Romána; Süvegh, Károly

    2004-03-01

    Previous studies confirmed that along with the structural changes of the amorphous binder, that of the polyvinylpyrrolidone, the tensile strength and consequently, the dissolution behaviour of its tablets changed significantly during the storage period. Structural formation during the glassy to rubbery transition of polyvinylpyrrolidone was followed by the changes in the free volume and enthalpy recovery values of the polymer. The results suggest that the apparent structure formation of water and polymer under glassy to rubbery transition is interrelated in a dynamic and complex manner which can be tracked by the combination of enthalpy recovery studies and positron lifetime measurements. Positron lifetime measurements more sensitively react to the structural rearrangements than enthalpy recovery, thus it can be recommended as a sensitive tool for stability tests during the formulation phase of drug development.

  13. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-07-04

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally diferent from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  14. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    Science.gov (United States)

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-05

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ultrafine particle exposure in Danish residencies

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Karottki, Dorina Gabriela; Wierzbicka, Aneta

    2016-01-01

    We measured ultrafine particle concentrations in 56 Danish residences, estimated the daily integrated exposure of the occupants and apportioned this exposure to source events. The residential daily integrated particle number (PN) exposure in the homes was substantial and source events, especially...... candle burning, cooking, toasting and unknown activities, were responsible on average for ∼65% of the residential integrated exposure. Residents of another 60 homes were then asked to carry a backpack equipped with a GPS recorder and a portable monitor to measure real-time individual exposure over ~48 h...

  16. Cellulose acetate electrospun nanofibrous membrane: fabrication ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties. NAZNIN SULTANA ... The CA nanofibrous membrane was non-toxic to human skin fibroblast cells. Thus the CA ...

  17. Electrospun Superhydrophobic Self-Cleaning Materials

    Science.gov (United States)

    Zhao, Yong; Wang, Nü

    In this chapter, we introduce the wettability of electrospinning products. Especially, we concentrate on the fabrication, characteristics, and applications of the electrospun self-cleaning materials. Self-cleaning materials are typical nature-inspired artificial materials learning from such as lotus leaf and many other plants or animals. Self-cleaning materials usually rely on a superhydrophobic surface, which should be of low surface free energy as well as large surface roughness. Electrospinning method is such a method that could facilely shape various hydrophobic polymers into ultrathin fibers with tunable surface microstructures. It means the electrospun products are of very large specific area, which satisfy the two basic conditions in preparing superhydrophobic surfaces. Therefore, in the last decade, scientists put forward a good few of elegant approaches to fabricate superhydrophobic materials by electrospinning. These methods can be generally classified into two routes. One is a direct route that creates superhydrophobic electrospun films from hydrophobic materials. Another is an indirect route that decorates electrospun nanofibers (no matter hydrophobic or hydrophilic) with hydrophobic chemicals. We first introduce some representative works on the fabrication of superhydrophobic self-cleaning materials by electrospinning method. Then we show some applications of these superhydrophobic materials. Finally, we give a brief personal perspective on this area.

  18. Electrospun MOF nanofibers as hydrogen storage media

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2015-06-01

    Full Text Available In this study, Zr-MOF and Cr-MOF were chosen as representatives of the developed MOFs in our laboratory and were incorporated into electrospun nanofibers. The obtained MOF nanofibers composites were evaluated as hydrogen storage media. The results...

  19. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration

    International Nuclear Information System (INIS)

    Farooq, Ariba; Yar, Muhammad; Khan, Abdul Samad; Shahzadi, Lubna; Siddiqi, Saadat Anwar; Mahmood, Nasir; Rauf, Abdul; Qureshi, Zafar-ul-Ahsan; Manzoor, Faisal; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2015-01-01

    Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. - Highlights: • Novel non-steroidal anti-inflammatory drug encapsulated biodegradable electrospun nanocomposite scaffolds were synthesized. • Heat treatment displayed great influence on the morphology of scaffolds. • Fiber diameter was decreased and pore size was increased after heat

  20. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Ariba [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Khan, Abdul Samad; Shahzadi, Lubna; Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore (Pakistan); Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Qureshi, Zafar-ul-Ahsan [Veterinary Research Institute, Lahore (Pakistan); Manzoor, Faisal; Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2015-11-01

    Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. - Highlights: • Novel non-steroidal anti-inflammatory drug encapsulated biodegradable electrospun nanocomposite scaffolds were synthesized. • Heat treatment displayed great influence on the morphology of scaffolds. • Fiber diameter was decreased and pore size was increased after heat

  1. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.

    Science.gov (United States)

    Manoukian, Ohan S; Matta, Rita; Letendre, Justin; Collins, Paige; Mazzocca, Augustus D; Kumbar, Sangamesh G

    2017-01-01

    Electrospinning has emerged as a simple, elegant, and scalable technique that can be used to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetic ones have been successfully electrospun into nanofiber matrices for many biomedical applications. Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission. These scaffolds have been used to engineer various soft tissues, including connective tissues, such as skin, ligament, and tendon, as well as nonconnective ones, such as vascular, muscle, and neural tissue. Electrospun nanofiber matrices show morphological similarities to the natural extracellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratios, high porosities, and variable pore-size distributions. The physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters so that they meet the requirements of a specific application.Nanostructured implants show improved biological performance over bulk materials in aspects of cellular infiltration and in vivo integration, taking advantage of unique quantum, physical, and atomic properties. Furthermore, the topographies of such scaffolds has been shown to dictate cellular attachment, migration, proliferation, and differentiation, which are critical in engineering complex functional tissues with improved biocompatibility and functional performance. This chapter discusses the use of the electrospinning technique in the fabrication of polymer nanofiber scaffolds utilized for the regeneration of soft tissues. Selected scaffolds will be seeded with human mesenchymal stem cells (hMSCs), imaged using scanning electron and confocal microscopy, and then evaluated for their mechanical properties as well as their abilities to promote cell adhesion

  2. Align and random electrospun mat of PEDOT:PSS and PEDOT:PSS/RGO

    Science.gov (United States)

    Sarabi, Ghazale Asghari; Latifi, Masoud; Bagherzadeh, Roohollah

    2018-01-01

    In this research work we fabricated two ultrafine conductive nanofibrous layers to investigate the materilas composition and their properties for the preparation of supercapacitor materials application. In first layer, a polymer and a conductive polymer were used and second layer was a composition of polymer, conductive polymer and carbon-base material. In both cases align and randomized mat of conductive nanofibers were fabricated using electrospinning set up. Conductive poly (3,4-ethylenedioxythiophene)/ polystyrene sulfonate (PEDOT:PSS) nanofibers were electrospun by dissolving fiber-forming polymer and polyvinyl alcohol (PVA) in an aqueous dispersion of PEDOT:PSS. The effect of addition of reduced graphene oxide (RGO) was considered for nanocomposite layer. The ultrafine conductive polymer fibers and conductive nanocomposite fibrous materials were also fabricated using an electrospinning process. A fixed collector and a rotating drum were used for random and align nanofibers production, respectively. The resulted fibers were characterized and analyzed by SEM, FTIR and two-point probe conductivity test. The average diameter of nanofibers measured by ImageJ software indicated that the average fiber diameter for first layer was 100 nm and for nanocomposite layer was about 85 nm. The presence of PEDOT:PSS and RGO in the nanofibers was confirmed by FT-IR spectroscopy. The conductivity of align and random layers was characterized. The conductivity of PEDOT:PSS nanofibers showed higher enhancement by addition of RGO in aqueous dispersion. The obtained results showed that alignment of fibrous materials can be considered as an engineering tool for tuning the conductivity of fibrous materials for many different applications such as supercapacitors, conductive and transparent materials.

  3. Removal of ultrafine particles from indoor environment

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi

    In Denmark, people spend most of their time indoors. Therefore, indoor air quality is an important public health issue as people are exposed to pollutants indoors. Pollutants including gases and particles come from outdoors to the inside of a building. They may also be generated indoors by cooking......, candle burning, emission from building material, etc. Particles are divided into coarse, fine and ultrafine particles (UFP) depending on their size. Research has indicated that UFPs with diameters less than 100 nanometer (nm) may be harmful to the human body. Increased ventilation is commonly discussed...... by researchers as a solution for reducing the particle concentration in the indoor air. Recirculation of air through portable air cleaners has also been discussed. The scope of this study is to investigate possibilities, applications and limitations of using recirculated air in combination with new air cleaning...

  4. Substantial convection and precipitation enhancements by ultrafine aerosol particles

    Science.gov (United States)

    Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.

    2018-01-01

    Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensational growth of water droplets around the tiny particles releases latent heat, thereby intensifying atmospheric convection. Thus, anthropogenic ultrafine aerosol particles may exert a more important influence on cloud formation processes than previously believed.

  5. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  6. Electrospun nanofibers for neural tissue engineering

    Science.gov (United States)

    Xie, Jingwei; MacEwan, Matthew R.; Schwartz, Andrea G.; Xia, Younan

    2010-01-01

    Biodegradable nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. We begin with a brief discussion on the electrospinning of nanofibers and methods for controlling the structure, porosity, and alignment of the electrospun nanofibers. The methods include control of the nanoscale morphology and microscale alignment of the nanofibers, as well as the fabrication of macroscale, three-dimensional tubular structures. We then highlight recent studies that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this feature article is to provide valuable insights into methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.

  7. Electrospun Polymer-Fiber Solar Cell

    Directory of Open Access Journals (Sweden)

    Shinobu Nagata

    2013-01-01

    Full Text Available A novel electrospun polymer-fiber solar cell was synthesized by electrospinning a 1 : 2.5 weight% ratio mixture of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV and [6,6]-phenyl C61 butyric acid methyl ester (PCBM resulting in bulk heterojunctions. Electrospinning is introduced as a technique that may increase polymer solar cell efficiency, and a list of advantages of the technique applied to solar cells is discussed. The device achieved a power conversion efficiency of %. The absorption and photoluminescence of MEH-PPV nanofibers are compared to thin films of the same material. Electrospun nanofibers are discussed as a favorable structure for application in polymer solar cells.

  8. Use of polyvinylpyrrolidone in the testing of staphylococci for sensitivity to methicillin and cephradine.

    Science.gov (United States)

    Bayston, R

    1978-01-01

    The use of polyvinylpyrrolidone, an inert polymer resembling plasma proteins in its colligative effects, in the testing of micrococcaceae for sensitivity to methicillin and cephradine is described. Generally results are quite comparable with those of conventional methods. The absence of any inhibitory effect of the polymer compared to sodium chloride, and its physiological inertia compared to sucrose, along with its suitability for sterilisation by autoclaving are seen as advantages. It is suggested that the use of this substance may give results which are more applicable to the in vivo situation. This may apply particularly in the case of cephradine. PMID:649768

  9. Biocompatible electrospun polymer blends for biomedical applications.

    Science.gov (United States)

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. © 2014 Wiley Periodicals, Inc.

  10. Cryopreservation of Indian red jungle fowl (Gallus gallus murghi) semen with polyvinylpyrrolidone.

    Science.gov (United States)

    Rakha, Bushra Allah; Ansari, Muhammad Sajjad; Akhter, Shamim; Zafar, Zartasha; Hussain, Iftikhar; Santiago-Moreno, Julian; Blesbois, Elisabeth

    2017-10-01

    The Indian red jungle fowl is a sub-species of the genus Gallus native to South Asia; facing high risk of extinction in its native habitat. During cryopreservation, permeable cryoprotectants like glycerol are usually employed and we previously showed encouraging results with 20% glycerol. Because bird spermatozoa contain very little intracellular water, the possibility of replacing an internal cryoprotectant by an external one is opened. In the present study, we tested the replacement of internal cryoprotectant glycerol by the external cryoprotectant Polyvinylpyrrolidone (PVP). PVP is a non-permeable cryoprotectant and keeps the sperm in glassy state both in cooling and warming stages without making ice crystallization within the sperm cell. We evaluated the effect of various levels of polyvinylpyrrolidone (PVP) on Indian red jungle fowl semen quality and fertility outcomes. The qualifying semen ejaculates collected from eight mature cocks were pooled, divided into five aliquots, diluted (37 °C) with red fowl semen extender having PVP [0% (control) 4% (w/v), 6% (w/v), 8% (w/v) and 10% (w/v)]. Diluted semen was cryopreserved and stored in liquid nitrogen. The whole experiment was repeated/replicated for five times independently. Sperm motility, plasma membrane integrity, viability and acrosome integrity were recorded highest (P jungle fowl spermatozoa than glycerol and can be used in routine practice avoiding the contraceptive effects of glycerol. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Resorption, excretion and retention of 14C-labelled polyvinylpyrrolidone of varying mean molecular weights after intraperitoneal application of 14C-labelled polyvinylpyrrolidone-iodine in rats

    International Nuclear Information System (INIS)

    Pfeufer, W.

    1983-01-01

    The behaviour of 14 C labelled polyvinylpyrrolidone (PVP) after i.p.-application of PVP-iodine was studied in 164 female Wistar-rats with regard to resorption, distribution, retention and possible storage symptoms of two PVP-batches with different mean molecular weight distribution. Both substances with the viscosity constants K 17 and K 18 were fully absorbed from the abdominal cavity. Distribution and retention of PVP-fractions with higher molecular weight is sluggish. Excretion of both substances was found to take place in a quick renal elimination phase during the first 12 hours and a slow elimination in urine and faeces. During the terminal elimination phase PVP with the viscosity constant K 28 is discharged to a significantly lower degree than the reference substance. While all tissues are able to store macromolecular PVP, the spleen has the highest storage capacity, skeletal muscles possess only 13% thereof. A molecular weight of 35.000 seems to be the threshold for quick elimination. Only long-term studies can show however whether the storage symptoms found here are indicative of ''genuine storage'', i.e. irrevocable deposits. (orig./MG) [de

  12. Characterization and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method

    Directory of Open Access Journals (Sweden)

    H. Albetran

    2015-09-01

    Full Text Available TiO2 nanofibers were prepared within polyvinylpyrrolidone (PVP polymer using a combination of sol–gel and electrospinning techniques. Based on a Taguchi design of experiment (DoE method, the effects of sol–gel and electrospinning on the TiO2/PVP nanofibers’ diameter, including titanium isopropoxide (TiP concentration, flow rate, needle tip-to-collector distance, and applied voltage were evaluated. The analysis of DoE experiments for nanofiber diameters demonstrated that TiP concentration was the most significant factor. An optimum combination to obtain smallest diameters was also determined with a minimum variation for electrospun TiO2/PVP nanofibers. The optimum combination was determined to be a 60% TiP concentration, at a flow rate of 1 ml/h, with the needle tip-to-collector distance at 11 cm (position a, and the applied voltage of 18 kV. This combination was further validated by conducting a confirmation experiment that used two different needles to study the effect of needle size. The average nanofiber diameter was approximately the same for both needle sizes in good accordance with the optimum condition estimated by the Taguchi DoE method.

  13. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    Science.gov (United States)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  14. Surface integrity analysis when milling ultrafine-grained steels

    Directory of Open Access Journals (Sweden)

    Alessandro Roger Rodrigues

    2012-02-01

    Full Text Available This paper quantifies the effects of milling conditions on surface integrity of ultrafine-grained steels. Cutting speed, feed rate and depth of cut were related to microhardness and microstructure of the workpiece beneath machined surface. Low-carbon alloyed steel with 10.8 µm (as-received and 1.7 µm (ultrafine grain sizes were end milled using the down-milling and dry condition in a CNC machining center. The results show ultrafine-grained workpiece preserves its surface integrity against cutting parameters more than the as-received material. Cutting speed increases the microhardness while depth of cut deepens the hardened layer of the as-received material. Also, deformations of microstructure following feed rate direction were observed in workpiece subsurface.

  15. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction

    International Nuclear Information System (INIS)

    Gao Yan; Jiang Peng; Song Li; Liu Lifeng; Yan Xiaoqin; Zhou Zhenping; Liu Dongfang; Wang Jianxiong; Yuan Huajun; Zhang Zengxing; Zhao Xiaowei; Dou Xinyuan; Zhou Weiya; Wang Gang; Xie Sishen

    2005-01-01

    Silver (Ag) nanowires with a pentagonal cross section have been synthesized by polyvinylpyrrolidone (PVP)-assisted polyol reduction in the presence of Pt nanoparticle seeds. The UV-visible absorption spectra and scanning electron microscopy have been used to trace the growth process of the Ag nanowires. X-ray photoelectron spectroscopy investigation further shows that the PVP molecules are adsorbed on the surface of the Ag nanowires through Ag : O coordination. Comparing with the growth process of Ag nanoparticles, a possible growth mechanism of the Ag nanowires has been proposed. It is implied that the PVP molecules are used as both a protecting agent and a structure-directing agent for the growth of Ag nanowires. It is concluded that the five-fold twinning Ag nanoparticles are formed through heterogenous nucleation after the introduction of Pt nanoparticle seeds and then grow anisotropically along the (110) direction, while the growth along (100) is relatively depressed

  16. Sensitive and rapid determination of quinoline yellow in drinks using polyvinylpyrrolidone-modified electrode.

    Science.gov (United States)

    Zhang, Shenghui; Shi, Zhen; Wang, Jinshou

    2015-04-15

    A novel electrochemical sensor using polyvinylpyrrolidone (PVP)-modified carbon paste electrode was developed for the sensitive and rapid determination of quinoline yellow. In 0.1M, pH 6.5 phosphate buffer, an irreversible oxidation wave at 0.97 V was observed for quinoline yellow. PVP exhibited strong accumulation ability to quinoline yellow, and consequently increased the oxidation peak current of quinoline yellow remarkably. The effects of pH value, amount of PVP, accumulation potential and time were studied on the oxidation signals of quinoline yellow. The linear range was from 5×10(-8) to 1×10(-6) M, and the limit of detection was evaluated to be 2.7×10(-8) M. It was used to detect quinoline yellow in different drink samples, and the results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Dissolving polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of sumatriptan succinate.

    Science.gov (United States)

    Ronnander, P; Simon, L; Spilgies, H; Koch, A; Scherr, S

    2018-03-01

    In-vitro permeation studies were conducted to assess the feasibility of fabricating dissolving-microneedle-array systems to release sumatriptan succinate. The formulations consisted mainly of the encapsulated active ingredient and a water-soluble biologically compatible polymer, polyvinylpyrrolidone (PVP), approved by the U.S. Food and Drug Administration (FDA). Tests with Franz-type diffusion cells and Göttingen minipig skins showed an increase of the transdermal flux compared to passive diffusion. A preparation, containing 30% by mass of PVP and 8.7mg sumatriptan, produced a delivery rate of 395±31μg/cm 2 h over a 7-hour period after a negligible lag time of approximately 39min. Theoretically, a 10.7cm 2 microneedle-array patch loaded with 118.8mg of the drug would provide the required plasma concentration, 72ng/mL, for nearly 7h. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    Science.gov (United States)

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (Palloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  19. Polyvinylpyrrolidone (PVP)-Capped Pt Nanocubes with Superior Peroxidase-Like Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Haihang [Department of Chemistry, Michigan Technological University, Houghton Michigan 49931 United States; Liu, Yuzi [Center for Nanoscale Materials, Argonne National Laboratory, Argonne Illinois 60439 United States; Chhabra, Ashima [Department of Chemistry, Michigan Technological University, Houghton Michigan 49931 United States; Lilla, Emily [Department of Chemistry, Michigan Technological University, Houghton Michigan 49931 United States; Xia, Xiaohu [Department of Chemistry, Michigan Technological University, Houghton Michigan 49931 United States

    2016-12-21

    Peroxidase mimics of inorganic nanoparticles are expected to circumvent the inherent issues of natural peroxidases, providing enhanced performance in important applications such as diagnosis and imaging. Despite the report of a variety of peroxidase mimics in the past decade, very limited progress has been made on improving their catalytic efficiency. The catalytic efficiencies of most previously reported mimics are only up to one order of magnitude higher than those of natural peroxidases. In this work, we demonstrate a type of highly efficient peroxidase mimic – polyvinylpyrrolidone (PVP)-capped Pt nanocubes of sub-10 nm in size. These PVP-capped Pt cubes are ~200-fold more active than the natural counterparts and exhibit a record-high specific catalytic efficiency. In addition to the superior efficiency, the new mimic shows several other promising features, including excellent stabilities, well-controlled uniformity in both size and shape, controllable sizes, and facile and scalable production.

  20. A facile single-step synthesis of polyvinylpyrrolidone-silver nanocomposites using a conventional spray dryer.

    Science.gov (United States)

    Kim, Byung-Ho; Kim, Yoon Hyuck; Lee, Young Jin; Lee, Mi Jai; Kim, Jin-Ho; Hwang, Jonghee; Jeon, Dae-Woo

    2018-01-19

    We have developed a facile single-step synthesis of silver nanocomposite using a conventional spray dryer. We investigated the synthetic conditions by controlling the concentrations of the chemical reactants. Further, we confirmed the effect of the molecular weight of polyvinylpyrrolidones, and revealed that the molecular weight significantly affected the properties of the resultant silver nanocomposites. The long-term stability of the silver nanocomposites was tested, and little change was observed, even after storage for three months. Most of all, the simple commercial implementation, in combination with large-scale synthesis, possesses a variety of advantages, compared to conventional complicated and costly dry-process synthesis methods. Thus, our method presents opportunities for further investigation, for both lab-scale studies and large-scale industrial applications.

  1. Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone microfibres

    Directory of Open Access Journals (Sweden)

    Eva Enz

    2009-10-01

    Full Text Available With the relatively new technique of coaxial electrospinning, composite fibres of poly(vinylpyrrolidone with the liquid crystal 4-cyano-4′-octylbiphenyl in its smectic phase as core material could be produced. The encapsulation leads to remarkable confinement effects on the liquid crystal, inducing changes in its phase sequence. We conducted a series of experiments to determine the effect of varying the relative flow rates of inner and outer fluid as well as of the applied voltage during electrospinning on these composite fibres. From X-ray diffraction patterns of oriented fibres we could also establish the orientation of the liquid crystal molecules to be parallel to the fibre axis, a result unexpected when considering the viscosity anisotropy of the liquid crystal kept in its smectic phase during electrospinning.

  2. Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function

    International Nuclear Information System (INIS)

    Safran, M.; Braverman, L.E.

    1982-01-01

    Daily vaginal douching with polyvinylpyrrolidone-iodine in 12 euthyroid volunteers for 14 days resulted in a significant increase in serum total iodine concentration and urine iodine excretion. The increase in serum total iodine was associated with a marked decrease in 24-hour 123 I uptake by the thyroid and a small but significant increase in serum thyrotropin (TSH) concentration. However, values for serum TSH never rose above the normal range. No significant changes in serum thyroxine (T4), free T4 index (FTI), or triiodothyronine concentrations were observed, although serum T4 and FTI did decrease slightly during treatment. The findings suggest that iodine is absorbed across the vaginal mucosa and that the subsequent increase in serum total iodine does induce subtle increases in serum TSH concentration. There was no evidence, however, of overt hypothyroidism in these euthyroid women

  3. Preparation of Ultrafine Colloidal Gold Particles using a Bioactive Molecule

    Science.gov (United States)

    Pal, Anjali

    2004-02-01

    Synthesis of nanometer-sized particles with new physical properties is an area of tremendous interest. In metal particles, the changes in size modify the electron density in the particles, which shifts the plasmon band. The most significant size effects occur when the particles are ultrafine (size is synthesis of ultrafine metal particles is enormously important to exploit their unique and selective application. Here we report a novel method for the synthesis of ultrafine gold particles in the size range of 0.5-3 nm using dopamine hydrochloride (dhc), an important neurotransmitter. This is the first time where such an important bioactive molecule like dhc has been used as a reagent for the transformation of Au(III) to Au(0). The synthesis is carried out, for the first time, either in simple aqueous or in a nonionic micellar (for example Triton X-100 (TX-100)) medium. The gold sol has a beautiful yellow-brown color showing λmax at 470 nm. The appearance of the absorption peak at substantially shorter wavelength (usually gold sol absorbs at ˜520 nm) indicates that the particles are very small. The method discussed here is very simple, reproducible and does not involve any reagent, which contains 'P' or 'S' atoms. Also in this case no polymer or dendrimer or thiol-related stabilizer is used. The effects of different parameters (such as the presence or absence of O2, temperature, TX-100 concentration and dhc concentration) on the formation of ultrafine gold particles are discussed. The effects of 3-mercapto propionic acid and pyridine on the ultrafine gold sol are also studied and compared with those on photochemically prepared gold sol. It is observed that 3-mercapto propionic acid dampens the plasmon absorption at 470 nm of ultrafine gold particles. Pyridine, on the other hand, has no effect on the particles.

  4. Fabrication and Characterization of Electrospun Semiconductor Nanoparticle—Polyelectrolyte Ultra-Fine Fiber Composites for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Caroline L. Schauer

    2011-10-01

    Full Text Available Fluorescent composite fibrous assembles of nanoparticle-polyelectrolyte fibers are useful multifunctional materials, utilized in filtration, sensing and tissue engineering applications, with the added benefits of improved mechanical, electrical or structural characteristics over the individual components. Composite fibrous mats were prepared by electrospinning aqueous solutions of 6 wt% poly(acrylic acid (PAA loaded with 0.15 and 0.20% v/v, carboxyl functionalized CdSe/ZnS nanoparticles (SNPs. The resulting fluorescent composite fibrous mats exhibits recoverable quenching when exposed to high humidity. The sensor response is sensitive to water concentration and is attributed to the change in the local charges around the SNPs due to deprotonation of the carboxylic acids on the SNPs and the surrounding polymer matrix.

  5. Twinning interactions induced amorphisation in ultrafine silicon grains

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Zhang, L.C., E-mail: liangchi.zhang@unsw.edu.au [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Zhang, Y. [School of Mechatronics Engineering, Harbin Institute of Technology (China)

    2016-03-21

    Detailed transmission electron microscopy analysis on a severely deformed Al-Si composite material has revealed that partial dislocation slips and deformation twinning are the major plastic deformation carriers in ultrafine silicon grains. This resembles the deformation twinning activities and mechanisms observed in nano-crystalline face-centred-cubic metallic materials. While deformation twinning and amorphisation in Si were thought unlikely to co-exist, it is observed for the first time that excessive twinning and partial dislocation interactions can lead to localised solid state amorphisation inside ultrafine silicon grains.

  6. Electrospun fibrous mats with conjugated tetraphenylethylene and mannose for sensitive turn-on fluorescent sensing of Escherichia coli.

    Science.gov (United States)

    Zhao, Long; Chen, Yufei; Yuan, Jiang; Chen, Maohua; Zhang, Hong; Li, Xiaohong

    2015-03-11

    A rapid and sensitive detection of microbes in water and biological fluids is a key requirement in water and food safety, environmental monitoring, and clinical diagnosis and treatment. In the current study, electrospun polystyrene-co-maleic anhydride (PSMA) fibers with conjugated mannose and tetraphenylethylene (TPE) were developed for Escherichia coli (E. coli) detection, taking advantage of the high grafting capabilities of ultrafine fibers and the highly porous structure of the fibrous mat to entrap bacterial cells. The specific binding between mannose grafts on PSMA fibers and FimH proteins from the fimbriae of E. coli led to an efficient "turn-on" profile of TPE due to the aggregation-induced emission (AIE) effect. Poly(ethylene glycol) diamine was used as hydrophilic tethers to increase the conformational mobility of mannose grafts, indicating a more sensitive change in the fluorescence intensity against bacteria concentrations, a lower fluorescence background of fibers without bacteria incubation, and a sufficient space for bacteria binding, compared with the use of hexamethylenediamine or poly(ethylene imine) as spacers for mannose grafting. The addition of bovine serum albumin, glucose, or both of them into bacteria suspensions showed no significant changes in the fluorescence intensity of fibrous mats, indicating the anti-interference capability against these proteins and saccharides. An equation was drafted of the fluorescence intensities of fibrous mats against E. coli concentrations ranging from 10(2) to 10(5) CFU/mL. The test strip format was established on mannose-conjugated PSMA fibers after exposure to E. coli of different concentrations, providing a potential tool with a visual sensitivity of bacteria concentrations as low as 10(2) CFU/mL in a matter of minutes. This strategy may offer a capacity to be expanded to exploit electrospun fibrous mats and other carbohydrate-cell interactions for bioanalysis and biosensing of pathogenic bacteria.

  7. A chemical analyzer for charged ultrafine particles

    Science.gov (United States)

    Gonser, S. G.; Held, A.

    2013-09-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of analyzing particles with diameters below 30 nm. A bulk of size-separated particles is collected electrostatically on a metal filament, resistively desorbed and subsequently analyzed for its molecular composition in a time of flight mass spectrometer. We report on technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of defined masses of camphene (C10H16) to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  8. Characterization of electrospun lignin based carbon fibers

    Science.gov (United States)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 - 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  9. Properties of PET/PLA Electrospun Blends

    Science.gov (United States)

    Li, Kevin; Cebe, Peggy

    2012-02-01

    Electrospun membranes were fabricated from poly(ethylene terephthalate), PET, co-spun with poly(lactic acid), PLA. The PLA contained 2% of the D-isomer, which served to limit the overall degree of crystallinity. Membranes were deposited from blended solutions of PET/PLA in hexafluoroisopropanol. The PET/PLA composition ranged from 0/100, 75/25, 50/50, 25/75, and 100/0. Electrospun membranes were made using either a static flat plate or a rotating wheel as the counter electrode, yielding unoriented mats or highly oriented tapes, respectively. We report on our investigation of the crystallinity, crystal perfection, and mechanical properties of these materials using differential scanning calorimetry, wide and small angle X-ray scattering, and dynamic mechanical analysis. In particular, we study the ability of one blend component (PET) to crystallize in the presence of existing crystals of the second blend component (PLA) which crystallizes first and at a lower temperature than PET.

  10. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Science.gov (United States)

    Esfahani, Hamid; Ramakrishna, Seeram

    2017-01-01

    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined. PMID:29077074

  11. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Hamid Esfahani

    2017-10-01

    Full Text Available Ceramic nanofibers (NFs have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.

  12. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant cap...

  13. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  14. Performance Enhancement of Dental Composites Using Electrospun Nanofibers

    OpenAIRE

    H. Dodiuk-Kenig; K. Lizenboim; S. Roth; B. Zalsman; W. A. McHale; M. Jaffe; K. Griswold

    2008-01-01

    The objective of the present study is to investigate the effect of electrospun nanofiber reinforcement on the properties of commercially available, hyperbranched polymer modified (Hybrane, 0.3 wt.% DSM) dental formulations. The emergence of functionalized nanoscale reinforcements having large surface area (hundreds of square meters/gram) has enabled the design of novel nanocomposites with new and complex structures leading to enhanced mechanical and physical properties. Electrospun nanofibers...

  15. Production of ultrafine sumatriptan succinate particles for pulmonary delivery.

    Science.gov (United States)

    Yang, Zong-Yang; Le, Yuan; Hu, Ting-Ting; Shen, Zhigang; Chen, Jian-Feng; Yun, Jimmy

    2008-09-01

    Drug particle physical properties are critical for the efficiency of a drug delivered to the lung. The purpose of this study was to produce ultrafine sumatriptan succinate particles for inhalation. Sumatriptan succinate particles were produced via reactive precipitation without any surfactants. Several low toxic organic solvents such as acetone, isopropanol, and tetrahydrofuran were investigated as the reaction medium. And the dry powder was obtained via spray drying. FT-IR, HPLC, SEM and XRD were exploited to characterize the physicochemical properties of the ultrafine sumatriptan succinate dry powder. The aerosol performance of the powder was evaluated using an Aeroliser connected to a multi stage liquid impinger operating at 60 l/min. The mean particle size of the ultrafine sumatriptan succinate particles obtained under optimum conditions was in the range of 630-679 nm and consequently they were in the respirable range. The spray-dried powder whose fine particle fraction was increased up to 50.6 +/- 8.2% showed good aerosol performance whereas the vacuum-dried powder was approximate 18.2 +/- 3.0%. Good aerosol performance ultrafine sumatriptan succinate particles could be produced by reactive precipitation without any additives followed by spray drying at the optimum parameters.

  16. Polymer degradation and ultrafine particles: Potential inhalation hazards for astronauts

    Science.gov (United States)

    Ferin, J.; Oberdörster, G.

    When Teflon is heated the developing fumes produce in exposed humans an influenza-like syndrome (polymer fume fever) or also severe toxic effects like pulmonary edema, pneumonitis and death. The decomposition products and the resulting health effects are temperature-dependent. The toxic effects seem to be related to the ultrafine particulate fraction of the fume. To test the hypothesis that exposure to ultrafine particles results in an increased interstitialization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO 2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO 2 particles (˜20 nm diameter) access the pulmonary interstitium to a larger extent than fine particles (˜250 nm diameter) and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  17. Separation of ultrafine particles from class F fly ashes

    Directory of Open Access Journals (Sweden)

    Acar Ilker

    2016-01-01

    Full Text Available In this study, ultrafine particles were recovered from Çatalağzı (CFA and Sugözü (SFA thermal power plant fly ashes using a specific hydraulic classification technology. Since fly ashes have a high tendency to be flocculated in water, settling experiments were first designed to determine the more effective dispersant and the optimum dosage. Two different types of the superplasticizers (SP polymers based on sulphonate (NSF, Disal and carboxylate (Glenium 7500 were used as the dispersing agents in these settling experiments. Hydraulic classification experiments were then conducted to separate ultrafine fractions from the fly ash samples on the basis of the settling experiments. According to the settling experiments, better results were achieved with the use of Disal for both CFA and SFA. The classification experiments showed that the overflow products with average particle sizes of 5.2 μm for CFA and 4.4 μm for SFA were separated from the respective as-received samples with acceptable yields and high enough recoveries of -5 μm (ultrafine particles. Overall results pointed out that the hydraulic classification technology used provided promising results in the ultrafine particle separations from the fly ash samples.

  18. Outdoor ultrafine particle concentrations in front of fast food restaurants

    NARCIS (Netherlands)

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A

  19. Initiation of fatigue cracks in ultrafine-grained copper

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Navrátilová, Lucie

    2012-01-01

    Roč. 50, č. 6 (2012), s. 407-419 ISSN 0023-432X Institutional support: RVO:68081723 Keywords : ultrafine-grained microstructure * fatigue * slip bands * microcrack initiation * grain coarsening Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.687, year: 2012

  20. Influence of the collector and heat treatment in the structure of BiFeO{sub 3} electrospun nanofibers; Influencia do coletor e do tratamento termico na estrutura de nanofibras eletrofiadas de BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Melo, G.H.F.; Santos, J.P.F.; Bretas, R.E.S., E-mail: bretas@ufscar.br [Universidade Federal de Sao Carlos (DEMa/UFSCar). SP (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    The objective of this work was to analyze the influence of the collector type and heat treatment on the morphology and crystalline phases of BiFeO{sub 3} electrospun nanofibers. A solution containing (Fe(NO{sub 3}){sub 3.9}H{sub 2}O and Bi(NO{sub 3}){sub 3.5}H{sub 2}O) as precursors together with a polyvinylpyrrolidone solution was electrospun using 2.8KV/cm as electrical field. The collector type was however, changed (aluminum and glass). After the electrospinning, the as-spun nanofibers were submitted to two different heat treatments: one at 550°C and the other at 750°C, both during 2h. The collector type changed the morphology of the nanofibers; while in the glass collector, a non-woven mat of flat and rough nanofibers was obtained, in the aluminum collector, mats of circular and smooth nanofibers were obtained. The thermal treatment also changed the morphology and amount of crystalline phases; at 550°C, the nanofiber morphology was maintained and only one crystalline phase (BiFeO{sub 3}) was detected. On the other hand, at 750°C, flakes were obtained of two crystalline phases (BiFeO{sub 3} and Bi{sub 2}Fe{sub 4}O{sub 9}). (author)

  1. Nanostructured Electrospun Hybrid Graphene/Polyacrylonitrile Yarns

    Science.gov (United States)

    Razal, Joselito M.; Naebe, Minoo

    2017-01-01

    Novel nanostructured hybrid electrospun polyacrylonitrile (PAN) yarns with different graphene ratios were prepared using liquid crystal graphene oxide (LCGO) and PAN. It was found that the well-dispersed LCGO were oriented along the fiber axis in an electrified thin liquid jet during electrospinning. The graphene oxide sheets were well dispersed in the polar organic solvent, forming nematic liquid crystals upon increasing concentration. Twisted nanofibers were produced from aligned nanofibrous mats prepared by conventional electrospinning. It was found that the mechanical properties of the twisted nanofiber yarns increased even at very low LCGO loading. This research offers a new approach for the fabrication of continuous, strong, and uniform twisted nanofibers which could show promise in developing a novel carbon fiber precursor. PMID:28946668

  2. Nanostructured Electrospun Hybrid Graphene/Polyacrylonitrile Yarns.

    Science.gov (United States)

    Mehrpouya, Fahimeh; Foroughi, Javad; Naficy, Sina; Razal, Joselito M; Naebe, Minoo

    2017-09-25

    Novel nanostructured hybrid electrospun polyacrylonitrile (PAN) yarns with different graphene ratios were prepared using liquid crystal graphene oxide (LCGO) and PAN. It was found that the well-dispersed LCGO were oriented along the fiber axis in an electrified thin liquid jet during electrospinning. The graphene oxide sheets were well dispersed in the polar organic solvent, forming nematic liquid crystals upon increasing concentration. Twisted nanofibers were produced from aligned nanofibrous mats prepared by conventional electrospinning. It was found that the mechanical properties of the twisted nanofiber yarns increased even at very low LCGO loading. This research offers a new approach for the fabrication of continuous, strong, and uniform twisted nanofibers which could show promise in developing a novel carbon fiber precursor.

  3. Electrospun Nanopaper and its Applications to Microsystems

    Science.gov (United States)

    Lingaiah, Shivalingappa; Shivakumar, Kunigal; Sadler, Robert

    2014-01-01

    A new method of preparing Nylon-66 nanopaper using electrospun nonwoven nanofiber and fiber fusing is presented. The fusing temperature for Nylon-66 nanofiber was found to be 190°C. Both carbon and glass fiber reinforced nanopapers were prepared. The unreinforced Nylon-66 nanopaper of areal density 4.5 g/m2 had a modulus and strength of 681 MPa and 92.8 MPa, respectively, while the unfused nanopaper had 430 MPa and 59.3 MPa, respectively. This increase was attributed to fusing of randomly oriented fibers. Several types of insect wings, namely FlyTech dragonfly and Deadalus flight system wings, were fabricated and tested for their flyability. Vibration test was conducted to measure the wing stiffness by matching the measured first natural frequency to the stiffness.

  4. Electrospun Nanofibers: New Concepts, Materials, and Applications.

    Science.gov (United States)

    Xue, Jiajia; Xie, Jingwei; Liu, Wenying; Xia, Younan

    2017-08-15

    Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. It has been applied to successfully produce nanofibers, with diameters down to tens of nanometers, from a rich variety of materials, including polymers, ceramics, small molecules, and their combinations. In addition to solid nanofibers with a smooth surface, electrospinning has also been adapted to generate nanofibers with a number of secondary structures, including those characterized by a porous, hollow, or core-sheath structure. The surface and/or interior of such nanofibers can be further functionalized with molecular species or nanoparticles during or after an electrospinning process. In addition, electrospun nanofibers can be assembled into ordered arrays or hierarchical structures by manipulation of their alignment, stacking, and/or folding. All of these attributes make electrospun nanofibers well-suited for a broad spectrum of applications, including those related to air filtration, water purification, heterogeneous catalysis, environmental protection, smart textiles, surface coating, energy harvesting/conversion/storage, encapsulation of bioactive species, drug delivery, tissue engineering, and regenerative medicine. Over the past 15 years, our group has extensively explored the use of electrospun nanofibers for a range of applications. Here we mainly focus on two examples: (i) use of ceramic nanofibers as catalytic supports for noble-metal nanoparticles and (ii) exploration of polymeric nanofibers as scaffolding materials for tissue regeneration. Because of their high porosity, high surface area to volume ratio, well-controlled composition, and good thermal stability, nonwoven membranes made of ceramic nanofibers are terrific supports for catalysts based on noble-metal nanoparticles. We have investigated the use of ceramic nanofibers made of various oxides, including SiO 2 , TiO 2

  5. Tissue engineering scaffolds electrospun from cotton cellulose.

    Science.gov (United States)

    He, Xu; Cheng, Long; Zhang, Ximu; Xiao, Qiang; Zhang, Wei; Lu, Canhui

    2015-01-22

    Nonwovens of cellulose nanofibers were fabricated by electrospinning of cotton cellulose in its LiCl/DMAc solution. The key factors associated with the electrospinning process, including the intrinsic properties of cellulose solutions, the rotating speed of collector and the applied voltage, were systematically investigated. XRD data indicated the electrospun nanofibers were almost amorphous. When increasing the rotating speed of the collector, preferential alignment of fibers along the drawing direction and improved molecular orientation were revealed by scanning electron microscope and polarized FTIR, respectively. Tensile tests indicated the strength of the nonwovens along the orientation direction could be largely improved when collected at a higher speed. In light of the excellent biocompatibility and biodegradability as well as their unique porous structure, the nonwovens were further assessed as potential tissue engineering scaffolds. Cell culture experiments demonstrated human dental follicle cells could proliferate rapidly not only on the surface but also in the entire scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion - I: Polyvinylpyrrolidone and related polymers.

    OpenAIRE

    Simerdeep Singh Gupta; Anuprabha Meena; Tapan Parikh; Abu T.M. Serajuddin

    2016-01-01

    Polymers are essential components of melt extruded products. The objective of the present study was to generate physicochemical data of polyvinylpyrrolidone-based polymers and copolymers that are used in hot melt extrusion (HME). This study focused on investigating the importance of viscoelasticity for predicting HME processing conditions. Powder X-ray diffraction (XRD) patterns of polymers were recorded to determine the physical nature of the polymers. Differential scanning calorimetry (DSC)...

  7. Solution phase chemical synthesis of nano aluminium particles stabilized in poly(vinylpyrrolidone) and poly(methylmethacrylate) matrices.

    Science.gov (United States)

    Ghanta, Sekher Reddy; Muralidharan, Krishnamurthi

    2010-06-01

    The reduction of aluminium trichloride by lithium aluminium hydride in the presence of poly(vinylpyrrolidone) or poly(methylmethacrylate) in mesitylene yielded nano aluminium particles in the matrices of respective polymers. Solution phase synthesis methodology was used successfully to produce composites of various Al/polymer ratios. The composites were characterized by powder XRD patterns and 27Al-NMR with MAS spectroscopic study. The method was useful to produce up to 10 g of nano aluminium that were pure and stable.

  8. Synthesis of Polyvinylpyrrolidone (PVP)-Green Tea Extract Composite Nanostructures using Electrohydrodynamic Spraying Technique

    Science.gov (United States)

    Kamaruddin; Edikresnha, D.; Sriyanti, I.; Munir, M. M.; Khairurrijal

    2017-05-01

    Green Tea Extract (GTE) as an active substance has successfully loaded to PVP nanostructures using electrohydrodynamic spraying technique. The precursor solution was the mixture of ethanolic polyvinylpyrrolidone (PVP) with a molecular weight of 1,300 kg/mol and ethanolic GTE solutions at a weight concentration of 4 wt.% and 2 wt.%, respectively, and it was estimated that the entanglement number was 2. The electrospraying was conducted at the voltage of 15 kV, the flow rate of 10 µL/min., and the distance between the collector and the tip of the nozzle of 10 cm. The SEM images showed that the PVP/GTE nanostructures had a combination of agglomerated beads (less spherical particles) and nanofibers. This occurred because if the PVP concentration is low, the PVP/GTE composite has weak core structures that cause the shell to be easily agglomerated each other. The intermolecular interaction between PVP and GTE in the PVP/GTE nanostructures occurred as confirmed by the peak at 3396 cm-1, which is the carboxyl group, proving that the PVP/GTE nanostructures contained water, alcohols, and phenols. The peak at 1040 cm-1, which is the stretching of C-O group in amino acid, gave another proof to the intermolecular interaction.

  9. Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP solutions for isotropic diffusion MRI phantoms.

    Directory of Open Access Journals (Sweden)

    Friedrich Wagner

    Full Text Available To use the "apparent diffusion coefficient" (Dapp as a quantitative imaging parameter, well-suited test fluids are essential. In this study, the previously proposed aqueous solutions of polyvinylpyrrolidone (PVP were examined and temperature calibrations were obtained. For example, at a temperature of 20°C, Dapp ranged from 1.594 (95% CI: 1.593, 1.595 μm2/ms to 0.3326 (95% CI: 0. 3304, 0.3348 μm2/ms for PVP-concentrations ranging from 10% (w/w to 50% (w/w using K30 polymer lengths. The temperature dependence of Dapp was found to be so strong that a negligence seems not advisable. The temperature dependence is descriptively modelled by an exponential function exp(c2 (T - 20°C and the determined c2 values are reported, which can be used for temperature calibration. For example, we find the value 0.02952 K-1 for 30% (w/w PVP-concentration and K30 polymer length. In general, aqueous PVP solutions were found to be suitable to produce easily applicable and reliable Dapp-phantoms.

