WorldWideScience

Sample records for electrospray ionization coupled

  1. Ionization of Gas-Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography.

    Science.gov (United States)

    Cha, Eunju; Jeong, Eun Sook; Han, Sang Beom; Cha, Sangwon; Son, Junghyun; Kim, Sunghwan; Oh, Han Bin; Lee, Jaeick

    2018-03-20

    Herein, gas-phase polycyclic aromatic hydrocarbons (PAHs) as nonpolar compounds were ionized to protonated molecular ions [M + H] + without radical cations and simultaneously analyzed using gas chromatography (GC)/electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). The ionization profile, dissociation, and sensitivity were first investigated to understand the significant behavior of gas-phase PAHs under ESI. The formation of protonated molecular ions of PAHs was distinguished according to the analyte phase and ESI spray solvents. The protonated PAHs exhibited characteristic dissociations, such as H-loss, H 2 -loss, and acetylene-loss, via competition of internal energy. In addition, GC/ESI-MS/MS resulted in relatively lower concentration levels (better sensitivity) for the limits-of-detection (LODs) of PAHs than liquid chromatography (LC)/ESI-MS/MS, and it seems to result from the characteristic ionization mechanism of the gas-phase analyte under ESI. Furthermore, the LODs of gas-phase PAHs depended on molecular weight and proton affinity (PA). Consequently, we demonstrated the relationship among the analyte phases, sensitivities, and structural characteristics (molecular weight and PA) under ESI. The gas-phase PAHs provided enhanced protonation efficiency and sensitivity using GC/ESI-MS/MS, as their molecular weight and PA increased. Based on these results, we offered important information regarding the behavior of gas-phase analytes under ESI. Therefore, the present GC/ESI-MS/MS method has potential as an alternative method for simultaneous analysis of PAHs.

  2. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO3) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO3-nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO3) was produced in the flame. The HNO3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO3 showed the strongest affinity to histidine and formed (Mhistidine-H+HNO3)- complex ions, whereas some amino acids did not react with HNO3 at all. Reactions between HNO3 and histidine residues in AI and AII resulted in the formation of dominant [MAI-H+(HNO3)]- and [MAII-H+(HNO3)]- ions. Results from analyses of AAs and insulin indicated that HNO3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO3)n]3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins.

  3. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions.

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO 3 ) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO 3 -nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO 3 ) was produced in the flame. The HNO 3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO 3 showed the strongest affinity to histidine and formed (M histidine -H+HNO 3 ) - complex ions, whereas some amino acids did not react with HNO 3 at all. Reactions between HNO 3 and histidine residues in AI and AII resulted in the formation of dominant [M AI -H+(HNO 3 )] - and [M AII -H+(HNO 3 )] - ions. Results from analyses of AAs and insulin indicated that HNO 3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO 3 ) n ] 3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins. Graphical Abstract ᅟ.

  4. Accurate quantification of creatinine in serum by coupling a measurement standard to extractive electrospray ionization mass spectrometry

    Science.gov (United States)

    Huang, Keke; Li, Ming; Li, Hongmei; Li, Mengwan; Jiang, You; Fang, Xiang

    2016-01-01

    Ambient ionization (AI) techniques have been widely used in chemistry, medicine, material science, environmental science, forensic science. AI takes advantage of direct desorption/ionization of chemicals in raw samples under ambient environmental conditions with minimal or no sample preparation. However, its quantitative accuracy is restricted by matrix effects during the ionization process. To improve the quantitative accuracy of AI, a matrix reference material, which is a particular form of measurement standard, was coupled to an AI technique in this study. Consequently the analyte concentration in a complex matrix can be easily quantified with high accuracy. As a demonstration, this novel method was applied for the accurate quantification of creatinine in serum by using extractive electrospray ionization (EESI) mass spectrometry. Over the concentration range investigated (0.166 ~ 1.617 μg/mL), a calibration curve was obtained with a satisfactory linearity (R2 = 0.994), and acceptable relative standard deviations (RSD) of 4.6 ~ 8.0% (n = 6). Finally, the creatinine concentration value of a serum sample was determined to be 36.18 ± 1.08 μg/mL, which is in excellent agreement with the certified value of 35.16 ± 0.39 μg/mL.

  5. Identification of the Related Substances in Ampicillin Capsule by Rapid Resolution Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available Rapid Resolution Liquid Chromatography coupled with Electrospray Ionization Tandem Mass Spectrometry (RRLC-ESI-MSn was used to separate and identify related substances in ampicillin capsule. The fragmentation behaviors of related substances were used to identify their chemical structures. Finally, a total of 13 related substances in ampicillin capsule were identified, including four identified components for the first time and three groups of isomers on the basis of the exact mass, fragmentation behaviors, retention time, and chemical structures in the literature. This study avoided time-consuming and complex chemosynthesis of related substances of ampicillin and the results could be useful for the quality control of ampicillin capsule to guarantee its safety in clinic. In the meantime, it provided a good example for the rapid identification of chemical structures of related substances of drugs.

  6. On-line Identification of chiral ofloxacin in milk with an extraction/ionization device coupled to Electrospray Mass Spectrometry.

    Science.gov (United States)

    Wang, Jiang; Jiang, Xiao-Xiao; Zhao, Wei; Hu, Jun; Guan, Qi-Yuan; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-08-15

    The direct separation and analysis of chiral drugs in the complex matrix systems are meaningful and challenging. As the most common broad-spectrum antibiotic, levofloxacin has a strong antibacterial ability, but its enantiomer, dextrofloxacin can cause serious harm to human health. In this work, we reported a rapid on-line extraction/ionization device coupled with Electrospray Mass Spectrometry (ESI-MS) for chiral analysis of ofloxacin enantiomers in complex matrix of milk. Since ofloxacin is difficult to dissolve in water and most organic solvents, the procedure of separating ofloxacin in complex system is often complicated. Using the homemade apparatus, the sample pretreatment process was greatly simplified. Milk sample was directly injected and chiral ofloxacin in the sample was extracted at PTFE membrane for further ionization. It took less than 10s to finish all the procedures including sampling, extraction, reagents mixing, ionization and mass analysis. Utilizing reaction thermodynamics method, trimeric cluster ion [Ni ΙΙ (ref) 2 Ofloxacin-H] + was formed and collisionally dissociated to get chiral resolution of levofloxacin and dextrofloxacin due to the different relative stabilities of the two diastereomeric clusters produced through the dissociation of Ni ΙΙ bound trimeric clusters. With the proposed method, qualitative and quantitative chiral analysis of ofloxacin in milk was successfully achieved in a simple and fast way. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of Electrospray Ionization and Atmospheric Chemical Ionization Coupled with the Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Cholesteryl Esters

    Directory of Open Access Journals (Sweden)

    Hae-Rim Lee

    2015-01-01

    Full Text Available The approach of two different ionization techniques including electrospray ionization (ESI and atmospheric pressure chemical ionization (APCI coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS was tested for the analysis of cholesteryl esters (CEs. The retention time (RT, signal intensity, protonated ion, and product ion of CEs were compared between ESI and APCI. RT of CEs from both ionizations decreased with increasing double bonds, while it increased with longer carbon chain length. The ESI process generated strong signal intensity of precursor ions corresponding to [M+Na]+ and [M+NH4]+ regardless of the number of carbon chains and double bonds in CEs. On the other hand, the APCI process produced a protonated ion of CEs [M+H]+ with a weak signal intensity, and it is selectively sensitive to detect precursor ions of CEs with unsaturated fatty acids. The ESI technique proved to be effective in ionizing more kinds of CEs than the APCI technique.

  8. Use of an Open Port Sampling Interface Coupled to Electrospray Ionization for the On-Line Analysis of Organic Aerosol Particles

    Science.gov (United States)

    Swanson, Kenneth D.; Worth, Anne L.; Glish, Gary L.

    2018-02-01

    A simple design for an open port sampling interface coupled to electrospray ionization (OPSI-ESI) is presented for the analysis of organic aerosols. The design uses minimal modifications to a Bruker electrospray (ESI) emitter to create a continuous flow, self-aspirating open port sampling interface. Considerations are presented for introducing aerosol to the open port sampling interface including aerosol gas flow and solvent flow rates. The device has been demonstrated for use with an aerosol of nicotine as well as aerosol formed in the pyrolysis of biomass. Upon comparison with extractive electrospray ionization (EESI), this device has similar sensitivity with increased reproducibility by nearly a factor of three. The device has the form factor of a standard Bruker/Agilent ESI emitter and can be used without any further instrument modifications.

  9. Extraction and Characterization of Phenolic Compounds from Rose Hip (Rosa canina L.) Using Liquid Chromatography Coupled with Electrospray Ionization - Mass Spectrometry

    OpenAIRE

    Andreea STĂNILĂ; Zoriţa DIACONEASA; Ioana ROMAN; Nicușor SIMA; Dănuț MĂNIUȚIU; Alin ROMAN; Rodica SIMA

    2015-01-01

    Wild berry are a rich of natural compounds which provide them high antioxidant potential. The compounds which provide them these proprieties are known to be vitamins, flavonoids, anthocyanins and phenolic acids. The aim of this study was to extract and characterize bioactive compounds from rose hip (Rosa canina L.) currently found in Romania. A qualitative high-performance liquid chromatography coupled with electrospray ionization mass spectrometric (ESI-MS) detection in positive ion mode has...

  10. Coupling of gas chromatography and electrospray ionization high resolution mass spectrometry for the analysis of anabolic steroids as trimethylsilyl derivatives in human urine.

    Science.gov (United States)

    Cha, Eunju; Jeong, Eun Sook; Cha, Sangwon; Lee, Jaeick

    2017-04-29

    In this study, gas chromatography (GC) was interfaced with high resolution mass spectrometry (HRMS) with electrospray ionization source (ESI) and the relevant parameters were investigated to enhance the ionization efficiency. In GC-ESI, the distances (x-, y- and z) and angle between the ESI needle, GC capillary column and MS orifice were set to 7 (x-distance), 4 (y-distance), and 1 mm (z-distance). The ESI spray solvent, acid modifier and nebulizer gas flow were methanol, 0.1% formic acid and 5 arbitrary units, respectively. Based on these results, analytical conditions for GC-ESI/HRMS were established. In particular, the results of spray solvent flow indicated a concentration-dependent mechanism (peak dilution effect), and other parameters also greatly influenced the ionization performance. The developed GC-ESI/HRMS was then applied to the analysis of anabolic steroids as trimethylsilyl (TMS) derivatives in human urine to demonstrate its application. The ionization profiles of TMS-derivatized steroids were investigated and compared with those of underivatized steroids obtained from gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) and liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS). The steroids exhibited ionization profiles based on their structural characteristics, regardless of the analyte phase or derivatization. Groups I and II with conjugated or unconjugated keto functional groups at C3 generated the [M+H] + and [M+H-TMS] + ions, respectively. On the other hand, Groups III and IV gave rise to the characteristic fragment ions [M+H-TMS-H 2 O] + and [M+H-2TMS-H 2 O] + , corresponding to loss of a neutral TMS·H 2 O moiety from the protonated molecular ion by in-source dissociation. To the best of our knowledge, this is the first study to successfully ionize and analyze steroids as TMS derivatives using ESI coupled with GC. The present system has enabled the ionization of TMS derivatives under ESI conditions

  11. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method

  12. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David

    2009-06-01

    A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.

  13. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Chiaia-Hernandez, Aurea C; Krauss, Martin; Hollender, Juliane

    2013-01-15

    We developed a multiresidue method for the target and suspect screening of more than 180 pharmaceuticals, personal care products, pesticides, biocides, additives, corrosion inhibitors, musk fragrances, UV light stabilizers, and industrial chemicals in sediments. Sediment samples were freeze-dried, extracted by pressurized liquid extraction, and cleaned up by liquid-liquid partitioning. The quantification and identification of target compounds with a broad range of physicochemical properties (log K(ow) 0-12) was carried out by liquid chromatography followed by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled to high resolution Orbitrap mass spectrometry (HRMS/MS). The overall method average recoveries and precision are 103% and 9% (RSD), respectively. The method detection limits range from 0.010 to 4 ng/g(dw), while limits of quantification range from 0.030 to 14 ng/g(dw). The use of APPI as an alternative ionization source helped to distinguish two isomeric musk fragrances by means of different ionization behavior. The method was demonstrated on sediment cores from Lake Greifensee located in northeastern Switzerland. The results show that biocides, musk fragrances, and other personal care products were the most frequently detected compounds with concentrations ranging from pg/g(dw) to ng/g(dw), whereas none of the targeted pharmaceuticals were found. The concentrations of many urban contaminants originating from wastewater correlate with the highest phosphorus input into the lake as a proxy for treatment efficiency. HRMS enabled a retrospective analysis of the full-scan data acquisition allowing the detection of suspected compounds like quaternary ammonium surfactants, the biocide triclocarban, and the tentative identification of further compounds without reference standards, among others transformation products of triclosan and triclocarban.

  15. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2'-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Ren, Lu; Fang, Jianzhang; Liu, Guihua; Zhang, Jianqing; Zhu, Zhou; Liu, Honghe; Lin, Kai; Zhang, Huimin; Lu, Shaoyou

    2016-04-01

    A simple and fast method was developed for the simultaneous determination of five parabens, bisphenol A (BPA), triclosan (TCS), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in human urine using liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The solid-phase extraction (SPE) procedure, chromatographic conditions, and MS/MS parameters were optimized to achieve maximum sensitivity and accuracy for the analytes. The validation results showed that the correlation coefficients (R (2)) and recoveries ranged from 0.999 to 1 and 83.9 to 109.9 %, respectively, and the intra-day and inter-day precisions (relative standard deviation, RSD) were within the range of 1.3-8.5 % and 1.3-9.0 %, respectively. The limits of detection for the analytes ranged from 0.001 to 0.05 μg/L. The method was successfully employed to determine parabens, BPA, TCS, and 8-OHdG in urine samples from school students in Guangzhou, China. The results showed that methyl, ethyl, n-propyl parabens, BPA, TCS, and 8-OHdG were frequently detected in urine samples. n-Butyl and benzyl parabens were only detected in a part of the samples due to their low concentrations in urine.

  16. High-throughput analysis of drugs in biological fluids by desorption electrospray ionization mass spectrometry coupled with thin liquid membrane extraction

    DEFF Research Database (Denmark)

    Rosting, Cecilie; Pedersen-Bjergaard, Stig; Hansen, Steen Honore'

    2013-01-01

    Biological fluids such as urine, saliva and whole blood were analyzed for contents of drugs by a new combination of desorption electrospray ionization mass spectrometry (DESI-MS) and thin liquid membrane extraction (TLME). Analytes from the sample were extracted into a thin liquid membrane...... into the method, methadone was detected in urine in full-scan mode with an LOD of 4 ng mL(-1), while amitriptyline, nortriptyline and pethidine showed LODs of 17 ng mL(-1). Quantification was possible for several basic drugs using one common internal standard, providing relative accuracies in the range of 10...

  17. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of bisoprolol in human plasma.

    Science.gov (United States)

    Giebułtowicz, Joanna; Kojro, Grzegorz; Buś-Kwaśnik, Katarzyna; Rudzki, Piotr J; Marszałek, Ryszard; Leś, Andrzej; Wroczyński, Piotr

    2015-12-04

    Cloud-point extraction (CPE) draws increasing interest in a number of analytical fields including bioanalysis, but combining CPE and LC-MS with electrospray ionization (ESI) in the determination of drugs in biological fluids such as plasma, serum or blood has not been reported so far. Bisoprolol was determined in human plasma by CPE using Trition X-114 as a surfactant and metoprolol as the internal standard. NaOH concentration, temperature and Trition X-114 concentration were optimized. All analyses were performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). All validation experiments met international acceptance criteria and no significant matrix effect was observed. The compatibility of CPE and LC-ESI-MS/MS was confirmed using clinical plasma samples and appropriate statistical tests. The determination of bisoprolol concentration in human plasma in the range 1.0-70ngmL(-1) by the CPE method leads to the results which are equivalent to those obtained by the widely used liquid-liquid extraction method. The results revealed that a structural analogue may be an appropriate internal standard when CPE is used as the extraction technique. CPE offers significant practical advantages over the classical extraction methods, including a positive impact on the environment, therefore its wider application in future pharmacokinetic studies is justifiable. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Rapid identification of bacteria and Candida pathogens in peritoneal dialysis effluent from patients with peritoneal dialysis-related peritonitis by use of multilocus PCR coupled with electrospray ionization mass spectrometry.

    Science.gov (United States)

    Chang, Yu-Tzu; Wang, Hsuan-Chen; Wang, Ming-Cheng; Wu, An-Bang; Sung, Junne-Ming; Sun, H Sunny; Su, Ih-Jen; Kan, Wei-Chih; Chien, Chih-Chiang; Hwang, Jyh-Chang; Wang, Hsien-Yi; Tseng, Chin-Chung; Wu, Chi-Jung

    2014-04-01

    PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was compared with culture for pathogen detection in peritoneal dialysis (PD)-related peritonitis. Of 21 samples of PD effluent, PCR/ESI-MS identified microorganisms in 18 (86%) samples, including Mycobacterium tuberculosis in 1 culture-negative sample. Of 15 double-positive samples, PCR/ESI-MS and culture reached levels of agreement of 100% (15/15) and 87.5% (7/8) at the genus and species levels, respectively. PCR/ESI-MS can be used for rapid pathogen detection in PD-related peritonitis.

  19. Frequency dependence of alternating current electrospray ionization mass spectrometry.

    Science.gov (United States)

    Chetwani, Nishant; Cassou, Catherine A; Go, David B; Chang, Hsueh-Chia

    2011-04-15

    The novel effects resulting from the entrainment of low mobility ions during alternating current (ac) electrospray ionization are examined through mass spectrometry and voltage/current measurements. Curious phenomena such as pH modulation at high frequencies (>150 kHz) of an applied ac electric field are revealed and explained using simple mechanistic arguments. Current measurements are utilized to supplement these observations, and a simplified one-dimensional transient diffusion model for charge transport is used to arrive at a scaling law that provides better insight into the ac electrospray ionization process. Moreover, because of the different pathway for ion formation in comparison to direct current (dc) electrospray, ac electrospray (at frequencies >250 kHz) is shown to reduce the effects of ionization suppression in a mixture of two molecules with different surface activities. © 2011 American Chemical Society

  20. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  1. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry

    NARCIS (Netherlands)

    Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides,

  2. Identification and determination of coumateralyl and coumafuryl in animal tissues by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Jin, Mi-cong; Xu, Guo-zhang; Ren, Yi-ping; Chen, Xiao-hong; Xu, Xiao-ming

    2008-07-01

    A high-performance liquid chromatographic-tandem mass spectrometric (HPLC-MS-MS) method was developed and validated to determine simultaneously coumafuryl and coumateralyl in animal tissues using warfarin as an internal standard (IS). Animal tissue samples were extracted with ethyl acetate and cleaned by Oasis HLB solid-phase extraction (SPE) cartridges. After pretreatment, the separation was performed on a XDB C18 column with an isocratic mobile phase of acetic acid-ammonium acetate (5 mmol l(-1), pH = 4.5)/methanol (30:70, v/v). Detection was carried out on a mass spectrometer by negative electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode. The calibration curves were linear (r(2) > 0.998) in the concentration range 0.75-100.0 ng g(-1) with a lower limit of quantification of 0.75 ng g(-1) for coumafuryl, and 0.5 ng g(-1) for coumateralyl in liver and kidney samples. Intra-day and inter-day relative standard deviations (RSDs) were less than 8.6% and 10.9%, respectively. Recoveries of coumafuryl and coumateralyl were in the range 81.5-89.5%. The developed assay has been applied to the determination of trace residues of coumafuryl and coumateralyl in animal tissues to investigate suspected poisoning of human and animals. 2008 John Wiley & Sons, Ltd

  3. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of antazoline in human plasma.

    Science.gov (United States)

    Giebułtowicz, Joanna; Kojro, Grzegorz; Piotrowski, Roman; Kułakowski, Piotr; Wroczyński, Piotr

    2016-09-05

    Cloud-point extraction (CPE) is attracting increasing interest in a number of analytical fields, including bioanalysis, as it provides a simple, safe and environmentally-friendly sample preparation technique. However, there are only few reports on the application of this extraction technique in liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this study, CPE was used for the isolation of antazoline from human plasma. To date, only one method of antazoline isolation from plasma exists-liquid-liquid extraction (LLE). The aim of this study was to prove the compatibility of CPE and LC-ESI-MS/MS and the applicability of CPE to the determination of antazoline in spiked human plasma and clinical samples. Antazoline was isolated from human plasma using Triton X-114 as a surfactant. Xylometazoline was used as an internal standard. NaOH concentration, temperature and Triton X-114 concentration were optimized. The absolute matrix effect was carefully investigated. All validation experiments met international acceptance criteria and no significant relative matrix effect was observed. The compatibility of CPE and LC-ESI-MS/MS was confirmed using clinical plasma samples. The determination of antazoline concentration in human plasma in the range 10-2500ngmL(-1) by the CPE method led to results which are equivalent to those obtained by the widely used liquid-liquid extraction method. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Online Simultaneous Hydrogen/Deuterium Exchange of Multitarget Gas-Phase Molecules by Electrospray Ionization Mass Spectrometry Coupled with Gas Chromatography.

    Science.gov (United States)

    Jeong, Eun Sook; Cha, Eunju; Cha, Sangwon; Kim, Sunghwan; Oh, Han Bin; Kwon, Oh-Seung; Lee, Jaeick

    2017-11-21

    In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 μL min -1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.

  5. Continuous flow-extractive desorption electrospray ionization: Analysis from "non-electrospray ionization-friendly" solvents and related mechanism

    Czech Academy of Sciences Publication Activity Database

    Li, L.; Yang, S. H.; Lemr, Karel; Havlíček, Vladimír; Schug, K. A.

    2013-01-01

    Roč. 769, MAR 2013 (2013), s. 84-90 ISSN 0003-2670 R&D Projects: GA MŠk(CZ) ME10013; GA ČR(CZ) GAP206/12/1150 Institutional support: RVO:61388971 Keywords : Ambient ionization * Electrospray * Progesterone Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.517, year: 2013

  6. INFRARED MATRIX-ASSISTED LASER DESORPTION ELECTROSPRAY IONIZATION (IR-MALDESI) IMAGING SOURCE COUPLED TO A FT-ICR MASS SPECTROMETER

    Science.gov (United States)

    Robichaud, Guillaume; Barry, Jeremy A.; Garrard, Kenneth P.; Muddiman, David C.

    2013-01-01

    Mass spectrometry imaging (MSI) allows for the direct monitoring of the abundance and spatial distribution of chemical compounds over the surface of a tissue sample. This technology has opened the field of mass spectrometry to numerous innovative applications over the past 15 years. First used with SIMS and MALDI MS that operate under vacuum, interest has grown for mass spectrometry ionization sources that allow for effective imaging but where the analysis can be performed at ambient pressure with minimal or no sample preparation. We introduce here a versatile source for MALDESI imaging analysis coupled to a hybrid LTQ-FT-ICR mass spectrometer. The imaging source offers single shot or multi-shot capability per pixel with full control over the laser repetition rate and mass spectrometer scanning cycle. Scanning rates can be as fast as 1 pixel/second and a spatial resolution of 45 μm was achieved with oversampling. PMID:23208743

  7. Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens

    Science.gov (United States)

    Swanson, Kenneth D.; Spencer, Sandra E.; Glish, Gary L.

    2017-06-01

    Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. [Figure not available: see fulltext.

  8. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...

  9. Desorption electrospray ionization-mass spectrometry of proteins.

    Science.gov (United States)

    Shin, Yong-Seung; Drolet, Barbara; Mayer, Richard; Dolence, Kurt; Basile, Franco

    2007-05-01

    Desorption electrospray ionization-mass spectrometry (DESI-MS) was evaluated for the detection of proteins ranging in molecular mass from 12 to 66 kDa. Proteins were uniformly deposited on a solid surface without pretreatment and analyzed with a DESI source coupled to a quadrupole ion trap mass spectrometer. DESI-MS parameters optimized for protein detection included solvent flow rate, temperature of heated capillary tube, incident and reflection angle, sheath gas pressure, and ESI voltage. Detection limits were obtained for all protein standards, and they were found to decrease with decreasing protein molecular mass: for cytochrome c (12.3 kDa) and lysozyme (14.3 kDa) a detection limit of 4 ng/mm2 was obtained; for apomyoglobin (16.9 kDa) 20 ng/mm2; for beta-lactoglobulin B (18.2 kDa) 50 ng/mm2; and for chymotrypsinogen A (25.6 kDa) 100 ng/mm2. The DESI-MS analysis of higher molecular mass proteins such as ovalbumin (44.4 kDa) and bovine serum albumin (66.4 kDa) yielded mass spectra of low signal-to-noise ratio, making their detection and molecular weight determination difficult. In this study, DESI-MS proved to be a rapid and robust method for accurate MW determination for proteins up to 17 kDa under ambient conditions. Finally, we demonstrated the DESI-MS detection of the bacteriophage MS2 capsid protein from crude samples with minimal sample preparation.

  10. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    Science.gov (United States)

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chemical profiling of Re-Du-Ning injection by ultra-performance liquid chromatography coupled with electrospray ionization tandem quadrupole time-of-flight mass spectrometry through the screening of diagnostic Ions in MS(E mode.

    Directory of Open Access Journals (Sweden)

    Haibo Li

    Full Text Available The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS with the MS(E ((E denotes collision energy data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MS(E, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. "Re-Du-Ning" injection (RDN, a eutherapeutic traditional Chinese medicine injection (TCMI that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures.

  12. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    Science.gov (United States)

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  13. Monitoring of wine aging process by electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Christine Helena Frankland Sawaya

    2011-09-01

    Full Text Available The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS, without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.

  14. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application.

    Science.gov (United States)

    Abu-Reidah, I M; Contreras, M M; Arráez-Román, D; Segura-Carretero, A; Fernández-Gutiérrez, A

    2013-10-25

    Lettuce (Lactuca sativa), a leafy vegetal widely consumed worldwide, fresh cut or minimally processed, constitutes a major dietary source of natural antioxidants and bioactive compounds. In this study, reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry (ESI-QTOF-MS) was applied for the comprehensive profiling of polar and semi-polar metabolites from three lettuce cultivars (baby, romaine, and iceberg). The UHPLC systems allowed the use of a small-particle-size C18 column (1.8 μm), with very fine resolution for the separation of up to seven isomers, and the QTOF mass analyzer enabled sensitive detection with high mass resolution and accuracy in full scan. Thus, a total of 171 compounds were tentatively identified by matching their accurate mass signals and suggested molecular formula with those previously reported in family Asteraceae. Afterwards, their structures were also corroborated by the MS/MS data provided by the QTOF analyzer. Well-known amino acids, organic acids, sesquiterpene lactones, phenolic acids and flavonoids were characterized, e.g. lactucin, lactucopicrin, caftaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, isochlorogenic acid A, luteolin, and quercetin glycosides. For this plant species, this is the first available report of several isomeric forms of the latter polyphenols and other types of components such as nucleosides, peptides, and tryptophan-derived alkaloids. Remarkably, 10 novel structures formed by the conjugation of known amino acids and sesquiterpene lactones were also proposed. Thus, the methodology applied is a useful option to develop an exhaustive metabolic profiling of plants that helps to explain their potential biological activities and folk uses. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to Tetragonula carbonaria honey from Australia.

    Science.gov (United States)

    Truchado, Pilar; Vit, Patricia; Heard, Tim A; Tomás-Barberán, Francisco A; Ferreres, Federico

    2015-05-30

    Tetragonula carbonaria pot-honeys are highly valued as a food source and for their biological activities in Australia, and there is a growing interest to know its composition. Phenolic metabolites, which could be related to their beneficial properties, have not been studied in depth yet. Mass spectrometry (MS) coupled to liquid chromatography (LC) is an advanced technique for the study of complex flavonoids present in difficult food matrices that hampers their isolation and purification. This allows the tentative characterization of diglycosides/triglycosides establishing the position of the O-glycosylation on the sugar moiety by the study of the MS data in T. carbonaria pot-honeys from Australia. Their spectra obtained by high-performance liquid chromatography/photodiode-array detection/electrospray ionization ion trap mass spectrometry (HPLC/DAD/ESI-MS(n) ) revealed for the first time 19 quercetin, kaempferol and isorhamnetin O-glycosides. These compounds were clustered in flavonoid triglycosides, diglycosides and monoglycosides. The first cluster contained one flavonoid trihexoside, two -3-O-(2-hexosyl, 6-rhamnosyl)hexosides and their isomers and two -3-O-(2,6-di-rhamnosyl)hexosides. In the second cluster, eleven flavonoid diglycosides such as three -3-O-(2-hexosyl)hexosides, four -3-O-(2-rhamnosyl)hexosides and one -3-O-(6-rhamnosyl)hexoside as well as two -3-O-(2-pentosyl)hexosides and one tentative -3-O-(3-pentosyl)hexoside were detected. In the monoglycoside group, only one flavonoid -3-O-hexoside was identified. The occurrence of this large number of flavonoid glycosides could be due to the low glucosidase activity previously reported in stingless bee honey. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Identification of unsaturated N-acylhomoserine lactones in bacterial isolates of Rhodobacter sphaeroides by liquid chromatography coupled to electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Cataldi, Tommaso R I; Bianco, Giuliana; Abate, Salvatore; Losito, Ilario

    2011-07-15

    The identification of two unsaturated N-acylhomoserine lactones (AHLs) produced by Rhodobacter sphaeroides bacteria, based on liquid chromatography (LC) coupled to a hybrid quadrupole linear ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer upon electrospray ionization (ESI), is presented. Besides the confirmation of the signaling molecule already described in the literature, i.e. (Z)-N-tetradec-7-enoyl-homoserine lactone (C(14:1)-HSL), we have discovered the occurrence, at low, yet significant levels, of another monounsaturated compound, C(12:1) -HSL, which may extend the number of small diffusible chemical signals known for R. sphaeroides. Both unsaturated AHLs were identified by high-resolution FTICR mass spectrometry in extracts of bacterial culture media and the occurrence of a C=C bond was assessed upon their conversion into bromohydrins. Collision-induced dissociation (CID) spectra were then collected on the LTQ mass analyzer. A careful comparison of tandem MS spectra of monounsaturated (i.e., C(12:1)-HSL and C(14:1)-HSL) and saturated AHLs (i.e. C(12)-HSL and C(14)-HSL) led to the emphasis of two series of product ions, exhibiting 14 Da spaced m/z ratios. Both series were referred to progressive fragmentations at the aliphatic end of the AHL acyl chains, followed by neutral losses of terminal alkenes (i.e. CH(2)=CH(CH(2))(n)H). In particular, the series located at the higher end of the explored m/z range (>200 Da), observed only for monounsaturated species, enabled the location of the C=C bond between carbons 7 and 8 of the acyl chain. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Characterization of metabolite profiles from the leaves of green perilla (Perilla frutescens by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and screening for their antioxidant properties

    Directory of Open Access Journals (Sweden)

    Yeon Hee Lee

    2017-10-01

    Full Text Available The objective of this research was to access the determination of metabolite profiles and antioxidant properties in the leaves of green perilla (Perilla frutescens, where these are considered functional and nutraceutical substances in Korea. A total of 25 compositions were confirmed as six phenolic acids, two triterpenoids, eight flavonoids, seven fatty acids, and two glucosides using an ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS technique from the methanol extract of this species. The individual and total compositions exhibited significant differences, especially rosmarinic acid (10, and linolenic acids (22 and 23 were detected as the predominant metabolites. Interestingly, rosmarinic acid (10 was observed to have considerable differences with various concentrations in three samples (Doryong, 6.38 μg/g; Sinseong, 317.60 μg/g; Bongmyeong, 903.53 μg/g by UPLC analysis at 330 nm. The scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS radicals also showed potent effects with remarkable differences at a concentration of 100 μg/mL, and their abilities were as follows: Sinseong (DPPH, 86%; ABTS, 90% > Bongmyeong (71% and 84%, respectively > Doryong (63% and 73%, respectively. Our results suggest that the antioxidant activities of green perilla leaves are correlated with metabolite contents, especially the five major compositions 10 and 22–25. Moreover, this study may be useful in evaluating the relationship between metabolite composition and antioxidant activity.

  18. Determination of Aspartame and Caffeine in Carbonated Beverages Utilizing Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Bergen, H. Robert, III; Benson, Linda M.; Naylor, Stephen

    2000-10-01

    Mass spectrometry has undergone considerable changes in the past decade. The advent of "soft ionization" techniques such as electrospray ionization (ESI) affords the direct analysis of very polar molecules without need for the complex inefficient derivatization procedures often required in GC-MS. These ionization techniques make possible the direct mass spectral analysis of polar nonvolatile molecules such as DNA and proteins, which previously were difficult or impossible to analyze by MS. Compounds that readily take on a charge (acids and bases) lend themselves to ESI-MS analysis, whereas compounds that do not readily accept a charge (e.g. sugars) are often not seen or are seen only as inefficient adducts (e.g., M+Na+). To gain exposure to this state-of-the-art analytical procedure, high school students utilize ESI-MS in an analysis of aspartame and caffeine. They dilute a beverage sample and inject the diluted sample into the ESI-MS. The lab is procedurally simple and the results clearly demonstrate the potential and limitations of ESI-coupled mass spectrometry. Depending upon the instructional goals, the outlined procedures can be used to quantify the content of caffeine and aspartame in beverages or to understand the capabilities of electrospray ionization.

  19. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique.

    Science.gov (United States)

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping

    2014-03-19

    In this study, we developed a novel electrospray ionization (ESI) technique based on household aluminum foil (Al foil) and demonstated the desirable features and applications of this technique. Al foil can be readily cut and folded into desired configuration for effective ionization and for holding sample solution in bulk to allowing acquisition of durable ion signals. The present technique was demonstrated to be applicable in analysis of a wide variety of samples, ranging from pure chemical and biological compounds, e.g., organic compounds and proteins, to complex samples in liquid, semi-solid, and solid states, e.g., beverages, skincare cream, and herbal medicines. The inert, hydrophobic and impermeable surface of Al foil allows convenient and effective on-target extraction of solid samples and on-target sample clean-up, i.e., removal of salts and detergents from proteins and peptides, extending ESI device from usually only for sample loading and ionization to including sample processing. Moreover, Al foil is an excellent heat-conductor and highly heat-tolerant, permitting direct monitoring of thermal reactions, e.g., thermal denaturation of proteins. Overall, the present study showed that Al-foil ESI could be an economical and versatile method that allows a wide range of applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Probe-Substrate Distance Control in Desorption Electrospray Ionization

    Science.gov (United States)

    Yarger, Tyler J.; Yuill, Elizabeth M.; Baker, Lane A.

    2018-03-01

    We introduce probe-substrate distance (Dps)-control to desorption electrospray ionization (DESI) and report a systematic investigation of key experimental parameters. Examination of voltage, flow rate, and nebulizing gas pressure suggests as Dps decreases, the distance-dependent spray current increases, until a critical point. At the critical point the relationship inverts, and the spray current decreases as the probe moves closer to the surface due to constriction of solution flow by the nebulizing gas. Dps control was used to explore the use of spray current as a signal for feedback positioning, while mass spectrometry imaging was performed simultaneously. Further development of this technique is expected to find application in study of structure-function relationships for clinical diagnostics, biological investigation, and materials characterization. [Figure not available: see fulltext.

  1. Electrospray ionization deposition of BSA under vacuum conditions

    Science.gov (United States)

    Hecker, Dominic; Gloess, Daniel; Frach, Peter; Gerlach, Gerald

    2015-05-01

    Vacuum deposition techniques like thermal evaporation and CVD with their precise layer control and high layer purity often cannot be applied for the deposition of chemical or biological molecules. The molecules are usually decomposed by heat. To overcome this problem, the Electrospray ionization (ESI) process known from mass spectroscopy is employed to transfer molecules into vacuum and to deposit them on a substrate. In this work, a homemade ESI tool was used to deposit BSA (Bovine serum albumin) layers with high deposition rates. Solutions with different concentrations of BSA were prepared using a methanol:water (MeOH:H2O) mixture (1:1) as solvent. The influence of the substrate distance on the deposition rate and on the transmission current was analyzed. Furthermore, the layer thickness distribution and layer adhesion were investigated.

  2. Electrospray ionization mass spectrometric study of thallium complexes with nucleosides.

    Science.gov (United States)

    Frańska, Magdalena

    2017-10-01

    The complexes between Tl + , K + , and nucleosides were studied by using electrospray ionization mass spectrometry. It was found that for complexes of 1:1 stoichiometry, thallium complexes with cytidine were the most abundant and thallium complexes with guanosine were the second most abundant ones. The relative abundances of cytidine-Tl + to cytidine-K + complexes depended on stoichiometry (at higher stoichiometry the potassium complexes were more abundant). In other words, the relative affinity of Tl + and K + to form cytidine complexes depends on the stoichiometry of the formed complexes. Guanosine-Tl + complexes were more abundant than guanosine-K + complexes, irrespective of stoichiometry. Both guanosine tetramer and mixed cytidine/guanosine tetramer were more abundant when they were stabilized by thallium than potassium. Therefore, Tl + may affect the K + stabilization of these tetramers.

  3. Identification and analysis of alkaloids in cortex Phellodendron amurense by high-performance liquid chromatography with electrospray ionization mass spectrometry coupled with photodiode array detection.

    Science.gov (United States)

    Xian, Xiaoyan; Sun, Bohang; Ye, Xueting; Zhang, Guanying; Hou, Pengyi; Gao, Huiyuan

    2014-07-01

    Alkaloids from Cortex Phellodendron amurense Rupr. were identified to determine the material basis for the bioactivity of this herb. HPLC-ESI-MS with photodiode array detection coupled to XCharge C18 column was applied to analyze the alkaloids qualitatively and quantitatively. A total of 37 alkaloids were identified and tentatively characterized from the ethanol extract by online ESI-MS(n) fragmentation and UV spectral analysis. A total of ten alkaloids, including four novel natural products, were tentatively identified for the first time in P. amurense. The fragmentation pathways for certain compounds were analyzed. The contents of a pair of isomers (columbamine and jatrorrhizine) and four main alkaloids (phellodendrine, magnoflorine, berberine, and palmatine) were simultaneously quantified using the aforementioned method. Results showed that the newly discovered and known components of P. amurense were helpful in determining the material basis for the bioactivity of the herb. The application of the XCharge C18 column is a suitable and practical method for the isolation of alkaloids in plants. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  5. Analysis of S-adenosylmethionine and related sulfur metabolites in bacterial isolates of Pseudomonas aeruginosa (BAA-47) by liquid chromatography/electrospray ionization coupled to a hybrid linear quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Cataldi, Tommaso R I; Bianco, Giuliana; Abate, Salvatore; Mattia, Daniela

    2009-11-01

    A comprehensive and highly selective method for detecting in bacterial supernatants a modified sulfur nucleoside, S-adenosyl-L-methionine (SAM), and its metabolites, i.e., S-adenosylhomocysteine (SAH), adenosine (Ado), 5'-deoxy-5'-methylthioadenosine (MTA), adenine (Ade), S-adenosyl-methioninamine (dcSAM), homocysteine (Hcy) and methionine (Met), was developed. The method is based on reversed-phase liquid chromatography with positive electrospray ionization (ESI+) coupled to a hybrid linear quadrupole ion trap (LTQ) and 7-T Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). A gradient elution was employed with a binary solvent of 0.05 M ammonium formate at pH 4 and acetonitrile. The assay involves a simultaneous cleanup of cell-free bacterial broths by solid-phase extraction and trace enrichment of metabolites with a 50-fold concentration factor by using immobilized phenylboronic and anion-exchange cartridges. While the quantitative determination of SAM was performed using stable-isotope-labeled SAM-d3 as an internal standard, in the case of Met and Ade, Met-13C and Ade-15N2 were employed as isotope-labeled internal standards, respectively. This method enabled the identification of SAM and its metabolites in cell-free culture of Pseudomonas aeruginosa grown in Davis minimal broth (formulation without sulphur organic compounds), with routine sub-ppm mass accuracies (-0.27 +/- 0.68 ppm). The resulting contents of S(C)S(S)-SAM, S(S)-dcSAM, MTA, Ado and Met in the free-cell supernatant of P. aeruginosa was 56.4 +/- 2.1 nM, 32.2 +/- 2.2 nM, 0.91 +/- 0.10 nM, 19.6 +/- 1.2 nM and 1.93 +/- 0.02 microM (mean +/- SD, n = 4 extractions), respectively. We report also the baseline separation (Rs > or = 1.5) of both diastereoisomeric forms of SAM (S(C)S(S) and S(C)R(S)) and dcSAM (S(S) and R(S)), which can be very useful to establish the relationship between the biologically active versus the inactive species, S(C)S(S)/S(C)R(S) and S(S)/R(S) of SAM and dc

  6. Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization.

    Science.gov (United States)

    Cotte-Rodríguez, Ismael; Chen, Hao; Cooks, R Graham

    2006-03-07

    Desorption electrospray ionization (DESI) mass spectrometry is used for rapid, specific and sensitive detection of trace amounts of the notorious explosive TATP present on ambient surfaces by alkali metal complexation in a simple spray technique.

  7. Identification of Bacterial Plant Pathogens Using Multilocus Polymerase Chain Reaction/Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    2008-01-01

    1156 PHYTOPATHOLOGY Techniques Identification of Bacterial Plant Pathogens Using Multilocus Polymerase Chain Reaction/Electrospray Ionization... Phytopathology 98:1156-1164. Polymerase chain reaction/electrospray ionization-mass spectrometry (PCR/ESI-MS, previously known as “TIGER”) utilizes PCR with...based assays have been developed for bacterial plant pathogens (6,12,13,16,18, reviewed in 19). PCR-based diagnos- tics can be highly specific and are

  8. An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors

    Science.gov (United States)

    Zhao, Yue; Chan, Jeremy K.; Lopez-Hilfiker, Felipe D.; McKeown, Megan A.; D'Ambro, Emma L.; Slowik, Jay G.; Riffell, Jeffrey A.; Thornton, Joel A.

    2017-10-01

    We present an electrospray ion source coupled to an orthogonal continuous-flow atmospheric pressure chemical ionization region. The source can generate intense and stable currents of several specific reagent ions using a range of salt solutions prepared in methanol, thereby providing both an alternative to more common radioactive ion sources and allowing for the generation of reagent ions that are not available in current chemical ionization mass spectrometry (CIMS) techniques, such as alkaline cations. We couple the orthogonal electrospray chemical ionization (ESCI) source to a high-resolution time-of-flight mass spectrometer (HR-ToF-MS), and assess instrument performance through calibrations using nitric acid (HNO3), formic acid (HCOOH), and isoprene epoxydiol (trans-β-IEPOX) gas standards, and through measurements of oxidized organic compounds formed from ozonolysis of α-pinene in a continuous-flow reaction chamber. When using iodide as the reagent ion, the HR-ToF-ESCIMS prototype has a sensitivity of 11, 2.4, and 10 cps pptv-1 per million counts per second (cps) of reagent ions and a detection limit (3σ, 5 s averaging) of 4.9, 12.5, and 1.4 pptv to HNO3, HCOOH, and IEPOX, respectively. These values are comparable to those obtained using an iodide-adduct HR-ToF-CIMS with a radioactive ion source and low-pressure ion-molecule reaction region. Applications to the α-pinene ozonolysis system demonstrates that HR-ToF-ESCIMS can generate multiple reagent ions (e.g., I-, NO3-, acetate, Li+, Na+, K+, and NH4+) having different selectivity to provide a comprehensive molecular description of a complex organic system.

  9. An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-10-01

    Full Text Available We present an electrospray ion source coupled to an orthogonal continuous-flow atmospheric pressure chemical ionization region. The source can generate intense and stable currents of several specific reagent ions using a range of salt solutions prepared in methanol, thereby providing both an alternative to more common radioactive ion sources and allowing for the generation of reagent ions that are not available in current chemical ionization mass spectrometry (CIMS techniques, such as alkaline cations. We couple the orthogonal electrospray chemical ionization (ESCI source to a high-resolution time-of-flight mass spectrometer (HR-ToF-MS, and assess instrument performance through calibrations using nitric acid (HNO3, formic acid (HCOOH, and isoprene epoxydiol (trans-β-IEPOX gas standards, and through measurements of oxidized organic compounds formed from ozonolysis of α-pinene in a continuous-flow reaction chamber. When using iodide as the reagent ion, the HR-ToF-ESCIMS prototype has a sensitivity of 11, 2.4, and 10 cps pptv−1 per million counts per second (cps of reagent ions and a detection limit (3σ, 5 s averaging of 4.9, 12.5, and 1.4 pptv to HNO3, HCOOH, and IEPOX, respectively. These values are comparable to those obtained using an iodide-adduct HR-ToF-CIMS with a radioactive ion source and low-pressure ion–molecule reaction region. Applications to the α-pinene ozonolysis system demonstrates that HR-ToF-ESCIMS can generate multiple reagent ions (e.g., I−, NO3−, acetate, Li+, Na+, K+, and NH4+ having different selectivity to provide a comprehensive molecular description of a complex organic system.

  10. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    Science.gov (United States)

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  11. Surface effects and electrochemical cell capacitance in desorption electrospray ionization.

    Science.gov (United States)

    Volný, Michael; Venter, Andre; Smith, Scott A; Pazzi, Marco; Cooks, R Graham

    2008-04-01

    Time resolved measurements show that during a desorption electrospray ionization (DESI) experiment, the current initially rises sharply, followed by an exponential decrease to a relatively steady current. When the high voltage on the spray emitter is switched off, the current drops to negative values, suggesting that the direction of current flow in the equivalent DESI circuit is reversed. These data demonstrate that the DESI source behaves as a dc capacitor and that the addition of a surface between the sprayer and the counter electrode in DESI introduces a new electrically active element into the system. The charging and discharging behavior was observed using different surfaces and it could be seen both by making current measurements on a plate at the entrance to the mass spectrometer as well as by measuring ion current in the linear ion trap within the vacuum system of the mass spectrometer. The magnitude of the steady state current obtained without analyte present on the surface is different for different surface materials, and different capacitor time constants of the equivalent RC circuits were calculated for different DESI surfaces. The PTFE surface has by far the greatest time constant and is also able to produce the highest DESI currents. Surface properties play a crucial role in charge transfer during DESI in addition to the effects of the chemical properties of the analyte. It is suggested that surface energy (wettability) is an important factor controlling droplet behavior on the surface. The experimental data are correlated with critical surface tension values of different materials. It is proposed, based on the results presented, that super-hydrophobic materials with extremely high contact angles have the potential to be excellent DESI substrates. It is also demonstrated, using the example of the neurotransmitter dopamine, that the surface charge that develops during a DESI-MS experiment can cause electrochemical oxidation of the analyte.