  10. How Structure-Directing Agents Control Nanocrystal Shape: Polyvinylpyrrolidone-Mediated Growth of Ag Nanocubes.

    Science.gov (United States)

    Qi, Xin; Balankura, Tonnam; Zhou, Ya; Fichthorn, Kristen A

    2015-11-11

    The importance of structure-directing agents (SDAs) in the shape-selective synthesis of colloidal nanostructures has been well documented. However, the mechanisms by which SDAs actuate shape control are poorly understood. In the polyvinylpyrrolidone (PVP)-mediated growth of {100}-faceted Ag nanocrystals, this capability has been attributed to preferential binding of PVP to Ag(100). We use molecular dynamics simulations to probe the mechanisms by which Ag atoms add to Ag(100) and Ag(111) in ethylene glycol solution with PVP. We find that PVP induces kinetic Ag nanocrystal shapes by regulating the relative Ag fluxes to these facets. Stronger PVP binding to Ag(100) leads to a larger Ag flux to Ag(111) and cubic nanostructures through two mechanisms: enhanced Ag trapping by more extended PVP films on Ag(111) and a reduced free-energy barrier for Ag to cross lower-density films on Ag(111). These flux-regulating capabilities depend on PVP concentration and chain length, consistent with experiment.

  11. Identification of ɛ-caprolactam, melamine and urea in polyvinylpyrrolidone powders by micellar electrokinetic chromatography.

    Science.gov (United States)

    Amini, A

    2014-03-01

    A sodium dodecyl sulfate micellar electrokinetic chromatography (SDS-MEKC) method for the simultaneous separation and identification of ɛ-caprolactam, melamine and urea deliberately added to polyvinylpyrrolidone (povidone) products has been developed. All samples to be analyzed contained paracetamol as an internal marker (IM). The optimized separations were performed in 50mM phosphate buffer (pH 7.0) containing 2% (w/v) sodium dodecyl sulfate (SDS) in fused silica capillaries with UV absorption detection at 200nm. The method was validated with respect to repeatability and intermediate precision, selectivity and robustness with satisfactory results. The relative migration times (RMT) were found to be between 0.03% and 0.13% for intra-day precision and between 0.50% and 0.60% for inter-day precision in four days. The detection limits were determined to be 1.3 (11.5μM), 0.4 (3.5μM) and 41μg/ml (0.4mM) for ɛ-caprolactam, melamine and urea, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone

    Science.gov (United States)

    Xiang, Feng; Gan, Weiping

    2018-01-01

    In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.

  13. Molecular weight effects on the miscibility behavior of dextran and maltodextrin with poly(vinylpyrrolidone).

    Science.gov (United States)

    Van Eerdenbrugh, Bernard; Taylor, Lynne S

    2012-10-01

    To characterize and interpret the miscibility of dextran and maltodextrin with poly(vinylpyrrolidone) (DEX-PVP) as a function of polymer molecular weights. Blend miscibility was studied using 4 different molecular weight (MW) grades of DEX combined with 5 MW grades of PVP, over a broad compositional range. Miscibility was evaluated by inspection of glass transition events measured by differential scanning calorimetry (DSC). Fourier transform mid-infrared spectroscopy (FTIR), combined with curve fitting, was performed to characterize the extent of hydrogen bonding. The observed miscibility behavior was further interpreted in terms of mixing thermodynamics. Miscibility of the blends ranged from fully miscible to completely immiscible with multiple partially miscible systems observed. Increasing polymer molecular weight decreased miscibility. For the lowest DEX grade, hydrogen bonding was independent of PVP MW, as expected since all systems were completely miscible. Higher molecular weights of DEX resulted in reduced intermolecular hydrogen bonding and decreased miscibility, increasingly so for higher MW PVP grades. Evaluation of the mixing thermodynamics supported these findings. With higher combined molecular weights of DEX-PVP blends, phase behavior evolves from completely miscible to virtually immiscible. Concurrently, DEX-PVP hydrogen bonding decreases. From a thermodynamic perspective, the combinatorial mixing entropy was observed to decrease as the molecular weight of the polymers increased, providing a reduced counterbalance to the unfavorable mixing enthalpy thought to accompany this polymer combination.

  14. Artemisinin-Polyvinylpyrrolidone Composites Prepared by Evaporative Precipitation of Nanosuspension for Dissolution Enhancement.

    Science.gov (United States)

    Kakran, M; Sahoo, N G; Li, L; Judeh, Z; Panda, P

    2011-01-01

    Nanoparticles of a poorly water-soluble anti-malarial drug, artemisinin (ART), and its composite particles with a hydrophilic polymer, polyvinylpyrrolidone (PVP), were synthesized using a nanofabrication method called the evaporative precipitation of nanosuspension (EPN). ART nanoparticles and ART/PVP composite particles containing ART nanoparticles coated with PVP were successfully prepared with the aim of improving the dissolution rate of ART. The effect of polymer concentration on the physical and morphological properties, and dissolution rate of the EPN-prepared ART/PVP composite particles was investigated. The crystallinity of ART nanoparticles decreased with increasing polymer concentration, as suggested by the differential scanning calorimetry and X-ray diffraction studies. The phase solubility studies revealed an AL-type of curve, indicating a linear increase in the drug solubility with PVP concentration. The dissolution of the ART nanoparticles and ART/PVP composite particles markedly increased as compared to that of the original ART powder due to lower particle size and reduced crystallinity of the drug particles. The percent dissolution efficiency (DE), relative dissolution (RD), t 75% and similarity factor (f 2) were calculated for the statistical analysis. Various mathematical models, viz., zero-order, first-order, Korsemeyer-Peppas and Higuchi, were applied to fit the experimental drug-dissolution data and diffusion was found to be the drug release mechanism.

  15. Effect of polyvinylpyrrolidone and sodium lauroyl isethionate on kaolinite suspension in an aqueous phase.

    Science.gov (United States)

    Kwan, Chang-Chin; Chu, Wen-Hweu; Shimabayashi, Saburo

    2006-08-01

    Suspension of concentrated kaolinite (20 g/30 ml-medium) in the presence of polyvinylpyrrolidone (PVP) and sodium lauroyl isethionate (SLI) was allowed to evaluate its degree of dispersion based on their rheological studies. Flow curves at low shear rate, measured by means of cone-plate method, showed a non-Newtonian flow. Plastic viscosity and Bingham yield value were derived from the flow curves. Relative viscosity, effective volume fraction and void fraction of secondary particle were also obtained. Results of dispersity and fluidity of the suspension were explained. PVP acted as a flocculant at a concentration lower than 0.1% but as a dispersant at a higher concentration. The presence of SLI could decrease both the Bingham yield value and suspension viscosity. Cooperative and competitive effects of PVP and SLI were found. Results indicated that SLI enhanced the degree of dispersion of kaolinite when PVP was less than 0.1%. The suspension, however, showed a maximum flocculation (i.e., aggregation) at 4 mM SLI when the concentration of PVP was higher than 0.1%.

  16. Development and in Vitro Characterization of Photochemically Crosslinked Polyvinylpyrrolidone Coatings for Drug-Coated Balloons

    Directory of Open Access Journals (Sweden)

    Svea Petersen

    2013-12-01

    Full Text Available Polyvinylpyrrolidone (PVP is a conventionally applied hydrophilic lubricious coating on catheter-based cardiovascular devices, used in order to ease movement through the vasculature. Its use as drug reservoir and transfer agent on drug-coated balloons (DCB is therefore extremely promising with regard to the simplification of its approval as a medical device. Here, we developed a PVP-based coating for DCB, containing paclitaxel (PTX as a model drug, and studied the impact of crosslinking via UV radiation on drug stability, wash off, and transfer during simulated use in an in vitro vessel model. We showed that crosslinking was essential for coating stability and needed to be performed prior to PTX incorporation due to decreased drug bioavailability as a result of photodecomposition and/or involvement in vinylic polymerization with PVP under UV radiation. Moreover, the crosslinking time needed to be carefully controlled. While short radiation times did not provide enough coating stability, associated with high wash off rates during DCB insertion, long radiation times lowered drug transfer efficiency upon balloon expansion. A ten minutes radiation of PVP, however, combined a minimized drug wash off rate of 34% with an efficient drug transfer of 49%, underlining the high potential of photochemically crosslinked PVP as a coating matrix for DCB.

  17. Supercritical Assisted Atomization: Polyvinylpyrrolidone as Carrier for Drugs with Poor Solubility in Water

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2013-01-01

    Full Text Available Supercritical assisted atomization (SAA is an efficient technique to produce microparticles and composite microspheres formed by polymers and pharmaceutical compounds. In this work polyvinylpyrrolidone (PVP was proposed as carrier for pharmaceutical compounds that show a poor solubility in water medium. Indeed, this polymer is hydrosoluble and can be generally used to enhance the dissolution rate of hydrophobic compounds when finely dispersed in it. However, it is difficult to obtain coprecipitates with a uniform dispersion of the active molecule using other micronization techniques. The experiments were performed using ethanol as solvent; SAA plant was operated at 40°C and 76 bar in the saturator and 70°C and 1.6 bar in the precipitator. Three different dexamethasone/polymer weight ratios were selected: 1/2, 1/4, and 1/8. Produced composite particles showed a regular, spherical shape and a mean diameter ranging from about 0.8 to 1 μm, depending on the polymer/drug weight ratio. Dissolution analysis demonstrated that microparticles containing a lower drug amount show a higher dissolution rate.

  18. In-cabin ultrafine particle dynamics

    Science.gov (United States)

    Xu, Bin

    To assess the total human health risks associated with human exposure to ultrafine particle (UFP), the concentrations and fates of UFPs in the in-cabin atmospheres must be understood. In order to assess human exposure more accurately and further prevent adverse health effects from UFP exposure in the in-cabins, it is essential to gain insight into UFP transport dynamics between in-cabin and outside atmospheres and the factors that are able to affect them. In this dissertation, mathematical model are developed and formulated as tools to improve the understanding of UFP dynamics in the in-cabin atmosphere. Under three different ventilation conditions, (i) Fan off-recirculation (RC) off, (ii) Fan on-RC off, and (iii) Fan on-RC on, the average modeled UFP I/O ratios were found to be 0.40, 0.25 and 0.10, respectively, and agree with the experimental data very well. Then, analysis focused on how the factors, such as ventilation settings, vehicle speed, filtration, penetration, and deposition, affect I/O ratios in broader categories of vehicle cabin microenvironments. Ventilation is the only mechanical process of exchanging air between the in-cabin and the outside. Under condition (ii), I/O ratio that varies from 0.2 to 0.7 was proportional to the airflow rate in the range of 0-360 m3/h. Under condition (iii), the modeled I/O ratio was inversely proportional to the airflow rate from mechanical ventilation within the range of 0.15-0.45 depending on the particle size. Significant variability of the penetration factor (5˜20%) was found due to the pressure difference. A coefficient "B" was successfully introduced to account for the electric charge effect on penetration factors. The effect of penetration on the I/O ratio was then evaluated by substituting penetration factor into the model. Under condition (i), the modeled I/O ratios increased linearly, up to ˜20%, within the penetration factor range. Under condition (iii), the effect of penetration factor is less but still

  19. Preparation and pattern recognition of metallic Ni ultrafine powders by electroless plating

    International Nuclear Information System (INIS)

    Zhang, H.J.; Zhang, H.T.; Wu, X.W.; Wang, Z.L.; Jia, Q.L.; Jia, X.L.

    2006-01-01

    Using hydrazine hydrate as reductant, metallic Ni ultrafine powders were prepared from NiSO 4 aqueous solution by electroless plating method. The factors including concentration of NiSO 4 , bathing temperature, ratio of hydrazine hydrate to NiSO 4 , the pH of the solution, etc., on influence of the yield and average particle size of metallic Ni ultrafine powders were studied in detail. X-ray powders diffraction patterns show that the nickel powders are cubic crystallite. The average crystalline size of the ultrafine nickel powders is about 30 nm. The dielectric and magnetic loss of ultrafine Ni powders-paraffin wax composites were measured by the rectangle waveguide method in the range 8.2-12.4 GHz. The factors for Ni ultrafine powders preparation are optimized by computer pattern recognition program based on principal component analysis, the optimum factors regions with higher yield of metallic Ni ultrafine powders are indicated by this way

  20. Electrospun nanofibres in agriculture and the food industry: a review.

    Science.gov (United States)

    Noruzi, Masumeh

    2016-11-01

    The interesting characteristics of electrospun nanofibres, such as high surface-to-volume ratio, nanoporosity, and high safety, make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibres have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibres in agriculture is comparatively novel and is still in its infancy. In this paper, the specific applications of electrospun nanofibres in agriculture and food science, including plant protection using pheromone-loaded nanofibres, plant protection using encapsulation of biocontrol agents, preparation of protective clothes for farm workers, encapsulation of agrochemical materials, deoxyribonucleic acid extraction in agricultural research studies, pre-concentration and measurement of pesticides in crops and environmental samples, preparation of nanobiosensors for pesticide detection, encapsulation of food materials, fabrication of food packaging materials, and filtration of beverage products are reviewed and discussed. This paper may help researchers develop the use of electrospun nanofibres in agriculture and food science to address some serious problems such as the intensive use of pesticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction

    International Nuclear Information System (INIS)

    McManus, Michael; Boland, Eugene; Sell, Scott; Bowen, Whitney; Koo, Harry; Simpson, David; Bowlin, Gary

    2007-01-01

    The purpose of this study was to demonstrate that human bladder smooth muscle cells (HBSM) remodel electrospun fibrinogen mats. Fibrinogen scaffolds were electrospun and disinfected using standard methods. Scaffolds were seeded with 5 x 10 4 HBSM per scaffold. Cultures were supplemented with aprotinin concentrations of 0 KIU ml -1 (no aprotinin), 100 KIU ml -1 or 1000 KIU ml -1 and incubated with twice weekly media changes. Samples were removed for evaluation at 1, 3, 7 and 14 days. Cultured scaffolds were evaluated with a WST-1 cell proliferation assay, scanning electron microscopy and histology. Cell culture demonstrated that HBSM readily migrated into and initiated remodelling of the electrospun fibrinogen scaffolds by deposition of collagen. Proliferation was suppressed during this initial phase with respect to a 2D control due to cell migration. Histology confirmed that proliferation increased during the later stages of remodelling. Remodelling was slower at higher aprotinin concentrations. These results demonstrate that HBSM rapidly remodel an electrospun fibrinogen scaffold and deposit native collagen. The process can be modulated using aprotinin, a protease inhibitor. These initial findings indicate that there is tremendous potential for electrospun fibrinogen as a urologic tissue engineering scaffold with the ultimate goal of producing an implantable acellular product that would promote cellular in-growth and in situ tissue regeneration

  2. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  3. Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology

    Directory of Open Access Journals (Sweden)

    Ping-Chung Kuo

    2014-01-01

    Full Text Available The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products.

  4. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao

    2012-12-18

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first time, thanks to the superior properties of graphene, including the monolayer thickness, chemical inertness, mechanical strength, electrical and thermal conductivity. These clusters prefer to take regular planar shapes with morphology changes by local atomic shuffling, as suggested by the early hypothesis of solid-solid transformation. Our observations differ from observations from earlier experimental study and theoretical model, such as icosahedron, decahedron or cuboctahedron. No interaction was observed between Fe atoms or clusters and pristine graphene. However, preferential carving, as observed by other research groups, can be realized only when Fe clusters are embedded in graphene. The techniques introduced here will be of use in investigations of other clusters or even single atoms or molecules.

  5. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    Science.gov (United States)

    Bedford, Nicholas M.

    Electrospinning is an established method for creating polymer and bio-polymer fibers of dimensions ranging from ˜10 nanometers to microns. The process typically involves applying a high voltage between a solution source (usually at the end of a capillary or syringe) and a substrate on which the nanofibers are deposited. The high electric field distorts the shape of the liquid droplet, creating a Taylor cone. Additional applied voltage ejects a liquid jet of the polymer solution in the Taylor cone toward the counter electrode. The formation of fibers is generated by the rapid electrostatic elongation and solvent evaporation of this viscoelastic jet, which typically generates an entangled non-woven mesh of fibers with a high surface area to volume ratio. Electrospinning is an attractive alternative to other processes for creating nano-scale fibers and high surface area to volume ratio surfaces due to its low start up cost, overall simplicity, wide range of processable materials, and the ability to generate a moderate amount of fibers in one step. It has also been demonstrated that coaxial electrospinning is possible, wherein the nanofiber has two distinct phases, one being the core and another being the sheath. This method is advantageous because properties of two materials can be combined into one fiber, while maintaining two distinct material phases. Materials that are inherently electrospinable could be made into fibers using this technique as well. The most common applications areas for electrospun fibers are in filtration and biomedical areas, with a comparatively small amount of work done in energy, environmental, and sensor applications. Furthermore, the use of biologically materials in electrospun fibers is an avenue of research that needs more exploration, given the unique properties these materials can exhibit. The research aim of this thesis is to explore the use of electrospun fibers for energy, electrical and environmental applications. For energy

  6. Commuter exposure to fine and ultrafine particulate matter in Vienna.

    Science.gov (United States)

    Strasser, Georg; Hiebaum, Stefan; Neuberger, Manfred

    2018-01-01

    Mass concentrations PM 10 , PM 2.5 , PM 1 , particle number concentrations of ultrafine particles and lung deposited surface area were measured during commutes with a subway, tram, bus, car and bicycle in Vienna for the first time. Obtained data were examined for significant differences in personal exposure when using various transport modalities along similar routes. Mean PM 2.5 and PM 1 mass concentrations were significantly higher in the subway when compared to buses. Mean PM 10 , PM 2.5 and PM 1 mass concentrations were significantly higher in the subway when compared to cars using low ventilation settings. Particle number concentrations of ultrafine particles were significantly higher in trams when compared to the subway and lung deposited surface area was significantly greater on bicycles when compared to the subway. After adjusting for different vehicle speeds, exposure to PM 10 , PM 2.5 and PM 1 along the same route length was significantly higher in the subway when compared to cars while exposure to ultrafine particles and partly also lung deposited surface area was significantly higher in bus, tram and on bicycle when compared to the subway. Car and bus passengers could be better isolated from ambient fine particulate matter than passengers in the subway, where a lot of ventilation occurs through open windows and larger doors. Tram passengers and cyclists might be exposed to increased amounts of ultrafine particles and larger lung deposited surface area due to a closer proximity to road traffic. Comparing cumulative exposure along the same route length leads to different results and favors faster traffic modes, such as the subway.

  7. Imaging of DNA Ultrafine Bridges in Budding Yeast.

    Science.gov (United States)

    Quevedo, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae.

  8. Microstructural response of ultrafine-grained copper to fatigue loading

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Buksa, Michal; Wang, Q.; Zheng, M.

    2007-01-01

    Roč. 13, č. 1 (2007), s. 512-518 ISSN 1335-1532. [Metallography 2007. Stará Lesná, 02.05.2007-04.05.2007] R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ultrafine-grained copper * Fatigue * Softening/hardening Subject RIV: JG - Metallurgy

  9. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K; Sell, S A; Madurantakam, P; Bowlin, G L, E-mail: glbowlin@vcu.ed [Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2009-06-15

    The aim of this study was to investigate macrophage interactions with electrospun scaffolds and quantify the expression of key angiogenic growth factors in vitro. This study will further help in evaluating the potential of these electrospun constructs as vascular grafts for tissue repair and regeneration in situ. Human peripheral blood macrophages were seeded in serum free media on electrospun (10 mm) discs of polydioxanone (PDO), elastin and PDO:elastin blends (50:50, 70:30 and 90:10). The growth factor secretion was analyzed by ELISA. Macrophages produced high levels of vascular endothelial growth factor and acidic fibroblast growth factor. Transforming growth factor beta-1 (TGF-beta1) secretion was relatively low and there was negligible production of basic fibroblast growth factor. Therefore, it can be anticipated that these scaffolds will support tissue regeneration and angiogenesis. (communication)

  10. Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks.

    Science.gov (United States)

    Stachewicz, Urszula; Bailey, Russell J; Zhang, Hao; Stone, Corinne A; Willis, Colin R; Barber, Asa H

    2015-08-05

    Wetting behavior between electrospun nanofibrous networks and liquids is of critical importance in many applications including filtration and liquid-repellent textiles. The relationship between intrinsic nanofiber properties, including surface characteristics, and extrinsic nanofibrous network organization on resultant wetting characteristics of the nanofiber network is shown in this work. Novel 3D imaging exploiting focused ion beam (FIB) microscopy and cryo-scanning electron microscopy (cryo-SEM) highlights a wetting hierarchy that defines liquid interactions with the network. Specifically, small length scale partial wetting between individual electrospun nanofibers and low surface tension liquids, measured both using direct SEM visualization and a nano Wilhelmy balance approach, provides oleophobic surfaces due to the high porosity of electrospun nanofiber networks. These observations conform to a metastable Cassie-Baxter regime and are important in defining general rules for understanding the wetting behavior between fibrous solids and low surface tension liquids for omniphobic functionality.

  11. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  12. Sources of ultrafine particles in the Eastern United States

    Science.gov (United States)

    Posner, Laura N.; Pandis, Spyros N.

    2015-06-01

    Source contributions to ultrafine particle number concentrations for a summertime period in the Eastern U.S. are investigated using the chemical transport model PMCAMx-UF. New source-resolved number emissions inventories are developed for biomass burning, dust, gasoline automobiles, industrial sources, non-road and on-road diesel. According to the inventory for this summertime period in the Eastern U.S., gasoline automobiles are responsible for 40% of the ultrafine particle number emissions, followed by industrial sources (33%), non-road diesel (16%), on-road diesel (10%), and 1% from biomass burning and dust. With these emissions as input, the chemical transport model PMCAMx-UF reproduces observed ultrafine particle number concentrations (N3-100) in Pittsburgh with an error of 12%. For this summertime period in the Eastern U.S., nucleation is predicted to be the source of more than 90% of the total particle number concentrations. The source contributions to primary particle number concentrations are on average similar to those of their source emissions contributions: gasoline is predicted to contribute 36% of the total particle number concentrations, followed by industrial sources (31%), non-road diesel (18%), on-road diesel (10%), biomass burning (1%), and long-range transport (4%). For this summertime period in Pittsburgh, number source apportionment predictions for particles larger than 3 nm in diameter (traffic 65%, other combustion sources 35%) are consistent with measurement-based source apportionment (traffic 60%, combustion sources 40%).

  13. The mechanical properties of dry, electrospun fibrinogen fibers

    International Nuclear Information System (INIS)

    Baker, Stephen; Sigley, Justin; Helms, Christine C.; Stitzel, Joel; Berry, Joel; Bonin, Keith; Guthold, Martin

    2012-01-01

    Due to their low immunogenicity, biodegradability and native cell-binding domains, fibrinogen fibers may be good candidates for tissue engineering scaffolds, drug delivery vehicles and other medical devices. We used a combined atomic force microscope (AFM)/optical microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in dry, ambient conditions. The AFM was used to stretch individual fibers suspended over 13.5 μm wide grooves in a transparent substrate. The optical microscope, located below the sample, was used to monitor the stretching process. Electrospun fibrinogen fibers (diameter, 30–200 nm) can stretch to 74% beyond their original length before rupturing at a stress of 2.1 GPa. They can stretch elastically up to 15% beyond their original length. Using incremental stress–strain curves the viscoelastic behavior of these fibers was determined. The total stretch modulus was 4.2 GPa while the relaxed elastic modulus was 3.7 GPa. When held at constant strain, fibrinogen fibers display stress relaxation with a fast and slow relaxation time of 1.2 s and 11 s. In comparison to native and electrospun collagen fibers, dry electrospun fibrinogen fibers are significantly more extensible and elastic. In comparison to wet electrospun fibrinogen fibers, dry fibers are about 1000 times stiffer. - Highlights: ► Fabricated dry, electrospun, fibrinogen fibers; average diameter, D avg. = 95 nm. ► Determined mechanical properties with combined atomic force/optical microscope. ► Fibers are very extensible (ε max = 74%) and elastic (ε elastic = 15%). ► Fiber total modulus, E tot. = 4.2 GPa; elastic modulus, E el. = 3.7 GPa. ► Fiber stress relaxation times: τ 1 = 1.2 s and τ 2 = 11 s.

  14. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenjie [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Wang, Heyun [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002 (China); Yang, Dazhi [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); An, Bo [Department of Orthopedics, Affiliated Hospital of Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Zhang, Wencheng [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-10-15

    The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P = 0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels. Highlights: • Electrospun nanofibrous scaffolds were successfully

  15. Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone).

    Science.gov (United States)

    Si, Rui; Zhang, Ya-Wen; You, Li-Ping; Yan, Chun-Hua

    2006-03-30

    Four nanometer colloidal ceria nanocrystals in a fluorite cubic structure have been synthesized via an alcohothermal treatment at 180 degrees C for 24 h from Ce(NO(3))(3)*6H(2)O in ethanol, using various alkylamines including triethylamine, butylamine, and hexadecylamine as the bases and poly(vinylpyrrolidone) (PVP) as the stabilizer. They were characterized by multiple measurements of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), ultraviolet visible (UV-vis) spectroscopy, dynamic light scattering (DLS), and infrared spectroscopy (IR). The introduction of PVP could effectively stabilize the cerium nuclei against self-aggregation and finally lead to the formation of the CeO(2) colloids. As compared with that of their precipitated counterparts, the UV-vis spectra showed a blue-shifted absorption edge for the as-obtained colloidal nanocrystals, revealing that their surfaces were well-passivated by PVP. Four types of self-organized monolayer patterns (i.e., isolated particles, short chainlike (pseudo-1-D aggregated), pearl necklace-like (1-D aggregated), and dendritic (pseudo-2-D aggregated) alignments) appeared for the as-obtained colloidal particles on the copper TEM grids, due to the delicate balance of the attractive and repulsive forces between the PVP-passivated CeO(2) nanocrystals during the irreversible evaporation of the solvent from various colloidal solutions under ambient conditions. The type of alkylamine and the concentration of PVP were confirmed to be the crucial factors determining the oriented-aggregation dimensionality of the CeO(2) colloids. Possible interparticle interaction modes have been suggested to explain such complex self-organization patterns exhibited by the as-obtained CeO(2) nanocrystals.

  16. Induction of IgG memory responses with polyvinylpyrrolidone (PVP) is antigen dose dependent

    International Nuclear Information System (INIS)

    Lite, H.S.; Braley-Mullen, H.

    1981-01-01

    Irradiated recipients of spleen cells from mice primed with a very low dose (0.0025 μ/g) of the thymus-independent (TI) antigen polyvinylpyrrolidone (PVP) produced PVP-specific IgG memory responses after secondary challenge with a T-dependent (TD) form of PVP, PVP-HRBC. The IgG memory responses induced by low doses of PVP were similar in magnitude to those induced by the TD antigen PVP-HRBC. The induction of IgG memory by the TI form of antigen was markedly dependent on the dose of PVP used to prime donor mice. Spleen cells from mice primed with an amount of PVP (0.25 μg) that induces an optimal primary IgM response did not produce significant IgG antibody after challenge with PVP-HRBC. The inability of higher doses of PVP to induce IgG memory may be due, at least in part, to the fact that such doses of PVP were found to induce tolerance in PVP-specific B cells and could suppress the induction of memory induced by PVP-HRBC. Low doses of PVP did not interfere with the induction of memory by PVP-HRBC. Expression of IgG memory responses in recipients of PVP-HRBC or low-dose PVP-primed cells was found to be T cell dependent. Moreover, only primed T cells could reconstitute the respnse of recipients of primed B cells, suggesting that the ability of PVP to induce IgG memory may be related to its ability to prime T helper cells. Expression of the IgG memory response in recipient mice also required the use of a TD antigen for secondary challenge, i.e., mice challenged with PVP did not develop IgG

  17. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy.

    Science.gov (United States)

    Tas, Cetin; Joyce, Jessica C; Nguyen, Hiep X; Eangoor, Padmanabhan; Knaack, Jennifer S; Banga, Ajay K; Prausnitz, Mark R

    2017-12-28

    Migraine is a widespread neurological disease with negative effects on quality of life and productivity. Moderate to severe acute migraine attacks can be treated with dihydroergotamine mesylate (DHE), an ergot derivative that is especially effective in non-responders to triptan derivatives. To overcome limitations of current DHE formulations in subcutaneous injection and nasal spray such as pain, adverse side effects and poor bioavailability, a new approach is needed for DHE delivery enabling painless self-administration, quick onset of action, and high bioavailability. In this study, we developed a dissolving microneedle patch (MNP) made of polyvinylpyrrolidone, due to its high aqueous solubility and solubility enhancement properties, using a MNP design previously shown to be painless and simple to administer. DHE-loaded MNPs were shown to have a content uniformity of 108±9% with sufficient mechanical strength for insertion to pig skin ex vivo and dissolution within 2min. In vivo pharmacokinetic studies were carried out on hairless rats, and DHE plasma levels were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The area under curve (AUC) value after DHE delivery by MNP (1259±917ng/mL min) was not significantly different (p>0.05) as compared to subcutaneous injection, with a relative bioavailability of 97%. Also, appreciable plasma levels of DHE were seen within 5min for both delivery methods and t max value of MNPs (38±23min) showed no significant difference (p>0.05) compared to subcutaneous injection (24±13min). These results suggest that DHE-loaded MNPs have promise as an alternative DHE delivery method that can be painlessly self-administered with rapid onset and high bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cosolvency approach for assessing the solubility of drugs in poly(vinylpyrrolidone).

    Science.gov (United States)

    Chen, Xin; Fadda, Hala M; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo

    2015-10-15

    The log-linear cosolvency model was applied for estimating the solubility of four drugs: ritonavir, griseofulvin, itraconazole and ketoconazole in poly(vinylpyrrolidone) (PVP). Cosolvent mixtures consisted of PVP mixed in different proportions with N-ethylpyrrolidone, which served as the monomeric analogue of the repeating unit of the polymer. Solubility in the monomer-polymer mixtures was determined by HPLC. As the configuration of the solvating unit in the solvent mixture changed from entirely monomeric to increasingly polymeric, the solubility of the drugs decreased in a fashion that follows the log-linear cosolvency model. The linear relationship was used to obtain estimates for the solubility of the drugs in the different grades of PVP. The solubility of the drugs in PVP is low (from solubility in PVP (w/w). Mixing with the monomer is most favorable for griseofulvin among the four drugs. However, the detrimental effect of polymerization on its solubility is more pronounced than for ritonavir. The mixing of itraconazole with the monomer is more favorable than the mixing of ketoconazole. However, despite the molecular similarity between ketaconazole and itraconazole, the solubility of the latter is particularly affected by the polymeric configuration of the solvating unit, to the point of exhibiting differences in solubility resulting from the chain length of the grade of PVP used. The log-linear cosolvency model is a useful tool for estimating the solubility of the drugs in the polymer at room temperature, while providing quantitative information on the differences in mixing behavior of the four model compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. BisGMA-polyvinylpyrrolidone blend based nanocomposites reinforced with chitosan grafted f-multiwalled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A. Praharaj

    2015-01-01

    Full Text Available In this work, initially a non-destroyable surface grafting of acid functionalized multiwalled carbon nanotubes (f-MWCNTs with biopolymer chitosan (CS was carried out using glutaraldehyde as a cross-linking agent via the controlled covalent deposition method which was characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Then, BisGMA (bisphenol-A glycidyldimethacrylate-polyvinylpyrrolidone (PVP blend was prepared (50:50 wt% by a simple sonication method. The CS grafted f-MWCNTs (CS/f-MWCNTs were finally dispersed in BisGMA-PVP blend (BGP50 system in different compositions i.e. 0, 2, 5 and 7 wt% and pressed into molds for the fabrication of reinforced nanocomposites which were characterized by SEM. Nanocomposites reinforced with 2 wt% raw MWCNTs and acid f-MWCNTs were also fabricated and their properties were studied in detail. The results of comparative study report lower values of the investigated properties in nanocomposites with 2 wt% raw and f-MWCNTs than the one with 2 wt% CS/f-MWCNTs proving it to be a better reinforcing nanofiller. Further, the mechanical behavior of the nanocomposites with various CS/f-MWCNTs content showed a dramatic increase in Young’s Modulus, tensile strength, impact strength and hardness along with improved dynamic mechanical, thermal and electrical properties at 5 wt% content of CS/f-MWCNTs. The addition of CS/f-MWCNTs also resulted in reduced corrosion and swelling properties. Thus, the fabricated nanocomposites with optimum nanofiller content could serve as low cost and light weight structural, thermal and electrical materials compatible in various corrosive and solvent based environments.

  20. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    Directory of Open Access Journals (Sweden)

    Hassiba AJ

    2017-03-01

    Full Text Available Alaa J Hassiba,1 Mohamed E El Zowalaty,2 Thomas J Webster,3–5 Aboubakr M Abdullah,6 Gheyath K Nasrallah,7 Khalil Abdelrazek Khalil,8 Adriaan S Luyt,6 Ahmed A Elzatahry1 1Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar; 2School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; 3Department of Chemical Engineering, 4Department of Bioengineering, Northeastern University, Boston, MA, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 6Center for Advanced Materials, 7Department of Biomedical Science, College of Health Sciences, Biomedical Research Center, Qatar University, Doha, Qatar; 8Department of Mechanical Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates Abstract: Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol and chitosan loaded with silver nanoparticles (AgNPs and a lower layer of polyethylene oxide (PEO or polyvinylpyrrolidone (PVP nanofibers loaded with chlorhexidine (as an antiseptic. The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber

  1. Perspective of electrospun nanofibers in energy and environment

    Directory of Open Access Journals (Sweden)

    Jayaraman Sundaramurthy

    2014-06-01

    Full Text Available This review summarizes the recent developments of electrospun semiconducting metal oxide/polymer composite nanostructures in energy and environment related applications. Electrospinning technique has the advantage of synthesizing nanostructures with larger surface to volume ratio, higher crystallinity with phase purity and tunable morphologies like nanofibers, nanowires, nanoflowers and nanorods. The electrospun nanostructures have exhibited unique electrical, optical and catalytic properties than the bulk counter parts as well as nanomaterials synthesized through other approaches. These nanostructures have improved diffusion and interaction of molecules, transfer of electrons along the matrix and catalytic properties with further surface modification and functionalization with combination of metals and metal oxides.

  2. Metal Oxide Nanoparticles in Electrospun Polymers and Their Fate in Aqueous Waste Streams

    Science.gov (United States)

    Hoogesteijn von Reitzenstein, Natalia

    Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays---water-soil, water-octanol, water

  3. Direct Piezoelectricity of Soft Composite Electrospun Fibers

    Science.gov (United States)

    Varga, Michael; Morvan, Jason; Diorio, Nick; Buyuktanir, Ebru; Harden, John; West, John; Jakli, Antal

    2013-03-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and poly lactic acid (PLA) were found to have large (d33 1nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at various BT concentrations. A testing apparatus was designed and constructed solely for these measurements involving AC stresses provided by a speaker in 10Hz-10kHz frequency range. The piezoelectric constant d33 ~1nC/N was found to be in agreement with the prior converse piezoelectric measurements. The largest signals were obtained with 6% BT/PLA composites, probably because the BT particles at higher concentrations could not be dispersed homogeneously. Importantly the direct piezoelectric signal is large enough to power a small LCD by simply pressing a 0.2mm thick 2 cm2 area mat by a finger. We expect to use these mats in active Braille cells and in liquid crystal writing tablets.

  4. Nylon/Graphene Oxide Electrospun Composite Coating

    Directory of Open Access Journals (Sweden)

    Carmina Menchaca-Campos

    2013-01-01

    Full Text Available Graphite oxide is obtained by treating graphite with strong oxidizers. The bulk material disperses in basic solutions yielding graphene oxide. Starting from exfoliated graphite, different treatments were tested to obtain the best graphite oxide conditions, including calcination for two hours at 700°C and ultrasonic agitation in acidic, basic, or peroxide solutions. Bulk particles floating in the solution were filtered, rinsed, and dried. The graphene oxide obtained was characterized under SEM and FTIR techniques. On the other hand, nylon 6-6 has excellent mechanical resistance due to the mutual attraction of its long chains. To take advantage of the properties of both materials, they were combined as a hybrid material. Electrochemical cells were prepared using porous silica as supporting electrode of the electrospun nylon/graphene oxide films for electrochemical testing. Polarization curves were performed to determine the oxidation/reduction potentials under different acidic, alkaline, and peroxide solutions. The oxidation condition was obtained in KOH and the reduction in H2SO4 solutions. Potentiostatic oxidation and reduction curves were applied to further oxidize carbon species and then reduced them, forming the nylon 6-6/functionalized graphene oxide composite coating. Electrochemical impedance measurements were performed to evaluate the coating electrochemical resistance and compared to the silica or nylon samples.

  5. Bacterial polyhydroxybutyrate for electrospun fiber production.

    Science.gov (United States)

    Acevedo, Francisca; Villegas, Pamela; Urtuvia, Viviana; Hermosilla, Jeyson; Navia, Rodrigo; Seeger, Michael

    2018-01-01

    Nano- and microfibers obtained by electrospinning have attracted great attention due to its versatility and potential for applications in diverse technological fields. Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by microorganisms such as the bacterium Burkholderia xenovorans LB400. In particular, LB400 cells are capable to synthesize poly(3-hydroxybutyrate) (PHB) from glucose. The aim of this study was to produce and characterize electrospun fibers obtained from bacterial PHBs. Bacterial strain LB400 was grown in M9 minimal medium using xylose and mannitol (10gL -1 ) as the sole carbon sources and NH 4 Cl (1gL -1 ) as the sole nitrogen source. Biopolymer-based films obtained were used to produce fibers by electrospinning. Diameter and morphology of the microfibers were analyzed by scanning electron microscopy (SEM) and their thermogravimetric properties were investigated. Bead-free fibers using both PHBs were obtained with diameters of less than 3μm. The surface morphology of the microfibers based on PHBs obtained from both carbon sources was different, even though their thermogravimetric properties are similar. The results indicate that the carbon source may determine the fiber structure and properties. Further studies should be performed to analyze the physicochemical and mechanical properties of these PHB-based microfibers, which may open up novel applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  7. Volatility and mixing states of ultrafine particles from biomass burning

    International Nuclear Information System (INIS)

    Maruf Hossain, A.M.M.; Park, Seungho; Kim, Jae-Seok; Park, Kihong

    2012-01-01

    Highlights: ► Size distribution, volatility, and mixing states of ultrafine particles emitted from rice straw, oak, and pine burning under different burning conditions were investigated. ► Smoldering combustion emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for flaming combustion. ► While the flaming combustion and open burning results imply there is internal mixing of OC and BC, smoldering combustion in rice straw produced ultrafine particles devoid of BC. ► Mixing state of ultrafine particles from biomass burning can alter the single scattering albedo, and might even change the sign of radiative forcing. - Abstract: Fine and ultrafine carbonaceous aerosols produced from burning biomasses hold enormous importance in terms of assessing radiation balance and public health hazards. As such, volatility and mixing states of size-selected ultrafine particles (UFP) emitted from rice straw, oak, and pine burning were investigated by using volatility tandem differential mobility analyzer (VTDMA) technique in this study. Rice straw combustion produced unimodal size distributions of emitted aerosols, while bimodal size distributions from combustions of oak (hardwood) and pine (softwood) were obtained. A nearness of flue gas temperatures and a lower CO ratio of flaming combustion (FC) to smoldering combustion (SC) were characteristic differences found between softwood and hardwood. SC emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for FC. Rice straw open burning UFPs exhibited a volatilization behavior similar to that between FC and SC. In addition, internal mixing states were observed for size-selected UFPs in all biomasses for all combustion conditions, while external mixing states were only observed for rice straw combustion. Results for FC and open burning suggested there was an internal mixing of volatile organic carbon (OC) and non-volatile core (e

  8. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-01-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  9. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Yang, Jhe Hao [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Tsou, Shu Chun; Ding, Chian Hua [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Hsu, Chih Chin [Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan, ROC (China); School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, ROC (China); Yang, Kai Chiang [School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC (China); Yang, Chun Chen [Department of Chemical Engineering, Ming-Chi University of Science and Technology, New Taipei City, Taiwan, ROC (China); Chen, Ko Shao [Department of Materials Engineering, Tatung University, Taipei, Taiwan, ROC (China); Chen, Szi Wen [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Wang, Jong Shyan [Department of Physical Therapy and the Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan, ROC (China)

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  10. Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning

    Science.gov (United States)

    Zhang, Xiaoguang; Qiao, Jiaxin; Zhao, Hang; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Wu, Xiaowen; Min, Xin

    2018-01-01

    Currently, phase change materials (PCMs) composite fibers are typically prepared by electrospinning. However, electrospinning exhibits safety concerns and a low production rate, which limit its practical applications as a cost-effective fiber fabrication approach. Therefore, a novel, and simple centrifugal spinning technology is employed to extrude fibers from composite solutions using a high-speed rotary and perforated spinneret. The composite fibers based on polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) were prepared by centrifugal spinning. The SEM of PVP/PEG composite fibers indicated that the fibrous morphology is well preserved. The DSC and TGA indicated that PVP/PEG composite fibers exhibit good thermal properties.

  11. Effect of PVP on the synthesis of high-dispersion core–shell barium-titanate–polyvinylpyrrolidone nanoparticles

    OpenAIRE

    Jinhui Li; Koji Inukai; Yosuke Takahashi; Akihiro Tsuruta; Woosuck Shin

    2017-01-01

    Monodispersed nanoparticles consisting of barium titanate (BaTiO3, BT) as the core and polyvinylpyrrolidone (PVP) as the shell were synthesized in a PVP-assisted low-temperature process in an aqueous solution at ambient pressure. In order to clarify the mechanism of this unique BT–PVP nanoparticle growth and the origin of the dispersion, the concentration and molecular weight of PVP used in the synthesis were varied, and the size and dispersion of the resulting nanoparticles in water were inv...

  12. Challenges and Approaches for Developing Ultrafine Particle Emission Inventories for Motor Vehicle and Bus Fleets

    Directory of Open Access Journals (Sweden)

    Diane U. Keogh

    2011-03-01

    Full Text Available Motor vehicles in urban areas are the main source of ultrafine particles (diameters < 0.1 µm. Ultrafine particles are generally measured in terms of particle number because they have little mass and are prolific in terms of their numbers. These sized particles are of particular interest because of their ability to enter deep into the human respiratory system and contribute to negative health effects. Currently ultrafine particles are neither regularly monitored nor regulated by ambient air quality standards. Motor vehicle and bus fleet inventories, epidemiological studies and studies of the chemical composition of ultrafine particles are urgently needed to inform scientific debate and guide development of air quality standards and regulation to control this important pollution source. This article discusses some of the many challenges associated with modelling and quantifying ultrafine particle concentrations and emission rates for developing inventories and microscale modelling of motor vehicles and buses, including the challenge of understanding and quantifying secondary particle formation. Recommendations are made concerning the application of particle emission factors in developing ultrafine particle inventories for motor vehicle fleets. The article presents a précis of the first published inventory of ultrafine particles (particle number developed for the urban South-East Queensland motor vehicle and bus fleet in Australia, and comments on the applicability of the comprehensive set of average particle emission factors used in this inventory, for developing ultrafine particle (particle number and particle mass inventories in other developed countries.

  13. Stability of ultrafine-grained structure of copper under fatigue loading

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Pantělejev, L.; Man, O.

    2011-01-01

    Roč. 10, - (2011), s. 201-206 E-ISSN 1877-7058 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : fatigue of ultrafine-grained Cu * stability of ultrafine-grained structure * cyclic slip bands * shear bands Subject RIV: JL - Materials Fatigue, Friction Mechanics

  14. Mechanical Properties of a Single Electrospun Fiber and its Structures

    NARCIS (Netherlands)

    Gu, S.; Gu, Shuying; Wu, Qi-Lin; Ren, Jie; Vancso, Gyula J.

    2005-01-01

    A method to measure the Young's modulus of a single electrospun polyacrylonitrile (PAN) fiber is reported. The Young's modulus can be calculated from the force-displacement curves obtained by the bending of a single fiber attached to an atomic force microscopy (AFM) cantilever. It is suggested that

  15. Electrospun fibre colorimetric probe based on gold nanoparticles for ...

    African Journals Online (AJOL)

    Upon exposure to cholesterol and a series of compounds known to induce oestrogenic activity, p,p'-DDE, deltamethrin, 4-tert-octylphenol and nonylphenol, only 17β-estradiol could induce a pink colour observable by the naked eye, which is indicative that the proposed gold nanoparticles–incorporated electrospun ...

  16. Electrospun fibre colorimetric probe based on gold nanoparticles for ...

    African Journals Online (AJOL)

    1Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, South Africa. ABSTRACT. An on-site colorimetric probe, based on gold nanoparticles incorporated into electrospun polystyrene nanofibres, for the detection of oestrogenic compounds, as represented by 17β-estradiol, in dairy effluents is ...

  17. Electrospun fibers for wound healing and treatment of hyperglycemia

    African Journals Online (AJOL)

    This review aimed to summarize the state-of-art in the application of electrospun fibers on diabetes, hyperglycemic and diabetic ulcers treatment. Regarding the diabetes control and treatment, electrospinning technique contributes to application of wound healing (in vitro and in vivo experiments). The glycemic control is ...

  18. SU-8 photoresist-derived electrospun carbon nanofibres as high ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 40; Issue 3. SU-8 photoresist-derived electrospun carbon nanofibres as high-capacity anode material for lithium ion battery. M KAKUNURI S KAUSHIK A SAINI C S SHARMA. Volume 40 Issue 3 June 2017 pp 435-439 ...

  19. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells.

    Science.gov (United States)

    Nymark, Penny; Catalán, Julia; Suhonen, Satu; Järventaus, Hilkka; Birkedal, Renie; Clausen, Per Axel; Jensen, Keld Alstrup; Vippola, Minnamari; Savolainen, Kai; Norppa, Hannu

    2013-11-08

    Silver nanoparticles (AgNPs) are widely utilized in various consumer products and medical devices, especially due to their antimicrobial properties. However, several studies have associated these particles with toxic effects, such as inflammation and oxidative stress in vivo and cytotoxic and genotoxic effects in vitro. Here, we assessed the genotoxic effects of AgNPs coated with polyvinylpyrrolidone (PVP) (average diameter 42.5±14.5 nm) on human bronchial epithelial BEAS 2B cells in vitro. AgNPs were dispersed in bronchial epithelial growth medium (BEGM) with 0.6 mg/ml bovine serum albumin (BSA). The AgNP were partially well-dispersed in the medium and only limited amounts (ca. 0.02 μg Ag(+) ion/l) could be dissolved after 24h. The zeta-potential of the AgNPs was found to be highly negative in pure water but was at least partially neutralized in BEGM with 0.6 mg BSA/ml. Cytotoxicity was measured by cell number count utilizing Trypan Blue exclusion and by an ATP-based luminescence cell viability assay. Genotoxicity was assessed by the alkaline single cell gel electrophoresis (comet) assay, the cytokinesis-block micronucleus (MN) assay, and the chromosomal aberration (CA) assay. The cells were exposed to various doses (0.5-48 μg/cm(2) corresponding to 2.5-240 μg/ml) of AgNPs for 4 and 24 h in the comet assay, for 48 h in the MN assay, and for 24 and 48 h in the CA assay. DNA damage measured by the percent of DNA in comet tail was induced in a dose-dependent manner after both the 4-h and the 24-h exposures to AgNPs, with a statistically significant increase starting at 16 μg/cm(2) (corresponding to 60.8 μg/ml) and doubling of the percentage of DNA in tail at 48 μg/cm(2). However, no induction of MN or CAs was observed at any of the doses or time points. The lack of induction of chromosome damage by the PVP-coated AgNPs is possibly due to the coating which may protect the cells from direct interaction with the AgNPs, either by reducing ion leaching from the

  20. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy; Avaliacao da polivinilpirrolidona e do colageno por ressonancia magnetica nuclear de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paula de M.; Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano]. E-mail: pmcosta@ima.ufrj.br

    2005-07-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  1. Ultra-Fine Grained Dual-Phase Steels

    Directory of Open Access Journals (Sweden)

    Matthias Militzer

    2012-10-01

    Full Text Available This paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. A laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and carbides as the initial microstructure for rapid intercritical annealing. The intercritical annealing step was performed with heating and cooling rates of at least 100 °C/s and a holding time of 30 s. The intercritical temperature was selected to result in 20- 35% martensite in the final microstructures for C-Mn steels with carbon contents of 0.06, 0.12 and 0.17 wt%, respectively. The proposed processing routes produced an ultra-fine grained ferrite-martensite structure withgrain sizes of approximately 1 ?m for all three steels. The tensile strength of these ultra-fine grained dualphase steels can be increased by up to 200 MPa as compared to coarse-grained dual-phase steels while maintaining uniform elongation values. The rather narrow processing window necessary to obtain these properties was evaluated by determining the effect of intercritical annealing conditions on microstructure evolution. Further, the experimental results were confirmed with phase field simulations of austenite formation indicating that rapid heat treatment cycles are essential to obtain fine grained intercritical austenite that leads to martensite islands with sizes of 1 ?m and below in the final microstructure.

  2. Genipin Cross-Linked Chitosan-Polyvinylpyrrolidone Hydrogels: Influence of Composition and Postsynthesis Treatment on pH Responsive Behaviour

    Directory of Open Access Journals (Sweden)

    Chinyelumndu Jennifer Nwosu

    2015-01-01

    Full Text Available Understanding the factors that influence the pH responsive behaviour of biocompatible cross-linked hydrogel networks is essential when aiming to synthesise a mechanically stable and yet stimuli responsive material suitable for various applications including drug delivery and tissue engineering. In this study the behaviour of intelligent chitosan-polyvinylpyrrolidone-genipin cross-linked hydrogels is examined as a function of their composition and postsynthesis treatment. Hydrogels are synthesised with varying amounts of each component (chitosan, polyvinylpyrrolidone, and genipin and their response in a pH 2 buffer is measured optically. The influence of postsynthesis treatment on stability and smart characteristics is assessed using selected hydrogel samples synthesised at 30, 40, and 50°C. After synthesis, samples are exposed to either continuous freezing or three freeze-thaw cycles resulting in increased mechanical stability for all samples. Further morphological and mechanical characterisations have aided the understanding of how postsynthesis continual freezing or freeze-thaw manipulation affects network attributes.

  3. Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures.

    Science.gov (United States)

    Szczurek, Justyna; Rams-Baron, Marzena; Knapik-Kowalczuk, Justyna; Antosik, Agata; Szafraniec, Joanna; Jamróz, Witold; Dulski, Mateusz; Jachowicz, Renata; Paluch, Marian

    2017-04-03

    In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.

  4. Method for the production of ultrafine particles by electrohydrodynamic micromixing

    Science.gov (United States)

    DePaoli, David W.; Hu, Zhong Cheng; Tsouris, Constantinos

    2001-01-01

    The present invention relates to a method for the rapid production of homogeneous, ultrafine inorganic material via liquid-phase reactions. The method of the present invention employs electrohydrodynamic flows in the vicinity of an electrified injector tube placed inside another tube to induce efficient turbulent mixing of two fluids containing reactive species. The rapid micromixing allows liquid-phase reactions to be conducted uniformly at high rates. This approach allows continuous production of non-agglomerated, monopispersed, submicron-sized, sphere-like powders.

  5. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable...... the morning after exposure measurement. Cumulated outdoor and cumulated indoor exposures to UFPs each were independent significant predictors of the level of purine oxidation in DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aerodynamic diameter of

  6. Facile Fabrication of Ultrafine Copper Nanoparticles in Organic Solvent

    Directory of Open Access Journals (Sweden)

    Siegert Uwe

    2009-01-01

    Full Text Available Abstract A facile chemical reduction method has been developed to fabricate ultrafine copper nanoparticles whose sizes can be controlled down to ca. 1 nm by using poly(N-vinylpyrrolidone (PVP as the stabilizer and sodium borohyrdride as the reducing agent in an alkaline ethylene glycol (EG solvent. Transmission electron microscopy (TEM results and UV–vis absorption spectra demonstrated that the as-prepared particles were well monodispersed, mostly composed of pure metallic Cu nanocrystals and extremely stable over extended period of simply sealed storage.

  7. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    OpenAIRE

    Xiang, Chunhui; Frey, Margaret W.

    2016-01-01

    Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 w...

  8. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.

    Science.gov (United States)

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  9. Ultrafine particles over Eastern Australia: an airborne survey

    Directory of Open Access Journals (Sweden)

    Wolfgang Junkermann

    2015-04-01

    Full Text Available Ultrafine particles (UFP in the atmosphere may have significant impacts on the regional water and radiation budgets through secondary effects on cloud microphysics. Yet, as these particles are invisible for current remote sensing techniques, knowledge about their three-dimensional distribution, source strengths and budgets is limited. Building on a 40-yr-old Australia-wide airborne survey which provides a reference case study of aerosol sources and budgets, this study presents results from a new airborne survey over Eastern Australia, northern New South Wales and Queensland. Observations identified apparent changes in the number and distribution of major anthropogenic aerosol sources since the early 1970s, which might relate to the simultaneously observed changes in rainfall patterns over eastern Queensland. Coal-fired power stations in the inland areas between Brisbane and Rockhampton were clearly identified as the major sources for ultrafine particulate matter. Sugar mills, smelters and shipping along the coast close to the Ports of Townsville and Rockhampton were comparable minor sources. Airborne Lagrangian plume studies were applied to investigate source strength and ageing properties within power station plumes. Significant changes observed, compared to the measurements in the 1970s, included a significant increase in the number concentration of UFP related to coal-fired power station emissions in the sparsely populated Queensland hinterland coincident with the area with the most pronounced reduction in rainfall.

  10. Ultra-fine powders using glycine-nitrate combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Pederson, L.R.; Bates, J.L.; Maupin, G.D.

    1991-05-01

    Fabrication of advanced, multifunctional materials frequently requires the synthesis of complex, ultra-fine powders comprised of a single phase containing several elements (multicomponent) or of several phases that are intimately mixed on a micro-scale (composite). A new combustion synthesis method, the glycine/nitrate process (GNP), is particularly useful for synthesizing ultra-fine, multicomponent oxide powders. Examples discussed include La(Sr)CrO{sub 3} and La(Sr)FeO{sub 3} perovskites and a composite of three phases, NiO, NiFe{sub 2}O{sub 4}, and Cu metal. The GNP consists of two basic steps. First, metal nitrates and a low molecular weight amino acid are dissolved in water. Second, the solution is boiled until it thickens. This viscous liquid ignites and undergoes self-sustaining combustion, producing an ash composed of the oxide product. Most refractory oxides that are composed of a combination of metals having stable nitrates should be possible to synthesize using GNP. 15 refs., 8 figs.

  11. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable instr......, particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution.......Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable...... instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood...

  12. Waveguiding Er.sup.3+./sup./Yb.sup.3+./sup.:LiNbO.sub.3./sub. films prepared by a sol–gel method using polyvinylpyrrolidone

    Czech Academy of Sciences Publication Activity Database

    Rubešová, K.; Mikolášová, D.; Hlásek, T.; Jakeš, V.; Nekvindová, P.; Bouša, D.; Oswald, Jiří

    2016-01-01

    Roč. 176, Aug (2016), s. 260-265 ISSN 0022-2313 Institutional support: RVO:68378271 Keywords : lithium niobate * polyvinylpyrrolidone * erbium * sol –gel waveguide Subject RIV: BM - Sol id Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  13. Electrospun Thermoplastic Polyurethane Mats Containing Naproxen– Cyclodextrin Inclusion Complex

    Directory of Open Access Journals (Sweden)

    Akduman Çiğdem

    2014-12-01

    Full Text Available Incorporation of cyclodextrins (CDs into electrospun nanofibrous materials can be considered as potential candidates for functional medical textile applications. Naproxen (NAP is a type of non-steroidal anti-inflammatory drug commonly administered for the treatment of pain, inflammation and fever. Drug-inclusion complex formation with CDs is an approach to improve the aqueous solubility via molecular encapsulation of the drug within the cavity of the more soluble CD molecule. In this study, NAP or different NAP-CD inclusion complexes loaded nanofibres were successfully produced through electrospinning and characterised. The inclusion complex loaded mats exhibited significantly faster release profiles than NAP-loaded thermoplastic polyurethane (TPU mats. Overall, NAP-inclusion complex loaded TPU electrospun nanofibres could be used as drug delivery systems for acute pain treatments since they possess a highly porous structure that can release the drug immediately.

  14. Electrospun nanofiber membranes for electrically activated shape memory nanocomposites

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Leng, Jinsong

    2014-06-01

    A novel shape memory nanocomposite system, consisting of a thermoplastic Nafion polymer and ultrathin electrospun polyacrylonitrile (PAN)-based carbonization nanofiber membranes, is successfully synthesized. PAN-based carbonization nanofiber networks that offer responses to deformations are considered to be an excellent actuation source. Significant improvement in the electrical conductivity of carbon nanofiber membranes is found by adjusting the applied voltage power in the electrospinning PAN process varying from 7.85 to 12.30 S cm-1. The porous structure of the carbon nanofiber membranes provides a large specific surface area and interfacial contact area when combined with the polymer matrix. Shape memory Nafion nanocomposites filled with interpenetrating non-woven electrospun PAN carbonization membranes can be actuated by applying 14 V electrical voltage within 5 s. The results, as demonstrated through morphology, electrical and thermal measurements and a shape recovery test, suggest a valuable route to producing soft nanocomposites.

  15. Development of electrospun composite as substitutive diaphragm membrane

    Science.gov (United States)

    Mohsenzadeh, E.; Khenoussi, N.; Schacher, L.; Adolphe, D.; Hemmerlé, J.; Schneider, A.; Bahlouli, N.; Wagner-Kocher, C.

    2017-10-01

    The diaphragm is the most important muscle for respiration with a bi-domed structure, which is separating thoracic cavity from abdominal cavity. Partial formation of diaphragm, with unknown reason during fetal development caused a birth defect called congenital diaphragmatic hernia (CDH). It allows the abdomen contents to go up into the chest cavity resulting in pulmonary hypoplasia, which is the major cause of the mortality. There are several types of membrane, which can be used as prostheses to close the existing hole. In this project, we study the tensile properties of electrospun PA-6 nanowebs and electrospun PA-6/B composite as substitution membrane by a comparison with the tensile properties of tendon part of pig’s diaphragm.

  16. Electrospun nanofibrous materials for tissue engineering and drug delivery

    International Nuclear Information System (INIS)

    Cui Wenguo; Zhou Yue; Chang Jiang

    2010-01-01

    The electrospinning technique, which was invented about 100 years ago, has attracted more attention in recent years due to its possible biomedical applications. Electrospun fibers with high surface area to volume ratio and structures mimicking extracellular matrix (ECM) have shown great potential in tissue engineering and drug delivery. In order to develop electrospun fibers for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies, such as single fibers with different composition and structures (blending and core-shell composite fibers) and fiber assemblies (fiber bundles, membranes and scaffolds). This review summarizes the electrospinning techniques which control the composition and structures of the nanofibrous materials. It also outlines possible applications of these fibrous materials in skin, blood vessels, nervous system and bone tissue engineering, as well as in drug delivery. (topical review)

  17. Rapid Mercury(II Removal by Electrospun Sulfur Copolymers

    Directory of Open Access Journals (Sweden)

    Michael W. Thielke

    2016-07-01

    Full Text Available Electrospinning was performed with a blend of commercially available poly(methyl methacrylate (PMMA and a sulfur-rich copolymer based on poly(sulfur-statistical-diisopropenylbenzene, which was synthesized via inverse vulcanization. The polysulfide backbone of sulfur-containing polymers is known to bind mercury from aqueous solutions and can be utilized for recycling water. Increasing the surface area by electrospinning can maximize the effect of binding mercury regarding the rate and maximum uptake. These fibers showed a mercury decrease of more than 98% after a few seconds and a maximum uptake of 440 mg of mercury per gram of electrospun fibers. These polymeric fibers represent a new class of efficient water filtering systems that show one of the highest and fastest mercury uptakes for electrospun fibers reported.

  18. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices.

    Science.gov (United States)

    Shekarforoush, Elhamalsadat; Mendes, Ana C; Baj, Vanessa; Beeren, Sophie R; Chronakis, Ioannis S

    2017-10-17

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  19. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    Directory of Open Access Journals (Sweden)

    Elhamalsadat Shekarforoush

    2017-10-01

    Full Text Available Electrospun phospholipid (asolectin microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC and the total phenolic content (TPC of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient and pressures (vacuum, ambient. 1H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  20. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipid...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  1. Method for Coating a Tow with an Electrospun Nanofiber

    Science.gov (United States)

    Kohlman, Lee W. (Inventor); Roberts, Gary D. (Inventor)

    2015-01-01

    Method and apparatus for enhancing the durability as well as the strength and stiffness of prepreg fiber tows of the sort used in composite materials are disclosed. The method involves adhering electrospun fibers onto the surface of such composite materials as filament-wound composite objects and the surface of prepreg fiber tows of the sort that are subsequently used in the production of composite materials of the filament-wound, woven, and braided sorts. The apparatus performs the methods described herein.

  2. Current approaches to electrospun nanofibers for tissue engineering

    International Nuclear Information System (INIS)

    Rim, Nae Gyune; Shin, Heungsoo; Shin, Choongsoo S

    2013-01-01

    The ultimate goal of tissue engineering is to replace damaged tissues by applying engineering technology and the principles of life sciences. To successfully engineer a desirable tissue, three main elements of cells, scaffolds and growth factors need to be harmonized. Biomaterial-based scaffolds serve as a critical platform both to support cell adhesion and to deliver growth factors. Various methods of fabricating scaffolds have been investigated. One recently developed method that is growing in popularity is called electrospinning. Electrospinning is known for its capacity to make fibrous and porous structures that are similar to natural extracellular matrix (ECM). Other advantages to electrospinning include its ability to create relatively large surface to volume ratios, its ability to control fiber size from micro- to nano-scales and its versatility in material choice. Although early work with electrospun fibers has shown promise in the regeneration of certain types of tissues, further modification of their chemical, biological and mechanical properties would permit future advancements. In this paper, current approaches to the development of modular electrospun fibers as scaffolds for tissue engineering are discussed. Their chemical and physical characteristics can be tuned for the regeneration of specific target tissues by co-spinning of multiple materials and by post-modification of the surface of electrospun fibers. In addition, topology or structure can also be controlled to elicit specific responses from cells and tissues. The selection of proper polymers, suitable surface modification techniques and the control of the dimension and arrangement of the fibrous structure of electrospun fibers can offer versatility and tissue specificity, and therefore provide a blueprint for specific tissue engineering applications. (paper)

  3. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions.

    Science.gov (United States)

    Bamdad, Farzad; Khorram, Fateme; Samet, Maryam; Bamdad, Kourosh; Sangi, Mohammad Reza; Allahbakhshi, Fateme

    2016-05-15

    In this article a simple and selective colorimetric probe for cysteine determination using silver nano particles (AgNPS) is described. The determination process was based upon the surface plasmon resonance properties of polyvinylpyrrolidone-stabilized AgNPS. Interaction of AgNPS with cysteine molecules in the presence of barium ions induced a red shift in the surface plasmon resonance (SPR) maximum of AgNPs, as a result of nanoparticle aggregation. Consequently, yellow color of AgNP solution was changed to pink. The linear range for the determination of cysteine was 3.2-8.2 μM (R=0.9965) with a limit of detection equal to 2.8 μM (3σ). The proposed method was successfully applied to the determination of cysteine in human plasma samples. Acceptable recovery results of the spiked samples confirmed the validity of the proposed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Performance Enhancement of Dental Composites Using Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    H. Dodiuk-Kenig

    2008-01-01

    Full Text Available The objective of the present study is to investigate the effect of electrospun nanofiber reinforcement on the properties of commercially available, hyperbranched polymer modified (Hybrane, 0.3 wt.% DSM dental formulations. The emergence of functionalized nanoscale reinforcements having large surface area (hundreds of square meters/gram has enabled the design of novel nanocomposites with new and complex structures leading to enhanced mechanical and physical properties. Electrospun nanofibers from a range of polymer chemistries (PVOH, PLLA, Nylon 6 have been investigated as a reinforcing phase at levels between 0.01 and 0.3 wt.%, with and without a silane coupling agent surface treatment. The experimental results indicate that 0.05 wt.% reinforcement with 250 nm diameter PVOH nanofibers leads to a 30% improvement in compressive strength, coupled with a shrinkage reduction of about 50%. Electrospun fiber reinforcement by other chemistries or at other diameters showed either no property improvement or led to property loss.

  5. Transfer printing and patterning of stretchable electrospun film

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yongqing; Huang, YongAn, E-mail: yahuang@hust.edu.cn; Yin, Zhouping

    2013-10-01

    Electrospinning is an effective method for nanofiber production, but seldom used in the fabrication of patterned structures directly due to the whipping instability of the electrospinning jet. The whipping instability of electrospinning is adopted to fabricate stretchable patterned film by combination with an improved thermal transfer printing. The electrospun film is composed of small-scale wavy/coiled fibers, which make the patterned film highly stretchable. The optimal process parameters of whipping-based electrospinning are investigated to fabricate electrospun film with uniform and compact wavy/coiled fiber. Then the transfer printing and thermal detachment lithography are studied to generate patterned film, including the pressure, temperature, and peeling-off speed. Finally, the stretchability of the patterned electrospun film is studied through experiment and finite element analysis. It may open a cost-effective and high-throughput way for flexible/stretchable electronics fabrication. - Highlights: • Stretchable nonwoven film with small-scale wavy fibers is fabricated. • The film is transferred and patterned by thermal detachment lithography. • The patterned film is validated with high stretchability.

  6. Design parameters for a robust superhydrophobic electrospun nonwoven mat.

    Science.gov (United States)

    Rawal, Amit

    2012-02-14

    Electrospun nonwoven mats exhibiting extreme hydrophobicity have recently attracted much attention for their use in a wide range of applications. These materials are highly heterogeneous and irregular in structure, and accordingly, the design parameters of such materials need to be carefully chosen for obtaining higher apparent contact angles along with the robust composite solid-liquid-vapor interface. Here, we present two dimensionless design parameters, namely, the spacing ratio and pressure difference across the liquid-vapor interface, for enhancing the stability of the Cassie regime. These design parameters are essentially dependent upon the structural characteristics of the electrospun mat and equilibrium contact angle of the liquid. Interestingly, the stability of the composite interface is a trade-off between these dimensionless parameters. Moreover, the pressure difference across the interface can significantly increase by reducing the fiber diameter to nanoscale. The stability of the Cassie state in an electrospun nonwoven mat consisting of lower fiber volume fractions at the nanostructural scale can restore superhydrophobicity even after the impact of a rainfall.

  7. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P; Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore (Singapore); Ghasemi-Mobarakeh, Laleh, E-mail: nnimpp@nus.edu.s [Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of)

    2011-10-15

    A bioengineered construct that matches the chemical, mechanical, biological properties and extracellular matrix morphology of native tissue could be suitable as a cardiac patch for supporting the heart after myocardial infarction. The potential of utilizing a composite nanofibrous scaffold of poly(dl-lactide-co-glycolide)/gelatin (PLGA/Gel) as a biomimetic cardiac patch is studied by culturing a population of cardiomyocyte containing cells on the electrospun scaffolds. The chemical characterization and mechanical properties of the electrospun PLGA and PLGA/Gel nanofibers were studied by Fourier transform infrared spectroscopy, scanning electron microscopy and tensile measurements. The biocompatibility of the scaffolds was also studied and the cardiomyocytes seeded on PLGA/Gel nanofibers were found to express the typical functional cardiac proteins such as alpha-actinin and troponin I, showing the easy integration of cardiomyocytes on PLGA/Gel scaffolds. Our studies strengthen the application of electrospun PLGA/Gel nanofibers as a bio-mechanical support for injured myocardium and as a potential substrate for induction of endogenous cardiomyocyte proliferation, ultimately reducing the cardiac dysfunction and improving cardiac remodeling.

  8. Electrospun Fibers of Cyclodextrins and Poly(cyclodextrins

    Directory of Open Access Journals (Sweden)

    Alejandro Costoya

    2017-02-01

    Full Text Available Cyclodextrins (CDs can endow electrospun fibers with outstanding performance characteristics that rely on their ability to form inclusion complexes. The inclusion complexes can be blended with electrospinnable polymers or used themselves as main components of electrospun nanofibers. In general, the presence of CDs promotes drug release in aqueous media, but they may also play other roles such as protection of the drug against adverse agents during and after electrospinning, and retention of volatile fragrances or therapeutic agents to be slowly released to the environment. Moreover, fibers prepared with empty CDs appear particularly suitable for affinity separation. The interest for CD-containing nanofibers is exponentially increasing as the scope of applications is widening. The aim of this review is to provide an overview of the state-of-the-art on CD-containing electrospun mats. The information has been classified into three main sections: (i fibers of mixtures of CDs and polymers, including polypseudorotaxanes and post-functionalization; (ii fibers of polymer-free CDs; and (iii fibers of CD-based polymers (namely, polycyclodextrins. Processing conditions and applications are analyzed, including possibilities of development of stimuli-responsive fibers.

  9. Transfer printing and patterning of stretchable electrospun film

    International Nuclear Information System (INIS)

    Duan, Yongqing; Huang, YongAn; Yin, Zhouping

    2013-01-01

    Electrospinning is an effective method for nanofiber production, but seldom used in the fabrication of patterned structures directly due to the whipping instability of the electrospinning jet. The whipping instability of electrospinning is adopted to fabricate stretchable patterned film by combination with an improved thermal transfer printing. The electrospun film is composed of small-scale wavy/coiled fibers, which make the patterned film highly stretchable. The optimal process parameters of whipping-based electrospinning are investigated to fabricate electrospun film with uniform and compact wavy/coiled fiber. Then the transfer printing and thermal detachment lithography are studied to generate patterned film, including the pressure, temperature, and peeling-off speed. Finally, the stretchability of the patterned electrospun film is studied through experiment and finite element analysis. It may open a cost-effective and high-throughput way for flexible/stretchable electronics fabrication. - Highlights: • Stretchable nonwoven film with small-scale wavy fibers is fabricated. • The film is transferred and patterned by thermal detachment lithography. • The patterned film is validated with high stretchability

  10. Evaluation of the of antibacterial efficacy of polyvinylpyrrolidone (PVP) and tri-sodium citrate (TSC) silver nanoparticles

    Science.gov (United States)

    Dey, Arindam; Dasgupta, Abhirup; Kumar, Vijay; Tyagi, Aakriti; Verma, Anita Kamra

    2015-09-01

    We present silver nanoparticles as the new age broad spectrum antibiotic. Siver nanoparticles exhibit unique physical and chemical properties that make them suitable for understanding their biological potential as antimicrobials. In this study, we explored the antibacterial activity of silver nanoparticles (TSC-AgNPs) and silver nanoparticles doped with polyvinylpyrrolidone (PVP-AgNPs) against Gram-negative and Gram-positive bacteria, Escherichia coli (DH5α) and Staphylococcus aureus, (ATCC 13709). Nucleation and growth kinetics during the synthesis process of AgNPs were precisely controlled using citrate (TSC) and further doped with polyvinylpyrrolidone (PVP). This resulted in the formation of two different sized nanoparticles 34 and 54 nm with PDI of 0.426 and 0.643. The physical characterization was done by nanoparticle tracking analysis and scanning electron microscopy, the results of which are in unison with the digital light scattering data. We found the bactericidal effect for both TSC-AgNPs and PVP-AgNPs to be dose-dependent as determined by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against E. coli and S. aureus. Interestingly, we also observed that AgNPs showed enhanced antimicrobial activity with a MIC of 26.75 and 13.48 µg/ml for E. coli and S. aureus, respectively, while MBC for AgNPs are 53.23 and 26.75 µg/ml for E. coli and S. aureus, respectively. Moreover, AgNPs showed increased DNA degradation as observed confirming its higher efficacy as antibacterial agent than the PVP doped AgNPs.

  11. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Wright, L D; Young, R T; Andric, T; Freeman, J W

    2010-01-01

    Electrospinning is a polymer processing technique that produces fibrous structures comparable to the extracellular matrix of many tissues. Electrospinning, however, has been severely limited in its tissue engineering capabilities because this technique has produced few three-dimensional structures. Sintering of electrospun materials provides a method to fabricate unique architectures and allow much larger structures to be made. Electrospun mats were sintered into strips and cylinders, and their tensile and compressive mechanical properties were measured. In addition, electrospun materials with salt pores (salt embedded within the material and then leached out) were fabricated to improve porosity of the electrospun materials for tissue engineering scaffolds. Sintered electrospun poly(d,l-lactide) and poly(l-lactide) (PDLA/PLLA) materials have higher tensile mechanical properties (modulus: 72.3 MPa, yield: 960 kPa) compared to unsintered PLLA (modulus: 40.36 MPa, yield: 675.5 kPa). Electrospun PDLA/PLLA cylinders with and without salt-leached pores had compressive moduli of 6.69 and 26.86 MPa, respectively, and compressive yields of 1.36 and 0.56 MPa, respectively. Sintering of electrospun materials is a novel technique that improves electrospinning application in tissue engineering by increasing the size and types of electrospun structures that can be fabricated.

  12. Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications.

    Science.gov (United States)

    Nhi, Tra Thanh; Khon, Huynh Chan; Hoai, Nguyen Thi Thu; Bao, Bui Chi; Quyen, Tran Ngoc; Van Toi, Vo; Hiep, Nguyen Thi

    2016-10-01

    In this study, electrospun polycaprolactone membrane coated with chitosan-silver nanoparticles (CsAg), electrospun polycaprolactone/chitosan/Ag nanoparticles, was fabricated by immersing the plasma-treated electrospun polycaprolactone membrane in the CsAg gel. The plasma modification of electrospun polycaprolactone membrane prior to CsAg coating was tested by methylene blue stain and scanning electron microscope. The presence of silver and chitosan on the plasma-treated electrospun polycaprolactone membrane was confirmed by energy-dispersive X-ray spectroscopy and FT-IR spectrum. Scanning electron microscope observation was employed to observe the morphology of the membranes. The release of Ag ions from electrospun polycaprolactone/chitosan/Ag nanoparticles membrane was tested using atomic absorption spectrometry. Electrospun polycaprolactone/chitosan/Ag nanoparticles membrane inherited advantages from both CsAg gel and electrospun polycaprolactone membrane such as: increasing biocompatibility, mechanical strength, and antibacterial activity against both Gram-negative and Gram-positive bacteria. Thus, this investigation introduces a highly potential membrane that can increase the efficacy of the wound dressing process.

  13. Ultrafine Particulate Matter Increases Cardiac Ischemia/Reperfusion Injury via Mitochondrial Permeability Transition Pore.

    Science.gov (United States)

    Ultrafine Particulate Matter (UFP) has been associated with increased cardiovascular morbidity and mortality. However, the mechanisms that drive PM associated cardiovascular disease and dysfunction remain unclear. We examined the impact of intratracheal instillation of 100 ᠊...

  14. Personal exposure to ultrafine particles in the workplace: Exploring sampling techniques and strategies

    NARCIS (Netherlands)

    Brouwer, D.H.; Gijsbers, J.H.J.; Lurvink, M.W.M.

    2004-01-01

    Recently, toxicological and epidemiological studies on health effects related to particle exposure suggest that 'ultrafine particles' (particles with an aerodynamic diameter of <100 nm) may cause severe health effects after inhalation. Although the toxicological mechanisms for these effects have not

  15. Effect of thermal annealing on the surface properties of electrospun polymer fibers.

    Science.gov (United States)

    Chen, Jiun-Tai; Chen, Wan-Ling; Fan, Ping-Wen; Yao, I-Chun

    2014-02-01

    Electrospun polymer fibers are gaining importance because of their unique properties and applications in areas such as drug delivery, catalysis, or tissue engineering. Most studies to control the morphology and properties of electrospun polymer fibers focus on changing the electrospinning conditions. The effects of post-treatment processes on the morphology and properties of electrospun polymer fibers, however, are little studied. Here, the effect of thermal annealing on the surface properties of electrospun polymer fibers is investigated. Poly(methyl methacrylate) and polystyrene fibers are fist prepared by electrospinning, followed by thermal annealing processes. Upon thermal annealing, the surface roughness of the electrospun polymer fibers decreases. The driving force of the smoothing process is the minimization of the interfacial energy between polymer fibers and air. The water contact angles of the annealed polymer fibers also decrease with the annealing time. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Engineering of Corneal Tissue through an Aligned PVA/Collagen Composite Nanofibrous Electrospun Scaffold.

    Science.gov (United States)

    Wu, Zhengjie; Kong, Bin; Liu, Rui; Sun, Wei; Mi, Shengli

    2018-02-24

    Corneal diseases are the main reason of vision loss globally. Constructing a corneal equivalent which has a similar strength and transparency with the native cornea, seems to be a feasible way to solve the shortage of donated cornea. Electrospun collagen scaffolds are often fabricated and used as a tissue-engineered cornea, but the main drawback of poor mechanical properties make it unable to meet the requirement for surgery suture, which limits its clinical applications to a large extent. Aligned polyvinyl acetate (PVA)/collagen (PVA-COL) scaffolds were electrospun by mixing collagen and PVA to reinforce the mechanical strength of the collagen electrospun scaffold. Human keratocytes (HKs) and human corneal epithelial cells (HCECs) inoculated on aligned and random PVA-COL electrospun scaffolds adhered and proliferated well, and the aligned nanofibers induced orderly HK growth, indicating that the designed PVA-COL composite nanofibrous electrospun scaffold is suitable for application in tissue-engineered cornea.

  17. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  18. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  19. Substantial convection and precipitation enhancements by ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.

    2018-01-25

    Aerosol-cloud interaction remains the largest uncertainty in climate projections. Ultrafine aerosol particles (UAP; size <50nm) are considered too small to serve as cloud condensation nuclei conventionally. However, this study provides observational evidence to accompany insights from numerical simulations to support that deep convective clouds (DCCs) over Amazon have strong capability of nucleating UAP from an urban source and forming greater numbers of droplets, because fast drop coalescence in these DCCs reduces drop surface area available for condensation, leading to high vapor supersaturation. The additional droplets subsequently decrease supersaturation and release more condensational latent heating, a dominant contributor to convection intensification, whereas enhanced latent heat from ice-related processes plays a secondary role. Therefore, the addition of anthropogenic UAP may play a much greater role in modulating clouds than previously believed over the Amazon region and possibly in other relatively pristine regions such as maritime and forest locations.

  20. Monotonic and cyclic deformation behaviour of ultrafine-grained aluminium

    International Nuclear Information System (INIS)

    May, J.; Amberger, D.; Dinkel, M.; Hoeppel, H.W.; Goeken, M.

    2008-01-01

    The effect of the enhanced strain-rate sensitivity (SRS) of ultrafine-grained commercially pure aluminium Al 99.5 on the mechanical properties under monotonic as well as under cyclic loading was investigated. Compared with the conventional grain-sized counterpart, for the monotonic tests, a strongly enhanced strength combined with a high ductility was obtained, depending on the strain rate. The enhanced SRS also affects the cyclic deformation behaviour and the fatigue lives. At a lower strain rate shorter fatigue lives and a different cyclic hardening behaviour are observed. Microstructural changes during cyclic deformation are investigated by X-ray diffraction profile analysis. Based on the fatigue behaviour and the X-ray diffraction profile analysis, thermally activated annihilation processes of dislocations are regarded to be the relevant deformation mechanism leading to enhanced SRS and ductility

  1. Preparation of Ni-C Ultrafine Composite from Waste Material

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Rabah

    2017-06-01

    Full Text Available This work depicts the preparation of Ni-C ultrafine composite from used engine oil. The used oil was emulsified with detergent loaded with Ni (OH2. The loaded emulsion was sprayed on electric plasma generated between two C electrodes to a DC main 28 V and 70-80 A. The purged Ni-doped carbon fume was trapped on a polymer film moistened with synthetic adhesive to fix the trapped smoke. Characterization of the deposit was made using SEM. XRD examined the crystal morphology. Carbon density in the cloud was calculated. The average size and thickness of the deposited composite is 120-160 nm. Aliphatic hydrocarbons readily decompose to gaseous products. Solid carbon smoke originates from aromatic compounds. Plasma heat blasts the oil in short time to decompose in one step.

  2. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials.

    Science.gov (United States)

    Fujisawa, Shuji; Saito, Tsuguyuki; Kimura, Satoshi; Iwata, Tadahisa; Isogai, Akira

    2013-05-13

    Surface grafting of crystalline and ultrafine cellulose nanofibrils with poly(ethylene glycol) (PEG) chains via ionic bonds was achieved by a simple ion-exchange treatment. The PEG-grafted cellulose nanofibrils exhibited nanodispersibility in organic solvents such as chloroform, toluene, and tetrahydrofuran. Then, the PEG-grafted cellulose nanofibril/chloroform dispersion and poly(L-lactide) (PLLA)/chloroform solution were mixed, and the PEG-grafted cellulose nanofibril/PLLA composite films with various blend ratios were prepared by casting the mixtures on a plate and drying. The tensile strength, Young's modulus, and work of fracture of the composite films were remarkably improved, despite low cellulose addition levels (cellulose nanofibrils in the PLLA matrix. Moreover, some attractive interactions mediated by the PEG chains were likely to be formed between the cellulose nanofibrils and PLLA molecules in the composites, additionally enhancing the efficient nanocomposite effect.

  3. Application of an Ultrafine Shearing Method for the Extraction of C-Phycocyanin from Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Jianfeng Yu

    2017-11-01

    Full Text Available Cell disruption is an important step during the extraction of C-phycocyanin from Spirulina platensis. An ultrafine shearing method is introduced and combined with soaking and ultrasonication to disrupt the cell walls of S. platensis efficiently and economically. Five kinds of cell disruption method, including soaking, ultrasonication, freezing-thawing, soaking-ultrafine shearing and soaking-ultrafine shearing-ultrasonication were applied to break the cell walls of S. platensis. The effectiveness of cell breaking was evaluated based on the yield of the C-phycocyanin. The results show that the maximum C-phycocyanin yield was 9.02%, achieved by the soaking-ultrafine shearing-ultrasonication method, followed by soaking (8.43%, soaking-ultrafine shearing (8.89%, freezing and thawing (8.34%, and soaking-ultrasonication (8.62%. The soaking-ultrafine shearing-ultrasonication method is a novel technique for breaking the cell walls of S. platensis for the extraction of C-phycocyanin.

  4. Application of an Ultrafine Shearing Method for the Extraction of C-Phycocyanin from Spirulina platensis.

    Science.gov (United States)

    Yu, Jianfeng

    2017-11-21

    Cell disruption is an important step during the extraction of C-phycocyanin from Spirulina platensis . An ultrafine shearing method is introduced and combined with soaking and ultrasonication to disrupt the cell walls of S. platensis efficiently and economically. Five kinds of cell disruption method, including soaking, ultrasonication, freezing-thawing, soaking-ultrafine shearing and soaking-ultrafine shearing-ultrasonication were applied to break the cell walls of S. platensis . The effectiveness of cell breaking was evaluated based on the yield of the C-phycocyanin. The results show that the maximum C-phycocyanin yield was 9.02%, achieved by the soaking-ultrafine shearing-ultrasonication method, followed by soaking (8.43%), soaking-ultrafine shearing (8.89%), freezing and thawing (8.34%), and soaking-ultrasonication (8.62%). The soaking-ultrafine shearing-ultrasonication method is a novel technique for breaking the cell walls of S. platensis for the extraction of C-phycocyanin.

  5. Preparation, characterization, and cytotoxicity of CPT/Fe2O3-embedded PLGA ultrafine composite fibers: a synergistic approach to develop promising anticancer material

    Directory of Open Access Journals (Sweden)

    Amna T

    2012-03-01

    Full Text Available Touseef Amna1, M Shamshi Hassan2, Ki-Taek Nam2, Yang You Bing3, Nasser AM Barakat2, Myung-Seob Khil2, Hak Yong Kim1,21Center for Healthcare Technology Development, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, Korea; 3Animal Science and Technology College, Henan University of Science and Technology, Luoyang, ChinaAbstract: The aim of this study was to fabricate camptothecin/iron(III oxide (CPT/Fe2O3-loaded poly(D,L-lactide-co-glycolide (PLGA composite mats to modulate the CPT release and to improve the structural integrity and antitumor activity of the released drug. The CPT/ Fe2O3-loaded PLGA ultrafine fibers were prepared for the first time by electrospinning a composite solution of CPT/Fe2O3 and neat PLGA (4 weight percent. The physicochemical characterization of the electrospun composite mat was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, transmission electron microscopy, ultraviolet-visible spectroscopy, and X-ray diffraction pattern. The medicated composite fibers were evaluated for their cytotoxicity on C2C12 cells using Cell Counting Kit-8 assay (Sigma-Aldrich Corporation, St Louis, MO. The in vitro studies indicated a slow and prolonged release over a period of 96 hours with mild initial burst. Scanning electron microscopy, thermogravimetry, and X-ray diffraction studies confirmed the interaction of CPT/Fe2O3 with the PLGA matrix and showed that the crystallinity of CPT decreased after loading. Incorporation of CPT in the polymer media affected both the morphology and the size of the CPT/Fe2O3-loaded PLGA composite fibers. Electron probe microanalysis and energy dispersive X-ray spectroscopy results confirmed well-oriented composite ultrafine fibers with good incorporation of CPT/Fe2O3. The cytotoxicity results illustrate that the pristine PLGA did not exhibit noteworthy cytotoxicity; conversely, the CPT

  6. Fabrication and Evaluation of Electrospun, 3D-Bioplotted, and Combination of Electrospun/3D-Bioplotted Scaffolds for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Liliana F. Mellor

    2017-01-01

    Full Text Available Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their ability to support viability and proliferation of human adipose derived stem cells (hASC. Cells had increased proliferation and high viability over 21 days on all scaffolds. We further tested implantation of stacked-electrospun scaffold versus combined electrospun/3D scaffold on a cadaveric pig knee model and found that stacked-electrospun scaffold easily delaminated during implantation while the combined scaffold was easier to implant. Our approach combining these two commonly used scaffold fabrication technologies allows for the creation of a scaffold with more close resemblance to heterogeneous tissue architecture, holding great potential for tissue engineering and regenerative medicine applications of osteochondral tissue and other heterogeneous tissues.

  7. Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers.

    Science.gov (United States)

    Fiorani, Andrea; Gualandi, Chiara; Panseri, Silvia; Montesi, Monica; Marcacci, Maurilio; Focarete, Maria Letizia; Bigi, Adriana

    2014-10-01

    Collagen electrospun scaffolds well reproduce the structure of the extracellular matrix (ECM) of natural tissues by coupling high biomimetism of the biological material with the fibrous morphology of the protein. Structural properties of collagen electrospun fibers are still a debated subject and there are conflicting reports in the literature addressing the presence of ultrastructure of collagen in electrospun fibers. In this work collagen type I was successfully electrospun from two different solvents, trifluoroethanol (TFE) and dilute acetic acid (AcOH). Characterization of collagen fibers was performed by means of SEM, ATR-IR, Circular Dichroism and WAXD. We demonstrated that collagen fibers contained a very low amount of triple helix with respect to pristine collagen (18 and 16% in fibers electrospun from AcOH and TFE, respectively) and that triple helix denaturation occurred during polymer dissolution. Collagen scaffolds were crosslinked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a commonly employed crosslinker for electrospun collagen, and 1,4-butanediol diglycidyl ether (BDDGE), that was tested for the first time in this work as crosslinking agent for collagen in the form of electrospun fibers. We demonstrated that BDDGE successfully crosslinked collagen and preserved at the same time the scaffold fibrous morphology, while scaffolds crosslinked with EDC completely lost their porous structure. Mesenchymal stem cell experiments demonstrated that collagen scaffolds crosslinked with BDDGE are biocompatible and support cell attachment.

  8. Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles for Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Huijun Wu

    2013-01-01

    Full Text Available Flexible silica aerogel composites in intact monolith of 12 cm were successfully fabricated by reinforcing SiO2 aerogel with electrospun polyvinylidene fluoride (PVDF webs via electrospinning and sol-gel processing. Three electrospun PVDF webs with different microstructures (e.g., nanofibers, microparticles, and combined nanofibers and microparticles were fabricated by regulating electrospinning parameters. The as-electrospun PVDF webs with various microstructures were impregnated into the silica sol to synthesize the PVDF/SiO2 composites followed by solvent exchange, surface modification, and drying at ambient atmosphere. The morphologies of the PVDF/SiO2 aerogel composites were characterized and the thermal and mechanical properties were measured. The effects of electrospun PVDF on the thermal and mechanical properties of the aerogel composites were evaluated. The aerogel composites reinforced with electrospun PVDF nanofibers showed intact monolith, improved strength, and perfect flexibility and hydrophobicity. Moreover, the aerogel composites reinforced with the electrospun PVDF nanofibers had the lowest thermal conductivity (0.028 W·m−1·K−1. It indicates that the electrospun PVDF nanofibers could greatly improve the mechanical strength and flexibility of the SiO2 aerogels while maintaining a lower thermal conductivity, which provides increasing potential for thermal insulation applications.