  12. Detection and imaging of thermochromic ink compounds in erasable pens using desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Khatami, Amin; Prova, Shamina S; Bagga, Aafreen K; Yan Chi Ting, Michelle; Brar, Gurnoor; Ifa, Demian R

    2017-06-30

    Thermochromic ink pens are widely accessible worldwide and have gained popularity among the general public. These pens are very useful to undo mistakes while writing important documents or exams. They are also, however, misused in committing crimes such as counterfeiting checks or wills. Thus, the forensics community is in need of techniques that will allow these forgeries to be detected rapidly, reliably and conveniently. Thermochromic ink compounds were investigated using Desorption Electrospray Ionization (DESI) coupled with an LTQ mass spectrometer and Thin-Layer Chromatography (TLC). Tandem mass spectrometric analysis was conducted using Electrospray Ionization (ESI) coupled with an Orbitrap LTQ mass spectrometer performing Collision-Induced Dissociation (CID) for identification of ink traces. Chemical marker ions characteristic of the state of ink (visible or invisible) were identified and mapped in ink traces by the use of DESI-MS imaging. These ions can be employed by forensic experts as fingerprint markers in forged documents. The marker ions were also characterised by conducting tandem mass spectrometry using paper spray in an Orbitrap LTQ mass spectrometer. Specific chemical components yielding ions of m/z 400, 405, 615 and 786 were distinguished as only being apparent in the invisible and reappeared state of the ink. The absence of these compounds in the original state of the ink enabled their recognition as useful chemical determinants in detecting forgery. DESI-MSI was thus shown to be a very useful, convenient and reliable technique for detecting forgery in paper documents due to its fast and reproducible mode of analysis, with no sample preparation and minimal damage to the document under investigation. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    Directory of Open Access Journals (Sweden)

    Michele L. Etter

    2010-02-01

    Full Text Available A new liquid chromatography (LC-negative ion electrospray ionization (ESI–tandem mass spectrometry (MS/MS method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy ace- tic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxybutyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2- methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE with a polymeric sorbent and analyzed with LC ESI- with selected reaction monitoring (SRM using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 µm with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the deg- radation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD were between 1 and 15 ng L-1 and method detection limits (MDL with strict criteria requiring

  14. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  15. Solvent-assisted electrospray ionization for direct analysis of various compounds (complex) from low/nonpolar solvents and eluents.

    Science.gov (United States)

    Zhang, Jun-Ting; Wang, Hao-Yang; Zhu, Wei; Cai, Ting-Ting; Guo, Yin-Long

    2014-09-16

    Electrospray ionization (ESI) is a powerful ionization technique with a wide range of applications. However, the analytes in low/nonpolar solvents cannot be analyzed directly in electrospray ionization-mass spectrometry (ESI-MS), because low/nonpolar solvents are incompatible with ESI, because of their low conductivity. To circumvent this problem, we introduce an electrospray-based ionization method termed solvent-assisted electrospray ionization (SAESI). With the help of electrospray solvents at the tip of the spray needle, compounds in "non-electrospray ionization-friendly" solvents can be ionized directly using solvent-assisted electrospray ionization-mass spectrometry (SAESI-MS). The key features that the assistant solvent can be chosen flexibly and makes little interference to samples lead to better ionization performance in detection of organic reaction intermediates and real-time analysis of polymers and chiral drugs separated by gel permeation chromatography (GPC) and normal phase liquid chromatography (NPLC). Furthermore, it can achieve online hydrogen/deuterium (H/D) exchange reaction and even mitigate the signal suppression caused by strong acid modifiers in liquid chromatography. In addition, all parts of this device are commercially available and it only requires two parameters to be optimized, which makes SAESI easy to handle.

  16. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin: implications for the hydrolysis process of platinum complexes.

    Science.gov (United States)

    Feifan, Xie; Pieter, Colin; Jan, Van Bocxlaer

    2017-07-01

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically investigated by using electrospray ionization mass spectrometry coupled to liquid chromatography. A variety of previously unreported hydrolysis complexes corresponding to monomeric, dimeric and trimeric species were detected and identified. The characteristics of the Pt-containing complexes were investigated by using collision-induced dissociation (CID). The hydrolysis complexes demonstrate distinctive and correlative CID characteristics, which provides tools for an informative identification. The most frequently observed dissociation mechanism was sequential loss of NH 3 , H 2 O and HCl. Loss of the Pt atom was observed as the final step during the CID process. The formation mechanisms of the observed complexes were explored and experimentally examined. The strongly bound dimeric species, which existed in solution, are assumed to be formed from the clustering of the parent compound and its monohydrated or dihydrated complexes. The role of the electrospray process in the formation of some of the observed ions was also evaluated, and the electrospray ionization-related cold clusters were identified. The previously reported hydrolysis equilibria were tested and subsequently refined via a hydrolysis study resulting in a renewed mechanistic equilibrium system of cisplatin as proposed from our results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Analysis of triazines and associated metabolites with electrospray ionization field-asymmetric ion mobility spectrometry/mass spectrometry

    DEFF Research Database (Denmark)

    Mie, Axel; Sandulescu, Madaline; Mathiasson, Lennart

    2008-01-01

    Triazines comprise an important pollutant class owing to continued use in certain countries, and owing to strong environmental persistence that leads to problems even in countries like Sweden where the use of triazines has been prohibited for some years. We investigated mass-selective detection...... for analysis of triazines. More specifically, we studied the background reduction and sensitivity enhancement that result from the use of a new interface technique, field-asymmetric ion mobility spectrometry (FAIMS), in conjunction with electrospray ionization ion-trap mass spectrometry. This technique allows...... analysis with mass-selective detection coupled to membrane-based sample cleanup and enrichment for additional enhancement in sensitivity....

  18. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    is crucial in evaluating the radiosensitization potential and in developing new and more effective drugs. The present work investigates the negative and positive electrospray ionization and subsequent collision-induced dissociation and electron-induced dissociation reactions of ions derived from nimorazole...

  19. Application of silicon nanowires and indium tin oxide surfaces in desorption electrospray ionization

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Novák, Petr; Volný, Michael; Kruppa, G. H.; Kostiainen, R.; Lemr, Karel; Havlíček, Vladimír

    2008-01-01

    Roč. 14, č. 6 (2008), s. 391-399 ISSN 1469-0667 R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : mass spectrometry * desorption electrospray ionization * nanowires Subject RIV: CE - Biochemistry Impact factor: 1.167, year: 2008

  20. Desorption electrospray ionization mass spectrometry in the analysis of chemical food contaminants in food

    NARCIS (Netherlands)

    Nielen, M.W.F.; Hooijerink, H.; Zomer, P.; Mol, J.G.J.

    2011-01-01

    Since its introduction, desorption electrospray ionization (DESI) mass spectrometry (MS) has been mainly applied in pharmaceutical and forensic analysis. We expect that DESI will find its way in many different fields, including food analysis. In this review, we summarize DESI developments aimed at

  1. Complexation between the fungicide tebuconazole and copper(II) probed by electrospray ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Jaklová Dytrtová, Jana; Jakl, M.; Schröder, Detlef; Čadková, E.; Komárek, M.

    2011-01-01

    Roč. 25, č. 8 (2011), s. 1037-1042 ISSN 0951-4198 Institutional research plan: CEZ:AV0Z40550506 Keywords : copper * electrospray ionization * mass spectrometry * tebuconazole * soil solutions Subject RIV: CC - Organic Chemistry Impact factor: 2.790, year: 2011

  2. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  3. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  4. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins

    NARCIS (Netherlands)

    Eriksson, Jonas H.C.; Mol, Roelof; Somsen, Govert W.; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; de Jong, Gerhardus J.

    2004-01-01

    The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium

  5. Complexation of malic acid with cadmium(II) probed by electrospray ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Jaklová Dytrtová, Jana; Jakl, M.; Schröder, Detlef

    2012-01-01

    Roč. 90, 15 Feb (2012), s. 63-68 ISSN 0039-9140 Institutional research plan: CEZ:AV0Z40550506 Keywords : electrospray ionization * hazardous metals * mass spectrometry * root exudates * soil solution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2012

  6. Biases in Ion Transmission Through an Electrospray Ionization-Mass Spectrometry Capillary Inlet

    Energy Technology Data Exchange (ETDEWEB)

    Page, Jason S.; Marginean, Ioan; Baker, Erin Shammel; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2009-12-01

    The standard heated capillary inlet of an electrospray ionization mass spectrometry (ESI-MS) interface was compared with shorter versions of the inlet to determine the effects on transmission and ionization efficiencies for low-flow electrosprays. The primary finding of the study was a large bias towards higher mobility species in the electrospray current losses to the inside walls of the inlet. The transmission efficiency increased with decreasing capillary length due to reduced losses along the capillary. A decrease in transmission efficiency was also confirmed for electrosprays of higher conductivity solvents. A direct correlation between mass spectrometry sensitivity and the transmitted electrospray current was not observed as some analytes showed little to no increase in sensitivity while others showed as high as a 15 – fold increase. The variation was shown to at least be partially dependent on the analytes’ mobilities. Higher mobility analytes demonstrated a larger increase in sensitivity when shorter inlets were used. The results indicate that considerable biases against higher mobility species can be produced by the use of long capillary inlets in the ESI-MS interface and strategies are provided to minimize the bias against higher mobility species for efficient ion transmission through the heated capillary interface.

  7. Ionization pattern obtained in electrospray ionization or atmospheric pressure chemical ionization interfaces for authorized antidepressants in Romania

    Science.gov (United States)

    Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona

    2016-12-01

    Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.

  8. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance.

    Science.gov (United States)

    Wu, Xinyun; Oleschuk, Richard D; Cann, Natalie M

    2012-09-21

    Full-dimensional computational fluid dynamics (CFD) simulations are presented for nano electrospray ionization (ESI) with various emitter designs. Our CFD electrohydrodynamic simulations are based on the Taylor-Melcher leaky-dielectric model, and the volume of fluid technique for tracking the fast-changing liquid-gas interface. The numerical method is first validated for a conventional 20 μm inner diameter capillary emitter. The impact of ESI voltage, flow rate, emitter tapering, surface hydrophobicity, and fluid conductivity on the nano-ESI behavior are thoroughly investigated and compared with experiments. Multi-electrospray is further simulated with 2-hole and 3-hole emitters with the latter having a linear or triangular hole arrangement. The simulations predict multi-electrospray behavior in good agreement with laboratory observations.

  9. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    Science.gov (United States)

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    Negative electrospray ionization/MS enabled rapid, specific, and selective screening for unique polar components at parts per million concentrations in commercial hydrocarbon products without extensive sample preparation, separation, chromatography, or quantitation. Commercial fuel types were analyzed with this method, including kerosene, jet fuel, white gas, charcoal lighter fluid, on-road and off-road diesel fuels, and various grades and brands of gasolines. The different types of fuels produced unique and relatively simple spectra. These analyses were then applied to hydrocarbon samples from a large, long-term fuel spill. Although the alkane, isoprenoid, and alkylcyclohexane portions began to biodegrade or weather, the polar components in these samples remained relatively unchanged. The type of fuel involved was readily identified by negative electrospray ionization/MS. This is an abstract of a paper presented at the 230th ACS National Meeting (Washington, DC 8/28/2005-9/1/2005).

  10. Matrix-assisted laser desorption and electrospray ionization mass spectrometry of carminic acid isolated from cochineal

    Science.gov (United States)

    Maier, Marta S.; Parera, Sara D.; Seldes, Alicia M.

    2004-04-01

    Carminic acid, isolated from cochineal, was analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray mass spectrometry (ESI-MS). Application of both techniques to the analysis of carminic acid suspended in linseed oil and applied to a piece of canvas, demonstrated the ability of MALDI and ESI-MS to identify this organic dye in a mixture as those used in easel painting.

  11. Electrospray ionizer for mass spectrometry of aerosol particles

    Science.gov (United States)

    He, Siqin; Hogan, Chris; Li, Lin; Liu, Benjamin Y. H.; Naqwi, Amir; Romay, Francisco

    2017-09-19

    A device and method are disclosed to apply ESI-based mass spectroscopy to submicrometer and nanometer scale aerosol particles. Unipolar ionization is utilized to charge the particles in order to collect them electrostatically on the tip of a tungsten rod. Subsequently, the species composing the collected particles are dissolved by making a liquid flow over the tungsten rod. This liquid with dissolved aerosol contents is formed into highly charged droplets, which release unfragmented ions for mass spectroscopy, such as time-of-flight mass spectroscopy. The device is configured to operate in a switching mode, wherein aerosol deposition occurs while solvent delivery is turned off and vice versa.

  12. Analysis of Compounds Dissolved in Nonpolar Solvents by Electrospray Ionization on Conductive Nanomaterials

    Science.gov (United States)

    Xia, Bing; Gao, Yuanji; Ji, Baocheng; Ma, Fengwei; Ding, Lisheng; Zhou, Yan

    2018-03-01

    Electrospray ionization mass spectrometry (ESI-MS) technique has limitations in analysis of compounds that are dissolved in nonpolar solvents. In this study, ambient ionization of compounds in solvents that are not "friendly" to electrospray ionization, such as n-hexane, is achieved by conductive nanomaterials spray ionization (CNMSI) on nanomaterial emitters, including carbon nanotubes paper and mesodendritic silver covered metal, which applies high voltages to emitters made of these materials without the assistance of polar solvents. Although the time intensity curves (TIC) commonly vary from 4.5% to 23.7% over analyses, protonated molecular ions were found to be the most abundant species, demonstrating good reproducibility of the technique in terms of ionized species. Higher mass spectrometric responses are observed in analyzing nonpolar systems than polar systems. 2-Methoxyacetophenone, 4-methylacetophenone, benzothiazole, quinolone, and cycloheptanone as low as 2 pg in n-hexane can be directly detected using the developed method. The developed technique expands the analysis capability of ESI-MS for direct, online analysis of nonpolar systems, such as low polarity extracts, normal phase liquid chromatography eluates, and synthetic mixtures. [Figure not available: see fulltext.

  13. An electrodynamic ion funnel for electrospray ionization source based time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Bhushan, K.G.; Rao, K.C.; Sule, U.; Reddy, P.; Rodrigues, S.M.; Gaikwad, D.T.; Mukundhan, R.; Gupta, S.K.

    2016-01-01

    An electrodynamic ion funnel has been developed for improving the sensitivity of electrospray ionization sources widely used in the mass spectrometric study of proteins and other biological macromolecules. The ion funnel consists of 52 electrodes and works under the combined influence of RF and DC voltages in the pressure range of 0.1 to 5 mbar. A novel feature of this ion funnel is the specific shape of the exit electrode that improves transmission of lower mass ions by reducing the depth of effective trapping potentials. In this paper, we report on the optimization of the ion funnel design using ion trajectory simulation software SIMION 8.0 especially in the mass range 500–5000 amu, followed by experimental observations of the ion transmission from the electrospray interface. It is seen that the electrospray-ion funnel combination greatly enhances the transmission when compared with an electrospray-skimmer interface. Ion currents > 1 nA could be obtained at the exit of the ion funnel for dilute Streptomycin Sulphate (∼ 1500 amu) solution with the ion funnel operating in the 500–900 kHz frequency range, amplitude of 70 V p−p , under a DC gradient of about 20 Volts/cm at a background pressure of 0.3 mbar. Details of the construction of the ion funnel along with the experimental results are presented

  14. Electrolytic electrospray ionization mass spectrometry of quaterthiophene-bridged bisporphyrins: beyond the identification tool.

    Science.gov (United States)

    Rondeau, David; Rogalewicz, Françoise; Ohanessian, Gilles; Levillain, Eric; Odobel, Fabrice; Richomme, Pascal

    2005-05-01

    Several quaterthiophene-bridged bisporphyrins were analyzed by electrospray ionization mass spectrometry (ESI-MS). The active centers of these molecular assemblies are two porphyrins moieties complexed (Z) or not (H) with a metal ion, typically Zn(2+), and the spacer is a quaterthiophene. The two end-groups were chemically linked to the quaterthiophene spacers by (i) a C--C single bond, (ii) a trans double bond or (iii) a triple bond. The formation of charged species either by protonation ([M + H](+) and [M + 2H](2+)) or electron(s) loss (M(+) and M(2+)), account for the occurrence of electrochemical processes in the basic operation of an electrospray source acting in a non-aqueous solvent. The nature of the observed charged species is correlated with the electro-oxidation properties and proton production by electro-oxidation of residual water. The occurence of these electrochemical reaction is proposed when the electroactivity of the electrosprayed substrates is not sufficient to support the current demand of the ESI source. In this way, the results obtained from the analysed series suggest the occurrence of such a process when the interfacial potential of the metal capillary reaches a value of 0.75 V vs Ag/AgCl. The results of theoretical calculations confirm the importance of the ionization energy with regard to the protonation energy in the course of the ionization reaction. The structural differences at the porphyrin-linker junctions lead to significantly smaller ionization energy in the case of the trans double bond. The MS observation of discharged dimers from molecular assemblies, including two complexed porphyrins ZZ or two free bases HH as end-group and a triple bond as the quaterthiophene-bisporphyrin junction, indicates together with molecular modelling (carried out at the semi-empirical PM3 level), that the planar and symmetric structures favour stacking. Copyright 2005 John Wiley & Sons, Ltd.

  15. Direct Analysis of Triterpenes from High-Salt Fermented Cucumbers Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI)

    Science.gov (United States)

    Ekelöf, Måns; McMurtrie, Erin K.; Nazari, Milad; Johanningsmeier, Suzanne D.; Muddiman, David C.

    2017-02-01

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to a Q Exactive Plus mass spectrometer was used to directly analyze 50-μm thick slices of cucumber fermented and stored in 1 M sodium chloride brine. From the several hundred unique substances observed, three triterpenoid lipids produced by cucumbers, β-sitosterol, stigmasterol, and lupeol, were putatively identified based on exact mass and selected for structural analysis. The spatial distribution of the lipids were imaged, and the putative assignments were confirmed by tandem mass spectrometry performed directly on the same cucumber, demonstrating the capacity of the technique to deliver confident identifications from highly complex samples in molar concentrations of salt without the need for sample preparation.

  16. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation.

    Science.gov (United States)

    Hermans, Jos; Ongay, Sara; Markov, Vadym; Bischoff, Rainer

    2017-09-05

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC-MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pK a , and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure-property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R 2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response.

  17. Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.; Slysz, Gordon W.; Monroe, Matthew E.; Anderson, Gordon A.; Tang, Keqi; Smith, Richard D.

    2012-10-01

    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by the SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.

  18. High-frequency AC electrospray ionization source for mass spectrometry of biomolecules.

    Science.gov (United States)

    Chetwani, Nishant; Cassou, Catherine A; Go, David B; Chang, Hsueh-Chia

    2010-11-01

    A novel high-frequency alternating current (AC) electrospray ionization (ESI) source has been developed for applications in mass spectrometry. The AC ESI source operates in a conical meniscus mode, analogous to the cone-jet mode of direct current (DC) electrosprays but with significant physical and mechanistic differences. In this stable conical-meniscus mode at frequencies greater than 50 kHz, the low mobility ions, which can either be cations or anions, are entrained within the liquid cone and ejected as droplets that eventually form molecular ions, thus making AC ESI a viable tool for both negative and positive mode mass spectrometry. The performance of the AC ESI source is qualitatively shown to be frequency-dependent and, for larger bio-molecules, the AC ESI source produced an ion signal intensity that is an order of magnitude higher than its DC counterpart. Copyright © 2010. Published by Elsevier Inc.

  19. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  20. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    Science.gov (United States)

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  1. A Comparison of Alternating Current and Direct Current Electrospray Ionization for Mass Spectrometry

    Science.gov (United States)

    Sarver, Scott A.; Chetwani, Nishant; Dovichi, Norman J.; Go, David B.; Gartner, Carlos A.

    2014-04-01

    A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.

  2. Distribution of terfenadine and its metabolites in locusts studied by desorption electrospray ionization mass spectrometry imaging

    DEFF Research Database (Denmark)

    Olsen, Line Rørbæk; Hansen, Steen Honoré; Janfelt, Christian

    2015-01-01

    Desorption electrospray ionization (DESI) mass spectrometry (MS) imaging was used to image locusts dosed with the antihistamine drug terfenadine. The study was conducted in order to elucidate a relatively high elimination rate of terfenadine from the locust hemolymph. In this one of the few MS....... With use of DESI-MS imaging, no colocalization of the drug and the metabolites was observed, suggesting a very rapid excretion of metabolites into the feces. Additional liquid chromatography–MS investigations were performed on hemolymph and feces and showed some abundance of terfenadine and the three...

  3. Imaging of plant materials using indirect desorption electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Janfelt, Christian

    2015-01-01

    of cuticular wax present in leaves and petals. The cuticle protects the plant from drying out, but also makes it difficult for the DESI sprayer to reach the analytes of interest inside the plant material. A solution to this problem is to imprint the plant material onto a surface, thus releasing the analytes......Indirect desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a method for imaging distributions of metabolites in plant materials, in particular leaves and petals. The challenge in direct imaging of such plant materials with DESI-MS is particularly the protective layer...

  4. A qualitative study of amlodipine and its related compounds by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Gibbons, John; Pugh, Jonathan; Dimopoulos-Italiano, Gina; Pike, Richard

    2006-01-01

    A comprehensive structural analysis of amlodipine and certain related compounds was performed by electrospray ionization tandem mass spectrometry. Triple quadrupole and quadrupole time-of-flight instruments were used to provide collision-induced dissociation and accurate mass measurement for selected product and second-generation product ions. A unique ion rearrangement was observed, which was found to be characteristic of certain dihydropyridines. This study provides a fundamental understanding of the fragmentation of these compounds. The structural elucidation of an unknown impurity is presented as an example. Copyright (c) 2006 John Wiley & Sons, Ltd.

  5. Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution.

    Science.gov (United States)

    Sterling, Harry J; Williams, Evan R

    2009-10-01

    The use of m-nitrobenzyl alcohol (m-NBA) to enhance charging of noncovalent complexes formed by electrospray ionization from aqueous solutions was investigated. Addition of up to 1% m-NBA can result in a significant increase in the average charging of complexes, ranging from approximately 13% for the homo-heptamer of NtrC4-RC (317 kDa; maximum charge state increases from 42+ to 44+) to approximately 49% for myoglobin (17.6 kDa; maximum charge state increases from 9+ to 16+). Charge state distributions of larger complexes obtained from heated solutions to which no m-NBA was added are remarkably similar to those containing small amounts of m-NBA. Dissociation of the complexes through identical channels both upon addition of higher concentrations of m-NBA and heating is observed. These results indicate that the enhanced charging upon addition of m-NBA to aqueous electrospray solutions is a result of droplet heating owing to the high boiling point of m-NBA, which results in a change in the higher-order structure and/or dissociation of the complexes. For monomeric proteins and small complexes, the enhancement of charging is lower for heated aqueous solutions than from solutions with m-NBA because rapid folding of proteins from heated solutions that do not contain m-NBA can occur after the electrospray droplet is formed and is evaporatively cooled.

  6. Complexation between the fungicide tebuconazole and copper(II) probed by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Dytrtová, Jana Jaklová; Jakl, Michal; Schröder, Detlef; Čadková, Eva; Komárek, Michael

    2011-04-30

    Electrospray ionization mass spectrometry (ESI-MS) is used to probe the complex formation between tebuconazole (1) and copper(II) salts, which both are commonly used fungicides in agriculture. Experiments with model solutions containing 1 and CuCl(2) reveal the initial formation of the copper(II) species [(1)CuCl](+) and [(1)(2)CuCl](+) which undergo reduction to the corresponding copper(I) ions [(1)Cu](+) and [(1)(2)Cu](+) under more drastic ionization conditions in the ESI source. In additional experiments, copper/tebuconazole complexes were also detected in samples made from soil solutions of various origin and different amount of mineralization. The direct sampling of such solutions via ESI-MS is thus potentially useful for understanding of the interactions between copper(II) salts and tebuconazole in environmental samples. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Detection of trace ink compounds in erased handwritings using electrospray-assisted laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie; Ho, Hsiu-O

    2014-06-01

    Writings made with erasable pens on paper surfaces can either be rubbed off with an eraser or rendered invisible by changing the temperature of the ink. However, trace ink compounds still remain in the paper fibers even after rubbing or rendering. The detection of these ink compounds from erased handwritings will be helpful in knowing the written history of the paper. In this study, electrospray-assisted laser desorption ionization/mass spectrometry was used to characterize trace ink compounds remaining in visible and invisible ink lines. The ink compounds were desorbed from the paper surface by irradiating the handwritings with a pulsed laser beam; the desorbed analytes were subsequently ionized in an electrospray plume and detected by a quadrupole time-of-flight mass spectrometry mass analyzer. Because of the high spatial resolution of the laser beam, electrospray-assisted laser desorption ionization/mass spectrometry analysis resulted in minimal damage to the sample documents. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Imaging the Unimaginable: Desorption Electrospray Ionization - Imaging Mass Spectrometry (DESI-IMS) in Natural Product Research.

    Science.gov (United States)

    Parrot, Delphine; Papazian, Stefano; Foil, Daniel; Tasdemir, Deniz

    2018-01-31

    Imaging mass spectrometry (IMS) has recently established itself in the field of "spatial metabolomics." Merging the sensitivity and fast screening of high-throughput mass spectrometry with spatial and temporal chemical information, IMS visualizes the production, location, and distribution of metabolites in intact biological models. Since metabolite profiling and morphological features are combined in single images, IMS offers an unmatched chemical detail on complex biological and microbiological systems. Thus, IMS-type "spatial metabolomics" emerges as a powerful and complementary approach to genomics, transcriptomics, and classical metabolomics studies. In this review, we summarize the current state-of-the-art IMS methods with a strong focus on desorption electrospray ionization (DESI)-IMS. DESI-IMS utilizes the original principle of electrospray ionization, but in this case solvent droplets are rastered and desorbed directly on the sample surface. The rapid and minimally destructive DESI-IMS chemical screening is achieved at ambient conditions and enables the accurate view of molecules in tissues at the µm-scale resolution. DESI-IMS analysis does not require complex sample preparation and allows repeated measurements on samples from different biological sources, including microorganisms, plants, and animals. Thanks to its easy workflow and versatility, DESI-IMS has successfully been applied to many different research fields, such as clinical analysis, cancer research, environmental sciences, microbiology, chemical ecology, and drug discovery. Herein we discuss the present applications of DESI-IMS in natural product research. Georg Thieme Verlag KG Stuttgart · New York.

  9. In situ analysis of soybeans and nuts by probe electrospray ionization mass spectrometry.

    Science.gov (United States)

    Petroselli, Gabriela; Mandal, Mridul K; Chen, Lee C; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2015-04-01

    The probe electrospray ionization (PESI) is an ESI-based ionization technique that generates electrospray from the tip of a solid metal needle. In the present work, we describe the PESI mass spectra obtained by in situ measurement of soybeans and several nuts (peanuts, walnuts, cashew nuts, macadamia nuts and almonds) using different solid needles as sampling probes. It was found that PESI-MS is a valuable approach for in situ lipid analysis of these seeds. The phospholipid and triacylglycerol PESI spectra of different nuts and soybean were compared by principal component analysis (PCA). PCA shows significant differences among the data of each family of seeds. Methanolic extracts of nuts and soybean were exposed to air and sunlight for several days. PESI mass spectra were recorded before and after the treatment. Along the aging of the oil (rancidification), the formation of oxidated species with variable number of hydroperoxide groups could be observed in the PESI spectra. The relative intensity of oxidated triacylglycerols signals increased with days of exposition. Monitoring sensitivity of PESI-MS was high. This method provides a fast, simple and sensitive technique for the analysis (detection and characterization) of lipids in seed tissue and degree of oxidation of the oil samples. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Rapid analysis of raw solution samples by C18 pipette-tip electrospray ionization mass spectrometry.

    Science.gov (United States)

    Wang, Haixing; So, Pui-Kin; Ng, Tsz-Tsun; Yao, Zhong-Ping

    2014-09-24

    A C18 pipette-tip electrospray ionization mass spectrometry technique was developed for rapid analysis of raw solution samples. In this technique, a C18 pipette tip was employed for rapid purification and enrichment of analytes in raw sample solutions. The adsorbed analytes were eluted by solvents supplied by a syringe and a syringe pump, and a high voltage was applied onto the syringe needle to induce electrospray ionization at the pipette tip end for mass spectrometric analysis. This technique is simple, easy to assemble, enables generation of stable and reproducible signals, and can be conveniently used for qualitative and quantitative analysis of raw solution samples. Analysis by the technique only involved simple sample preparation procedures followed by direct mass spectrometric detection, all of which could be completed within minutes, while the analytical performances of the technique, including the limit of detection, limit of quantitation, liner range, accuracy and precision, were comparable to those by conventional methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determination of hydrolysis products of sulfur mustards by reversed-phase microcolumn liquid chromatography coupled on-line with sulfur flame photometric detection and electrospray ionization mass spectrometry using large-volume injections and peak compression

    NARCIS (Netherlands)

    Hooijschuur, E.W.J.; Kientz, C.E.; Hulst, A.G.; Brinkman, U.A.T.

    2000-01-01

    On-line coupling of reversed-phase microcolumn liquid chromatography (micro-RPLC) and sulfur-selective flame photometric detection (S-FPD) was studied for the selective and direct determination of thiodiglycol, bis(2- hydroxyethylthio)methane, 1,2-bis(2-hydroxyethylthio)ethane, 1,3-bis(2-

  12. Development of a chromatographic separation method hyphenated to electro-spray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS): application to the lanthanides speciation analysis

    International Nuclear Information System (INIS)

    Beuvier, Ludovic

    2015-01-01

    This work focuses on the development of a chromatographic separation method coupled to both ESI-MS and ICP-MS in order to achieve the comprehensive speciation analysis of lanthanides in aqueous phase representative of back-extraction phases of advanced spent nuclear fuel treatment processes. This analytical method allowed the separation, the characterization and the quantitation of lanthanides complexes holding poly-aminocarboxylic ligands, such as DTPA and EDTA, used as complexing agents in these processes. A HILIC separation method of lanthanides complexes has been developed with an amide bonded stationary phase. A screening of a wide range of mobile phase compositions demonstrated that the adsorption mechanism was predominant. This screening allowed also obtaining optimized separation conditions. Faster analysis conditions with shorter amide column packed with sub 2 μm particles reduced analysis time by 2.5 and 25% solvent consumption. Isotopic and structural characterization by HILIC ESI-MS was performed as well as the development of external calibration quantitation method. Analytical performances of quantitation method were determined. Finally, the development of the HILIC coupling to ESI-MS and ICP-MS was achieved. A simultaneous quantitation method by ESI-MS and ICP-MS was performed to determine the species quantitative distribution in solution. Analytical performances of quantitation method were also determined. (author) [fr

  13. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  14. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  15. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  16. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Redox reactions of copper(II) upon electrospray ionization in the presence of acridine ligands with an amide side chain

    Czech Academy of Sciences Publication Activity Database

    Tintaru, A.; Charles, L.; Milko, Petr; Roithová, J.; Schröder, Detlef

    2009-01-01

    Roč. 22, č. 3 (2009), s. 229-233 ISSN 0894-3230 R&D Projects: GA AV ČR KJB400550704; GA ČR GA203/08/1487 Institutional research plan: CEZ:AV0Z40550506 Keywords : acridine * copper * electrospray ionization * mass spectrometry * quinoline Subject RIV: CC - Organic Chemistry Impact factor: 1.602, year: 2009

  18. Feasibility of desorption atmospheric pressure photoionization and desorption electrospray ionization mass spectrometry to monitor urinary steroid metabolites during pregnancy

    Czech Academy of Sciences Publication Activity Database

    Vaikkinen, A.; Rejšek, Jan; Vrkoslav, Vladimír; Kauppila, T. J.; Cvačka, Josef; Kostiainen, R.

    2015-01-01

    Roč. 880, Jun 23 (2015), s. 84-92 ISSN 0003-2670 Grant - others:GA AV ČR(CZ) M200551204 Institutional support: RVO:61388963 Keywords : desorption electrospray ionization * desorption atmospheric pressure * photoionization * mass spectrometry * pregnancy Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.712, year: 2015

  19. Rapid Analysis of Chemical Warfare Agents and Their Hydrolysis Products by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS)

    Science.gov (United States)

    2009-10-01

    72, 77-79], polymers [80], alkaloids on plant tissue [81], chemical warfare agents on solid phase microextraction (SPME) fibers [60, 82], hydrolysis...situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst, 130, 1624-1633. [82

  20. Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS).

    Science.gov (United States)

    Looi, Wen Donq; Brown, Blake; Chamand, Laura; Brajter-Toth, Anna

    2016-03-01

    A new online electrochemistry/liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS) system with a simple electrochemical thin-layer flow-through cell was developed and tested using N,N-dimethyl-p-phenylenediamine (DMPA) as a model probe. Although oxidation of DMPA is observed as a result of ionization of LS in positive ion mode LS DESI, application of voltage to the online electrochemical (EC) cell in EC/LS DESI MS increases yields of oxidation products. An advantage of LS DESI MS is its sensitivity in aqueous electrolyte solutions, which improves efficiency of electrochemical reactions in EC/LS DESI MS. In highly conductive low pH aqueous buffer solutions, oxidation efficiency is close to 100%. EC/ESI MS typically requires mixed aqueous/organic solvents and low electrolyte concentrations for efficient ionization in MS, limiting efficiency of electrochemistry online with MS. Independently, the results verify higher electrochemical oxidation efficiency during positive mode ESI than during LS DESI.

  1. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm-2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  2. Mass spectrometric studies on selective androgen receptor modulators (SARMs) using electron ionization and electrospray ionization/collision-induced dissociation.

    Science.gov (United States)

    Thevis, Mario; Volmer, Dietrich A

    2018-02-01

    Selective androgen receptor modulators (SARMs) have been identified as a promising class of drug candidates potentially applicable to diverse pathological conditions commonly associated with significantly reduced muscle mass. Due to a suspected and meanwhile repeatedly proven misuse of SARMs in elite and amateur sport, sustaining constantly updated doping control analytical methods is critical for sports drug testing laboratories. These test methods predominantly utilize mass spectrometry-based instrumentations and, consequently, studies on the mass spectrometric behavior of new compounds and, where available, their metabolic products are vital for comprehensive doping controls. In this communication, the dissociation patterns of three new SARM drug candidates referred to as GSK2881078, PF-06260414, and TFM-4 AS-1 as observed under electron ionization as well as electrospray ionization/collision-induced dissociation are discussed. By means of high resolution/high accuracy tandem mass spectrometry employing quadrupole-orbitrap mass analyzers, information on precursor-product ion relationships and elemental compositions was obtained and subsequently utilized to suggest dissociation routes of the target compounds. This information can contribute to future studies concerning structure assignments of metabolites and accelerate the identification of related substances if distributed and/or illicitly used in the world of sport.

  3. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Yang, Jun; Schmelzer, Kara; Georgi, Katrin; Hammock, Bruce D

    2009-10-01

    Cyclooxygenase, lipoxygenase, and epoxygenase derived oxylipins, especially eicosanoids, play important roles in many physiological processes. Assessment of oxidized fatty acid levels is important for understanding their homeostatic and pathophysiological roles. Most reported methods examine these pathways in isolation. The work described here employed a solid phase extraction-liquid chromatography-electrospray ionization MS/MS (SPE-LC-ESI MS/MS) method to monitor these metabolites. In 21 min, 39 oxylipins were quantified along with eight corresponding internal standards. The limits of quantification were between 0.07 and 32 pg (20 pM-10 nM). Finally, the validated method was used to evaluate oxylipin profiles in lipopolysaccharide-exposed mice, an established septic inflammatory model. The method described here offers a useful tool for the evaluation of complex regulatory oxylipin responses in in vitro or in vivo studies.

  4. Determination of clarithromycin in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Jiang, Yao; Wang, Jiang; Li, Hao; Wang, Yingwu; Gu, Jingkai

    2007-03-12

    A rapid and sensitive method has been developed for the determination of clarithromycin in human plasma with liquid chromatography-tandem mass spectrometry. Clarithromycin and the internal standard, telmisartan were precipitated from the matrix (50 microl) with 200 microl acetonitrile and separated by HPLC using formic acid:10 mM ammonium acetate:methanol (1:99:400, v/v/v) as the mobile phase. The assay based on detection by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring mode was finished within 2.4 min. Linearity was over the concentration range 10-5000 ng/ml with a limit of detection of 0.50 ng/ml. Intra- and inter-day precision measured as relative standard deviation were bioequivalence study of two tablet formulations of clarithromycin.

  5. Tandem mass spectrometry of doubly charged poly(ethylene oxide) oligomers produced by electrospray ionization

    Science.gov (United States)

    Girod, Marion; Carissan, Yannick; Humbel, Stéphane; Charles, Laurence

    2008-04-01

    Electrospray ionization combined with collision-induced dissociation has been applied to characterize fragmentation pathways of doubly charged poly(ethylene oxide) polymers. MS/MS spectra of doubly lithiated precursors were shown to provide the most informative data for this polymer structural analysis. Most fragment ions could be accounted for by applying the mechanisms proposed in the literature for singly charged oligomers. Although MS/MS experiments were conducted in a low collision energy regime, radical cationic fragments were also detected and were shown to further dissociate. This consecutive dissociation was explored performing hydrogen/deuterium exchange experiments and ab initio studies. Two different mechanisms had to be envisaged depending on the size of the fragmenting radical cationic species.

  6. Electrospray ionization ion-trap multiple-stage mass spectrometry of Quillaja saponins.

    Science.gov (United States)

    Bankefors, Johan; Broberg, Susanna; Nord, Lars I; Kenne, Lennart

    2011-07-01

    Fifteen identified C-18 fatty acyl-containing saponin structures from Quillaja saponaria Molina have been investigated by electrospray ionization ion-trap multiple-stage mass spectrometry (ESI-IT-MS(n)) in positive ion mode. Their MS(1)-MS(3) spectra were analyzed and ions corresponding to useful fragments, important for the structural identification of Quillaja saponins, were recognized. A few key fragments could describe the structural variations in the C-3 and the C-28 oligosaccharides of the Quillaja saponins. A flowchart involving a stepwise procedure based on key fragments from the MS(1)-MS(3) spectra of these saponins, together with key fragments from these saponins and 13 previously investigated saponins, was constructed for the identification of structural elements in Quillaja saponins. Peak intensity ratios in MS(3) spectra were found to be correlated to structural features of the investigated saponins and is therefore of value for the identification of regioisomers. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Ion fragmentation in an electrospray ionization mass spectrometer interface with different gases.

    Science.gov (United States)

    Schneider, B B; Douglas, D J; Chen, D D

    2001-01-01

    Nitrogen, argon, and krypton are used as curtain gases in an electrospray ionization mass spectrometer in an attempt to study the effect of these gases on the extent of ion fragmentation between the orifice and the skimmer of the interface region. A previously published collision model predicts that the degree of ion fragmentation increases with increasing mass of the curtain gas. However, the fragmentation yields are found to be the opposite to that expected. It is believed that the reversed trend with argon and krypton is caused by condensation of the gases within the free jet expansion between the orifice and the skimmer. A condensation parameter can be used to predict the degree of clustering of gases within a free jet expansion. When the condensation parameter is minimized, the predicted trend of fragmentation with mass is observed. Copyright 2001 John Wiley & Sons, Ltd.

  8. Probing uranyl(VI) speciation in the presence of amidoxime ligands using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2013-10-15

    Extraction processes using poly(acrylamidoxime) resins are being developed to extract uranium from seawater. The main complexing agents in these resins are thought to be 2,6-dihydroxyiminopiperidine (DHIP) and N(1),N(5)-dihydroxypentanediimidamide (DHPD), which form strong complexes with uranyl(VI) at the pH of seawater. It is important to understand uranyl(VI) speciation in the presence of these and similar amidoxime ligands to understand factors affecting uranyl(VI) adsorption to the poly(acrylamidoxime) resins. Experiments were carried out in positive ion mode on a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The ligands investigated were DHIP, DHPD, and N(1),N(2)-dihydroxyethanediimidamide (DHED). DHED and DHPD differ only in the number of carbons separating the oxime groups. The effects on the mass spectra of changes in uranyl(VI):ligand ratio, pH, and ligand type were examined. DHIP binds uranyl(VI) more effectively than DHPD or DHED in the pH range investigated, forming ions derived from solution-phase species with uranyl(VI):DHIP stoichiometries of 1:1, 1:2, and 2:3. The 2:3 uranyl(VI):DHIP complex appears to be a previously undescribed solution species. Ions related to uranyl(VI):DHPD complexes were detected in very low abundance. DHED is a more effective complexing agent for uranyl(VI) than DHPD, forming ions having uranyl(VI):DHED stoichiometries of 1:1, 1:2, 1:3, and 2:3. This study presents a first look at the solution chemistry of uranyl(VI)-amidoxime complexes using electrospray ionization mass spectrometry. The appearance of previously undescribed solution species suggests that the uranyl-amidoxime system is a rich and relatively complex one, requiring a more in-depth investigation. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    Science.gov (United States)

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  10. Time-resolved ElectroSpray Ionization Hydrogen-deuterium Exchange Mass Spectrometry for Studying Protein Structure and Dynamics.

    Science.gov (United States)

    Lento, Cristina; Zhu, Shaolong; Brown, Kerene A; Knox, Ruth; Liuni, Peter; Wilson, Derek J

    2017-04-17

    Intrinsically disordered proteins (IDPs) have long been a challenge to structural biologists due to their lack of stable secondary structure elements. Hydrogen-Deuterium Exchange (HDX) measured at rapid time scales is uniquely suited to detect structures and hydrogen bonding networks that are briefly populated, allowing for the characterization of transient conformers in native ensembles. Coupling of HDX to mass spectrometry offers several key advantages, including high sensitivity, low sample consumption and no restriction on protein size. This technique has advanced greatly in the last several decades, including the ability to monitor HDX labeling times on the millisecond time scale. In addition, by incorporating the HDX workflow onto a microfluidic platform housing an acidic protease microreactor, we are able to localize dynamic properties at the peptide level. In this study, Time-Resolved ElectroSpray Ionization Mass Spectrometry (TRESI-MS) coupled to HDX was used to provide a detailed picture of residual structure in the tau protein, as well as the conformational shifts induced upon hyperphosphorylation.

  11. Desorption ElectroSpray Ionization - Orbitrap Mass Spectrometry of synthetic polymers and copolymers.

    Science.gov (United States)

    Friia, Manel; Legros, Véronique; Tortajada, Jeanine; Buchmann, William

    2012-08-01

    Desorption ElectroSpray Ionization (DESI) - Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol(-1) up to more than 20 000 g.mol(-1) . Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI-MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of M(n) , M(w) and PDI values. DESI-Orbitrap MS results were compared to those obtained from matrix-assisted laser desorption/ionization- time-of-flight MS and gel permeation chromatography. An application of DESI-Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Desorption electro-spray ionization - orbitrap mass spectrometry of synthetic polymers and copolymers

    International Nuclear Information System (INIS)

    Friia, Manel; Legros, Veronique; Tortajada, Jeanine; Buchmann, William

    2012-01-01

    Desorption Electro-Spray Ionization (DESI) - Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol -1 up to more than 20000 g.mol -1 . Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI-MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of Mn, Mw and PDI values. DESI-Orbitrap MS results were compared to those obtained from matrix-assisted laser desorption/ionization- time-of-flight MS and gel permeation chromatography. An application of DESI-Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. (authors)

  13. An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap system

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Van Berkel, Gary J [ORNL

    2004-01-01

    A combined surface sampling probe/electrospray emitter coupled with an ion trap mass spectrometer was used for the direct read out of unmodified reversed-phase C18 thin-layer chromatography (TLC) plates. The operation of the surface sampling electrospray ionization interface in positive and negative ionization modes was demonstrated through the direct analysis of TLC plates on which a commercial test mix comprised of four dye compounds viz., rhodamine B, fluorescein, naphthol blue black, and fast green FCF, and an extract of the caffeine-containing plant Ilex vomitoria, were spotted and developed. Acquisition of full-scan mass spectra and automated collection of MS/MS product ion spectra while scanning a development lane along the surface of a TLC plate demonstrated the advantages of using an ion trap in this combination. Details of the sampling system, benefits of analyzing a developed lane in both positive ion and negative ion modes, levels of detection while surface scanning, surface scan speed effects, and the utility of three-dimensional data display, are also discussed.

  14. In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization.

    Science.gov (United States)

    Cotte-Rodríguez, Ismael; Hernandez-Soto, Heriberto; Chen, Hao; Cooks, R Graham

    2008-03-01

    Desorption electrospray ionization (DESI) mass spectrometry is used for the rapid (bond, forming a distonic ion. This is followed by elimination of a fragment of 30 mass units, shown to be the expected neutral molecule, formaldehyde, in the case of HMTD, but shown by isotopic labeling experiments to be ethane in the cases of TATP and TrATrP. Density functional theory (DFT) calculations support the suggested fragmentation mechanisms for the complexes. Binding energies of Na+ of 40.2 and 33.1 kcal/mol were calculated for TATP-Na(+) and HMTD-Na(+) complexes, suggesting a strong interaction between the peroxide groups and the sodium ion. Increased selectivity is obtained either by MS/MS or by doping the spray solvent with additives that produce the lithium and potassium complexes of TATP, HMTD, and TrATrP. Addition of dopants into the solvent spray increased the signal intensity by an order of magnitude. When pure alcohol or aqueous hydrogen peroxide was used as the spray solvent, the (HMTD + Na)+ complex was able to bind a molecule of alcohol (methanol or ethanol) or hydrogen peroxide, providing additional characteristic ions to increase the selectivity of analysis. DESI also allowed the rapid detection of peroxide explosives in complex matrixes such as diesel fuel and lubricants using single or multiple cation additives (Na(+), K(+), and Li(+), and NH4(+)) in the spray solvent. Low-nanogram detection limits were achieved for HMTD, TrATrP, and TATP in these complex matrixes. The DESI response was linear over 3 orders of magnitude for HMTD and TATP on paper surfaces (1-5000 ng), and quantification of both peroxide explosives from paper gave precisions (RSD) of less than 3%. The use of pure water and compressed air as the DESI spray solution and nebulizing gas, respectively, showed similar ionization efficiencies to those obtained using methanol/water mixtures and nitrogen gas (the typical choices). An alternative ambient method, desorption atmospheric pressure chemical

  15. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.

    Science.gov (United States)

    García-Reyes, Juan F; Jackson, Ayanna U; Molina-Díaz, Antonio; Cooks, R Graham

    2009-01-15

    Desorption electrospray ionization (DESI) is applied to the rapid, in situ, direct qualitative and quantitative (ultra)trace analysis of agrochemicals in foodstuffs. To evaluate the potential of DESI mass spectrometry (MS) in toxic residue testing in food, 16 representative multiclass agricultural chemicals (pesticides, insecticides, herbicides, and fungicides) were selected (namely, ametryn, amitraz, azoxystrobin, bitertanol, buprofezin, imazalil, imazalil metabolite, isofenphos-methyl, malathion, nitenpyram, prochloraz, spinosad, terbuthylazine, thiabendazole, and thiacloprid). The DESI-MS experiments were performed using 3 microL of solution spotted onto conventional smooth poly(tetrafluoroethylene) (PTFE) surfaces, with examination by MS and tandem mass spectrometry (MS/MS) using an ion trap mass spectrometer. Optimization of the spray solvent led to the use of acetonitrile/water (80:20) (v/v), with 1% formic acid. Most of the compounds tested showed remarkable sensitivity in the positive ion mode, approaching that attainable with conventional direct infusion electrospray mass spectrometry. To evaluate the potential of the proposed approach in real samples, different experiments were performed including the direct DESI-MS/MS analysis of fruit peels and also of fruit/vegetable extracts. The results proved that DESI allows the detection and confirmation of traces of agrochemicals in actual market-purchased samples. In addition, MS/MS confirmation of selected pesticides in spiked vegetable extracts was obtained at absolute levels as low as 1 pg for ametryn. Quantitation of imazalil residues was also undertaken using an isotopically labeled standard. The data obtained were in agreement with those from the liquid chromatography mass spectrometry (LC-MS) reference method, with relative standard deviation (RSD) values consistently below 15%. The results obtained demonstrate the sensitivity of DESI as they meet the stringent European Union pesticide regulation

  16. An electrospray ionization-ion mobility spectrometer as detector for high- performance liquid chromatography.

    Science.gov (United States)

    Zühlke, Martin; Riebe, Daniel; Beitz, Toralf; Löhmannsröben, Hans-Gerd; Zenichowski, Karl; Diener, Marc; Linscheid, Michael W

    2015-01-01

    The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 μL mn(-1) and 1500 μL min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet mode. The novel ESI-IM spectrometer tolerates high water contents (≤90%) and electrolyte concentrations up to 10mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 μM for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic Ims.