  9. 24-gauge ultrafine cryoprobe with diameter of 550 μm and its cooling performance.

    Science.gov (United States)

    Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-12-01

    This paper describes the development of a novel cryoprobe with the same size as a 24-gauge injection needle and the evaluation of its cooling performance. This ultrafine cryoprobe was designed to reduce the invasiveness and extend application areas of cryosurgery. The ultrafine cryoprobe has a double-tube structure and consists of two stainless steel microtubes. The outer diameter of the cryoprobe is 550 μm, and the inner tube has a 70-μm inner diameter to depressurize the high-pressure refrigerant. By solving the bioheat transfer equation and considering freezing phenomena, the relationship between the size of the frozen region and the heat transfer coefficient of the refrigerant flow in an ultrafine cryoprobe was derived analytically. The results showed that the size of the frozen region is strongly affected by the heat transfer coefficient. A high heat transfer coefficient such as that of phase change heat transfer is required to generate a frozen region of sufficient size. In the experiment, trifluoromethane (HFC-23) was used as the refrigerant, and the cooling effects of the gas and liquid phase states at the inlet were evaluated. When the ultrafine cryoprobe was cooled using a liquid refrigerant, the surface temperature was approximately -50°C, and the temperature distribution on the surface was uniform for a thermally insulated condition. However, for the case with vaporized refrigerant, the temperature distribution was not uniform. Therefore, it was concluded that the cooling mechanism using liquid refrigerant was suitable for ultrafine cryoprobes. Furthermore, to simulate cryosurgery, a cooling experiment using hydrogel was conducted. The results showed that the surface temperature of the ultrafine cryoprobe reached -35°C and formed a frozen region with a radius of 4 mm in 4 min. These results indicate that the ultrafine cryoprobe can be applied in actual cryosurgeries for small affected areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Electrospun vascular grafts with anti-kinking properties

    Directory of Open Access Journals (Sweden)

    Bode M.

    2015-09-01

    Full Text Available One of the major challenges in developing appropriate vascular substitutes is to produce a graft that adapts to the biological and mechanical conditions at the application or implantation site. One approach is the use of tissue engineered electrospun grafts pre-seeded with autologous cells. However, bending stresses during in vivo applications could lead to kinking of the graft which may result in life-threatening stenosis. The aim of this study was to develop an electrospun vascular graft consisting of biodegradable polymers which can reduce or prevent kinking, due to their higher flexibility. In order to improve the bendability of the grafts, various electrospinning collectors were designed using six different patterns. Subsequently, the grafts were examined for scaffold morphology, mechanical strength and bendability. Scaffolds spun on a collector structured with a v-shaped thread (flank angle of 120° showed a homogenous and reproducible fiber deposition as compared to the unstructured reference sample. The results of the tensile tests were comparable to the unstructured reference sample, supporting the first observation. Studies on bendability were performed using a custom made flow-bending test setup. It was shown that the flow through the v-shaped grafts was reduced to less than 45 % of the reference value even after bending the graft to an angle of 140°. In contrast, the flow through an unstructured graft was reduced to more than 50 % after bending to an angle of 55°. The presented data demonstrate the need for optimizing the bendability of the commonly used electrospun vascular grafts. Using of macroscopic v-shaped collectors is a promising solution to overcome the issue of graft kinking.

  11. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    Science.gov (United States)

    Kohlman, Lee W.; Bakis, Charles; Williams, Tiffany S.; Johnston, James C.; Kuczmarski, Maria A.; Roberts, Gary D.

    2014-01-01

    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg.

  12. Electrospun polyimide-composite separator for lithium-ion batteries

    International Nuclear Information System (INIS)

    Shayapat, Jaritphun; Chung, Ok Hee; Park, Jun Seo

    2015-01-01

    Non-woven mats of thermally stable polyimide (PI) composites were fabricated as a separator of lithium-ion batteries (LIBs) by first electrospinning a mixture of the pre-polymer, poly(amic acid) ammonium salt (PAAS), and inorganic nanoparticles of SiO 2 or Al 2 O 3 and then imidizing the electrospun nanofibers of the PAAS composites at 350 °C. The microstructures of the electrospun PI nanofibers, electrospun PI–SiO 2 -composite nanofibers, electrospun PI–Al 2 O 3 -composite nanofibers, and the commercial separator SV718 were examined using field-emission scanning electron microscopy and transmission electron microscopy. Test results of the thermal properties of the PI nanofibers, PI-composite nanofibers, and SV718, obtained with a thermal gravimetric analyzer and a differential scanning calorimeter, indicate the superior thermal stability of PI and PI composites, which showed no melting peak and no decomposition at 600 °C, while SV718 had a melting peak at 137 °C and decomposed at 300 °C. The thermal stability of the separators, evaluated in a hot-oven test, showed no shrinkage of PI and PI composites at 200 °C, while SV718 started to shrink at above 100 °C. Using a drop of liquid electrolyte on the surface of each separator, the electrolyte contact angle on PI and PI composites was around 10° and that on SV718 was 54°, indicating that PI and PI composites had better wettability than SV718. The porosity and liquid-electrolyte uptake of the PI composites were over 90% and 790%, respectively, while the corresponding values for SV718 were 40% and 101%, respectively, implying that the separators consisting of the non-woven mats of PI–SiO 2 -composite nanofibers and PI–Al 2 O 3 -composite nanofibers had lower interfacial resistance than the commercial SV718 separator. The electrochemical performance of the PI-composite separator assembled between the LiCoO 2 cathode and the Li anode of an LIB exhibited more stable cycle performance, higher discharge

  13. Preparation of electrospun polyacrylonitrile fibers containing only the polarization charges

    Science.gov (United States)

    Zhong, Qin; Yao, Yongyi; Guo, Xiaoming; Zhou, Tao; Xiang, Ruili

    2017-03-01

    In this paper, we report a simple method to separate immobile charges into polarization charges and trapped charges and successfully prepare electrospun polyacrylonitrile fibers only containing polarization charge. The amount of surface polarization charges and trapped charges were +5.34 nC/g and -2.98 nC/g, respectively. We also tried to explain the mechanism of formation and location of immobile charges by using a model of a parallel plate capacitor, and to track the route and location of charges. Additionally, we investigated the influence of residual solvent, a water bath and the temperature of the water bath on the immobile charges.

  14. Nanoclay-Directed Structure and Morphology in PVDF Electrospun Membranes

    Directory of Open Access Journals (Sweden)

    Kyunghwan Yoon

    2014-01-01

    Full Text Available The incorporation of organically modified Lucentite nanoclay dramatically modifies the structure and morphology of the PVDF electrospun fibers. In a molecular level, the nanoclay preferentially stabilizes the all-trans conformation of the polymer chain, promoting an α to β transformation of the crystalline phase. The piezoelectric properties of the β-phase carry great promise for energy harvest applications. At a larger scale, the nanoclay facilitates the formation of highly uniform, bead-free fibers. Such an effect can be attributed to the enhanced conductivity and viscoelasticity of the PVDF-clay suspension. The homogenous distribution of the directionally aligned nanoclays imparts advanced mechanical properties to the nanofibers.

  15. Cryomilling-induced solid dispersion of poor glass forming/poorly water-soluble mefenamic acid with polyvinylpyrrolidone K12.

    Science.gov (United States)

    Kang, Naewon; Lee, Jangmi; Choi, Ji Na; Mao, Chen; Lee, Eun Hee

    2015-06-01

    The effect of mechanical impact on the polymorphic transformation of mefenamic acid (MFA) and the formation of a solid dispersion of mefenamic acid, a poor glass forming/poorly-water soluble compound, with polyvinylpyrrolidone (PVP) K12 was investigated. The implication of solid dispersion formation on solubility enhancement of MFA, prepared by cryomilling, was investigated. Solid state characterization was conducted using powder X-ray diffraction (PXRD) and Fourier-transform infrared (FTIR) spectroscopy combined with crystal structure analysis. Apparent solubility of the mixtures in pH 7.4 buffer was measured. A calculation to compare the powder patterns and FTIR spectra of solid dispersions with the corresponding physical mixtures was conducted. Solid state characterization showed that (1) MFA I transformed to MFA II when pure MFA I was cryogenically milled (CM); and (2) MFA forms a solid dispersion when MFA was cryogenically milled with PVP K12. FTIR spectral analysis showed that hydrogen bonding facilitated by mechanical impact played a major role in forming solid dispersions. The apparent solubility of MFA was significantly improved by making a solid dispersion with PVP K12 via cryomilling. This study highlights the importance of cryomilling with a good hydrogen bond forming excipient as a technique to prepare solid dispersion, especially when a compound shows a poor glass forming ability and therefore, is not easy to form amorphous forms by conventional method.

  16. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron

    International Nuclear Information System (INIS)

    Chen Hua; Luo Hanjin; Lan Yuecun; Dong Tingting; Hu Bingjie; Wang Yiping

    2011-01-01

    The interactions of tetracycline (TC) with nanoscale zerovalent iron (NZVI) modified by polyvinylpyrrolidone (PVP-K30) were investigated using batch experiments as a function of reactant concentration, pH, temperature, and competitive anions. Transmission electron micrographs (TEM), BET surface area and Zeta (ζ)-potential analyses indicated that the mean particle size was 10-40 nm with a surface area of 36.90 m 2 /g, and a iso-electric point of PVP-NZVI was 7.2. The results of X-ray diffraction (XRD) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) of modified nanoscale zerovalent iron (PVP-NZVI) revealed that the iron nanoparticles likely have a core of zero-valent iron (Fe 0 ), while a shell is largely made of iron oxides. Degradation of TC was strongly dependent on pH and temperature. The presence of silicate and phosphate strongly inhibited the removal of TC, whereas acetate and sulfate only caused slight inhibition. LC-MS analysis of the treated solution showed that the degradation products from TC resulted from the removal of functional groups from the TC ring. The degradation products were detected both in the treated solution (initial pH of 3.0 and 6.5) and on the surface of PVP-NZVI after 4-h interaction, indicating that PVP-NZVI can adsorb both TC and its degradation products.

  17. Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: Synthesis and in vitro delivery of diclofenac and biocompatibility with periodontal ligament fibroblasts

    International Nuclear Information System (INIS)

    Peña, José A.; Gutiérrez, Sandra J.; Villamil, Jean C.; Agudelo, Natalia A.; Pérez, León D.

    2016-01-01

    In this paper, we report the synthesis of polycaprolactone (PCL) based hybrid materials containing hydrophilic domains composed of N-vinylpyrrolidone (VP), and γ-methacryloxypropyltrimethoxysilane (MPS). The hybrid materials were obtained by RAFT copolymerization of N-vinylpyrrolidone and MPS using a pre-formed dixanthate-end-functionalized PCL as macro-chain transfer agent, followed by a post-reaction crosslinking step. The composition of the samples was determined by elemental and thermogravimetric analyses. Differential scanning calorimetry and X-ray diffraction indicated that the crystallinity of PCL decreases in the presence of the hydrophilic domains. Scanning electron microscopy images revealed that the samples present an interconnected porous structure on the swelling. Compared to PCL, the hybrid materials presented low water contact angle values and higher elastic modulus. These materials showed controlled release of diclofenac, and biocompatibility with human periodontal ligament fibroblasts. - Highlights: • Synthesis of Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials • Moderated hydrophilic materials with high swelling resistance • Organic–inorganic hybrid materials were biocompatible.

  18. Synthesis, characterization and Monte Carlo simulation of CoFe2O4/Polyvinylpyrrolidone nanocomposites: The coercivity investigation

    International Nuclear Information System (INIS)

    Mirzaee, Sh; Farjami shayesteh, S.; Mahdavifar, S; Hekmatara, S Hoda.

    2015-01-01

    To study the influence of polymer matrix on the effective magnetic anisotropy constant and coercivity of magnetic nanoparticles, we have synthesized the Cobalt ferrite/Polyvinylpyrrolidone (PVP) nanocomposites by co-precipitation method in four different processes. In addition the Monte Carlo simulation and law of approach to the saturation magnetization have been applied to achieve the anisotropy constants. The obtained experimental and theoretical results showed a decrease in anisotropy constant relative to the bulk cobalt ferrite. We have showed that the PVP matrix can interact with metal cations and made them approximately immobilized to participate in spinel structure. Hence different anisotropy constants or coercivity were obtained for synthesized nanocomposites. In addition, PVP matrix can attach to the surface of magnetic particles and make them approximately non-interacting. The synthesized samples have been characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Magnetic measurements were made at room temperature using a vibrating sample magnetometer (VSM). - Highlights: • We studied the effect of polymer matrix on the coercivity of the CoFe 2 O 4 /PVP nanocomposites. • The polymer matrix decreases the anisotropy of the nanocomposite system. • We have synthesized nanocomposites with approximately the same size, but significantly different coercivity. • We showed that the PVP/CoFe 2 O 4 nanocomposite has the considerable coercivity due to the spin hindrance. • Magnetic properties of nanocomposites simulated by Monte Carlo method

  19. Hydrogel characteristics of electron-beam-immobilized poly(vinylpyrrolidone) films on poly(ethylene terephthalate) supports.

    Science.gov (United States)

    Meinhold, Dorit; Schweiss, Ruediger; Zschoche, Stefan; Janke, Andreas; Baier, Angela; Simon, Frank; Dorschner, Helmut; Werner, Carsten

    2004-01-20

    A novel strategy for the preparation of thin hydrogel coatings on top of polymer bulk materials was elaborated for the example of poly(ethylene terephthalate) (PET) surfaces layered with poly(vinylpyrrolidone) (PVP). PVP layers were deposited on PET foils or SiO2 surfaces (silicon wafer or glass coverslips) precoated with PET and subsequently cross-linked by electron beam treatment. The obtained films were characterized by ellipsometry, X-ray photoelectron spectroscopy, infrared spectroscopy in attenuated total reflection, atomic force microscopy (AFM), and electrokinetic measurements. Ellipsometric experiments and AFM force-distance measurements showed that the cross-linked layers swell in aqueous solutions by a factor of about 7. Electrokinetic experiments indicated a strong hydrodynamic shielding of the charge of the underlying PET layer by the hydrogel coatings and further proved that the swollen films were stable against shear stress and variation of pH. In conclusion, electron beam cross-linking ofpreadsorbed hydrophilic polymers permits a durable fixation of swellable polymer networks on polymer supports which can be adapted to materials in a wide variety of shapes.

  20. Optical properties of silica-coated Y2O3:Er,Yb nanoparticles in the presence of polyvinylpyrrolidone

    International Nuclear Information System (INIS)

    Fujii, Kunio; Kitamoto, Yoshitaka; Hara, Masahiko; Odawara, Osamu; Wada, Hiroyuki

    2014-01-01

    The optical properties of polyvinylpyrrolidone (PVP)-adsorbed and silica-coated Y 2 O 3 :Er,Yb nanoparticles produced by using PVP were studied for potential bio-applications of upconversion nanoparticles. We utilized PVP to better disperse Y 2 O 3 :Er,Yb nanoparticles in solution and to prepare silica-coated Y 2 O 3 :Er,Yb nanoparticles. The fluorescent intensity of PVP-adsorbed Y 2 O 3 :Er,Yb nanoparticles was 1.25 times higher than non-adsorbed Y 2 O 3 :Er,Yb nanoparticles, which was probably due to surface defects in Y 2 O 3 :Er,Yb nanoparticles being covered by the PVP. However, the fluorescent intensity of silica-coated Y 2 O 3 :Er,Yb nanoparticles decreased as silica layer thickness increased. This could be ascribed to the higher vibrational energy of PVP than that of the silica structure. Therefore, the optimum silica layer thickness is important in bio-applications to avoid deterioration of the optical properties of Y 2 O 3 :Er,Yb nanoparticles. - Highlights: • We prepared the silica-coated upconversion nanoparticles by using PVP. • We showed that PVP played an important role in coating nanoparticles. • PL intensity of silica-coated nanoparticles decreased as silica layer thickness increased

  1. Effect of micellar collisions and polyvinylpyrrolidone confinement on the electrical conductivity percolation parameters of water/AOT/isooctane reverse micelles

    Science.gov (United States)

    Guettari, Moez; Aferni, Ahmed E. L.; Tajouri, Tahar

    2017-12-01

    The main aim of this paper is the analysis of micellar collisions and polymer confinement effects on the electrical conductivity percolative behavior of water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles. Firstly, we have performed conductance measurements of the system for three AOT to isooctane volume ratio, φm = 0.1 , 0.15 and 0.2 to examine the influence of micellar collisions on the percolation parameters. All the measurements were carried out over the 298.15 K-333.15 K temperature range at a fixed water to AOT molar ratio, W0 = 45 . We have assessed that the rise of micellar collisions frequency enhances the conductance percolation. Secondly, the confinement effect of a water-soluble polymer, polyvinylpyrrolidone (PVP), on the reverse micelles conductance behavior was investigated. Temperature-induced percolation, Tp , have shown a dependence on the polymer concentration, CPVP . It was also observed that for various PVP concentrations, the activation energy of percolation decreases. Finally, the values of the critical exponents determined in the presence and absence of PVP prove that the polymer affects the dynamic of percolation.

  2. Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique

    Science.gov (United States)

    Zhai, Yue; Bai, Xue; Cui, Haining; Zhu, Jinyang; Liu, Wei; Zhang, Tianxiang; Dong, Biao; Pan, Gencai; Xu, Lin; Zhang, Shuang; Song, Hongwei

    2018-01-01

    Carbon dots (CDs) are the promising candidates for application in optoelectronic and biological areas due to their excellent photostability, unique photoluminescence, good biocompatibility, low toxicity and chemical inertness. However, the self-quenching of photoluminescence as they are dried into the solid state dramatically limits their further application. Therefore, realizing efficient photoluminescence and large-scale production of CDs in the solid state is an urgent challenge. Herein, solid-state hybrid nanofibers based on CDs and polyvinylpyrrolidone (PVP) are constructed through an electrospinning process. The resulting solid-state hybrid PVP/CD nanofibers present much enhanced photoluminescence performance compared to the corresponding pristine colloidal CDs due to the decrease in non-radiative recombination of electron-holes. Owing to the suppressed self-quenching of CDs, the photoluminescence quantum yield is considerably improved from 42.9% of pristine CDs to 83.5% of nanofibers under the excitation wavelength of 360 nm. This has great application potential in optical or optoelectronic devices.

  3. Graphene/polyvinylpyrrolidone/polyaniline nanocomposite-modified electrode for simultaneous determination of parabens by high performance liquid chromatography.

    Science.gov (United States)

    Kajornkavinkul, Suphunnee; Punrat, Eakkasit; Siangproh, Weena; Rodthongkum, Nadnudda; Praphairaksit, Narong; Chailapakul, Orawon

    2016-02-01

    A nanocomposite of graphene (G), polyvinylpyrrolidone (PVP) and polyaniline (PANI) modified onto screen-printed carbon electrode (SPCE) using an electrospraying technique was developed for simultaneous determination of five parabens in beverages and cosmetic products by high performance liquid chromatography. PVP and PANI were used as the dispersing agents of graphene, and also for the enhancement of electrochemical conductivity of the electrode. The electrochemical behavior of each paraben was investigated using the G/PVP/PANI nanocomposite-modified SPCE, compared to the unmodified SPCE. Using HPLC along with amperometric detection at a controlled potential of +1.2V vs Ag/AgCl, the chromatogram of five parabens obtained from the modified SPCE exhibits well defined peaks and higher current response than those of its unmodified counterpart. Under the optimal conditions, the calibration curves of five parabens similarly provide a linear range between 0.1 and 30 µg mL(-1) with the detection limits of 0.01 µg mL(-1) for methyl paraben (MP), ethyl paraben (EP) and propyl paraben (PP), 0.02 and 0.03 µg mL(-1) for isobutyl paraben (IBP) and butyl paraben (BP), respectively. Furthermore, this proposed method was applied for the simultaneous determination of five parabens in real samples including a soft drink and a cosmetic product with satisfactory results, yielding the recovery in the range of 90.4-105.0%. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    Directory of Open Access Journals (Sweden)

    Yesim Tugce Yaman

    2016-05-01

    Full Text Available A novel electrochemical sensor gold nanoparticle (AuNP/polyvinylpyrrolidone (PVP modified pencil graphite electrode (PGE was developed for the ultrasensitive determination of Bisphenol A (BPA. The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM. The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV. Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability.

  5. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives.

    Science.gov (United States)

    Gan, Bo; Li, Bei; Jiang, Haipeng; Bi, Mingshu; Gao, Wei

    2018-06-05

    The suppressions of ultrafine water mists containing additives (NaCl and NaHCO 3 ) on 100 nm, 5 μm, and 30 μm polymethyl methacrylate (PMMA) dust explosions were experimentally studied in a dust-explosion apparatus. High-speed photography showed that maximum vertical positions and flame propagation velocities were significantly decreased by suppression with ultrafine water mist/additives. Flame propagation velocities in 100 nm, 5 μm, and 30 μm dust explosions suppressed by the ultrafine pure water mist were reduced by 48.2%, 27.7%, and 15.3%, respectively. Maximum temperatures and temperature rising rates measured by a fine thermocouple in nano- and micro-PMMA dust explosions were also significantly decreased. It was proved that the addition of NaCl and NaHCO 3 improved the suppression effects of the ultrafine pure water mist. The improvement of explosion suppression by an 8% NaHCO 3 mist was superior to that of a 16% NaCl mist. The suppression mechanisms of ultrafine water mist/additives are further discussed by analyzing the physical and chemical effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  7. Impact Toughness of Ultrafine-Grained Interstitial-Free Steel

    Science.gov (United States)

    Saray, Onur; Purcek, Gencaga; Karaman, Ibrahim; Maier, Hans J.

    2012-11-01

    Impact toughness of an ultrafine-grained (UFG) interstitial-free (IF) steel produced by equal-channel angular extrusion/pressing (ECAE/P) at room temperature was investigated using Charpy impact tests. The UFG IF steel shows an improved combination of strength and impact toughness compared with the corresponding coarse-grained (CG) one. The CG IF steel samples underwent a transition in fracture toughness values with decreasing temperature because of a sudden change in fracture mode from microvoid coalescence (ductile) to cleavage (brittle) fracture. Grain refinement down to the submicron (≈320 nm) levels increased the impact energies in the upper shelf and lower shelf regions, and it considerably decreased the ductile-to-brittle transition temperature (DBTT) from 233 K (-40 °C) for the CG steel to approximately 183 K (-90 °C) for the UFG steel. Also, the sudden drop in DBTT with a small transition range for the CG sample changed to a more gradual decrease in energy for the UFG sample. The improvement in toughness after UFG formation was attributed to the combined effects of grain refinement and delamination and/or separation in the heavily deformed microstructure. Although an obvious change from the ductile fracture by dimples to the brittle fracture by cleavage was recognized at 233 K (-40 °C) for the CG steel, no fully brittle fracture occurred even at 103 K (-170 °C) in the UFG steel.

  8. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  9. Room Temperature Dynamic Strain Aging in Ultrafine-Grained Titanium

    Science.gov (United States)

    Lopes, Felipe Perissé D.; Lu, Chia Hui; Zhao, Shiteng; Monteiro, Sergio N.; Meyers, Marc A.

    2015-10-01

    Dynamic strain aging (DSA) in coarse-grained (CG) titanium is usually observed at intermediate to high temperatures 473 K to 973 K (200 °C to 700 °C) and is characterized by serrations in the stress vs strain curves. In the present work, despite the absence of apparent serrations, ultrafine-grained titanium (UFG Ti) undergoes DSA at room temperature, exhibited through an abnormal increase in the elastic limit and negative strain rate sensitivity. This effect is observed at 293 K (20 °C) in the strain rate interval of 10-4 to 10-2 s-1, and at 203 K (-70 °C) and 373 K (100 °C) in a distinct strain rate range. Based on a calculated activation energy of 17.3 kJ/mol and microstructural observations by transmission electron microscopy, it is proposed that the dominant mechanism for DSA in UFG Ti involves interstitial solutes interacting with dislocations emitted from grain boundaries. The interstitials migrate from the grain boundaries along dislocation lines bowing out as they are emitted from the boundaries, a mechanism with a low calculated activation energy which is comparable with the experimental measurements. The dislocation velocities and interstitial diffusion along the dislocation cores are consistent.

  10. POTENTIAL PATHOPHYSIOLOGICAL MECHANISMS OF ULTRAFINE PARTICLE TOXIC EFFECTS IN HUMANS

    Directory of Open Access Journals (Sweden)

    JASMINA JOVIĆ-STOŠIĆ

    2008-03-01

    Full Text Available Epidemiological and clinical studies suggested the association of the particulate matter ambient air pollution and the increased morbidity and mortality, mainly from respiratory and cardiovascular diseases. The size of particles has great influence on their toxicity, because it determines the site in the respiratory tract where they deposit. The most well established theory explaining the mechanisms behind the increased toxicity of ultrafine particles (UFP, < 0.1 µm is that it has to do with the increased surface area and/or the combination with the increased number of particles. Biological effects of UFP are also determined by their shape and chemical composition, so it is not possible to estimate their toxicity in a general way. General hypothesis suggested that exposure to inhaled particles induces pulmonary alveolar inflammation as a basic pathophysiological event, triggering release of various proinflammatory cytokines. Chronic inflammation is a very important underlying mechanism in the genesis of atherosclerosis and cardiovascular diseases. UFP can freely move through the circulation, but their effects on the secondary organs are not known yet, so more studies on recognizing toxicological endpoints of UFP are needed. Determination of UFP toxicity and the estimation of their internal and biologically active dose are necessary for the evidence based conclusions connecting air pollution by UFP and human diseases.

  11. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  12. Outdoor ultrafine particle concentrations in front of fast food restaurants.

    Science.gov (United States)

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A previous monitoring campaign could not separate the contribution of restaurants from road traffic. The main goal of this study has been the quantification of fast food restaurants' contribution to outdoor UFP concentrations. A portable particle number counter (DiscMini) has been used to carry out mobile monitoring in a largely pedestrianized area in the city center of Utrecht. A fixed route passing 17 fast food restaurants was followed on 8 days. UFP concentrations in front of the restaurants were 1.61 times higher than in a nearby square without any local sources used as control area and 1.22 times higher compared with all measurements conducted in between the restaurants. Adjustment for other sources such as passing mopeds, smokers or candles did not explain the increase. In conclusion, fast food restaurants result in significant increases in outdoor UFP concentrations in front of the restaurant.

  13. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    Science.gov (United States)

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. On the Adhesion performance of a single electrospun fiber

    Science.gov (United States)

    Baji, Avinash; Zhou, Limin; Mai, Yiu-Wing; Yang, Zhifang; Yao, Haimin

    2015-01-01

    The micro- and nano-scale fibrillar structures found on the feet of spiders and geckos function as adhesion devices which allow them to adhere to both molecularly smooth and rough surfaces. This adhesion has been argued to arise from intermolecular forces, such as van der Waals (vdW) force, acting at the interface between any two materials in contact. Thus, it is possible to mimic their adhesion using synthetic nanostructured analogs. Herein, we report the first successful pull-off force measurements on a single electrospun fiber and show the potential of using electrospinning to fabricate adhesive analogs. A single fiber is glued to the atomic force microscope cantilever, and its adhesion to a metal substrate is studied by recording the pull-off force/displacement curves. The measured adhesive force of ~18 nN matches closely that of their biological counterparts. Similar to natural structures, the adhesive mechanism of these electrospun structures is controlled by vdW interactions.

  15. Sol gel growth of titania from electrospun polyacrylonitrile nanofibres

    Science.gov (United States)

    Hong, Youliang; Li, Domgmei; Zheng, Jian; Zou, Guangtian

    2006-04-01

    In this paper we report on the development of TiO2 surface-residing electrospun nanofibres with controllable density of TiO2 on the support fibre surface by means of an electrospinning technique and a sol-gel process. The TiO2 precursor/PAN composite nanofibres were synthesized by electrospinning a polyacrylonitrile (PAN) solution containing TiO2 precursors. Subsequently, an immersion of the electrospun composite nanofibres in deionized water led to the hydrolysis of the TiO2 precursors. SEM, TEM and XRD pattern analyses demonstrated that TiO2 was formed and resided on the nanofibre surface. On further calcining the hydrolysed nanofibres in air at 300 °C, TiO2 could be conveniently converted into anatase without essentially changing the morphology of the hydrolysed nanofibres. Furthermore, surface photovoltage spectroscopy (SPS) confirmed that the TiO2 surface-residing nanofibre nonwovens had a strong SPS response. It can be attributed that the surface residence of TiO2 permits the transfer of the photogenerated electron originating from TiO2 to ITO electrodes. Potential applications of the TiO2 surface-residing nanofibres include filters, catalysis films and environmental pollution remediation films.

  16. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2017-02-01

    Full Text Available Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.

  17. Preparation and characterization of electrospun poly(phthalazinone ether nitrile ketone) membrane with novel thermally stable properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Zhang, Hao; Qian, Bingqing [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wang, Jinyan, E-mail: wangjinyan@dlut.edu.cn [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Jian, Xigao [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Qiu, Jieshan, E-mail: jqiu@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2015-10-01

    Highlights: • Poly (phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. • Electrospun membrane exhibits a good thermostability. • Electrospun membrane. - Abstract: Electrospun nanofibrous membranes have several applications because of their excellent properties, such as high porosity, small fiber diameter, and large surface area. However, high-temperature resistant electrospun membranes remain a challenge because of the absence of precursors that offer spinnability, scalability, and superior thermal stability. In this study, poly(phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. Electrospun PPENK membranes were characterized by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile stress–strain tests. Results indicated that the prepared electrospun membranes had a very high glass transition temperature, superior chemical resistance, and excellent mechanical strength. These desirable properties broaden their potential application in membranes and treatment of various hot fluid streams without strict temperature control.

  18. Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2014-01-01

    Purpose: Protein-based electrospun fibers have emerged as novel nanostructured materials for tissue engineering and drug delivery due to their unique structural characteristics, biocompatibility and biodegradability. The aim of this study was to explore the use of electrospun fibers based on fish...... sarcoplasmic proteins as an oral delivery platform for biopharmaceuticals, using insulin as a model protein. Methods: Fish sarcoplasmic proteins (FSP) were isolated from fresh cod and electrospun into nanomicrofibers using insulin as a model payload. The morphology of FSP fibers was characterized using...... was significantly enhanced when administered encapsulated in FSP fibers. The TEER was decreased after 4 h incubation, and no negative effect on cell viability was observed at any time. Conclusion: In this work we present electrospun FSP fibers as a novel oral drug delivery system for biopharmaceuticals...

  19. Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver

    NARCIS (Netherlands)

    Song, J.; Remmers, S.J.; Shao, J.; Kolwijck, E.; Walboomers, X.F.; Jansen, J.A.; Leeuwenburgh, S.C.; Yang, F.

    2016-01-01

    To prevent percutaneous device associated infections (PDAIs), we prepared electrospun chitosan/poly(ethylene oxide) (PEO) nanofibrous membrane containing silver nanoparticles as an implantable delivery vehicle for the dual release of chlorhexidine and silver ions. We observed that the silver

  20. Controlled Deposition and Collection of Electro-spun Poly(ethylene oxide) Fibers

    National Research Council Canada - National Science Library

    Deitzel, J

    2001-01-01

    ...). Electro-spun fibers are typically collected in the form of non-woven mats, which are of interest for a variety of applications, including semi-permeable membranes, filters, composite reinforcement...

  1. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing

    CSIR Research Space (South Africa)

    Naseria, N

    2014-08-01

    Full Text Available (supm-2)day(sup-1), and was in the range for injured skin or wounds.The electrospun fiber mats showed compatibility toward adipose derived stem cells, further confirmingtheir potential use as wound dressing materials....

  2. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Seasonal variation and volatility of ultra-fine particles in coastal Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available The Size distribution and volatility of ultrafine aerosol particles were measured at Syowa Station during the 46-47 Japanese Antarctic Research Expeditions. During the summer, most of the ultrafine particles were volatile particles, which were composed of H_2SO_4, CH_3SO_3H and sulfates bi-sulfates. The abundance of non-volatile particles was ~ 20% during the summer, increasing to>90% in winter-spring. Non-volatile particles in winter were dominantly sea-salt particles. Some ultrafine sea-salt particles might be released from sea-ice. When air mass was transported from the free troposphere over the Antarctic continent, the abundance of non-volatile particles dropped to<30% even in winter.

  4. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults.

    Science.gov (United States)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-09

    The criteria for designating an "Active Fault" not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault's latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  5. Effect of Ultrafine Pulverization of Senecio Scandens on Growth, Immune System and Faecal Microorganisms in Piglets

    Directory of Open Access Journals (Sweden)

    J Yue1, CQ Lu1, HY Lin1, XN Wang, JQ Zheng1, JJ Chen1* and R Gooneratne2*

    2016-11-01

    Full Text Available There is increased interest in using naturally occurring compounds subjected to new technologies for enhancing pig nutrition to replace antibiotic usage in swine production. The effects of ultrafine pulverization on the size distribution, morphology of Senecio scandens Buch.-Ham., and the growth performance, serum immunity parameters and faecal microorganisms of piglets fed this powder were investigated. The size distribution and morphology of S. scandens were characterized by using a laser diffraction analyser and scanning electron microscopy respectively. Ninety Duroc×Landrace×Yorkshire piglets (average body weight of 10.43kg were randomly assigned to six treatments with three pens of five pigs per treatment. Group 1 (Control piglets were fed the basal diet only. Groups 2 to 5 were fed with the basal diet supplemented with ultrafine powder (median diameter [d0.5] of 8.89μm of S. scandens at 0.3, 0.6, 0.9, and 1.2% of the basal diet, respectively, for 30 days. For group 6, 1.2% of ordinary S. scandens powder (d0.5=88.59μm was added to the basal diet. Both S. scandens ordinary and ultrafine powder increased piglet body weight and reduced the feed to gain ratio, but the performance of piglets fed the ultrafine powder was better. In groups 4 to 6, the number of Escherechia coli in faeces and the diarrhoeal incidence were significantly lower (P<0.05 and the serum IgA, IgG, IgM contents significantly higher (P<0.05. Feeding S. scandens ultrafine powder in the diet improved piglet performance and the diet supplemented with 0.9% of the ultrafine powder was the most effective.

  6. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation.

    Science.gov (United States)

    Jørgensen, Rikke Bramming; Buhagen, Morten; Føreland, Solveig

    2016-07-01

    To investigate the exposure to number concentration of ultrafine particles and the size distribution in the breathing zone of workers during rehabilitation of a subsea tunnel. Personal exposure was measured using a TSI 3091 Fast Mobility Particle Sizer (FMPS), measuring the number concentration of submicrometre particles (including ultrafine particles) and the particle size distribution in the size range 5.6-560 nm. The measurements were performed in the breathing zone of the operators by the use of a conductive silicone tubing. Working tasks studied were operation of the slipforming machine, operations related to finishing the verge, and welding the PVC membrane. In addition, background levels were measured. Arithmetic mean values of ultrafine particles were in the range 6.26×10(5)-3.34×10(6). Vertical PVC welding gave the highest exposure. Horizontal welding was the work task with the highest maximum peak exposure, 8.1×10(7) particles/cm(3). Background concentrations of 4.0×10(4)-3.1×10(5) were found in the tunnel. The mobility diameter at peak particle concentration varied between 10.8 nm during horizontal PVC welding and during breaks and 60.4 nm while finishing the verge. PVC welding in a vertical position resulted in very high exposure of the worker to ultrafine particles compared to other types of work tasks. In evaluations of worker exposure to ultrafine particles, it seems important to distinguish between personal samples taken in the breathing zone of the worker and more stationary work area measurements. There is a need for a portable particle-sizing instrument for measurements of ultrafine particles in working environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Utilizing NaCl to increase the porosity of electrospun materials

    International Nuclear Information System (INIS)

    Wright, L.D.; Andric, T.; Freeman, J.W.

    2011-01-01

    Electrospinning has emerged as a popular method for creating scaffolding materials used in tissue engineering applications to repair or replace damaged tissues. To become a viable scaffold material, however, pore sizes in electrospun materials must be increased to improve cell infiltration. Deposition of NaCl crystals during electrospinning was utilized to help overcome this obstacle. The NaCl crystals are released above the rotating collection mandrel and become incorporated into the poly(L-lactide) electrospun material. The NaCl then leaches out of the electrospun material creating larger pores: average pore diameter of 48.7 μm for PLLA-NaCl electrospinning versus 5.5 μm for PLLA alone electrospinning. Electrospun PLLA scaffolds with NaCl pores have a lower elastic modulus (8.05 MPa) and yield stress (349 kPa) and a higher yield strain (0.04) compared to their traditional counterparts (40.36 MPa, 676 kPa, and 0.0188). Decreased elastic modulus and yield stress would be beneficial to tissue engineering of elastic tissues including skin. The presence of NaCl pores did not significantly affect the cellular proliferation of MC3T3 cells but did allow for cell infiltration into the electrospun material. Therefore, the creation of large pores through NaCl leaching can significantly improve the performance of electrospun materials for tissue engineering applications by improving cellular infiltration.

  8. Processing, application and characterization of ultrafine and nanometric materials in energetic compositions

    Science.gov (United States)

    van der Heijden, Antoine

    2005-07-01

    The energetic materials research at TNO Defence, Security and Safety, The Netherlands is focusing at the development and characterization of explosives (insensitive munitions), gun/rocket propellants and pyrotechnic compositions and their ingredients. The application of reactive, ultrafine and nanometric materials in these compositions has gained increased interest over the past few years. Current research topics focus on the processing, application and characterization of (1) ultrafine energetic crystals and composite nano-clusters in plastic bonded explosives, (2) metastable intermolecular composites (MICs) and (3) self-propagating high-temperature synthesis (SHS). In this paper several of these topics will be highlighted in more detail.

  9. Processing, Application and Characterization of (Ultra)fine and Nanometric Materials in Energetic Compositions

    Science.gov (United States)

    van der Heijden, A. E. D. M.; Bouma, R. H. B.; Carton, E. P.; Martinez Pacheco, M.; Meuken, B.; Webb, R.; Zevenbergen, J. F.

    2006-07-01

    The energetic materials research at TNO Defence, Security and Safety, The Netherlands is focusing at the development and characterization of explosives (insensitive munitions), gun/rocket propellants and pyrotechnic compositions and their ingredients. The application of reactive, (ultra)fine and nanometric materials in these compositions has gained increased interest over the past few years. Current research topics focus on the processing, application and characterization of (1) (ultra)fine energetic crystals and composite nano-clusters in plastic bonded explosives, (2) metastable intermolecular composites (MICs) and (3) self-propagating high-temperature synthesis (SHS). In this paper these topics will be highlighted in more detail.

  10. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    Science.gov (United States)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  11. Ultrafine particle removal and generation by portable air cleaners

    Science.gov (United States)

    Waring, Michael S.; Siegel, Jeffrey A.; Corsi, Richard L.

    Portable air cleaners can both remove and generate pollutants indoors. To investigate these phenomena, we conducted a two-phase investigation in a 14.75 m 3 stainless steel chamber. In the first phase, particle size-resolved (12.6-514 nm diameter) clean air delivery rates (CADR) and efficiencies were determined, as were ozone emission rates, for two high-efficiency particle arresting (HEPA) filters, one electrostatic precipitator with a fan, and two ion generators without fans. The two HEPA air cleaners had count average CADR (standard deviation) of 188 (30) and 324 (44) m 3 h -1; the electrostatic precipitator 284 (62) m 3 h -1; and the two ion generators 41 (11) and 35 (13) m 3 h -1. The electrostatic precipitator emitted ozone at a rate of 3.8±0.2 mg h -1, and the two ion generators 3.3±0.2 and 4.3±0.2 mg h -1. Ozone initiates reactions with certain unsaturated organic compounds that produce ultrafine and fine particles, carbonyls, other oxidized products, and free radicals. During the second phase, five different ion generators were operated separately in the presence of a plug-in liquid or solid air freshener, representing a strong terpene source. For air exchange rates of between 0.49 and 0.96 h -1, three ion generators acted as steady-state net particle generators in the entire measured range of 4.61-157 nm, and two generated particles in the range of approximately 10 to 39-55 nm. Terpene and aldehyde concentrations were also sampled for one ion generator, and concentrations of terpenes decreased and formaldehyde increased. Given these results, the pollutant removal benefits of ozone-generating air cleaners may be outweighed by the generation of indoor pollution.

  12. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  13. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Llaneza, Verónica [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rodea-Palomares, Ismael [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Zhou, Zuo [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rosal, Roberto [Univ. de Alcalá, Dept. de Ingeniería Química (Spain); Fernández-Pina, Francisca [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States)

    2016-08-15

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} NPs with particle sizes ranging from 20 to 50 nm, and Fe{sup 0}-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe{sup 0}-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe{sup 0}-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  14. Laser-assisted synthesis, and structural and thermal properties of ZnS nanoparticles stabilised in polyvinylpyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Onwudiwe, Damian C. [Chemical Resource Beneficiation (CRB) Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Krüger, Tjaart P.J. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Jordaan, Anine [Laboratory for Electron Microscopy, CRB Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Strydom, Christien A., E-mail: christien.strydom@nwu.ac.za [Chemical Resource Beneficiation (CRB) Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2014-12-01

    Graphical abstract: - Highlights: • Zinc sulphide (ZnS) nanoparticles were synthesised by laser irradiation. • The structural and morphological properties of the prepared samples were analysed. • Larger particles were obtained by using Na{sub 2}S instead of TAA as the sulphur source. • Phonon softening and line broadening of the peaks were observed. • Size reduction occurred in the samples obtained from both sources. - Abstract: Zinc sulphide (ZnS) nanoparticles have been synthesised by a green approach involving laser irradiation of an aqueous solution of zinc acetate (Znac{sub 2}) and sodium sulphide (Na{sub 2}S·9H{sub 2}O) or thioacetamide (TAA) in polyvinylpyrrolidone (PVP). The structural and morphological properties of the prepared samples were analysed using a transmission electron microscope, TEM, a high resolution transmission electron microscope, HRTEM, X-ray diffraction, and Raman spectroscopy. The thermal properties were studied using a simultaneous thermal analyser (SDTA). Better dispersed and larger particles were obtained by using sodium sulphide (Na{sub 2}S) instead of TAA as the sulphur source. X-ray diffraction (XRD) analyses and Raman measurement show that the particles have a cubic structure, which is usually a low temperature phase of ZnS. There were phonon softening and line broadening of the peaks which are attributed to the phonon confinement effect. The average crystallite size of the ZnS nanoparticles estimated from the XRD showed a reduction in size from 13.62 to 10.42 nm for samples obtained from Na{sub 2}S, and 9.13 to 8.16 nm for samples obtained from TAA, with an increase in the time of irradiation. The thermal stability of PVP was increased due to the incorporation of the ZnS nanoparticles in the matrices. The absorption spectra showed that the nanoparticles exhibit quantum confinement effects.

  15. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    International Nuclear Information System (INIS)

    Chin, William WL; Thong, Patricia SP; Bhuvaneswari, Ramaswamy; Soo, Khee Chee; Heng, Paul WS; Olivo, Malini

    2009-01-01

    Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions. Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient. Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer

  16. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  17. Influence of polyvinylpyrrolidone, microcrystalline cellulose and colloidal silicon dioxide on technological characteristics of a high-dose Petiveria alliacea tablet.

    Science.gov (United States)

    García-Pérez, Martha-Estrella; Lemus-Rodríguez, Zoe; Hung-Arbelo, Mario; Vistel-Vigo, Marlen

    2017-12-01

    Petiveria alliacea L. (Phytolaccaceae) is a perennial shrub used by its immunomodulatory, anticancerogenic and anti-inflammatory properties. This study determined the influence of polyvinylpyrrolidone (PVP), colloidal silicon dioxide (CSD) and microcrystalline cellulose (MC) on the technological characteristic of a high-dose P. alliacea tablet prepared by the wet granulation method. The botanical and pharmacognostic analysis of the plant material was firstly performed, followed by a 2 3 factorial design considering three factors at two levels: (a) the binder (PVP) incorporated in formulation at 10% and 15% (w/w); (b) the compacting agent (CSD) added at 10% and 15% (w/w) and; (c) the diluent (MC) included at 7.33% and 12.46% (w/w). The analysis of pharmaceutical performance and the accelerated and long-term stability of the best prototype were also completed. The binder, compacting agent and the interaction binder/diluent had a significant impact on breaking force of high-dose P. alliacea tablet. The optimum formula was found to contain 15% (w/w) of CSD, 7.33% (w/w) of MC and 10% (w/w) of PVP. At these conditions, the tablet shows a breaking force of 77.96 N, a friability of 0.39%, a total phenol content of 1.30 mg/tablet and a maximum disintegration time of 6 min. The use of adequate amounts of PVP, MC and CSD as per the factorial design allowed the preparation of a tablet suitable for administration, despite the inappropriate flow and compressibility properties of the P. alliacea powder.

  18. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    International Nuclear Information System (INIS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-01-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe 3 O 4 and γ-Fe 2 O 3 NPs with particle sizes ranging from 20 to 50 nm, and Fe 0 -NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe 0 -NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe 0 -NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  19. Polyvinylpyrrolidone-Based Bio-Ink Improves Cell Viability and Homogeneity during Drop-On-Demand Printing

    Directory of Open Access Journals (Sweden)

    Wei Long Ng

    2017-02-01

    Full Text Available Drop-on-demand (DOD bioprinting has attracted huge attention for numerous biological applications due to its precise control over material volume and deposition pattern in a contactless printing approach. 3D bioprinting is still an emerging field and more work is required to improve the viability and homogeneity of printed cells during the printing process. Here, a general purpose bio-ink was developed using polyvinylpyrrolidone (PVP macromolecules. Different PVP-based bio-inks (0%–3% w/v were prepared and evaluated for their printability; the short-term and long-term viability of the printed cells were first investigated. The Z value of a bio-ink determines its printability; it is the inverse of the Ohnesorge number (Oh, which is the ratio between the Reynolds number and a square root of the Weber number, and is independent of the bio-ink velocity. The viability of printed cells is dependent on the Z values of the bio-inks; the results indicated that the cells can be printed without any significant impairment using a bio-ink with a threshold Z value of ≤9.30 (2% and 2.5% w/v. Next, the cell output was evaluated over a period of 30 min. The results indicated that PVP molecules mitigate the cell adhesion and sedimentation during the printing process; the 2.5% w/v PVP bio-ink demonstrated the most consistent cell output over a period of 30 min. Hence, PVP macromolecules can play a critical role in improving the cell viability and homogeneity during the bioprinting process.

  20. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Budun, Sinem [Institute of Pure and Applied Science, Marmara University, 34722 Istanbul (Turkey); İşgören, Erkan [Textile Technology, Technical Education Faculty, Marmara University, 34722 Istanbul (Turkey); Erdem, Ramazan, E-mail: ramazanerdem@akdeniz.edu.tr [Textile Technologies, Serik G-S. Sural Vocational School of Higher Education, Akdeniz University, 07500 Antalya (Turkey); Yüksek, Metin [Textile Engineering, Technology Faculty, Marmara University, 34722 Istanbul (Turkey)

    2016-09-01

    Highlights: • Fiber morphology of PU based shape memory fibers varied especially with polymer concentration and applied voltage. • The smallest diameter (381 ± 165 nm) and almost uniform (without bead) fibers were belonged to the sample Y10K30 with a feeding rate of 1 ml/h and an applied voltage of 30 kV at 24.5 cm distance. • All calculated shape fixity results were above 80% and the best value (92 ± 4%) was obtained for Y10K30. • All gained shape recovery results were determined above 100% and the highest measurement (130 ± 4%) was belonged to Y15K39. • The greatest tensile property was obtained for Y10K30 (14.7 ± 3.2 MPa) in machine direction and for Y10K39 (12.9 ± 0.8 MPa) in transverse direction. Y15K39 (411 ± 24%) and Y20K30 (402 ± 34%) possessed the highest elongation results compared with the other electrospun webs. - Abstract: Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape

  1. Electrospun nanofibers: New generation materials for advanced applications

    International Nuclear Information System (INIS)

    Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, Hak Yong

    2017-01-01

    Highlights: • A review covering important aspects of electrospinning technique is presented. • Applications of nanofibers in various fields are reviewed. • Possibility to up-scale electrospinning technique to industry also included. - Abstract: Electrospinning (E-spin) is a unique technique to fabricate polymeric as well as metal oxide nanofibers. Research on electrospun nanofibers is a very active field in material science owing to their novel applications in diverse domains. The main focus of this review is to provide an insight into E-spin technique by understanding the working principle, influencing parameters and applications of nanofibers in different walks of life. Several hundreds of papers are published on the preparation, modification and applications of nanofibers produced by E-spin technique in the areas like sensor development, decontamination, energy storage, biomedical and catalysis etc. Details on the industrial scale development of E-spin technique, current scenario and future developments are also covered in this review.

  2. Antibacterial activity of polyacrylonitrile-chitosan electrospun nanofibers.

    Science.gov (United States)

    Kim, Sam Soo; Lee, Jaewoong

    2014-02-15

    Polyacrylonitrile (PAN)-chitosan double-face films and nanofibers were manufactured. PAN and a chitosan salt were dissolved in dimethyl sulfoxide, and then thin-layered on a glass plate or electro-spun followed by coagulation in sodium hydroxide solution. The morphology of the PAN-chitosan double-face films and nanofibers was analyzed by scanning electron microscopy. The thermal behavior and the glass transition temperature of PAN-chitosan blends were assessed by differential scanning calorimetry and dynamic mechanical analysis, respectively. The antibacterial efficacy was measured by a swatch test with bacterial suspensions. The PAN-chitosan nanofibers produced a 5-log reduction against Escherichia coli, Staphylococcus aureus, and Micrococcus luteus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Study on the Electrospun CNTs/Polyacrylonitrile-Based Nanofiber Composites

    Directory of Open Access Journals (Sweden)

    Bo Qiao

    2011-01-01

    Full Text Available CNTs/PAN nanofibers were electrospun from PAN-based solution for the preparation of carbon nanofiber composites. The as-spun polyacrylonitrile-based nanofibers were hot-stretched by weighing metal in a temperature controlled oven. Scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to characterize the morphology of the nanofibers, which indicated that carbon nanotubes were dispersed well in the composites and were completely wrapped by PAN matrix. Because of the strong interfacial interaction between CNTs and PAN, the CNTs/PAN application performance will be enhanced correspondingly, such as the mechanical properties and the electrical conductivity. It was concluded that the hot-stretched CNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.

  4. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  5. The quintuple-shape memory effect in electrospun nanofiber membranes

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  6. Carbon Nanotube and Graphene Based Polyamide Electrospun Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Fabiola Navarro-Pardo

    2016-01-01

    Full Text Available Electrospinning is a unique and versatile technique to produce nanofibres; the facility to incorporate fillers has expanded its range of applications. This review gives a brief description of the process and the different polymers employed for obtaining nanofibres. Owing to the ability of fibrillation of polyamides, these polymers have resulted in a wide variety of interesting results obtained when using this technique; therefore these features are summarised. Additionally, because of the feasibility of incorporating carbon nanotubes and graphene in these nanofibres and the growing interest on these nanomaterials, this review focuses in the most common methods employed for their incorporation in electrospun polyamides. Several equipment setups used for the electrospinning of the nanofibres are explained. The outstanding electrical, optical, crystallinity, and mechanical properties obtained by a number of research groups are discussed. The potential applications of the resulting nanocomposites have also been explored.

  7. Encapsulation of bacteria and viruses in electrospun nanofibres

    International Nuclear Information System (INIS)

    Salalha, W; Kuhn, J; Dror, Y; Zussman, E

    2006-01-01

    Bacteria and viruses were encapsulated in electrospun polymer nanofibres. The bacteria and viruses were suspended in a solution of poly(vinyl alcohol) (PVA) in water and subjected to an electrostatic field of the order of 1 kV cm -1 . Encapsulated bacteria in this work (Escherichia coli, Staphylococcus albus) and bacterial viruses (T7, T4, λ) managed to survive the electrospinning process while maintaining their viability at fairly high levels. Subsequently the bacteria and viruses remain viable during three months at -20 and -55 deg. C without a further decrease in number. The present results demonstrate the potential of the electrospinning process for the encapsulation and immobilization of living biological material

  8. Compressibility of carbon fabrics with needleless electrospun PAN nanofibrous interleaves

    Directory of Open Access Journals (Sweden)

    S. V. Lomov

    2016-01-01

    Full Text Available The present paper investigates how the presence of nanofiber interleaves affects the compressibility of the layup during manufacturing of the composites and hence determining the theoretically attainable fiber volume fraction at the given processing pressure. The results show that up to the interleave areal density of 10 g/m2 per nanofiber layer the decrease of fiber volume fraction does not exceed 3% for a laminate of carbon fiber woven fabric. Interleaves inside a fabric laminate are more compressible than a plain electrospun veil. It can be explained as the nanofibers penetrate between the carbon fibers when applying compression during composite manufacturing. It can be stated that there is a strong interference between the interleaves and the carbon reinforcement, which can lead to effective toughness improvement of the composite without significant alteration of fiber volume content.

  9. Electrospun composites of PHBV/pearl powder for bone repairing

    Directory of Open Access Journals (Sweden)

    Jingjing Bai

    2015-08-01

    Full Text Available Electrospun fiber has highly structural similarity with natural bone extracelluar matrix (ECM. Many researches about fabricating organic–inorganic composite materials have been carried out in order to mimic the natural composition of bone and enhance the biocompatibility of materials. In this work, pearl powder was added to the poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV and the composite nanofiber scaffold was prepared by electrospinning. Mineralization ability of the composite scaffolds can be evaluated by analyzing hydroxyapatite (HA formation on the surface of nanofiber scaffolds. The obtained composite nanofiber scaffolds showed an enhanced mineralization capacity due to incorporation of pearl powder. The HA formed amount of the composite scaffolds was raised as the increase of pearl powder in composite scaffolds. Therefore, the prepared PHBV/pearl composite nanofiber scaffolds would be a promising candidate as an osteoconductive composite material for bone repairing.

  10. Electrospun nanofibers: New generation materials for advanced applications

    Energy Technology Data Exchange (ETDEWEB)

    Thenmozhi, S. [Inorganic & Nanomaterials Research Laboratory, Department of Chemistry, Bharathiar University, Coimbatore 641 046 (India); DRDO-BU CLS, Bharathiar University Campus, Coimbatore 641 046 (India); Dharmaraj, N., E-mail: dharmaraj@buc.edu.in [Inorganic & Nanomaterials Research Laboratory, Department of Chemistry, Bharathiar University, Coimbatore 641 046 (India); Kadirvelu, K. [DRDO-BU CLS, Bharathiar University Campus, Coimbatore 641 046 (India); Kim, Hak Yong [Department of Textile Engineering, Chonbuk National University, Chonju 561-756 (Korea, Republic of)

    2017-03-15

    Highlights: • A review covering important aspects of electrospinning technique is presented. • Applications of nanofibers in various fields are reviewed. • Possibility to up-scale electrospinning technique to industry also included. - Abstract: Electrospinning (E-spin) is a unique technique to fabricate polymeric as well as metal oxide nanofibers. Research on electrospun nanofibers is a very active field in material science owing to their novel applications in diverse domains. The main focus of this review is to provide an insight into E-spin technique by understanding the working principle, influencing parameters and applications of nanofibers in different walks of life. Several hundreds of papers are published on the preparation, modification and applications of nanofibers produced by E-spin technique in the areas like sensor development, decontamination, energy storage, biomedical and catalysis etc. Details on the industrial scale development of E-spin technique, current scenario and future developments are also covered in this review.

  11. Origin of high propagation loss in electrospun polymer nanofibers

    Directory of Open Access Journals (Sweden)

    Yuya Ishii

    2014-06-01

    Full Text Available We evaluate optical propagation loss (α in electrospun poly(methyl methacrylate (PMMA nanofibers with different wavelength (λ and determine the origin of the loss. Aligned single electrospun nanofibers composed of PMMA and a small amount of an organic dye are fabricated with an average diameter of approximately 640 nm. After cladding seven fiber samples, α is evaluated to be 26–62 dB cm−1 at wavelengths 590−680 nm. Moreover, α depended linearly on λ−4, and from the fitting functions we determined the ratio of the following two possible losses for α: loss at the interface between the fiber-core and cladding because of non-uniformity within the fibers (αun, and loss because of excess light scattering in the fibers resulting from density inhomogeneity of PMMA (αsc. For the fibers, αun is evaluated to be 6.9–22 dB cm−1, which represents 19%–50% of α at λ of 650 nm with α ∼ αun + αsc. Thus, we conclude that the high α in these fibers originates from both their poor uniformity and density inhomogeneity. Furthermore, a quantitative investigation of uniformity in the individual fibers revealed that the root mean square roughness ranges from 5.5 nm to 9.0 nm and the theoretical value of αun was ∼1 dB cm−1 showing reasonable agreement with experimental data. These findings hold for low-loss polymer nanofiber waveguides, which have high aspect ratio and fine patterning even in three dimensions.

  12. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration.

    Science.gov (United States)

    Bonvallet, Paul P; Culpepper, Bonnie K; Bain, Jennifer L; Schultz, Matthew J; Thomas, Steven J; Bellis, Susan L

    2014-09-01

    The goal of this study was to synthesize skin substitutes that blend native extracellular matrix (ECM) molecules with synthetic polymers which have favorable mechanical properties. To this end, scaffolds were electrospun from collagen I (col) and poly(ɛ-caprolactone) (PCL), and then pores were introduced mechanically to promote fibroblast infiltration, and subsequent filling of the pores with ECM. A 70:30 col/PCL ratio was determined to provide optimal support for dermal fibroblast growth, and a pore diameter, 160 μm, was identified that enabled fibroblasts to infiltrate and fill pores with native matrix molecules, including fibronectin and collagen I. Mechanical testing of 70:30 col/PCL scaffolds with 160 μm pores revealed a tensile strength of 1.4 MPa, and the scaffolds also exhibited a low rate of contraction (pores. Keratinocytes formed a stratified layer on the surface of fibroblast-remodeled scaffolds, and staining for cytokeratin 10 revealed terminally differentiated keratinocytes at the apical surface. When implanted, 70:30 col/PCL scaffolds degraded within 3-4 weeks, an optimal time frame for degradation in vivo. Finally, 70:30 col/PCL scaffolds with or without 160 μm pores were implanted into full-thickness critical-sized skin defects. Relative to nonporous scaffolds or sham wounds, scaffolds with 160 μm pores induced accelerated wound closure, and stimulated regeneration of healthy dermal tissue, evidenced by a more normal-appearing matrix architecture, blood vessel in-growth, and hair follicle development. Collectively, these results suggest that microporous electrospun scaffolds are effective substrates for skin regeneration.

  13. Size evolution of ultrafine particles: Differential signatures of normal and episodic events

    International Nuclear Information System (INIS)

    Joshi, Manish; Khan, Arshad; Anand, S.; Sapra, B.K.

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. - Highlights: • Effect of firework emissions on atmospheric aerosol characteristics was studied. • Significant increase in ultrafine particle concentration was observed during firework bursting. • Size distribution evolution analysis of number concentration peaks has been performed. • Differential signatures of normal and episodic event were noted. - Notable increase in ultrafine particle concentration during firework bursting was seen. Normal and episodic event could be differentiated on the basis of size evolution analysis.

  14. Effects of bran, shorts and feed flour by ultra-fine grinding on ...

    African Journals Online (AJOL)

    Wheat bran, shorts and feed flour are rich in dietary fiber and micronutrients. The effects of ultra-fine ground bran, shorts and feed flour on rheological characteristics of dough and bread qualities were investigated. Water absorption and dough development time gradually increased while mixing tolerance index and dough ...

  15. Effects of bran, shorts and feed flour by ultra-fine grinding on ...

    African Journals Online (AJOL)

    微软用户

    2012-02-21

    Feb 21, 2012 ... Full Length Research Paper. Effects of bran, shorts and feed flour by ultra-fine grinding on rheological characteristics of dough and bread qualities. Jinli Zhang, Hanxue Hou, Haizhou Dong* and Yangyong Dai. Department of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018 ...

  16. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  17. Overview of fatigue behaviour of ultrafine-grained copper produced by severe plastic deformation

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2008-01-01

    Roč. 567-568, - (2008), s. 9-16 ISSN 0255-5476. [MSMF /5./. Brno, 27.06.2007-29.06.2007] Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue strength * Ultrafine-grained copper Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Energy efficient reduction of fine and ultra-fine dust in a nursery

    NARCIS (Netherlands)

    Jacobs, P.; Phaff, J.C.; Voogt, M.H.

    2014-01-01

    An intervention study with a decentral electrostatic filter has been carried out in a nursery. The field study shows that it is possible to reach a reduction up to 80% of ultra-fine (<0.1 μm) and up to 68% for the PM1 and PM2,5-PM1 fractions at a relatively low energy consumption. These particle

  19. Organic-inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles.

    Science.gov (United States)

    El-Safty, Sherif A; Mekawy, Moataz; Yamaguchi, Akira; Shahat, Ahmed; Ogawa, Kazuyuki; Teramae, Norio

    2010-06-14

    We report a protocol for the direct synthesis of hexagonal silica nanostrands inside anodic alumina membranes using cationic surfactants as templates. When coated with layers of trimethylsilyl moieties, the nanostrands were a powerful tool for the ultrafine filtration of noble metal and semiconductor nanoparticles.

  20. Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Svoboda, Milan

    A 424, 1-2 (2006), s. 97-104 ISSN 0921-5093 R&D Projects: GA AV ČR(CZ) 1QS200410502; GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained microstructure * ECAP * fatigue Subject RIV: JG - Metallurgy Impact factor: 1.490, year: 2006

  1. Stability of Microstructure of Ultrafine-Grained Copper Under Fatigue and Thermal Exposition

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Pantělejev, L.; Man, O.

    2011-01-01

    Roč. 2011, č. 47 (2011), 476–482 ISSN 0039-2103 Institutional research plan: CEZ:AV0Z20410507 Keywords : equal channel angular pressing * stability of ultrafine-grained microstructure * fatigue Subject RIV: JG - Metallurgy Impact factor: 1.103, year: 2011

  2. Preparation of Ultra-fine Calcium Carbonate by a Solvent-free ...

    African Journals Online (AJOL)

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  3. Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Navrátilová, Lucie; Bokůvka, O.

    2011-01-01

    Roč. 528, - (2011), s. 7036-7040 ISSN 0921-5093 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained microstructure * ultrasonic fatigue * crack initiation * copper Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.003, year: 2011

  4. An evaluation of creep behavior in ultrafine-grained aluminum alloys processed by ECAP

    Czech Academy of Sciences Publication Activity Database

    Kawasaki, M.; Sklenička, Václav; Langdon, T. G.

    2010-01-01

    Roč. 45, č. 1 (2010), s. 271-274 ISSN 0022-2461 Institutional research plan: CEZ:AV0Z20410507 Keywords : creep * ultrafine-grained material * severe plastic deformation * equal-channel angular pressing Subject RIV: JG - Metallurgy Impact factor: 1.855, year: 2010

  5. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    Science.gov (United States)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  6. Ultrafine and Fine Particles and Hospital Admissions in Central Europe Results from the UFIREG Study

    Czech Academy of Sciences Publication Activity Database

    Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostál, Miroslav; Pastorková, Anna; Bastian, S.; Cyrys, J.; Zscheppang, A.; Kolodnitská, T.; Peters, A.

    2016-01-01

    Roč. 194, č. 10 (2016), s. 1233-1241 ISSN 1073-449X Institutional support: RVO:68378041 Keywords : ultrafine particles * particulate matter * hospital admissions * respiratory Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 13.204, year: 2016

  7. Microstructure changes in superplastically deformed ultrafine-grained Al-3Mg-0.2Sc alloy

    Czech Academy of Sciences Publication Activity Database

    Král, Petr; Dvořák, Jiří; Kvapilová, Marie; Horita, Z.; Sklenička, Václav

    2015-01-01

    Roč. 5, č. 3 (2015), s. 306-312 ISSN 2218-5046 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : ultrafine-grained microstructure * aluminium alloy * equal-channel angular pressing * electron back scatter diffraction Subject RIV: JJ - Other Materials

  8. Study of thermal stability of ultrafine-grained copper by means of electron back scattering diffraction

    Czech Academy of Sciences Publication Activity Database

    Man, O.; Pantělejev, L.; Kunz, Ludvík

    2010-01-01

    Roč. 51, č. 2 (2010), s. 209-213 ISSN 1345-9678 R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultra-fine grained copper * thermal stability of microstructure * electron back scattering diffraction * grain size * texture Subject RIV: JG - Metallurgy Impact factor: 0.779, year: 2010

  9. Fatigue behaviour of ultrafine-grained copper in very high cycle fatigue regime

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Bokůvka, O.

    2008-01-01

    Roč. 15, č. 4 (2008), s. 1-5 ISSN 1335-0803 R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : very high cycle fatigue * ultrafine-grained structure * ECAP * Copper Subject RIV: JG - Metallurgy

  10. Ultrafine particles of Ni and FeCr studied by positron annihilation

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, N.J.; Sethi, S.A.

    1995-01-01

    Ultrafine particles of Ni and Fe80Cr20 have been produced by the gas condensation technique. After surface oxidation the paticles were heated in a reducing H2 atmosphere and positron lifetime and Doppler broadening measurements were carried out. Reduction of the oxide on the Ni powder takes place...

  11. Ultrafine-grained Al composites reinforced with in-situ Al3Ti filaments

    Czech Academy of Sciences Publication Activity Database

    Krizik, P.; Balog, M.; Nosko, M.; Riglos, M. V. C.; Dvořák, Jiří; Bajana, O.

    2016-01-01

    Roč. 657, MAR (2016), s. 6-14 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Aluminum * Filament * In-situ metal matrix composite * Mechanical properties * Microstructure * Ultrafine-grained Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.094, year: 2016

  12. Controlled Exposure of Humans with Metabolic Syndrome to Concentrated Ultrafine Ambient Particulate Matter Causes Cardiovascular Effects

    Science.gov (United States)

    Background: Many studies have reported associations between PM2.5 and adverse cardiovascular effects. However there is increased concern that ultrafine PM (aerodynamic diameter less than 0.1 micron) may be disproportionately toxic relative to the 0.1 to 2.5 micron fraction of PM2...

  13. Synthesis of Magnetic Ultrafine Particles from a Ternary Gaseous Mixture Involving Cobalt Tricarbonyl Nitrosyl

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Sakano, H.; Murafa, Nataliya; Šubrt, Jan

    2014-01-01

    Roč. 27, č. 46 (2014), s. 477-483 ISSN 0914-9244 Institutional support: RVO:61388980 Keywords : gas phase photochemical reaction * magnetic ultrafine particle * cobalt tricarbonyl nitrosyl * tetraethylgermane * propenyltrimethylsilane Subject RIV: CA - Inorganic Chemistry Impact factor: 1.055, year: 2014

  14. Electrospun polycaprolactone scaffolds under strain and their application in cartilage tissue engineering

    Science.gov (United States)

    Nam, Jin

    Electrospinning is a promising fabrication method for three dimensional tissue engineering scaffolds due to its ability to produce a nano-/micro-sized non-woven fibrous structure which resembles the natural extracellular matrix. We investigated the mechanical behavior of two different electrospun microstructures. Polycaprolactone (PCL) fibers with or without "point-bonding" exhibited different deformation behaviors having significant biomedical consequences. While fibers with point-bonded structure failed due to the generation of voids by the fracture of fiber interconnections under strain, fibers without point-bonds produced a 'bamboo' structure with fiber joining visible at higher levels of strain. In addition, gelatin and PCL were electrospun and the residual solvent contents were systematically investigated. A simple and effective means of reducing residual solvent content was developed. The interaction between these electrospun matrices and chondrocytic cells were compared to other topographies having the same chemistry. Electrospun polycaprolactone fibers supported better proliferation and extracellular matrix production than the corresponding semi-porous and dense surfaces and even, at some time points, glass surfaces. The intrinsic capability of electrospinning to produce high porosity appears to offset the relative hydrophobicity of polycaprolactone resulting in a more uniform cell seeding. Electrospun fibers induced a higher level of glycosaminoglycans (GAG) production by providing a 'dynamic scaffold' in which chondrocytes are able to maintain a morphology associated with the appropriate phenotype. Finally, based on this study, a method producing macro-pores within an electrospun scaffold was developed. With this method, not only can cellular infiltration into a thick electrospun scaffold be facilitated, but scaffolds having designed, anisotropic structures can be produced that better approximate the final tissue.

  15. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.

    Science.gov (United States)

    Brouwer, Derk H; Gijsbers, José H J; Lurvink, Marc W M

    2004-07-01

    Recently, toxicological and epidemiological studies on health effects related to particle exposure suggest that 'ultrafine particles' (particles with an aerodynamic diameter of measuring exposures against mass alone is not sufficient. It is also necessary to consider exposures against surface area and number concentration. From earlier research it was hypothesized that results on number concentration and particle distributions may vary with distance to the source, limiting the reliability of estimates of personal exposure from results which were obtained using static measurement equipment. Therefore, a workplace study was conducted to explore the performance of measurement methods in a multi-source emission scenario as part of a sampling strategy to estimate personal exposure. In addition, a laboratory study was conducted to determine possible influences of both distance to source and time course on particle number concentration and particle size distribution. In both studies different measurement equipment and techniques were used to characterize (total) particle number concentration. These included a condensation particle counter (CPC), a scanning mobility particle sizer (SMPS) and an electrical low pressure impactor (ELPI). For the present studies CPC devices seemed to perform well for the identification of particle emission sources. The range of ultrafine particle number concentration can be detected by both SMPS and ELPI. An important advantage of the ELPI is that aerosols with ultrafine sizes can be collected for further analysis. Specific surface area of the aerosols can be estimated using gas adsorption analysis; however, with this technique ultrafine particles cannot be distinguished from particles with non-ultrafine sizes. Consequently, estimates based on samples collected from the breathing zone and scanning electron microscopic analysis may give a more reliable estimate of the specific surface area of the ultrafine particles responsible for personal

  16. Immobilization of Rhodococcus erythropolis B4 on radiation crosslinked poly(vinylpyrrolidone) hydrogel: Application to the degradation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Djefal-Kerrar, A. [Division of Nuclear Applications, Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon BP-399 Alger-gare, Algiers (Algeria)], E-mail: kerasdjef@yahoo.fr; Gais, S.; Ouallouche, K.; Nacer Khodja, A.; Mahlous, M. [Division of Nuclear Applications, Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon BP-399 Alger-gare, Algiers (Algeria); Hacene, H. [Biological Sciences Institute, Science and Technology University Houari Boumediene, Algiers (Algeria)

    2007-12-15

    A poly(vinylpyrrolidone) (PVP) hydrogel crosslinked by gamma radiation was used to immobilize, by adsorption, Rhodococcus erythropolis B4 strain. Immobilized cells were tested for their capacity to degrade naphthalene and anthracene, under aerobic conditions. The results showed that, the strain fixed is capable of growing in the presence of naphthalene or anthracene as a unique source of carbon. It was also shown that, the fixed strain can be preserved by freeze-drying for further use. The biodegradation capacity was improved during the second use.

  17. Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36 deg. YX LiTaO3 Surface Acoustic Wave For Hydrogen Gas Sensing Applications

    International Nuclear Information System (INIS)

    Chee, Pei Song; Arsat, Rashidah; He Xiuli; Arsat, Mahyuddin; Wlodarski, Wojtek; Kalantar-zadeh, Kourosh

    2011-01-01

    Poly-vinyl-pyrrolidone (PVP)/Multiwall Carbon Nanotubes (MWNTs) based Surface Acoustic Wave (SAW) sensors are fabricated and characterized, and their performances towards hydrogen gas are investigated. The PVP/MWNTs fibers composite are prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material is observed. From the dynamic response, frequency shifts of 530 Hz (1%H 2 ) and 11.322 kHz (0.25%H 2 ) are recorded for the sensors contain of 1.525 g and 1.025 g PVP concentrations, respectively.

  18. Immobilization of Rhodococcus erythropolis B4 on radiation crosslinked poly(vinylpyrrolidone) hydrogel: Application to the degradation of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Djefal-Kerrar, A.; Gais, S.; Ouallouche, K.; Nacer Khodja, A.; Mahlous, M.; Hacène, H.

    2007-12-01

    A poly(vinylpyrrolidone) (PVP) hydrogel crosslinked by gamma radiation was used to immobilize, by adsorption, Rhodococcus erythropolis B4 strain. Immobilized cells were tested for their capacity to degrade naphthalene and anthracene, under aerobic conditions. The results showed that, the strain fixed is capable of growing in the presence of naphthalene or anthracene as a unique source of carbon. It was also shown that, the fixed strain can be preserved by freeze-drying for further use. The biodegradation capacity was improved during the second use.

  19. Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: A greener approach

    International Nuclear Information System (INIS)

    Lahiri, Susanta; Sarkar, Soumi

    2007-01-01

    An environmentally benign method to separate iron and cobalt has been developed using a safe chemical, polyvinylpyrrolidone (PVP). The method involves dialysis of PVP-Fe and PVP-Co complexes against triple-distilled water. 59 Fe and 60 Co were used as radioactive tracers of iron and cobalt throughout the experiment. No other chemicals are required for clean separation of cobalt from iron. The optimum condition for separation has been obtained at pH 5 using 10% aqueous solution of PVP. The method is applicable from trace scale to macro-scale. Very high separation factors have been obtained

  20. Immobilization of Rhodococcus erythropolis B4 on radiation crosslinked poly(vinylpyrrolidone) hydrogel: Application to the degradation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Djefal-Kerrar, A.; Gais, S.; Ouallouche, K.; Nacer Khodja, A.; Mahlous, M.; Hacene, H.

    2007-01-01

    A poly(vinylpyrrolidone) (PVP) hydrogel crosslinked by gamma radiation was used to immobilize, by adsorption, Rhodococcus erythropolis B4 strain. Immobilized cells were tested for their capacity to degrade naphthalene and anthracene, under aerobic conditions. The results showed that, the strain fixed is capable of growing in the presence of naphthalene or anthracene as a unique source of carbon. It was also shown that, the fixed strain can be preserved by freeze-drying for further use. The biodegradation capacity was improved during the second use

  1. Release of ultrafine particles from three simulated building processes

    International Nuclear Information System (INIS)

    Kumar, Prashant; Mulheron, Mike; Som, Claudia

    2012-01-01

    Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5–560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near–steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri–modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei ( 4 cm −3 . These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and ‘dry’ and ‘wet’ recycling events were measured as ∼0.77, 19.1, 22.7 and 1.76 (×10 4 ) cm −3 , respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; ∼95, 79, 73 and 90% of total PNCs, and ∼71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for

  2. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    International Nuclear Information System (INIS)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-01-01

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET

  3. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    Science.gov (United States)

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  4. Studies of magnetic alginate-based electrospun matrices crosslinked with different methods for potential hyperthermia treatment.

    Science.gov (United States)

    Chen, Yen-Hsuan; Cheng, Chi-Hui; Chang, Wan-Ju; Lin, Yi-Ching; Lin, Feng-Huei; Lin, Jui-Che

    2016-05-01

    The magnetic electrospun mats were lately established as an innovative biomaterial for hyperthermic cancer treatment. Unlike those surface-modified magnetic nanoparticles that may not firmly adhere onto the tumor for long-term duration, the magnetic mats with nanofibrous structure can promote cell adhesion and kill the tumor directly within an alternating magnetic field. However, most magnetic electrospun mats were fabricated using non-biodegradable polymers and organic solvents, causing the problems of removal after therapy and the suspected biotoxicity associated with residual solvent. Alginate (SA) was utilized in this investigation as the main material for electrospinning because of being biodegradable and water-soluble. The alginate-based electrospun mats were then treated by an ionic or a covalent crosslinking method, and then followed by chelation with Fe(2+)/Fe(3+) for chemical coprecipitation of Fe3O4 magnetic nanoparticles. Significant less cytotoxicity was noted on both liquid extracts from the ionic-crosslinked (Fe3O4-SA/PEO) and covalent-crosslinked (Fe3O4-SA/PVA) magnetic electrospun mats as well as the surface of Fe3O4-SA/PVA. In vitro hyperthermia assay indicated that the covalent-crosslinked magnetic alginate-based mats reduced tumor cell viability greater than Fe3O4 nanoparticles. Such magnetic electrospun mats are of potential for hyperthermia treatment by endoscopic/surgical delivery as well as serving as a supplementary debridement treatment after surgical tumor removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    Science.gov (United States)

    Xiang, Chunhui; Frey, Margaret W.

    2016-01-01

    Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats. PMID:28773397

  6. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells.

    Science.gov (United States)

    Zhao, Yahong; Gong, Jiahuan; Niu, Changmei; Wei, Ziwei; Shi, Jiaqi; Li, Guohui; Yang, Yumin; Wang, Hongbo

    2017-12-01

    Graphene (Gr) has been made of various forms used for repairing peripheral nerve injury with favorable electroactivity, however, graphene-based scaffolds in peripheral nerve regeneration are still rarely reported due to the difficulty of realizing uniform dispersion of graphene and electroactive materials at nanoscale as well as lacking biocompatibility. In this paper, graphene-silk fibroin (SF) composite nanofiber membranes with different mass ratios were prepared via electrospinning. Microscopic observation revealed that electrospun Gr/SF membranes had a nanofibrous structure. Electrochemical analysis provided electroactivity characterization of the Gr/SF membranes. The physiochemical results showed that the physiochemical properties of electrospun Gr/SF membranes could be changed by varying Gr concentration. Swelling ratio and contact angle measurements confirmed that electrospun Gr/SF membranes possessed large absorption capacity and hydrophilic surface, and the mechanical property was improved with increasing Gr concentration. Additionally, in-vitro cytotoxicity with L929 revealed that all the electrospun Gr/SF membranes are biocompatible. Moreover, the morphology and quantity showed that the membranes supported the survival and growth of the cultured Schwann cells. Collectively, all of the results suggest that the electrospun Gr/SF membranes combine the excellent electrically conductivity and mechanical strength of the graphene with biocompatibility property of silk to mimic the natural neural cell micro-environment for nerve development.

  7. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    Directory of Open Access Journals (Sweden)

    Chunhui Xiang

    2016-04-01

    Full Text Available Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats.

  8. Controlled biomineralization of electrospun poly(ε-caprolactone) fibers to enhance their mechanical properties.

    Science.gov (United States)

    Xie, Jingwei; Zhong, Shaoping; Ma, Bing; Shuler, Franklin D; Lim, Chwee Teck

    2013-03-01

    Electrospun polymeric fibers have been investigated as scaffolding materials for bone tissue engineering. However, their mechanical properties, and in particular stiffness and ultimate tensile strength, cannot match those of natural bones. The objective of the study was to develop novel composite nanofiber scaffolds by attaching minerals to polymeric fibers using an adhesive material - the mussel-inspired protein polydopamine - as a "superglue". Herein, we report for the first time the use of dopamine to regulate mineralization of electrospun poly(ε-caprolactone) (PCL) fibers to enhance their mechanical properties. We examined the mineralization of the PCL fibers by adjusting the concentration of HCO(3)(-) and dopamine in the mineralized solution, the reaction time and the surface composition of the fibers. We also examined mineralization on the surface of polydopamine-coated PCL fibers. We demonstrated the control of morphology, grain size and thickness of minerals deposited on the surface of electrospun fibers. The obtained mineral coatings render electrospun fibers with much higher stiffness, ultimate tensile strength and toughness, which could be closer to the mechanical properties of natural bone. Such great enhancement of mechanical properties for electrospun fibers through mussel protein-mediated mineralization has not been seen previously. This study could also be extended to the fabrication of other composite materials to better bridge the interfaces between organic and inorganic phases. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gui-fang, E-mail: guifang777@163.com; Zhang, Zi-dong, E-mail: 1986zzd@163.com; Dang, Feng, E-mail: dangfeng@sdu.edu.cn; Cheng, Chuan-bing, E-mail: 807033063@qq.com; Hou, Chuan-xin, E-mail: 710313782@qq.com; Liu, Si-da, E-mail: superliustar@hotmail.com

    2016-08-15

    BaFe{sub 12}O{sub 19} fibers and hollow fibers were successfully prepared by electrospun and co-electrospun. A very interesting result appeared in this study that hollow fibers made by co-electrospun showed low coercivity values of a few hundred oersteds, compared with the coercivity values of more than thousand oersteds for the fibers made by electrospun. So the hollow fibers with high saturation magnetization (M{sub s}) and while comparatively low coercivity (H{sub c}) exhibited strong magnetism and basically showed soft character. And this character for hollow fibers will lead to increase of the permeability for the samples which is favorable for impedance matching in microwave absorption. So these hollow fibers are promised to have use in a number of applications, such as switching and sensing applications, electromagnetic materials, microwave absorber. - Highlights: • BaFe{sub 12}O{sub 19} fibers were prepared via electrospinning successfully. • The coercivity has a value of a few hundred oersteds for the hollow fibers made by coaxial electrospun. • BaFe{sub 12}O{sub 19} with high saturation magnetization and low coercivity shows great potential in microwave absorbing application.

  10. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  11. The Effect of Ultrafine Magnesium Hydroxide on the Tensile Properties and Flame Retardancy of Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Zhiping Wu

    2014-01-01

    Full Text Available The effect of ultrafine magnesium hydroxide (UMH and ordinary magnesium hydroxide (OMH on the tensile properties and flame retardancy of wood plastic composites (WPC were investigated by tensile test, oxygen index tester, cone calorimeter test, and thermogravimetric analysis. The results showed that ultrafine magnesium hydroxide possesses strengthening and toughening effect of WPC. Scanning electron micrograph (SEM of fracture section of samples provided the positive evidence that the tensile properties of UMH/WPC are superior to that of WPC and OMH/WPC. The limited oxygen index (LOI and cone calorimeter test illustrated that ultrafine magnesium hydroxide has stronger flame retardancy and smoke suppression effect of WPC compared to that of ordinary magnesium hydroxide. The results of thermogravimetric analysis implied that ultrafine magnesium hydroxide can improve the char structure which plays an important role in reducing the degradation speed of the inner matrix during combustion process and increases the char residue at high temperature.

  12. Electrospun polymeric dressings functionalized with antimicrobial peptides and collagen type I for enhanced wound healing

    Science.gov (United States)

    Felgueiras, H. P.; Amorim, M. T. P.

    2017-10-01

    Modern wound dressings combine medical textiles with active compounds that stimulate wound healing while protecting against infection. Electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The unique diverse function and architecture of antimicrobial peptides (AMPs) has attracted considerable attention as a tool for the design of new anti-infective drugs. Functionalizing electrospun wound dressings with these AMPs is nowadays being researched. In the present work, we explore these new systems by highlighting the most important characteristics of electropsun wound dressings, revealing the importance of AMPs to wound healing, and the methods available to functionalize the electrospun mats with these molecules. The combined therapeutic potential of collagen type I and these AMP functionalized dressings will be highlighted as well; the significance of these new strategies for the future of wound healing will be clarified.

  13. Dehydration driven changes in the structure and mechanical behavior of electrospun poly (vinyl alcohol) nanofibers

    International Nuclear Information System (INIS)

    Bansal, Ankita; Sinha, Arvind

    2012-01-01

    Electrospun nanofibers of poly (vinyl alcohol) (PVA) are well known for their possible application in different fields, ranging from packaging to tissue engineering. However, biomedical application of these nanofibers gets limited due to its rapid disintegration in water, causing mechanical instability. Addressing this issue, the present manuscript reports ethanol induced dehydration of electrospun PVA nanofibers, and its effects on the structure and mechanical properties of the electrospun system. A systematic variation in the structure and mechanical stability of nanofibers as a function of PVA concentration has also been established in the both hydrated and dehydrated states. - Highlights: ► Study reports structure-property correlation of dehydrated PVA nanofibers. ► Results confirm symmetrical reversal of properties in two states. ► Experimental results are in confirmation with the fusion model of nanofibers.

  14. Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers

    Science.gov (United States)

    Bakar, S. S. S.; Fong, K. C.; Eleyas, A.; Nazeri, M. F. M.

    2018-03-01

    Currently, electrospinning is a very famous technique and widely used for forming polymer nanofibers. In this paper, the Polyacrylonitrile (PAN) nanofibers were prepared in concentration of 10wt% with varied processing parameters that can affect the properties of PAN fiber in term of fiber diameter and electrical conductivity was presented. Voltage of 10, 15 and 20 kV with PAN flow rate of 1 electrospun PAN fibers were then undergo pyrolysis at 800°C for 30 minutes. The resultant PAN nanofibers were then analysed by SEM, XRD and four point probe test after pyrolysis process. SEM image show continuos uniform and smooth surface fibrous structure of electrospun PAN fibers with average diameter of 1.81 μm. The fiber morphology is controlled by manipulating the processing parameters of electrospinning process. The results showed that the resistance of electrospun PAN fibers decreases as the processing parameter changes by increasing the applied voltage and flow rate of electrospinning.

  15. Robust fabrication of electrospun-like polymer mats to direct cell behaviour

    International Nuclear Information System (INIS)

    Ballester-Beltrán, José; Lebourg, Myriam; Capella, Hector; Diaz Lantada, Andres; Salmerón-Sánchez, Manuel

    2014-01-01

    Currently, cell culture systems that include nanoscale topography are widely used in order to provide cells additional cues closer to the in vivo environment, seeking to mimic the natural extracellular matrix. Electrospinning is one of the most common techniques to produce nanofiber mats. However, since many sensitive parameters play an important role in the process, a lack of reproducibility is a major drawback. Here we present a simple and robust methodology to prepare reproducible electrospun-like samples. It consists of a polydimethylsiloxane mold reproducing the fiber pattern to solvent-cast a polymer solution and obtain the final sample. To validate this methodology, poly(L-lactic) acid (PLLA) samples were obtained and, after characterisation, bioactivity and ability to direct cell response were assessed. C2C12 myoblasts developed focal adhesions on the electrospun-like fibers and, when cultured under myogenic differentiation conditions, similar differentiation levels to electrospun PLLA fibers were obtained. (papers)

  16. Chemistry on electrospun polymeric nanofibers: merely routine chemistry or a real challenge?

    Science.gov (United States)

    Agarwal, Seema; Wendorff, Joachim H; Greiner, Andreas

    2010-08-03

    Nanofiber-based non-wovens can be prepared by electrospinning. The chemical modification of such nanofibers or chemistry using nanofibers opens a multitude of application areas and challenges. A wealth of chemistry has been elaborated in recent years on and with electrospun nanofibers. Known methods as well as new methods have been applied to modify the electrospun nanofibers and thereby generate new materials and new functionalities. This Review summarizes and sorts the chemistry that has been reported in conjunction with electrospun nanofibers. The major focus is on catalysis and nanofibers, enzymes and nanofibers, surface modification for biomedical and specialty applications, coatings of fibers, crosslinking, and bulk modifications. A critical focus is on the question: what could make chemistry on or with nanofibers different from bulk chemistry? Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Protection of Vine Plants against Esca Disease by Breathable Electrospun Antifungal Nonwovens.

    Science.gov (United States)

    Buchholz, Viola; Molnar, Melanie; Wang, Hui; Reich, Steffen; Agarwal, Seema; Fischer, Michael; Greiner, Andreas

    2016-09-01

    The harmful Esca disease in vine plants caused by wood-inhabiting fungi including Phaeomoniella chlamydospora (Pch) is spreading all across the world. This disease leads to poor vine crops and a slow decline or to a sudden dieback of the vine plants. The pruning wounds of vine plants are the main entry point for Pch. While model experiments with aerosol particles recommend electrospun nonwovens as a suitable barrier to block Pch, tests with living spores show clearly that only electrospun fibrous nonwovens do not prevent Pch invasion. However it is found, that with antifungal additives electrospun nonwovens could be applied successfully for blocking of Pch to infect the substrate. Thereby, a highly useful concept for the protection of vine plants against Esca disease is provided which could also serve as a concept for related plant diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  19. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach

    International Nuclear Information System (INIS)

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-01-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m 3 (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  20. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach

    Energy Technology Data Exchange (ETDEWEB)

    Uyar, Tansel [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Çökeliler, Dilek, E-mail: cokeliler@baskent.edu.tr [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Doğan, Mustafa [Department of Electrical and Electronics Engineering, Başkent University, Ankara 06180 (Turkey); Koçum, Ismail Cengiz [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Karatay, Okan [Department of Electrical and Electronics Engineering, Başkent University, Ankara 06180 (Turkey); Denkbaş, Emir Baki [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m{sup 3} (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was

  1. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells

    International Nuclear Information System (INIS)

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-01-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9 days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. - Highlights: • A series of peptide-modified PELCL electrospun membranes were prepared. • Hemocompatibility of the membranes was greatly improved by the modification. • QK-modified PELCL membrane promoted VECs proliferation more significantly. • REDV-modified PELCL membrane was the most favorable for VEC adhesion.

  2. Morphological Control of Mesoporosity and Nanoparticles within Co3O4-CuO Electrospun Nanofibers: Quantum Confinement and Visible Light Photocatalysis Performance.

    Science.gov (United States)

    Pradhan, Amaresh C; Uyar, Tamer

    2017-10-18

    The one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co 3 O 4 -CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co 3 O 4 -CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co 3 O 4 -CuO NFs but also single mesoporous Co 3 O 4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co 3 O 4 nanofibers framework (Co 3 O 4 -CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co 3 O 4 -CuO NFs is due to the internal charge transfer between Co 2+ to Co 3+ and Cu 2+ , proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co 3 O 4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co 3 O 4 -CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co 3 O 4 -CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co 3 O 4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic

  3. Wet-Laid Meets Electrospinning: Nonwovens for Filtration Applications from Short Electrospun Polymer Nanofiber Dispersions.