  17. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    Science.gov (United States)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. Copyright © 2015. Published by Elsevier B.V.

  18. Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization - mass spectrometry

    Science.gov (United States)

    Bregy, Lukas; Müggler, Annick R.; Martinez-Lozano Sinues, Pablo; García-Gómez, Diego; Suter, Yannick; Belibasakis, Georgios N.; Kohler, Malcolm; Schmidlin, Patrick R.; Zenobi, Renato

    2015-10-01

    The detection of bacterial-specific volatile metabolites may be a valuable tool to predict infection. Here we applied a real-time mass spectrometric technique to investigate differences in volatile metabolic profiles of oral bacteria that cause periodontitis. We coupled a secondary electrospray ionization (SESI) source to a commercial high-resolution mass spectrometer to interrogate the headspace from bacterial cultures and human saliva. We identified 120 potential markers characteristic for periodontal pathogens Aggregatibacter actinomycetemcomitans (n = 13), Porphyromonas gingivalis (n = 70), Tanerella forsythia (n = 30) and Treponema denticola (n = 7) in in vitro cultures. In a second proof-of-principle phase, we found 18 (P. gingivalis, T. forsythia and T. denticola) of the 120 in vitro compounds in the saliva from a periodontitis patient with confirmed infection with P. gingivalis, T. forsythia and T. denticola with enhanced ion intensity compared to two healthy controls. In conclusion, this method has the ability to identify individual metabolites of microbial pathogens in a complex medium such as saliva.

  19. Conformational changes in Akt1 activation probed by amide hydrogen/deuterium exchange and nano-electrospray ionization mass spectrometry†

    Science.gov (United States)

    Guo, Mingquan; Huang, Bill X.; Kim, Hee-Yong

    2009-01-01

    Amide hydrogen exchange coupled to nano-electrospray ionization mass spectrometry (nano-ESI-MS) has been used to identify and characterize localized conformational changes of Akt upon activation. Active or inactive Akt was incubated in D2O buffer, digested with pepsin, and analyzed by nano-ESI-MS to determine the deuterium incorporation. The hydrogen/deuterium (H/D) exchange profiles revealed that Akt undergoes considerable conformational changes in the core structures of all three individual domains after activation. In the PH domain, four β-strand (β1, β2 β5 and β6) regions containing membrane-binding residues displayed higher solvent accessibility in the inactive state, suggesting that the PH domain is readily available for the binding to the plasma membrane for activation. In contrast, these β-strands became less exposed or more folded in the active form, which is favored for the dissociation of Akt from the membrane. The beginning α-helix J region and the C-terminal locus (T450-470P) of the regulatory domain showed less folded structures that probably enable substrate entry. Our data also revealed detailed conformational changes of Akt in the kinase domain due to activation, some of which may be attributed to the interaction of the basic residues with phosphorylation sites. Our H/D exchange results indicating the conformational status of Akt at different activation states provided new insight for the regulation of this critical protein involved in cell survival. PMID:19462409

  20. Determination of ramipril in human plasma and its fragmentation by UPLC-Q-TOF-MS with positive electrospray ionization

    Directory of Open Access Journals (Sweden)

    Szpot Paweł

    2015-06-01

    Full Text Available This report presents the application of ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry with positive electrospray ionization, to determine ramipril in human plasma. First, the proteins in human plasma were precipitated using acetonitrile, then the supernatant was extracted by ethyl acetate at pH 3 and finally, the extract was analyzed using a UPLC-QTOF- MS system. The method was validated and the coefficient of determination (R2 was > 0.999, the lower limit of quantification (LLOQ was 0.5 ng mL-1. Precision, recovery and stability were determined for three different concentrations of ramipril. RSD for this method ranged from 3.3 to 8.6 %. The intra-day mean recovery was from 65.3 to 97.3 %. In addition, the fragmentation of ramipril was studied. Due to high resolution of the spectrometer, it was possible to measure fragment masses accurately and determine their molecular and chemical formulas with high accuracy.

  1. Broad-Range Detection of Microorganisms Directly from Bronchoalveolar Lavage Specimens by PCR/Electrospray Ionization-Mass Spectrometry.

    Science.gov (United States)

    Ullberg, Måns; Lüthje, Petra; Mölling, Paula; Strålin, Kristoffer; Özenci, Volkan

    2017-01-01

    The clinical demand on rapid microbiological diagnostic is constantly increasing. PCR coupled to electrospray ionization-mass spectrometry, PCR/ESI-MS, offers detection and identification of over 750 bacteria and Candida species directly from clinical specimens within 6 hours. In this study, we investigated the clinical performance of the IRIDICA BAC LRT Assay for detection of bacterial pathogens in 121 bronchoalveolar lavage (BAL) samples that were received consecutively at our bacterial laboratory for BAL culture. Commensal or pathogenic microorganisms were detected in 118/121 (98%) BAL samples by PCR/ESI-MS, while in 104/121 (86%) samples by routine culture (PDetection of potentially pathogenic microorganisms by PCR/ESI-MS was evaluated in comparison with conventional culture-based or molecular methods. The agreement between positive findings was overall good. Most Staphylococcus aureus-positive PCR/ESI-MS results were confirmed by culture or species-specific PCR (27/33, 82%). The identity of Streptococcus pneumoniae could however be confirmed for only 6/17 (35%) PCR/ESI-MS-positive samples. Non-cultivable and fastidious pathogens, which were not covered by standard culture procedures were readily detected by PCR/ESI-MS, including Legionella pneumophila, Bordetella pertussis, Norcadia species and Mycoplasma pneumoniae. In conclusion, PCR/ESI-MS detected a broad range of potential pathogens with equal or superior sensitivity compared to conventional methods within few hours directly from BAL samples. This novel method might thus provide a relevant tool for diagnostics in critically ill patients.

  2. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2017-12-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS.

  3. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS.

  4. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  5. Simple atmospheric hydrogen/deuterium exchange method for enumeration of labile hydrogens by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2013-06-04

    A simple method for hydrogen/deuterium exchange in a standard electrospray (ESI) ionization source is presented. In this method, a D₂O droplet is placed between the ESI needle and the entrance of the mass spectrometer and thus saturation of the atmosphere with deuterated vapor in the ESI region is achieved. It was shown that full exchange of up to 23 labile acidic hydrogens with a minimal back exchange with the surrounding atmospheric water can be performed by this method.

  6. Internal energy effects on the solvation and reactivity of multiply charged biomolecules for electrospray ionization mass spectroscopy. [Bovine ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Light-Wahl, K.J.; Winger, B.E.; Rockwood, A.L.; Smith, R.D.

    1992-06-01

    Mild (capillary) interface conditions which do not completely desolvate the ions of proteins in electrospray ionization mass spectrometry (ESI-MS) may be required to probe the higher order structures and weak associations. For the small protein bovine ubiquitin, two ion distributions (unsolvated ions and unresolved solvated ions) were observed. The resolvable solvation for leucine-enkephalin with methanol and water shows that the use of countercurrent N{sub 2} flow at the capillary affects the solvation observed. 2 figs. (DLC)

  7. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  8. Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Eckert, Peter A.; Roach, Patrick J.; Heath, Brandi S.; Nizkorodov, Sergey A.; Laskin, Alexander

    2012-08-21

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies showed that LSOA constituents are multifunctional compounds containing aldehyde and ketone groups. In this study, we used the selectivity of the Girard T (GT) reagent towards carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 {micro}M GT solution was used as a working solvent for reactive nano-DESI analysis. Abundant products of a single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 {micro}M. We found that LSOA compounds with 18-20 carbon atoms (dimers) and 27-30 carbon atoms (trimers) react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the timescale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent (DBE) and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at ca. 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was just around 11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and

  9. Vapor Pressure of Hexamethylene Triperoxide Diamine (HMTD) Estimated Using Secondary Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Aernecke, Matthew J; Mendum, Ted; Geurtsen, Geoff; Ostrinskaya, Alla; Kunz, Roderick R

    2015-11-25

    A rapid method for vapor pressure measurement was developed and used to derive the vapor pressure curve of the thermally labile peroxide-based explosive hexamethylene triperoxide diamine (HMTD) over the temperature range from 28 to 80 °C. This method uses a controlled flow of vapor from a solid-phase HMTD source that is presented to an ambient-pressure-ionization mass spectrometer equipped with a secondary-electrospray-ionization (SESI) source. The subpart-per-trillion sensitivity of this system enables direct detection of HMTD vapor through an intact [M + H](+) ion in real time at temperatures near 20 °C. By calibrating this method using vapor sources of cocaine and heroin, which have known pressure-temperature (P-T) curves, the temperature dependence of HMTD vapor was determined, and a Clausius-Clapeyron plot of ln[P (Pa)] vs 1/[T (K)] yielded a straight line with the expression ln[P (Pa)] = {(-11091 ± 356) × 1/[T (K)]} + 25 ± 1 (error limits are the standard error of the regression analysis). From this equation, the sublimation enthalpy of HMTD was estimated to be 92 ± 3 kJ/mol, which compares well with the theoretical estimate of 95 kJ/mol, and the vapor pressure at 20 °C was estimated to be ∼60 parts per trillion by volume, which is within a factor of 2 of previous theoretical estimates. Thus, this method provides not only the first direct experimental determination of HMTD vapor pressure but also a rapid, near-real-time capability to quantitatively measure low-vapor-pressure compounds, which will be useful for aiding in the development of training aids for bomb-sniffing canines.

  10. Analysis of triacetone triperoxide (TATP) and TATP synthetic intermediates by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Sigman, Michael E; Clark, C Douglas; Caiano, Tara; Mullen, Rebecca

    2008-01-01

    The explosive triacetone triperoxide (TATP) has been analyzed by electrospray ionization mass spectrometry (ESI-MS) on a linear quadrupole instrument, giving a 62.5 ng limit of detection in full scan positive ion mode. In the ESI interface with no applied fragmentor voltage the m/z 245 [TATP + Na](+) ion was observed along with m/z 215 [TATP + Na - C(2)H(6)](+) and 81 [(CH(3))(2)CO + Na](+). When TATP was ionized by ESI with an applied fragmentor voltage of 75 V, ions at m/z 141 [C(4)H(6)O(4) + Na](+) and 172 [C(5)H(9)O(5) + Na](+) were also observed. When the precipitates formed in the synthesis of TATP were analyzed before the reaction was complete, a new series of ions was observed in which the ions were separated by 74 m/z units, with ions occurring at m/z 205, 279, 353, 427, 501, 575, 649 and 723. The series of evenly spaced ions is accounted for as oligomeric acetone carbonyl oxides terminated as hydroperoxides, [HOOC(CH(3))(2){OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1, 2 ... 8). The ESI-MS spectra for this homologous series of oligoperoxides have previously been observed from the ozonolysis of tetramethylethylene at low temperatures. Precipitates from the incomplete reaction mixture, under an applied fragmentor voltage of 100 V in ESI, produced an additional ion observed at m/z 99 [C(2)H(4)O(3) + Na](+), and a set of ions separated by 74 m/z units occurring at m/z 173, 247, 321, 395, 469 and 543, proposed to correspond to [CH(3)CO{OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1,2 ... 5). Support for the assigned structures was obtained through the analysis of both protiated and perdeuterated TATP samples. Copyright (c) 2007 John Wiley & Sons, Ltd.

  11. Determination of trinexapac in wheat by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Hiemstra, Maurice; de Kok, André

    2003-09-24

    A quantitative and confirmatory method for the analysis of trinexapac (free acid metabolite of trinexapac-ethyl) in wheat is described. Residues were extracted from wheat with acetonitrile in aqueous phosphate buffer (pH 7) overnight. The extract was directly injected into the HPLC system. Chromatographic separation was achieved on an octadecylsilica column, and detection was performed by negative ion electrospray ionization tandem mass spectrometry. The precursor ion of trinexapac [M - H](-) at m/z 223 was subjected to collisional fragmentation with argon to yield two intense diagnostic product ions at m/z 135 and 179, respectively. Accuracy and specificity for routine analysis of trinexapac were demonstrated. The validated concentration range was 10-200 microg/kg based on a 0.10 g/mL wheat sample extract. Recoveries were within the range of 71-94%, with associated relative standard deviations better than 10%. The limit of detection for trinexapac in wheat was estimated at 5 microg/kg. The method has been applied to a survey of 100 samples of wheat. In 46% of the samples analyzed, a quantifiable amount of trinexapac was detected, ranging from 10 to 110 microg/kg. It has been demonstrated that analyses of trinexapac accurately reflect the total amount of residues of the plant growth regulator, trinexapac-ethyl, in the wheat samples following field application. No residues of the parent compound, trinexapac-ethyl, in wheat were detected.

  12. Rapid determination of bacterial aminoglycoside resistance in environmental samples using membrane electrospray ionization mass spectrometry.

    Science.gov (United States)

    Fan, Liusheng; Ke, Ming; Yuan, Min; Pu, Ji; Li, Juan; Lu, Jinxing; Xu, Jianguo; Zhang, Mei; Xu, Wei

    2016-08-01

    Antibiotic resistance in pathogenic bacteria is becoming a global public health problem, such as aminoglycoside resistance encoded by the armA gene. Although many methods have been reported, rapid analysis of environmental samples is still challenging. A rapid analytical method was developed in this study to determine bacterial aminoglycoside resistance using membrane electrospray ionization mass spectrometry (MESI-MS). Precursor/product-ion pairs of ArmA unique peptides were detected with minimal sample preparation. Standard peptides were synthesized and used for developing and validating the methodology, and then the method was verified by both ArmA positive and ArmA negative simulated environmental samples. A rapid method for determination of bacterial aminoglycoside resistance was developed using MESI-MS/MS. The bacterial cultural time was optimized to 2 hours, and the precision, accuracy and recovery of this method were investigated. The peptide IHSSTNER (IR-8) unique to ArmA in simulated environmental samples can be successfully identified within 3 hours. The novel assay offered a rapid method to determine bacterial aminoglycoside resistance with high sensitivity, accuracy and precision in simulated environmental samples. This method could also be applied to identify other drug-resistance proteins in clinical/environmental samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry

    International Nuclear Information System (INIS)

    Li Shu; Jia Jian; Gao Xiaoguang; He Xiuli; Li Jianping

    2012-01-01

    Highlights: ► The reduced mobilities of 18 antibiotics are determined. ► Establishing antibiotic mass-mobility correlation using (12,4) potential model. ► Multi-component characteristics of antibiotics can be revealed using ESI-IMS. ► Most mixtures of antibiotics can be analyzed using ESI-IMS. ► The detection limit of amoxicillin is 70 pg. - Abstract: The recent findings of antibiotic residues in aquatic environment at trace level have gained much concern for the detrimental effect on ecological and human health due to bacterial resistance. Here, the feasibility of using electrospray ionization ion mobility spectrometry (ESI-IMS) for analysis antibiotics in liquid sample is demonstrated. Reduced mobilities and collision cross sections of 18 antibiotics are experimentally measured and compared with theoretical values according to mass-mobility correlation. Gentamicin is used as an example to investigate the capability of ESI-IMS for multi-component analysis of antibiotics. Mixtures of antibiotics at different concentrations are analyzed. The estimated detection limit for amoxicillin is 0.7 mg L −1 (70 pg) and the linear range of response maintains over two orders. This method will be a potential technique for the analysis of antibiotics in aquatic environment.

  14. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  15. Time-resolved method to distinguish protein/peptide oxidation during electrospray ionization mass spectrometry.

    Science.gov (United States)

    Pei, Jiying; Hsu, Cheng-Chih; Yu, Kefu; Wang, Yinghui; Huang, Guangming

    2018-06-29

    Electrospray ionization mass spectrometry (ESI-MS) is one of the most prevalent techniques used to monitor protein/peptide oxidation induced by reactive oxygen species (ROSs). However, both corona discharge (CD) and electrochemistry (EC) can also lead to protein/peptide oxidation during ESI. Because the two types of oxidation occur almost simultaneously, determining the extent to which the two pathways contribute to protein/peptide oxidation is difficult. Herein, a time-resolved method was introduced to identify and differentiate CD- and EC-induced oxidation. Using this approach, we separated the instantaneous CD-induced oxidation from the hysteretic EC-induced oxidation, and the effects of the spray voltage and flow rate of the ESI source on both oxidation types were investigated with a homemade ESI source. For angiotensin II analogue (b-DRVYVHPF-y), the dehydrogenation and oxygenation species were the detected EC-induced oxidation products, while the oxygenation species were the major CD-induced oxidation products. This time-resolved approach was also applicable to a commercial HESI source, in which both CD and EC were responsible for hemoglobin and cytochrome c oxidation with upstream grounding while CD dominated the oxidation without upstream grounding. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Detection of diethyl phthalate in perfumes by extractive electrospray ionization mass spectrometry.

    Science.gov (United States)

    Chingin, Konstantin; Chen, Huanwen; Gamez, Gerardo; Zhu, Liang; Zenobi, Renato

    2009-01-01

    Recent findings suggest that long-term exposure to diethyl phthalate (DEP), one of the widely used phthalate esters, can lead to serious health problems. Most perfumes contain non-negligible amounts of DEP. Rapid and sensitive detection of DEP in perfumes is thus of increasing importance. A novel procedure based on extractive electrospray ionization mass spectrometry (EESI-MS) has been developed for fast detection and identification of DEP in perfumes without the need for any sample pretreatment. The limit of determination for DEP in perfume was less than 100 ppb using tandem mass spectrometry on a commercial quadrupole time-of-flight mass spectrometer. The dynamic range of this method was about 4 orders of magnitude. A single sample analysis was completed within a few seconds, providing a rapid way to obtain semiquantitative information on the DEP content in perfumes. This study shows that both volatile and nonvolatile analytes (e.g., amino acids) in liquids can be directly sampled by neutral desorption, providing a convenient way for high-throughput screening of target compounds using EESI-MS.

  17. Metabolic Profiling Directly from the Petri Dish Using Nanospray Desorption Electrospray Ionization Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Jeramie D.; Roach, Patrick J.; Heath, Brandi S.; Alexandrov, Theodore; Laskin, Julia; Dorrestein, Pieter C.

    2013-11-05

    Understanding molecular interaction pathways in complex biological systems constitutes a treasure trove of knowledge that might facilitate the specific, chemical manipulation of the countless microbiological systems that occur throughout our world. However, there is a lack of methodologies that allow the direct investigation of chemical gradients and interactions in living biological systems, in real time. Here, we report the use of nanospray desorption electrospray ionization (nanoDESI) imaging mass spectrometry for in vivo metabolic profiling of living bacterial colonies directly from the Petri dish with absolutely no sample preparation needed. Using this technique, we investigated single colonies of Shewanella oneidensis MR-1, Bacillus subtilis 3610, and Streptomyces coelicolor A3(2) as well as a mixed biofilm of S. oneidensis MR-1 and B. subtilis 3610. Data from B. subtilis 3610 and S. coelicolor A3(2) provided a means of validation for the method while data from S. oneidensis MR-1 and the mixed biofilm showed a wide range of compounds that this bacterium uses for the dissimilatory reduction of extracellular metal oxides, including riboflavin, iron-bound heme and heme biosynthetic intermediates, and the siderophore putrebactin.

  18. An electrospray ionization-tandem mass spectrometry method for identifying chlorinated drinking water disinfection byproducts.

    Science.gov (United States)

    Zhang, Xiangru; Minear, Roger A; Guo, Yingbo; Hwang, Cordelia J; Barrett, Sylvia E; Ikeda, Kazuhiro; Shimizu, Yoshihisa; Matsui, Saburo

    2004-11-01

    Identification of chlorinated drinking water disinfection byproducts (DBPs) was investigated by using electrospray ionization-mass spectrometry/mass spectrometry (ESI-MS/MS). Chlorine-containing compounds were found to form chloride ion fragments by MS/MS, which can be used as a 'fingerprint' for chlorinated DBPs. Instrumental parameters that affect the formation of chloride ions by ESI-MS/MS were examined, and appropriate conditions for use in finding specific structural information were evaluated. The results show that maximizing the formation of chloride ions by MS/MS required a relatively high collision energy and collision gas pressure; also, limiting the scan range to m/z 30-40 allowed improved sensitivity for detection; but obtaining structural information required the use of lower collision energies. The conditions obtained were demonstrated to be effective in identifying chlorinated DBPs in a standard sample with relatively low concentrations of each component and in a chlorinated humic substance sample. Sample pretreatment techniques including ultrafiltration and size exclusion chromatography appeared to be helpful for identifying highly polar or high molecular weight chlorine-containing DBPs by ESI-MS/MS.

  19. Glycerophospholipid analysis of Eastern red bat (Lasiurus borealis) hair by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Pannkuk, Evan L; McGuire, Liam P; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-03-01

    Pilosebaceous units found in the mammalian integument are composed of a hair follicle, the proximal portion of the hair shaft, a sebaceous gland, and the erector pili muscle. Pilosebaceous units release protective oils, or sebum, by holocrine secretion onto skin and hair through rupturing of sebocytes. Sebum is composed largely of polar and neutral lipids including glycerolipids, free fatty acids, sterols, wax esters, sterol esters, and squalene. In addition to these lipid classes, there is a small proportion of ionic/anionic glycerophospholipids (GPs). Composition of GPs on hair is rarely addressed despite their broad biological activities as signaling molecules and membrane stability. Furthermore, knowledge on GP composition in bats is lacking. Bat GP composition is important to document due to GP roles ranging from decreasing drag during migration to interaction with the integumentary microbiome. In this study, we analyzed GP molecular composition with liquid chromatography electrospray ionization tandem mass spectrometry and compared GP content to previous literature. A total of 152 GPs were detected. Broad GP classes identified include lysophosphatidylcholine, phosphatidylcholine (PC), lysophosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with PC being the most abundant class. The acyl components were consistent with fatty acid methyl esters and triacylglyceride moieties found in Eastern red bat sebum. Glycerophospholipid proportions of the hair surface were different from a previous study on bat lung surfactants. This study determined the broad class and molecular species of bat sebum GPs that may be used in future ecological studies in vespertilionid bats.

  20. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry

    Science.gov (United States)

    Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen

    2015-03-01

    Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (mass spectrometers. Long-term quantitative profiling of eNO by EESI-MS opens new possibilities for the research of human metabolism and clinical diagnosis.

  1. Direct analysis of ethylenediaminetetraacetic acid (EDTA) on concrete by reactive-desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Lebeau, D; Reiller, P E; Lamouroux, C

    2015-01-01

    Analysis of organic ligands such as ethylenediaminetetraacetic acid (EDTA) is today an important challenge due to their ability to increase the mobility of radionuclides and metals. Reactive desorption electrospray ionization mass spectrometry (reactive-DESI-MS) was used for direct analysis of EDTA on concrete samples. EDTA forms complexes and those with Fe(III) ions are among the most thermodynamically favored. This complexing capacity was used to improve the specific detection of EDTA directly on a concrete matrix by doping the solvent spray of DESI with a solution of FeCl3 to selectively create the complex between EDTA and Fe(III). Thus, EDTA sensitivity was largely improved by two orders of magnitude with reactive-DESI-MS experiments thanks to the specific detection of EDTA as a [EDTA-4H+Fe(III)](-) complex. The proof of principle that reactive DESI can be applied to concrete samples to detect EDTA has been demonstrated. Its capacity for semi-quantitative determination and localization of EDTA under ambient conditions and with very little sample preparation, minimizing sample manipulations and solvent volumes, two important conditions for the development of new methodologies in the field of analytical chemistry, has been shown. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. An Automated Platform for High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.; Thomas, Mathew; Carson, James P.; Laskin, Julia

    2012-10-02

    An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSI QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.

  3. Confirmation of the structure of lipid A from Enterobacter agglomerans by electrospray ionization tandem mass spectrometry

    Science.gov (United States)

    Boue; Cole

    2000-03-01

    Electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) was utilized for the structural confirmation of lipid A derived from Enterobacter agglomerans, a Gram-negative bacterium commonly found in field cotton. Previous ESI-MS studies conducted in our laboratory found that similarities exist between the fatty acid side-chains in the lipid A of E. agglomerans and that of Salmonella minnesota. It was noted that heterogeneity at the fatty acyl chain at position 3' of the diglucosamine backbone of E. agglomerans can take the form of either a myristyloxymyristyl group or, less commonly, a hydroxymyristyloxymyristyl moiety. In this work, tandem mass spectra obtained from heptaacyl and hexaacyl lipid A precursors derived from E. agglomerans and a known standard S. minnesota were compared to assist in structural elucidation. These ESI-MS/MS experiments confirmed the previously reported structure for lipid A derived from E. agglomerans. Moreover, MS/MS data indicated that the additional hydroxyl group of the 3'-position hydroxymyristyloxymyristyl moiety is present as the alpha-isomer.

  4. Characterization of N,N-dimethyl amino acids by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Naresh Chary, V; Sudarshana Reddy, B; Kumar, Ch Dinesh; Srinivas, R; Prabhakar, S

    2015-05-01

    Methylation is an essential metabolic process for a number of critical reactions in the body. Methyl groups are involved in the healthy function of the body life processes, by conducting methylation process involving specific enzymes. In these processes, various amino acids are methylated, and the occurrence of methylated amino acids in nature is diverse. Nowadays, mass-spectrometric-based identification of small molecules as biomarkers for diseases is a growing research. Although all dimethyl amino acids are metabolically important molecules, mass spectral data are available only for a few of them in the literature. In this study, we report synthesis and characterization of all dimethyl amino acids, by electrospray ionization-tandem mass spectrometry (MS/MS) experiments on protonated molecules. The MS/MS spectra of all the studied dimethyl amino acids showed preliminary loss of H2O + CO to form corresponding immonium ions. The other product ions in the spectra are highly characteristic of the methyl groups on the nitrogen and side chain of the amino acids. The amino acids, which are isomeric and isobaric with the studied dimethyl amino acids, gave distinctive MS/MS spectra. The study also included MS/MS analysis of immonium ions of dimethyl amino acids that provide information on side chain structure, and it is further tested to determine the N-terminal amino acid of the peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Shu; Jia Jian; Gao Xiaoguang; He Xiuli [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Li Jianping, E-mail: jpli@mail.ie.ac.cn [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The reduced mobilities of 18 antibiotics are determined. Black-Right-Pointing-Pointer Establishing antibiotic mass-mobility correlation using (12,4) potential model. Black-Right-Pointing-Pointer Multi-component characteristics of antibiotics can be revealed using ESI-IMS. Black-Right-Pointing-Pointer Most mixtures of antibiotics can be analyzed using ESI-IMS. Black-Right-Pointing-Pointer The detection limit of amoxicillin is 70 pg. - Abstract: The recent findings of antibiotic residues in aquatic environment at trace level have gained much concern for the detrimental effect on ecological and human health due to bacterial resistance. Here, the feasibility of using electrospray ionization ion mobility spectrometry (ESI-IMS) for analysis antibiotics in liquid sample is demonstrated. Reduced mobilities and collision cross sections of 18 antibiotics are experimentally measured and compared with theoretical values according to mass-mobility correlation. Gentamicin is used as an example to investigate the capability of ESI-IMS for multi-component analysis of antibiotics. Mixtures of antibiotics at different concentrations are analyzed. The estimated detection limit for amoxicillin is 0.7 mg L{sup -1} (70 pg) and the linear range of response maintains over two orders. This method will be a potential technique for the analysis of antibiotics in aquatic environment.

  6. GLYCEROPHOSPHOLIPID ANALYSIS OF EASTERN RED BAT (Lasiurus borealis) HAIR BY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMET

    Science.gov (United States)

    Pannkuk, Evan L.; McGuire, Liam P.; Gilmore, David F.; Savary, Brett J.; Risch, Thomas S.

    2014-01-01

    Pilosebaceous units found in the mammalian integument are composed of a hair follicle, the proximal portion of the hair shaft, a sebaceous gland, and the erector pili muscle. Pilosebaceous units release protective oils, or sebum, by holocrine secretion onto skin and hair through rupturing of sebocytes. Sebum is largely composed of polar and neutral lipids including glycerolipids, free fatty acids, sterols, wax esters, sterol esters, and squalene. In addition to these lipid classes, there is a small proportion of ionic/anionic glycerophospholipids (GPs). Composition of GPs on hair is rarely addressed despite their broad biological activities as signaling molecules and membrane stability. Furthermore, knowledge on GP composition in bats is lacking. Bat GP composition is important to document due to GP roles ranging from decreasing drag during migration to interaction with the integumentary microbiome. In this study, we analyzed GP molecular composition with liquid chromatography electrospray ionization tandem mass spectrometry and compared GP content to previous literature. A total of 152 GPs were detected. Broad GP classes identified include lysophosphatidylcholine, phosphatidylcholine (PC), lysophosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with PC being the most abundant class. The acyl components were consistent with fatty acid methyl esters and triacylglyceride moieties found in Eastern red bat sebum. GP proportions of the hair surface were different from a previous study on bat lung surfactants. This study determined the broad class and molecular species of bat sebum GPs that may be used in future ecological studies in vespertilionid bats. PMID:24532214

  7. Ammonium Bicarbonate Addition Improves the Detection of Proteins by Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Honarvar, Elahe; Venter, Andre R.

    2017-06-01

    The analysis of protein by desorption electrospray ionization mass spectrometry (DESI-MS) is considered impractical due to a mass-dependent loss in sensitivity with increase in protein molecular weights. With the addition of ammonium bicarbonate to the DESI-MS analysis the sensitivity towards proteins by DESI was improved. The signal to noise ratio (S/N) improvement for a variety of proteins increased between 2- to 3-fold relative to solvent systems containing formic acid and more than seven times relative to aqueous methanol spray solvents. Three methods for ammonium bicarbonate addition during DESI-MS were investigated. The additive delivered improvements in S/N whether it was mixed with the analyte prior to sample deposition, applied over pre-prepared samples, or simply added to the desorption spray solvent. The improvement correlated well with protein pI but not with protein size. Other ammonium or bicarbonate salts did not produce similar improvements in S/N, nor was this improvement in S/N observed for ESI of the same samples. As was previously described for ESI, DESI also caused extensive protein unfolding upon the addition of ammonium bicarbonate. [Figure not available: see fulltext.

  8. Determination of Sulfonamides in Chicken Muscle by Pulsed Direct Current Electrospray Ionization Tandem Mass Spectrometry.

    Science.gov (United States)

    Fu, Xian; Liang, Hengxing; Xia, Bing; Huang, Chunyan; Ji, Baocheng; Zhou, Yan

    2017-09-20

    A simple and rapid approach for the simultaneous detection of trace amounts of six sulfonamides in chicken muscle was developed using pulsed direct current electrospray ionization tandem mass spectrometry (pulsed-dc ESI-MS/MS). The pretreatment of chicken muscle samples consisted of two steps: acetonitrile extraction and n-hexane delipidation. Sulfonamides do not need to be derivatized or chromatographed prior to pulsed-dc ESI-MS/MS. The factors affecting the performance of pulsed-dc ESI-MS/MS were studied. Under optimum conditions, the quantitative performance of pulsed-dc ESI-MS/MS was validated according to European Union Decision 2002/657/EC, and the sensitivity of pulsed-dc ESI-MS/MS was 3 times higher than that of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The limits of detection obtained by pulsed-dc ESI-MS/MS were in the range of 0.07-0.11 μg/kg. The proposed method was simple, rapid, and sensitive, and was successfully used for quantitation and rapid screening of sulfonamides in real chicken muscle samples.

  9. Fragmentation studies and electrospray ionization mass spectrometry of lapachol: protonated, deprotonated and cationized species.

    Science.gov (United States)

    Vessecchi, Ricardo; Emery, Flavio S; Galembeck, Sérgio E; Lopes, Norberto P

    2010-07-30

    Electrospray ionization mass spectrometric analysis of lapachol (2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone) was accomplished in order to elucidate the gas-phase dissociation reactions of this important biologically active natural product. The occurrence of protonated and cationized species in the positive mode and of deprotonated species in the negative mode was explored by means of collision-induced dissociation (CID) experiments. For the protonated molecule, the H(2)O and C(4)H(8) losses occur by two competitive channels. For the deprotonated molecule, the even-electron rule is not conserved, and the radicalar species are eliminated by formation of distonic anions. The fragmentation mechanism for each ion was suggested on the basis of computational thermochemistry. Atomic charges, relative energies, and frontier orbitals were employed aiming at a better understanding of the gas-phase reactivity of lapachol. Potential energy surfaces for fragmentation reactions were obtained by the B3LYP/6-31+G(d,p) model. Copyright 2010 John Wiley & Sons, Ltd.

  10. Effect of Nanoemitters on Suppressing the Formation of Metal Adduct Ions in Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Hu, Jun; Guan, Qi-Yuan; Wang, Jiang; Jiang, Xiao-Xiao; Wu, Zeng-Qiang; Xia, Xing-Hua; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-02-07

    In the work, we showed that the use of nanoemitters (tip dimension metal adduction to peptide or protein ions as well as improve the matrix tolerance of electrospray ionization mass spectrometry (ESI-MS). The proton-enriched smaller initial droplets are supposed to have played a significant role in suppressing the formation of metal adduct ions in nanoemitters. The proton-enrichment effect in the nanoemitters is related to both the exclusion-enrichment effect (EEE) and the ion concentration polarization effect (ICP effect), which permit the molecular ions to be regulated to protonated ones. Smaller initial charged droplets generated from nanoemitters need less fission steps to release the gas-phase ions; thus, the enrichment effect of salt was not as significant as that of microemitters (tip dimension >1 μm), resulting in the disappearing of salt cluster peaks in high mass-to-charge (m/z) region. The use of nanoemitters demonstrates a novel method for tuning the distribution of the metal-adducted ions to be in a controlled manner. This method is also characterized by ease of use and high efficiency in eliminating the formation of adduct ions, and no pretreatment such as desalting is needed even in the presence of salt at millimole concentration.

  11. Electrospray ionization FT-ICR mass spectrometry of ARN naphthenic acids in crudes : preconcentration and quantification

    Energy Technology Data Exchange (ETDEWEB)

    Mapolelo, M.M.; Rodgers, R.P.; Marshall, A.G. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Florida State Univ., Tallahassee, FL (United States). Cyclotron Resonance Program, National High Magnetic Field Laboratory

    2008-07-01

    The deposition of naphthenate solids and formation of sodium soaps in oil production equipment are known to create flow assurance problems for oilfield operators. Calcium naphthenate formation depends largely on tetraprotic naphthenic acids known as ARN acids in crude oil, whereas sodium naphthenates originate from less substituted lower molecular weight naphthenic acids. This study attempted to preconcentrate and quantify ARN-type acids in whole crude oils. Fourier transform ion cyclotron resonance (FT-ICR) mass spectroscopy (MS) provided detailed acidic speciation for all crudes and deposits analyzed. The preconcentration step involved bubbling ammonia into toluene-diluted crudes known to have ARN-type acids. ARN acids from the crystals increased from undetectable in the parent crude, to the most abundant acid species in the extract mass spectrum. A pure ARN acid standard was prepared for quantitation from successive cleaning and acid digestion of a naphthenate deposit. Analysis of the standard by negative-ion electrospray ionization (ESI) FT-ICR MS showed only ARN acid species. The paper described how API gravity, solvent systems and the paraffinic versus aromatic composition in the crude oil can influence crystal formation. Correlation of FT-ICR MS data of the respective crudes known to contain ARN acids naturally and crudes spiked with ARN acid standard were discussed and the significance of the preconcentration step was highlighted as a method to enhance the detection of ARN acids in crudes.

  12. Study of the non-covalent interactions of ginsenosides and lysozyme using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Tang, Jun; Fu, Qiang; Cui, Meng; Xing, Junpeng; Liu, Zhiqiang; Liu, Shuying

    2015-11-15

    Ginsenosides are an important class of natural products extracted from ginseng that possess various important biological activities. Studies of interactions of ginsenosides with proteins are essential for comprehensive understanding of the biological activities of ginsenosides. In this study, the interactions of ginsenosides with lysozyme were investigated by electrospray ionization mass spectrometry (ESI-MS). Both protopanaxadiol-type and protopanaxatriol-type ginsenosides were chosen to explore the interactions of ginsenosides towards lysozyme near the physiological conditions by direct ESI-MS, respectively. Comparative experiments were conducted to confirm the interactions were specific. In addition, the dissociation constants of ginsenoside-lysozyme complexes were determined by a ESI-MS titration strategy. The results showed ginsenosides bound to lysozyme at the stoichiometries of 1:1 and 2:1. The association constants of ginsenosides to lysozyme were in the order of Re>Rd>Rf>Rg2 >Rg3 . According to their structures, the binding affinities associated with the type of aglycone and the type and the number of sugar moieties linked on the aglycone. It has been demonstrated that ESI-MS is a powerful tool to probe the non-covalent interactions between lysozyme and ginsenosides. These results provide insights into the interaction of ginsenosides with lysozyme at the molecular level. The developed strategy could be applied to determine the interactions of proteins with other natural products. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Oligosaccharide sequences in Quillaja saponins by electrospray ionization ion trap multiple-stage mass spectrometry.

    Science.gov (United States)

    Broberg, Susanna; Nord, Lars I; Kenne, Lennart

    2004-06-01

    Ten different samples with 13 previously identified saponin structures from Quillaja saponaria Molina were investigated by electrospray ionization ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive and negative ion modes. Both positive and negative ion mode MS(1)-MS(4) spectra were analyzed, showing that structural information on the two oligosaccharide parts in the saponin can be obtained from positive ion mode spectra whereas negative ion mode spectra mainly gave information on one of the oligosaccharide parts. Analysis of MS(1)-MS(4) spectra identified useful key fragment ions important for the structural elucidation of Quillaja saponins. A flowchart involving a stepwise procedure based on key fragments from MS(1)-MS(3) spectra was constructed for the identification of structural elements in the saponin. Peak intensity ratios in MS(3) spectra were found to be correlated with structural features of the investigated saponins and are therefore of value for the identification of terminal monosaccharide residues. Copyright 2004 John Wiley & Sons, Ltd.

  14. Surfactant effects on protein structure examined by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Loo, R. R.; Dales, N.; Andrews, P. C.

    1994-01-01

    Electrospray ionization mass spectrometry (ESI-MS) has proven to be a useful tool for examining noncovalent complexes between proteins and a variety of ligands. It has also been used to distinguish between denatured and refolded forms of proteins. Surfactants are frequently employed to enhance solubilization or to modify the tertiary or quaternary structure of proteins, but are usually considered incompatible with mass spectrometry. A broad range of ionic, nonionic, and zwitterionic surfactants was examined to characterize their effects on ESI-MS and on protein structure under ESI-MS conditions. Solution conditions studied include 4% acetic acid/50% acetonitrile/46% H2O and 100% aqueous. Of the surfactants examined, the nonionic saccharides, such as n-dodecyl-beta-D-glucopyranoside, at 0.1% to 0.01% (w/v) concentrations, performed best, with limited interference from chemical background and adduct formation. Under the experimental conditions used, ESI-MS performance in the presence of surfactants was found to be unrelated to critical micelle concentration. It is demonstrated that surfactants can affect both the tertiary and quaternary structures of proteins under conditions used for ESI-MS. However, several of the surfactants caused significant shifts in the charge-state distributions, which appeared to be independent of conformational effects. These observations suggest that surfactants, used in conjunction with ESI-MS, can be useful for protein structure studies, if care is used in the interpretation of the results. PMID:7703844

  15. Real-time hydrogen/deuterium exchange kinetics via supercharged electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Sterling, Harry J; Williams, Evan R

    2010-11-01

    Amide hydrogen/deuterium exchange (HDX) rate constants of bovine ubiquitin in an ammonium acetate solution containing 1% of the electrospray ionization (ESI) "supercharging" reagent m-nitrobenzyl alcohol (m-NBA) were obtained using top-down, electron transfer dissociation (ETD) tandem mass spectrometry (MS). The supercharging reagent replaces the acid and temperature "quench" step in the conventional MS approach to HDX experiments by causing rapid protein denaturation to occur in the ESI droplet. The higher charge state ions that are produced with m-NBA are more unfolded, as measured by ion mobility, and result in higher fragmentation efficiency and higher sequence coverage with ETD. Single amino acid resolution was obtained for 44 of 72 exchangeable amide sites, and summed kinetic data were obtained for regions of the protein where adjacent fragment ions were not observed, resulting in an overall spatial resolution of 1.3 residues. Comparison of these results with previous values from NMR indicates that the supercharging reagent does not cause significant structural changes to the protein in the initial ESI solution and that scrambling or back-exchange is minimal. This new method for top-down HDX-MS enables real-time kinetic data measurements under physiological conditions, similar to those obtained using NMR, with comparable spatial resolution and significantly better sensitivity.

  16. Interactions of nucleobases with alkali earth metal cations--electrospray ionization mass spectrometric study.

    Science.gov (United States)

    Frańska, Magdalena

    2007-01-01

    Interactions of nucleobases with alkali earth metal cations have been studied by electrospray ionization mass spectrometry (ESI-MS). Nucleobases containing at least one oxygen atom form stable complexes with alkali earth metal cations. This phenomenon can be explained on the grounds of the well known theory of hard and soft acids and bases. Uracil and thymine make complexes only when in their deprotonoted forms. The cations of great radii (Sr(2+), Ba(2+)) are more prone to form complexes of stoichiometry 1:1 with uracil and thymine than the cations of small radii (Mg(2+), Ca(2+)). On the other hand, Mg(2+) forms complexes of stoichiometry 2:1 and 3:2 with uracil and thymine. Gas-phase stabilities of the 1:1 complexes are higher for the cations of small radii, in contrast to the solution stabilities. For cytosine and 9- methylhypoxantine the 1:1 complexes of their deprotonated forms are observed at higher cone voltage as a result of HCl molecule loss from the complexes containing the counter ion (Cl(-)). In solution, more stable complexes are formed with metal cations of low radii. Gas-phase stability of the complexes formed by deprotonated 9- methyl-hypoxantine increases with increasing metal cation radius.

  17. High-performance thin-layer chromatography/desorption electrospray ionization mass spectrometry imaging of the crude extract from the peels of Citrus aurantium L. (Rutaceae).

    Science.gov (United States)

    Bagatela, Bianca S; Lopes, Andrey P; Cabral, Elaine C; Perazzo, Fábio F; Ifa, Demian R

    2015-08-30

    Citrus aurantium L. is a plant belonging to the Rutaceae family, whose extracts are extensively used in weight management products and as thermogenic agents. Here we present two methodologies to analyse the extracts obtained from the peels of Citrus aurantium L. that usually require multiple sample preparation and detection steps. Polar compounds of the crude extract from the peels of Citrus aurantium L. (Rutaceae) were investigated by direct infusion electrospray ionization mass spectrometry (ESI-MS) and high-performance thin-layer chromatography (HPTLC) coupled to desorption electrospray ionization mass spectrometry (DESI-MS). ESI-MS was performed in both positive and negative ion modes. Molecular imaging of the HPTLC plates was used for the direct analysis of the phytocompounds present in the crude extract from the peels of Citrus aurantium L. by DESI-MS imaging. Characteristic mass spectra with many diagnostic ions were obtained from the extract analysis, allowing a fast and reliable identification of these species. Tandem mass spectrometry (MS/MS) was employed to confirm the identity of specific metabolites. HPTLC/DESI-MS imaging is a relatively fast, versatile, and efficient technique for natural product analysis, since many more ions are observed than with the direct infusion ESI-MS. The MS/MS technique provided information about the component structures, revealing the presence of important bioactive components. The application of DESI-MS imaging may contribute to the improvement identification and characterization of pharmacologically active compounds in phytochemistry. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Determination of the brominated flame retardant, hexabroomcyclodocane in sediments and biota by liquid chromatography-electrospray ionization mass spectrometry

    NARCIS (Netherlands)

    Morris, S.; Bersuder, P.; Allchin, C.R.; Zegers, B.; Boon, J.P.; Leonards, P.E.G.; Boer, de J.

    2006-01-01

    A method involving reversed-phase, liquid chromatography coupled to electrospray ionisation mass spectrometry (LC-ESI-MS) was developed for separation, detection and quantitation of the alpha-, beta- and gamma-diastereoisomers of hexabromocyclododecane (HBCD). To address the lack of environmental

  19. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  20. Structure determination of two conotoxins from Conus textile by a combination of matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization mass spectrometry and biochemical methods

    DEFF Research Database (Denmark)

    Kalume, D E; Stenflo, J; Czerwiec, E

    2000-01-01

    Two highly modified conotoxins from the mollusc Conus textile, epsilon-TxIX and Gla(1)-TxVI, were characterized by matrix-assisted laser desorption/ionization and electrospray mass spectrometry and also by electrospray ionization tandem and triple mass spectrometry in combination with enzymatic c...... esterification was found necessary for the site-specific assignment of the Gla residues in the peptides....

  1. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xiaowei Fang

    2016-08-01

    Full Text Available Exposure to malachite green (MG may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L−1 (S/N = 3 in lake water samples and ~0.5 μg·L−1 in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10–1000 μg·L−1. Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L−1 gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD, 85.4% (9.17% RSD and 96.0% (7.44% RSD, respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  2. New Mechanism of Extractive Electrospray Ionization Mass Spectrometry for Heterogeneous Solid Particles.

    Science.gov (United States)

    Kumbhani, S; Longin, T; Wingen, L M; Kidd, C; Perraud, V; Finlayson-Pitts, B J

    2018-02-06

    Real-time in situ mass spectrometry analysis of airborne particles is important in several applications, including exposure studies in ambient air, industrial settings, and assessing impacts on visibility and climate. However, obtaining molecular and 3D structural information is more challenging, especially for heterogeneous solid or semisolid particles. We report a study of extractive electrospray ionization mass spectrometry (EESI-MS) for the analysis of solid particles with an organic coating. The goal is to elucidate how much of the overall particle content is sampled, and determine the sensitivity of this technique to the surface layers. It is shown that, for NaNO 3 particles coated with glutaric acid (GA), very little of the solid NaNO 3 core is sampled compared to the GA coating, whereas for GA particles coated with malonic acid (MA), significant signals from both the MA coating and the GA core are observed. However, conventional ESI-MS of the same samples collected on a Teflon filter (and then extracted) detects much more core material compared to EESI-MS in both cases. These results show that, for the experimental conditions used here, EESI-MS does not sample the entire particle but, instead, is more sensitive to surface layers. Separate experiments on single-component particles of NaNO 3 , GA, or citric acid show that there must be a kinetics limitation to dissolution that is important in determining EESI-MS sensitivity. We propose a new mechanism of EESI solvent droplet interaction with solid particles that is consistent with the experimental observations. In conjunction with previous EESI-MS studies of organic particles, these results suggest that EESI does not necessarily sample the entire particle when solid, and that not only solubility but also surface energies and the kinetics of dissolution play an important role.

  3. Observing the real time formation of phosphine-ligated gold clusters by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Johnson, Grant E.; Laskin, Julia

    2017-01-01

    Early stages of the reduction and nucleation of solution-phase gold clusters are largely unknown. This is due, in part, to the high reaction rates and the complexity of the cluster synthesis process. Through the addition of a diphosphine ligand, 1-4,Bis(diphenylphosphino)butane (L4) to the gold precursor, chloro(triphenylphosphine) gold(I) (Au(PPh3)Cl), in methanol organometallic complexes of the type, [Au(L4)x(L4O)y(PPh3)z]+, are formed. These complexes lower the rate of reduction so that the reaction can be directly monitored from 1 min to over an hour using on-line electrospray ionization mass spectrometry (ESI-MS). Our results indicate that the formation of Au8(L4)42+, Au9(L4)4H2+ and Au10(L4)52+ cationic clusters occurs through different reaction pathways that may be kinetically controlled either through the reducing agent concentration or the extent of oxidation of L4. Through comparison of selected ion chronograms our results indicate that Au2(L4)2H+ may be an intermediate in the formation of Au8(L4)42+and Au10(L4)52+ while a variety of chlorinated clusters are involved in the formation of Au9(L4)4H2+. Additionally, high-resolution mass spectrometry was employed to identify 53 gold containing species produced under highly oxidative conditions. New intermediate species are identified which help understand how different gold cluster nuclearities can be stabilized during the growth process.

  4. Quantifying Protein-Carbohydrate Interactions Using Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Yao, Yuyu; Shams-Ud-Doha, Km; Daneshfar, Rambod; Kitova, Elena N.; Klassen, John S.

    2015-01-01

    The application of liquid sample desorption electrospray ionization mass spectrometry (liquid sample DESI-MS) for quantifying protein-carbohydrate interactions in vitro is described. Association constants for the interactions between lysozyme and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc, and between a single chain antibody and α-D-Galp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 and β-D-Glcp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 measured using liquid sample DESI-MS were found to be in good agreement with values measured by isothermal titration calorimetry and the direct ESI-MS assay. The reference protein method, which was originally developed to correct ESI mass spectra for the occurrence of nonspecific ligand-protein binding, was shown to reliably correct liquid sample DESI mass spectra for nonspecific binding. The suitability of liquid sample DESI-MS for quantitative binding measurements carried out using solutions containing high concentrations of the nonvolatile biological buffer phosphate buffered saline (PBS) was also explored. Binding of lysozyme to β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc in aqueous solutions containing up to 1× PBS was successfully monitored using liquid sample DESI-MS; with ESI-MS the binding measurements were limited to concentrations less than 0.02 X PBS.

  5. Delivering Transmembrane Peptide Complexes to the Gas Phase Using Nanodiscs and Electrospray Ionization

    Science.gov (United States)

    Li, Jun; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2017-10-01

    The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase. [Figure not available: see fulltext.

  6. Probing Conformational Changes of Ubiquitin by Host-Guest Chemistry Using Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Lee, Jong Wha; Heo, Sung Woo; Lee, Shin Jung C.; Ko, Jae Yoon; Kim, Hyungjun; Kim, Hugh I.

    2013-01-01

    We report mechanistic studies of structural changes of ubiquitin (Ub) by host-guest chemistry with cucurbit[6]uril (CB[6]) using electrospray ionization mass spectrometry (ESI-MS) combined with circular dichroism spectroscopy and molecular dynamics (MD) simulation. CB[6] binds selectively to lysine (Lys) residues of proteins. Low energy collision-induced dissociation (CID) of the protein-CB[6] complex reveals CB[6] binding sites. We previously reported ( Anal. Chem. 2011, 83, 7916-7923) shifts in major charge states along with Ub-CB[6] complexes in the ESI-MS spectrum with addition of CB[6] to Ub from water. We also reported that CB[6] is present only at Lys6 or Lys11 in high charge state (+13) complex. In this study, we provide additional information to explain unique conformational change mechanisms of Ub by host-guest chemistry with CB[6] compared with solvent-driven conformational change of Ub. Additional CID study reveals that CB[6] is bound only to Lys48 and Lys63 in low charge state (+7) complex. MD simulation studies reveal that the high charge state complexes are attributed to the CB[6] bound to Lys11. The complexation prohibits salt bridge formation between Lys11 and Glu34 and induces conformational change of Ub. This results in formation of high charge state complexes in the gas phase. Then, by utilizing stronger host-guest chemistry of CB[6] with pentamethylenediamine, refolding of Ub via detaching CB[6] from the protein is performed. Overall, this study gives an insight into the mechanism of denatured Ub ion formation via host-guest interactions with CB[6]. Furthermore, this provides a direction for designing function-controllable supramolecular system comprising proteins and synthetic host molecules.

  7. Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidative processes.

    Science.gov (United States)

    Dalmázio, Ilza; de Urzedo, Ana P F M; Alves, Tania M A; Catharino, Rodrigo R; Eberlin, Marcos N; Nascentes, Clésia C; Augusti, Rodinei

    2007-10-01

    The degradation of the dye indigo carmine in aqueous solution induced by two oxidative processes (H(2)O(2)/iodide and O(3)) was investigated. The reactions were monitored by electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS, and the intermediates and oxidation products characterized by ESI(-)-MS/MS. Both oxidative systems showed to be highly efficient in removing the color of the dye aqueous solutions. In the ESI(-)-MS of the indigo carmine solution treated with H(2)O(2) and H(2)O(2)/iodide, the presence of the ions of m/z 210 (indigo carmine in its anionic form, 1), 216, 226, 235, and 244 was noticeable. The anion of m/z 235 was proposed to be the unprecedented hydroperoxide intermediate 2 formed in solution via an electrophilic attack by hydroxyl and hydroperoxyl radicals of the exocyclic C=C bond of 1. This intermediate was suggested to be rapidly converted into the anionic forms of 2,3-dioxo-1H-indole-5-sulfonic acid (3, m/z 226), 2-amino-alpha-oxo-5-sulfo-benzeneacetic acid (4, m/z 244), and 2-amino-5-sulfo-benzoic acid (5, m/z 216). In the ESI(-)-MS of the indigo carmine solution treated with O(3), two main anions were detected: m/z 216 (5) and 244 (4). Both products were proposed to be produced via an unstable ozonide intermediate. Other anions in this ESI(-) mass spectrum were attributed to be [4 - H + Na](-) of m/z 266, [4 - H](2-) of m/z 121.5, and [5 - H](2-) of m/z 107.5. ESI-MS/MS data were consistent with the proposed structures for the anionic products 2-5.

  8. Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry

    Science.gov (United States)

    Larriba, Carlos; de la Mora, Juan Fernandez; Clemmer, David E.

    2014-08-01

    Ion mobility mass spectrometry (IMS-MS) is used to investigate the abundance pattern, n z (m) of Poly-(ethyleneglycol) (PEG) electrosprayed from water/methanol as a function of mass and charge state. We examine n z (m) patterns from a diversity of solution cations, primarily dimethylammonium and triethylammonium. The ability of PEG chains to initially attach to various cations in the spraying chamber, and to retain them (or not) on entering the MS, provide valuable clues on the ionization mechanism. Single chains form in highly charged and extended shapes in most buffers. But the high initial charge they hold under atmospheric pressure is lost on transit to the vacuum system for large cations. In contrast, aggregates of two or more chains carry in all buffers at most the Rayleigh charge of a water drop of the same volume. This shows either that they form via Dole's charge residue mechanism, or that highly charged and extended aggregates are ripped apart by Coulombic repulsion. IMS-IMS experiments in He confirm these findings, and provide new mechanistic insights on the stability of aggregates. When collisionally activated, initially globular dimers are stable. However, slightly nonglobular dimers projecting out a linear appendix are segregated into two monomeric chains. The breakup of a charged dimer is therefore a multi-step process, similar to the Fenn-Consta polymer extrusion mechanism. The highest activation barrier is associated to the first step, where a short chain segment carrying a single charge escapes (ion-evaporates) from a charged drop, leading then to gradual field extrusion of the whole chain out of the drop.

  9. Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Yao-Min; G Nicolau, Bruno; Esbenshade, Jennifer L; Gewirth, Andrew A

    2016-07-19

    The solid electrolyte interface (SEI) formed via electrolyte decomposition on the anode of lithium ion batteries is largely responsible for the stable cycling of conventional lithium ion batteries. Similarly, there is a lesser-known analogous layer on the cathode side of a lithium ion battery, termed the cathode electrolyte interface (CEI), whose composition and role are debated. To confirm the existence and composition of the CEI, desorption electrospray ionization mass spectrometry (DESI-MS) is applied to study common lithium ion battery cathodes. We observe CEI formation on the LiMn2O4 cathode material after cycling between 3.5 and 4.5 V vs Li/Li(+) in electrolyte solution containing 1 M LiPF6 or LiClO4 in 1:1 (v/v) ethylene carbonate (EC) and dimethyl carbonate (DMC). Intact poly(ethylene glycol) dimethyl ether is identified as the electrolyte degradation product on the cathode surface by the high mass-resolution Orbitrap mass spectrometer. When EC is paired with ethyl methyl carbonate (EMC), poly(ethylene glycol) dimethyl ether, poly(ethylene glycol) ethyl methyl ether, and poly(ethylene glycol) are found on the surface simultaneously. The presence of ethoxy and methoxy end groups indicates both methoxide and ethoxide are produced and involved in the process of oligomerization. Au surfaces cycled under different electrochemical windows as model systems for Li-ion battery anodes are also examined. Interestingly, the identical oligomeric species to those found in the CEI are found on Au surfaces after running five cycles between 2.0 and 0.1 V vs Li/Li(+) in half-cells. These results show that DESI-MS provides intact molecular information on battery electrodes, enabling deeper understanding of the SEI or CEI composition.

  10. Gas-phase copper and silver complexes with phosphorothioate and phosphorodithioate pesticides investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2015-01-01

    Efforts to improve agricultural productivity have led to a growing dependency on organophosphorus pesticides. Phosphorothioate and phosphorodithioate pesticides are organophosphorus pesticide subclasses with widespread application for the control of insects feeding on vegetables and fruits. However, even low doses of these pesticides can cause neurological problems in humans; thus, their determination and monitoring in agricultural foodstuffs is important for human health. Phosphorothioate and phosphorodithioate pesticides may be poorly ionized during electrospray, adversely affecting limits of detection. These pesticides can form complexes with Cu(2+) and Ag(+) , however, potentially improving ionization. In the present work, we used electrospray ionization/mass spectrometry (ESI/MS) to study fenitrothion, parathion, diazinon, and malathion coordination complexes with silver and copper ions. Stable 1 : 1 and 1 : 2 metal/pesticide complexes were detected. Mass spectra acquired from pesticide solutions containing Ag(+) or Cu(2+) showed a significant increase in signal-to-background ratio over those acquired from solutions containing only the pesticides, with Ag(+) improving detection more effectively than Cu(2+). Addition of Ag(+) to a pesticide solution improved the limit of detection by ten times. The relative affinity of each pesticide for Ag(+) was related to complex stability, following the order diazinon > malathion > fenitrothion > parathion. The formation of Ag(+)-pesticide complexes can significantly improve the detection of phosphorothioate and phosphorodithioate pesticides using ESI/MS. The technique could potentially be used in reactive desorption electrospray ionization/mass spectrometry to detect phosphorothioate and phosphorodithioate pesticides on fruit and vegetable skins. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Smith, Cameron R; Sleighter, Rachel L; Hatcher, Patrick G; Lee, James W

    2013-01-01

    Biochar has gained significant interest worldwide for its potential use as both a carbon sequestration technique and soil amendment. Recently, research has shown that pinewood-derived biochar water extracts inhibited the growth of aquatic photosynthetic microorganisms, both prokaryotic and eukaryotic algae, while chicken litter- and peanut shell-derived biochar water extracts showed no growth inhibition. With the use of electrodialysis, the pinewood-derived biochar water extract is separated into 3 fractions (anode-isolated, center chamber retained, and cathode-isolated substances) all with varying toxic effects. Because of its ultrahigh resolution and mass precision, electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is utilized in this study to analyze biochar water extracts at a molecular level to enhance our understanding of the toxic nature of pinewood-derived biochar water extracts as compared to benign peanut shell-derived biochar water extracts. The molecular composition of pinewood-derived biochar water extracts shows unique carbohydrate ligneous components and sulfur containing condensed ligneous components that are both absent from the peanut shell water extracts and more prevalent in the anode-isolated substances. Using Kendrick mass defect analysis, we also determine that the most likely inhibitor species contain carboxyl and hydroxyl homologous series, both of which are characteristic functional groups hypothesized in our previous research for the inhibitor species. We have suggested that inhibition of aquatic photosynthetic microorganism growth is most likely due to degraded lignin-like species rich in oxygen containing functionalities. From the study conducted here, we show the potential of ultrahigh resolution FTICR-MS as a valuable analytical technique for determining whether certain biochars are safe and benign for use as carbon sequestration and soil amendment.

  12. Broad-Range Detection of Microorganisms Directly from Bronchoalveolar Lavage Specimens by PCR/Electrospray Ionization-Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Måns Ullberg

    Full Text Available The clinical demand on rapid microbiological diagnostic is constantly increasing. PCR coupled to electrospray ionization-mass spectrometry, PCR/ESI-MS, offers detection and identification of over 750 bacteria and Candida species directly from clinical specimens within 6 hours. In this study, we investigated the clinical performance of the IRIDICA BAC LRT Assay for detection of bacterial pathogens in 121 bronchoalveolar lavage (BAL samples that were received consecutively at our bacterial laboratory for BAL culture. Commensal or pathogenic microorganisms were detected in 118/121 (98% BAL samples by PCR/ESI-MS, while in 104/121 (86% samples by routine culture (P<0.01. Detection of potentially pathogenic microorganisms by PCR/ESI-MS was evaluated in comparison with conventional culture-based or molecular methods. The agreement between positive findings was overall good. Most Staphylococcus aureus-positive PCR/ESI-MS results were confirmed by culture or species-specific PCR (27/33, 82%. The identity of Streptococcus pneumoniae could however be confirmed for only 6/17 (35% PCR/ESI-MS-positive samples. Non-cultivable and fastidious pathogens, which were not covered by standard culture procedures were readily detected by PCR/ESI-MS, including Legionella pneumophila, Bordetella pertussis, Norcadia species and Mycoplasma pneumoniae. In conclusion, PCR/ESI-MS detected a broad range of potential pathogens with equal or superior sensitivity compared to conventional methods within few hours directly from BAL samples. This novel method might thus provide a relevant tool for diagnostics in critically ill patients.

  13. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Ovčačíková, Magdaléna; Lísa, Miroslav; Cífková, Eva; Holčapek, Michal

    2016-06-10

    Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification. Over 400 lipid species covering 14 polar and nonpolar lipid classes from 5 lipid categories are identified in total lipid extracts of human plasma, human urine and porcine brain. The general dependences of relative retention times on relative carbon number or relative double bond number are constructed and fit with the second degree polynomial regression. The regular retention patterns in homologous lipid series provide additional identification point for UHPLC/MS lipidomic analysis, which increases the confidence of lipid identification. The reprocessing of previously published data by our and other groups measured in the RP mode and ultrahigh-performance supercritical fluid chromatography on the silica column shows more generic applicability of the polynomial regression for the description of retention behavior and the prediction of retention times. The novelty of this work is the characterization of general trends in the retention behavior of lipids within logical series with constant fatty acyl length or double bond number, which may be used as an additional criterion to increase the confidence of lipid identification. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review

    International Nuclear Information System (INIS)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J.

    2015-01-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. - Highlights: • Atmospheric pressure ion sources (APCI, ESI, APPI, APLC etc) enable the coupling of LC-based high-end MS to GC. • APIs show advantages in selectivity and sensitivity compared with EI in GC-MS. • Accurate mass database in GC-APCI/MS is emerging as an alternative to GC-EI/MS database.

  15. Structural elucidation of metabolites of ginkgolic acid in rat liver microsomes by ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry and hydrogen/deuterium exchange.

    Science.gov (United States)

    Liu, Z H; Chen, J; Yu, L S; Jiang, H D; Yao, T W; Zeng, S

    2009-07-01

    Ginkgolic acids have been shown to possess allergenic as well as genotoxic and cytotoxic properties. The question arises whether the metabolism of ginkgolic acids in the liver could decrease or increase their toxicity. In this study, the in vitro metabolism of ginkgolic acid (15:1, GA), one component of ginkgo acids, was investigated as a model compound in Sprague-Dawley rat liver microsomes. The metabolites were analyzed by ultra-performance liquid chromatography coupled with photodiode array detector/negative-ion electrospray ionization tandem mass spectrometry (UPLC-PDA/ESI-MS/MS) and hydrogen/deuterium (H/D) exchange. The result showed that the benzene ring remained unchanged and the oxidations occurred at the side alkyl chain in rat liver microsomes. At least eight metabolites were found. Among them, six phase I metabolites were tentatively identified. This study might be useful for the investigation of toxicological mechanism of ginkgolic acids. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Application of liquid chromatography/electrospray ionization tandem mass spectrometry to the analysis of polyphenolic compounds from an infusion of Byrsonima crassa Niedenzu.

    Science.gov (United States)

    Sannomiya, Miriam; Montoro, Paola; Piacente, Sonia; Pizza, Cosimo; Brito, Alba R M S; Vilegas, Wagner

    2005-01-01

    A fast and reliable method, based on high-performance liquid chromatography coupled to electrospray ionization ion trap tandem mass spectrometry (HPLC/ESI-ITMS), was developed to investigate the infusion prepared from the leaves of Byrsonima crassa Niedenzu (Malpighiaceae), a native plant used in Brazil against gastric disorders. The use of on-line reverse-phase HPLC/ESI-ITMS allowed separation of three major classes of compounds and identification of over 20 very polar compounds characterized as galloylquinic acids, proanthocyanidins, and flavonoid glycosides, as well as the dimeric flavonoid amentoflavone and minor amounts of galloyl hexose and galloyl saccharose. This approach provided data that will allow establishment of a method for a future standardization of the infusion. Copyright (c) 2005 John Wiley & Sons, Ltd.

  17. Three-Dimensional Imaging of Lipids and Metabolites in Tissues by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Cha, Jeeyeon; Dey, Sudhansu K.; yang, Pengxiang; Prieto, Mari; Laskin, Julia

    2015-03-01

    Abstract Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI) – an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pre-treatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ~150 μm in less than 4.5 hours. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine – metabolites associated with cell growth – are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.

  18. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    Science.gov (United States)

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Subtle differences in molecular recognition between modified glycopeptide antibiotics and bacterial receptor peptides identified by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Staroske, T; Roepstorff, P

    1999-01-01

    showing that electrospray ionization mass spectrometry (ESI-MS) can be used in the rapid quantitative analysis of mixtures of vancomycin-group antibiotics and their bacterial cell-wall receptors allowing the identification of even subtle differences in binding constants. Differences in affinities...... are quantified for a mixture of vancomycin antibiotics (vancomycin, dechlorovancomycin and N-demethylvancomycin) and for a mixture of ristocetin A and its pseudoaglycone. Binding constants determined by ESI-MS were found to be in close agreement with those determined by more direct methods in aqueous solution....

  20. Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Proschogo, Nicholas W; Albertson, Peter L; Bursle, Johanna; McConchie, Cameron A; Turner, Athol G; Willett, Gary D

    2012-02-29

    High-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is successfully used in the detailed molecular analysis of aged macadamia nut oils. The results are consistent with peroxide values, the current industry measure for rancidity, and provide detailed molecular information on the oxidative and hydrolytic degeneration of such oils. Mass analysis of macadamia oil samples stored for extended periods at 6 °C revealed that oils obtained by the cold press method are more susceptible to aging than those obtained using modified Soxhlet or accelerated solvent extraction methods.

  1. Chemotaxonomic markers of organic, natural, and genetically modified soybeans detected by direct infusion electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Santos, L.S.; Catharino, R.R.; Eberlin, M.N.; Tsai, S.M.

    2006-01-01

    The crude methanolic extracts of a single bean from samples of organic, natural or genetically modified (GM) soybeans [Glycine max. (Merrill) L.] were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS). These extracts, containing the most polar natural products of soybeans (free aglycones, monoglucosides, diglucosides and esters including isoflavones and flavones) provide characteristic fingerprinting mass spectra owing to different proportions or sets of components. Spectra distinctiveness is confirmed by chemometric multivariate analysis of the ESIMS data, which place the three-types of beans into well-defined groups. When ESI-MS is applied, these polar components constitute therefore unique chemotaxonomic markers able to provide fast soybean typification. (author)

  2. Analysis of caged xanthones from the resin of Garcinia hanburyi using ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Yan; Liu, Xin; Yang, Jing; Han, Quan-Bin; Song, Jing-Zheng; Li, Song-Lin; Qiao, Chun-Feng; Ding, Li-Sheng; Xu, Hong-Xi

    2008-11-23

    On-line ultra high-performance liquid chromatography (UHPLC) coupled with electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS/MS) has been developed for the analysis of a series of caged xanthones in the resin of Garcinia hanburyi. The fragmentation of protonated molecular ions for 12 known cadged xanthones was carried out using low-energy collision-induced electrospray ionization tandem mass spectrometry. It was found that Retro-Diels-Alder rearrangement occurred in the CID processes and produced the characteristic fragment ions, which are especially valuable for the identification of this class of xanthones. The fragmentation differential between some cis-, trans-isomers was uncovered. Computation methods were utilized to rationalize the observed MS behaviors. On-line UHPLC-ESI-MS/MS/MS method has proved to be rapid and efficient in that within 6min, 15 caged scaffold xanthones, including three pairs of epimers and four pairs of isomers in gamboges, were effectively separated and identified. Among them, two known, namely isogambogenin (13) and isomorellinol (14) and one likely new caged Garcinia xanthones from the Garcinia hanburyi were tentatively characterized based on the tandem mass spectra of known ones.

  3. Analysis of caged xanthones from the resin of Garcinia hanburyi using ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan [Hong Kong Jockey Club Institute of Chinese Medicine, Shatin, Hong Kong (China); Liu Xin [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan Province (China); Yang Jing [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Han Quanbin; Song Jingzheng; Li Songlin; Qiao Chunfeng [Hong Kong Jockey Club Institute of Chinese Medicine, Shatin, Hong Kong (China); Ding Lisheng [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan Province (China)], E-mail: lsding@cib.ac.cn; Xu Hongxi [Hong Kong Jockey Club Institute of Chinese Medicine, Shatin, Hong Kong (China)], E-mail: xuhongxi@hkjcicm.org

    2008-11-23

    On-line ultra high-performance liquid chromatography (UHPLC) coupled with electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS/MS) has been developed for the analysis of a series of caged xanthones in the resin of Garcinia hanburyi. The fragmentation of protonated molecular ions for 12 known cadged xanthones was carried out using low-energy collision-induced electrospray ionization tandem mass spectrometry. It was found that Retro-Diels-Alder rearrangement occurred in the CID processes and produced the characteristic fragment ions, which are especially valuable for the identification of this class of xanthones. The fragmentation differential between some cis-, trans-isomers was uncovered. Computation methods were utilized to rationalize the observed MS behaviors. On-line UHPLC-ESI-MS/MS/MS method has proved to be rapid and efficient in that within 6 min, 15 caged scaffold xanthones, including three pairs of epimers and four pairs of isomers in gamboges, were effectively separated and identified. Among them, two known, namely isogambogenin (13) and isomorellinol (14) and one likely new caged Garcinia xanthones from the Garcinia hanburyi were tentatively characterized based on the tandem mass spectra of known ones.

  4. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    Science.gov (United States)

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stopka, Sylwia A.; Mansour, Tarek R.; Shrestha, Bindesh [Department of Chemistry, W.M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC 20052 (United States); Maréchal, Éric; Falconet, Denis [Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, CEA-CNRS-INRA-Univ. Grenoble Alpes, Grenoble (France); Vertes, Akos, E-mail: vertes@gwu.edu [Department of Chemistry, W.M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC 20052 (United States)

    2016-01-01

    Biochemical processes rely on elaborate networks containing thousands of compounds participating in thousands of reaction. Rapid turnover of diverse metabolites and lipids in an organism is an essential part of homeostasis. It affects energy production and storage, two important processes utilized in bioengineering. Conventional approaches to simultaneously quantify a large number of turnover rates in biological systems are currently not feasible. Here we show that pulse-chase analysis followed by laser ablation electrospray ionization mass spectrometry (LAESI-MS) enable the simultaneous and rapid determination of metabolic turnover rates. The incorporation of ion mobility separation (IMS) allowed an additional dimension of analysis, i.e., the detection and identification of isotopologs based on their collision cross sections. We demonstrated these capabilities by determining metabolite, lipid, and peptide turnover in the photosynthetic green algae, Chlamydomonas reinhardtii, in the presence of {sup 15}N-labeled ammonium chloride as the main nitrogen source. Following the reversal of isotope patterns in the chase phase by LAESI-IMS-MS revealed the turnover rates and half-lives for biochemical species with a wide range of natural concentrations, e.g., chlorophyll metabolites, lipids, and peptides. For example, the half-lives of lyso-DGTS(16:0) and DGTS(18:3/16:0), t{sub 1/2} = 43.6 ± 4.5 h and 47.6 ± 2.2 h, respectively, provided insight into lipid synthesis and degradation in this organism. Within the same experiment, half-lives for chlorophyll a, t{sub 1/2} = 24.1 ± 2.2 h, and a 2.8 kDa peptide, t{sub 1/2} = 10.4 ± 3.6 h, were also determined. - Highlights: • High-throughput pulse-chase analysis using direct sampling of biological cells. • Ion mobility separation for the elucidation of isotopologs. • Identification of isotopologs in difference heat plots of DT vs. m/z. • Simultaneous determination of turnover rates for lipids and

  6. Letter: Observation of the 16O/18O exchange during electrospray ionization.

    Science.gov (United States)

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2015-01-01

    Isotopic exchange approach coupled to high-resolution mass spectrometry has become the power analytical approach for a wide range of analytical and bioanalyticall applications. Considerable efforts have been dedicated to developing fast exchange techniques directly in the ionization source. But all such methods are limited to the hydrogen/deuterium exchange approaches. In this paper we demonstrate that certain types of oxygen atoms can also be exchanged for (18)O on the time scale of the ionization process. Using HIO(3) and NaIO(4) and by infusing the heavy water H(2)(18)O in the ESI source we have demonstrated that it is possible to obtain a high level of oxygen exchange. It was observed that the rate of this exchange depends to a large extent on the temperature of the desolvating capillary of the mass spectrometer. Several other species, such as peptides, oligonucleotides and low weight organic molecules, were subjected to in-ESI (16)O/(18)O exchange but the exchange was not observed.

  7. Preparation and structural elucidation of the picolinyl ester of aldosterone for liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Yamashita, Kouwa; Tadokoro, Yumiko; Takahashi, Madoka; Numazawa, Mitsuteru

    2008-06-01

    Treatment of aldosterone with 35% HCl in EtOH or in MeOH followed by the picolinyl derivatization gave the picolinyl derivative of aldosterone-ethyl ether, 8, or methyl ether, 9, as a single and well-shaped liquid chromatographic peak. Picolinyl derivatization of aldosterone produced 21-picolinyl derivative of 18,20-anhydro-hemiacetal derivatives, 6, with poor chromatographic peak with wide half-width. Further conversion of 6 to 8 required long reaction time (>4 h). Structure of each picolinyl or alkyl ether-picolinyl derivative, was carefully elucidated by nuclear magnetic resonance spectroscopy, electron ionization mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Enhancement of sensitivity (approximately 10-fold) in positive-LC-ESI-MS/MS of aldosterone was confirmed by the use of the alkyl ether-picolinyl derivatization when compared to the underivatized molecule.

  8. Stabilization of gas-phase uranyl complexes enables rapid speciation using electrospray ionization and ion mobility-mass spectrometry.

    Science.gov (United States)

    Davis, Austen L; Clowers, Brian H

    2018-01-01

    Significant challenges exist when characterizing f-element complexes in solution using traditional approaches such as electrochemical and spectroscopic techniques as they do not always capture information for lower abundance species. However, provided a metal-complex with sufficient stability, soft ionization techniques such as electrospray offer a means to quantify and probe the characteristics of such systems using mass spectrometry. Unfortunately, the gas-phase species observed in ESI-MS systems do not always reflect the solution phase distributions due to the inherent electrochemical mechanism of the electrospray process, ion transfer from ambient to low pressures conditions, and other factors that are related to droplet evaporation. Even for simple systems (e.g. hydrated cations), it is not always clear whether the distribution observed reflects the solution phase populations or whether it is simply a result of the ionization process. This complexity is further compounded in mixed solvent systems and when multiply charged species are present. Despite these challenges, the benefits of mass spectrometry with respect to speed, sensitivity, and the ability to resolve isotopes continue to drive efforts to develop techniques for the speciation of metal complexes. Using an electrospray ionization atmospheric pressure ion mobility mass spectrometer (ESI-apIMS-MS), we demonstrate an approach to stabilize simple uranyl complexes during the ionization process and mobility separation to aid speciation and isotope profile analysis. Specifically, we outline and demonstrate the capacity of ESI-apIMS-MS methods to measure mobilities of different uranyl species, in simple mixtures, by promoting stable gas phase conformations with the addition of sulfoxides (i.e. dimethyl sulfoxide (DMSO), dibutyl sulfoxide (DBSO), and methyl phenyl sulfoxide (MPSO)). Addition of these sulfoxides, as observed in the mass spectrum and mobility domain, produce stable gas-phase conformations that

  9. Ultrahigh-performance liquid chromatography/electrospray ionization linear ion trap Orbitrap mass spectrometry of antioxidants (amines and phenols) applied in lubricant engineering.

    Science.gov (United States)

    Kassler, Alexander; Pittenauer, Ernst; Doerr, Nicole; Allmaier, Guenter

    2014-01-15

    For the qualification and quantification of antioxidants (aromatic amines and sterically hindered phenols), most of them applied as lubricant additives, two ultrahigh-performance liquid chromatography (UHPLC) electrospray ionization mass spectrometric methods applying the positive and negative ion mode have been developed for lubricant design and engineering thus allowing e.g. the study of the degradation of lubricants. Based on the different chemical properties of the two groups of antioxidants, two methods offering a fast separation (10 min) without prior derivatization were developed. In order to reach these requirements, UHPLC was coupled with an LTQ Orbitrap hybrid tandem mass spectrometer with positive and negative ion electrospray ionization for simultaneous detection of spectra from UHPLC-high-resolution (HR)-MS (full scan mode) and UHPLC-low-resolution linear ion trap MS(2) (LITMS(2)), which we term UHPLC/HRMS-LITMS(2). All 20 analytes investigated could be qualified by an UHPLC/HRMS-LITMS(2) approach consisting of simultaneous UHPLC/HRMS (elemental composition) and UHPLC/LITMS(2) (diagnostic product ions) according to EC guidelines. Quantification was based on an UHPLC/LITMS(2) approach due to increased sensitivity and selectivity compared to UHPLC/HRMS. Absolute quantification was only feasible for seven analytes with well-specified purity of references whereas relative quantification was obtainable for another nine antioxidants. All of them showed good standard deviation and repeatability. The combined methods allow qualitative and quantitative determination of a wide variety of different antioxidants including aminic/phenolic compounds applied in lubricant engineering. These data show that the developed methods will be versatile tools for further research on identification and characterization of the thermo-oxidative degradation products of antioxidants in lubricants. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Fast profiling of anthocyanins in wine by desorption nano-electrospray ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Hartmanová, L.; Ranc, V.; Papoušková, B.; Bednář, P.; Havlíček, Vladimír; Lemr, Karel

    2010-01-01

    Roč. 1217, č. 25 (2010), s. 4223-4228 ISSN 0021-9673 R&D Projects: GA ČR GA203/07/0765 Institutional research plan: CEZ:AV0Z50200510 Keywords : Mass spectrometry * Desorption nano-electrospray * Liquid chromatography Subject RIV: CE - Biochemistry Impact factor: 4.194, year: 2010

  11. Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi.

    Science.gov (United States)

    Tata, Alessandra; Perez, Consuelo; Campos, Michel L; Bayfield, Mark A; Eberlin, Marcos N; Ifa, Demian R

    2015-12-15

    Direct analysis of microbial cocultures grown on agar media by desorption electrospray ionization mass spectrometry (DESI-MS) is quite challenging. Due to the high gas pressure upon impact with the surface, the desorption mechanism does not allow direct imaging of soft or irregular surfaces. The divots in the agar, created by the high-pressure gas and spray, dramatically change the geometry of the system decreasing the intensity of the signal. In order to overcome this limitation, an imprinting step, in which the chemicals are initially transferred to flat hard surfaces, was coupled to DESI-MS and applied for the first time to fungal cocultures. Note that fungal cocultures are often disadvantageous in direct imaging mass spectrometry. Agar plates of fungi present a complex topography due to the simultaneous presence of dynamic mycelia and spores. One of the most devastating diseases of cocoa trees is caused by fungal phytopathogen Moniliophthora roreri. Strategies for pest management include the application of endophytic fungi, such as Trichoderma harzianum, that act as biocontrol agents by antagonizing M. roreri. However, the complex chemical communication underlying the basis for this phytopathogen-dependent biocontrol is still unknown. In this study, we investigated the metabolic exchange that takes place during the antagonistic interaction between M. roreri and T. harzianum. Using imprint-DESI-MS imaging we annotated the secondary metabolites released when T. harzianum and M. roreri were cultured in isolation and compared these to those produced after 3 weeks of coculture. We identified and localized four phytopathogen-dependent secondary metabolites, including T39 butenolide, harzianolide, and sorbicillinol. In order to verify the reliability of the imprint-DESI-MS imaging data and evaluate the capability of tape imprints to extract fungal metabolites while maintaining their localization, six representative plugs along the entire M. roreri/T. harzianum

  12. Relationships between structure, ionization profile and sensitivity of exogenous anabolic steroids under electrospray ionization and analysis in human urine using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cha, Eunju; Kim, Sohee; Kim, Hee Won; Lee, Kang Mi; Kim, Ho Jun; Kwon, Oh-Seung; Lee, Jaeick

    2016-04-01

    The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I-IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H](+) or [M + H-nH2 O](+) in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05-20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05-1, 2-5 and 10-20 ng/mL, respectively. Steroids including the conjugated keto-functional group at C3 showed good proton affinity and stability, and generated the [M + H](+) ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H](+) ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H - H2 O](+) or [M + H - 2H2 O](+) ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC-MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I-V) in human urine. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Quantitative analysis of copolymers : influence of the structure of the monomer on the ionization efficiency in electrospray ionization FTMS

    NARCIS (Netherlands)

    Koster, S.; Mulder, B.; Duursma, M.C.; Boon, J.J.; Philipsen, H.J.A.; Velde, J.W.; Nielen, M.W.F.; Koster, de C.G.; Heeren, R.M.A.

    2002-01-01

    The influence of the ionization efficiency on the measured copolymer sequence distribution is presented. Large differences in ionization efficiency were observed for mixtures of homopolyesters containing dipropoxylated bisphenol A/adipic acid and dipropoxylated bisphenol A/isophthalic acid and the

  14. Determination of torasemide in human plasma and its bioequivalence study by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2016-04-01

    Full Text Available A sensitive and selective method using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC–ESI–MS to determine the concentration of torasemide in human plasma samples was developed and validated. Tolbutamide was chosen as the internal standard (IS. The chromatography was performed on a Gl Sciences Inertsil ODS-3 column (100 mm×2.1 mm i.d., 5.0 µm within 5 min, using methanol with 10 mM ammonium formate (60:40, v/v as mobile phase at a flow rate of 0.2 mL/min. The targeted compound was detected in negative ionization at m/z 347.00 for torasemide and 269.00 for IS. The linearity range of this method was found to be within the concentration range of 1–2500 ng/mL (r=0.9984 for torasemide in human plasma. The accuracy of this measurement was between 94.05% and 103.86%. The extracted recovery efficiency was from 84.20% to 86.47% at three concentration levels. This method was also successfully applied in pharmacokinetics and bioequivalence studies in Chinese volunteers.

  15. Macroscopic and microscopic spatially-resolved analysis of food contaminants and constituents using laser-ablation electrospray ionization mass spectrometry imaging

    NARCIS (Netherlands)

    Nielen, M.W.F.; Beek, van T.A.

    2014-01-01

    Laser-ablation electrospray ionization (LAESI) mass spectrometry imaging (MSI) does not require very flat surfaces, high-precision sample preparation, or the addition of matrix. Because of these features, LAESI-MSI may be the method of choice for spatially-resolved food analysis. In this work, LAESI

  16. Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Science.gov (United States)

    Andrianova, Anastasia A.; DiProspero, Thomas; Geib, Clayton; Smoliakova, Irina P.; Kozliak, Evguenii I.; Kubátová, Alena

    2018-03-01

    The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M n and M w values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. [Figure not available: see fulltext.

  17. An atmospheric pressure ionization source using a high voltage target compared to electrospray ionization for the LC/MS analysis of pharmaceutical compounds.

    Science.gov (United States)

    Lubin, Arnaud; De Vries, Ronald; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2017-08-05

    The type and design of an ionization source can have a significant influence on the performances of a bioanalytical method. It is, therefore, of high interest to evaluate the performances of newly introduced sources to highlight their benefits and limitations in comparison to other well established sources. In this paper, liquid chromatography - mass spectrometry (LC/MS) performances of a new atmospheric pressure ionization (API) source, commercialized as UniSpray, is evaluated. The dynamic range of 24 pharmaceutical and biological compounds is compared between the new API source and electrospray ionization (ESI) for 3 different mobile phase conditions. Matrix effects are also compared with ESI on a refined selection of 19 pharmaceutical and biological compounds in 4 matrices commonly encountered in bioanalysis. A slightly better dynamic range towards lower concentrations was often observed with the new API source. Matrix effects were quite similar between the two sources with a small, but statistically significant, lower percentage of matrix effects observed for the new API source in plasma and bile in the positive ion mode, and bile in negative ion mode for ESI. Finally, the sensitivity of late eluting compounds could be improved on the new API source by post-column addition of water. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry.

    Science.gov (United States)

    Chen, Ren-Kun; Chang, Li-Wen; Chung, Ya-Yun; Lee, Ming-Hsung; Ling, Yong-Chien

    2004-01-01

    A method was developed for the quantification of cow milk adulteration in goat milk, based on solvent separation of whey proteins followed by high-performance liquid chromatography with electrospray ionization mass spectrometry (HPLC/ESI-MS). The presence of cow milk was determined using beta-lactoglobulin whey protein as the molecular marker. The adulterants were identified using both retention time and molecular mass derived from multiply charged molecular ions. Standard solutions containing cow and goat milk in different volume ratios were prepared and analyzed. Good linearity covering cow milk content from 5% and above was obtained. The proposed method identifies the adulterants using accurate molecular masses for protein identification and detects the addition of cow milk to goat milk at levels as low as 5%. Copyright 2004 John Wiley & Sons, Ltd.

  19. Salinity and solvent effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization

    International Nuclear Information System (INIS)

    Headley, J.; Peru, K.; Barrow, M.; Derrick, P.

    2010-01-01

    This study investigated the salinity and solvent effects on the characterization of naphthenic acids (NA) in oil sands. The mass spectra of NA were obtained using an electrospray ionization method combined with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The study showed that while monocarboxylic compounds (C n H 2n+z O 2 ) in the z=-4, -6, and -12 of the 2,3 and 6-ring NA in the carbon number range of 13 to 19 were prevalent in the dichloromethane and acetonitrile co-solvent systems, the addition of salt resulted in a reduction of the observed species, the complete elimination of dicarboxylic acids, and an 80 per cent reduction in O 3 species with similar carbon number range and z values. The dicarboxylic acids were also less toxic than monocarboxylic acids. Results of the study will be used to refine methods of remediating oil sands and process water contaminated soils.

  20. Identification and quantitation of auxins in plants by liquid chromatography/electrospray ionization ion trap mass spectrometry.

    Science.gov (United States)

    Lu, Qiaomei; Zhang, Lan; Chen, Tianwen; Lu, Minghua; Ping, Tong; Chen, Guonan

    2008-08-01

    Auxin is an important phylohormone, which regulates specific physiological responses such as division, elongation and differentiation of cells. A new method using liquid chromatography/electrospray ionization ion trap mass spectrometry (LC/ESI-ITMS) has been developed for identification and quantitation of four auxins. Under the optimum conditions, four auxins (indole-3-acetic acid, indole-3-propionic acid, indole-3-butyric acid and 1-naphthylacetic acid) were completely separated and quantitated within 7 min with a minimum detection limit of 8.0 ng mL(-1) with relative standard deviations lower than 5.0%. This method also has been applied to analysis of auxins in Chinese cabbage where, even with a complicated serious background perturbation due to the natural biological matrix, the mean recoveries ranged from 77.5% to 99.8%. Finally, we discuss the MS-relevant properties of the identified auxins in detail. Copyright (c) 2008 John Wiley & Sons, Ltd.

  1. Use of novel picolinoyl derivatization for simultaneous quantification of six corticosteroids by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Yamashita, Kouwa; Takahashi, Madoka; Tsukamoto, Satoshi; Numazawa, Mitsuteru; Okuyama, Mitsunobu; Honma, Seijiro

    2007-11-30

    Simultaneous quantification method of six corticosteroids, cortisone, cortisol, cortexolone, corticosterone, dehydrocorticosterone and deoxycorticosterone, by LC-electrospray ionization (ESI)-MS in a positive mode using novel picolinoyl derivatization was investigated. Conversion of each corticosteroid into the corresponding picolinoyl derivative was performed by mixed anhydride method using picolinic acids and 2-methyl-6-nitrobenzoic anhydride. Derivatization proceeded smoothly to afford the corresponding 21-monopicolinoyl derivatives. Positive ion-ESI mass spectra of the picolinoyl derivatives were dominated by the appearance of [M+H](+) as base peaks. The picolinoyl derivatives provided 5-10 times higher ESI response in the LC-ESI-MS-selected reaction monitoring (SRM) when compared to those of underivatized molecules in a positive LC-ESI-MS mode. The use of the picolinoyl ester, solid-phase extraction, and deuterium labeled internal standards enabled to determine the concentrations of these corticosteroids in human saliva simultaneously by LC-ESI-MS-SRM.

  2. Interaction Between Cytochrome c and the Hapten 2,4-Dinitro-fluorobenzene by Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Wu, Bo; Chu, Yan-qiu; Dai, Zhao-yun; Ding, Chuan-fan

    2008-06-01

    Allergic contact dermatitis is a delayed hypersensitivity reaction, which results from skin exposure to low molecular weight chemicals such as haptens. To clarify the pathogenic mechanism, electrospray ionization mass spectrometry (ESI-MS) and hydrogen/deuterium (H/D) exchange, as well as UV spectroscopy, were applied to determine the interaction between the model protein cytochrome c (cyt c) and the hapten 2,4-dinitro-fluorobenzene (DNFB). The ESI-MS results demonstrate that the conformation of cyt c can change from native folded state into partially unfolded state with the increase of DNFB. The equilibrium state H/D exchange followed by ESI-MS further confirms the above results. UV spectroscopy indicates that the strong-field coordination between iron of heme (prosthetic group) and His18 or Met80 of cyt c is not obviously affected by the hapten.

  3. The Morita-Baylis-Hillman Reaction: Insights into Asymmetry and Reaction Mechanisms by Electrospray Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Verónica Carrasco-Sanchez

    2009-10-01

    Full Text Available This short review presents new insights on the mechanism and online monitoring using electrospray ionization tandem mass spectrometry (ESI–MS/MS of Morita–Baylis–Hillman (MBH reactions. MBH reactions are versatile carbon-carbon organocatalyzed bond forming reactions, making them environmentally friendly due to general organocatalysts employed. The organocatalyst behavior, which controls the transition state and thus the enantioselectivities in the obtained products, is very important in the performance of asymmetric MBH transformations. Some recent techniques and advances in asymmetric transformations are reviwed, as well as online reaction monitoring and analysis of the reaction intermediates. The mechanism accepted nowadays is also review through the insights gained from the use of ESI–MS/MS techniques.

  4. Collision-induced dissociation pathways of H1-antihistamines by electrospray ionization quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Do, Jung-Ah; Noh, Eunyoung; Yoon, Soon-Byung; Lee, Ji Hyun; Park, Sung-Kwan; Mandava, Suresh; Baek, Sun Young; Lee, Jongkook

    2017-06-01

    Over the past decades, mass spectrometry technologies have been developed to obtain mass accuracies of one ppm or less. Of the newly developed technologies, quadrupole time-of-flight mass spectrometry (Q-TOF-MS) has emerged as being well suited to routine and high-throughput analyses of pharmaceuticals. Dietary supplements and functional foods have frequently been found to be contaminated with pharmaceuticals. In our continuous efforts to develop methodologies to protect public health against adulterated dietary supplements, we have constructed a mass spectral database for 21 H 1 -antihistamines encountered as adulterants by using liquid chromatography-electrospray ionization (LC-ESI)/Q-TOF-MS, and have proposed their possible collision-induced dissociation pathways. This database will be very useful for the rapid and accurate detection of H 1 -antihistamines (known) and their analogues (unknown) illegally added to dietary supplements as well as in other sample matrices.

  5. Observation of the intermediates of in-source aldolization reaction in electrospray ionization mass spectrometry analysis of heteroaromatic aldehydes.

    Science.gov (United States)

    Jiang, Kezhi; Zhang, Xiaoping; Bai, Xingfeng; Lv, Huiqing; Li, Zuguang; Lee, Maw-Rong

    2015-01-01

    Electrospray ionization mass spectrometry (ESI-MS) analyses of 2-(1,2,4-triazole-1-yl)-6-methyl-3- quinolinecarboxaldehyde were carried out by using an ion trap mass spectrometer in a positive-ion mode. Interestingly, several unusual [M + 15](+), [M + 33](+), and [M + 47](+) ions were observed with a high abundance in the ESI-MS spectrum when methanol was used as the ESI solvent. However, only the protonated molecule was obtained with acetonitrile as the ESI solvent. These unusual ions have been proposed as the intermediates of an aldolization reaction occurring in the ESI source, which have been validated by a tandem mass spectrometry experiment, high-performance liquid chromatography/mass spectrometry analysis, and theoretical calculations. A full understanding of this reaction can contribute to the avoidance of analysis errors in the ESI-MS analysis of unknown heteroaromatic aldehydes.

  6. Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2016-08-15

    Amidoxime-functionalized sorbents can be used to extract uranium from seawater. Iron(III) and vanadium(V) may compete with uranium for adsorption sites. We use 2,6-dihydroxyiminopiperidine (DHIP) and N(1) ,N(5) -dihydroxypentanediimidamide (DHPD) to model amidoxime functional groups and characterize the vanadium(V) and iron(III) complexes with these ligands. We also examine the effect of iron(III) and vanadium(V) on uranyl(VI) complexation by DHIP and DHPD. The experiments were carried out in positive ion mode using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The effect on the mass spectra of changes in ligand, metal:ligand mole ratio, and pH was examined. Iron(III) formed a 1:2 metal:ligand complex with DHIP at all metal:ligand mole ratios and pH values investigated; it formed both 1:2 and 1:3 metal:ligand complexes with DHPD. Vanadium(V) formed 1:1 and 1:2 metal:ligand complexes with DHIP. A 1:2 metal:ligand complex was formed with DHPD at all vanadium(V):DHPD mole ratios investigated. Changes in solution pH did not affect the ions observed. The relative binding affinities of the metal ions towards DHIP followed the order iron(III) > vanadium(V) > uranyl(VI). This study presents a first look at the gas-phase vanadium(V)- and iron(III)-DHIP and -DHPD complexes using electrospray ionization mass spectrometry. These metals form stronger complexes with amidoxime ligands than uranyl(VI), and will affect uranyl(VI) adsorption to amidoxime-based sorbents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  8. Quantitative Profiling of Major Neutral Lipid Classes in Human Meibum by Direct Infusion Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.

    2013-01-01

    Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307

  9. Application of liquid chromatography-electrospray ionization tandem mass spectrometry to the detection of 10 sulfonamides in honey.