    Science.gov (United States)

    Langner, Markus; Greiner, Andreas

    2016-02-01

    Dispersions of short electrospun fibers are utilized for the preparation of nanofiber nonwovens with different weight area on filter substrates. The aerosol filtration efficiencies of suspension-borne nanofiber nonwovens are compared to nanofiber nonwovens prepared directly by electrospinning with similar weight area. The filtration efficiencies are found to be similar for both types of nonwovens. With this, a large potential opens for processing, design, and application of new nanofiber nonwovens obtained by wet-laying of short electrospun nanofiber suspensions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix.

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    Full Text Available Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK and focal adhesion kinase (FAK and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63

  5. Tunable engineered skin mechanics via coaxial electrospun fiber core diameter.

    Science.gov (United States)

    Blackstone, Britani Nicole; Drexler, Jason William; Powell, Heather Megan

    2014-10-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo.

  6. Electrospun gelatin/polyurethane blended nanofibers for wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Eun; Heo, Dong Nyoung; Lee, Jung Bok; Kwon, Il Keun [Department of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jong Ryul; Park, Sang Hyuk [Conservative Dentistry and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jeon, Seong Ho, E-mail: kwoni@khu.ac.k [College of Pharmacy, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2009-08-15

    In this study, we prepared a blended nanofiber scaffold using synthetic and natural polymers, polyurethane (PU) and gelatin respectively, using the electrospinning method to prepare a material for wound dressing. In order to confirm the properties of this gelatin/PU blended nanofiber scaffold, we performed scanning electron microscopy, atomic force microscopy, attenuated total reflectance Fourier-transform infrared spectroscopy, thermal gravimetric analysis, contact angle, water uptake, mechanical property, recovery, and degradation tests, and cellular response. The results obtained indicate that the mean diameter of these nanofibers was uniformly electrospun and ranged from 0.4 to 2.1{mu}m. According to the results, when the amount of gelatin in the blended solution decreased, the contact angle increased and water uptake of the scaffold decreased concurrently. In the mechanical tests, the blended nanofibrous scaffolds were elastic, and elasticity increased as the total amount of PU increased. Moreover, as the total amount of gelatin increased, the cell proliferation increased with the same amount of culture time. Therefore, this gelatin/PU blended nanofiber scaffold has potential application for use as a wound dressing.

  7. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Directory of Open Access Journals (Sweden)

    Ick-Soo Kim

    2011-10-01

    Full Text Available Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM. The water contact angle of silk/tetramethoxysilane (TMOS composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA biocomposites is prepared by means of an effective calcium and phosphate (Ca–P alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering.

  8. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  9. A multilayered electrospun graft as vascular access for hemodialysis.

    Science.gov (United States)

    Radakovic, D; Reboredo, J; Helm, M; Weigel, T; Schürlein, S; Kupczyk, E; Leyh, R G; Walles, H; Hansmann, J

    2017-01-01

    Despite medical achievements, the number of patients with end-stage kidney disease keeps steadily raising, thereby entailing a high number of surgical and interventional procedures to establish and maintain arteriovenous vascular access for hemodialysis. Due to vascular disease, aneurysms or infection, the preferred access-an autogenous arteriovenous fistula-is not always available and appropriate. Moreover, when replacing small diameter blood vessels, synthetic vascular grafts possess well-known disadvantages. A continuous multilayered gradient electrospinning was used to produce vascular grafts made of collagen type I nanofibers on luminal and adventitial graft side, and poly-ɛ-caprolactone as medial layer. Therefore, a custom-made electrospinner with robust environmental control was developed. The morphology of electrospun grafts was characterized by scanning electron microscopy and measurement of mechanical properties. Human microvascular endothelial cells were cultured in the graft under static culture conditions and compared to cultures obtained from dynamic continuous flow bioreactors. Immunofluorescent analysis showed that endothelial cells form a continuous luminal layer and functional characteristics were confirmed by uptake of acetylated low-density-lipoprotein. Incorporation of vancomycin and gentamicin to the medial graft layer allowed antimicrobial inhibition without exhibiting an adverse impact on cell viability. Most striking a physiological hemocompatibility was achieved for the multilayered grafts.

  10. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization

    Science.gov (United States)

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  11. Proliferation of Genetically Modified Human Cells on Electrospun Nanofiber Scaffolds

    Directory of Open Access Journals (Sweden)

    Mandula Borjigin

    2012-01-01

    Full Text Available Gene editing is a process by which single base mutations can be corrected, in the context of the chromosome, using single-stranded oligodeoxynucleotides (ssODNs. The survival and proliferation of the corrected cells bearing modified genes, however, are impeded by a phenomenon known as reduced proliferation phenotype (RPP; this is a barrier to practical implementation. To overcome the RPP problem, we utilized nanofiber scaffolds as templates on which modified cells were allowed to recover, grow, and expand after gene editing. Here, we present evidence that some HCT116-19, bearing an integrated, mutated enhanced green fluorescent protein (eGFP gene and corrected by gene editing, proliferate on polylysine or fibronectin-coated polycaprolactone (PCL nanofiber scaffolds. In contrast, no cells from the same reaction protocol plated on both regular dish surfaces and polylysine (or fibronectin-coated dish surfaces proliferate. Therefore, growing genetically modified (edited cells on electrospun nanofiber scaffolds promotes the reversal of the RPP and increases the potential of gene editing as an ex vivo gene therapy application.

  12. Electrospun fiber membranes enable proliferation of genetically modified cells

    Science.gov (United States)

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  13. Biomedical applications of ferulic acid encapsulated electrospun nanofibers.

    Science.gov (United States)

    Vashisth, Priya; Kumar, Naresh; Sharma, Mohit; Pruthi, Vikas

    2015-12-01

    Ferulic acid is a ubiquitous phytochemical that holds enormous therapeutic potential but has not gained much consideration in biomedical sector due to its less bioavailability, poor aqueous solubility and physiochemical instability. In present investigation, the shortcomings associated with agro-waste derived ferulic acid were addressed by encapsulating it in electrospun nanofibrous matrix of poly (d,l-lactide-co-glycolide)/polyethylene oxide. Fluorescent microscopic analysis revealed that ferulic acid predominantly resides in the core of PLGA/PEO nanofibers. The average diameters of the PLGA/PEO and ferulic acid encapsulated PLGA/PEO nanofibers were recorded as 125 ± 65.5 nm and 150 ± 79.0 nm, respectively. The physiochemical properties of fabricated nanofibers are elucidated by IR, DSC and NMR studies. Free radical scavenging activity of fabricated nanofibers were estimated using di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxicity of ferulic acid encapsulated nanofibers against hepatocellular carcinoma (HepG2) cells. These ferulic acid encapsulated nanofibers could be potentially explored for therapeutic usage in biomedical sector.

  14. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers

    International Nuclear Information System (INIS)

    Meng, Long-Yue; Han, Shunyu; Jiang, Nanzhe; Meng, Wan

    2014-01-01

    In this work, superhydrophobic surfaces were successfully prepared by grafting of octanol on the surface of electrospun silica nanofibers (SNFs). The chemical compositions and microstructures of the prepared SNFs surfaces were investigated by using N 2 full isotherms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The results indicate that the surface of SNFs changed from being superhydrophilic to superhydrophobic by octanol surface grafting. The contact angle of the octanol-grafted SNFs was close to 150.2° because their surface was modified by –(CH 2 ) 6 –CH 3 groups. The 3D network of SNFs networks and the low surface energy of the alkyl side chains played important roles in creating the superhydrophobic surface of the SNFs. - Highlights: • Superhydrophobic surface was prepared from electrospinning SNFs and by grafting octanol on their surface. • The surface of SNFs changed from superhydrophilic to superhydrophobic. • The CA of MSNFs became 150.2° because of interactions between grafted octyl groups

  15. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji 133002 (China); Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China); Han, Shunyu; Jiang, Nanzhe [Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China); Meng, Wan, E-mail: mengw@ybu.edu.cn [Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China)

    2014-12-15

    In this work, superhydrophobic surfaces were successfully prepared by grafting of octanol on the surface of electrospun silica nanofibers (SNFs). The chemical compositions and microstructures of the prepared SNFs surfaces were investigated by using N{sub 2} full isotherms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The results indicate that the surface of SNFs changed from being superhydrophilic to superhydrophobic by octanol surface grafting. The contact angle of the octanol-grafted SNFs was close to 150.2° because their surface was modified by –(CH{sub 2}){sub 6}–CH{sub 3} groups. The 3D network of SNFs networks and the low surface energy of the alkyl side chains played important roles in creating the superhydrophobic surface of the SNFs. - Highlights: • Superhydrophobic surface was prepared from electrospinning SNFs and by grafting octanol on their surface. • The surface of SNFs changed from superhydrophilic to superhydrophobic. • The CA of MSNFs became 150.2° because of interactions between grafted octyl groups.

  16. Advances in electrospun nanofibers for bone and cartilage regeneration.

    Science.gov (United States)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Balasubramanian, Preethi; Jin, Guorui; Valipouri, Afsaneh; Ramakrishna, Seeram

    2013-07-01

    Regeneration of bone and cartilage tissues has been an important issue for biological repair in the field of regenerative medicine. The rapidly emerging field of tissue engineering holds great promise for repair and generation of functional bone and cartilage substitutes with a combination of biomaterials, cells, drugs and growth factors. Scaffolds play a pivotal role in tissue engineering as they mimic the natural extracellular matrix (ECM) and play an important role in guiding cell adhesion and proliferation, and maintaining the normal phenotype of the tissues. The use of tissue-engineered grafts based on scaffolds has found to be a more effective method than conventional implantations of autograft, allograft, xenograft. In recent years much attention has been given to electrospinning as a feasible and versatile technique for fabrication of nanofibrous scaffolds, with large surface area to volume ratio, high porosity, mechanical properties and physical dimension similar to the ECM of natural tissues. Extensive research has been carried out for fabrication polymeric nanofibrous substrates with incorporation of hydroxyapatite nanoparticles or bone morphogenetic protein molecules for efficient tissue repair. Here we review on the literature of electrospun nanofibrous scaffolds, their modifications, and advances aimed towards the rapid regeneration of bone and cartilage.

  17. Electrospun Composite Nanofibers of Semiconductive Polymers for Coaxial PN Junctions

    Science.gov (United States)

    Serrano, William; Thomas, Sylvia

    The objective of this research is to investigate the conditions under P3HT and Activink, semiconducting polymers, form 1 dimension (1D) coaxial p-n junctions and to characterize their behavior in the presence of UV radiation and organic gases. For the first time, fabrication and characterization of semiconductor polymeric single fiber coaxial arrangements will be studied. Electrospinning, a low cost, fast and reliable method, with a coaxial syringe arrangement will be used to fabricate these fibers. With the formation of fiber coaxial arrangements, there will be investigations of dimensionality crossovers e.g., from one-dimensional (1D) to two-dimensional (2D). Coaxial core/shell fibers have been realized as seen in a recent publication on an electrospun nanofiber p-n heterojunction of oxides (BiFeO3 and TiO2, respectively) using the electrospinning technique with hydrothermal method. In regards to organic semiconducting coaxial p-n junction nanofibers, no reported studies have been conducted, making this study fundamental and essential for organic semiconducting nano devices for flexible electronics and multi-dimensional integrated circuits.

  18. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    Science.gov (United States)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-08-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  19. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    Science.gov (United States)

    Scott Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2017-01-01

    A method of manufacturing and/or using a scaffold assembly for stem cell culture and tissue engineering applications is disclosed. The scaffold at least partially mimics a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation that uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  20. Development of Protective Clothing against Nanoparticle Based on Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    M. Faccini

    2012-01-01

    Full Text Available In this paper, the development of efficient protective clothing against nanoparticulate aerosols is presented. Nanofibrous mats of polyamide 6 (PA6 were deposited onto a nonwoven viscose substrate by electrospinning technique. The influence of electrospinning parameters, including solution concentration, viscosity, and conductivity, was studied for the production of nonwovens with controlled fiber diameter showing a size distribution ranging from 66 to 195 nm. By varying several process parameters, textiles with different thickness of the nanofiber layer and thus air permeability were obtained. A hot-press lamination process using a thermoplastic resin as glue was applied to improve the adhesion of the nanofiber layer onto the textile support. After 1500 cycles of repeated compression and torsion, the nanofiber layer was still firmly attached to the support, while mechanical damage is visible in some areas. The penetration of NaCl particles with diameter ranging from 15 to 300 nm through the electrospun textiles was found to be strongly dependent on nanofiber layer thickness. A really thin nanofiber coating provides up to 80% retention of 20 nm size particles and over 50% retention of 200 nm size nanoparticles. Increasing the thickness of the nanofiber mat, the filtration efficiency was increased to over 99% along the whole nanoparticle range. The results obtained highlight the potential of nanofibers in the development of efficient personal protective equipments against nanoparticles.

  1. Size evolution of ultrafine particles: Differential signatures of normal and episodic events.

    Science.gov (United States)

    Joshi, Manish; Khan, Arshad; Anand, S; Sapra, B K

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Load relaxation behavior of ultra-fine grained Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Y.G.; Kim, J.H.; Lee, C.S. [Dept. of Materials Science and Engineering, Pohang Univ. of Science and Technology, Pohang (Korea); Shin, D.H. [Dept. of Metallurgy and Materials Science, Hanyang Univ., Ansan, Gyeonggi-do (Korea); Semiatin, S.L. [Air Force Research Lab., Materials and Mfg. Directorate Wright-Patterson AFB, OH (United States)

    2005-07-01

    In this study, superplastic deformation behavior of ultrafine-grained Ti-6Al-4V alloy was investigated on the basis of the inelastic deformation theory which consists of grain matrix deformation and grain boundary sliding. Specimens with coarse equiaxed grains (11 {mu}m in diameter) were significantly refined ({approx}0.3 {mu}m in diameter) with high angle boundaries after 4 times of isothermal equal channel angular (ECA) pressing at 600 C. Load relaxation test was performed at 600{proportional_to}700 C to enlighten the deformation mechanisms operating at specific temperature and to find optimum superplastic forming conditions for ultrafine-grained structures. Main efforts were devoted to analyze quantitatively the relative amount of each deformation mode, i.e., dislocation glide and grain boundary sliding operating at specific temperature. (orig.)

  3. Tensile behavior of a TRIP-aided ultra-fine grained steel studied by neutron diffraction

    International Nuclear Information System (INIS)

    Asoo, Kazuya; Tomota, Yo; Harjo, Stefanus; Okitsu, Yoshitaka

    2011-01-01

    Tensile behavior of a nano-TRIP steel with 0.4 μm grain size showing tensile strength of 1326 MPa and total elongation of 23% was studied under in situ neutron diffraction. In spite of ultrafine grained structure, this steel realized a high work-hardening leading to a sufficient amount of uniform elongation. In the beginning of tensile deformation, Lueders band appeared similarly to many ultrafine grained materials. The stress induced martensitic transformation was found to occur during the Lueders deformation. A double-peak fitting was applied to the overlapped neutron diffraction profile for martensite and ferrite and then the stress partitioning behavior among ferrite, retained austenite and martensite were tracked during tensile deformation, revealing that the work-hardening after Lueders deformation was caused by higher load sharing of deformation induced martensite. (author)

  4. THE LATTICE PARAMETERS AND RESIDUAL STRESSES IN BULK NANOCRYSTALLINE AND ULTRAFINE-GRAINED TITANIUM

    Directory of Open Access Journals (Sweden)

    Yu. M. Plotnikova

    2017-05-01

    Full Text Available Lattice parameters and residual stresses in the bulk nanocrystalline/ultrafine-grained titanium were studied by X-ray diffraction methods. The investigated samples were prepared using the method of the cryomechanical grain structure fragmentation with multiple rolling at the temperature of liquid nitrogen to the true strain value |e| = 3. Phasic change of the a and c parameters has been found with increasing degree of cryoreduction. This change was stronger for the parameter a. The observed change parameters associated with a relative slip and twinning activity (initial cryo-reduction stage as well as the formation of the nanocrystalline state (at higher degree of deformation. The most likely source of residual stresses arising in titanium at cryorolling is heterogeneous plastic deformation. The production of nanocrystalline / ultrafine-grained titanium using cryomechanical grain fragmentation method is accompanied by the formation of uniform compressive residual stresses in the informative deformable layer of billet.

  5. Study on ultra-fine w-EDM with on-machine measurement-assisted

    International Nuclear Information System (INIS)

    Chen Shuntong; Yang Hongye

    2011-01-01

    The purpose of this study was to develop the on-machine measurement techniques so as to precisely fabricate micro intricate part using ultra-fine w-EDM. The measurement-assisted approach which employs an automatic optical inspection (AOI) is incorporated to ultra-fine w-EDM process to on-machine detect the machining error for next re-machining. The AOI acquires the image through a high resolution CCD device from the contour of the workpiece after roughing in order to further process and recognize the image for determining the residual. This facilitates the on-machine error detection and compensation re-machining. The micro workpiece and electrode are not repositioned during machining. A fabrication for a micro probe of 30-μm diameter is rapidly machined and verified successfully. Based on the proposed technique, on-machine measurement with AOI has been realized satisfactorily.

  6. Principle and equipment of polymer melt differential electrospinning preparing ultrafine fiber

    International Nuclear Information System (INIS)

    Weimin, Yang; Haoyi, Li

    2014-01-01

    Two methods preparing polymer ultrafine fiber have been developed: solution electrospinning and melt electrospinning, among which, solution electrospinning is much simpler to realize in lab or industry. More than 100 institutions have made endeavors to research it and more than 30 thousand papers have been published. However, its industrialization was restricted in some extend because of existence of toxic solvent and low strength caused by small pores. Solventless melt electrospinning is environment friendly, but high melt viscosity, thick fiber diameter, low yield and complex equipment lead to less research on it. Aiming to solving the shortage of traditional needle nozzle equipment, we first proposed a melt differential electrospinning method preparing ultrafine fiber, through which fiber smaller than imicrometer can be produced and a yield of 10-20g/h can be achieved by a needleless nozzle. Further more, principle and equipment of melt differential electrospinning are introduced

  7. Preparation of an ultra-fine, slightly dispersed silver iodide aerosol

    International Nuclear Information System (INIS)

    Poc, Marie-Martine

    1973-01-01

    A silver iodide aerosol was prepared under clean conditions. The method was to react iodine vapor with a silver aerosol in an inert dry atmosphere and in darkness. Great care was taken to avoid contamination from atmosphere air. The ice nucleating properties of the ultrafine AgI aerosol obtained were studied in a cloud mixing chamber: the aerosol was found to be strangely inactive. (author) [fr

  8. Factors influencing creep flow and ductility in ultrafine-grained metals

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Dvořák, Jiří; Král, Petr; Svoboda, Milan; Kvapilová, Marie; Langdon, T. G.

    2012-01-01

    Roč. 558, DEC (2012), s. 403-411 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP108/11/2260; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : creep * ductility * equal-channel angular pressing * ultrafine-grained material Subject RIV: JG - Metallurgy Impact factor: 2.108, year: 2012

  9. Effect of flow characteristics on ultrafine particle emissions from range hoods.

    Science.gov (United States)

    Tseng, Li-Ching; Chen, Chih-Chieh

    2013-08-01

    In order to understand the physical mechanisms of the production of nanometer-sized particulate generated from cooking oils, the ventilation of kitchen hoods was studied by determining the particle concentration, particle size distribution, particle dimensions, and hood's flow characteristics under several cooking scenarios. This research varied the temperature of the frying operation on one cooking operation, with three kinds of commercial cooking oils including soybean oil, olive oil, and sunflower oil. The variations of particle concentration and size distributions with the elevated cooking oil temperatures were presented. The particle concentration increases as a function of temperature. For oil temperatures ranging between 180°C and 210°C, a 5°C increase in temperature increased the number concentration of ultrafine particles by 20-50%. The maximum concentration of ultrafine particles was found to be approximately 6 × 10(6) particles per cm(3) at 260°C. Flow visualization techniques and particle distribution measurement were performed for two types of hood designs, a wall-mounted range hood and an island hood, at a suction flow rate of 15 m(3) min(-1). The flow visualization results showed that different configurations of kitchen hoods induce different aerodynamic characteristics. By comparing the results of flow visualizations and nanoparticle measurements, it was found that the areas with large-scale turbulent vortices are more prone to dispersion of ultrafine particle leakage because of the complex interaction between the shear layers and the suction movement that results from turbulent dispersion. We conclude that the evolution of ultrafine particle concentration fluctuations is strongly affected by the location of the hood, which can alter the aerodynamic features. We suggest that there is a correlation between flow characteristics and amount of contaminant leakage. This provides a comprehensive strategy to evaluate the effectiveness of kitchen hoods

  10. Photochemical synthesis of ultrafine organosilicon particles from trimethyl(2-propynyloxy)silane and carbon disulfide

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Nozawa, R.; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2006-01-01

    Roč. 179, 1-2 (2006), s. 142-148 ISSN 1010-6030 Grant - others:MEXT(JP) 767/15085203 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : ultrafine particles * photo-polymerization * trimethyl(2-propynyloxy)silane * carbon disulfide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.098, year: 2006

  11. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution

    Directory of Open Access Journals (Sweden)

    Zhao Youcai

    2013-12-01

    Full Text Available Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 % were obtained.

  12. Biodegradable Behaviors of Ultrafine-Grained ZE41A Magnesium Alloy in DMEM Solution

    Directory of Open Access Journals (Sweden)

    Jinghua Jiang

    2015-12-01

    Full Text Available The main limitation to the clinical application of magnesium alloys is their too-fast degradation rate in the physiological environment. Bio-corrosion behaviors of the ZE41A magnesium alloy processed by multi-pass equal channel angular pressing (ECAP were investigated in Dulbecco's Modified Eagle Medium (DMEM solution, in order to tailor the effect of grain ultrafining on the biodegradation rate of the alloy implant. Hydrogen evolution tests indicated that a large number of ECAP passes decreased the stable corrosion rate of the alloy after the initial incubation period. Potentiodynamic polarization curves showed that more ECAP passes made the corrosion potential nobler and the corrosion tendency lower. Corroded surfaces of the ECAPed alloy indicated a higher resistance toward localized corrosion due to the homogeneous redistribution of broken second phases on the ultrafine-grained Mg matrix. It suggests that grain ultrafining can decrease the biodegradable rate of the magnesium alloy-containing rare-earth elements and tailor the lifetime of the biodegradable material.

  13. Analysis of Fatigue and Wear Behaviour in Ultrafine Grained Connecting Rods

    Directory of Open Access Journals (Sweden)

    Rodrigo Luri

    2017-07-01

    Full Text Available Over the last few years there has been an increasing interest in the study and development of processes that make it possible to obtain ultra-fine grained materials. Although there exists a large number of published works related to the improvement of the mechanical properties in these materials, there are only a few studies that analyse their in-service behaviour (fatigue and wear. In order to bridge the gap, in this present work, the fatigue and wear results obtained for connecting rods manufactured by using two different aluminium alloys (AA5754 and AA5083 previously deformed by severe plastic deformation (SPD, using Equal Channel Angular Pressing (ECAP, in order to obtain the ultrafine grain size in the processed materials are shown. For both aluminium alloys, two initial states were studied: annealed and ECAPed. The connecting rods were manufactured from the previously processed materials by using isothermal forging. Fatigue and wear experiments were carried out in order to characterize the in-service behaviour of the components. A comparative study of the results was made for both initial states of the materials. Furthermore, Finite Element Modelling (FEM simulations were used in order to compare experimental results with those obtained from simulations. In addition, dimensional wear coefficients were found for each of the aluminium alloys and initial deformation states. This research work aims to progress the knowledge of the behaviour of components manufactured from ultrafine grain materials.

  14. Enhanced radiation tolerance of ultrafine grained Fe–Cr–Ni alloy

    International Nuclear Information System (INIS)

    Sun, C.; Yu, K.Y.; Lee, J.H.; Liu, Y.; Wang, H.; Shao, L.; Maloy, S.A.; Hartwig, K.T.; Zhang, X.

    2012-01-01

    Highlights: ► Ultrafine grained Fe-Cr-Ni alloy was processed by equal channel angular pressing technique. ► The overall Helium bubble density and dislocation loop density were reduced by grain refinement. ► The ultrafine grained microstructure alleviated radiation-induced hardening. - Abstract: The evolutions of microstructure and mechanical properties of Fe–14Cr–16Ni (wt.%) alloy subjected to Helium ion irradiations were investigated. Equal channel angular pressing (ECAP) process was used to significantly reduce the average grain size from 700 μm to 400 nm. At a peak fluence level of 5.5 displacement per atom (dpa), helium bubbles, 0.5–2 nm in diameter, were observed in both coarse-grained (CG) and ultrafine grained (UFG) alloy. The density of He bubbles, dislocation loops, as well as radiation hardening were reduced in the UFG Fe–Cr–Ni alloy comparing to those in its CG counterpart. The results imply that radiation tolerance in bulk metals can be effectively enhanced by refinement of microstructures.

  15. Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens.

    Science.gov (United States)

    Buonanno, Giorgio; Morawska, Lidia

    2015-03-01

    On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators; and (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×10(3) part cm(-3)), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×10(12) part min(-1), that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Sol–gel-derived planar waveguides of Er.sup.3+./sup.: Yb.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. prepared by a polyvinylpyrrolidone-based method.

    Czech Academy of Sciences Publication Activity Database

    Hlásek, T.; Polák, V.; Rubešová, K.; Jakeš, V.; Nekvindová, P.; Jankovský, O.; Mikolášová, D.; Oswald, Jiří

    2016-01-01

    Roč. 80, č. 2 (2016), s. 531-537 ISSN 0928-0707 Institutional support: RVO:68378271 Keywords : sol–gel * polyvinylpyrrolidone * planar waveguide * ytterbium-aluminum garnet * erbium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.575, year: 2016

  17. An in vitro study of bone cells grown on an electrospun scaffold for bone repair and reconstruction

    CSIR Research Space (South Africa)

    Wepener, I

    2012-10-01

    Full Text Available .1007/s10856-012-4751-y Results (Mitochondrial membrane potential) Fig. 4: Mitochondrial membrane measurement of osteoblast cells grown on (a) tissue culture plates (control) and (b) on electrospun scaffolds. Cells grown on electrospun scaffolds did.... (2012), J Mater Sci: Mater Med, DOI 10.1007/s10856-012-4751-y Results (Cell cycle progression) Fig. 6: Histogram representation of osteoclast-like cells grown for 6 days on (a) tissue culture plates (control) and (b) electrospun scaffold. Normal cell...

  18. The Tissue Response and Degradation of Electrospun Poly(ε-caprolactone/Poly(trimethylene-carbonate Scaffold in Subcutaneous Space of Mice

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2014-01-01

    Full Text Available Due to the advantage of controllability on the mechanical property and the degradation rates, electrospun PCL/PTMC nanofibrous scaffold could be appropriate for vascular tissue engineering. However, the tissue response and degradation of electrospun PCL/PTMC scaffold in vivo have never been evaluated in detail. So, electrospun PCL/PTMC scaffolds with different blend ratios were prepared in this study. Mice subcutaneous implantation showed that the continuous degradation of PCL/PTMC scaffolds induced a lasted macrophage-mediated foreign body reaction, which could be in favor of the tissue regeneration in graft.

  19. Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response

    International Nuclear Information System (INIS)

    Venkatsurya, P.K.C; Thein-Han, W.W.; Misra, R.D.K.; Somani, M.C.; Karjalainen, L.P.

    2010-01-01

    Nanograined/ultrafine-grained (NG/UFG) metals provide surfaces that are different from conventional coarse-grained polycrystalline metals because of the high fraction of grain boundaries. In the context of osseointegration of metal implants, grooving of nanograins/ultrafine grains by electrochemical grooving is a potential approach to increase the biomechanical interlocking and anchorage with consequent enhancement of cellular response. The primary objective of the research described here is to advance science and technology of metal implants by making a relative comparison of osteoblast response of grain boundary grooved and planar NG/UFG surfaces. The NG/UFG substrates were obtained using an ingenious concept of controlled phase reversion and the grain boundaries were electrochemically treated to induce grooving of large fraction of grain boundaries of NG/UFG substrate. Experiments on the effect of grooving of grain boundaries of NG/UFG metal indicated that cell attachment, proliferation, viability, morphology, and spread are favorably modulated and significantly different from planar (non-grooved) NG/UFG substrates. Furthermore, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on electrochemically grooved NG/UFG substrate. These observations are indicative of accelerated response of cell-substrate interaction and activity. The differences in the cellular response of planar and grain boundary grooved NG/UFG surface are attributed to favorable surface topography that accelerates the cellular activity.

  20. Determination of thickness and optical constants of solgel derived polyvinylpyrrolidone/ZrO2 films from transmission spectra using different dispersion models.

    Science.gov (United States)

    Jia, Hongbao; Sun, Jinghua; Xu, Yao; Wu, Dong

    2012-10-10

    Transmission measurements have been used to investigate the optical properties of polyvinylpyrrolidone (PVP)/ZrO(2) films synthesized by the solgel route. The optical constants of PVP/ZrO(2) films deposited on quartz substrates were determined by fitting transmission spectra in the wavelength range of 200-800 nm with the Tauc-Lorentz and Cody-Lorentz physical models. Combined with Urbach tail, both models give a good description of transmission data and reveal that refractive index of film slightly decreases with increasing PVP mass fraction. X-ray reflectivity (XRR) measurements were also performed on PVP/ZrO(2) films to complement the thicknesses. The value of film thickness, including interface information from transmission spectra, is consistent with that result obtained from XRR, indicating that fitting transmission spectrum is a high reliable optical characterization.

  1. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    Science.gov (United States)

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  2. Efficacy and tolerability of liposomal polyvinylpyrrolidone-iodine hydrogel for the localized treatment of chronic infective, inflammatory, dermatoses: an uncontrolled pilot study

    Directory of Open Access Journals (Sweden)

    Augustin M

    2017-09-01

    Full Text Available Matthias Augustin,1 Lisa Goepel,2 Arnd Jacobi,2 Bjoern Bosse,3 Stefan Mueller,3 Michael Hopp3 1Department of Dermatology, University-Hospital Freiburg, Freiburg, 2Institute for Health Services Research in Dermatology and Nursing (IVDP, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, 3Mundipharma Research GmbH & Co.KG, Limburg (Lahn, Germany Abstract: Infection is common in many chronic, inflammatory skin conditions but is often difficult to treat, in part due to growing bacterial resistance to antibiotics. Liposomal polyvinylpyrrolidone (PVP-iodine hydrogel has a unique mode of action, combining the antiseptic and anti-inflammatory actions of PVP-iodine with the drug delivery and moisturizing properties of liposomes. We investigated the utility of liposomal PVP-iodine to treat infective dermatoses. In this prospective, single-arm (uncontrolled, open-label Phase II pilot study, patients with acne vulgaris (n=30, atopic dermatitis (n=20, impetigo contagiosa (n=10, and rosacea (n=10 received PVP-iodine (3% hydrogel for ≤4 weeks. Global Clinical Severity score improved for all dermatoses (range: 0.5 for acne vulgaris [p<0.001] to 1.0 for impetigo contagiosa [p=0.011]. Improvements in pain, quality of life, (Freiburg Life Quality Assessment, and Eczema Area and Severity Index scores were also seen. Treatment was well tolerated; most frequent adverse events were burning (14% or itching (9% sensations. Thus, liposomal PVP-iodine hydrogel has potential utility as an effective treatment for inflammatory skin conditions associated with bacterial colonization. Keywords: acne vulgaris, atopic dermatitis, impetigo contagiosa, liposomal PVP-iodine hydrogel, polyvinylpyrrolidone, rosacea

  3. Toxic effect of high concentration of sonochemically synthesized polyvinylpyrrolidone-coated silver nanoparticles on Citrobacter sp. A1 and Enterococcus sp. C1.

    Science.gov (United States)

    Lau, Chew Ping; Abdul-Wahab, Mohd Firdaus; Jaafar, Jafariah; Chan, Giek Far; Abdul Rashid, Noor Aini

    2017-08-01

    Currently, silver nanoparticles (AgNPs) have gained importance in various industrial applications. However, their impact upon release into the environment on microorganisms remains unclear. The aim of this study was to analyze the effect of polyvinylpyrrolidone-capped AgNPs synthesized in this laboratory on two bacterial strains isolated from the environment, Gram-negative Citrobacter sp. A1 and Gram-positive Enterococcus sp. C1. Polyvinylpyrrolidone-capped AgNPs were synthesized by ultrasound-assisted chemical reduction. Characterization of the AgNPs involved UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Citrobacter sp. A1 and Enterococcus sp. C1 were exposed to varying concentrations of AgNPs, and cell viability was determined. Scanning electron microscopy was performed to evaluate the morphological alteration of both species upon exposure to AgNPs at 1000 mg/L. The synthesized AgNPs were spherical in shape, with an average particle size of 15 nm. The AgNPs had different but prominent effects on either Citrobacter sp. A1 or Enterococcus sp. C1. At an AgNP concentration of 1000 mg/L, Citrobacter sp. A1 retained viability for 6 hours, while Enterococcus sp. C1 retained viability only for 3 hours. Citrobacter sp. A1 appeared to be more resistant to AgNPs than Enterococcus sp. C1. The cell wall of both strains was found to be morphologically altered at that concentration. Minute and spherical AgNPs significantly affected the viability of the two bacterial strains selected from the environment. Enterococcus sp. C1 was more vulnerable to AgNPs, probably due to its cell wall architecture and the absence of silver resistance-related genes. Copyright © 2015. Published by Elsevier B.V.

  4. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  5. Electrospun polystyrene fibres on TiO2 nanostructured film to ...

    Indian Academy of Sciences (India)

    layer on SS substrates. This protective bilayer is fabricated from a dip-coated TiO2 layer and an electrospun polystyrene (PS) microfibres. Contact angle (CA) measurements indicate that the produced bilayer has superhydrophobic properties (CA ∼ 148. ◦). 2. Experimental details. 2.1 Synthesis and coating of TiO2 colloidal ...

  6. Electrospun Polyacrylonitrile-Based Nanofibers Maintain Embryonic Stem Cell Stemness via TGF-Beta Signaling.

    Science.gov (United States)

    Liu, Shih-Ping; Lin, Chen-Huan; Lin, Shao-Ji; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Lin, Shinn-Zong; Hsu, Chung Y; Shyu, Woei-Cherng

    2016-04-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are capable of self-renewal and differentiation into any cell type, thus making them the focus of many clinical application studies. Culturing ESCs on mouse embryonic fibroblast-derived and cell-based feeder layers to maintain pluripotency is a standard laboratory procedure. However, xenogeneic contamination and the large amount of time required for feeder cell preparation are two challenges that encourage the use of a murine-based feeder layer. A novel biomaterial is required to replace the current cell-based feeder system. Toward this goal, we applied a combination of biocompatible polyacrylonitrile (PAN) and electrospinning technology to establish a non-cell-based feeder layer. According to results from stem cell marker staining, scanning electron microscopy, and embryoid body formation tests, optimal ESC stemness and pluripotency were noted in three electrospun groups (2, 4, and 8 minutes), with the longer electrospinning times producing higher feeder-layer densities. KEGG pathway microarray results identified TGF-beta signaling as one of the major deregulatory pathways on electrospun-based feeder layers. Western blot data indicate significant increases in TGF-beta receptor II, phosphorylated Smad3, and Nanog protein levels in the 4- and 8-minute electrospun-based feeder layer groups compared to the non-feeder layer group. Combined, the data suggest that electrospun-based feeder layers are good candidates for maintaining ESC and iPSC pluripotency in clinical applications.

  7. Influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers

    CSIR Research Space (South Africa)

    Jacobs, V

    2009-11-01

    Full Text Available that the addition of polyelectrolytes, such as sodium salt of Poly acrylic acid (PAA) and Poly allylamine hydrochloride (PAH), increases the conductivity of PEO solutions and thereby decreases the bead formation in electrospun nanofibers. The increase in applied...

  8. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue.

    Science.gov (United States)

    Bischel, Lauren L; Coneski, Peter N; Lundin, Jeffrey G; Wu, Peter K; Giller, Carl B; Wynne, James; Ringeisen, Brad R; Pirlo, Russell K

    2016-04-01

    Gaining a greater understanding of the blood-brain barrier (BBB) is critical for improvement in drug delivery, understanding pathologies that compromise the BBB, and developing therapies to protect the BBB. In vitro human tissue models are valuable tools for studying these issues. The standard in vitro BBB models use commercially available cell culture inserts to generate bilayer co-cultures of astrocytes and endothelial cells (EC). Electrospinning can be used to produce customized cell culture substrates with optimized material composition and mechanical properties with advantages over off-the-shelf materials. Electrospun gelatin is an ideal cell culture substrate because it is a natural polymer that can aid cell attachment and be modified and degraded by cells. Here, we have developed a method to produce cell culture inserts with electrospun gelatin "biopaper" membranes. The electrospun fiber diameter and cross-linking method were optimized for the growth of primary human endothelial cell and primary human astrocyte bilayer co-cultures to model human BBB tissue. BBB co-cultures on biopaper were characterized via cell morphology, trans-endothelial electrical resistance (TEER), and permeability to FITC-labeled dextran and compared to BBB co-cultures on standard cell culture inserts. Over longer culture periods (up to 21 days), cultures on the optimized electrospun gelatin biopapers were found to have improved TEER, decreased permeability, and permitted a smaller separation between co-cultured cells when compared to standard PET inserts. © 2016 Wiley Periodicals, Inc.

  9. Electrospun fiber and cast films produced using zein blends with nylon-6

    Science.gov (United States)

    Blends of zein and nylon-6 (55k) were used to produce electrospun fibers and solution cast films. Zein was blended with nylon-6 in formic acid solution. When the amount of nylon-6 was 8% or less a compatible blend formed. The blend was determined to be compatible based on physical property measureme...

  10. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    Science.gov (United States)

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents.

    Science.gov (United States)

    Luo, Xueshi; Guo, Zhenzhao; He, Ping; Chen, Tian; Li, Lihua; Ding, Shan; Li, Hong

    2018-01-29

    Collagen electrospun scaffolds properly reproduce the framework of the extracellular matrix (ECM) of tissues that are natural with the fibrous morphology of the protein by coupling large biomimetism of the biological material. However, traditional solvents employed for collagen electrospinning lead to poor mechanical attributes and bad hydro-stability. In this work, by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride with N-hydroxysulfosuccinimide (EDC-NHS), glutaraldehyde (GTA) and genipin (GP) respectively, electrospun collagen fibers cross-linked, effectively stabilized the fiber morphology over 2 months and improved the mechanical properties in both dry and wet state, especially EDC-NHS with large ultimate tensile stress and ε b . The secondary structure of collagen structure still remained and had no obvious difference among various crosslinked samples according to FTIR. On the cell assessment, electrospun collagen fibers crosslinked by EDC-NHS, GTA and GP, were found to support cell adhesion, spreading and proliferation of MC3T3-E1. By contrast, GTA was more effective in preserving explicit fibrous morphology with a relatively lower cell viability both in FBS and BSA soaked mats. Interestingly, GP also had the similar cytocompatibility of MC3T3-E1 as EDC-NHS did. The study proved the feasibility of chemical crosslinker to electrospun collagen for biomedical application. Copyright © 2017. Published by Elsevier B.V.

  12. Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water.

    Science.gov (United States)

    Sarioglu, Omer Faruk; San Keskin, Nalan Oya; Celebioglu, Asli; Tekinay, Turgay; Uyar, Tamer

    2017-10-01

    In this study, preparation and application of novel biocomposite materials for textile dye removal which are produced by immobilization of specific bacteria onto electrospun nanofibrous webs are presented. A textile dye remediating bacterial isolate, Clavibacter michiganensis, was selected for bacterial immobilization, a commercial reactive textile dye, Setazol Blue BRF-X, was selected as the target contaminant, and electrospun polycaprolactone (PCL) and polylactic acid (PLA) nanofibrous polymeric webs were selected for bacterial integration. Bacterial adhesion onto nanofibrous webs was monitored by scanning electron microscopy (SEM) imaging and optical density (OD) measurements were performed for the detached bacteria. After achieving sufficient amounts of immobilized bacteria on electrospun nanofibrous webs, equivalent web samples were utilized for testing the dye removal capabilities. Both bacteria/PCL and bacteria/PLA webs have shown efficient remediation of Setazol Blue BRF-X dye within 48 h at each tested concentration (50, 100 and 200 mg/L), and their removal performances were very similar to the free-bacteria cells. The bacteria immobilized webs were then tested for five times of reuse at an initial dye concentration of 100 mg/L, and found as potentially reusable with higher bacterial immobilization and faster dye removal capacities at the end of the test. Overall, these findings suggest that electrospun nanofibrous webs are available platforms for bacterial integration and the bacteria immobilized webs can be used as starting inocula for use in remediation of textile dyes in wastewater systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hydrodynamically stable adhesion of endothelial cells on gelatin electrospun nanofibrous scaffolds

    NARCIS (Netherlands)

    Salehi-Nik, N.; Amoabediny, G.; Ahmadizadeh, R.; Heli, B.; Zandieh-Doulabi, B.

    2013-01-01

    In the current research, electrospun gelatine fibers for vascular tissue egineering was successfully fabricated with the aim of increasing the adhesion and stability of cells under shear stress. The gelatin solutions were prepared with different amount of gelatin (10, 15, 20 and 25% wt) which

  14. A variable stiffness joint with electrospun P(VDF-TrFE-CTFE) variable stiffness springs

    NARCIS (Netherlands)

    Carloni, Raffaella; Lapp, Valerie I.; Cremonese, Andrea; Belcari, Juri; Zucchelli, Andrea

    This letter presents a novel rotational variable stiffness joint that relies on one motor and a set of variable stiffness springs. The variable stiffness springs are leaf springs with a layered design, i.e., an electro-active layer of electrospun aligned nanofibers of poly(vinylidene

  15. Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers

    Science.gov (United States)

    Conducting electrospun fiber mats based on PLA and PAni blends were obtained with average diameter values between 87 and 1,006 nm with PAni quantities from 0 to 5.6 wt.-%. Structural characteristics of fiber mats were compared to cast films with the same amount of PAni and studied by SEM, SAXS, and ...

  16. Interfacial Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals

    Science.gov (United States)

    Mariko Ago; Joseph E. Jakes; Leena-Sisko Johansson; Sunkyu Park; Orlando J. Rojas

    2012-01-01

    Sub-100 nm resolution local thermal analysis, X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) measurements were used to relate surface polymer distribution with the composition of electrospun fiber mats and spin coated films obtained from aqueous dispersions of lignin, polyvinyl alcohol (PVA), and cellulose nanocrystal (CNC). Defect-free lignin/...

  17. Mechanical properties of electrospun PCL scaffold under in vitro and accelerated degradation conditions

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Vange, Jakob; Nielsen, Lene Feldskov

    2014-01-01

    Within recent years, researchers have looked into using polycaprolactone (PCL) as a synthetic biodegradable scaffold for tissue engineering purposes. This study investigated the mechanical properties of an electrospun PCL, while being exposed to physiological fluids at 37C (in vitro conditions) w...

  18. Electrospun alginate nanofibres as potential bio-sorption agent of heavy metals in water treatment

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-03-01

    Full Text Available the equilibrium experimental data than the Freudlich model. The electrospun alginate membranes displayed maximum monolayer sorption capacity (Q0) of 15.6 mg g-1 at a pH of 4. In a competitive adsoption experiment the removal of metal ions in a mixture followed...