    Science.gov (United States)

    Verzegnassi, L; Savoy-Perroud, M C; Stadler, R H

    2002-11-15

    Liquid chromatography (LC) in combination with tandem mass spectrometry (MS-MS) has been applied to the separation and detection of 10 different sulfonamides in honey. The methodology encompasses a simple hydrolysis of the honey sample to liberate sugar-bound sulfonamides followed by liquid-liquid extraction of the 10 analytes, filtration, and analysis by LC-MS-MS. Conditions for reversed-phase LC and electrospray ionization (ESI) MS-MS in the positive ion mode were optimized for the 10 compounds under study, monitoring two characteristic mass transitions simultaneously for each analyte. The procedure is a qualitative confirmatory method for 10 sulfonamides at the low microg/kg level in honey. Typical recoveries of the analytes in honey ranged from 44 to 73% at a fortification level of 50 microg/kg. This study also addresses the issue of matrix-induced suppression of ionization, an effect often encountered in trace residue analysis of food matrices using LC-ESI-MS-MS based methods.

  10. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Strittmatter, Nicole; Nilsson, Anna; Källback, Patrik; Alvarsson, Alexandra; Zhang, Xiaoqun; Vallianatou, Theodosia; Svenningsson, Per; Goodwin, Richard J A; Andren, Per E

    2016-08-01

    With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Detection of Metastatic Breast and Thyroid Cancer in Lymph Nodes by Desorption Electrospray Ionization Mass Spectrometry Imaging

    Science.gov (United States)

    Zhang, Jialing; Feider, Clara L.; Nagi, Chandandeep; Yu, Wendong; Carter, Stacey A.; Suliburk, James; Cao, Hop S. Tran; Eberlin, Livia S.

    2017-06-01

    Ambient ionization mass spectrometry has been widely applied to image lipids and metabolites in primary cancer tissues with the purpose of detecting and understanding metabolic changes associated with cancer development and progression. Here, we report the use of desorption electrospray ionization mass spectrometry (DESI-MS) to image metastatic breast and thyroid cancer in human lymph node tissues. Our results show clear alterations in lipid and metabolite distributions detected in the mass spectra profiles from 42 samples of metastatic thyroid tumors, metastatic breast tumors, and normal lymph node tissues. 2D DESI-MS ion images of selected molecular species allowed discrimination and visualization of specific histologic features within tissue sections, including regions of metastatic cancer, adjacent normal lymph node, and fibrosis or adipose tissues, which strongly correlated with pathologic findings. In thyroid cancer metastasis, increased relative abundances of ceramides and glycerophosphoinisitols were observed. In breast cancer metastasis, increased relative abundances of various fatty acids and specific glycerophospholipids were seen. Trends in the alterations in fatty acyl chain composition of lipid species were also observed through detailed mass spectra evaluation and chemical identification of molecular species. The results obtained demonstrate DESI-MSI as a potential clinical tool for the detection of breast and thyroid cancer metastasis in lymph nodes, although further validation is needed. [Figure not available: see fulltext.

  12. Gas-Phase Stability of Negatively Charged Organophosphate Metabolites Produced by Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization

    Science.gov (United States)

    Asakawa, Daiki; Mizuno, Hajime; Toyo'oka, Toshimasa

    2017-12-01

    The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D- myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 -, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 - in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. [Figure not available: see fulltext.

  13. Low-mobility-pass filter between atmospheric pressure chemical ionization and electrospray ionization sources and a single quadrupole mass spectrometer: computational models and measurements.

    Science.gov (United States)

    Menlyadiev, Marlen R; Tadjimukhamedov, Fatkhulla Kh; Tarassov, Alexander; Wollnik, Hermann; Eiceman, Gary A

    2014-01-15

    Mixtures of ions produced in sources at atmospheric pressure, including chemical ionization (APCI) and electrospray ionization (ESI) can be simplified at or near ambient pressure using ion mobility based filters. A low-mobility-pass filter (LMPF) based on a simple mechanical design and simple electronic control was designed, modeled and tested with vapors of 2-hexadecanone in an APCI source and with spray of peptide solutions in an ESI source. The LMPF geometry was planar and small (4 mm wide × 13 mm long) and electric control was through a symmetric waveform in low kHz with amplitude between 0 and 10 V. Computational models established idealized performance for transmission efficiency of ions of several reduced mobility coefficients over the range of amplitudes and were matched by computed values from ion abundances in mass spectra. The filter exhibited a broad response function, equivalent to a Bode Plot in electronic filters, suggesting that ion filtering could be done in blocks ~50 m/z units wide. The benefit of this concept is that discrimination against ions of high mobility is controlled by only a single parameter: waveform amplitude at fixed frequency. The effective removal of high mobility ions, those of low mass-to-charge, can be beneficial for applications with ion-trap-based mass spectrometers to remove excessive levels of solvent or matrix ions. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Identification of acteoside and its major metabolites in rat urine by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Qi, Meng; Xiong, Aizhen; Li, Pengfei; Yang, Qiming; Yang, Li; Wang, Zhengtao

    2013-12-01

    In this study, metabolites in the urine samples of rats orally administered with acteoside, a phenylethanoid glycoside compound, were detected and identified using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC/ESI-QTOF-MS) combined with an automated MS(E) technique. Up to 35 metabolites (19 metabolites of the parent drug and 16 metabolites of the degradation products) were observed, including processes of oxidization, glucuronidation, sulfation, and methyl conjugation. According to the metabolic pathways, acteoside mainly functioned as a prodrug and underwent hydrolysis before being absorbed into the blood. The degradation products, especially caffeic acid and hydroxytyrosol, were involved in further metabolism which was responsible for the low oral bioavailability but obvious pharmacological activities of acteoside. In summary, this work provided valuable information on acteoside metabolism through the rapid and reliable UPLC/ESI-QTOF-MS technique, which could be widely used for the investigation of natural product metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Chemical fingerprint analysis of phenolics of Albizia chinensis based on ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry and antioxidant activity.

    Science.gov (United States)

    Chaudhary, Abha; Kaur, Pushpinder; Kumar, Neeraj; Singh, Bikram; Awasthi, Shiv; Lal, Brij

    2011-11-01

    Albizia species have been shown to have anti-inflammatory and anti-allergic properties. However, efficient analytical methods for identification of their active constituents are still lacking. Ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was used to study the phenolic composition of the ethanolic extracts of different parts (flowers, leaves, pods and bark) of A. chinensis. In addition, the antioxidant activity of the ethanolic extracts was evaluated by the 1,1-diphenyl-2-picryl hydrazyl (DPPH) free-radical and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical cation scavenging methods. Four compounds were isolated from the ethanolic extract of the flowers and characterized by 1H and 13C NMR spectroscopy as quercetin-3-O-rhamnoside, quercetin, quercetin-3-O-arabinofuranoside, and myricetin-3-O-rhamnoside. Separation and quantification of the phenolics was accomplished using a reversed-phase BEH C18 column with the mobile phase of methanol-water (0.05% formic acid), and detection wavelengths of 360 and 254 nm.

  16. Simultaneous Quantification of Antioxidant Compounds in Phellinus igniarius Using Ultra Performance Liquid Chromatography-Photodiode Array Detection-Electrospray Ionization Tandem Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Dan Shou

    Full Text Available Natural antioxidants are widely used in the life sciences. Phellinus igniarius is a historically used natural antioxidant containing a variety of active compounds. Phenols, particularly Inoscavin A and Hypholomine B, are found in the high concentrations. Better quantitative methods are needed to perform quality control in order to support further research of this mushroom. An ultra-performance liquid chromatography method coupled to photodiode-array detection and an electrospray ionization tandem mass spectrometry method (UPLC-PAD-MS was developed to simultaneously quantify Inoscavin A and Hypholomine B levels in the medicinal fungus Phellinus igniarius. The two compounds were quantified using UPLC-PAD and UPLC-MS. The methods were accurate (mean accuracy for spiked matrix ranged from 101.5% to 105.8%, sensitive (limit of detection ranged from 0.28 to 1.14 mg L-1 and precise (the relative standard deviations ranged from 0.13 to 2.8%. Inoscavin A and Hypholomine B were purified using high-speed counter-current chromatography (HSCCC, structural evaluated to meet the request of standard substances. UPLC separation was performed on a reversed-phase C18 column using gradient elution with acetonitrile and 0.1% formic acid over 10 min. The developed method was successfully applied to determine Inoscavin A and Hypholomine B in twelve Phellinus igniarius samples of different origins and the results showed that it was suitable for the analysis of these active components in Phellinus igniarius samples.

  17. Liquid chromatography/electrospray ionization tandem mass spectrometry profiling of compounds from the infusion of Byrsonima fagifolia Niedenzu.

    Science.gov (United States)

    Sannomiya, Miriam; dos Santos, Lourdes Campaner; Carbone, Virginia; Napolitano, Assunta; Piacente, Sonia; Pizza, Cosimo; Souza-Brito, Alba R M; Vilegas, Wagner

    2007-01-01

    A rapid analytical approach suitable to achieve a comprehensive characterization of the compounds present in the infusion prepared from the leaves of Byrsonima fagifolia Niedenzu (Malpighiaceae), a Brazilian plant used as an infusion to treat gastric disorders, was developed. The method was based on high-performance liquid chromatography coupled to electrospray negative ionisation multistage ion trap mass spectrometry (HPLC/ESI-ITMSn). The main ions in the ESI-ITMS spectra were attributed to a quinic acid core containing from one to five galloyl units. Quercetin derivatives containing one and two sugar moieties as well as galloyl esterification were also detected. These results indicated that HPLC/ESI-ITMSn is easily applicable to infusions of this plant and allows the rapid and direct identification of these compounds in crude plant extracts. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Determination of strychnine and brucine in rat plasma using liquid chromatography electrospray ionization mass spectrometry.

    Science.gov (United States)

    Xu, Yanyan; Si, Duanyun; Liu, Changxiao

    2009-02-20

    A simple, sensitive and selective liquid chromatography-electrospray mass spectrometric (LC-ESI-MS) method was developed and validated for simultaneous determination of strychnine and brucine in rat plasma, using tacrine as the internal standard (IS). Sample preparation involved a liquid-liquid extraction of the analytes with n-hexane, dichloromethane and isopropanol (65:30:5, v/v/v) from 0.1mL of plasma. Chromatographic separation was carried out on a Waters C(18) column using a mobile phase of methanol-20mM ammonium formate-formic acid (32:68:0.68, v/v/v). Positive selected ion monitoring mode was used for detection of strychnine, brucine and the IS at m/z 335.2, m/z 395.2 and m/z 199.2, respectively. Linearity was obtained over the concentration range of 0.5-500ng/mL for strychnine and 0.1-100ng/mL for brucine. The lower limit of quantification was 0.5ng/mL and 0.1ng/mL for strychnine and brucine, respectively. The intra- and inter-day precision for both strychnine and brucine was less than 7.74%, and accuracy ranged from -4.38% to 2.21% at all QC levels. The method has been successfully applied to a pharmacokinetic study of processed Semen Strychni after oral administration to rats.

  19. The Role of Conformational Flexibility on Protein Supercharging in Native Electrospray Ionization

    Science.gov (United States)

    Sterling, Harry J.; Cassou, Catherine A.; Trnka, Michael J.; Burlingame, A. L.; Krantz, Bryan A.; Williams, Evan R.

    2012-01-01

    Effects of covalent intramolecular bonds, either native disulfide bridges or chemical crosslinks, on ESI supercharging of proteins from aqueous solutions were investigated. Chemically modifying cytochrome c with up to seven crosslinks or ubiquitin with up to two crosslinks did not affect the average or maximum charge states of these proteins in the absence of m-nitrobenzyl alcohol (m-NBA), but the extent of supercharging induced by m-NBA increased with decreasing numbers of crosslinks. For the model random coil polypeptide reduced/alkylated RNase A, a decrease in charging with increasing m-NBA concentration attributable to reduced surface tension of the ESI droplet was observed, whereas native RNase A electrosprayed from these same solutions exhibited enhanced charging. The inverse relationship between the extent of supercharging and the number of intramolecular crosslinks for folded proteins, as well as the absence of supercharging for proteins that are random coils in aqueous solution, indicate that conformational restrictions induced by the crosslinks reduce the extent of supercharging. These results provide additional evidence that protein and protein complex supercharging from aqueous solution is primarily due to partial or significant unfolding that occurs as a result of chemical and/or thermal denaturation induced by the supercharging reagent late in the ESI droplet lifetime. PMID:21399817

  20. Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Liu, Feng; Wan, Sow Yin; Jiang, Zhangjian; Li, Sam Fong Yau; Ong, Eng Shi; Osorio, Jhon Carlos Castaño

    2009-12-15

    Symphytum officinale L. (comfrey) is a medicinal plant commonly used in decoctions and aliments. Besides therapeutic bioactive compounds present in the herb, it is found to contain hepatotoxic pyrrolizidine alkaloids (PAs), such as lycopsamine and others. In the present study, PAs such as lycopsamine, echimidine and lasiocarpine were determined using electrospray liquid chromatography-mass spectrometry (LC-MS) with the method precision (relative standard deviation, RSD) comfrey followed by the comparison with heating under reflux with the RSD ranging from 2.49% to 19.32%. Our results showed a higher extraction efficiency for heating under reflux compared with PHWE. It was proposed that the lower extraction efficiency for PHWE was attributable to dissolved nitrogen from air which caused the reduction in the solubility of lycopsamine in the compressed hot solvent. In this study, quantitative analysis of PAs in comfrey was demonstrated. In addition, it was found that the use of subcritical water for extractions depended on the physical properties of the dissolved solutes and their tendency to degrade under the chosen extraction conditions.

  1. Scanning electron microscopic imaging of surface effects in desorption and nano-desorption electrospray ionization

    Czech Academy of Sciences Publication Activity Database

    Kaftan, Filip; Kofroňová, Olga; Benada, Oldřich; Lemr, Karel; Havlíček, Vladimír; Cvačka, Josef; Volný, Michael

    2011-01-01

    Roč. 46, č. 3 (2011), s. 256-261 ISSN 1076-5174 R&D Projects: GA ČR GPP206/10/P018; GA MŠk LC545; GA MŠk(CZ) ME10013 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50200510 Keywords : ionization * DESI * nano-DESI * electron microscopy * mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.268, year: 2011

  2. Interspecific variation in localization of hypericins and phloroglucinols in the genus Hypericum as revealed by desorption electrospray ionization mass spectrometry imaging

    DEFF Research Database (Denmark)

    Kucharíková, Andrea; Kimáková, Katarína; Janfelt, Christian

    2016-01-01

    of secondary metabolites in different plant tissues. This study is focused on localization of major secondary compounds in the leaves of 17 different in vitro cultured Hypericum species classified in 11 sections. Generally, all identified naphtodianthrones, protohypericin, hypericin, protopseudohypericin......Plants of the genus Hypericum are widely known for their therapeutic properties. The most biologically active compounds of this genus are naphtodianthrones and phloroglucinols. Indirect desorption electrospray ionization mass spectrometry (DESI-MS) imaging allows visualization and localization...

  3. Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) Analysis of Organophosphorus Chemical Warfare Agents: Rapid Acquisition of Time-Aligned Parallel (TAP) Fragmentation Data

    Science.gov (United States)

    2010-06-01

    of surfaces [22, 28-30], polymers [31], alkaloids on plant tissue [32], chemical warfare agents on solid phase microextraction (SPME) fibers [33, 34...phase analysis of industrial polymers. Chem. Commun., 888-890. [32] Talaty, N., Takats, Z. and Cooks, R.G. (2005). Rapid in situ detection of alkaloids ...in plant tissue under ambient conditions using desorption electrospray ionization. Analyst, 130, 1624-1633. [33] D’Agostino, P. A., Hancock, J. R

  4. Identification and Quantification of the Major Constituents in Egyptian Carob Extract by Liquid Chromatography?Electrospray Ionization-Tandem Mass Spectrometry

    OpenAIRE

    Owis, Asmaa Ibrahim; El-Naggar, El-Motaz Bellah

    2016-01-01

    Background: Carob - Ceratonia siliqua L., commonly known as St John's-bread or locust bean, family Fabaceae - is one of the most useful native Mediterranean trees. There is no data about the chromatography methods performed by high performance liquid chromatography (HPLC) for determining polyphenols in Egyptian carob pods. Objective: To establish a sensitive and specific liquid chromatography?electrospray ionization (ESI)-tandem mass spectrometry (MSn) methodology for the identification of th...

  5. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marolla, Ana Paula Cleto [Universidade Federal de São Paulo, São Paulo, SP (Brazil); Waisberg, Jaques [Hospital do Servidor Público Estadual, São Paulo, SP (Brazil); Faculdade de Medicina do ABC, Santo André, SP (Brazil); Saba, Gabriela Tognini [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Waisberg, Daniel Reis [Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva [Faculdade de Medicina do ABC, Santo André, SP (Brazil)

    2015-07-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  6. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student'st test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  7. Tapered-Tip Capillary Electrophoresis Nano-Electrospray Ionization Mass Spectrometry for Ultrasensitive Proteomics: the Mouse Cortex

    Science.gov (United States)

    Choi, Sam B.; Zamarbide, Marta; Manzini, M. Chiara; Nemes, Peter

    2017-04-01

    Ultrasensitive characterization of the proteome raises the potential to understand how differential gene expression orchestrates cell heterogeneity in the brain. Here, we report a microanalytical capillary electrophoresis nano-flow electrospray ionization (CE-nanoESI) interface for mass spectrometry to enable the measurement of limited amounts of proteins in the mouse cortex. Our design integrates a custom-built CE system to a tapered-tip metal emitter in a co-axial sheath-flow configuration. This interface can be constructed in ion source, and ensures efficient ion generation by sustaining the cone-jet spraying regime. Parallel reaction monitoring provided a 260-zmol lower limit of detection for angiotensin II (156,000 copies). CE was able to resolve a complex mixture of peptides in 330,000 theoretical plates and identify 15 amol ( 1 pg) of BSA or cytochrome c. Over 30 min of separation, 1 ng protein digest from the mouse cortex yielded 217 nonredundant proteins encompassing a 3-log-order concentration range using a quadrupole time-of-flight mass spectrometer. Identified proteins included many products from genes that are traditionally used to mark oligodendrocytes, astrocytes, and microglia. Finally, key proteins involved in neurodegenerative disorders were detected (e.g., parkinsonism and spastic paraplegia). CE-nanoESI-HRMS delivers sufficient sensitivity to detect proteins in limited amounts of tissues and cell populations to help understand how gene expression differences maintain cell heterogeneity in the brain.

  8. Impact of tissue surface properties on the desorption electrospray ionization imaging of organic acids in grapevine stem.

    Science.gov (United States)

    Dong, Yonghui; Guella, Graziano; Franceschi, Pietro

    2016-03-30

    Desorption electrospray ionization (DESI) imaging is a fast analytical technique used to assess spatially resolved biological processes over unmodified sample surfaces. Although DESI profiling experiments have demonstrated that the properties of the sample surface significantly affect the outcomes of DESI analyses, the potential implications of these phenomena in imaging applications have not yet been explored extensively. The distribution of endogenous and exogenous organic acids in pith and out pith region of grapevine stems was investigated by using DESI imaging, ion chromatography and direct infusion methods. Several common normalization strategies to account for the surface effect, including TIC normalization, addition of the internal standard in the spray solvent and deposition of the standard over the sample surface, were critically evaluated. DESI imaging results show that, in our case, the measured distributions of these small organic acids are not consistent with their 'true' localizations within the tissues. Furthermore, our results indicate that the common normalization strategies are not able to completely compensate for the observed surface effect. Variations in the tissue surface properties across the tissue sample can greatly affect the semi-quantitative detection of organic acids. Attention should be paid when interpreting DESI imaging results and an independent analytical validation step is important in untargeted DESI imaging investigations. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Characterization of Amyloid Oligomers by Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry (ESI-IMS-MS).

    Science.gov (United States)

    Scarff, Charlotte A; Ashcroft, Alison E; Radford, Sheena E

    2016-01-01

    Soluble oligomers formed during the self-assembly of amyloidogenic peptide and protein species are generally thought to be highly toxic. Consequently, thorough characterization of these species is of much interest in the quest for effective therapeutics and for an enhanced understanding of amyloid fibrillation pathways. The structural characterization of oligomeric species, however, is challenging as they are often transiently and lowly populated, and highly heterogeneous. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is a powerful technique which is able to detect individual ion species populated within a complex heterogeneous mixture and characterize them in terms of shape, stoichiometry, ligand binding capability, and relative stability. Herein, we describe the use of ESI-IMS-MS to characterize the size and shape of oligomers of beta-2-microglobulin through use of data calibration and the derivation of models. This enables information about the range of oligomeric species populated en route to amyloid formation and the mode of oligomer growth to be obtained.

  10. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Son N.; Liyu, Andrey V.; Chu, Rosalie K.; Anderton, Christopher R.; Laskin, Julia

    2017-01-17

    A new approach for constant distance mode mass spectrometry imaging of biological samples using nanospray desorption electrospray ionization (nano-DESI MSI) was developed by integrating a shear-force probe with nano-DESI probe. The technical concept and basic instrumental setup as well as general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enables constant-distance imaging mode via a computer controlled closed feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus Subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites including non-ribosomal peptides (surfactin, plipastatin and iturin) and iron-bound heme on the surface of living bacterial colonies ranging in diameter from 10 mm to 13 mm with height variations of up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Constant-mode nano-DESI MSI is ideally suited for imaging biological samples of complex topography in their native state.

  11. Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Gentili, Alessandra; Caretti, Fulvia; D'Ascenzo, Giuseppe; Marchese, Stefano; Perret, Daniela; Di Corcia, Daniele; Rocca, Lucia Mainero

    2008-07-01

    A rapid, simple and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) with an electrospray ionization (ESI) source for the simultaneous analysis of fourteen water-soluble vitamins (B1, B2, two B3 vitamers, B5, five B6 vitamers, B8, B9, B12 and C) in various food matrices, i.e. maize flour, green and golden kiwi and tomato pulp, is presented here. Analytes were separated by ion-suppression reversed-phase liquid chromatography in less than 10 min and detected in positive ion mode. Sensitivity and specificity of this method allowed two important results to be achieved: (i) limits of detection of the analytes at ng g(-1) levels (except for vitamin C); (ii) development of a rapid sample treatment that minimizes analyte exposition to light, air and heat, eliminating any step of extract concentration. Analyte recovery depended on the type of matrix. In particular, recovery of the analytes in maize flour was > or =70%, with the exception of vitamin C, pyridoxal-5'-phosphate and vitamin B9 (ca 40%); with tomato pulp, recovery was > or =64%, except for vitamin C (41%); with kiwi, recovery was > or =73%, except for nicotinamide (ca. 30%).

  12. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method.

    Science.gov (United States)

    Leveque, Nathalie L; Acheampong, Akwasi; Heron, Sylvie; Tchapla, Alain

    2012-04-13

    The kinetic method was applied to differentiate and quantify mixtures of regioisomeric triacylglycerols (TAGs) by generating and mass selecting alkali ion bound metal dimeric clusters with a TAG chosen as reference (ref) and examining their competitive dissociations in a quadrupole ion trap mass spectrometer. This methodology readily distinguished pairs of regioisomers (AAB/ABA) such as LLO/LOL, OOP/OPO and SSP/SPS and consequently distinguished sn-1/sn-3, sn-2 substituents on the glycerol backbone. The dimeric complex ions [ref, Li, TAG((AAB and/or ABA))](+) generated by electrospray ionization mass spectrometry were subjected to collision induced dissociation causing competitive loss of either the neutral TAG reference (ref) leading to [Li(AAB and/or ABA)](+) or the neutral TAG molecule (TAG((AAB and/or ABA))) leading to [ref, Li](+). The ratio of the two competitive dissociation rates, defined by the product ion branching ratio (R(iso)), was related via the kinetic method to the regioisomeric composition of the investigated TAG mixture. In this work, a linear correlation was established between composition of the mixture of each TAG regioisomer and the logarithm of the branching ratio for competitive fragmentation. Depending on the availability of at least one TAG regioisomer as standard, the kinetic method and the standard additions method led to the quantitative analysis of natural TAG mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Development of sensitive derivatization method for aldosterone in liquid chromatography-electrospray ionization tandem mass spectrometry of corticosteroids.

    Science.gov (United States)

    Yamashita, Kouwa; Okuyama, Mitsunobu; Nakagawa, Risa; Honma, Seijiro; Satoh, Fumitoshi; Morimoto, Ryo; Ito, Sadayoshi; Takahashi, Madoka; Numazawa, Mitsuteru

    2008-07-25

    A highly sensitive quantification method of aldosterone by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was investigated in a positive mode using recently developed picolinyl derivatization. Aldosterone was smoothly and quantitatively converted to the ethyl ether-picolinyl derivative by treatment with HCl-ethanol followed by the esterification with picolinic acid in the presence of 2-methyl-6-nitrobenzoic anhydride and 4-dimethylaminopyridine. The positive ion-ESI mass spectrum of the ethyl ether-picolinyl derivative was characterized by an appearance of protonated molecule ([M+H](+)) as a base peak. The ethyl ether-picolinyl derivatization gave a successful result in a separation of aldosterone from corticosterone, dehydrocorticosterone and cortexolone, and also provided an approximately 10-fold higher ESI response in the positive-LC-ESI-MS/MS (selected reaction monitoring; SRM) when compared to that of underivatized molecule (negative mode). The limit of quantification of aldosterone by SRM using ethyl ether-picolinyl derivatization (m/z 494-->m/z 448) was 1 pg/0.2 ml serum with accuracy and precision of 92.6% and 5.6%, respectively.

  14. Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Yamashita, Kouwa; Okuyama, Mitsunobu; Watanabe, Yoko; Honma, Seijiro; Kobayashi, Sayuri; Numazawa, Mitsuteru

    2007-10-01

    A highly sensitive and specific quantification method of estrone and estradiol in human serum was described based upon the use of picolinoyl derivatization and liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) in a positive mode. Estrogens were treated with picolinoyl chloride hydrochloride or picolinic acid and 2-methyl-6-nitrobenzoic anhydride followed by a solid-phase extraction with ODS cartridge. Picolinoyl derivatization proceeded quantitatively even in a microscale, and the picolinoyl esters provided simple positive ESI-mass spectra showing [M+H](+) as base peaks for these estrogens. The picolinoyl derivatives of these estrogens showed 100-fold higher detection response compared to underivatized intact molecules by LC-ESI-MS (selected reaction monitoring). Using this derivatization, estrogens spiked in the charcoal treated human serum samples were analyzed with limit of quantification (LOQ), intra-day accuracy and precision of 1.0pg/ml, 96.0% and 9.9% for estrone, and 0.5pg/ml, 84.4% and 12.8% for estradiol, respectively. Estrone and estradiol added to the crude serum samples were recovered with comparable LOQ and accuracy obtained for the charcoal treated serum samples as well.

  15. Simultaneous determination of tetrahydrocortisol, allotetrahydrocortisol and tetrahydrocortisone in human urine by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Yamashita, Kouwa; Nakagawa, Risa; Okuyama, Mitsunobu; Honma, Seijiro; Takahashi, Madoka; Numazawa, Mitsuteru

    2008-08-01

    Simultaneous quantification method of three major metabolites of cortisone and cortisol, tetrahydrocortisol, allotetrahydrocortisol and tetrahydrocortisone by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was investigated in a positive mode using a recently developed picolinyl derivatization. Conversion of each steroid into the corresponding picolinyl derivatives (1b, 2b or 3b) was performed by mixed anhydride method using picolinic acids and 2-methyl-6-nitrobenzoic anhydride. Derivatization proceeded smoothly to afford the corresponding 3, 21-dipicolinyl derivatives. Positive ion-ESI mass spectra of the picolinyl derivatives were dominated by an appearance of [M+H](+) as base peaks in all cases. The picolinyl derivatives provided 15 to 80-fold higher ESI response in the LC-ESI-MS/MS (selected reaction monitoring: SRM) when compared to those of underivatized molecules in a positive LC-ESI mode. The use of the picolinyl ester, solid-phase extraction, and deuterium labeled internal standards enabled the concentrations of these metabolites in human urine to be determined simultaneously by LC-ESI-MS/MS (SRM) with a small sample volume of less than 1microl urine.

  16. Synthesis of pyridine-carboxylate derivatives of hydroxysteroids for liquid chromatography-electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Yamashita, Kouwa; Kobayashi, Sayuri; Tsukamoto, Satoshi; Numazawa, Mitsuteru

    2007-01-01

    Synthesis and liquid chromatography-electrospray ionization-mass spectrometric (LC-ESI-MS) behaviors of the picolinoyl, 6-methylpicolinoyl, nicotinoyl, 2-methoxynicotinoyl and isonicotinoyl derivatives of the hydroxysteroids estrone, estradiol, 3beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone) and testosterone in positive mode were investigated. Each steroid was converted to the corresponding pyridine-carboxylate derivative by the acyl chloride method or the mixed anhydride method using the corresponding free acids and 2-methyl-6-nitrobenzoic anhydride; in each case, the latter method principally gave a better yield. The pyridine-carboxylate derivative of each steroid exhibited a clear single peak in liquid chromatography with a reversed phase column and CH(3)CN-0.1% CH(3)COOH as a mobile phase. The positive-ESI-mass spectra of the picolinoyl, 6-methylpicolinoyl and 2-methoxynicotinoyl derivatives showed a predominance of [M+H](+), whereas [M+H+CH(3)CN](+) was observed with high intensity in the nicotinoyl and isonicotinoyl derivatives. Even in the case of estradiol, with its two hydroxyl groups, a single charged ion of [M+H](+) or [M+H+CH(3)CN](+) was observed in the positive-ESI-mass spectrum of each derivative. The results revealed that picolinoyl derivatization is a simple and versatile method suitable for the sensitive and specific determination of hydroxysteroids by LC-ESI-MS (selected reaction monitoring).

  17. Analysis of methylene blue and its metabolites in blood by capillary electrophoresis/electrospray ionization mass spectrometry.

    Science.gov (United States)

    Yang, Fang; Xia, Shifei; Liu, Zhencai; Chen, Jian; Lin, Yonghui; Qiu, Bin; Chen, Guonan

    2011-03-01

    A method for the determination of methylene blue (MB) and its metabolites (azure A, azure B and azure C) in rat blood by CE-electrospray ionization mass spectrometry (CE-ESI-MS) was developed in this paper. Different analytical parameters were investigated in detail such as pH and concentration of separation buffer, and ESI-MS instrumental parameters. Under the optimum conditions, MB and its metabolites were separated and detected in 27.3 min. LODs (defined as S/N=3) of this method were 0.22, 0.25, 0.10 and 0.30 μg/mL for MB, azure A, azure B and azure C, respectively. To get a satisfactory extraction efficiency of MB and its metabolites in rat blood, different extraction solutions were studied. By using this method, MB and its metabolites (azure A, azure B and azure C) were successfully analyzed in rat blood samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cong-Min [Institute of Microanalytical; Zhu, Ying [Institute of Microanalytical; Jin, Di-Qiong [Institute of Microanalytical; Kelly, Ryan T. [Environmental; Fang, Qun [Institute of Microanalytical

    2017-08-15

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, but also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.

  19. Electrospray ionization mass spectrometric analysis of newly synthesized alpha,beta-unsaturated gamma-lactones fused to sugars.

    Science.gov (United States)

    Madeira, Paulo J Amorim; Rosa, Ana Margarida; Xavier, Nuno M; Rauter, Amélia P; Florêncio, M Helena

    2010-04-15

    Knowledge of the fragmentation mechanisms of lactones and their behaviour under electrospray ionization (ESI) conditions can be extended to larger and more complex natural products that contain an alpha,beta-unsaturated gamma-lactone moiety in their structure. Moreover, little is known about the gas-phase behaviour of alpha,beta-unsaturated gamma-lactones linked or fused to sugars. Therefore, five alpha,beta-unsaturated gamma-lactones (butenolides) fused to a pyranose ring, recently synthesized compounds with potential relevance regarding their biological properties, were investigated using ESI-MS and ESI-MS/MS in both positive and negative ion modes. Their fragmentation mechanisms and product ion structures were compared. It was observed that two isomers could be unambiguously distinguished in the negative ion mode by the fragmentation pathways of their deprotonated molecules as well as in the positive ion mode by the fragmentation pathways of either the protonated or the sodiated molecule. Fragmentation mechanisms are proposed taking into account the MS/MS data and semi-empirical calculations using the PM6 Hamiltonean. The semi-empirical calculations were also very useful in determining the most probable protonation and cationization sites. 2010 John Wiley & Sons, Ltd.

  20. Quantitative analysis of paraquat in vegetation by stable isotope dilution and liquid chromatography/electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Schaner, Angela; Hickes, Heidi

    2015-01-01

    The method presented is a suitable approach for routine testing of paraquat in difficult sample types, such as winter wheat and alfalfa plant tissue, typically found with accidental spray drift. Hydrophilic interaction chromatography and ultra-performance LC is utilized with tandem quadrupole MS in the positive electrospray ionization mode. Three precursor-product ion transitions are measured in the multiple reaction monitoring mode, and paraquat d8 is added as an internal standard at the beginning of the extraction procedure to correct for losses in recovery and/or matrix effects in instrument response. A 5 g portion is digested with 6 M HCl in a 100°C water bath for 1 h. An aliquot is removed and adjusted to pH 7-8 prior to loading on a mixed mode weak cation-exchange SPE cartridge, and paraquat is eluted with formic acid-acetonitrile (10 + 90, v/v). Average recoveries of paraquat fortified at 0.020-0.080 ppm in winter wheat and alfalfa ranged from 80 to 114% (RSD 12-30%). Result data from naturally incurred paraquat (0.027-0.51 ppm) in composite garden plants, potato leaves, tree leaves, and alfalfa are presented. The LOQ is 0.020 ppm.

  1. Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2009-04-01

    Full Text Available Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50% of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS. Elemental compositions of 552 unique molecular species were determined in the mass range 50–500 Da in the rainwater. Four main groups of organic compounds were identified: compounds containing carbon, hydrogen, and oxygen (CHO only, sulfur (S containing CHOS compounds, nitrogen (N containing CHON compounds, and S- and N- containing CHONS compounds. Organic acids commonly identified in precipitation were detected in the rainwater. Within the four main groups of compounds detected in the rainwater, oligomers, organosulfates, and nitrooxy-organosulfates were assigned based on elemental formula comparisons. The majority of the compounds identified are products of atmospheric reactions and are known contributors to secondary organic aerosol (SOA formed from gas phase, aerosol phase, and in-cloud reactions in the atmosphere. It is suggested that the large uncharacterized component of SOA is the main contributor to the large uncharacterized component of rainwater organic matter.

  2. The yeast metabolome addressed by electrospray ionization mass spectrometry: Initiation of a mass spectral library and its applications for metabolic footprinting by direct infusion mass spectrometry

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul; Smedsgaard, Jørn; Nielsen, Jens

    2008-01-01

    Mass spectrometry (MS) has been a major driver for metabolomics, and gas chromatography (GC)-MS has been one of the primary techniques used for microbial metabolomics. The use of liquid chromatography (LC)-MS has however been limited, but electrospray ionization (ESI) is very well suited...... into the ionization and fragmentation characteristics of the different metabolites. With this insight, a small study of metabolic footprinting with ESI-MS demonstrated that biological information can be extracted from footprinting spectra. Statistical analysis of the footprinting data revealed discriminating ions...

  3. Game-Theory-Based Search Engine to Automate the Mass Assignment in Complex Native Electrospray Mass Spectra

    NARCIS (Netherlands)

    Tseng, Y.H.; Uetrecht, C.; Yang, S.C.; Barendregt, A.; Heck, A.J.R.; Peng, W.P.

    2013-01-01

    Electrospray ionization coupled to native mass spectrometry (MS) has evolved into an important tool in structural biology to decipher the composition of protein complexes. However, the mass analysis of heterogeneous protein assemblies is hampered because of their overlapping charge state

  4. Power of Ultra Performance Liquid Chromatography/Electrospray Ionization-MS Reconstructed Ion Chromatograms in the Characterization of Small Differences in Polymer Microstructure.

    Science.gov (United States)

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2018-03-06

    From simple homopolymers to functionalized, 3-dimensional structured copolymers, the complexity of polymeric materials has become more and more sophisticated. With new applications, for instance, in the semiconductor or pharmaceutical industry, the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isomeric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector but affect the properties of materials significantly. For a drug delivery system, for example, the degree of branching and branching distribution is crucial for the formation of micelles. Instead of a complicated, time-consuming, and/or expensive 2D-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, in this work, a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization (ESI) mass spectrometry is proposed. The online coupling allows the analysis of reconstructed ion chromatograms (RICs) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities. Although some microstructural heterogeneities like short chain branching can for large polymers be characterized with methods such as light scattering, for oligomers where the heterogeneities just start to form and their influence is at the maximum, they are inaccessible with these methods. It is also shown that with a proper calibration even quantitative information can be obtained. This method is suitable to detect small differences in, e.g., branching, 3D-structure, monomer sequence, or tacticity and could potentially be used in routine analysis to quickly determine deviations.

  5. Strongly coupled stimulated Brillouin amplification in pump-ionizing plasma

    Science.gov (United States)

    Peng, H.; Wu, Z. H.; Zuo, Y. L.; Zhou, K. N.; Wang, X. D.; Li, Q.; Zhu, H. Y.; Su, J. Q.

    2018-02-01

    Laser amplification based on strongly coupled stimulated Brillouin scattering in plasma is investigated. The pump and seed are at the same wavelength of 800 nm and the same duration of 3.5 ps, but with a different intensity. The plasma is produced by the front part of the pump via tunnel ionization from hydrogen. The hydrogen is fully ionized to eliminate small-scale density fluctuations in the plasma, so the transmission level of the seed is enhanced to 22%, and a relative amplification factor of 6 is obtained.

  6. Applications of Electrospray Ionization Mass Spectrometry in Mechanistic Studies and Catalysis Research

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef

    2012-01-01

    Roč. 45, č. 9 (2012), s. 1521-1532 ISSN 0001-4842 Grant - others:European Research Council(XE) AdG HORIZOMS Institutional support: RVO:61388963 Keywords : cross-coupling reactions * Baylis–Hillman reaction * molecular-dynamics simulations * solution-phase mechanism * gas-phase * infrared-spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 20.833, year: 2012

  7. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  8. Determination of affinity constants and response factors of the noncovalent dimer of gramicidin by electrospray ionization mass spectrometry and mathematical modeling.

    Science.gov (United States)

    Chitta, Raghu K; Rempel, Don L; Gross, Michael L

    2005-07-01

    The dimerization of gramicidin, a 15-residue membrane peptide, in solution can be viewed as a model for protein-protein interactions. We reported previously that the dimer can be observed when electrosprayed from organic solvents and that the abundances of the dimer depends on the dielectric constant of the solvent. Here, we report an effort to determine an affinity constant for the dimerization of gramicidin by using gas-phase abundance. Two issues affecting the determination are the electrospray-induced dissociation of the dimer and discrimination in the electrospray of the dimer compared with the monomer. Other methods developed for the purpose of determining affinity from mass spectral abundance do not address the dissociation of the complex in the gas phase or can not be applied for cases of low affinity constant, K(a). We present a mathematical model that uses the ratio of the signal intensities of the dimer and the monomer during a titration. The model also incorporates the dissociation and an electrospray ionization-response factor of the dimer for extracting the affinity constant for the dimerization of gramicidin. The dimerization constants from the new method agree within a factor of two with values reported in the literature.

  9. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  10. Absolute Quantification of Choline-Related Biomarkers in Breast Cancer Biopsies by Liquid Chromatography Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Mimmi, Maria Chiara; Finato, Nicoletta; Pizzolato, Gloria; Beltrami, Carlo Alberto; Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2013-01-01

    It has been repeatedly demonstrated that choline metabolism is altered in a wide variety of cancers. In breast tumours, the choline metabolite profile is characterized by an elevation of phosphocholine and total choline-compounds. This pattern is increasingly being exploited as biomarker in cancer diagnosis. The majority of in vitro metabolomics studies, for biomarkers quantification in cell cultures or tissues, entail proton NMR spectroscopy. Although many “targeted” approaches have been proposed to quantify metabolites from standard one-dimensional (1D) NMR experiments, the task is often made difficult by the high degree of overlap characterizing 1H NMR spectra of biological samples. Here we present an optimized protocol for tissue extraction and absolute quantification of choline, phosphocholine and glycerophosphocholine by means of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). The selected chromatographic separation system with a HILIC (hydrophilic interaction chromatography) amide column effectively separates free choline and its phopshorylated derivatives, contrary to failure observed using standard reversed-phase chromatography. The metabolite absolute quantification is based on external calibration with commercial standards, and is validated by a parallel 1D proton NMR analysis. The LC-MS/NMR analysis is applied to three breast carcinoma specimens obtained by surgical excision, each one accompanied by a control tissue sample taken outside the tumor margin. The metabolite concentrations measured are in good agreement with previous results on metabolic profile changes of breast cancer. Each of the three cancerous biopsies, when compared with the control tissue, exhibit a highly increased levels phosphocholine, total choline and phosphocholine/glycerophosphocholine ratio. PMID:24036926

  11. Monitoring Toxic Ionic Liquids in Zebrafish ( Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    Science.gov (United States)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2017-06-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.

  12. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    E. Vieira Neto

    2012-06-01

    Full Text Available Acylcarnitine profiling by electrospray ionization tandem mass spectrometry (ESI-MS/MS is a potent tool for the diagnosis and screening of fatty acid oxidation and organic acid disorders. Few studies have analyzed free carnitine and acylcarnitines in dried blood spots (DBS of umbilical cord blood (CB and the postnatal changes in the concentrations of these analytes. We have investigated these metabolites in healthy exclusively breastfed neonates and examined possible effects of birth weight and gestational age. DBS of CB were collected from 162 adequate for gestational age neonates. Paired DBS of heel-prick blood were collected 4-8 days after birth from 106 of these neonates, the majority exclusively breastfed. Methanol extracts of DBS with deuterium-labeled internal standards were derivatized before analysis by ESI-MS/MS. Most of the analytes were measured using a full-scan method. The levels of the major long-chain acylcarnitines, palmitoylcarnitine, stearoylcarnitine, and oleoylcarnitine, increased by 27, 12, and 109%, respectively, in the first week of life. Free carnitine and acetylcarnitine had a modest increase: 8 and 11%, respectively. Propionylcarnitine presented a different behavior, decreasing 9% during the period. The correlations between birth weight or gestational age and the concentrations of the analytes in DBS were weak (r £ 0.20 or nonsignificant. Adaptation to breast milk as the sole source of nutrients can explain the increase of these metabolites along the early neonatal period. Acylcarnitine profiling in CB should have a role in the early detection of metabolic disorders in high-risk neonates.

  13. Direct quantification of creatinine in human urine by using isotope dilution extractive electrospray ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Xue [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Applied Chemistry Department, East China Institute of Technology, Nanchang 330013 (China); Fang Xiaowei [Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Applied Chemistry Department, East China Institute of Technology, Nanchang 330013 (China); Yu Zhiqiang; Sheng Guoying [Guangdong Key Laboratory of Environmental Protection and Resource Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wu Minghong [Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Fu Jiamo [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Guangdong Key Laboratory of Environmental Protection and Resource Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Huanwen, E-mail: chw8868@gmail.com [Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Applied Chemistry Department, East China Institute of Technology, Nanchang 330013 (China)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer High throughput analysis of urinary creatinine is achieved by using ID-EESI-MS/MS. Black-Right-Pointing-Pointer Urine sample is directly analyzed and no sample pre-treatment is required. Black-Right-Pointing-Pointer Accurate quantification is accomplished with isotope dilution technique. - Abstract: Urinary creatinine (CRE) is an important biomarker of renal function. Fast and accurate quantification of CRE in human urine is required by clinical research. By using isotope dilution extractive electrospray ionization tandem mass spectrometry (EESI-MS/MS) a high throughput method for direct and accurate quantification of urinary CRE was developed in this study. Under optimized conditions, the method detection limit was lower than 50 {mu}g L{sup -1}. Over the concentration range investigated (0.05-10 mg L{sup -1}), the calibration curve was obtained with satisfactory linearity (R{sup 2} = 0.9861), and the relative standard deviation (RSD) values for CRE and isotope-labeled CRE (CRE-d3) were 7.1-11.8% (n = 6) and 4.1-11.3% (n = 6), respectively. The isotope dilution EESI-MS/MS method was validated by analyzing six human urine samples, and the results were comparable with the conventional spectrophotometric method (based on the Jaffe reaction). Recoveries for individual urine samples were 85-111% and less than 0.3 min was taken for each measurement, indicating that the present isotope dilution EESI-MS/MS method is a promising strategy for the fast and accurate quantification of urinary CRE in clinical laboratories.

  14. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Neto, E. [Serviço de Genética Médica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Laboratório Diagnósticos Laboratoriais Especializados, Rio de Janeiro, RJ (Brazil); Fonseca, A.A.; Almeida, R.F. [Laboratório Diagnósticos Laboratoriais Especializados, Rio de Janeiro, RJ (Brazil); Figueiredo, M.P.; Porto, M.A.S. [Maternidade Escola, Rio de Janeiro, RJ (Brazil); Ribeiro, M.G. [Serviço de Genética Médica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2012-04-13

    Acylcarnitine profiling by electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a potent tool for the diagnosis and screening of fatty acid oxidation and organic acid disorders. Few studies have analyzed free carnitine and acylcarnitines in dried blood spots (DBS) of umbilical cord blood (CB) and the postnatal changes in the concentrations of these analytes. We have investigated these metabolites in healthy exclusively breastfed neonates and examined possible effects of birth weight and gestational age. DBS of CB were collected from 162 adequate for gestational age neonates. Paired DBS of heel-prick blood were collected 4-8 days after birth from 106 of these neonates, the majority exclusively breastfed. Methanol extracts of DBS with deuterium-labeled internal standards were derivatized before analysis by ESI-MS/MS. Most of the analytes were measured using a full-scan method. The levels of the major long-chain acylcarnitines, palmitoylcarnitine, stearoylcarnitine, and oleoylcarnitine, increased by 27, 12, and 109%, respectively, in the first week of life. Free carnitine and acetylcarnitine had a modest increase: 8 and 11%, respectively. Propionylcarnitine presented a different behavior, decreasing 9% during the period. The correlations between birth weight or gestational age and the concentrations of the analytes in DBS were weak (r ≤ 0.20) or nonsignificant. Adaptation to breast milk as the sole source of nutrients can explain the increase of these metabolites along the early neonatal period. Acylcarnitine profiling in CB should have a role in the early detection of metabolic disorders in high-risk neonates.

  15. ESIprot: a universal tool for charge state determination and molecular weight calculation of proteins from electrospray ionization mass spectrometry data.

    Science.gov (United States)

    Winkler, Robert

    2010-02-01

    Electrospray ionization (ESI) ion trap mass spectrometers with relatively low resolution are frequently used for the analysis of natural products and peptides. Although ESI spectra of multiply charged protein molecules also can be measured on this type of devices, only average spectra are produced for the majority of naturally occurring proteins. Evaluating such ESI protein spectra would provide valuable information about the native state of investigated proteins. However, no suitable and freely available software could be found which allows the charge state determination and molecular weight calculation of single proteins from average ESI-MS data. Therefore, an algorithm based on standard deviation optimization (scatter minimization) was implemented for the analysis of protein ESI-MS data. The resulting software ESIprot was tested with ESI-MS data of six intact reference proteins between 12.4 and 66.7 kDa. In all cases, the correct charge states could be determined. The obtained absolute mass errors were in a range between -0.2 and 1.2 Da, the relative errors below 30 ppm. The possible mass accuracy allows for valid conclusions about the actual condition of proteins. Moreover, the ESIprot algorithm demonstrates an extraordinary robustness and allows spectral interpretation from as little as two peaks, given sufficient quality of the provided m/z data, without the necessity for peak intensity data. ESIprot is independent from the raw data format and the computer platform, making it a versatile tool for mass spectrometrists. The program code was released under the open-source GPLv3 license to support future developments of mass spectrometry software. Copyright 2010 John Wiley & Sons, Ltd.

  16. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Leng, Jia-Peng [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China)

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  17. Identification and Quantification of the Major Constituents in Egyptian Carob Extract by Liquid Chromatography–Electrospray Ionization-Tandem Mass Spectrometry

    Science.gov (United States)

    Owis, Asmaa Ibrahim; El-Naggar, El-Motaz Bellah

    2016-01-01

    Background: Carob - Ceratonia siliqua L., commonly known as St John's-bread or locust bean, family Fabaceae - is one of the most useful native Mediterranean trees. There is no data about the chromatography methods performed by high performance liquid chromatography (HPLC) for determining polyphenols in Egyptian carob pods. Objective: To establish a sensitive and specific liquid chromatography–electrospray ionization (ESI)-tandem mass spectrometry (MSn) methodology for the identification of the major constituents in Egyptian carob extract. Materials and Methods: HPLC with diode array detector and ESI-mass spectrometry (MS) was developed for the identification and quantification of phenolic acids, flavonoid glycosides, and aglycones in the methanolic extract of Egyptian C. siliqua. The MS and MSn data together with HPLC retention time of phenolic components allowed structural characterization of these compounds. Peak integration of ions in the MS scans had been used in the quantification technique. Results: A total of 36 compounds were tentatively identified. Twenty-six compounds were identified in the negative mode corresponding to 85.4% of plant dry weight, while ten compounds were identified in the positive mode representing 16.1% of plant dry weight, with the prevalence of flavonoids (75.4% of plant dry weight) predominantly represented by two methylapigenin-O-pentoside isomers (20.9 and 13.7% of plant dry weight). Conclusion: The identification of various compounds present in carob pods opens a new door to an increased understanding of the different health benefits brought about by the consumption of carob and its products. SUMMARY This research proposed a good example for the rapid identification of major constituents in complex systems such as herbs using sensitive, accurate and specific method coupling HPLC with DAD and MS, which facilitate the clarification of phytochemical composition of herbal medicine for better understanding of their nature and

  18. Separation of tautomeric forms of [2-nitrophloroglucinol-H]- by an in-electrospray ionization source hydrogen/deuterium exchange approach.

    Science.gov (United States)

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Starodubtseva, Natalia; Kukaev, Eugene; Nikotaev, Eugene

    2014-01-01

    Here we report the observation that, depending on the solvent used for the electrospray, 2-nitrophloroglucinol undergoes a deprotona- tion from different sites forming two tautomeric gas phase ions. Those ions differ bythe collision-induced dissociation [CID] spectra and by the gas phase hydrogen/deuterium (H/D) exchange kinetic. We performed H/D exchange in the electrospray ionization (ESI) source by saturation ESI region with vapors of deuterated solvent (D20). It was observed that [2-nitrophloroglucinol-H]- exchanges two -OH hydrogens when MeOD is used as the spray solvent but when the spray solvent is 50:50 MeOD/DO20 we observed an additional two H/D exchanges at the aromatic ring. We propose that the reaction occurs via a keto-enolt tautomerization mechanism which was found to be energetically favorable.

  19. Simultaneous determination of monosaccharides and oligosaccharides in dates using liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Ghfar, Ayman A; Wabaidur, Saikh M; Ahmed, A Yacine Badjah Hadj; Alothman, Zeid A; Khan, Mohammad R; Al-Shaalan, Nora H

    2015-06-01

    Ultra performance liquid chromatography coupled to mass spectrometry was used for the simultaneous separation and determination of reducing monosaccharides (fructose and glucose), a non-reducing disaccharide (sucrose) and oligosaccharides (kestose and nystose) in HILIC mode. The chromatographic separation of all saccharides was performed on a BEH amide column using an acetonitrile-water gradient elution. The detection was carried out using selected ion recording (SIR) acquisition mode. The validation of the proposed method showed that the limit of detection and limit of quantification values for the five analyzed compounds were in the range of 0.25-0.69μg/mL and 0.82-3.58μg/mL, respectively; while the response was linear in the range of 1-50μg/mL. The developed method showed potential usefulness for a rapid and sensitive analysis of underivatized saccharides and was used for determination of sugars in three date samples (Sefri, Mabroom, Ghassab) which were soxhlet extracted by ethanol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    Science.gov (United States)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  1. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    Science.gov (United States)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2017-09-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction. [Figure not available: see fulltext.

  2. Newborn screening of inborn errors of metabolism by capillary electrophoresis-electrospray ionization-mass spectrometry: a second-tier method with improved specificity and sensitivity.

    Science.gov (United States)

    Chalcraft, Kenneth R; Britz-McKibbin, Philip

    2009-01-01

    The advent of electrospray-ionization mass spectrometry (ESI-MS) has given rise to expanded newborn screening programs for the early detection of inborn errors of metabolism (IEM). Despite the benefit of high-throughput screening for disease prognosis, conventional ESI-MS methods are limited by inadequate specificity, complicated sample handling, and low positive predictive outcome that can contribute to a high rate of false-positives. Herein, we report a robust strategy for neonatal screening based on capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) that offers a convenient platform for the direct analysis of amino acids, acylcarnitines, and their stereoisomers from dried blood spot (DBS) extracts without chemical derivatization. On-line sample preconcentration with desalting by CE-ESI-MS allowed for improved concentration sensitivity when detecting poorly responsive metabolites in complex biological samples without ionization suppression or isomeric/isobaric interferences. Method validation demonstrated that accurate yet precise quantification can be achieved for 20 different amino acid and acylcarnitine biomarkers associated with IEMs when using a single non-deuterated internal standard. CE-ESI-MS represents a promising second-tier method in newborn screening programs that is compatible with ESI-MS/MS technology in cases when improved specificity and sensitivity is warranted for diagnosis confirmation and subsequent monitoring.

  3. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Science.gov (United States)

    Altieri, K. E.; Hastings, M. G.; Peters, A. J.; Sigman, D. M.

    2012-04-01

    Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W), which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+), CHON compounds that contained sulfur (CHONS+), CHON compounds that contained phosphorus (CHONP+), CHON compounds that contained both sulfur and phosphorus (CHONSP+), and compounds that contained only carbon, hydrogen, and nitrogen (CHN+). Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March) which have anthropogenic air mass origins and samples collected during the warm season (April to September) with remote marine air mass origins. This, in

  4. Evaluation of IMAC and Electrospray Ionization Mass Spectrometry for Recovery and Analysis of Copper-Binding Ligands in Seawater

    Science.gov (United States)

    Nixon, R. L.; Ross, A.

    2016-02-01

    Complexation by organic ligands dominates the speciation of iron, copper, and other bioactive trace metals in seawater, controlling their bioavailability and distribution in the marine environment. Several classes of high-affinity Fe-binding ligands (siderophores) have been identified in seawater and such compounds are known to mediate iron uptake by marine bacteria, thereby influencing biological productivity in the ocean. However, little is known about the origin, structure, or ecological role of marine Cu-binding ligands (chalcophores). Immobilized metal-ion affinity chromatography (IMAC) allows selective recovery of such compounds from seawater, while electrospray ionization mass spectrometry (ESI-MS) has been used to identify marine siderophores and to characterise Cu ligands in coastal waters. Here, we use model compounds to evaluate a Cu(II)-IMAC/ESI-MS workflow for recovery and analysis of Cu-binding ligands in seawater. One-litre samples of artificial and natural filtered seawater were spiked with model Cu(II) ligands at realistic concentrations and fractionated by IMAC. Retained compounds were eluted by acidification and detected by UV absorption. Linear plots of concentration versus UV chromatographic peak area were obtained for model synthetic and natural organic ligands at concentrations ranging from 5 to 500 nM (r2=0.9988) and 50 and 750 nM (r2=0.9899), respectively, in artificial seawater. Variable though similar results were obtained for oceanic seawater spiked with 5 nM to 1 µM of ligand (r2=0.9893). Chromatographic peak data suggests that natural UV-absorbing Cu ligands are more concentrated in nearshore than in oceanic surface waters, and that these ligands are susceptible to photolysis by artificial sunlight. Eluted IMAC fractions corresponding to UV absorbance peaks were collected and different techniques evaluated for concentration and desalting of the recovered ligands prior to analysis by ESI-MS and tandem mass spectrometry (MS/MS). MS data

  5. Liquid chromatography/electrospray ionization tandem mass spectrometry analysis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX).

    Science.gov (United States)

    Pan, Xiaoping; Zhang, Baohong; Tian, Kang; Jones, Lindsey E; Liu, Jun; Anderson, Todd A; Wang, Jia-Sheng; Cobb, George P

    2006-01-01

    A quantitative liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed for the analysis of the explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In negative ionization mode, HMX forms an acetate adduct ion [M + CH(3)COO](-), m/z 355, in the presence of a small amount of acetic acid in the mobile phase. The ESI collision-induced dissociation (CID) spectrum of m/z 355 was acquired and the transitions m/z 355 --> 147 and m/z 355 --> 174 were chosen for the determination of HMX in samples. Using this quantification technique, the method detection limit was 1.57 microg/L and good linearity was achieved in the range 5-500 microg/L. This method will help to unambiguously analyze environmentally relevant concentrations of HMX. Copyright (c) 2006 John Wiley & Sons, Ltd.

  6. Direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulbs by probe electrospray ionization mass spectrometry.

    Science.gov (United States)

    Yu, Zhan; Chen, Lee Chuin; Suzuki, Hiroaki; Ariyada, Osamu; Erra-Balsells, Rosa; Nonami, Hiroshi; Hiraoka, Kenzo

    2009-12-01

    Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems.

  7. eCRAM computer algorithm for implementation of the charge ratio analysis method to deconvolute electrospray ionization mass spectra

    Science.gov (United States)

    Maleknia, Simin D.; Green, David C.

    2010-02-01

    A computer program (eCRAM) has been developed for automated processing of electrospray mass spectra based on the charge ratio analysis method. The eCRAM algorithm deconvolutes electrospray mass spectra solely from the ratio of mass-to-charge (m/z) values of multiply charged ions. The program first determines the ion charge by correlating the ratio of m/z values for any two (i.e., consecutive or non-consecutive) multiply charged ions to the unique ratios of two integers. The mass, and subsequently the identity of the charge carrying species, is further determined from m/z values and charge states of any two ions. For the interpretation of high-resolution electrospray mass spectra, eCRAM correlates isotopic peaks that share the same isotopic compositions. This process is also performed through charge ratio analysis after correcting the multiply charged ions to their lowest common ion charge. The application of eCRAM algorithm has been demonstrated with theoretical mass-to-charge ratios for proteins lysozyme and carbonic anhydrase, as well as experimental data for both low and high-resolution FT-ICR electrospray mass spectra of a range of proteins (ubiquitin, cytochrome c, transthyretin, lysozyme and calmodulin). This also included the simulated data for mixtures by combining experimental data for ubiquitin, cytochrome c and transthyretin.

  8. Can Riboflavin Penetrate Stroma Without Disrupting Integrity of Corneal Epithelium in Rabbits? Iontophoresis and Ultraperformance Liquid Chromatography With Electrospray Ionization Tandem Mass Spectrometry.

    Science.gov (United States)

    Novruzlu, Şahin; Türkcü, Ümmühani Özel; Kvrak, İbrahim; Kvrak, Şeyda; Yüksel, Erdem; Deniz, Nuriye Gökçen; Bilgihan, Ayşe; Bilgihan, Kamil

    2015-08-01

    To examine riboflavin concentrations in corneas and aqueous humor from rabbits with standard and transepithelial methods and iontophoresis without disrupting the integrity of the corneal epithelium before corneal collagen cross-linking. Twenty-four eyes of 12 adult New Zealand rabbits were used. They were assigned to 4 groups, each including 6 eyes. Group 1 was exposed to the standard method and given riboflavin 0.1% after epithelial debridement. Group 2 was exposed to the transepithelial method and given benzalkonium chloride (BAC), ethylenediaminetetraacetic acid (EDTA), trometamol (TRIS), hydroxypropylmethylcellulose (HPMC), and riboflavin 0.2% 3 times at 1.5-minute intervals followed by riboflavin 0.2%. Group 3 was given riboflavin 0.1% by using 1-mA electric current for 10 minutes with the help of iontophoresis without using substances disrupting the integrity of the corneal epithelium. Group 4 received the same treatment as did group 3, except that it was given riboflavin 0.2%. Following these treatments, riboflavin concentrations in aqueous humor and corneas were measured with ultraperformance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS). Riboflavin concentrations in the cornea and aqueous humor were higher in group 1 (42.4 ± 5.4 μg/g) than in the other groups. They were significantly higher in group 4 (34.2 ± 6.6 μg/g) than in group 2 (24.4 ± 1.2 μg/g) (P = 0.009) and group 3 (23.6 ± 6.1 μg/g) (P = 0.026). There was not a significant difference in corneal riboflavin concentrations between group 2 and group 3 (P = 0.937). Intrastromal and aqueous riboflavin concentrations after administration of riboflavin 0.2% through iontophoresis without disrupting the integrity of the corneal epithelium were lower than those after the standard method, but higher than those after the transepithelial method. In this study, in which riboflavin concentrations were measured with a very sensitive method

  9. Determination of gardenia yellow colorants in soft drink, pastry, instant noodles with ultrasound-assisted extraction by high performance liquid chromatography-electrospray ionization tandem mass spectrum.

    Science.gov (United States)

    Zhou, Wei-E; Zhang, Yuan; Li, Yang; Ling, Yun; Li, Hong-Na; Li, Shao-Hui; Jiang, Shou-Jun; Ren, Zhi-Qin; Huang, Zhi-Qiang; Zhang, Feng

    2016-05-13

    A novel, rapid and simple analytical method was developed for the quantitative determination of crocin, crocetin and geniposide in soft drink, pastry and instant noodles. The solid samples were relatively homogenized into powders and fragments. The gardenia yellow colorants were successively extracted with methanol using ultrasound-assisted extraction. The analytes were quantitatively measured in the extracts by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. High correlation coefficients (r(2)>0.995) of crocin, crocetin and geniposide were obtained within their linear ranges respectively (50-1000ng/mL, 50-1000ng/mL, 15-240ng/mL) by external standard method. The limits of detection (LODs) were 0.02μg/g for crocin, 0.01μg/g for crocetin and 0.002μg/g for geniposide. And the limits of quantitation (LOQs) were in the ranges of 0.05-0.45μg/g for crocin, and in the ranges of 0.042-0.32μg/g for crocetin, and in the ranges of 0.02-0.15μg/g for geniposide in soft drink, pastry and instant noodles samples. The average recoveries of crocin, crocetin and geniposide ranged from 81.3% to 117.6% in soft drink, pastry and instant noodles. The intra- and inter-day precisions were respectively in the range of 1.3-4.8% and 1.7-11.8% in soft drink, pastry and instant noodle. The developed methods were successfully validated and applied to the soft drink, pastry, and instant noodles collected from the located market in Beijing from China. Crocin, crocetin and geniposide were detected in the collected samples. The average concentrations ranged from 0.84 to 4.20mg/g for crocin, and from 0.62 to 3.11mg/g for crocetin, and from 0.18 to 0.79mg/g for gardenia in various food samples. The method can provide evidences for government to determine gardenia yellow pigments and geniposide in food. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Application of high performance liquid chromatography coupled with ultraviolet spectroscopy and electrospray mass spectrometry to the characterisation of ellagitannins from Terminalia macroptera roots.

    Science.gov (United States)

    Silva, O; Gomes, E T; Wolfender, J L; Marston, A; Hostettmann, K

    2000-11-01

    Terminalia macroptera roots are used in Guinea-Bissau and other West African countries to treat infectious diseases like gonorrhoea. Previous work showed an ethanol extract of T. macroptera roots (T) to have an in vitro antimicrobial profile against Neisseria gonorrhoae (including resistant strains) and enteropathogenic agents. The most active fractions of this extract were identified as the diethyl ether (T2) and water (T5) fractions. The aim of the present study was the identification of major compounds present in T and simultaneously in T2 or T5. The T extract and T2 and T5 fractions were analysed by high performance liquid chromatography coupled with ultraviolet photodiode array (LC-UV) spectroscopy and electrospray ionization mass spectrometry (ES-MS). These analyses indicated the presence of ellagitannin derivatives. In order to confirm the identities of the detected compounds, they were isolated from T2 and T5 by preparative chromatographic techniques and identified by spectroscopic methods including tandem mass spectrometry. By using LC-UV-ES-MS, four major compounds (ellagic acid, gallic acid, punicalagin, terchebulin) could be identified in the T extract. Three other compounds (3,3'di-O-methylellagic acid, 3,4,3',4'-tetra-O-methylellagic acid, terflavin A) were also isolated and identified. LC-UV-ES-MS is a useful technique for the analysis of mixtures containing ellagitannins.

  11. Rapid separation and identification of major constituents in Pseudolarix kaempferi by ultra-performance liquid chromatography coupled with electrospray and quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Ye, Xia; Tang, Minghai; Chen, Lijuan; Peng, Aihua; Ma, Liang; Ye, Haoyu

    2009-12-01

    A rapid and reliable method based on ultra-performance liquid chromatography (UPLC) coupled with photodiode-array detection (PDA) and electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-Q-TOF-MS/MS) has been developed for separation and identification of major constituents in extracts of root bark of Pseudolarix kaempferi Gordon (PKG). Identification of the constituents was carried out by interpretation of their retention times, UV absorption spectra, MS and MS/MS spectra, as well as the data provided by authentic standards and literatures. A total of 20 components were separated in only 8.0 min on a small particle size C18 column (1.7 microm). These components included nine diterpene acids, seven glycosides and four triterpenoids, among which pseudolaric acid C-O-beta-D-glucopyranoside and pseudolaric acid C2-O-beta-D-glucopyranoside were separated and identified for the first time in this study. Furthermore, the fragmentation patterns of the three types of compounds were elucidated for the first time. This established UPLC-PDA/Q-TOF-MS/MS method is reliable and effective for the separation and identification of the 20 compounds and will be useful for quality control of the crude materials of Pseudolarix kaempferi Gordon and their related preparations. Copyright 2009 John Wiley & Sons, Ltd.

  12. Fervent: chemistry-coupled, ionizing and non-ionizing radiative feedback in hydrodynamical simulations

    Science.gov (United States)

    Baczynski, C.; Glover, S. C. O.; Klessen, R. S.

    2015-11-01

    We introduce a radiative transfer code module for the magnetohydrodynamical adaptive mesh refinement code FLASH 4. It is coupled to an efficient chemical network which explicitly tracks the three hydrogen species H, H2, H+ as well as C+ and CO. The module is geared towards modelling all relevant thermal feedback processes of massive stars, and is able to follow the non-equilibrium time-dependent thermal and chemical state of the present-day interstellar medium as well as that of dense molecular clouds. We describe in detail the implementation of all relevant thermal stellar feedback mechanisms, i.e. photoelectric, photoionization and H2 dissociation heating as well as pumping of molecular hydrogen by UV photons. All included radiative feedback processes are extensively tested. We also compare our module to dedicated photodissociation region (PDR) codes and find good agreement in our modelled hydrogen species once our radiative transfer solution reaches equilibrium. In addition, we show that the implemented radiative feedback physics is insensitive to the spatial resolution of the code and show under which conditions it is possible to obtain well-converged evolution in time. Finally, we briefly explore the robustness of our scheme for treating combined ionizing and non-ionizing radiation.

  13. A framework to estimate concentrations of potentially unknown substances by semi-quantification in liquid chromatography electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Pieke, Eelco Nicolaas; Granby, Kit; Trier, Xenia

    2017-01-01

    . Positive electrospray (ESI+) was found to have more complex source interactions than negative electrospray (ESI-). Choice of quantification marker resulted in better quantification if the retention time difference was minimized (12 out of 12 cases error factor ...Risk assessment of exposure to chemicals from food and other sources rely on quantitative information of the occurrence of these chemicals. As screening analysis is increasingly used, a strategy to semi-quantify unknown or untargeted analytes is required. A proof of concept strategy to semi...... selected analytes were semi-quantified using a different analyte to assess the quantification performance under various conditions. It was found that source conditions had strong effects on the responses, with the range of low-response signals varying from −80% to over +300% compared to centerpoints...

  14. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  15. Characterization of Ni(II) complexes of Schiff bases of amino acids and (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide using ion trap and QqTOF electrospray ionization tandem mass spectrometry

    NARCIS (Netherlands)

    Jirasko, Robert; Holcapek, Michal; Kolarova, Lenka; Nadvornik, Milan; Popkov, Alexander

    This work demonstrates the application of electrospray ionization mass spectrometry (ESI-MS) using two different mass analyzers, ion trap and hybrid quadrupole time-of-flight (QqTOF) mass analyzer, for the structural characterization of Ni(II) complexes of Schiff bases of

  16. The role of multiple ionization and subshell coupling effects in L-shell ionization of Au by oxygen ions

    International Nuclear Information System (INIS)

    Banas, D.; Braziewicz, J.; Pajek, M.; Semaniak, J.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2002-01-01

    The ionization of L-subshell electrons in gold by the impact of 0.4-2.2 MeV amu -1 O ions was studied by observing excited Lγ(L-N, O) x-rays. We demonstrate that both the multiple ionization in outer M- and N-shells as well as the coupling effects in the L-shell play an important role in understanding the measured L-subshell ionization cross sections. The multiple ionization was found to be important in two aspects: first, the analysis of x-ray energy shifts and line broadening was crucial for proper interpretation of measured x-ray spectra; second, the additional vacancies in the M- and N-shells substantially influenced the L 1 -subshell fluorescence and Coster-Kronig (CK) yields, mainly by closing strong L 1 -L 3 M 4,5 CK transitions. The data are compared with the simplified coupled-channels calculations using the 'coupled-subshell model' (CSM) based on the semiclassical approximation (SCA), which describes both direct Coulomb ionization as well as the L-subshell couplings within the same theoretical approach. A good agreement of the present data with the theoretical predictions based on the discussed SCA-CSM approach is observed. Present findings partly explain the long-standing problem of inadequate theoretical description of L-shell ionization by heavy ion impact. (author)

  17. Development of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods.

    Science.gov (United States)

    Franco, P; Spinozzi, S; Pagnotta, E; Lazzeri, L; Ugolini, L; Camborata, C; Roda, A

    2016-01-08

    A new high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of glucosinolates, as glucoraphanin and glucoerucin, and the corresponding isothiocyanates, as sulforaphane and erucin, was developed and applied to quantify these compounds in Eruca sativa defatted seed meals and enriched functional foods. The method involved solvent extraction, separation was achieved in gradient mode using water with 0.5% formic acid and acetonitrile with 0.5% formic acid and using a reverse phase C18 column. The electrospray ion source operated in negative and positive mode for the detection of glucosinolates and isothiocyanates, respectively, and the multiple reaction monitoring (MRM) was selected as acquisition mode. The method was validated following the ICH guidelines. Replicate experiments demonstrated a good accuracy (bias%food products enriched with glucosinolates, or nutraceutical bakery products. In addition, the developed method was applied to the simultaneous determination of glucosinolates and isothiocyanates in bakery product enriched with glucosinolates, to evaluate their thermal stability after different industrial processes from cultivation phases to consumer processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Capillary column switching restricted-access media-liquid chromatography-electrospray ionization-tandem mass spectrometry system for simultaneous and direct analysis of drugs in biofluids.

    Science.gov (United States)

    Santos-Neto, Alvaro J; Markides, Karin E; Sjöberg, Per J R; Bergquist, Jonas; Lancas, Fernando M

    2007-08-15

    Capillary online restricted-access media-liquid chromatography-electrospray ionization-tandem mass spectrometry (RAM-LC-ESI-MS/MS) for direct analysis of drugs and metabolites spiked in biological fluids was developed. Using a column switching setup it was possible to perform effective sample preparation and analysis of raw biological fluids (plasma and urine) without matrix effects in the electrospray mass spectrometric detection step. The peak focusing efficiency of the extraction column was more effective in backflush compared to foreflush mode. The system was able to concentrate diminished samples of polar drugs and their metabolites reaching quantifiable results as low as 1 ng/mL utilizing a sample volume of only 333 nL of biofluids. New column hardware was developed to circumvent clogging problems experienced with plasma injections. The glass fiber filter frit, which is commonly used, was replaced with a short piece of 20 microm i.d. fused silica capillary. The extraction columns were able to handle up to 60 injections and showed a high loading capacity, making the saturation of the MS detector the limiting factor on the linear dynamic range. The simultaneous separation and detection of 10 drugs and metabolites was obtained in 8 min of analysis, including the online sample preparation and enrichment step.

  19. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry.

    Science.gov (United States)

    Schütz, Katrin; Kammerer, Dietmar R; Carle, Reinhold; Schieber, Andreas

    2005-01-01

    Phenolic acids and flavonoids were extracted from a dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb juice and characterized by high-performance liquid chromatography/electrospray ionization mass spectrometry. Among the 43 compounds detected, 5 mono- and dicaffeoylquinic acids, 5 tartaric acid derivatives, 8 flavone and 8 flavonol glycosides were characterized based on their UV spectra and their fragmentation patterns in collision-induced dissociation experiments. The predominant compound was chicoric acid (dicaffeoyltartaric acid). Furthermore, several caffeoylquinic acid isomers were distinguished in dandelion extracts for the first time by their specific mass spectral data. The present study reveals that even more quercetin glycosides were found in dandelion than hitherto assumed. The occurrence of di- and triglycosylated flavonoids in particular has not yet been described. This paper marks the first report on HPLC-DAD/ESI-MSn investigations of phenolic compounds in dandelion.

  20. Use of electro-spray ionization mass spectrometry (ESI-MS) for the study of metal (III) extraction by dialkyl phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, E.; Berthon, L.; Heres, X.; Gannaz, B.; Berthon, C.; Adnet, J.M

    2004-07-01

    In the framework of nuclear waste reprocessing, separation processes of minor actinide from fission product are developed by CEA. In order to understand the mechanism involved in the extraction process, the complexes ligand - metallic cations formed in organic phase has been characterized. This paper deals with the extraction of lanthanides (III) and actinides (III) cations by dialkyl phosphoric acid (the bis- 1,3-dimethyl-butyl-phosphoric acid). The associative properties of the extractant were studied, the complexes (metal-ligand) present in organic phase were identified and the interactions ligand-metal were characterized. The electro-spray ionization -mass spectrometry (ESI-MS) was used to investigate organic solutions, and the results are compared with those obtained by other techniques like NMR, IRTF and distribution ratio studies. (authors)

  1. Development and Deployment of a Particle-into-Liquid sampling - Electrospray Ionization Mass Spectrometer (PiLs-ESI/MS) for Characterization of Water-Soluble Biomass Burning Aerosols

    Science.gov (United States)

    Stockwell, C.; Witkowski, B.; Talukdar, R. K.; Middlebrook, A. M.; Roberts, J. M.

    2016-12-01

    Biomass burning (BB) is a major influence on Earth's atmosphere as it is an important source of primary and secondary aerosols. Measuring the aerosol composition for such complex mixtures remains an analytical challenge and the characterization of the water-soluble portion of BB aerosol has been traditionally limited to off-line analysis and/or qualitative techniques. In this work, we present a new method of directly interfacing a particle-into-liquid sampler with an electrospray ionization mass spectrometer (PiLs-ESI/MS). This technique allows real-time, sensitive, and chemically-specific speciation of water-soluble organics and inorganics for the quantification of fresh BB aerosol sampled during the recent Firelab component of the NOAA FIREX experiments. The aerosol composition is fuel and combustion-phase dependent, and several polar organic species thought to be main contributors to aerosol brown carbon and secondary organic aerosol were measured.

  2. Biodegradation and removal of 3,4-dichloroaniline by Chlorella pyrenoidosa based on liquid chromatography-electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Wang, Shujuan; Poon, Karen; Cai, Zongwei

    2013-01-01

    3,4-Dichloroaniline (3,4-DCA), widely used in the synthesis of dyes, textile and herbicides, is toxic to living organisms. The purpose of this study was to investigate the capability of green algae in degrading and removing 3,4-DCA in water. An environmentally ubiquitous green alga Chlorella pyrenoidosa was isolated from fresh aquatic environment. Then unicellular alga was incubated with 3,4-DCA at a concentration of 4.6 μg/ mL in water. The residual concentration of 3,4-DCA in the medium and the metabolites were analyzed. A removal percentage of 78.4 % was obtained over a 7-day period. Two major metabolites with less toxicity were identified as 3,4-dichloroformanilide and 3,4-dichloroacetanilide from the liquid chromatography-electrospray ionization-mass spectrometry analysis. The application of microalga C. pyrenoidosa may have potential for removing the environmental pollutant in aquatic environment.

  3. Development of highly sensitive quantification method for testosterone and dihydrotestosterone in human serum and prostate tissue by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Yamashita, Kouwa; Miyashiro, Yoshimichi; Maekubo, Hitoe; Okuyama, Mitsunobu; Honma, Seijiro; Takahashi, Madoka; Numazawa, Mitsuteru

    2009-11-01

    We developed highly sensitive detection of testosterone (T) and 5alpha-dihydrotestosterone (DHT) by liquid chromatography-electrospray ionization tandem mass spectrometry using high proton affinitive derivatization of 17beta-hydroxyl group of T and DHT with picolinic acid, mobile phase consisting of MeCN-MeOH-H(2)O-formic acid and conventional octadecylsilica (ODS) column. Purification of the derivatives was carried out using solid-phase extraction with ODS cartridge. By this method, T and DHT were determined simultaneously with limits of quantification (LOQs) of 1 pg/0.2 ml in serum, and T and DHT with LOQs of 0.5 pg and 1 pg/3mg in prostate tissue, respectively, under acceptable assay performance (intra-assay and inter-assay accuracy and precision). The present method provides reliable and reproducible results for quantification of T and DHT in small volumes of serum and prostate samples for diagnosis in prostatic disorders and male climacteric.

  4. A sensitive estimation of residual ethylene glycol in ethylene oxide sterilized medical devices by HPLC with electrospray ionization mass spectrometric detection.

    Science.gov (United States)

    Hari, P R; Naseerali, C P; Sreenivasan, K

    2009-01-15

    A novel analytical methodology for the estimation of residual ethylene glycol (EG) in ethylene oxide sterilized polymer is reported. The method involves the monitoring of ammonium adduct of EG ions in the presence of 10 mM ammonium acetate buffer and methanol using electrospray ionization liquid chromatography and mass spectrometry (LC-ESI-MS). The method enables the detection and quantification of EG without prior derivatization up to a level of 0.06 microg/ml. The potentiality of the method is demonstrated by estimating EG in ethylene oxide (EtO) sterilized polyethylene terephthalate fabric used in heart valve sewing ring. The method is simple, rapid and can routinely be used for the quantification of residual EG in EtO sterilized medical devices.

  5. 26kDa endochitinase from barley seeds: real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Dennhart, Nicole; Weigang, Linda M M; Fujiwara, Maho

    2009-01-01

    A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI......-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase...... of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme-oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E...

  6. Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes

    DEFF Research Database (Denmark)

    Janfelt, Christian; Wellner, Niels; Hansen, Harald S

    2013-01-01

    Displaced dual-mode imaging (DDI) is introduced as a method for simultaneous imaging in positive and negative-ion mode on the same sample with desorption electrospray ionization imaging, as well as a method for simultaneous imaging in full-scan and tandem mass spectrometry (MS/MS) mode. DDI...... only. Simultaneous full-scan and MS/MS imaging was demonstrated on the same mouse kidney, as the mouse had been given a relatively low dose of the antidepressive drug amitriptyline. While the full-scan data allowed imaging of the endogenous phospholipids, the drug and its metabolites were only visible...... in the MS/MS images. The latter approach is useful, for example in whole-body imaging experiments where the full-scan data gives an overview of the tissue, and the MS/MS mode provides the sensitivity to image trace amounts of drugs and metabolites. Copyright © 2013 John Wiley & Sons, Ltd....

  7. Direct Infusion Electrospray Ionization - Ion Mobility - High Resolution Mass Spectrometry (DIESI-IM-HRMS) for Rapid Characterization of Potential Bioprocess Streams

    Science.gov (United States)

    Munisamy, Sharon M.; Chambliss, C. Kevin; Becker, Christopher

    2012-07-01

    Direct infusion electrospray ionization - ion mobility - high resolution mass spectrometry (DIESI-IM-HRMS) has been utilized as a rapid technique for the characterization of total molecular composition in "whole-sample" biomass hydrolysates and extracts. IM-HRMS data reveal a broad molecular weight distribution of sample components (up to 1100 m/z) and provide trendline isolation of feedstock components from those introduced "in process." Chemical formulas were obtained from HRMS exact mass measurements (with typical mass error less than 5 ppm) and were consistent with structural carbohydrates and other lignocellulosic degradation products. Analyte assignments are supported via IM-MS collision-cross-section measurements and trendline analysis (e.g., all carbohydrate oligomers identified in a corn stover hydrolysate were found to fall within 6 % of an average trendline). These data represent the first report of collision cross sections for several negatively charged carbohydrates and other acidic species occurring natively in biomass hydrolysates.

  8. Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds

    DEFF Research Database (Denmark)

    Hartvigsen, Karsten; Ravandi, A.; Bukhave, Klaus

    2001-01-01

    A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were....... The diagnostic ions of directly analyzed 1-O-alkyl-2,3-diacyl-sn- glycerols were the [M - alkyl](+), [M - sn-2-acyl](+) and [M - sn-3-acyl](+) ions. Regiospecific characterization of the fatty acid identity and position was evident from the relative ion intensities, as fragmentation of the sn-2 fatty acids...... for each neutral ether lipid class. The present study demonstrates that reversed-phase HPLC and positive ion ESI/CID/MS provide direct and unambiguous information about the configuration and identity of molecular species in neutral 1-O-alkyl-sn-glycerol classes....

  9. Expanded newborn screening of inborn errors of metabolism by capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS).

    Science.gov (United States)

    Britz-McKibbin, Philip

    2013-01-01

    Expanded newborn screening of inborn errors of metabolism (IEM) based on tandem mass spectrometry technology has emerged as one of the most successful preventative healthcare initiatives for presymptomatic diagnosis and treatment of rare yet treatable genetic diseases. However, confirmatory testing using methods with improved specificity is required in clinical laboratories to improve the positive predictive value for certain classes of IEMs due to their high rates of false positives. Here, we describe recent advances for comprehensive profiling of amino acids and acylcarnitines derived from dried blood spot extracts or plasma using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) that allows for resolution of major isobaric/isomeric interferences without complicated sample handling. The integration of online sample preconcentration together with desalting in CE-ESI-MS enables the direct analysis of hydrophilic amino acids, surface-active acylcarnitines, as well as labile thiols under a single format when using a simple aqueous buffer electrolyte system.

  10. Investigation of pyrrolizidine alkaloids and their N-oxides in commercial comfrey-containing products and botanical materials by liquid chromatography electrospray ionization mass spectrometry.

    Science.gov (United States)

    Altamirano, Jorgelina C; Gratz, Samuel R; Wolnik, Karen A

    2005-01-01

    Pyrrolizidine alkaloids (PAs) and their N-oxides are found in several plant families throughout the world. PAs are potentially toxic to the liver and/or lungs in humans and may cause acute liver failure, cirrhosis, pneumonitis, or pulmonary hypertension. PAs are also carcinogenic to animals, and they have been linked to the development of hepatocellular and skin squamous cell carcinomas as well as liver angiosarcomas. According to experimental studies, the quantity of PAs in some herbal teas and dietary supplements is sufficient to be carcinogenic in exposed individuals. A method for the extraction and identification of PAs and their N-oxides in botanical materials and commercial comfrey-containing products has been developed using liquid chromatography electrospray ionization mass spectrometry. Following optimization of the extraction procedure and the chromatographic conditions, the method was applied to the analysis of 10 herbal remedies. All of the products that were labeled to contain comfrey were found to contain measurable quantities of PAs.

  11. Characteristics of glycation and glycation sites of lysozyme by matrix-assisted laser desorption/ionization time of flight/time-of-flight mass spectrometry and Liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Ruan, Eric Dongliang; Wang, Hui; Ruan, Yuanyuan; Juáreza, Manuel

    2014-01-01

    Protein glycation with reducing sugars through the Maillard reaction is regarded as one of the most important reactions in food chem- istry. Amadori rearrangement products [ARPs] are produced at the initial stage of the Maillard reaction and then advanced glycation products may be formed. We report here that using matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight detection [MALDI-TOF-MS] and electrospray ionization mass spectrometry (ESI-MSJ to monitor the glycation process in lysozyme and the D-glucose model system. MALDI-TOF-MS displayed a heterogeneous distribution of glycation via a total mass shift in spectra. However electrospray ionization mass spectrometry [ESI-MS] data showed that a total of four molecules of glucose reacted with Lysozyme at an increase in molecular weight by a 162 Da unit. Further, we identified the glycation sites of lysozyme by using MALDI-TOF/TOF-MS and Liquid chromatography [LC]-ESI-MS/MS. Besides the two glycation sites of Lys1 and Lys97 identified by MALDI-TOF/TOF-MS, the other two glycation sites of Lys13 and Lys116 were characterized unambiguously by LC-ESI-MS/MS. Both MALDI-TOF/TOF-MS and LC-ESI-MS/ MS provided confidence in the study of the glycation by restricting the number of possible residues through (un]modified ions. The study is useful to monitor and characterize glycation in protein systems based on both MALDI-TOF-MS and ESI-MS. Comparatively, LC-ESI-MS/MS provides more fragments with better recovery for the identification of glycation than MALDI-TOF/TOF-MS.

  12. Ionization cross section for a strongly coupled partially ionized hydrogen plasma: variable phase approach

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B; Kudyshev, Z A [Department of Physics, Al-Farabi Kazakh National University, 050012 Almaty (Kazakhstan)], E-mail: Fazylhan.Baimbetov@kaznu.kz, E-mail: Z.Kudyshev@mail.ru

    2009-05-29

    In the present work an electron impact ionization cross section is considered. The electron impact ionization cross section is calculated with the help of a variable phase approach to potential scattering. The Calogero equation is numerically solved, based on a pseudopotential model of interaction between partially ionized plasma particles, which accounts for correlation effects. As a result, scattering phase shifts are obtained. On the basis of the scattering phase shifts, the ionization cross section is calculated.

  13. Identifying the related compounds using electrospray ionization tandem mass spectrometry: bromotyrosine alkaloids from marine sponge Psammaplysilla purpurea

    Digital Repository Service at National Institute of Oceanography (India)

    Tilvi, S.; DeSouza, L.

    erythrocytes, mouse kidney and fetal calf brain were characterized by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS, liquid secondary ionization mass spectrometry (LSIMS) and MS/MS. 22 Recently, MALDI-MS full scan analysis... in mass spectra of peptides", Biomed. Mass Spectrom. 11, 601 (1984). 2. J. Hardouin, "Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry", Mass spectrometry reviews 26, 672 (2007). 3. I...

  14. Preparative purification of gentamicin components using high-speed counter-current chromatography coupled with electrospray mass spectrometry.

    Science.gov (United States)

    Inoue, Koichi; Hattori, Yasuko; Horie, Masakazu; Hino, Tomoaki; Oka, Hisao

    2011-06-01

    We developed a useful and preparative method based on high-speed counter-current chromatography with mass spectrometry (HSCCC/MS) to purify gentamicin C1a, C2/2a and C1 from standard powder. The analytes were purified on the HSCCC model CCC-1000 (multi-layer coil planet centrifuge) with a volatile two-phase solvent system composed of n-butanol/10% aqueous ammonia solution (50:50, v/v) and detected on an LCMS-2020EV quadrupole mass spectrometer fitted with an electrospray ionization (ESI) source system in positive ionization following scan mode (m/z 100-500). The HSCCC/ESI-MS peaks indicated that gentamicin C1a (m/z 450: [M+H](+)), C2/2a (m/z 464: [M+H](+)) and C1 (m/z 478: [M+H](+)) have the peak resolution values of 1.3 and 1.7 from 30 mg of loaded gentamicin powder. The HSCCC yielded 3.9 mg of gentamicin C1a, 12.6 mg of gentamicin C2/2a and 12.0 mg of gentamicin C1. These purified substances were analyzed by LC/MS with scan positive-mode. Based on the LC/MS chromatograms and spectra of the fractions, analytes were estimated to be over 95% pure. These gentamicin isomers of C1a, C2/2a and C1 were evaluated for their antibacterial activities. The overall results indicate that this approach of HSCCC/MS is a powerful technique for the purification of gentamicin components. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Identification of heat-induced degradation products from purified betanin, phyllocactin and hylocerenin by high-performance liquid chromatography/electrospray ionization mass spectrometry.

    Science.gov (United States)

    Herbach, Kirsten M; Stintzing, Florian C; Carle, Reinhold

    2005-01-01

    Betanin, phyllocactin (malonylbetanin) and hylocerenin (3-hydroxy-3-methylglutarylbetanin) were isolated from purple pitaya (Hylocereus polyrhizus [Weber] Britton and Rose) juice, and their degradation products generated by heating at 85 degrees C were subsequently monitored by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Thermal degradation of phyllocactin and hylocerenin in purified solution excluding the alleged protective effects by the juice matrix is reported for the first time. Betanin was predominantly degraded by hydrolytic cleavage, while decarboxylation and dehydrogenation were of minor relevance. In contrast, hylocerenin showed a strong tendency to decarboxylation and dehydrogenation, hydrolytic cleavage of the aldimine bond occurring secondarily. Phyllocactin degradation was most complex because of additional decarboxylation of the malonic acid moiety as well as generation and subsequent degradation of betanin due to phyllocactin demalonylation. Upon prolonged heating, all betacyanins under observation formed degradation products characterized by an additional double bond at C2-C3. Hydrolytic cleavage of the aldimine bond of phyllocactin and hylocerenin yielded previously unknown acylated cyclo-dopa derivatives traceable by positive ionization, while application of ESI(-) facilitated the detection of a glycosylated aminopropanal derivative and dopamine, which have never been described before as betanin degradation products. Copyright (c) 2005 John Wiley & Sons, Ltd.

  16. Ionization fronts in coupled MHD-gas simulations

    Science.gov (United States)

    Wilson, A. D.; Diver, D. A.

    2017-09-01

    Partially ionized plasmas are ubiquitous in both nature and the laboratory, and their behaviour is best described by models which take into account the interactions between the neutral and charged species. We present a new non-linear, 3-dimensional, finite difference Gas-MHD Interactions Code designed to solve simultaneously the time evolution of fluid equations of both species in the conservation form as well as collisional interactions between them via appropriate choices of source term; in particular, we present results from this code in simulating Alfvén ionization in a partially ionized plasma. In this fashion, larger changes in the ionization fraction than were addressable in the linear limit are possible. Alfvén ionization is shown to impart plasmas with an inherent resistance to rapid recombination, where the recombination itself is significant enough to drive relative motion between the ionised and neutral species at speeds in excess of the critical velocity.

  17. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry.

    Science.gov (United States)

    Boulekbache-Makhlouf, Lila; Meudec, Emmanuelle; Mazauric, Jean-Paul; Madani, Khodir; Cheynier, Véronique

    2013-02-01

    Eucalyptus species are widely cultivated in Mediterranean regions. Moreover, plants of this family have been utilized for medicinal purposes. A number of studies have been devoted to the identification of eucalypt phenolics, all of them have focused on specific families of compounds, and no exhaustive profiling has been reported in leaves of this plant. To develop methods that allows the identification and quantification of different classes of phenolics in Eucalyptus globulus leaf. Acetonic extract was fractionated by chromatography on a Sephadex LH-20 column using consecutive elution with ethanol, methanol and aqueous acetone (60%). High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI/MS) were applied to determine the structure of different compounds. Quantities were evaluated from peak areas in the HPLC profile, using external calibration curves. Fractionation of acetonic extract yielded three fractions: F1, F2 and F3. In total 39 phenolic compounds are detected. Among them: 16 hydrolyzable tannins, 3 terpenyl derivatives, 12 ellagic acid derivatives, 5 flavonols, 2 hydroxybenzoic acids and 1 formylated phloroglucinol. 26 compounds described in this study have not previously detected in leaves of this plant and this is the first report of quercetin 3-O-β-galactoside-6"-O-gallate and cypellogin A and B, in E. globulus plant. Quantitatively, ellagic acid derivatives and sideroxylonal A or B are largely predominant. Fractionation of crude extract by chromatography on Sephadex LH-20 was efficient to separate different molecular weight compounds. HPLC-DAD-ESI/MS enabled detection of gallotannin, ellagitannin and flavonol derivatives, in leaves of E. globulus. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Isolation and identification of phenolic compounds from rum aged in oak barrels by high-speed countercurrent chromatography/high-performance liquid chromatography-diode array detection-electrospray ionization mass spectrometry and screening for antioxidant activity.

    Science.gov (United States)

    Regalado, Erik L; Tolle, Sebastian; Pino, Jorge A; Winterhalter, Peter; Menendez, Roberto; Morales, Ana R; Rodríguez, José L

    2011-10-14

    Beverages, especially wines are well-known to contain a variety of health-beneficial bioactive substances, mainly of phenolic nature which frequently exhibit antioxidant activity. Significant information is available about the separation and identification of polyphenols from some beverages by chromatographic and spectroscopic techniques, but considerably poor is chemical data related to the polyphenolic content in rums. In this paper, a method involving the all-liquid chromatographic technique of high-speed countercurrent chromatography (HSCCC) combined with high-performance liquid chromatography coupled with diode-array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS(n)) has been successfully applied for separation and identification of phenolic compounds in an aged rum. Besides, the phenolic fraction (PF) was assayed for its antioxidant effects using three different free radical in vitro assays (DPPH·, RO(2)· and spontaneous lipid peroxidation (LPO) on brain homogenates) and on ferric reducing antioxidant power (FRAP). Results showed that PF potently scavenged DPPH and strongly scavenged peroxyl radicals compared to ascorbic acid and butylated hydroxytoluene (BHT); and almost equally inhibited LPO on brain homogenates subjected to spontaneous LPO when compared to quercetin. Moreover, PF also exhibited strong reducing power. This chemical analysis illustrates the rich array of phenols in the aged rum and represents a rapid and suitable method for the isolation and identification of phenolic compounds from mixtures of considerable complexity, achieving high purity and reproducibility with the use of two separation steps. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Multi-responses extraction optimization combined with high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry and chemometrics techniques for the fingerprint analysis of Aloe barbadensis Miller.

    Science.gov (United States)

    Zhong, Jia-Sheng; Wan, Jin-Zhi; Ding, Wen-Jing; Wu, Xiao-Fang; Xie, Zhi-Yong

    2015-03-25

    A quality control strategy using high-performance liquid chromatography-diode array detector-electrospray ionization-tandem mass spectrometry (HPLC-DAD-ESI-MS/MS) coupled with chemometrics analysis was proposed for Aloe barbadensis Miller. Firstly, the extraction conditions including methanol concentration, extraction time and solvent-to-material ratio were optimized by multi-responses optimization based on response surface methodology (RSM). The optimum conditions were achieved by Derringer's desirability function and experimental validation implied that the established model exhibited favorable prediction ability. Then, HPLC fingerprint consisting of 27 common peaks was developed among 15 batches of A. barbadensis samples. 25 common peaks were identified using HPLC-DAD-ESI-MS/MS method by their spectral characteristics or comparison with the authentic standards. Chemometrics techniques including similarity analysis (SA), principal components analysis (PCA) and hierarchical clustering analysis (HCA) were implemented to classify A. barbadensis samples. The results demonstrated that all A. barbadensis samples shared similar chromatographic patterns as well as differences. These achievements provided an effective, reliable and comprehensive quality control method for A. barbadensis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Modification of human serum albumin by the nerve agent VX: microbore liquid chromatography/electrospray ionization high-resolution time-of-flight tandem mass spectrometry method for detection of phosphonylated tyrosine and novel cysteine containing disulfide adducts.