  19. Optical fiber laser ultrasound transmitter with electrospun composite for minimally invasive medical imaging

    Science.gov (United States)

    Poduval, Radhika; Noimark, Sacha; Colchester, Richard; Macdonald, Tom; Parkin, Ivan; Desjardins, Adrien; Papakonstantinou, Ioannis

    2017-07-01

    We report an optical fiber ultrasound transmitter with electrospun MWCNT-polymer composite, generating high-amplitude broadband ultrasound. They produced pressures in the range of conventional intravascular imaging transducers, and can be incorporated into catheters/needles for keyhole surgery

  20. A piezoelectric electrospun platform for in situ cardiomyocyte contraction analysis

    Science.gov (United States)

    Beringer, Laura Toth

    Flexible, self-powered materials are in demand for a multitude of applications such as energy harvesting, robotic devices, and lab-on-a chip medical diagnostics. Lab-on-a-chip materials or cell-based biosensors can provide new diagnostic or therapeutic tools for numerous diseases. This dissertation explores the fabrication and characterization of a cell-based sensor termed a nanogenerator with three major aims. The first aim of this research was to fabricate a piezoelectric material that could act as both a cell scaffold and sensor and characterize the response to cell-scale deformation. Electrospinning piezoelectric fluoropolymers into nanofibers can provide both of these functionalities in a facile method. PVDF-TrFe was electrospun in an aligned format and interfaced with a flexible plastic substrate in order to create a platform for voltage response characterization after small force cantilever deformations. Voltage peak signals were an average of +/- 0.4 V, and this response did not change after platform sterilization. However, when placed in cell culture media, piezoelectric response was dampened, which was taken into consideration for the next two aims. An aligned electrospun coaxial fiber system of PVDF-TrFe and collagen was created and interfaced with the nanogenerator for the second aim in order to provide a more biologically favorable surface for cells to adhere to. These nanogenerators were successfully characterized for their piezoelectric response, which was an average of +/- 0.1 V. Additionally, the aligned coaxial collagen/PVDF-TrFe fibers supported both neuron and HeLa cell attachment and growth, demonstrating that they were not cytotoxic. To assess the potential for the nanogenerators to be used as a contractile analysis lab-on-a-chip based device, HeLa cell contraction was induced with potassium chloride and signal response was analyzed. The nanogenerator system was able to detect both the resting state of HeLa cells, a contraction state, and a

  1. Stability of β-carotene in polyethylene oxide electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Peinado, I., E-mail: irpeipar@upvnet.upv.es [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Mason, M.; Romano, A. [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Biasioli, F. [Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all ‘Adige, TN (Italy); Scampicchio, M., E-mail: matteo.scampicchio@unibz.it [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy)

    2016-05-01

    Highlights: • β-carotene was incorporated into PEO-nanofibers by electrospinning. • Properties of the fibers were analyzed by SEM, color analysis, and DSC. • TGA coupled to PTR–ms resulted promising to online-monitoring thermal degradation. • Thermal stability of βc increased after encapsulation into the PEO-nanofibers. - Abstract: β-carotene (βc) was successfully incorporated into electrospun nanofibers of poly-(ethylene oxide) (PEO) with the aim of prolonging its shelf life and thermal stability. The physical and thermal properties of the βc-PEO-nanofibers were determined by scanning electron microscopy (SEM), color analysis, and differential scanning calorimetry (DSC). The nanofibers of PEO and βc-PEO exhibited average fiber diameters of 320 ± 46 and 230 ± 21 nm, with colorimetric coordinates L* = 95.7 ± 2.4 and 89.4 ± 4.6 and b* = −0.5 ± 0.1 and 6.2 ± 3.0 respectively. Thermogravimetric analysis coupled with Proton Transfer–Mass Spectroscopy (TGA/PTR–ms) demonstrated that coated βc inside PEO nanofibers increased thermal stability when compared to standard βc in powder form. In addition, β-carotene in the membranes showed higher stability during storage when compared with β-carotene in solution with a decrease in concentration of 57 ± 4% and 70 ± 2% respectively, thus should extend the shelf life of this compound. Also, TGA coupled with PTR–MS resulted in a promising technique to online-monitoring thermal degradation.

  2. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Bjoern; Liu, Johan [BioNano Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Goeteborg, SE-412 96 (Sweden); Axell, Mathilda Zetterstroem; Kuhn, H Georg [Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Goeteborg, SE-413 45 (Sweden); Nannmark, Ulf, E-mail: bjorn.carlberg@chalmers.s, E-mail: mathilda.zetterstrom@neuro.gu.s, E-mail: georg.kuhn@neuro.gu.s, E-mail: ulf.nannmark@anatcell.gu.s, E-mail: jliu@chalmers.s [Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Goeteborg, SE-405 30 (Sweden)

    2009-08-15

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Hence, tissue engineering scaffolds intended for CNS repair and rehabilitation have been subject to intense research effort. Electrospun porous scaffolds, mimicking the natural three-dimensional environment of the in vivo extracellular matrix (ECM) and providing physical support, have been identified as promising candidates for CNS tissue engineering. The present study demonstrates in vitro culturing and neuronal differentiation of human embryonic stem cells (hESCs) on electrospun fibrous polyurethane scaffolds. Electrospun scaffolds composed of biocompatible polyurethane resin (Desmopan 9370A, Bayer MaterialScience AG) were prepared with a vertical electrospinning setup. Resulting scaffolds, with a thickness of approximately 150{mu}m, exhibited high porosity (84%) and a bimodal pore size distribution with peaks at 5-6 and 1{mu}m. The mean fiber diameter was measured to approximately 360 nm with a standard deviation of 80 nm. The undifferentiated hESC line SA002 (Cellartis AB, Goeteborg, Sweden) was seeded and cultured on the produced scaffolds and allowed propagation and then differentiation for up to 47 days. Cultivation of hESC on electrospun fibrous scaffolds proved successful and neuronal differentiation was observed via standard immunocytochemistry. The results indicate that predominantly dopaminergic tyrosine hydroxylase (TH) positive neurons are derived in co-culture with fibrous scaffolds, in comparison to reference cultures under the same differentiation conditions displaying large proportions of GFAP positive cell types. Scanning electron micrographs confirm neurite outgrowth and connection to adjacent cells, as well as cell attachment to individual fibers of the fibrous scaffold. Consequently, electrospun polyurethane scaffolds have been proven feasible as a substrate for hESC propagation and neuronal differentiation. The physical interaction between

  3. A microscopic study on the corrosion fatigue of ultra-fine grained and conventional Al–Mg alloy

    International Nuclear Information System (INIS)

    Sharma, Mala M.; Tomedi, Josh D.; Parks, Jeffery M.

    2015-01-01

    Highlights: • Corrosion fatigue was investigated for an ultra-fine grained and conventional 5083 alloy. • Pit initiation, pit location and crack propagation were investigated. • In air, the ultra-fine grained alloy had superior fatigue performance compared to conventional 5083 alloy. • At low maximum stress, the ultra-fine grained alloy is more susceptible to fatigue by pitting. • At high maximum stress, slip enhanced dissolution is the dominant mechanism or the ultra-fine grained alloy. - Abstract: The corrosion behavior of a nanocrystalline (NC)/ultrafine grained (UFG) Al–Mg based alloy was investigated and compared to its conventional counterpart 5083(H111). The corrosion fatigue (CF) was studied with respect to pit initiation, pit location and crack propagation as a function of environment. Scanning electron microscopy (SEM) with EDS was used to analyze the fracture surface of the failed specimen with respect to pitting characteristics, crack propagation and corrosion product. Load vs. cycles to failure was measured and S/N curves were generated for the UFG Al–Mg based alloy and the conventional counterpart 5083 in air and seawater

  4. Effectiveness of the Top-Down Nanotechnology in the Production of Ultrafine Cement (~220 nm

    Directory of Open Access Journals (Sweden)

    Byung-Wan Jo

    2014-01-01

    Full Text Available The present investigation is dealing with the communition of the cement particle to the ultrafine level (~220 nm utilizing the bead milling process, which is considered as a top-down nanotechnology. During the grinding of the cement particle, the effect of various parameters such as grinding time (1–6 h and grinding agent (methanol and ethanol on the production of the ultrafine cement has also been investigated. Performance of newly produced ultrafine cement is elucidated by the chemical composition, particle size distribution, and SEM and XRD analyses. Based on the particle size distribution of the newly produced ultrafine cement, it was assessed that the size of the cement particle decreases efficiently with increase in grinding time. Additionally, it is optimized that the bead milling process is able to produce 90% of the cement particle <350 nm and 50% of the cement particle < 220 nm, respectively, after 6.3 h milling without affecting the chemical phases. Production of the ultrafine cement utilizing this method will promote the construction industries towards the development of smart and sustainable construction materials.

  5. Process Optimization and Emperical Modelling for Electrospun Polyacrylonitrile (PAN) Nanofiber Precursor of Carbon nanofibers

    NARCIS (Netherlands)

    Gu, S.Y.; Gu, S.; Ren, J.; Vancso, Gyula J.

    2005-01-01

    Ultrafine fibers were spun from polyacrylonitrile (PAN)/N,N-dimethyl formamide (DMF) solution as a precursor of carbon nanofibers using a homemade electrospinning set-up. Fibers with diameter ranging from 200 nm to 1200 nm were obtained. Morphology of fibers and distribution of fiber diameter were

  6. Ultrafine tungsten as a plasma-facing component in fusion devices: effect of high flux, high fluence low energy helium irradiation

    NARCIS (Netherlands)

    El-Atwani, O.; Gonderman, S.; Efe, M.; De Temmerman, G.; Morgan, T.; Bystrov, K.; D. Klenosky,; Qiu, T.; Allain, J. P.

    2014-01-01

    This work discusses the response of ultrafine-grained tungsten materials to high-flux, high-fluence, low energy pure He irradiation. Ultrafine-grained tungsten samples were exposed in the Pilot-PSI (Westerhout et al 2007 Phys. Scr. T128 18) linear plasma device at the Dutch Institute for Fundamental

  7. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin

    Energy Technology Data Exchange (ETDEWEB)

    Szikszai, Z., E-mail: szikszai@atomki.h [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary); Kertesz, Zs. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary); Bodnar, E. [Department of Dermatology, University of Debrecen, Medical and Health Science Center, Debrecen (Hungary); Major, I. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary); Borbiro, I. [Abiol Ltd., Debrecen (Hungary); Kiss, A.Z. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary); Hunyadi, J. [Department of Dermatology, University of Debrecen, Medical and Health Science Center, Debrecen (Hungary)

    2010-06-15

    Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.

  8. Electrospun formulations of bevacizumab for sustained release in the eye.

    Science.gov (United States)

    Angkawinitwong, Ukrit; Awwad, Sahar; Khaw, Peng T; Brocchini, Steve; Williams, Gareth R

    2017-12-01

    Medicines based on vascular endothelial growth factor (VEGF) neutralising antibodies such as bevacizumab have revolutionized the treatment of age related macular degeneration (AMD), a common blinding disease, and have great potential in preventing scarring after surgery or accelerating the healing of corneal injuries. However, at present frequent invasive injections are required to deliver these antibodies. Such administration is uncomfortable for patients and expensive for health service providers. Much effort is thus focused on developing dosage forms that can be administered less frequently. Here we use electrospinning to prepare a solid form of bevacizumab designed for prolonged release while maintaining antibody stability. Electrospun fibers were prepared with bevacizumab encapsulated in the core, surrounded by a poly-ε-caprolactone sheath. The fibers were generated using aqueous bevacizumab solutions buffered at two different pH values: 6.2 (the pH of the commercial product; F beva ) and 8.3 (the isoelectric point of bevacizumab; F bevaP ). The fibers had smooth and cylindrical morphologies, with diameters of ca. 500nm. Both sets of bevacizumab loaded fibers gave sustained release profiles in an in vitro model of the subconjunctival space of the eye. F beva displayed first order kinetics with t 1/2 of 11.4±4.4 days, while F bevaP comprises a zero-order reservoir type release system with t 1/2 of 52.9±14.8 days. Both SDS-PAGE and surface plasmon resonance demonstrate that the bevacizumab in F bevaP did not undergo degradation during fiber fabrication or release. In contrast, the antibody released from F beva had degraded, and failed to bind to VEGF. Our results demonstrate that pH control is crucial to maintain antibody stability during the fabrication of core/shell fibers and ensure release of functional protein. Bevacizumab is a potent protein drug which is highly effective in the treatment of degenerative conditions in the eye. To be effective, frequent

  9. Gecko-Inspired Electrospun Flexible Fiber Arrays for Adhesion

    Science.gov (United States)

    Najem, Johnny F.

    The ability of geckos to adhere to vertical solid surfaces comes from their remarkable feet with millions of projections terminating in nanometer spatulae. We present a simple yet robust method for fabricating directionally sensitive dry adhesives. By using electrospun nylon 6 nanofiber arrays, we create gecko-inspired dry adhesives, that are electrically insulating, and that show shear adhesion strength of 27 N/cm2 on a glass slide. This measured value is 270% that reported of gecko feet and 97-fold above normal adhesion strength of the same arrays. The data indicate a strong shear binding-on and easy normal lifting-off. This anisotropic strength distribution is attributed to an enhanced shear adhesion strength with decreasing fiber diameter (d) and an optimum performance of nanofiber arrays in the shear direction over a specific range of thicknesses. With use of electrospinning, we report the fabrication of nylon 6 nanofiber arrays that show a friction coefficient (mu) of 11.5. These arrays possess significant shear adhesion strength and low normal adhesion strength. Increasing the applied normal load considerably enhances the shear adhesion strength and mu, irrespective of d and fiber arrays thickness (T). Fiber bending stiffness and fiber surface roughness are considerably decreased with diminishing d while fiber packing density is noticeably increased. These enhancements are proposed to considerably upsurge the shear adhesion strength between nanofiber arrays and a glass slide. The latter upsurge is mainly attributed to a sizeable proliferation in van der Waals (vdW) forces. These nanofiber arrays can be alternatively bound-on and lifted-off over a glass slide with a trivial decrease in the initial mu and adhesion strength. By using selective coating technique, we have also created hierarchical structures having closely packed nanofibers with d of 50 nm. We determine the effects of applied normal load, fiber surface roughness, loading angle, d, T, and repeated

  10. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  11. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  12. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  13. Children exposure to indoor ultrafine particles in urban and rural school environments.

    Science.gov (United States)

    Cavaleiro Rufo, João; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Aguiar, Lívia; Teixeira, João Paulo; Moreira, André; Oliveira Fernandes, Eduardo

    2016-07-01

    Extended exposure to ultrafine particles (UFPs) may lead to consequences in children due to their increased susceptibility when compared to older individuals. Since children spend in average 8 h/day in primary schools, assessing the number concentrations of UFPs in these institutions is important in order to evaluate the health risk for children in primary schools caused by indoor air pollution. Thus, the purpose of this study was to assess and determine the sources of indoor UFP number concentrations in urban and rural Portuguese primary schools. Indoor and outdoor ultrafine particle (UFP) number concentrations were measured in six urban schools (US) and two rural schools (RS) located in the north of Portugal, during the heating season. The mean number concentrations of indoor UFPs were significantly higher in urban schools than in rural ones (10.4 × 10(3) and 5.7 × 10(3) pt/cm(3), respectively). Higher UFP levels were associated with higher squared meters per student, floor levels closer to the ground, chalk boards, furniture or floor covering materials made of wood and windows with double-glazing. Indoor number concentrations of ultrafine-particles were inversely correlated with indoor CO2 levels. In the present work, indoor and outdoor concentrations of UFPs in public primary schools located in urban and rural areas were assessed, and the main sources were identified for each environment. The results not only showed that UFP pollution is present in augmented concentrations in US when compared to RS but also revealed some classroom/school characteristics that influence the concentrations of UFPs in primary schools.

  14. Fabrication of ultra-fine grained aluminium tubes by RTES technique

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, H., E-mail: h.jafarzadeh@ut.ac.ir; Abrinia, K.

    2015-04-15

    Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement is determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.

  15. Deposition of ultrafine aerosols in F344/N rat nasal casts

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Hansen, G.K.; Su, Y.F.; Yeh, H.C.; Morgan, K.T.

    1988-01-01

    Determination of regional respiratory deposition of inhaled aerosols is critical for evaluation of the health effects of air pollutants. Information on deposition of larger particles (> 0.02 μm) in the nasal passages of laboratory animals is available; the deposition fraction increases with increasing particle size. Little information on ultrafine particles less than 0.2 μm is available. Molds (models) were prepared from replica casts of the nasal passages of F344/N rats, using clear casting plastic. Total deposition of ultrafine aerosols in these casts was then determined using a unidirectional flow system. Measured pressure drops in the casts were a function of flow rate to the power of 1.4-1.6, indicating that the flow through the nasal passage was not laminar. Deposition data were obtained from these casts, using monodisperse sodium chloride aerosols with particle size ranging from 0.2 to 0.005 μm, at inspiratory and expiratory flow rates of 200 to 600 cc/min. Similar deposition data were obtained for the three casts studied. The deposition efficiency was greatest for the smallest particles, and decreased with increasing particle size and flow rate, indicating that diffusion was the dominant mechanism for deposition. At an inspiratory flow rate of 400 cc/min, which is comparable to a respiratory minute volume of 200 cc/min for mature male F344/N rats, deposition efficiencies reached 40 and 70% for 0.01 and 0.005 μm particles, respectively. Turbulent diffusion was considered to be the dominant mechanism for deposition of ultrafine particles in the nasal passage. This information is important for understanding the toxicity and carcinogenicity of submicrometer particles, including diesel soot, radon progeny and vapors. (author)

  16. Ultrafine particle emission from incinerators: the role of the fabric filter.

    Science.gov (United States)

    Buonanno, G; Scungio, M; Stabile, L; Tirler, W

    2012-01-01

    Incinerators are claimed to be responsible of particle and gaseous emissions: to this purpose Best Available Techniques (BAT) are used in the flue-gas treatment sections leading to pollutant emission lower than established threshold limit values. As regard particle emission, only a mass-based threshold limit is required by the regulatory authorities. However; in the last years the attention of medical experts moved from coarse and fine particles towards ultrafine particles (UFPs; diameter less than 0.1 microm), mainly emitted by combustion processes. According to toxicological and epidemiological studies, ultrafine particles could represent a risk for health and environment. Therefore, it is necessary to quantify particle emissions from incinerators also to perform an exposure assessment for the human populations living in their surrounding areas. A further topic to be stressed in the UFP emission from incinerators is the particle filtration efficiency as function of different flue-gas treatment sections. In fact, it could be somehow important to know which particle filtration method is able to assure high abatement efficiency also in terms of UFPs. To this purpose, in the present work experimental results in terms of ultrafine particle emissions from several incineration plants are reported. Experimental campaigns were carried out in the period 2007-2010 by measuring UFP number distributions and total concentrations at the stack of five plants through condensation particle counters and mobility particle sizer spectrometers. Average total particle number concentrations ranging from 0.4 x 10(3) to 6.0 x 10(3) particles cm(-3) were measured at the stack of the analyzed plants. Further experimental campaigns were performed to characterize particle levels before the fabric filters in two of the analyzed plants in order to deepen their particle reduction effect; particle concentrations higher than 1 x 10(7) particles cm(-3) were measured, leading to filtration

  17. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    Directory of Open Access Journals (Sweden)

    Brown David M

    2005-10-01

    Full Text Available Abstract Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter. Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively, such as elemental carbon (EC90, commercial carbon (Printex 90, diesel particulate matter (DEP and urban dust (UD, were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.

  18. Ultrafine WC-Ni cemented carbides fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rong Huiyong [School of Engineering and Technology, China University of Geosciences at Beijing, Beijing 100083 (China); Peng Zhijian, E-mail: pengzhijian@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences at Beijing, Beijing 100083 (China); Ren Xiaoyong; Peng Ying; Wang Chengbiao; Fu Zhiqiang [School of Engineering and Technology, China University of Geosciences at Beijing, Beijing 100083 (China); Qi Longhao; Miao Hezhuo [State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Ultrafine WC-Ni cemented carbides with average WC grain size of about 330 nm prepared by combination of sparking plasma sintering and grain growth inhibitors. Black-Right-Pointing-Pointer Very short mean free path of about 22 nm for crack in metal binder of the obtained materials. Black-Right-Pointing-Pointer Higher hardness than those of WC-Co cemented carbide counterparts sintered by rapid sintering. Black-Right-Pointing-Pointer Observation of fracture along metal binder and no carbon-carbon fracture face. - Abstract: With VC and TaC as WC grain growth inhibitors, ultrafine WC-Ni cemented carbides with different fractions (6-10 wt%) of binder metal nickel were fabricated by utilizing high energy milling together with spark plasma sintering. In the obtained samples, only WC and Ni phases were detected in X-ray diffraction limit. The microstructure of the specimens was examined on fractural, polished, and polished/etched surfaces by scanning electron microscopy, and the results revealed that the average WC grain size of the WC-Ni cemented carbides was about 330 nm, and there were lots of micro-pores in the samples. The relative density of the samples was all higher than 92%. But the measurement of hardness and flexural strength indicated that the existence of micro-pores had no significant influence on the performance of the obtained materials. On the basis of observation on the micro-fracture surface of the samples, it was found that fractures occurred along the binder metal, and the obtained ultrafine WC-Ni cemented carbides showed a very short binder mean free path (about 22 nm), thus resulting in excellent performance in mechanical strength.

  19. Ultrafine and fine particle formation in a naturally ventilated office as a result of reactions between ozone and scented products

    DEFF Research Database (Denmark)

    Toftum, Jørn; Dijken, F. v.

    2003-01-01

    Ultrafine and fine particle formation as a result of chemical reactions between ozone and four different air fresheners and a typical lemon-scented domestic cleaner was studied in a fully furnished, naturally ventilated office. The study showed that under conditions representative of those...... occurring in such offices, air fresheners or scented cleaners may react with ozone to form secondary organic aerosols (SOA). The tested air fresheners were relatively small sources of SOA with detectable increases occurring only in the ultrafine particle number concentration. With the cleaner, also...

  20. Surface grain coarsening and surface softening during machining of ultra-fine grained titanium

    Directory of Open Access Journals (Sweden)

    Symonova A.A.

    2012-01-01

    Full Text Available Experiments are run to show that different machining conditions applied to ultra-fine grained pure titanium lead to different levels of grain coarsening and softening near the machined surface. Under “hard” machining conditions the upper 40 microns of the machined surface are altered with a decreased microhardness. The experimental results are reasonably reproduced by model calculations. Expanding the parameter field of the model calculations, the surface coarsening diagram and the surface softening diagram due to machining are presented, showing the region of technological parameters, under which neither grain coarsening nor softening takes place along the machined surface.

  1. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  2. Association between short-term exposure to ultrafine particles and mortality in eight European urban areas

    DEFF Research Database (Denmark)

    Stafoggia, Massimo; Schneider, Alexandra; Cyrys, Josef

    2017-01-01

    urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. RESULTS: We estimated a weak, delayed association between particle number concentration...... and particulate matter (PM) and daily mortality in eight European urban areas. METHODS: We collected daily data on non-accidental and cardio-respiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight...

  3. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    Directory of Open Access Journals (Sweden)

    Hu Yong

    2011-01-01

    Full Text Available Abstract A large quantity of ultrafine tetragonal barium titanate (BaTiO3 nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature.

  4. Preparation of Ultrafine CVD WC Powders Deposited from WCl6 Gas Mixtures

    OpenAIRE

    Tang, Xing; Haubner, R.; Lux, B.; Kieffer, B.

    1995-01-01

    Ultrafine WC powders were produced from WCl6-C3H8-H2 gaz mixtures in a conventional tubular hot-wall downstream CVD reactor. At reaction temperatures between 1100 and 1550°C powders containing W, W2C, WC and carbon were produced. The overall chemical compositions of the tungsten compounds as well as the free carbon contents depended strongly on the reaction temperature and the ratio of the reaction gases introduced. With increased reaction temperature and exposure time the amount of tungsten ...

  5. Correlation of Air Quality Data to Ultrafine Particles (UFP Concentration and Size Distribution in Ambient Air

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2010-07-01

    Full Text Available This study monitored ultrafine particles (UFP concurrent with environmental air quality data, investigating whether already existing instrumentation used by environmental authorities can provide reference values for estimating UFP concentrations. Of particular interest was the relation of UFP to PM10 (particulate matter and nitrogen oxides (NOx, NO2 in ambient air. Existing PM measurement methods alone did not correspond exactly enough with the actual particle number, but we observed a link between NOx and NO2 to UFP concentration. The combined data could act as proxy-indicator for authorities in estimating particle number concentrations, but cannot replace UFP monitoring.

  6. Gradient ultrafine-grained titanium: Computational study of mechanical and damage behavior

    DEFF Research Database (Denmark)

    Liu, Hongsheng; Mishnaevsky, Leon

    2014-01-01

    A computational model of ultrafine-grained (UFG) titanium with random and gradient distribution based on Voronoi tessellation and the composite model of nanomaterials is developed. The effect of grain size, non-equilibrium state of the grain boundary phase (characterized by the initial dislocation...... density and diffusion coefficient) and gradient of grain sizes on the mechanical behavior and damage initiation of the UFG titanium are studied in numerical experiments. Using computational experiments, the authors determined the likely damage criterion (dislocation-based model) and found several effects...

  7. Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model.

    Science.gov (United States)

    Weichenthal, Scott; Van Ryswyk, Keith; Goldstein, Alon; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2016-01-01

    Exposure models are needed to evaluate the chronic health effects of ambient ultrafine particles (bus routes as well as variables for the number of on-street trees, parks, open space, and the length of bus routes within a 100 m buffer. There was no systematic difference between measured and predicted values when the model was evaluated in an external dataset, although the R(2) value decreased (R(2) = 50%). This model will be used to evaluate the chronic health effects of UFPs using population-based cohorts in the Toronto area. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Scratch-induced deformation in fine- and ultrafine-grained bulk alumina

    International Nuclear Information System (INIS)

    Huang, Lin; Zhang, Zhihui; Zhao, Yonghao; Yao, Wenlong; Mukherjee, Amiya K.; Schoenung, Julie M.

    2010-01-01

    The nanoscratch behavior of two bulk α-alumina samples with 1.3 μm and 290 nm average grain sizes, respectively, was investigated using a nanoindenter in scratch mode, in combination with atomic force and scanning electron microscopy. A ductile to brittle transition was observed in the fine-grained sample, while the ultrafine-grained sample exhibited predominantly ductile deformation with a fish-bone feature indicative of a stick-slip mechanism. These findings suggest that grain refinement can increase the potential for plastic deformation in ceramics.

  9. Development and manufacture of ultra-fine NbTi filament wires at ALSTHOM

    International Nuclear Information System (INIS)

    Hoang, G.K.; Laumond, Y.; Sabrie, J.L.; Dubots, P.

    1986-01-01

    Ultra-fine NbTi filament wires have been developed and manufactured by ALSTHOM. It is now possible to produce industrial copper -copper-nickel matrix wires with 0.6 mu m NbTi filaments for use in 50 / 60 Hz machines. Smaller filaments with diameters down to 0.08 mu m have been obtained with 254 100 filament wire samples. Studies are now being carried out on copper matrix conductors to reduce the filament diameter. The first results show that it is possible to obtain submicron filaments even in copper matrix wires

  10. Initial study of dry ultrafine coal beneficiation utilizing triboelectric charging with subsequent electrostatic separation

    Energy Technology Data Exchange (ETDEWEB)

    Link, T.A.; Killmeyer, R.P.; Elstrodt, R.H.; Haden, N.H.

    1990-10-01

    A novel, dry process using electrostatics to beneficiate ultrafine coal is being developed by the Coal Preparation Division at the Pittsburgh Energy Technology Center. The historical concept of triboelectricity and its eventual use as a means of charging coal for electrostatic separation will be discussed. Test data from a first-generation and a second-generation Tribo-Electrostatic separator are presented showing the effects of feed particle size, separator voltage, solids concentration in air, and particle velocity on separation performance. 10 refs., 10 figs., 9 tabs.

  11. High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys

    Science.gov (United States)

    An, X. H.; Han, W. Z.; Huang, C. X.; Zhang, P.; Yang, G.; Wu, S. D.; Zhang, Z. F.

    2008-05-01

    Lack of plasticity is the main drawback for nearly all ultrafine-grained (UFG) materials, which restricts their practical applications. Bulk UFG Cu-Al alloys have been fabricated by using equal channel angular pressing technique. Its ductility was improved to exceed the criteria for structural utility while maintaining a high strength by designing the microstructure via alloying. Factors resulting in the simultaneously enhanced strength and ductility of UFG Cu-Al alloys are the formation of deformation twins and their extensive intersections facilitating accumulation of dislocations.

  12. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    Directory of Open Access Journals (Sweden)

    Dau M

    2017-10-01

    Full Text Available Michael Dau,1 Cornelia Ganz,2 Franziska Zaage,2 Bernhard Frerich,1 Thomas Gerber2 1Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany; 2Institute of Physics, Rostock University, Rostock, Germany Purpose: The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block for the use in surgery. Materials and methods: Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18 or a cross-linked hydrogel carrier (elastic block [EB], n=18 based on polyvinylpyrrolidone (PVP and silica sol, respectively. The animals were killed after 12 (n=12, 21 (n=12 and 63 days (n=12. The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP], antibody-based examinations (CD68 and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results: A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher

  13. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation)

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  14. Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Sebnem DUZYER

    2016-11-01

    Full Text Available The aim of this study to investigate the effects of different sterilization methods on electrospun polyester. Ethylene oxide (EO, autoclave (AU and ultraviolet (UV sterilization methods were applied to electrospun fibers produced from polyethylene terephthalate (PET solutions with concentrations of 10, 15 and 20 wt.%. The surface characteristics of the fibers were examined by scanning electron microscope (SEM, atomic force microscope (AFM, surface pore size studies and contact angle measurements. Differential scanning calorimetry (DSC tests were carried out to characterize the thermal properties. Fourier Transform Infrared spectroscopy (FTIR tests were performed to analyze the micro structural properties. SEM studies showed that different sterilization methods made significant changes on the surfaces of the fibers depending on the PET concentration. Although the effects were decreased with the increasing polymer concentration, the fiber structure was damaged especially with the EO sterilization. The contact angle values were decreased with the UV sterilization method the most.

  15. Load bearing enhancement of pin joined composite laminates using electrospun polyacrylonitrile nanofiber mats

    Directory of Open Access Journals (Sweden)

    J. Herwan

    2016-03-01

    Full Text Available Polyacrylonitrile (PAN nanofibers were produced by an electrospinning technique and directly deposited onto carbon fabric to improve the load bearing strength of pin joined composite laminates. Two types of specimens, virgin laminates and nano-modified laminates, were prepared. A modified carbon fiber reinforced polymer (CFRP laminate was fabricated by interleaving electrospun nanofibers at all of the interlayers of an eight-ply woven carbon fiber fabric. The load bearing test results of the pin joined laminates indicated the electrospun PAN nanofibers increased the load bearing strength by 18.9%. In addition, three point bending tests were also conducted to investigate the flexural modulus and flexural strength of both types of laminates. The flexural modulus and flexural strength also increased by 20.9% and 55.91%, respectively.

  16. Trifunctional Epoxy Resin Composites Modified by Soluble Electrospun Veils: Effect on the Viscoelastic and Morphological Properties

    Directory of Open Access Journals (Sweden)

    Giulia Ognibene

    2018-03-01

    Full Text Available Electrospun veils from copolyethersulfones (coPES were prepared as soluble interlaminar veils for carbon fiber/epoxy composites. Neat, resin samples were impregnated into coPES veils with unmodified resin, while dry carbon fabrics were covered with electrospun veils and then infused with the unmodified epoxy resin to prepare reinforced laminates. The thermoplastic content varied from 10 wt% to 20 wt%. TGAP epoxy monomer showed improved and fast dissolution for all the temperatures tested. The unreinforced samples were cured first at 180 °C for 2 h and then were post-cured at 220 °C for 3 h. These sample showed a high dependence on the curing cycle. Carbon reinforced samples showed significant differences compared to the neat resin samples in terms of both viscoelastic and morphological properties.

  17. All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Laforgue, Alexis [Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, 75, de Mortagne Blvd, Boucherville, Quebec J4B 6Y4 (Canada)

    2011-01-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers were obtained by the combination of electrospinning and vapor-phase polymerization. The fibers had diameters around 350 nm, and were soldered at most intersections, providing a strong dimensional stability to the mats. The nanofiber mats demonstrated very high conductivity (60 {+-} 10 S cm{sup -1}, the highest value reported so far for polymer nanofibers) as well as improved electrochemical properties, due to the ultraporous nature of the electrospun mats. The mats were incorporated into all-textile flexible supercapacitors, using carbon cloths as the current collectors and electrospun polyacrylonitrile (PAN) nanofibrous membranes as the separator. The textile layers were stacked and embedded in a solid electrolyte containing an ionic liquid and PVDF-co-HFP as the host polymer. The resulting supercapacitors were totally flexible and demonstrated interesting and stable performances in ambient conditions. (author)

  18. All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers

    Science.gov (United States)

    Laforgue, Alexis

    Poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers were obtained by the combination of electrospinning and vapor-phase polymerization. The fibers had diameters around 350 nm, and were soldered at most intersections, providing a strong dimensional stability to the mats. The nanofiber mats demonstrated very high conductivity (60 ± 10 S cm -1, the highest value reported so far for polymer nanofibers) as well as improved electrochemical properties, due to the ultraporous nature of the electrospun mats. The mats were incorporated into all-textile flexible supercapacitors, using carbon cloths as the current collectors and electrospun polyacrylonitrile (PAN) nanofibrous membranes as the separator. The textile layers were stacked and embedded in a solid electrolyte containing an ionic liquid and PVDF-co-HFP as the host polymer. The resulting supercapacitors were totally flexible and demonstrated interesting and stable performances in ambient conditions.

  19. Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents

    Directory of Open Access Journals (Sweden)

    Liliana Liverani

    2018-03-01

    Full Text Available The use of bioactive glass (BG particles as a filler for the development of composite electrospun fibers has already been widely reported and investigated. The novelty of the present research work is represented by the use of benign solvents (like acetic acid and formic acid for electrospinning of composite fibers containing BG particles, by using a blend of PCL and chitosan. In this work, different BG particle sizes were investigated, namely nanosized and micron-sized. A preliminary investigation about the possible alteration of BG particles in the electrospinning solvents was performed using SEM analysis. The obtained composite fibers were investigated in terms of morphological, chemical and mechanical properties. An in vitro mineralization assay in simulated body fluid (SBF was performed to investigate the capability of the composite electrospun fibers to induce the formation of hydroxycarbonate apatite (HCA.

  20. Analysis of the Comprehensive Tensile Relationship in Electrospun Silk Fibroin/Polycaprolactone Nanofiber Membranes.

    Science.gov (United States)

    Yin, Yunlei; Pu, Dandan; Xiong, Jie

    2017-12-07

    The mechanical properties of electrospun nanofiber membranes are critical for their applications. A clear understanding of the mechanical properties that result from the characteristics of the individual fiber and membrane microstructure is vital in the design of fiber composites. In this reported study, silk fibroin (SF)/polycaprolactone (PCL) composite nanofiber membranes were preparedusing an electrostatic spinning technology. The nanofiber orientation distribution (FOD) of the membrane was analyzed using multi-layer image fusion technology, and the results indicated the presence of an approximately uniform distribution of fibers in the electrospun membranes. The relationship between the single nanofiber and the membrane was established by analyzing the geometrical structure of the cell by employing a representative volume element (RVE) analysis method. The mechanical properties of the 272 nm diameter SF/PCL composite fibers were then predicted using the developed model.

  1. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Science.gov (United States)

    Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  2. Electrospun nitrocellulose and nylon: Design and fabrication of novel high performance platforms for protein blotting applications

    Directory of Open Access Journals (Sweden)

    Bowlin Gary L

    2007-10-01

    Full Text Available Abstract Background Electrospinning is a non-mechanical processing strategy that can be used to process a variety of native and synthetic polymers into highly porous materials composed of nano-scale to micron-scale diameter fibers. By nature, electrospun materials exhibit an extensive surface area and highly interconnected pore spaces. In this study we adopted a biological engineering approach to ask how the specific unique advantages of the electrospinning process might be exploited to produce a new class of research/diagnostic tools. Methods The electrospinning properties of nitrocellulose, charged nylon and blends of these materials are characterized. Results Nitrocellulose electrospun from a starting concentration of Conclusion The flexibility afforded by electrospinning process makes it possible to tailor blotting membranes to specific applications. Electrospinning has a variety of potential applications in the clinical diagnostic field of use.

  3. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers

    Science.gov (United States)

    Güner, Tuğrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sari, Emre; Demir, Mustafa M.

    2018-04-01

    Interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized several hundreds of nanometer long and ˜4 nm thick CsPbBr 3 nanowires (NWs). They were then integrated into electrospun polyurethane (PU) fibers to examine the polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr 3 NWs showed a remarkable increase in the degree of polarization from 0.17-0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells.

  4. Polarized Emission from CsPbBr3 Nanowires Embedded-Electrospun PU fibers.

    Science.gov (United States)

    Güner, Tugrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sarı, Emre; Demir, Mustafa M

    2018-01-29

    The interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized µm long and ~4 nm thick CsPbBr3 nanowires (NWs). They were, then, integrated into electrospun polyurethane (PU) fibers to examine polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr3 nanowires show remarkable increase in degree of polarization from 0.17 to 0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells. © 2018 IOP Publishing Ltd.

  5. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    International Nuclear Information System (INIS)

    Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-01-01

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds

  6. Morphologically controlled fuel cell transport layers enabled via electrospun carbon nonwovens

    Science.gov (United States)

    Todd, Devin; Mérida, Walter

    2015-01-01

    We report on the synthesis and performance of carbon nanofibre substrates for PEM fuel cell transport layer applications. Electrospinning is used for fabrication; by manipulation of spinning properties, morphological control is demonstrated in the product. Our application of the technology and it's manipulability to PEMFC transport layers constitutes a novel approach to the manufacture of such layers. Ex-situ morphology, electrical resistance and water contact angles are reported in additional to in-situ hydrogen/air fuel cell performance. Electrospun transport layers are compared directly to established commercial products in a cathode PTL role. The electrospun transport layers demonstrate approximately 85% of the commercial limiting current density, swifter water transport characteristics, and markedly more stable operating points.

  7. Controlled Morphology and Mechanical Characterisation of Electrospun Cellulose Acetate Fibre Webs

    Directory of Open Access Journals (Sweden)

    B. Ghorani

    2013-01-01

    Full Text Available The purpose was to interpret the varying morphology of electrospun cellulose acetate (CA fibres produced from single and binary solvent systems based on solubility parameters to identify processing conditions for the production of defect-free CA fibrous webs by electrospinning. The Hildebrand solubility parameter ( and the radius of the sphere in the Hansen space ( of acetone, acetic acid, water, N,N-dimethylacetamide (DMAc, methanol, and chloroform were examined and discussed for the electrospinning of CA. The Hildebrand solubility parameter ( of acetone and DMAc were found to be within an appropriate range for the dissolution of CA. The suitability of the binary solvent system of acetone: DMAc (2 : 1 for the continuous electrospinning of defect-free CA fibres was confirmed. Electrospun webs exhibited improved tensile strength and modulus after heat and alkali treatment (deacetylation of the as-spun material, and no major fibre morphological degradation occurred during the deacetylation process.

  8. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    Science.gov (United States)

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  9. Utilization of fly ash and ultrafine GGBS for higher strength foam concrete

    Science.gov (United States)

    Gowri, R.; Anand, K. B.

    2018-02-01

    Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.

  10. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  11. Ultrafine particles from power plants: Evaluation of WRF-Chem simulations with airborne measurements

    Science.gov (United States)

    Forkel, Renate; Junkermann, Wolfgang

    2017-04-01

    Ultrafine particles (UFP, particles with a diameter health and have a potential effect on climate as their presence affects the number concentration of cloud condensation nuclei. Despite of the possibly hazardous effects no regulations exist for this size class of ambient air pollution particles. While ground based continuous measurements of UFP are performed in Germany at several sites (e.g. the German Ultrafine Aerosol Network GUAN, Birmili et al. 2016, doi:10.5194/essd-8-355-2016) information about the vertical distribution of UFP within the atmospheric boundary layer is only scarce. This gap has been closed during the last years by regional-scale airborne surveys for UFP concentrations and size distributions over Germany (Junkermann et al., 2016, doi: 10.3402/tellusb.v68.29250) and Australia (Junkermann and Hacker, 2015, doi: 10.3402/tellusb.v67.25308). Power stations and refineries have been identified as a major source of UFP in Germany with observed particle concentrations > 50000 particles cm-3 downwind of these elevated point sources. Nested WRF-Chem simulations with 2 km grid width for the innermost domain are performed with UFP emission source strengths derived from the measurements in order to study the advection and vertical exchange of UFP from power plants near the Czech and Polish border and their impact on planetary boundary layer particle patterns. The simulations are evaluated against the airborne observations and the downward mixing of the UFP from the elevated sources is studied.

  12. [Experimental study on the size spectra and emission factor of ultrafine particle from coal combustion].

    Science.gov (United States)

    Sun, Zai; Yang, Wen-jun; Xie, Xiao-fang; Chen, Qiu-fang; Cai, Zhi-liang

    2014-12-01

    The emission characteristics of ultrafine particles released from pulverized coal combustion were studied, the size spectra of ultrafine particles (5.6-560 nm) were measured with FMPS (fast mobility particle sizer) on a self-built aerosol experiment platform. Meanwhile, a particle dynamic evolution model was established to obtain the particle deposition rate and the emission rate through the optimized algorithm. Finally, the emission factor was calculated. The results showed that at the beginning of particle generation, the size spectra were polydisperse and complex, the initial size spectra was mainly composed of three modes including 10 nm, 30-40 nm and 100-200 nm. Among them, the number concentration of mode around 10 nm was higher than those of other modes, the size spectrum of around 100-200 nm was lognormal distributed, with a CMD (count median diameter) of around 16 nm. Then, as time went on, the total number concentration was decayed by exponential law, the CMD first increased and then tended to be stable gradually. The calculation results showed that the emission factor of particles from coal combustion under laboratory condition was (5.54 x 10(12) ± 2.18 x 10(12)) unit x g(-1).

  13. On the time-averaging of ultrafine particle number size spectra in vehicular plumes

    Directory of Open Access Journals (Sweden)

    X. H. Yao

    2006-01-01

    Full Text Available Ultrafine vehicular particle (<100 nm number size distributions presented in the literature are mostly averages of long scan-time (~30 s or more spectra mainly due to the non-availability of commercial instruments that can measure particle distributions in the <10 nm to 100 nm range faster than 30 s even though individual researchers have built faster (1–2.5 s scanning instruments. With the introduction of the Engine Exhaust Particle Sizer (EEPS in 2004, high time-resolution (1 full 32-channel spectrum per second particle size distribution data become possible and allow atmospheric researchers to study the characteristics of ultrafine vehicular particles in rapidly and perhaps randomly varying high concentration environments such as roadside, on-road and tunnel. In this study, particle size distributions in these environments were found to vary as rapidly as one second frequently. This poses the question on the generality of using averages of long scan-time spectra for dynamic and/or mechanistic studies in rapidly and perhaps randomly varying high concentration environments. One-second EEPS data taken at roadside, on roads and in tunnels by a mobile platform are time-averaged to yield 5, 10, 30 and 120 s distributions to answer this question.

  14. An enhanced-gravity method to recover ultra-fine coal from tailings: Falcon concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Oruc; Selcuk Ozgen; Eyup Sabah [Afyon Kocatepe University, Afyonkarahisar (Turkey). Department of Mining Engineering

    2010-09-15

    The Falcon concentrator is an enhanced-gravity separator used for the concentration of fine and ultra-fine minerals. This study was conducted to evaluate the effects of different process variables on the performance of the Falcon SB-40 concentrator for beneficiation of tailings to recover ultra-fine coal. Various operating and design conditions such as bowl speed (G force), water pressure, pulp solid ratio and pulp feed rate were investigated. A hydrocyclone was used for pre-enrichment with the Falcon concentrator. Operation parameters of the hydrocyclone, namely feed solids, inlet pressure, vortex finder and apex diameters were investigated. In order to produce fine coal concentrates, regression equations were derived by applying the least squares method using Minitab 15 software. Response functions were produced for the ash content and the recovery of the clean coal concentrates for the performance of the hydrocyclone and Falcon concentrator under different operating conditions. Predicted values were found with the experimental values giving R{sup 2} values of between 0.73 and 0.58 for ash content and between 0.65 and 0.39 for recovery of the clean coal. It was shown that under optimized conditions the Falcon concentrator can produce a clean coal with an ash value of 36% from a feed coal of about 66% ash. 19 refs., 7 figs., 5 tabs.

  15. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations

    DEFF Research Database (Denmark)

    Pétursdóttir, Una; Kirkelund, Gunvor Marie; Press-Kristensen, Kåre

    2017-01-01

    The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d < 100 nm) in the town Sisimiut and two nearby settlements, Sarfann......The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d ..., Sarfannguit and Itilleq, in West Greenland. Measurements were carried out during three weeks in April and May 2016. Air temperatures during the measurements ranged from −4.4 to +8.7 °C. A portable condensation particle counter (P-Trak) was used for the measurements. Results showed that the lowest...... in Sisimiut, while subsequent measurements at the same location showed much lower PNCs. The presence of heavy machinery elevated PNCs highly during two measurement events, giving PNCs up to 270,993 cm−3 but dropping to 1180 cm−3 10 min later, after the vehicle had passed by. A measurement event in Sisimiut...

  16. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel

    Science.gov (United States)

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-01-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength–toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation. PMID:27877493

  17. Review on ultrafined/nanostructured magnesium alloys produced through severe plastic deformation: microstructures

    Directory of Open Access Journals (Sweden)

    Mahmood Fatemi

    2015-12-01

    Full Text Available A review on the microstructural evolution in magnesium alloys during severe plastic deformation waspresented. The challenges deserved to achieve ultrafine/ nanostructured magnesium were discussed.The characteristics of the processed materials are influenced by three main factors, including idifficult processing at low temperatures, ii high temperature processing and the occurrence ofdynamic recrystallization and grain growth processes, and iii a combined effect of grain refinementand crystallographic texture changes. Reviewing the published results indicate that there are twopotential difficulties with severe deformation of magnesium alloys. First, it is very hard to achievehomogeneous ultrafined microstructure with initial coarse grains. The second is the dependency ofmicrostructure development on the initial grain size and on the imposed strain level. It was clarifiedthat different grain refining mechanisms may be contributed along the course of multi-pass severedeformation. It was clarified that discontinuous recrystallization takes places during the first stages ofdeformation, whereas continuous refinement of the recrystallized grain may be realized at consecutivepasses. Shear band formation as well as twinning were demonstrated to play a significant role in grainrefinement of magnesium alloy. Also, the higher the processing temperature employed the morehomogeneous microstructure may be achieved with higher share of low angle grain boundaries.

  18. Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding

    International Nuclear Information System (INIS)

    Su, Lihong; Lu, Cheng; Li, Huijun; Deng, Guanyu; Tieu, Kiet

    2014-01-01

    Accumulative roll bonding (ARB) is an effective method to produce ultrafine-grained (UFG) sheet materials with high strength. In this work, fully annealed AA1050 sheet with an initial thickness of 1.5 mm was processed by ARB up to five cycles. The microstructure was examined by optical microscopy (OM) and transmission electron microscopy (TEM). The results revealed that ARB is a promising process for fabricating ultrafine grained structures in aluminium sheets and the average grain size after 5-cycle ARB reached approximately 300 nm. Meanwhile, a remarkable enhancement in the strength was achieved and the value was about three times the strength of starting material. The microstructure at the bond interface introduced during ARB was investigated and its influence was discussed in detail. In addition, the microstructure and mechanical properties after ARB were compared with that after deformation by equal channel angular pressing (ECAP) up to the same strain. It has been found that ARB is more efficient in grain refinement and strengthening, which can be attributed to the different deformation modes of the two techniques

  19. Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding

    Directory of Open Access Journals (Sweden)

    Igor Altenberger

    2015-05-01

    Full Text Available There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences. In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI methods and consequences for mechanical properties (tensile strength as well as fatigue and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.

  20. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Kim, Hyunryung; Che, Lihua; Ha, Yoon; Ryu, WonHyoung

    2014-01-01

    Electrospun silk fibroin (SF) scaffolds provide large surface area, high porosity, and interconnection for cell adhesion and proliferation and they may replace collagen for many tissue engineering applications. Despite such advantages, electrospun SF scaffolds are still limited as bone tissue replacement due to their low mechanical strengths. While enhancement of mechanical strengths by incorporating inorganic ceramics into polymers has been demonstrated, electrospinning of a mixture of SF and inorganic ceramics such as hydroxyapatite is challenging and less studied due to the aggregation of ceramic particles within SF. In this study, we aimed to enhance the mechanical properties of electrospun SF scaffolds by uniformly dispersing hydroxyapatite (HAp) nanoparticles within SF nanofibers. HAp nanoaprticles were modified by γ-glycidoxypropyltrimethoxysilane (GPTMS) for uniform dispersion and enhanced interfacial bonding between HAp and SF fibers. Optimal conditions for electrospinning of SF and GPTMS-modified HAp nanoparticles were identified to achieve beadless nanofibers without any aggregation of HAp nanoparticles. The MTT and SEM analysis of the osteoblasts-cultured scaffolds confirmed the biocompatibility of the composite scaffolds. The mechanical properties of the composite scaffolds were analyzed by tensile tests for the scaffolds with varying contents of HAp within SF fibers. The mechanical testing showed the peak strengths at the HAp content of 20 wt.%. The increase of HAp content up to 20 wt.% increased the mechanical properties of the composite scaffolds, while further increase above 20 wt.% disrupted the polymer chain networks within SF nanofibers and weakened the mechanical strengths. - Highlights: • Electrospun composite silk fibroin scaffolds were mechanically-reinforced. • GPTMS enhanced hydroxyapatite distribution in silk fibroin nanofibers. • Mechanical property of composite scaffolds increased up to 20% of hydroxyapatite. • Composite

  1. Mechanical Property Characterization of Electrospun Recombinant Human Tropoelastin for Vascular Graft Biomaterials

    OpenAIRE

    McKenna, Kathryn A.; Hinds, Monica T.; Sarao, Rebecca C.; Wu, Ping-Cheng; Maslen, Cheryl L.; Glanville, Robert W.; Babcock, Darcie; Gregory, Kenton W.

    2011-01-01

    The development of vascular grafts has focused on finding a biomaterial that is non-thrombogenic, minimizes intimal hyperplasia, matches the mechanical properties of native vessels and allows for regeneration of arterial tissue. In this study, the structural and mechanical properties and the vascular cell compatibility of electrospun recombinant human tropoelastin (rTE) were evaluated as a potential vascular graft support matrix. Disuccinimidyl suberate (DSS) was used to cross-link electrospu...

  2. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.

    Science.gov (United States)

    Salifu, Ali A; Lekakou, Constantina; Labeed, Fatima H

    2017-07-01

    Tissue engineering of human fetal osteoblast cells was investigated on gelatin-hydroxyapatite (HA), crosslinked, electrospun oriented fiber scaffolds at the different HA concentrations of 0, 10, 20, and 25 wt % in the dry fibers and different fiber diameter, pore size and porosity of scaffolds. Rheological tests and proton nuclear magnetic resonance spectroscopy were conducted for all solutions used for electrospinning. It was found that 25 wt % HA-gelatin scaffolds electrospun at 20 kV led to the greatest cell attachment, cell proliferation and extracellular matrix (ECM) production while fiber orientation improved the mechanical properties, where crosslinked electrospun 25 wt % HA-gelatin fiber scaffolds yielded a Young's modulus in the range of 0.5-0.9 GPa and a tensile strength in the range of 4-10 MPa in the fiber direction for an applied voltage of 20-30 kV, respectively, in the electrospinning of scaffolds. Biological characterization of cell seeded scaffolds yielded the rate of cell growth and ECM (collagen and calcium) production by the cells as a function of time; it included cell seeding efficiency tests, alamar blue cell proliferation assay, alkaline phosphate (ALP) assay, collagen assay, calcium colorimetric assay, fluorescence microscopy for live and dead cells, and scanning electron microscopy for cell culture from 1 to 18 days. After 18 days, cells seeded and grown on the 25 wt % HA-gelatin scaffold, electrospun at 20 kV, reached production of collagen at 370 μg/L and calcium production at 0.8 mM. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1911-1926, 2017. © 2017 Wiley Periodicals, Inc.

  3. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    Science.gov (United States)

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright

  4. Electrospun PEDOT:PSS/PVP Nanofibers for CO Gas Sensing with Quartz Crystal Microbalance Technique

    OpenAIRE

    Hong-Di Zhang; Xu Yan; Zhi-Hua Zhang; Gu-Feng Yu; Wen-Peng Han; Jun-Cheng Zhang; Yun-Ze Long

    2016-01-01

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polyvinylpyrrolidone (PEDOT:PSS/PVP) composite nanofibers were successfully fabricated via electrospinning and used as a quartz crystal microbalance (QCM) sensor for detecting CO gas. The electrical property of individual PEDOT:PSS/PVP nanofibers was characterized and the room temperature resistivity was at the magnitude of 105 Ω·m. The QCM sensor based on PEDOT:PSS/PVP nanofibers was sensitive to low concentration (5–50 ppm) CO. In the ...

  5. Electrospun Collagen: A Tissue Engineering Scaffold with Unique Functional Properties in a Wide Variety of Applications

    Directory of Open Access Journals (Sweden)

    Balendu Shekhar Jha

    2011-01-01

    Full Text Available Type I collagen and gelatin, a derivative of Type I collagen that has been denatured, can each be electrospun into tissue engineering scaffolds composed of nano- to micron-scale diameter fibers. We characterize the biological activity of these materials in a variety of tissue engineering applications, including endothelial cell-scaffold interactions, the onset of bone mineralization, dermal reconstruction, and the fabrication of skeletal muscle prosthetics. Electrospun collgen (esC consistently exhibited unique biological properties in these functional assays. Even though gelatin can be spun into fibrillar scaffolds that resemble scaffolds of esC, our assays reveal that electrospun gelatin (esG lacks intact α chains and is composed of proinflammatory peptide fragments. In contrast, esC retains intact α chains and is enriched in the α 2(I subunit. The distinct fundamental properties of the constituent subunits that make up esC and esG appear to define their biological and functional properties.

  6. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations.

    Science.gov (United States)

    Cui, Wenguo; Li, Xiaohong; Xie, Chengying; Zhuang, Huihui; Zhou, Shaobing; Weng, Jie

    2010-06-01

    Controlled nucleation and growth of hydroxyapatite (HA) crystals on electrospun fibers should play important roles in fabrication of composite scaffolds for bone tissue engineering, but no attempt has been made to clarify the effects of chemical group densities and the cooperation of two and more groups on the biomineralization process. The aim of the current study was to investigate into HA nucleation and growth on electrospun poly(dl-lactide) fibers functionalized with carboxyl, hydroxyl and amino groups and their combinations. Electrospun fibers with higher densities of carboxyl groups, combination of hydroxyl and carboxyl groups with the ratio of 3/7, and combination of amino, hydroxyl and carboxyl groups with the ratio of 2/3/5 were favorable for HA nucleation and growth, resulting in higher content and lower crystal size of formed HA. Carboxyl groups were initially combined with calcium ions through electrostatic attraction, and the introduction of hydroxyl groups could modulate the distance between carboxyl groups. The introduction of amino groups may lead to the inner ionic bonding with carboxyl groups, but can accelerate phosphate ions to form HA through a chelate ring with the calcium ion and carbonyl oxygen. The biological evaluation indicated that the mineralized scaffolds acted as an excellent cell support to maintain desirable cell-substrate interactions, to provide favorable conditions for cell proliferation and to stimulate the osteogenic differentiation. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Physico-Mechanical, Dielectric, and Piezoelectric Properties of PVDF Electrospun Mats Containing Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed A. Issa

    2017-10-01

    Full Text Available Poly(vinylidene fluoride (PVDF is a piezoelectric material with outstanding physical and mechanical properties. The piezoelectric properties depend on the β-phase content of this polymer, while the physical and mechanical properties depend on the morphology and degree of crystallinity of the material. Silver has antibacterial effects, and silver nanoparticles (Ag-NPs have large surface areas rich in electrons. In this paper, we produced electrospun PVDF fibrous mats that contained different contents of Ag-NPs between 0% and 1.0%. The β-content in PVDF was found to increase by about 8% for Ag-NPs content of 0.4–0.6%. The electrospun fiber mats had a higher β-crystalline content, nano-pores were visible on the fiber surfaces, and the tensile strength and thermal stability were improved. Dielectric analysis indicated weak interfacial adhesion between the PVDF and Ag-NPs. Good piezoelectric response was observed in the electrospun fibers containing 0.4% AgNPs, which shows a good correlation between the β-crystalline phase content of the composites and its energy-harvesting application.

  8. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    Science.gov (United States)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  9. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  10. Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition

    International Nuclear Information System (INIS)

    Shaikh, Rubina P; Kumar, Pradeep; Choonara, Yahya E; Du Toit, Lisa C; Pillay, Viness

    2012-01-01

    The effects of modifying electrospun poly(vinyl alcohol) (PVA) nanofibers through crosslinking using glutaraldehyde (GA) are explored in this paper. Various concentrations of PVA solutions containing model drugs rifampicin (RIF) and isoniazid (INH) were electrospun and thereafter crosslinked using GA vapors. PVA nanofibers demonstrated high drug entrapment efficiency of 98.77% ± 1.384% and 95.07% ± 1.988% for the INH- and RIF-loaded PVA nanofibers, respectively. The surface morphology, molecular vibrational transitions, tensile attributes and in vitro drug release were characterized and supported by in silico molecular mechanics simulations. Results indicated that crosslinking caused a significant reduction in the rate of drug release where 81.11% ± 2.35% of INH and 59.31% ± 2.57% of RIF were released after 12 h. Tensile properties such as the ultimate strength and Young's modulus increased after crosslinking, caused by crosslinks forming between PVA nanofibers as was revealed through scanning electron microscopy analysis. Fourier Transform infrared analysis was conducted to further support the mode of crosslinking. Additionally, image processing analysis was carried out to quantify the effect of formulation variables on the morphology of nanofibers. Furthermore, the effect of GA-induced crosslinking and addition of drugs on the performance of electrospun fibers was further elucidated and conceptualized using a molecular mechanics assisted model building and energy refinement approach via molecular mechanics energy relationships by exploring the spatial disposition of energy-minimized molecular structures of the polymer, crosslinker and the drugs. (paper)

  11. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring.

    Science.gov (United States)

    Alarifi, Ibrahim M; Alharbi, Abdulaziz; Khan, Waseem S; Swindle, Andrew; Asmatulu, Ramazan

    2015-10-14

    This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN) fibers as a sensor material in a structural health monitoring (SHM) system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM) applications in different industries.

  12. Polymethacrylate coated electrospun PHB fibers: An exquisite outlook for fabrication of paper-based biosensors.

    Science.gov (United States)

    Hosseini, Samira; Azari, Pedram; Farahmand, Elham; Gan, S N; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-07-15

    Electrospun polyhydroxybutyrate (PHB) fibers were dip-coated by polymethyl methacrylate-co-methacrylic acid, poly(MMA-co-MAA), which was synthesized in different molar ratios of the monomers via free-radical polymerization. Fabricated platfrom was employed for immobilization of the dengue antibody and subsequent detection of dengue enveloped virus in enzyme-linked immunosorbent assay (ELISA). There is a major advantage for combination of electrospun fibers and copolymers. Fiber structre of electrospun PHB provides large specific surface area available for biomolecular interaction. In addition, polymer coated parts of the platform inherited the premanent presence of surface carboxyl (-COOH) groups from MAA segments of the copolymer which can be effectively used for covalent and physical protein immobilization. By tuning the concentration of MAA monomers in polymerization reaction the concentration of surface -COOH groups can be carefully controlled. Therefore two different techniques have been used for immobilization of the dengue antibody aimed for dengue detection: physical attachment of dengue antibodies to the surface and covalent immobilization of antibodies through carbodiimide chemistry. In that perspective, several different characterization techniques were employed to investigate the new polymeric fiber platform such as scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurement and UV-vis titration. Regardless of the immobilization techniques, substantially higher signal intensity was recorded from developed platform in comparison to the conventional ELISA assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Briggs, Tonye; Matos, Jeffrey; Collins, George; Arinzeh, Treena Livingston

    2015-10-01

    Electrospun polymer/ceramic composites have gained interest for use as scaffolds for bone tissue engineering applications. In this study, we investigated methods to incorporate Platelet Derived Growth Factor-BB (PDGF-BB) in electrospun polycaprolactone (PCL) or PCL prepared with polyethylene oxide (PEO), where both contained varying levels (up to 30 wt %) of ceramic composed of biphasic calcium phosphates, hydroxyapatite (HA)/β-tricalcium phosphate (TCP). Using a model protein, lysozyme, we compared two methods of protein incorporation, adsorption and emulsion electrospinning. Adsorption of lysozyme on scaffolds with ceramic resulted in minimal release of lysozyme over time. Using emulsion electrospinning, lysozyme released from scaffolds containing a high concentration of ceramic where the majority of the release occurred at later time points. We investigated the effect of reducing the electrostatic interaction between the protein and the ceramic on protein release with the addition of the cationic surfactant, cetyl trimethylammonium bromide (CTAB). In vitro release studies demonstrated that electrospun scaffolds prepared with CTAB released more lysozyme or PDGF-BB compared with scaffolds without the cationic surfactant. Human mesenchymal stem cells (MSCs) on composite scaffolds containing PDGF-BB incorporated through emulsion electrospinning expressed higher levels of osteogenic markers compared to scaffolds without PDGF-BB, indicating that the bioactivity of the growth factor was maintained. This study revealed methods for incorporating growth factors in polymer/ceramic scaffolds to promote osteoinduction and thereby facilitate bone regeneration. © 2015 Wiley Periodicals, Inc.

  14. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    Science.gov (United States)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  15. Improvement of Polylactide Properties through Cellulose Nanocrystals Embedded in Poly(Vinyl Alcohol) Electrospun Nanofibers.

    Science.gov (United States)

    López de Dicastillo, Carol; Garrido, Luan; Alvarado, Nancy; Romero, Julio; Palma, Juan Luis; Galotto, Maria Jose

    2017-05-11

    Electrospun nanofibers of poly (vinyl alcohol) (PV) were obtained to improve dispersion of cellulose nanocrystals (CNC) within hydrophobic biopolymeric matrices, such as poly(lactic acid) (PLA). Electrospun nanofibers (PV/CNC) n were successfully obtained with a final concentration of 23% ( w / w ) of CNC. Morphological, structural and thermal properties of developed CNC and electrospun nanofibers were characterized. X-ray diffraction and thermal analysis revealed that the crystallinity of PV was reduced by the electrospinning process, and the incorporation of CNC increased the thermal stability of biodegradable nanofibers. Interactions between CNC and PV polymer also enhanced the thermal stability of CNC and improved the dispersion of CNC within the PLA matrix. PLA materials with CNC lyophilized were also casted in order to compare the properties with materials based on CNC containing nanofibers. Nanofibers and CNC were incorporated into PLA at three concentrations: 0.5%, 1% and 3% (CNC respect to polymer weight) and nanocomposites were fully characterized. Overall, nanofibers containing CNC positively modified the physical properties of PLA materials, such as the crystallinity degree of PLA which was greatly enhanced. Specifically, materials with 1% nanofiber 1PLA(PV/CNC) n presented highest improvements related to mechanical and barrier properties; elongation at break was enhanced almost four times and the permeation of oxygen was reduced by approximately 30%.

  16. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications.

    Science.gov (United States)

    Perumal, Govindaraj; Pappuru, Sreenath; Chakraborty, Debashis; Maya Nandkumar, A; Chand, Dillip Kumar; Doble, Mukesh

    2017-07-01

    This study is aimed to develop curcumin (Cur) incorporated electrospun nanofibers of a blend of poly (lactic acid) (PLA) and hyperbranched polyglycerol (HPG) for wound healing applications. Both the polymers are synthesized and fabricated by electrospinning technique. The produced nanofibers were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Colorimetry (DSC) and Thermogravimetric Analysis (TGA). Electrospun scaffolds (PLA/HPG/Cur) exhibits very high hydrophilicity, high swelling and drug uptake and promotes better cell viability, adhesion and proliferation when compared to PLA/Cur electrospun nanofibers. Biodegradation study revealed that the morphology of the nanofibers were unaffected even after 14days immersion in Phosphate Buffered Saline. In vitro scratch assay indicates that migration of the cells in the scratch treated with PLA/HPG/Cur is complete within 36h. These results suggest that PLA/HPG/Cur nanofibers can be a potential wound patch dressing for acute and chronic wound applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preformulation Studies of Furosemide-Loaded Electrospun Nanofibrous Systems for Buccal Administration

    Directory of Open Access Journals (Sweden)

    Andrea Kovács

    2017-11-01

    Full Text Available Furosemide loaded electrospun fibers were prepared for buccal administration, with the aim of improving the oral bioavailability of the poorly soluble and permeable crystalline drug, which can be achieved by the increased solubility and by the circumvention of the intensive first pass metabolism. The water soluble hydroxypropyl cellulose (HPC was chosen as a mucoadhesive polymer. In order to improve the electrospinnability of HPC, poly (vinylpyrrolidone (PVP was used. During the experiments, the total polymer concentration was kept constant at 15% (w/w, and only the ratio of the two polymers (HPC-PVP = 5:5, 6:4, 7:3, 8:2, 9:1 was changed. A combination of rheological measurements with scanning electron microscopic morphological images of electrospun samples was applied for the determination of the optimum composition of the gels for fiber formation. The crystalline–amorphous transition of furosemide was tracked by Fourier transform infrared spectroscopy. A correlation was found between the rheological properties of the polymer solutions and their electrospinnability, and the consequent morphology of the resultant samples. With decreasing HPC ratio of the system, a transition from the spray-dried droplets to the randomly oriented fibrous structures was observed. The results enable the determination of the polymer ratio for the formation of applicable quality of electrospun fibers.

  18. Poly(ε-caprolactone films reinforced with chlorhexidine loaded electrospun polylactide microfibers

    Directory of Open Access Journals (Sweden)

    Y. Marquez

    2017-09-01

    Full Text Available Poly(ε-caprolactone (PCL films reinforced with polylactide (PLA microfibers were prepared by two methodologies: a melt pressing of an electrospun PLA mat between two PCL films, and b melt pressing of a co-electrospun mat composed of PLA microfibers and PCL nanofibers. Electrospinning conditions were selected for each polymer to obtain films loaded with 10, 20 and 30 wt% of PLA. Thermal and mechanical properties varied depending on the preparation method. Thus, PLA crystallinity was higher when films were obtained by the co-electrospinning process, as revealed from DSC and synchrotron X-ray diffraction data since cold crystallization of the highly oriented PLA microfibers was favored in the subsequent heating run when they were in close contact with PCL nanofibers. Samples obtained by co-electrospinning also showed higher mechanical properties (e.g. Young modulus with increasing PLA load. In this case, fracture surfaces showed significant interactions between fibers and the PCL matrix and decreased fiber pull-out. All fabrics were also loaded with chlorhexidine (CHX as a hydrophilic bactericide agent. A delayed release was observed when the drug was only loaded into the electrospun PLA microfibers, and diffusion varied with the method of preparation. In all cases, samples had a clear bactericide effect against Gram positive and Gram negative bacteria. Nevertheless, the protective effect was slightly lower when CHX was only loaded in the reinforcing PLA microfibers.

  19. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  20. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

    Science.gov (United States)

    Deng, Peihong; Xu, Zhifeng; Zeng, Rongying; Ding, Chunxia

    2015-08-01

    The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Online Coupling of Lab-on-Valve Format to Amperometry Based on Polyvinylpyrrolidone-Doped Carbon Paste Electrode and Its Application to the Analysis of Morin

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2012-01-01

    Full Text Available The potential capabilities and analytical performance of lab-on-valve (LOV manifold as a front end to amperometry have been explored for the on-line determination of morin. Meanwhile, the electrochemical behaviors of morin were investigated based on polyvinylpyrrolidone- (PVP- doped carbon paste electrode (CPE, which found that PVP can significantly improve its oxidation peak current. The excellent amperometric current response was achieved when the potential difference (ΔE of 0.6 V was implemented in pH 6.5 phosphate buffer solution (PBS that served as the supporting electrolyte. A well-defined oxidation peak has been obtained in studies using PVP as a modifier of CPE based on the oxidation of morin. The present work introduces the LOV technique as a useful tool for amperometric measurement, documents advantages of using programmable flow, and outlines means for miniaturization of assays on the basis of PVP modified CPE. The proposed method was applied successfully to the determination of morin in real samples, and the spiked recoveries were satisfactory.

  2. Improved dehydriding property of polyvinylpyrrolidone coated Mg-Ni hydrogen storage nano-composite prepared by hydriding combustion synthesis and wet mechanical milling

    Directory of Open Access Journals (Sweden)

    Linglong Yao

    2018-02-01

    Full Text Available In this work, polyvinylpyrrolidone (PVP coated Mg95Ni5 nano-composites were prepared by hydriding combustion synthesis (HCS plus wet mechanical milling (WM with tetrahydrofuran (THF and donated as WM-x wt% PVP (x = 1, 3, 5 and 7 respectively. The phase compositions, microstructures and dehydriding property, as well as the co-effect of PVP and THF were investigated in detail. XRD results showed that the average crystal size of MgH2 in the milled Mg95Ni5 decreased from 23 nm without PVP to 18 nm with 1 wt% PVP. The peak temperature of dehydrogenation of MgH2 in the milled Mg95Ni5 decreased from 293.0 °C without THF to 250.4 °C with THF. The apparent activation energy for decomposition of MgH2 in WM-7 wt% PVP was estimated to be 66.94 kJ/mol, which is 37.70 kJ/mol lower than that of milled Mg95Ni5 without THF and PVP. PVP and THF can facilitate the refinement of particle size during mechanical milling process. Attributed to small particle sizes and synergistic effect of PVP and THF, the composites exhibit markedly improved dehydriding properties. Keywords: Mg-Ni-PVP, Composite, Mg-based alloy, Wet mechanical milling, Dehydriding temperature

  3. Synthesis of Dual-Size Cellulose-Polyvinylpyrrolidone Nanofiber Composites via One-Step Electrospinning Method for High-Performance Air Filter.

    Science.gov (United States)

    Balgis, Ratna; Murata, Hiroyuki; Goi, Yohsuke; Ogi, Takashi; Okuyama, Kikuo; Bao, Li

    2017-06-20

    Dual-size nanofibers consisting of a random mixture of nano- and submicron-size nanofibers are promising structures for specific applications such as air filters because of their increased specific surface area and low pressure drop. Synthesis of dual-size nanofibers using one-step electrospinning was reported here for the first time. The formation of well-mixed nano- and submicron-size cellulose-polyvinylpyrrolidone nanofiber composites was accomplished utilizing the physical properties of TEMPO-oxidized cellulose nanofibers (i.e., high thixotropy and high magnitude of zeta potential) and tuning the charge of the polymer jet, which influences the formation and shape of Taylor cone, and Coulombic explosion. The dual-size nanofibers were then spun on the surface of a HEPA filter to obtain a multilayer air filter. Aerosol filtration measurements show that this multilayer air filter has an incredibly high performance, shown by the high quality factor (Qf), 0.117 Pa -1 , which is 10 times the Qf of commercial HEPA filters.

  4. The effect of prefreezing the diluent portion of the straw in a step-wise vitrification process using ethylene glycol and polyvinylpyrrolidone to preserve bovine blastocysts.

    Science.gov (United States)

    Mtango, N R; Varisanga, M D; Dong, Y J; Otoi, T; Suzuki, T

    2001-03-01

    A total of 678 bovine blastocysts, which had been produced by in vitro maturation, fertilization, and culture, were placed into plastic straws and were vitrified in various solutions of ethylene glycol (EG) + polyvinylpyrrolidone (PVP). Part of the straw was loaded with TCM199 medium + 0.3 M trehalose as a diluent; the diluent portions of the straw were prefrozen to either -30 or -196 degrees C. Then, the embryos suspended in the vitrification solution were pipetted into the balance of the straw and vitrified by direct immersion into liquid nitrogen. For thawing, the straws were warmed for 3 s in air and 20 s in a water bath at 39 degrees C and then agitated to mix the diluent and cryoprotectant solution for 5 min followed by culture in TCM199 + 10% FCS + 5 + microg/ml insulin + 50 microg/ml gentamycin sulfate for 72 h. Variables that were examined were the time of exposure to EG prior to vitrification, the PVP concentration, and the temperature of exposure to EG + PVP prior to vitrification. Survival and hatching rates of the blastocysts exposed to 40% EG in four steps at 4 degrees C were higher than those of embryos exposed in two steps (81.3 +/- 4.3% and 80.2 +/- 3.4% vs 67.6 +/- 4.5% and 71.5 +/- 4.7%, respectively; P straws do favor developmental competence of in vitro produced embryos.

  5. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    Energy Technology Data Exchange (ETDEWEB)

    Bonan, Roberta F. [Departamento de Engenharia de Materiais (DEMAT), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Bonan, Paulo R.F.; Batista, André U.D.; Sampaio, Fábio C.; Albuquerque, Allan J.R. [Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Moraes, Maria C.B. [Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Ecológica, W/5 Norte (Final) Cenargen (Laboratório de Semioquímicos) ASA NORTE, 70770900 Brasília, DF (Brazil); Mattoso, Luiz H.C. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação Agropecuária (CNPDIA), Rua XV de Novembro, 1452, Centro, 13.560, 970 São Carlos, SP (Brazil); Glenn, Gregory M. [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Bioproduct Chemistry and Engineering - BCE, Albany, CA 94710 (United States); and others

    2015-03-01

    In this study poly(lactic acid) (PLA) and polyvinylpyrrolidone (PVP) micro- and nanofiber mats loaded with Copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The Copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/PVP blends containing 20% (wt.%) oil were spun and characterized by scanning electron microscopy (SEM) and by studying the surface contact angle, in vitro release rate, and antimicrobial activity. All compositions evaluated were able to produce continuous and smooth fibers by SBS. The addition of PVP increased fiber diameter, and decreased the surface contact angle. GC analysis demonstrated that the main component of the Copaiba oil was β-caryophyllene, a known antimicrobial agent. In vitro release tests of Copaiba oil volatiles demonstrated a higher release rate in fibers containing PVP. Fiber mats made from blends containing higher amounts of PVP had greater antimicrobial action against Staphylococcus aureus. The results confirm the potential of the fiber mats for use in controlled drug release and could lead to promising applications in the biomedical field. - Highlights: • An efficient method for production of antimicrobial nanofiber mats using solution blow spinning was reported. • Nanofiber mats containing Copaiba oil were efficient against Staphylococcus aureus. • Nanofiber composition changed morphological properties and antimicrobial action.

  6. Volumetric and isentropic compressibility behaviour of aqueous solutions of (polyvinylpyrrolidone + sodium citrate) at T = (283.15 to 308.15) K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2007-01-01

    The apparent specific volumes and isentropic compressibilities have been determined for polyvinylpyrrolidone in aqueous solutions of sodium citrate by density and sound velocity measurements at T = (283.15 to 308.15) K at atmospheric pressure. The results show a positive transfer volume of PVP from an aqueous solution to an aqueous sodium citrate solution. For low concentrations of PVP, the apparent specific volumes of PVP in water increased along with an increase in the polymer mass fraction, while in aqueous sodium citrate solutions decreased along with an increase in the polymer mass fraction. For high concentrations of PVP, the apparent specific volumes of PVP in water and in aqueous sodium citrate solutions were independent of the polymer mass fraction. The apparent specific isentropic compressibility of PVP is negative at T = (283.15 and 288.15) K, which imply that the water molecules around the PVP molecules are less compressible than the water molecules in the bulk solutions. The positive values of apparent specific isentropic compressibility at T = (298.15, 303.15, and 308.15) K imply that the water molecules around the PVP molecules are more compressible than the water molecules in the bulk solutions. Finally, it was found that the apparent specific isentropic compressibility of PVP increases as the concentration of sodium citrate increases

  7. Polyvinylpyrrolidone-Capped Silver Nanoparticle Inhibits Infection of Carbapenem-Resistant Strain of Acinetobacter baumannii in the Human Pulmonary Epithelial Cell

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2017-08-01

    Full Text Available Acinetobacter baumannii, an opportunistic ESKAPE pathogen, causes respiratory and urinary tract infections. Its prevalence increases gradually in the clinical setup. Pathogenicity of Acinetobacter is significantly influenced by its ability to infect and survive in human pulmonary cells. Therefore, it is important to study the infection of A. baumannii in human pulmonary host cell (A-549, monitoring surface interacting and internalized bacteria. It was found that during infection of A. baumannii, about 40% bacteria adhered to A-549, whereas 20% got internalized inside pulmonary cell and induces threefold increase in the reactive oxygen species production. We have synthesized polyvinylpyrrolidone (PVP-capped AgNPs using chemical methods and tested its efficacy against carbapenem-resistant strain of A. baumannii. PVP-capped silver nanoparticles (PVP-AgNPs (30 µM have shown antibacterial activity against carbapenem-resistant strain of A. baumannii and this concentration does not have any cytotoxic effect on the human pulmonary cell line (IC50 is 130 µM. Similarly, PVP-AgNPs treatment decreases 80% viability of intracellular bacteria, decreases adherence of A. baumannii to A-549 (40 to 2.2%, and decreases intracellular concentration (20 to 1.3% of A. baumannii. This concludes that PVP-AgNPs can be developed as a substitute for carbapenem to control the infection caused by carbapenem-resistant A. baumannii.

  8. Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone).

    Science.gov (United States)

    Chen, Aihua; Kamata, Kaori; Nakagawa, Masaru; Iyoda, Tomokazu; Haiqiao Wang, Haiqiao; Li, Xiaoyu

    2005-10-06

    We have recently demonstrated a one-step process to fabricate silver-polypyrrole (PPy) coaxial nanocables (Chen, A.; Wang, H.; Li, X. Chem. Commun. 2005, 14, 1863). The formation process of silver-PPy coaxial nanocables is discussed in this article. It was found from the results of TEM and SEM images that large numbers of silver atoms were formed when AgNO3 was added to a pyrrole solution. Then silver atoms transform to silver-PPy nanosheets with regular morphology, which will connect together to be more stable. Silver-PPy nanocables will be able to grow at the expense of the silver-PPy nanosheets. Poly(vinylpyrrolidone) (PVP) plays crucial roles in this process: as a capping agent to form silver nanowires, and as a dispersant of pyrrole monomers, which can influence the site at which pyrrole monomer exists. On the basis of experimental analysis, the possible mechanism was proposed. Because of the effect of PVP, silver ions and pyrrole monomers are apt to be adsorbed at the [111] and [100] facets of silver nanosheets, respectively. Obvious polymerization will take place on the boundary of the [111] and [100] facets. The PPy layer stays stable on the [100] facets. Meanwhile, newly formed silver atoms and silver nanosheets will further ripen and grow on the [111] facets. In a word, the morphology of final products and the formation process are determined by the reaction site between AgNO3 and the pyrrole monomer, which is influenced by PVP.

  9. The important role of polyvinylpyrrolidone and Cu on enhancing dechlorination of 2,4-dichlorophenol by Cu/Fe nanoparticles: Performance and mechanism study

    Science.gov (United States)

    Fang, Liping; Xu, Cuihong; Zhang, Wenbin; Huang, Li-Zhi

    2018-03-01

    The important role of polyvinylpyrrolidone (PVP) and Cu on the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) by Cu/Fe bimetal nanoparticles has been investigated. The synthesized PVP coated Cu/Fe bimetal nanoparticles with different Cu/Fe ratios were systematically characterized by FTIR, XRD, TEM and magnetic hysteresis loops. The Cu/Fe ratio and the PVP loading were optimized for dechlorination performance, and the optimum ratio of PVP to Cu/Fe was found to be 0.35 and the content of Cu in Cu/Fe nanoparticles was 41%. The presence of PVP as a dispersant/stabilizer results in a highly-dispersed Cu/Fe NPs and increase the reactivity of Cu/Fe NPs for 2,4-DCP removal. The dechlorination rate was enhanced at lower pH and higher temperature conditions. The presence of humic acid, PO43-, NO3-, SO42- leads to a slightly decreased removal efficiency of 2,4-DCP. The magnetic property of PVP-Cu/Fe nanoparticles allows rapid magnetic separation of the catalysts after reaction. A galvanic corrosion model was proposed where iron corrodes and transfers electrons to Cu-rich catalytic regions of the nanoparticles, and finally accelerating the reduction efficiency of 2,4-DCP.

  10. Structural Elucidation of Poloxamer 237 and Poloxamer 237/Praziquantel Solid Dispersions: Impact of Poly(Vinylpyrrolidone) over Drug Recrystallization and Dissolution.

    Science.gov (United States)

    Orlandi, Silvina; Priotti, Josefina; Diogo, Hermínio P; Leonardi, Dario; Salomon, Claudio J; Nunes, Teresa G

    2018-01-08

    Praziquantel (PZQ) is the recommended, effective, and safe treatment against all forms of schistosomiasis. Solid dispersions (SDs) in water-soluble polymers have been reported to increase solubility and bioavailability of poorly water-soluble drugs like PZQ, generally due to the amorphous form stabilization. In this work, poloxamer (PLX) 237 and poly(vinylpyrrolidone) (PVP) K30 were evaluated as potential carriers to revert PZQ crystallization. Binary and ternary SDs were prepared by the solvent evaporation method. PZQ solubility increased similarly with PLX either as binary physical mixtures or SDs. Such unpredicted data correlated well with crystalline PZQ and PLX as detected by solid-state NMR (ssNMR) and differential scanning calorimetry in those samples. Ternary PVP/PLX/PZQ SDs showed both ssNMR broad and narrow superimposed signals, thus revealing the presence of amorphous and crystalline PZQ, respectively, and exhibited the highest PZQ dissolution efficiency (up to 82% at 180 min). SDs with PVP provided a promising way to enhance solubility and dissolution rate of PZQ since PLX alone did not prevent recrystallization of amorphous PZQ. Based on ssNMR data, novel evidences on PLX structure and molecular dynamics were also obtained. As shown for the first time using ssNMR, propylene glycol and ethylene glycol constitute the PLX amorphous and crystalline components, respectively.

  11. Microfluidic preparation of a highly active and stable catalyst by high performance of encapsulation of polyvinylpyrrolidone (PVP)-Pt nanoparticles in microcapsules.

    Science.gov (United States)

    Nam, Jin-Oh; Kim, Jongmin; Jin, Si Hyung; Chung, Young-Min; Lee, Chang-Soo

    2016-02-15

    The encapsulation of active metals in microcapsules would be highly advantageous in maintaining or improving the reaction performance of an array of widely used chemical reactions. However, conventional methods suffer from low uniformity, complicated fabrication steps, sintering, leaching, decline of catalytic activity, and/or poor reusability. Here, we report an efficient microfluidic approach to encapsulate Pt nanoparticle stabilized by polyvinylpyrrolidone (PVP) in photocurable double-emulsion droplets with semipermeable thin shells. The encapsulated catalysts are prepared by the in situ photopolymerization of a double emulsion. The rapid and exquisite microfluidics-based fabrication process successfully generates monodisperse microcapsules without loss of the PVP-Pt nanoparticles, which is the first demonstration of the microfluidic encapsulation of active metal with promising catalytic activity. Specifically, compared to quasi-homogeneous catalysis of PVP-Pt nanoparticles for 4-nitrophenol hydrogenation, the encapsulated PVP-Pt nanoparticles demonstrate excellent catalytic activity, a leaching-proof nature, and high reusability under the same reaction conditions. We envision that the approach described here may be an example of elegant catalyst design to efficiently overcome difficult problems in active-metal encapsulation and to dramatically enhance catalytic activity by taking advantage of the unique aspects of microfluidic methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Hybridization of polyvinylpyrrolidone to a binary composite of curcumin/α-glucosyl stevia improves both oral absorption and photochemical stability of curcumin.

    Science.gov (United States)

    Kadota, Kazunori; Okamoto, Daiki; Sato, Hideyuki; Onoue, Satomi; Otsu, Shigeyuki; Tozuka, Yuichi

    2016-12-15

    The tri-component system curcumin/α-glucosyl stevia (Stevia-G)/polyvinylpyrrolidone (PVP) was developed to improve the oral bioavailability and physicochemical properties of curcumin (CUR). The tri-component CUR formulation with Stevia-G and PVP was prepared with freeze-drying. The tri-component CUR system exhibited 13,000-fold higher solubility of CUR than the equilibrium solubility of CUR for 24h, indicating a stable tri-composite structure involving CUR. CUR could be converted into an amorphous form in the presence of Stevia-G and PVP by freeze-drying. The photo-degradation of CUR in the tri-component system was negligible even under an amorphous state of CUR. After oral administration in rats, the oral absorption of the tri-component CUR formulation (20mgCUR/kg) was 6.7-fold higher than that of crystalline CUR. The tri-component CUR formulation would therefore be a promising option to improve physicochemical properties and oral absorption of CUR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Effect of Polyvinylpyrrolidone on the Optical Properties of the Ni-Doped ZnS Nanocrystalline Thin Films Synthesized by Chemical Method

    Directory of Open Access Journals (Sweden)

    Tran Minh Thi

    2012-01-01

    Full Text Available We report the optical properties of polyvinyl-pyrrolidone (PVP and the influence of PVP concentration on the photoluminescence spectra of the PVP (PL coated ZnS : Ni nanocrystalline thin films synthesized by the wet chemical method and spin-coating. PL spectra of samples were clearly showed that the 520 nm luminescence peak position of samples remains unchanged, but their peak intensity changes with PVP concentration. The PVP polymer is emissive with peak maximum at 394 nm with the exciting wavelength of 325 nm. The photoluminescence exciting (PLE spectrum of PVP recorded at 394 nm emission shows peak maximum at 332 nm. This excitation band is attributed to the electronic transitions in PVP molecular orbitals. The absorption edges of the PVP-coated ZnS : Ni0.3% samples that were shifted towards shorter wavelength with increasing of PVP concentration can be explained by the absorption of PVP in range of 350 nm to 400 nm. While the PVP coating does not affect the microstructure of ZnS : Ni nanomaterial, the analyzed results of the PL, PLE, and time-resolved PL spectra and luminescence decay curves of the PVP and PVP-coated ZnS : Ni samples allow to explain the energy transition process from surface PVP molecules to the Ni2+ centers that occurs via hot ZnS.

  14. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH in Brisbane, Queensland (Australia: Study Design and Implementation

    Directory of Open Access Journals (Sweden)

    Wafaa Nabil Ezz

    2015-02-01

    Full Text Available Ultrafine particles are particles that are less than 0.1 micrometres (µm in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT and multiple breath nitrogen washout test (MBNW (to assess airway function, fraction of exhaled nitric oxide (FeNO, to assess airway inflammation, blood cotinine levels (to assess exposure to second-hand tobacco smoke, and serum C-reactive protein (CRP levels (to measure systemic inflammation. A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

  15. Fatigue property and fatigue cracks of ultra-fine grained copper processed by equal-channel angular pressing

    Czech Academy of Sciences Publication Activity Database

    Wang, Q.; Du, Z.; Liu, X.; Kunz, Ludvík

    2011-01-01

    Roč. 2011, č. 682 (2011), s. 231-237 ISSN 1013-9826 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained copper * equal channel angular pressing * fatigue * fatigue cracks Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Microstructure Mechanisms Governing the Creep Life of Ultrafine-grained Cu-0.2wt.%Zr Alloy

    Czech Academy of Sciences Publication Activity Database

    Král, Petr; Svoboda, Milan; Dvořák, Jiří; Kvapilová, Marie; Sklenička, Václav

    2011-01-01

    Roč. 12, č. 12 (2011), od 72 do 72 [12th International Symposium on Physics of Materials. 04.09.2011-08.09.2011, Praha] R&D Projects: GA ČR(CZ) GAP108/11/2260 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained materials * creep * copper alloy Subject RIV: JJ - Other Materials

  17. Plasma-assisted synthesis of monodispersed and robust Ruthenium ultrafine nanocatalysts for organosilane oxidation and oxygen evolution reactions

    NARCIS (Netherlands)

    Gnanakumar, E.S.; Ng, W.; Filiz, B.C.; Rothenberg, G.; Wang, S.; Xu, H.; Pastor-Pérez, L.; Pastor-Blas, M.M.; Sepúlveda-Escribano, A.; Yan, N.; Shiju, N.R.

    2017-01-01

    We report a facile and general approach for preparing ultrafine ruthenium nanocatalysts by using a plasma-assisted synthesis at <100 °C. The resulting Ru nanoparticles are monodispersed (typical size 2 nm) and remain that way upon loading onto carbon and TiO2 supports. This gives robust catalysts

  18. Chemical Structure and Morphology of Magnetic Ultrafine Particles Synthesized from a Ternary Gaseous Mixture Involving Cobalt Tricarbonyl Nitrosyl

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Hattori, K.; Murafa, Nataliya; Šubrt, Jan

    2015-01-01

    Roč. 28, č. 3 (2015), s. 429-434 ISSN 0914-9244 R&D Projects: GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 Keywords : gas phase photochemical reaction * magnetic ultrafine particle * cobalt tricarbonyl nitrosyl * iron pentacarbonyl Subject RIV: CA - Inorganic Chemistry Impact factor: 0.857, year: 2015

  19. Mast cells contribute to alterations in vascular reactivity and exacerbation of ischemia reperfusion injury following ultrafine PM exposure

    Science.gov (United States)

    Increased ambient fine particulate matter (FPM) concentrations are associated with increased risk for short-term and long-term adverse cardiovascular events. Ultrafine PM (UFPM) due to its size and increased surface area might be particularly toxic. Mast cells are well recognized...

  20. Inter-particle interactions and magnetocaloric effect in a sample of ultrafine Fe1-x Hgx particles in Hg

    DEFF Research Database (Denmark)

    Pedersen, Michael Stanley; Mørup, Steen; Linderoth, S.

    1997-01-01

    Ultrafine magnetic particles consisting of a metastable iron-mercury alloy in Hg have been investigated by Mossbauer spectroscopy and magnetization measurements. It was found that the magnetic particles interact strongly, and around 100 K there is a transition from a superparamagnetic state...