    Science.gov (United States)

    Kranawetvogl, Andreas; Worek, Franz; Thiermann, Horst; John, Harald

    2016-10-15

    Organophosphorus nerve agents still constitute a considerable threat to the health of military personnel and the civilian population. Long-term biomarkers are crucial for reliable verification of exposure to banned substances. Therefore, current research focuses on identification of endogenous protein targets showing covalent modifications by organophosphorus nerve agents (adducts). Purified human serum albumin and human plasma were incubated with the nerve agent VX followed by enzymatic proteolysis with pronase. Resulting peptide cleavage products were separated by microbore liquid chromatography (μLC) online coupled to positive electrospray ionization (ESI) with subsequent high-resolution time-of-flight tandem mass spectrometry (HR MS/MS) allowing identification of known and novel adducts. In addition to known phosphonylation of various tyrosine residues, albumin was found to be modified at diverse cysteine residues by covalent attachment of the leaving group of VX. These novel disulfide adducts were cleaved from at least two regions of the intact protein as dipeptides containing cysteine and proline either as CP or PC. A rapid and sensitive method was developed for simultaneous detection of the diverse covalent modifications of human albumin by VX. Identification of the novel leaving group adducts with human albumin expands the basic knowledge on molecular toxicology of the nerve agent VX. Furthermore, the presented μLC/ESI HR MS/MS method might be of relevance for verification of VX poisoning. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Electrospray ionization-ion mobility spectrometry as a detection system for three-phase hollow fiber microextraction technique and simultaneous determination of trimipramine and desipramine in urine and plasma samples.

    Science.gov (United States)

    Jafari, M T; Saraji, M; Sherafatmand, H

    2011-04-01

    A novel method based on three-phase hollow fiber microextraction technique (HF-LPME) coupled with electrospray ionization-ion mobility spectrometry (ESI-IMS) was developed for the simultaneous determination of two antidepressant drugs (trimipramine and desipramine) in urine and plasma samples. The effects of various parameters such as type of organic solvent, composition of donor and acceptor phase, stirring rate, salt addition, extraction time, and temperature were investigated. Under the optimized conditions, the relative standard deviation was in the range of 5-6%, and the method quantitation limit (MQL) of utilizing HF-LPME/ESI-IMS was 5 μg/L for both drugs. The relative recoveries obtained by the proposed method from urine and plasma samples were in the range 94% to 97% for trimipramine and 92% to 96% for desipramine. Finally, the feasibility of the proposed method was successfully confirmed by extraction and determination of trace amounts of trimipramine and desipramine in biological samples without any significant matrix effect.

  2. Electrospray ionization quadrupole time-of-flight tandem mass spectrometric analysis of hexamethylenediamine-modified maltodextrin and dextran

    NARCIS (Netherlands)

    Sisu, E.; Bosker, W.T.E.; Norde, W.; Slaghek, T.M.; Timmermans, J.W.; Peter-Katalinić, J.; Cohen-Stuart, M.A.; Zamfir, A.D.

    2006-01-01

    A combined methodology for obtaining at the preparative scale and characterization by nanoelectrospray ionization (nanoESI) quadrupole time-of-flight (QTOF) mass spectrometry (MS) and tandem MS (MS/MS) of linear polysaccharides modified at the reducing end is presented. Two polydisperse

  3. Golf ball-assisted electrospray ionization of mass spectrometry for the determination of trace amino acids in complex samples.

    Science.gov (United States)

    Li, Yen-Hsien; Chen, Chung-Yu; Kuo, Cheng-Hsiung; Lee, Maw-Rong

    2016-09-28

    During the electrospray ionization (ESI) process, ions move through a heated capillary aperture to be detected on arrival at a mass analyzer. However, the ESI process creates an ion plume, which expands into an ion cloud with an area larger than that of the heated capillary aperture, significantly contributing to an ion loss of 50% due to coulombic repulsion. The use of DC and RF fields to focus ions from the ion source into the vacuum chamber has been proposed in the literature, but the improvement of ion transmission efficiency is limited. To improve ion transmission, in this study we propose a novel method using a home-made golf ball positioned between the ion source and the inlet of the mass analyzer to hydrodynamically focus the ions passing through the golf ball. The ion plume produced by the ESI process passes through the golf ball will reduce the size of the ion cloud then be focused and most of them flowed into the mass analyzer. Therefore, the sensitivity will be improved, the aim of this investigation is to study the enhancing of the signal using golf ball-assisted electrospray ionization liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine 20 trace amino acids in complex samples, including tea, urine and serum. The results showed that the analytical performance of the determination of the 20 amino acids in tea, urine and serum samples using the home-made golf ball-assisted ESI source is better than that of a commercial ESI source. The signal intensities of the 20 amino acids were enhanced by factors of 2-2700, 11-2525, and 31-342680 in oolong tea, urine and serum analyses, respectively. The precision of the proposed method ranged from 1-9%, 0.4-9% and 0.4-8% at low, medium and high concentration levels of amino acids, respectively. The home-made golf ball-assisted ESI source effectively increased the signal intensity and enhanced the ion transmission efficiency and is also an easy, convenient and economical device. This technique can

  4. Miniaturization of electrostatic ion engines by ionization and acceleration coupling

    Science.gov (United States)

    Ferrer, P.; Tchonang, M. P.

    2011-08-01

    We introduce a thruster concept where the same electric field is responsible for both ionization of the neutrals and acceleration of the ions, by letting the propellant gas escape into a high-field region through a thin, hollow needle at high electric potential. Ionization occurs via the corona mechanism. The configuration is very similar to the FEEP, the difference being in the ionization mechanism and the use of gaseous propellant. Although tests showed that such a thruster only ionizes a small fraction of the neutral gas (concept thruster was tested, whose mass was decent agreement. The tests were only suitable for initial data collection and the thruster only moderately resembled a working design, hence data such as efficiency cannot yet be meaningfully stated.

  5. Analysis of triptophenolide and its related compounds from Tripterygium wilfordii Hook.f by electrospray ionization tandem mass spectrometry

    Science.gov (United States)

    Li, Rui; Peng, Aihua; He, Chunmei; Wang, Xianhuo; Shi, Jianyou; Chen, Lijuan; Wei, Yuquan

    2008-11-01

    Triptophenolide and its related compounds from Tripterygium wilfordii Hook.f is a kind of diterpenoids which shows anti-inflammatory activity. To study the metabolites of triptophenolide related compounds, the fragmentation mechanisms of them were investigated by using negative electrospray tandem mass spectrometry. With the aid of high resolution of ESI-QTOF-MS/MS, the fragmentation mechanisms of six diterpenoid compounds were systematically investigated. The fragmentation behavior mainly depends on what substituent groups the benzyl C ring bears. If there is a hydroxyl group on the position of C14, loss of CH4 is dominating. However, the successive loss of two CH3 radicals is predominant when the hydroxyl group of O14 is methylated. The lactone ring is prone to be dissociated to loss of CO, CO2 and C2H2O2 molecules. The pericyclic reaction can occur on A ring if there is an active hydrogen resides on C ring. Furthermore, one metabolite of compound A1 was confirmed by cytochrome P450 in vitro and the structure was proposed by tandem mass experiment together with the fragmentation mechanisms of this type of compounds.

  6. Analysis of monomeric and oligomeric organophosphorus flame retardants in fish muscle tissues using liquid chromatography–electrospray ionization tandem mass spectrometry: Application to Nile tilapia (Oreochromis niloticus) from an e-waste processing area in northern Vietnam

    OpenAIRE

    Matsukami, Hidenori; Suzuki, Go; Tue, Nguyen Minh; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka

    2016-01-01

    Using electrospray ionization tandem mass spectrometry combined with liquid chromatography (LC), a novel analytical method was developed to quantify eight monomeric organophosphorus flame retardants (m-PFRs) and three oligomeric organophosphorus flame retardants (o-PFRs) in fish muscle samples. The optimization and validation experiments indicate that the developed method can determine accurately the concentrations of analytes in fish muscle samples. The recoveries of analytes in fish muscle ...

  7. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    Energy Technology Data Exchange (ETDEWEB)

    Midey, Anthony J., E-mail: anthony.midey@excellims.com; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-12-04

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K{sub 0}, have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL{sup −1} levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL{sup −1} levels without extensive

  8. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    International Nuclear Information System (INIS)

    Midey, Anthony J.; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-01-01

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K 0 , have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL −1 levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL −1 levels without extensive sample handling

  9. Analysis of selected sugars and sugar phosphates in mouse heart tissue by reductive amination and liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Han, Jun; Tschernutter, Vera; Yang, Juncong; Eckle, Tobias; Borchers, Christoph H

    2013-06-18

    Sensitive and reliable analysis of sugars and sugar phosphates in tissues and cells is essential for many biological and cell engineering studies. However, the successful analysis of these endogenous compounds in biological samples by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is often difficult because of their poor chromatographic retention properties in reversed-phase LC, the complex biological matrices, and the ionization suppression in ESI. This situation is further complicated by the existence of their multiple structural isomers in vivo. This work describes the combination of reductive amination using 3-amino-9-ethylcarbazole, with a new LC approach using a pentafluorophenyl core-shell ultrahigh performance (UP) LC column and methylphosphonic acid as an efficient tail-sweeping reagent for improved chromatographic separation. This new method was used for selected detection and accurate quantitation of the major free and phosphorylated reducing sugars in mouse heart tissue. Among the detected compounds, accurate quantitation of glyceraldehyde, ribose, glucose, glycerylaldehyde-3-phosphate, ribose-5-phosphate, glucose-6-phosphate, and mannose-6-phosphate was achieved by UPLC/multiple-reaction monitoring (MRM)-MS, with analytical accuracies ranging from 87.4% to 109.4% and CVs of ≤8.5% (n = 6). To demonstrate isotope-resolved metabolic profiling, we used UPLC/quadrupole time-of-flight (QTOF)-MS to analyze the isotope distribution patterns of C3 to C6 free and phosphorylated reducing sugars in heart tissues from (13)C-labeled wild type and knockout mice. In conclusion, the preanalytical derivatization-LC/ESI-MS method has resulted in selective determination of free and phosphorylated reducing sugars without the interferences from their nonreducing structural isomers in mouse heart tissue, with analytical sensitivities in the femtomole to low picomole range.

  10. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    Science.gov (United States)

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  11. Development of electrospray ionization tandem mass spectrometry methods for the study of a high number of urine markers of inborn errors of metabolism.

    Science.gov (United States)

    Rebollido-Fernandez, M Maira; Castiñeiras, Daisy E; Bóveda, M Dolores; Couce, M Luz; Cocho, José A; Fraga, Jose M

    2012-09-30

    Rapid and specific screening methods to detect abnormal metabolites in biological fluids are important for the diagnosis of many Inborn Errors of Metabolism (IEM). In Galicia (N.W. Spain), where newborn screening (NBS) has long used both blood and urine dried samples, an expanded NBS by tandem mass spectrometry (MS/MS) begun in July 2000 analyzing amino acids and acylcarnitines in blood. The purpose of this study is the development of methods to widen and to complement the present NBS with the study of the selected metabolites in urine. We studied and optimized the fragmentation of a total of 96 marking compounds of IEM, as well as 34 isotopically labeled internal standards (IS). The isobaric interferences were resolved with the use of alternative fragmentation in 14 of the 28 groups found. The methods were validated for 68 compounds following the recommendations of the NCCLS. We have developed electrospray ionization (ESI)- MS/MS methods in positive and negative ionization modes to detect selected metabolites in urine. The study was performed by direct injection of amino acids and acylcarnitines in positive mode, and organic acids, acylglycines, purines and pyrimidines in negative mode. Run times were 2.5 and 2.6 min, respectively, allowing the daily analysis of a high number of samples. The validated methods were proved effective for the simultaneous study of a large number of metabolites which are commonly present in urine samples and are used for detecting IEM. The evaluation was done by searching diagnostic profiles with multiple markers to increase sensitivity and specificity (e.g., acylcarnitines plus amino acids) or with specific urine markers (cystine, homogentisic acid, sialic acid, N-acetylaspartic acid, etc.). Copyright © 2012 John Wiley & Sons, Ltd.

  12. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry

    International Nuclear Information System (INIS)

    Xu Weihai; Zhang Gan; Zou Shichun; Li Xiangdong; Liu Yuchun

    2007-01-01

    Nine selected antibiotics in the Victoria Harbour of Hong Kong and the Pearl River at Guangzhou, South China, were analyzed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. The results showed that the concentrations of antibiotics were mainly below the limit of quantification (LOQ) in the marine water of Victoria Harbour. However, except for amoxicillin, all of the antibiotics were detected in the Pearl River during high and low water seasons with the median concentrations ranging from 11 to 67 ng/L, and from 66 to 460 ng/L, respectively; and the concentrations in early spring were about 2-15 times higher than that in summer with clearer diurnal variations. It was suggested that the concentrations of antibiotics in the high water season were more affected by wastewater production cycles due to quick refreshing rate, while those in the low water season may be more sensitive to the water column dynamics controlled by tidal processes in the river. - Antibiotics were found at high concentrations in an urban reach of Pearl River in southern China with contrast diurnal variations between the high and low water seasons

  13. Pharmacokinetic Study of a Diclofenac Sodium Capsule Filled with Enteric-coated Pellets in Healthy Chinese Volunteers by Liquid Chromatography-electrospray Ionization-tandem Mass Spectrometry.

    Science.gov (United States)

    Ma, J-Y; Liu, M; Yang, M; Zhao, H; Tong, Y; Zhang, Y; Deng, M; Liu, H

    2016-05-01

    The pharmacokinetic study of a diclofenac sodium capsule filled with enteric-coated pellets (abbreviated as CAPSULE) in healthy Chinese subjects was evaluated using liquid chromatography-electrospray ionization-tandem mass spectrometry with simple sample preparation. In a cross-over study, 12 healthy male volunteers were given 50 mg CAPSULE and diclofenac sodium enteric-coated tablet (abbreviated as TABLET, used as a control dosage form) at fasting. The Cmax, AUC0-t, and Tmax of CAPSULE were 1.01±0.52 μg/mL, 1.54±0.18 μg·h/mL, and 1.50±1.31 h, respectively. When compared with TABLET, the pharmacokinetic study showed that although this CAPSULE exhibited similar AUC (only 10% lower), it presented lower maximum plasma concentration, faster absorption and shorter time to reach maximum concentration. When compared with the previous study in Germany, obvious variations on Tmax were found in Chinese subjects taking CAPSULE, but not TABLET. The results indicated that individual difference should be paid attention when prescribing CAPSULE to Chinese patients. © Georg Thieme Verlag KG Stuttgart · New York.

  14. High performance liquid chromatography (HPLC fingerprints and primary structure identification of corn peptides by HPLC-diode array detection and HPLC-electrospray ionization tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Chi Wang

    2016-01-01

    Full Text Available Corn peptides (CPs are reported to have many biological functions, such as facilitating alcohol metabolism, antioxidation, antitumor, antihypertension, and hepatoprotection. To develop a method for quality control, the high-performance liquid chromatography (HPLC system was applied. Twenty-eight common peaks were found in all the CPs of corn samples from Enshi, China, based on which, a fingerprinting chromatogram was established for use in quality control in future research. Subsequently, the major chemical constituents of these common peaks were identified respectively using the HPLC-diode-array detection electrospray ionization tandem mass spectrometry (DAD-ESI-MS/MS system, and 48 peptide fractions were determined ultimately. This was the first time for the majority of these peptides to be reported, and many of them contained amino acids of glutamine (Q, L and A, which might play an important role in the exhibition of the bioactivities of CPs. Many peptides had a similar primary structure to the peptides which had been proven to be bioactive such as facilitating alcohol metabolism, scavenging free radicals, and inhibiting lipid peroxidation. This systematical analysis of the primary structure of CPs facilitated subsequent studies on the relationship between the structures and functions, and could accelerate holistic research on CPs.

  15. Kinetic method for enantiomeric determination of thyroid hormone (d,l-thyroxine) using electrospray ionization tandem mass spectrometry (ESI-MS/MS)

    Science.gov (United States)

    Lee, Min-Kwon; Kumar, Avvaru Praveen; Lee, Yong-Ill

    2008-05-01

    A rapid, sensitive, simple and accurate mass spectrometric analysis for the recognition and quantitation of d- and l-thyroxine (d- and l-T4) was achieved by using kinetic method. The method uses the kinetics of competitive unimolecular fragmentations of trimeric transition metal ion-bound clusters formed under electrospray ionization (ESI). Singly charged cluster ions containing the divalent central metal ion Ca(II)/Mn(II), an amino acid/modified amino acid chiral reference, and the analyte d- and l-T4 were generated by ESI. The cluster ion of interest was mass-selected, and subjected to collision-induced dissociation for undergoing dissociation by competitive loss of either a neutral reference or a neutral analyte. The chiral selectivity (Rchiral), the ratio of the two competitive dissociation rates (abundances of fragment ion) containing the analyte in one enantiomeric form expressed relative to that for the fragments of the other enantiomer, ranges from 0E46 to 3.03. Method by using fixed ligand such as peptide has also successfully improved chiral recognition and quantitative accuracy, which simplifies the dissociation kinetics, in which only the reference ligand or the analyte can be lost. The linear relationship between the logarithm of the fragment ion abundance ratio (ln R) and enantiomeric compositions (ee%) of the T4 allows the chiral purity of enantiomeric mixtures to be determinedE The average relative errors were less than 2% between the actual and experimental enantiomeric compositions.

  16. Evaluation of the Broad-Range PCR-Electrospray Ionization Mass Spectrometry (PCR/ESI-MS System and Virus Microarrays for Virus Detection

    Directory of Open Access Journals (Sweden)

    Lanyn P. Taliaferro

    2014-04-01

    Full Text Available Advanced nucleic acid-based technologies are powerful research tools for novel virus discovery but need to be standardized for broader applications such as virus detection in biological products and clinical samples. We have used well-characterized retrovirus stocks to evaluate the limit of detection (LOD for broad-range PCR with electrospray ionization mass spectrometry (PCR/ESI-MS or PLEX-ID, RT-PCR assays, and virus microarrays. The results indicated that in the absence of background cellular nucleic acids, PLEX-ID and RT-PCR had a similar LOD for xenotropic murine retrovirus-related virus (XMRV; 3.12 particles per µL whereas sensitivity of virus detection was 10-fold greater using virus microarrays. When virus was spiked into a background of cellular nucleic acids, the LOD using PLEX-ID remained the same, whereas virus detection by RT-PCR was 10-fold less sensitive, and no virus could be detected by microarrays. Expected endogenous retrovirus (ERV sequences were detected in cell lines tested and known species-specific viral sequences were detected in bovine serum and porcine trypsin. A follow-up strategy was developed using PCR amplification, nucleotide sequencing, and bioinformatics to demonstrate that an RD114-like retrovirus sequence that was detected by PLEX-ID in canine cell lines (Madin-Darby canine kidney (MDCK and Cf2Th canine thymus was due to defective, endogenous gammaretrovirus-related sequences.

  17. High-performance liquid chromatography electrospray ionization tandem mass spectrometry for the detection and quantitation of pyrrolizidine alkaloid-derived DNA adducts in vitro and in vivo.

    Science.gov (United States)

    Fu, Peter P; Chou, Ming W; Churchwell, Mona; Wang, Yuping; Zhao, Yuewei; Xia, Qingsu; Gamboa da Costa, Gonçalo; Marques, M Matilde; Beland, Frederick A; Doerge, Daniel R

    2010-03-15

    Pyrrolizidine alkaloid-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids require metabolism to exert their genotoxicity and tumorigenicity. We have determined that the metabolism of a series of tumorigenic pyrrolizidine alkaloids in vitro or in vivo generates a common set of (+/-)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts that are responsible for tumor induction. The identification and quantitation of the DHP-derived DNA adducts formed in vivo and in vitro were accomplished previously by (32)P-postlabeling/HPLC methodology. In this article, we report the development of a sensitive and specific liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ES-MS/MS) method to detect DHP-derived DNA adducts formed in vitro and in vivo. The method is used to quantify the levels of DHP-2'-deoxyguanosine (dG) and DHP-2'-deoxyadenosine (dA) adducts by multiple reaction monitoring (MRM) analysis in the presence of known quantities of isotopically labeled DHP-dG and DHP-dA internal standards. This HPLC-ES-MS/MS method is accurate and precise. When applied to liver samples from rats treated with the pyrrolizidine alkaloids riddelliine and monocrotaline, the method provided significant new information regarding the mechanism of DNA adduct formation.

  18. A low-makeup beveled tip capillary electrophoresis /electrospray ionization mass spectrometry interface for micellar electrokinetic chromatography and nonvolatile buffer capillary electrophoresis.

    Science.gov (United States)

    Tseng, Mei-Chun; Chen, Yet-Ran; Her, Guor-Rong

    2004-11-01

    A robust interface has been developed for interfacing micellar electrokinetic chromatography (MEKC) and nonvolatile buffer capillary electrophoresis (CE) to electrospray ionization mass spectrometry (ESI-MS). The interface consists of two parallel capillaries for separation (50 microm i.d. x 155 microm o.d.) and makeup (50 microm i.d. x 155 microm o.d.) housed within a larger capillary (530 microm i.d. x 690 microm o.d.). The capillaries terminate in a single tapered tip having a beveled edge. The use of a tapered beveled edge results in a greater tip orifice diameter (75 microm) than in a previous design from our laboratory (25 microm) that used a flat tip. While maintaining a similar optimum flow rate and consequently similar sample dilution, a 75-microm beveled emitter is more rugged than a 25-microm flat tip. Furthermore, the incorporation of a sheath liquid capillary allows the compositions of the final spray solution to be controlled. The application of this novel CE/ESI-MS interface was demonstrated for MEKC using mixtures of triazines (positive ion mode) and phenols (negative ion mode). The ability to perform CE/ESI-MS using a nonvolatile buffer was demonstrated by the analysis of gangliosides with a buffer consisting of 40 mM borate and 20 mM alpha-cyclodextrin.

  19. Ultra pressure liquid chromatography-negative electrospray ionization mass spectrometry determination of twelve halobenzoquinones at ng/L levels in drinking water.

    Science.gov (United States)

    Huang, Rongfu; Wang, Wei; Qian, Yichao; Boyd, Jessica M; Zhao, Yuli; Li, Xing-Fang

    2013-05-07

    We report here the characterization of twelve halobenzoquinones (HBQs) using electrospray ionization (ESI) high resolution quadrupole time-of-flight mass spectrometry. The high resolution negative ESI spectra of the twelve HBQs formed two parent ions, [M + H(+) + 2e(-)], and the radical M(-•). The intensities of these two parent ions are dependent on their chemical structures and on instrumental parameters such as the source temperature and flow rate. The characteristic ions of the HBQs were used to develop an ultra pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. At the UPLC flow rate (400 μL/min) and under the optimized ESI conditions, eleven HBQs showed the stable and abundant transitions [M + H(+) + 2e(-)] → X(-) (X(-) representing Cl(-), Br(-), or I(-)), while dibromo-dimethyl-benzoquinone (DBDMBQ) showed only the transition of M(-•) → Br(-). The UPLC efficiently separates all HBQs including some HBQ isomers, while the MS/MS offers exquisite limits of detection (LODs) at subng/mL levels for all HBQs except DBDMBQ. Combined with solid phase extraction (SPE), the method LOD is down to ng/L. The results from analysis of authentic samples demonstrated that the SPE-UPLC-MS/MS method is reliable, fast, and sensitive for the identification and quantification of the twelve HBQs in drinking water.

  20. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  1. Chemical analysis of raw and processed Fructus arctii by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry

    Science.gov (United States)

    Qin, Kunming; Liu, Qidi; Cai, Hao; Cao, Gang; Lu, Tulin; Shen, Baojia; Shu, Yachun; Cai, Baochang

    2014-01-01

    Background: In traditional Chinese medicine (TCM), raw and processed herbs are used to treat the different diseases. Fructus Arctii, the dried fruits of Arctium lappa l. (Compositae), is widely used in the TCM. Stir-frying is the most common processing method, which might modify the chemical compositions in Fructus Arctii. Materials and Methods: To test this hypothesis, we focused on analysis and identification of the main chemical constituents in raw and processed Fructus Arctii (PFA) by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry. Results: The results indicated that there was less arctiin in stir-fried materials than in raw materials. however, there were higher levels of arctigenin in stir-fried materials than in raw materials. Conclusion: We suggest that arctiin reduced significantly following the thermal conversion of arctiin to arctigenin. In conclusion, this finding may shed some light on understanding the differences in the therapeutic values of raw versus PFA in TCM. PMID:25422559

  2. Development and validation of an ultra-performance liquid chromatography/electrospray ionization-tandem mass spectrometry bioanalytical method for quantifying clonazepam in human plasma.

    Science.gov (United States)

    Favreto, Wagner Alex Jann; Pinto, Ana Maria Pugens; Manfio, Josélia Larger; Hoss, Ivonete; Pristch, Mariely Camila; Bordignon, Solange Fátima

    2013-01-01

    A sensitive, selective, and rapid ultra-performance LC (UPLC)/MSIMS method was validated for the confirmation and quantification of clonazepam in human plasma. The analyte was extracted from human plasma with diethyl ether, reaching an average recovery of 64.02 and 66.48% for clonazepam and the internal standard, respectively. The separation was performed on a Waters ACQUITY UPLC BEH C18 column (50 x 2.1 mm id, 1.7 microm particle size) with gradient elution at a flow rate of 0.25 mL/min using a 0.5% formic acid solution (mobile phase A) and acetonitrile-methanol-formic acid (75+25 + 0.5, v/v/v; mobile phase B). Detection was performed on a triple-quadruple tandem mass spectrometer in the multiple reaction monitoring mode via electrospray ionization. Linear calibration curves were obtained in the concentration range of 0.3-50.0 ng/mL, with an LOQ of 0.3 ng/mL. The intraday and interday precision (CV) values were below 10%, and accuracy (relative error) ranged from -2.6 to 6.6% at all QC levels. The suggested method was successfully applied for the determination of clonazepam in human plasma in a bioequivalence study.

  3. Electrospray ionization mass spectrometry (ESI-MS) monitoring of the photolysis of diazinon in aqueous solution: degradation route and toxicity of by-products against Artemia salina.

    Science.gov (United States)

    Souza, Amauri G; Cardeal, Zenilda L; Augusti, Rodinei

    2013-01-01

    The photolytic degradation of diazinon, an organophosphorus pesticide, in aqueous medium under assorted pH values was continuously monitored by direct infusion electrospray ionization mass spectrometry (ESI-MS). The results indicated that the UV radiation was quite efficient in promoting the pesticide degradation at the three pH levels evaluated (5, 7 and 8). The m/z of the most abundant ions observed in the mass spectra (MS), in conjunction with the fragmentation patterns of such ionic species (MS/MS data), made possible the proposition of chemical structures for the main by-products formed. As a result, routes for the photodegradation of diazinon in aqueous solution could thus be suggested. In the assays using Artemia salina (brine shrimp) it was verified that the photodegradation products exhibited much lower toxicity than the primary substrate. Aiming at mimicking the conditions ordinarily found in water treatment plants, an additional series of tests was conducted with a solution containing sodium hypochlorite and diazinon. This solution, when not exposed to UV radiation, exhibited high toxicity against the microorganisms. Under the influence of UV radiation, however, the toxicity rates decreased dramatically. This result is relevant because it points toward the confident application of UV radiation to neutralize the deleterious effects caused by diazinon (and perhaps other organophosphorus pesticides) as well as sodium hypochlorite to the environment.

  4. Direct analysis of psychoactive tryptamine and harmala alkaloids in the Amazonian botanical medicine ayahuasca by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    McIlhenny, Ethan H; Pipkin, Kelly E; Standish, Leanna J; Wechkin, Hope A; Strassman, Rick; Barker, Steven A

    2009-12-18

    A direct injection/liquid chromatography-electrospray ionization-tandem mass spectrometry procedure has been developed for the simultaneous quantitation of 11 compounds potentially found in the increasingly popular Amazonian botanical medicine and religious sacrament ayahuasca. The method utilizes a deuterated internal standard for quantitation and affords rapid detection of the alkaloids by a simple dilution assay, requiring no extraction procedures. Further, the method demonstrates a high degree of specificity for the compounds in question, as well as low limits of detection and quantitation despite using samples for analysis that had been diluted up to 200:1. This approach also appears to eliminate potential matrix effects. Method bias for each compound, examined over a range of concentrations, was also determined as was inter- and intra-assay variation. Its application to the analysis of three different ayahuasca preparations is also described. This method should prove useful in the study of ayahuasca in clinical and ethnobotanical research as well as in forensic examinations of ayahuasca preparations.

  5. Sorption of Aldrich humic acid onto hematite: Insights into fractionation phenomena by electro-spray ionization with quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, Pascal; Amekraz, Badia; Moulin, Christophe [CEA, CE Saclay, Nuclear Energy Division, DANS/DPC/SECR, Laboratoire de Speciation des Radionucleides et des Molecules, Batiment 391, BP 11, F-91191 Gif sur Yvette Cedex (France)

    2006-07-01

    Sorption induced fractionation of purified Aldrich humic acid (PAHA) on hematite is studied through the modification of electro-spray ionization (ESI) quadrupole time-of-flight (QToF) mass spectra of supernatants from retention experiments. The ESI mass spectra show an increase of the 'mean molecular masses' of the molecules that constitutes humic aggregates. The low molecular weight fraction (LMWF; m/z {<=} 600 Da) is preferentially sorbed compared to two other fractions. The resolution provided by ESI-QToF mass spectrometer in the low-mass range provided evidence of further fractionation induced by sorption within the LMWF. Among the two latter fractions, the high molecular weight fraction (HMWF; m/z {approx_equal} 1700 Da) seems to be more prone to sorption compared to the intermediate molecular weight fraction (IMWF; m/z {approx_equal} 900 Da). The IMWF seems to be more hydrophilic as it should be richer in O, N, and alkyl C from the proportion of even mass, and poorer in aromatic structures from mass defect analysis in ESI mass spectra. (authors)

  6. Supercritical fluid chromatography-photodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances.

    Science.gov (United States)

    Pirrone, Gregory F; Mathew, Rose M; Makarov, Alexey A; Bernardoni, Frank; Klapars, Artis; Hartman, Robert; Limanto, John; Regalado, Erik L

    2018-03-30

    Impurity fate and purge studies are critical in order to establish an effective impurity control strategy for approval of the commercial filing application of new medicines. Reversed phase liquid chromatography-diode array-mass spectrometry (RPLC-DAD-MS) has traditionally been the preferred tool for impurity fate mapping. However, separation of some reaction mixtures by LC can be very problematic requiring combination LC-UV for area % analysis and a different LC-MS method for peak identification. In addition, some synthetic intermediates might be chemically susceptible to the aqueous conditions used in RPLC separations. In this study, the use of supercritical fluid chromatography-photodiode array-electrospray ionization mass spectrometry (SFC-PDA-ESIMS) for fate and purge of two specified impurities in the 1-uridine starting material from the synthesis of a bis-piv 2'keto-uridine, an intermediate in the synthesis of uprifosbuvir, a treatment under investigation for chronic hepatitis C infection. Readily available SFC instrumentation with a Chiralpak IC column (4.6 × 150 mm, 3 μm) and ethanol: carbon dioxide based mobile phase eluent enabled the separation of closely related components from complex reaction mixtures where RLPC failed to deliver optimal chromatographic performance. These results illustrate how SFC combined with PDA and ESI-MS detection can become a powerful tool for direct impurity fate mapping across multiple reaction steps. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Chromatographic enrichment and subsequent separation of nickel and vanadyl porphyrins from natural seeps and molecular characterization by positive electrospray ionization FT-ICR mass spectrometry.

    Science.gov (United States)

    Putman, Jonathan C; Rowland, Steven M; Corilo, Yuri E; McKenna, Amy M

    2014-11-04

    We report a novel chromatographic method to enrich and separate nickel and vanadyl porphyrins from a natural seep sample and combine molecular level characterization by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vanadyl and nickel porphyrin model compound elution from primary secondary amine (PSA) stationary phase combined with UV-vis spectroscopy confirms enrichment and subsequent fractionation of nickel and vanadyl porphyrins into polarity-based subfractions. A more than 100-fold increase in signal-to-noise ratio for nickel porphyrins enables unequivocal elemental composition assignment confirmed by isotopic fine structure for all isotopes >1% relative abundance, and the first mass spectral identification of (61)Ni porphyrin isotopologues derived from natural seeps. Oxygen-containing vanadyl porphyrins and sulfur-containing vanadyl porphyrins are isolated in the same fraction simultaneously from the same sample. We provide the first chromatographic evidence of carboxylic acid functionalities peripheral to the porphyrin core, in agreement with previous studies.

  8. High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Chen, Yisheng; Schwack, Wolfgang

    2014-08-22

    The world-wide usage and partly abuse of veterinary antibiotics resulted in a pressing need to control residues in animal-derived foods. Large-scale screening for residues of antibiotics is typically performed by microbial agar diffusion tests. This work employing high-performance thin-layer chromatography (HPTLC) combined with bioautography and electrospray ionization mass spectrometry introduces a rapid and efficient method for a multi-class screening of antibiotic residues. The viability of the bioluminescent bacterium Aliivibrio fischeri to the studied antibiotics (16 species of 5 groups) was optimized on amino plates, enabling detection sensitivity down to the strictest maximum residue limits. The HPTLC method was developed not to separate the individual antibiotics, but for cleanup of sample extracts. The studied antibiotics either remained at the start zones (tetracyclines, aminoglycosides, fluoroquinolones, and macrolides) or migrated into the front (amphenicols), while interfering co-extracted matrix compounds were dispersed at hRf 20-80. Only after a few hours, the multi-sample plate image clearly revealed the presence or absence of antibiotic residues. Moreover, molecular information as to the suspected findings was rapidly achieved by HPTLC-mass spectrometry. Showing remarkable sensitivity and matrix-tolerance, the established method was successfully applied to milk and kidney samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Xu Weihai [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangzhou 510640 (China); School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510250 (China); Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Post-graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangzhou 510640 (China)]. E-mail: zhanggan@gig.ac.cn; Zou Shichun [School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510250 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Liu Yuchun [School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510250 (China)

    2007-02-15

    Nine selected antibiotics in the Victoria Harbour of Hong Kong and the Pearl River at Guangzhou, South China, were analyzed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. The results showed that the concentrations of antibiotics were mainly below the limit of quantification (LOQ) in the marine water of Victoria Harbour. However, except for amoxicillin, all of the antibiotics were detected in the Pearl River during high and low water seasons with the median concentrations ranging from 11 to 67 ng/L, and from 66 to 460 ng/L, respectively; and the concentrations in early spring were about 2-15 times higher than that in summer with clearer diurnal variations. It was suggested that the concentrations of antibiotics in the high water season were more affected by wastewater production cycles due to quick refreshing rate, while those in the low water season may be more sensitive to the water column dynamics controlled by tidal processes in the river. - Antibiotics were found at high concentrations in an urban reach of Pearl River in southern China with contrast diurnal variations between the high and low water seasons.

  10. Improved detection of drugs of abuse using high-performance ion mobility spectrometry with electrospray ionization (ESI-HPIMS) for urine matrices.

    Science.gov (United States)

    Midey, Anthony J; Patel, Aesha; Moraff, Carol; Krueger, Clinton A; Wu, Ching

    2013-11-15

    High-performance ion mobility spectrometry (HPIMS) with electrospray ionization (ESI) has been used to separate drugs of abuse compounds as a function of drift time (ion mobility), which is based on their size, structural shape, and mass-to-charge. HPIMS has also been used to directly detect and identify a variety of the most commonly encountered illegal drugs, as well as a mixture of opiates in a urine matrix without extra sample pretreatment. HPIMS has shown resolving power greater than 65 comparable to that of high-performance liquid chromatography (HPLC) with only 1 mL of solvent and sample required using air as the IMS separation medium. The HPIMS method can achieve two-order of magnitude linear response, precise drift times, and high peak area precision with percent relative standard deviations (%RSD) less than 3% for sample quantitation. The reduced mobilities measured agree very well with other IMS measurements, allowing a simple "dilute-and-shoot" method to be used to detect a mixture of codeine and morphine in urine matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Determination of toosendanin in rat plasma by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry and its application in a pharmacokinetic study.

    Science.gov (United States)

    Wang, Xintang; Wang, Changhong; Wang, Zhengtao

    2013-02-01

    Toosendanin (TSN) is a major triterpenoid existing in Melia toosendan, which has been used as a digestive tract parasiticide and insecticide but with serious hepatotoxicity. An ultra-performance liquid chromatography-electrospray ionization-mass spectrometry method was developed for determination of TSN in rat plasma. Plasma samples were separated on Acquity UPLC(TM) BEH C(18) column with acetonitrile and water as flow phase by gradient elution and determined by quadrupole mass spectrometer in negative selective ion monitoring mode. Usolic acid was used as internal standard. The calibration curves were linear over 0.02-3.0 µg/mL for TSN with a lower limit of quantification (LLOQ) of 20 ng/mL in rat plasma. The extraction recoveries of TSN were within 74.3-80.7% with an accuracy of 94.5-108.9%. The intra- and inter-day precision values of the assay at three quality control levels were 8.8-13.8% and TSN in rats after a single intravenous and oral administration of 2 and 60 mg/kg. The shorter T(max) , higher V(d) and Cl of TSN after oral administration indicated that TSN could be absorbed, distributed and eliminated quickly in rats in vivo. The absolute bioavailability of TSN after oral administration was 9.9%. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Determination of Phenolic Content in Different Barley Varieties and Corresponding Malts by Liquid Chromatography-diode Array Detection-Electrospray Ionization Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Daniel O. Carvalho

    2015-08-01

    Full Text Available A simple and reliable method for the simultaneous determination of nine phenolic compounds in barley and malted barley was established, using liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI-MS/MS. The phenolic compounds can be easily detected with both systems, despite significant differences in sensitivity. Concentrations approximately 180-fold lower could be achieved by mass spectrometry analysis compared to diode array detection, especially for the flavan-3-ols (+-catechin and (−-epicatechin, which have poor absorptivity in the UV region. Malt samples were characterized by higher phenolic content comparing to corresponding barley varieties, revealing a significant increase of the levels of (+-catechin and (−-epicatechin during the malting process. Moreover, the industrial malting is responsible for modification on the phenolic profile from barley to malt, namely on the synthesis or release of sinapinic acid and epicatechin. Accordingly, the selection of the malting parameters, as well as the barley variety plays an important role when considering the quality and antioxidant stability of beer.

  13. Ultra high performance liquid chromatography-electrospray ionization-tandem mass spectrometry screening method for direct analysis of designer drugs, "spice" and stimulants in oral fluid.

    Science.gov (United States)

    Strano-Rossi, Sabina; Anzillotti, Luca; Castrignanò, Erika; Romolo, Francesco Saverio; Chiarotti, Marcello

    2012-10-05

    An ultra high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) screening method for the direct analysis in oral fluid (OF) of 24 drugs, including new synthetic cannabinoids and so-called "smart" designer drugs, in a single chromatographic run was set up. Benzylpiperazine, methylone, 5,6-methylenedioxy-2-aminoindane (MDAI), fenproporex, 4-fluoroamphetamine (4-FA), 4-methyl-N-ethylcathinone (4-MEC), 4-methylamphetamine (4-MA), methylbenzodioxolylbutanamine (MBDB), mephedrone, methylthioamphetamine (MTA), methylenedioxypyrovalerone (MDPV), mefenorex, nabilone, furfenorex, clobenzorex, JWH-200, AM 694, JWH-250, JWH-073, JWH-018, JWH-019, JWH-122, HU 210 and CP 47497 were determined in a chromatographic run of 9 min only with no sample pre-treatment, after addition of ISs and dilution in mobile phase A. This method is designed to be applied to 250 μL of OF sample, anyway is suitable to be used on smaller volumes (till 100 μL). LODs vary from 1ng/mL to 20 ng/mL. No interfering peaks were observed due to similar analytes, common therapeutic drugs or endogenous compounds. Matrix effect, although present especially for mephedrone, is acceptable, allowing the detection of the compounds at the LODs described. The developed method was applied on 400 real OF samples from on-site tests performed by police officers. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Ballpoint pen inks: characterization by positive and negative ion-electrospray ionization mass spectrometry for the forensic examination of writing inks.

    Science.gov (United States)

    Ng, Lay-Keow; Lafontaine, Pierre; Brazeau, Luc

    2002-11-01

    A method based on profiling of dye components by electrospray ionization mass spectrometry (ESI/MS) is described for the characterization of ballpoint pen inks. The method involves benzyl alcohol (30 microL) extraction of ink from paper. The extracts of ink lines 1 and 5 mm in length are used for direct ESI/MS analysis in positive and negative modes, respectively. The instrumental analysis takes 3 min. Basic and acid dyes in the inks are detected in the positive and negative modes, respectively, with each dye yielding one or two characteristic ion peaks. The mass spectrum, which is mainly a compositional signature of the dyes in the ink, was not affected by the type of paper from which the ink was extracted, or by natural ageing of the ink on document in the absence of light. However, exposure to fluorescent illumination caused dealkylation of polyalkylated basic dyes and resulted in changes in the homologous distribution of the dyes. In this study, a total of 44 blue inks, 23 black inks, and 10 red inks have been analyzed, and the mass spectra were used to establish a searchable library. ESI/MS analysis provides a simple and fast way to compare ink specimens and in combination with on-line library search permits rapid screening of inks for forensic document investigations.

  15. Electrospray ionization mass spectrometry: a key analytical tool for the characterization of regioselectively derivatized maltooligosaccharides obtained starting from natural beta-cyclodextrin.

    Science.gov (United States)

    Lesur, David; Gassama, Abdoulaye; Moreau, Vincent; Djedaïni-Pilard, Florence; Brique, Arnaud; Pilard, Serge

    2006-01-01

    The development of natural cyclodextrins (CDs) for various industrial applications (agroalimentary, cosmetic or pharmaceutical) constitutes a continuous challenge. For the integration of these agricultural plant products in the creation of super-absorbent biodegradable and hypoallergenic materials (water-retaining agents, cosmetic hydrating and texturing, pharmaceutical and horticultural products) to replace synthetic polymers, we have developed chemical methods to access regioselectively C-6-derivatized maltooligosaccharides starting from CDs. These compounds are highly suitable for further chemical modifications and are expected to give access to a new class of polymeric materials with potential applications such as water-retaining agents in the disposable nappies industry. For the structural analysis of carbohydrates, electrospray ionization mass spectrometry (ESI-MS) offers precise results, analytical versatility and very high sensitivity. We report herein the rapid and convenient follow-up of chemical reactions, the purity evaluation of intermediates and final products, and the structural characterization of derivatized maltooligosaccharides, obtained by acidic cleavage (acetolysis) of halogenated and esterified CDs, using ESI-MS in combination with the high-resolution (HRMS) and tandem mass spectrometry (MS/MS) capabilities of a quadrupole orthogonal time-of-flight (Q-TOF) mass spectrometer. Copyright 2006 John Wiley & Sons, Ltd.

  16. Spatially resolved investigation of systemic and contact pesticides in plant material by desorption electrospray ionization mass spectrometry imaging (DESI-MSI).

    Science.gov (United States)

    Gerbig, Stefanie; Brunn, Hubertus E; Spengler, Bernhard; Schulz, Sabine

    2015-09-01

    Distribution of pesticides both on the surface of leaves and in cross sections of plant stem and leaves was investigated using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with a spatial resolution of 50-100 μm. Two commercially available insecticide sprays containing different contact pesticides were applied onto leaves of Cotoneaster horizontalis, and the distributions of all active ingredients were directly analyzed. The first spray contained pyrethrins and rapeseed oil, both known as natural insecticides. Each component showed an inhomogeneous spreading throughout the leaf, based on substance polarity and solubility. The second spray contained the synthetic insecticides imidacloprid and methiocarb. Imidacloprid accumulated on the border of the leaf, while methiocarb was distributed more homogenously. In order to investigate the incorporation of a systemically acting pesticide into Kalanchoe blossfeldiana, a commercially available insecticide tablet containing dimethoate was spiked to the soil of the plant. Cross sections of the stem and leaf were obtained 25 and 60 days after application. Dimethoate was mainly detected in the transport system of the plant after 25 days, while it was found to be homogenously distributed in a leaf section after 60 days.

  17. An ultrahigh-performance liquid chromatography method with electrospray ionization tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress.

    Science.gov (United States)

    Xiang, Yu; Song, Xiaona; Qiao, Jing; Zang, Yimei; Li, Yanpeng; Liu, Yong; Liu, Chunsheng

    2015-07-01

    An efficient simplified method was developed to determine multiple classes of phytohormones simultaneously in the medicinal plant Glycyrrhiza uralensis. Ultrahigh-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC/ESI-MS/MS) with multiple reaction monitoring (MRM) in negative mode was used for quantification. The five studied phytohormones are gibberellic acid (GA3), abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid, and salicylic acid (SA). Only 100 mg of fresh leaves was needed, with one purification step based on C18 solid-phase extraction. Cinnamic acid was chosen as the internal standard instead of isotope-labeled internal standards. Under the optimized conditions, the five phytohormones with internal standard were separated within 4 min, with good linearities and high sensitivity. The validated method was applied to monitor the spatial and temporal changes of the five phytohormones in G. uralensis under ABA stress. The levels of GA3, ABA, JA, and SA in leaves of G. uralensis were increased at different times and with different tendencies in the reported stress mode. These changes in phytohormone levels are discussed in the context of a possible feedback regulation mechanism. Understanding this mechanism will provide a good chance of revealing the mutual interplay between different biosynthetic routes, which could further help elucidate the mechanisms of effective composition accumulation in medicinal plants.

  18. Mass measurements of neutron-rich strontium and rubidium isotopes in the region $A \\approx 100$ and development of an electrospray ionization ion source

    CERN Document Server

    de Roubin, Antoine

    An extension of the atomic mass surface in the region $A \\approx 100$ is performed via mass measurements of the $^{100−102}$Sr and $^{100−102}$Rb isotopes with the ion-trap mass spectrometer ISOLTRAP at CERN-ISOLDE. The first direct mass measurements of $^{102}$Sr and $^{101,102}$Rb are reported here. These measurements confirm the continuation of the region of nuclear deformation with the increase of neutron number, at least as far as $N = 65$. In order to interpret the deformation in the strontium isotopic chain and to determine whether an onset of deformation is present in heavier krypton isotopes, a comparison is made between experimental values and theoretical calculations available in the literature. To complete this comparison, Hartree-Fock-Bogoliubov calculations for even and odd isotopes are also presented, illustrating the competition of nuclear shapes in the region. The development of an electrospray ionization ion source is presented. This source can deliver a large range of isobaric masses ...

  19. Identification and interconversion of isomeric 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles in conditions of electrospray ionization.

    Science.gov (United States)

    Mazur, D M; Zimens, M E; Bakulev, V A; Lebedev, A T

    2017-10-25

    1,2,3-Triazoles and 1,2,3-thiadiazoles have been receiving permanent interest due to their exciting chemical reactivity and interesting biological properties including antibacterial, anticancer and antiviral activities. There are four compounds bearing 1H-1,2,3-triazole core in clinical studies which may appear in the market of drugs in nearest future. Definitely reliable methods of their identification and quantification should be developed by that time. Mass spectrometry showed itself as the most reliable method of analysis when dealing with trace levels of organic compounds in the mixtures and in the most complex matrices, including biological ones. In the present study tandem mass spectrometry was used to study fragmentation pathways of protonated and deprotonated molecules of isomeric 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles in conditions of electrospray ionization (ESI). A group of marker ions allowing differentiation between the targeted isomeric compounds was established. Besides, interconversion of these isomers into one another was studied in the gas phase in conditions mimicking these processes in solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry.

    Science.gov (United States)

    Xiang, Yun; Abliz, Zeper; Takayama, Mitsuo

    2004-05-01

    The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.

  1. DMSO Assisted Electrospray Ionization for the Detection of Small Peptide Hormones in Urine by Dilute-and-Shoot-Liquid-Chromatography-High Resolution Mass Spectrometry

    Science.gov (United States)

    Judák, Péter; Grainger, Janelle; Goebel, Catrin; Van Eenoo, Peter; Deventer, Koen

    2017-08-01

    The mobile phase additive (DMSO) has been described as a useful tool to enhance electrospray ionization (ESI) of peptides and proteins. So far, this technique has mainly been used in proteomic/peptide research, and its applicability in a routine clinical laboratory setting (i.e., doping control analysis) has not been described yet. This work provides a simple, easy to implement screening method for the detection of doping relevant small peptides (GHRPs, GnRHs, GHS, and vasopressin-analogues) with molecular weight less than 2 kDa applying DMSO in the mobile phase. The gain in sensitivity was sufficient to inject the urine samples after a 2-fold dilution step omitting a time consuming sample preparation. The employed analytical procedure was validated for the qualitative determination of 36 compounds, including 13 metabolites. The detection limits (LODs) ranged between 50 and 1000 pg/mL and were compliant with the 2 ng/mL minimum detection level required by the World Anti-Doping Agency (WADA) for all the target peptides. To demonstrate the feasibility of the work, urine samples obtained from patients who have been treated with desmopressin or leuprolide and urine samples that have been declared as adverse analytical findings were analyzed.

  2. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Science.gov (United States)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  3. On-line coupling of a microelectrode array equipped poly(dimethylsiloxane) microchip with an integrated graphite electrospray emitter for electrospray ionisation mass spectrometry.

    Science.gov (United States)

    Liljegren, Gustav; Dahlin, Andreas; Zettersten, Camilla; Bergquist, Jonas; Nyholm, Leif

    2005-10-01

    A novel method for the manufacturing of microchips for on-chip combinations of electrochemistry (EC) and sheathless electrospray ionisation mass spectrometry (ESI-MS) is described. The technique, which does not require access to clean-room facilities, is based on the incorporation of an array of gold microcoil electrodes into a poly(dimethylsiloxane)(PDMS) microflow channel equipped with an integrated graphite based sheathless ESI emitter. Electrochemical measurements, which were employed to determine the electroactive area of the electrodes and to test the microchips, show that the manufacturing process was reproducible and that the important interelectrode distance in the electrochemical cell could to be adequately controlled. The EC-ESI-MS device was evaluated based on the ESI-MS detection of the oxidation products of dopamine. The results demonstrate that the present on-chip approach enables full potentiostatic control of the electrochemical cell and the attainment of very short transfer times between the electrochemical cell and the electrospray emitter. The transfer times were 0.6 and 1.2 s for flow rates of 1.0 and 0.5 microL min(-1), respectively, while the electrochemical conversion efficiency of the electrochemical cell was found to be 30% at a flow rate of 0.5 microL min(-1). To decouple the electrochemical cell from the ESI-MS high voltage and to increase the user-friendliness, the on-line electrochemistry-ESI-MS experiments were performed using a wireless Bluetooth battery-powered instrument with the chip floating at the potential induced by the ESI high voltage. The described on-chip EC-ESI-MS device can be used for fundamental electrochemical investigations as well as for applications based on the use of electrochemically controlled sample pretreatment, preconcentration and ionisation steps prior to ESI-MS.

  4. Fluoroalcohols as novel buffer components for basic buffer solutions for liquid chromatography electrospray ionization mass spectrometry: retention mechanisms.

    Science.gov (United States)

    Kipper, Karin; Herodes, Koit; Leito, Ivo

    2011-11-11

    Two fluoroalcohols--1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (HFTB)--were evaluated as volatile buffer acids in basic mobile phases for LC-ESI-MS determination of acidic and basic compounds. HFIP and HFTB as acidic buffer components offer interesting possibilities to adjust retention behavior of different analytes and expand the currently rather limited range of ESI-compatible buffer systems for basic mobile phases. Comparing with commonly used basic buffer components the fluoroalcohols did not suppress the ionization of the analytes, for several analytes ionization enhancement was observed. RP chromatographic retention mechanisms were evaluated and compared to traditional buffer system. All trends in retention of the acidic and basic analytes can be interpreted by the following model: the neutral fluoroalcohols are quite strongly retained by the stationary phase whereas their anions are less retained, thus their amount on the stationary phase is dependent on mobile phase pH; the anions of the fluoroalcohols form ion pairs in the mobile phase with the basic analytes; the fluoroalcohols on the stationary phase surface compete with acidic analytes thereby hindering their retention; the fluoroalcohols on the stationary phase bind basic analytes thereby favoring their retention. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A High Voltage Power Supply That Mitigates Current Reversals in Capillary Zone Electrophoresis-Electrospray Mass Spectrometry.

    Science.gov (United States)

    Flaherty, Ryan J; Sarver, Scott A; Sun, Liangliang; Brownell, Greg A; Go, David B; Dovichi, Norman J

    2017-02-01

    Capillary electrophoresis coupled with electrospray ionization typically employs two power supplies, one at each end of the capillary. One power supply is located at the proximal (injection) end of the capillary. The power supply located at the distal (detector) end of the capillary drives the electrospray. Electrophoresis is driven by the difference in potential between these power supplies. Separations that employ large capillary inner diameter, high conductivity background electrolyte, and high separation potentials generate higher current than that produced by the electrospray. Excess current flows through the electrospray power supply. Most power supplies are not designed to sink current, and the excess current will cause the electrospray voltage to deviate from its set point. We report a simple circuit to handle this excess current, allowing separations under a wide range of electrophoretic conditions. Graphical Abstract ᅟ.

  6. Electrospray ionization linear trap quadrupole Orbitrap in analysis of old tempera paintings: application to nineteenth-century Orthodox icons.

    Science.gov (United States)

    Tripković, T; Charvy, C; Alves, S; Lolić, A Đ; Baošić, R M; Nikolić-Mandić, S D; Tabet, J C

    2015-01-01

    Proteomic approach in combination with mass spectrometry demonstrates a great potential for identification of proteinaceous materials in works of art. In this study we used a linear trap quadrupole Orbitrap (LTQ-Orbitrap), a state-of-the-art mass spectrometer for parts per million accuracy analyses of peptides behind tryptic hydrolysis. After the efficiency of the proteomic method was confirmed for reference and model samples, micro-samples from historical paintings were for the first time analysed using this technique. Superior performances of the liquid chromatography-mass spectrometry approach using a LTQ-Orbitrap mass spectrometer allowed identification of egg yolk peptides in two samples from nineteenth-century Orthodox icons, indicating egg tempera as the painting technique. Accurate precursor ion masses, in the range of ±2 ppm, and retention times of tryptic peptides strengthen protein identification. Additionally, in all historical samples the presence of animal glues suggested that the ground layer was likely bound using bovine collagen. Comparing to results acquired using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry in our previous study, here we achieved higher ion scores and protein scores, better sequence coverage and more identified proteins. In fact, a combination of the two mass spectrometric techniques provided overlapping and complementary data, related to the detection of peptides with different physicochemical properties.

  7. Determination of ethylenediaminetetraacetic acid in nuclear waste by high-performance liquid chromatography coupled with electrospray mass spectrometry.

    Science.gov (United States)

    du Bois de Maquillé, Laurence; Renaudin, Laetitia; Goutelard, Florence; Jardy, Alain; Vial, Jérôme; Thiébaut, Didier

    2013-02-08

    EDTA is a chelating agent that has been used in decontamination processes. Its quantification is required for nuclear waste management because it affects the mobility of radionuclides and metals in environment and, thus, can harm the safety of the storage. Ion-pair chromatography coupled with electrospray mass spectrometry detection is a convenient method for quantitative analysis of EDTA but EDTA should be present as a single anionic chelate form. However, radioactive liquid wastes contain high concentrations of heavy metals and salts and consequently, EDTA is present as several chelates. Speciation studies were carried out to choose a metal cation to be added in excess to the solution to obtain a major chelate form. Fe is the predominant cation and Fe(III)-EDTA is thermodynamically favored but these speciation studies showed that ferric hydroxide precipitated above pH 2. Consequently, it was not possible to quantify EDTA as Fe(III)-EDTA complex. Therefore, Ni(2+) was chosen but its use implied pretreatment with a base of the solution to eliminate Fe. Deuterated EDTA was used as tracer in order to validate the whole procedure, from the treatment with a base to the final analysis by HPLC-ESI-MS. This analytical method was successfully applied for EDTA quantification in two real effluents resulting from a nuclear liquid waste process. A recovery rate between 60 and 80% was obtained. The limit of detection of this method was determined at 34×10(-9)mol L(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Charge enhancement of single-stranded DNA in negative electrospray ionization using the supercharging reagent meta-nitrobenzyl alcohol.

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1% m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1% m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  9. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  10. Two-dimensional HPLC coupled to ICP-MS and electrospray ionisation (ESI)-MS/MS for investigating the bioavailability in vitro of arsenic species from edible seaweed

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sartal, Cristina; Barciela-Alonso, Maria del Carmen; Bermejo-Barrera, Pilar [University of Santiago de Compostela, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Santiago de Compostela (Spain); Taebunpakul, Sutthinun [LGC Limited, Teddington, Middlesex (United Kingdom); Imperial College of Science, Technology and Medicine, South Kensington, Department of Materials, London (United Kingdom); National Institute of Metrology (Thailand), Pathumthani (Thailand); Stokes, Emma; Goenaga-Infante, Heidi [LGC Limited, Teddington, Middlesex (United Kingdom)

    2012-04-15

    Edible seaweed consumption is a route of exposure to arsenic. However, little attention has been paid to estimate the bioaccessibility and/or bioavailability of arsenosugars in edible seaweed and their possible degradation products during gastrointestinal digestion. This work presents first use of combined inductively coupled plasma mass spectroscopy (ICP-MS) with electrospray ionization tandem mass spectrometry (ESI-MS/MS) with two-dimensional HPLC (size exclusion followed by anion exchange) to compare the qualitative and quantitative arsenosugars speciation of different edible seaweed with that of their bioavailable fraction as obtained using an in vitro gastrointestinal digestion procedure. Optimal extraction conditions for As species from four seaweed namely kombu, wakame, nori and sea lettuce were selected as a compromise between As extraction efficiency and preservation of compound identity. For most investigated samples, the use of ammonium acetate buffer as extractant and 1 h sonication in a water bath followed by HPLC-ICP-MS resulted in 40-61% of the total As to be found in the buffered aqueous extract, of which 86-110% was present as arsenosugars (glycerol sugar, phosphate sugar and sulfonate sugar for wakame and kombu and glycerol sugar and phosphate sugar for nori). The exception was sea lettuce, for which the arsenosugar fraction (glycerol sugar, phosphate sugar) only comprised 44% of the total extracted As. Interestingly, the ratio of arsenobetaine and dimethylarsinic acid to arsenosugars in sea lettuce extracts seemed higher than that for the rest of investigated samples. After in vitro gastrointestinal digestion, approximately 11-16% of the total As in the solid sample was found in the dialyzates with arsenosugars comprising 93-120% and 41% of the dialyzable As fraction for kombu, wakame, nori and sea lettuce, respectively. Moreover, the relative As species distribution in seaweed-buffered extracts and dialyzates was found to be very similar

  11. Two-dimensional HPLC coupled to ICP-MS and electrospray ionisation (ESI)-MS/MS for investigating the bioavailability in vitro of arsenic species from edible seaweed.

    Science.gov (United States)

    Garcia-Sartal, Cristina; Taebunpakul, Sutthinun; Stokes, Emma; Barciela-Alonso, María del Carmen; Bermejo-Barrera, Pilar; Goenaga-Infante, Heidi

    2012-04-01

    Edible seaweed consumption is a route of exposure to arsenic. However, little attention has been paid to estimate the bioaccessibility and/or bioavailability of arsenosugars in edible seaweed and their possible degradation products during gastrointestinal digestion. This work presents first use of combined inductively coupled plasma mass spectroscopy (ICP-MS) with electrospray ionization tandem mass spectrometry (ESI-MS/MS) with two-dimensional HPLC (size exclusion followed by anion exchange) to compare the qualitative and quantitative arsenosugars speciation of different edible seaweed with that of their bioavailable fraction as obtained using an in vitro gastrointestinal digestion procedure. Optimal extraction conditions for As species from four seaweed namely kombu, wakame, nori and sea lettuce were selected as a compromise between As extraction efficiency and preservation of compound identity. For most investigated samples, the use of ammonium acetate buffer as extractant and 1 h sonication in a water bath followed by HPLC-ICP-MS resulted in 40-61% of the total As to be found in the buffered aqueous extract, of which 86-110% was present as arsenosugars (glycerol sugar, phosphate sugar and sulfonate sugar for wakame and kombu and glycerol sugar and phosphate sugar for nori). The exception was sea lettuce, for which the arsenosugar fraction (glycerol sugar, phosphate sugar) only comprised 44% of the total extracted As. Interestingly, the ratio of arsenobetaine and dimethylarsinic acid to arsenosugars in sea lettuce extracts seemed higher than that for the rest of investigated samples. After in vitro gastrointestinal digestion, approximately 11-16% of the total As in the solid sample was found in the dialyzates with arsenosugars comprising 93-120% and 41% of the dialyzable As fraction for kombu, wakame, nori and sea lettuce, respectively. Moreover, the relative As species distribution in seaweed-buffered extracts and dialyzates was found to be very similar

  12. Ultrahigh-performance liquid chromatography electrospray ionization Q-Orbitrap mass spectrometry for the analysis of 451 pesticide residues in fruits and vegetables: method development and validation.

    Science.gov (United States)

    Wang, Jian; Chow, Willis; Chang, James; Wong, Jon W

    2014-10-22

    This paper presents an application of ultrahigh-performance liquid chromatography electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap MS) for the determination of 451 pesticide residues in fruits and vegetables. Pesticides were extracted from samples using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure. UHPLC/ESI Q-Orbitrap MS in full MS scan mode acquired full MS data for quantification, and UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) (i.e., data-dependent scan mode) obtained product ion spectra for identification. UHPLC/ESI Q-Orbitrap MS quantification was achieved using matrix-matched standard calibration curves along with the use of isotopically labeled standards or a chemical analogue as internal standards to achieve optimal method accuracy. The method performance characteristics include overall recovery, intermediate precision, and measurement uncertainty evaluated according to a nested experimental design. For the 10 matrices studied, 94.5% of the pesticides in fruits and 90.7% in vegetables had recoveries between 81 and 110%; 99.3% of the pesticides in fruits and 99.1% of the pesticides in vegetables had an intermediate precision of ≤20%; and 97.8% of the pesticides in fruits and 96.4% of the pesticides in vegetables showed measurement uncertainty of ≤50%. Overall, the UHPLC/ESI Q-Orbitrap MS demonstrated acceptable performance for the quantification of pesticide residues in fruits and vegetables. The UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) along with library matching showed great potential for identification and is being investigated further for routine practice.

  13. Multi-residue analysis of eight anticoagulant rodenticides in animal plasma and liver using liquid chromatography combined with heated electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Vandenbroucke, Virginie; Desmet, Noël; De Backer, Patrick; Croubels, Siska

    2008-06-15

    A sensitive method for the simultaneous quantification of eight anticoagulant rodenticides (brodifacoum, bromadiolone, chlorophacinone, coumatetralyl, difenacoum, difethialone, flocoumafen and warfarin) in animal plasma and liver using liquid chromatography combined with heated electrospray ionization tandem mass spectrometry (LC-HESI-MS/MS) is described. The sample preparation includes a liquid-liquid extraction with acetone. The compound 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin is used as an internal standard. Chromatographic separation was achieved using a Nucleodur C18 gravity column. Good linearity was observed up to 750 ng mL(-1) for chlorophacinone and up to 500 ng mL(-1) for the other compounds in plasma. In liver, good linearity was seen up to 500 ng g(-1) for brodifacoum, chlorophacinone, difenacoum and difethialone and up to 750 ng g(-1) for the other compounds. Depending on the compound, a level of 1 or 5 ng mL(-1) could be quantified fulfilling the criteria for accuracy and precision and was therefore set as limit of quantification of the method in plasma. In liver, the limit of quantification was set at 250 ng g(-1) for coumatetralyl and warfarin and at 100 ng g(-1) for the other compounds. In plasma, the limit of detection varied from 0.07 ng mL(-1) for flocoumafen to 3.21 ng mL(-1) for brodifacoum. In liver, the limit of detection varied from 0.37 ng g(-1) for warfarin to 4.64 ng g(-1) for chlorophacinone. The method was shown to be of use in a pharmacokinetic study after single oral administration to mice and in the confirmation of suspected poisoning cases in domestic animals.

  14. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia

    Energy Technology Data Exchange (ETDEWEB)

    Stopka, Sylwia A.; Agtuca, Beverly J.; Koppenaal, David W.; Pasa Tolic, Ljiljana; Stacey, Gary; Vertes, Akos; Anderton, Christopher R.

    2017-05-23

    Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule), where the exchange of nutrients between host and endosymbiont occurs. Laser ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well-characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 detected metabolites in the nodule samples. The data presented demonstrates the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth-profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.

  15. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies.

    Science.gov (United States)

    Chao, Hsi-Chun; Chen, Guan-Yuan; Hsu, Lih-Ching; Liao, Hsiao-Wei; Yang, Sin-Yu; Wang, San-Yuan; Li, Yu-Liang; Tang, Sung-Chun; Tseng, Yufeng Jane; Kuo, Ching-Hua

    2017-06-08

    Cellular lipidomic studies have been favored approaches in many biomedical research areas. To provide fair comparisons of the studied cells, it is essential to perform normalization of the determined concentration before lipidomic analysis. This study proposed a cellular lipidomic normalization method by measuring the phosphatidylcholine (PC) and sphingomyelin (SM) contents in cell extracts. To provide efficient analysis of PC and SM in cell extracts, flow injection analysis-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) with a precursor ion scan (PIS) of m/z 184 was used, and the parameters affecting the performance of the method were optimized. Good linearity could be observed between the cell extract dilution factor and the reciprocal of the total ion chromatogram (TIC) area in the PIS of m/z 184 within the dilution range of 1- to 16-fold (R 2  = 0.998). The calibration curve could be used for concentration adjustment of the unknown concentration of a cell extract. The intraday and intermediate precisions were below 10%. The accuracy ranged from 93.0% to 105.6%. The performance of the new normalization method was evaluated using different numbers of HCT-116 cells. Sphingosine, ceramide (d18:1/18:0), SM (d18:1/18:0) and PC (16:1/18:0) were selected as the representative test lipid species, and the results showed that the peak areas of each lipid species obtained from different cell numbers were within a 20% variation after normalization. Finally, the PIS of 184 normalization method was applied to study ischemia-induced neuron injury using oxygen and glucose deprivation (OGD) on primary neuronal cultured cells. Our results showed that the PIS of 184 normalization method is an efficient and effective approach for concentration normalization in cellular lipidomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry.

    Science.gov (United States)

    Facchini, Laura; Losito, Ilario; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-01-01

    A systematic characterization of phosphatidylcholines and phosphatidylethanolamines in mussels of sp Mytilus galloprovincialis was performed by high-efficiency hydrophilic interaction liquid chromatography combined with electrospray ionization and Fourier transform mass spectrometry (FTMS), based on a quadrupole-Orbitrap hybrid spectrometer. The FTMS/MS experiments under high collisional energy dissociation conditions, complemented by low-energy collisionally induced dissociation MS n (n = 2,3) experiments, performed in a linear ion trap mass spectrometer, were exploited for structural elucidation purposes. The described approach led to an unprecedented characterization of the mussel phospholipidome, with 185 phosphatidylcholines and 131 phosphatidylethanolamines species recognized, distributed among diacylic, plasmanylic, and plasmenylic forms. This was the starting point for the evaluation of the effects of season (in particular, of sea temperature) on the profile of those phospholipids. To this aim, a set of mussel samples retrieved from commercial sources in different periods of the year was considered. Principal component analysis revealed a clear separation between samples collected in periods characterized by cold, intermediate, or warm sea temperatures, respectively. In particular, an enrichment in phospholipids containing unsaturated side chains was observed in mussels collected from cold seawaters (winter-early spring), thus confirming the general model previously elaborated to explain the adaptation of marine invertebrates, including some bivalve molluscs, to low temperatures. On the other hand, relevant levels of plasma(e)nylic and acylic phospholipids bearing either saturated or non-methylene-interrupted side chains were found in mussels collected in warm seawaters (typical of summer and early autumn, at Italian latitudes). This finding opened interesting perspectives towards the development of strategies able to prevent global warming-related mussel

  17. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukusaki, Eiichiro, E-mail: fukusaki@bio.eng.osaka-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-08-26

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R{sup 2} values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  18. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  19. Assay of labile estrogen o-quinones, potent carcinogenic molecular species, by high performance liquid chromatography-electrospray ionization tandem mass spectrometry with phenazine derivatization.

    Science.gov (United States)

    Yamashita, Kouwa; Masuda, Akina; Hoshino, Yuka; Komatsu, Sachiko; Numazawa, Mitsuteru

    2010-04-01

    A sensitive and selective assay method for labile estrogen o-quinones, estrone (E(1))-2,3-quinone (Q), E(1)-3,4-Q, estradiol (E(2))-2,3-Q and E(2)-3,4-Q, based on the use of phenazine (Phz) derivatization with o-phenylenediamine and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was described. The Phz derivatives of four estrogen o-quinones were purified by solid phase extraction and analyzed by HPLC-ESI-MS/MS. The protonated molecule was observed as a base peak for all Phz derivatives in their ESI-mass spectra (positive mode). In multiple reaction monitoring, the transition from [M+H]+ to m/z 231 was chosen for quantification. Calibration curves for the o-quinones were obtained using standard catechol estrogens after sodium metaperiodate treatment and Phz derivatization. Using this method, these four estrogen o-quinones were analyzed with the limit of quantification of 5 ng/ml in acetonitrile (MeCN)-blank matrix (1:4, v/v), respectively, on a basis of the weight of catechol estrogens. Assay accuracy and precision for four estrogen o-quinones were 89.6-113.0% and 3.1-12.6% (5, 125 and 2000 ng/ml in MeCN-blank matrix). Applications of this method enabled to determine the catalytic activities on hydroxylation and subsequent oxidation of E(1) and E(2) of Mushroom tyrosinase and rat liver microsomal fraction. It was confirmed by this method that tyrosinase exhibited 2- and 4-hydroxylation and further oxidation activities for catechols in the ring-A of estrogens. Whereas rat liver microsomal fraction possessed only 2- and 4-hydroxylation activities, and further oxidation activity for catechol estrogens was low. 2010 Elsevier Ltd. All rights reserved.

  20. Acid and base hydrolysis of lipid A from Enterobacter agglomerans as monitored by electrospray ionization mass spectrometry: pertinence to detoxification mechanisms.

    Science.gov (United States)

    Wang, Y; Cole, R B

    1996-02-01

    Lipopolysaccharides (LPS), which are endotoxins found in the cell wall of Gram-negative bacteria, are common components of organic dusts that cause or contribute to symptoms associated with organic dust diseases. The lipid A subgroup within LPS is believed to be responsible for the toxicity. Acid and base treatments, which can be effective detoxification methods, were performed on lipid A from Enterobacter agglomerans (EA), a bacterium commonly found in field cotton. Negative-ion electrospray ionization mass spectrometry was employed to characterize the post-treatment structural changes to lipid A. Acid treatment (1% acetic acid, 100 degrees C) hydrolyzed the ester side-chains of lipid A. It was found that the ester-linked palmitoyl group was the most labile to acid hydrolysis. Hydrolysis of the palmitoyl moiety conformed to pseudo-first-order chemical reaction kinetics with a rate constant for decomposition of heptacyl-lipid A from Enterobacter agglomerans of approximately 3.3 x 10(-3) min-1. An order of lability of lipid A acyl side-chains to acid hydrolysis was also deduced: R4' (palmitoyl) > R1' (myristoyl or hydroxymyristoyl) > R3 (hydroxymyristoyl at position 3) > R1 (oxymyristoyl group at position 3') > R2' (lauroyl). Base treatment (0.05 M NaOH in 95% EtOH, 65 degrees C) was shown to be more effective at cleaving ester-linked side-chains. In addition, mass spectral evidence suggests that opening of the pyranose rings of the disaccharide backbone of lipid A and/or removal of the phosphoryl groups may be occurring during base treatment. This study sheds light on mechanistic aspects of treatment procedures leading to the detoxification of endotoxins.

  1. Analysis of trichloroethylene-induced global DNA hypomethylation in hepatic L-02 cells by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Hang; Hong, Wen-Xu; Ye, Jinbo; Yang, Xifei; Ren, Xiaohu; Huang, Aibo; Yang, Linqing; Zhou, Li; Huang, Haiyan; Wu, Desheng; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun

    2014-04-04

    Trichloroethylene (TCE), a major occupational and environmental pollutant, has been recently associated with aberrant epigenetic changes in experimental animals and cultured cells. TCE is known to cause severe hepatotoxicity; however, the association between epigenetic alterations and TCE-induced hepatotoxicity are not yet well explored. DNA methylation, catalyzed by enzymes known as DNA methyltransferases (DNMT), is a major epigenetic modification that plays a critical role in regulating many cellular processes. In this study, we analyzed the TCE-induced effect on global DNA methylation and DNMT enzymatic activity in human hepatic L-02 cells. A sensitive and quantitative method combined with liquid chromatography and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was validated and utilized for assessing the altered DNA methylation in TCE-induced L-02 cells. Quantification was accomplished in multiple reaction monitoring (MRM) mode by monitoring a transition pair of m/z 242.1 (molecular ion)/126.3 (fragment ion) for 5-mdC and m/z 268.1/152.3 for dG. The correlation coefficient of calibration curves between 5-mdC and dG was higher than 0.9990. The intra-day and inter-day relative standard derivation values (RSD) were on the range of 0.53-7.09% and 0.40-2.83%, respectively. We found that TCE exposure was able to significantly decrease the DNA methylation and inhibit DNMT activity in L-02 cells. Our results not only reveal the association between TCE exposure and epigenetic alterations, but also provide an alternative mass spectrometry-based method for rapid and accurate assessment of chemical-induced altered DNA methylation in mammal cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Protocol for an electrospray ionization tandem mass spectral product ion library: development and application for identification of 240 pesticides in foods.

    Science.gov (United States)

    Zhang, Kai; Wong, Jon W; Yang, Paul; Hayward, Douglas G; Sakuma, Takeo; Zou, Yunyun; Schreiber, André; Borton, Christopher; Nguyen, Tung-Vi; Kaushik, Banerjee; Oulkar, Dasharath

    2012-07-03

    Modern determination techniques for pesticides must yield identification quickly with high confidence for timely enforcement of tolerances. A protocol for the collection of liquid chromatography (LC) electrospray ionization (ESI)-quadruple linear ion trap (Q-LIT) mass spectrometry (MS) library spectra was developed. Following the protocol, an enhanced product ion (EPI) library of 240 pesticides was developed by use of spectra collected from two laboratories. A LC-Q-LIT-MS workflow using scheduled multiple reaction monitoring (sMRM) survey scan, information-dependent acquisition (IDA) triggered collection of EPI spectra, and library search was developed and tested to identify the 240 target pesticides in one single LC-Q-LIT MS analysis. By use of LC retention time, one sMRM survey scan transition, and a library search, 75-87% of the 240 pesticides were identified in a single LC/MS analysis at fortified concentrations of 10 ng/g in 18 different foods. A conventional approach with LC-MS/MS using two MRM transitions produced the same identifications and comparable quantitative results with the same incurred foods as the LC-Q-LIT using EPI library search, finding 1.2-49 ng/g of either carbaryl, carbendazim, fenbuconazole, propiconazole, or pyridaben in peaches; carbendazim, imazalil, terbutryn, and thiabendazole in oranges; terbutryn in salmon; and azoxystrobin in ginseng. Incurred broccoli, cabbage, and kale were screened with the same EPI library using three LC-Q-LIT and a LC-quadruple time-of-flight (Q-TOF) instruments. The library search identified azoxystrobin, cyprodinil, fludioxinil, imidacloprid, metalaxyl, spinosyn A, D, and J, amd spirotetramat with each instrument. The approach has a broad application in LC-MS/MS type targeted screening in food analysis.

  3. Liquid chromatography/negative electrospray ionization ion trap MS(2) mass spectrometry application for the determination of microcystins occurrence in Southern Portugal water reservoirs.

    Science.gov (United States)

    Rodrigues, M A; Reis, M P; Mateus, M C

    2013-11-01

    Microcystins (MCs) are toxins produced by cyanobacteria which are common organisms in the phytoplankton of eutrophic lakes, rivers and freshwater reservoirs. In the present work, a novel method of liquid chromatography-electrospray ion trap tandem mass spectrometry (LC/ESI/Ion trap-MS/MS), operated in the negative ionization mode, was developed for the analysis of these cyanotoxins. The method was applied to determine the amounts of total microcystins-LR, -YR and -RR in two water reservoirs in Southern Portugal, namely Alqueva and Beliche. A total of 30 water samples were analysed along 2011. Solid phase extraction (SPE) was used for sample cleaning-up and analyte enrichment. The extracted toxins were separated on a C18 column with a gradient of acetonitrile/water with 0.1% formic acid. Detection of microcystins was carried out using multiple reaction monitoring (MRM) in the negative polarity mode, as this method gave a higher selectivity. The MC-RR, YR and LR quantification limits were 17.9, 31.7 and 15.8 ng/L, respectively; quite below the limits recommended by WHO guidelines for drinking water (1 μg/L). Total MC highest concentrations were found in the warm months of June, July and September in Alqueva sampling sites, with concentrations of MC LR and RR ranging 17-344 and 25-212 ng/L, respectively, showing comparable results for MC-RR and LR and slightly lower concentration of MC-YR. Detected values for Beliche reservoir were below quantification limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Novel product ions of 2-aminoanilide and benzimidazole Ag(I) complexes using electrospray ionization with multi-stage tandem mass spectrometry.

    Science.gov (United States)

    Johnson, Byron S; Burinsky, David J; Burova, Svetlana A; Davis, Roman; Fitzgerald, Russ N; Matsuoka, Richard T

    2012-05-15

    The 2-aminoaniline scaffold is of significant value to the pharmaceutical industry and is embedded in a number of pharmacophores including 2-aminoanilides and benzimidazoles. A novel application of coordination ion spray mass spectrometry (CIS-MS) for interrogating the silver ion (Ag(+)) complexes of a homologous series of these compounds using multi-stage tandem mass spectrometry is described. Unlike the ubiquitous alkali metal ion complexes, Ag(+) complexes of 2-aminoanilides and benzimidazoles were found to yield [M - H](+) ions in significant abundance via gas-phase elimination of the metal hydride (AgH) resulting in unique product ion cascades. Sample introduction was by liquid chromatography with mass spectrometry analysis performed on a hybrid linear ion trap/orbitrap instrument capable of high-resolution measurements. Rigorous structural characterization by multi-stage tandem mass spectrometry using [M +  H](+), [M - H](-) and [M - H](+) precursor ions derived from ESI and CIS experiments was performed for the homologous series of 2-aminoanilide and benzimidazole compounds. A full tabular comparison of structural information resulting from these product ion cascades was produced. Multi-stage tandem mass spectrometry of [M - H](+) ions resulting from Ag(+) complexes of 2-aminoanilides and benzimidazoles in CIS-MS experiments produced unique product ion cascades that exhibited complementary structural information to that obtained from tandem mass spectrometry of [M  +  H](+) and [M - H](-) ions by electrospray ionization (ESI). These observations may be broadly applicable to other compounds that are observed to form Ag(+) complexes and eliminate AgH. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  7. Diastereoselective discrimination of lysine-alanine-alanine peptides by zwitterionic cinchona alkaloid-based chiral selectors using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Bobbitt, Jonathan M; Li, Li; Carlton, Doug D; Yasin, Mahwish; Bhawal, Sumit; Foss, Frank W; Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang; Schug, Kevin A

    2012-12-21

    Electrospray ionization-mass spectrometry (ESI-MS) was used to investigate stereoselective interactions between seven zwitterionic alkylsulfonate-modified cinchona alkaloid chiral selectors and biologically relevant lysine-alanine-alanine tripeptide and alanine-alanine dipeptide selectands in modified methanolic solutions. Ion intensities from full scan mass spectra were used to assess degrees of association, the ratios of which were used to calculate selectivities for different selector-selectand pairs. The results support prior work on similar systems using HPLC, in that binding is mediated in these systems primarily through the quinuclidine amine on the selector and the C-terminal carboxylate of the peptide. N(α)- and N(α), N(ɛ)-acetylated forms of the tripeptide were used to study the relative contribution to binding imparted by the presence of multiple basic amines on the tripeptide with the selectors; this was not previously investigated by HPLC. The ability of the sulfonate group on the selector to reach and preferentially interact with the N(ɛ)-amine on the side chain of lysine was revealed. Overall, in acidic methanol conditions (0.5% acetic acid), degrees of association ranged from 1.5% to 17%, and selectivities ranged from non-selective to a 5.5:1 preference for binding one peptide stereoisomer over another with a given chiral selector. In sodium acetate (100 μM)-modified methanol solutions, significant changes in degrees of association (ranging from 4% to 25%) and selectivities (ranging from non-selective to 4.2:1 preference) were observed. These mass spectrometry experiments help to clarify the chiral recognition mechanism for these selectors and suggest that retention and selectivity could be further modulated in HPLC experiments through the utilization of alkali salt-containing mobile phases. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Development of multi-residue analysis of herbicides in cereal grain by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Dong, Xinfeng; Liang, Shuxuan; Shi, Zhihong; Sun, Hanwen

    2016-02-01

    A rapid and sensitive method was developed for the determination of 50 herbicides in cereal grain by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS). Using acetonitrile effectively extracted 22 kinds of triazine and other basic herbicides, and using 90:10 v/v acetonitrile-phosphate buffer (pH = 7.5) effectively extracted other 28 herbicides. Chromatographic separation was achieved using gradient elution with acetonitrile-water as a mobile phase for 22 triazine and phenylurea herbicides and with 5mM ammonium acetate aqueous solution containing 0.1% formic acid-acetonitrile as a mobile phase for other 28 herbicides. Using matrix-matched standard calibration curve effectively reduced the indirect matrix effects, ensured accurate quantification for these herbicides. The response was linear over two orders of magnitude with a correlation coefficients (r(2)) higher than 0.992. The limits of quantification for the herbicides varied from 0.2 to 25.6 μg kg(-1). The intra- and inter-day precisions (relative standard deviation, RSD) were 2.2-9.3% and 5.7-17.1%, respectively. The recovery varied from 61.6% to 110% with the RSD of 1.6-11.8%. Analyzing soybean, corn and wheat samples from 17 counties evaluated this method. The developed and validated method has high sensitivity, satisfactory recovery and precision, can ensure the multi-class multi-residue analysis at low μg kg(-1) level for the most herbicides in cereal grain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Determination of 49 drugs and 5 metabolites in drinking water samples using ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry].

    Science.gov (United States)

    Wang, Shuo; Zhang, Xiangming; Zhang, Jing; Shao, Bing; Li, Shuming

    2015-07-01

    A method for the determination of 54 drugs in drinking water samples was developed by using ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI MS/MS). The target drugs in drinking water samples were enriched and cleaned-up by HLB solid-phase extraction (SPE) cartridges and then eluted with 5 mL methanol. The elute was collected, concentrated under a gentle stream of nitrogen gas, diluted with 0.4 mL 0.1% formic acid solution, and analyzed by UPLC-ESI MS/MS. The separation of the 54 drugs was performed on an ACQUITY UPLC™ BEH C18 column using mobile phases of 0.1% formic acid and methanol by gradient elution. The multiple reaction monitoring (MRM) mode was employed in mass spectrometry acquisition. The matrix-matched external standard calibration was used for quantitation. The results showed that the average recoveries of the drugs in ground water, tap water and surface water were 58.7%-104.4%, 53.1%-109.5%, and 50.7%-118.8%, respectively, and the corresponding relative standard deviations (RSD, n=6) were 0.3%-12.8%, 1.0%-15.5%, and 0.4%-19.3%, respectively. The method quantification limits (MQL) for target compounds were in the range of 0.002-5.000 ng/L. The developed method was applied to analyze the water samples from Beijing. The results showed that 26 drugs were detected in ground water samples.

  10. Metabolite fingerprinting of Punica granatum L. (pomegranate) polyphenols by means of high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection.

    Science.gov (United States)

    Brighenti, Virginia; Groothuis, Sebastiaan Frearick; Prencipe, Francesco Pio; Amir, Rachel; Benvenuti, Stefania; Pellati, Federica

    2017-01-13

    The present study was aimed at the development of a new analytical method for the comprehensive multi-component analysis of polyphenols in Punica granatum L. (pomegranate) juice and peel. While pomegranate juice was directly analysed after simple centrifugation, different extraction techniques, including maceration, heat reflux extraction, ultrasound-assisted extraction and microwave-assisted extraction, were compared in order to obtain a high yield of the target analytes from pomegranate peel. Dynamic maceration with a mixture of water and ethanol 80:20 (v/v) with 0.1% of hydrochloric acid as the extraction solvent provided the best result in terms of recovery of pomegranate secondary metabolites. The quali- and quantitative analysis of pomegranate polyphenols was performed by high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection. The application of fused-core column technology allowed us to obtain an improvement of the chromatographic performance in comparison with that of conventional particulate stationary phases, thus enabling a good separation of all constituents in a shorter time and with low solvent usage. The analytical method was completely validated to show compliance with the International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use guidelines and successfully applied to the characterisation of commercial and experimental pomegranate samples, thus demonstrating its efficiency as a tool for the fingerprinting of this plant material. The quantitative data collected were submitted to principal component analysis, in order to highlight the possible presence of pomegranate samples with high content of secondary metabolites. From the statistical analysis, four experimental samples showed a notable content of bioactive compounds in the peels, while commercial ones still represent the best source of healthy juice. Copyright © 2016 Elsevier

  11. Differentiation of three pairs of Boc-beta,gamma- and gamma,beta-hybrid peptides by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Ramesh, V; Srinivas, R; Sharma, G V M; Jayaprakash, P; Kunwar, A C

    2008-09-01

    A new series of Boc-N-beta(3), gamma(4)-/gamma(4), beta(3)-isomeric hybrid peptides (containing repeats of beta(3)-Caa and gamma(4)-Caa's, Caa = C-linked carbo beta(3)-/gamma(4)-amino acids derived from D-xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion-trap and high resolution quadrupole time-of-flight/tandem mass spectrometry (Q-TOF MS/MS). MS(n) of protonated isomeric peptides and [M+H-Boc+H](+) produce characteristic fragmentation involving the peptide backbone, the Boc-group, and the side chain. The positional isomers are differentiated from one another by the presence of y(n)(+), b(n)(+), and other fragment ions of different m/z values. It is observed that the peptides with beta-Caa at the N-terminus produce extensive fragmentation, whereas gamma-Caa gave rise to much less fragmentation. Peptides with gamma-Caa at the N-terminus lose NH(3), whereas this process is absent for the carbopeptides with beta-Caa at the N-terminus. Two pairs of dipeptide diastereomers are clearly differentiated by the collision-induced dissociation (CID) of their protonated molecules. The loss of 2-methylprop-1-ene is more pronounced for Boc-NH-(R)-beta-Caa-(R)-gamma-Caa-OCH(3) (6) and Boc-NH-(R)-gamma-Caa-(R)-beta-Caa-OCH(3) (12), whereas it is insignificant or totally absent for its protonated diastereomeric pair Boc-NH-(S)-beta-Caa-(S)-gamma-Caa-OCH(3) (1) and Boc-NH-(S)-gamma-Caa-(S)-beta-Caa-OCH(3) (7). Further, ESI negative ion tandem mass spectrometry has also been found to be useful for differentiating these isomeric peptide acids.

  12. Eugenia calycina Cambess extracts and their fractions: Their antimicrobial activity and the identification of major polar compounds using electrospray ionization FT-ICR mass spectrometry.

    Science.gov (United States)

    Ferreira, Fernanda P S; Morais, Sandra R; Bara, Maria T F; Conceição, Edemilson C; Paula, José R; Carvalho, Thays C; Vaz, Boniek G; Costa, Helber B; Romão, Wanderson; Rezende, Maria H

    2014-10-01

    Eugenia calycina, which is described as "red pitanga or pitanga cherry of cerrado," is widely distributed in the Cerrado area of Brazil. Its leaf and bark extracts are used in folk medicine for many applications. In this study, the compositions of the major polar compounds of the bark and leaf extracts and their fractions were obtained from a liquid-liquid extraction using hexane, dichloromethane, ethyl acetate, and water. They were then evaluated using electrospray ionization negative FT-ICR mass spectrometry (ESI(-) FT-ICR MS), which revealed a large number of oxygen-containing compounds, such as flavonoids, terpenes, tanins, steroids, and fat acids. The biological activity of these extracts towards several bacterial and fungal strains was then evaluated. The highest activity was found using aqueous fractions, in which the ESI(-) FT-ICR MS analysis revealed compounds with a high content of oxygen (e.g., glycosed flavonoids, tannins, and polyphenolic compounds) against Cryptococcus sp. D (minimum inhibitory concentration [MIC]=15.62μg/mL). Strong activity was also found using the hexanic fractions-in which the ESI(-) FT-ICR MS analysis revealed that the compounds contained a decreased amount of oxygen (e.g., fat acids and steroids)-towards Cryptococcus gatti L48, Cryptococcus neoformans L3 (MIC=31.2μg/mL), and Cryptococcus sp. D (MIC=62.5μg/mL). Therefore, antimicrobial assays using the bark/leaf extracts of E. calycina present prospects for the research of active substances that may be used for the treatment of cryptococcosis, a disease that is common in immunosuppressed patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Liquid chromatography-electrospray ionization tandem mass spectrometry for on-line characterization, monitoring and isotopic profiling of the main selenium-metabolite in human urine after consumption of Se-rich and Se-enriched food

    International Nuclear Information System (INIS)

    Dumont, Emmie; Ogra, Yasumitsu; Suzuki, Kazuo T.; Vanhaecke, Frank; Cornelis, Rita

    2006-01-01

    The metabolism of selenium (Se) in the human body has yet not completely been unravelled and hence, an efficient method for characterization and on-line monitoring of the main Se-compound in human urine after consumption of Se-rich food was developed. Total Se-concentration in human urine after consumption of several Se-rich products was measured with inductively coupled plasma mass spectrometry (ICP-MS). The highest Se concentration in urine was observed after 4-10 h. The urine samples were brought onto a reversed phase column and the Se was detected by ICP-MS. Parameters for liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) measurements were optimized by using commercially available sugars, because it is known that some of the urinary metabolites contain a sugar moiety. In order to characterize the predominant Se-metabolite, it was necessary to extensively clean-up the sample and preconcentrate the species. The main metabolite was measured on its precursor ion on three different m/z according to three isotopes of Se. Relative peak surfaces matched the relative abundances of the isotopes. The product ions could be measured in a human urine sample in accordance to the product ions of the commercially available sugars. Moreover, the evidence of a selenosugar was demonstrated by the use of the Se-isotopes when measuring the product ions. LC-ESI-MS-MS was proven to be very efficient for the characterization of the main urinary Se-metabolite and can be used for on-line monitoring of the compound in urine samples. The method can be extended for clinical screening after consumption of Se-(en)rich(ed) food by use of the Se-isotopic profile and/or of the typical product ions of (methyl)-N-acetyl-hexosamines

  14. Determination of acrylamide in Chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry

    International Nuclear Information System (INIS)

    Zhang Yu; Ren Yiping; Zhao Hangmei; Zhang Ying

    2007-01-01

    The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 μg kg -1 were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 μg kg -1 for acrylamide. The GC-MECD method achieved quantification limits of 10 μg kg -1 in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 μg kg -1 detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples

  15. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time-of-flight mass spectrometry methodology.

    Science.gov (United States)

    Gómez-Caravaca, Ana María; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Caboni, Maria Fiorenza

    2011-10-26

    A new liquid chromatography methodology coupled to a diode array detector and a time-of-flight mass spectrometer has been developed for the simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd). This method has allowed the simultaneous determination of these two families of compounds with the same analytical method for the first time. A fused-core column C18 has been used, and the analysis has been performed in less than 27 min. Both chromatographic and electrospray ionization time-of-flight mass spectrometry parameters have been optimized to improve the sensitivity and to maximize the number of compounds detected. A validation of the method has also been carried out, and free and bound polar fractions of quinoa have been studied. Twenty-five compounds have been tentatively identified and quantified in the free polar fraction, while five compounds have been tentatively identified and quantified in the bound polar fraction. It is important to highlight that 1-O-galloyl-β-D-glucoside, acacetin, protocatechuic acid 4-O-glucoside, penstebioside, ethyl-m-digallate, (epi)-gallocatechin, and canthoside have been tentatively identified for the first time in quinoa. Free phenolic compounds have been found to be in the range of 2.746-3.803 g/kg of quinoa, while bound phenolic compounds were present in a concentration that varies from 0.139 and 0.164 g/kg. Indeed, saponins have been found to be in a concentration that ranged from 5.6 to 7.5% of the total composition of whole quinoa flour.

  16. Simultaneous determination of antiretroviral drugs in human hair with liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Wu, Yan; Yang, Jin; Duan, Cailing; Chu, Liuxi; Chen, Shenghuo; Qiao, Shan; Li, Xiaoming; Deng, Huihua

    2018-04-15

    The determination of the concentrations of antiretroviral drugs in hair is believed to be an important means for the assessment of the long-term adherence to highly active antiretroviral therapy. At present, the combination of tenofovir, lamivudine and nevirapine is widely used in China. However, there was no research reporting simultaneous determination of the three drugs in hair. The present study aimed to develop a sensitive method for simultaneous determination of the three drugs in 2-mg and 10-mg natural hair (Method 1 and Method 2). Hair samples were incubated in methanol at 37 °C for 16 h after being rinsed with methanol twice. The analysis was performed on high performance liquid chromatography tandem mass spectrometry with electronic spray ionization in positive mode and multiple reactions monitoring. Method 1 and Method 2 showed the limits of detection at 160 and 30 pg/mg for tenofovir, at 5 and 6 pg/mg for lamivudine and at 15 and 3 pg/mg for nevirapine. The two methods showed good linearity with the square of correlation coefficient >0.99 at the ranges of 416-5000 and 77-5000 pg/mg for tenofovir, 12-5000 and 15-5000 pg/mg for lamivudine and 39-50,000 and 6-50,000 pg/mg for nevirapine. They gave intra-day and inter-day coefficient of variation <15% and the recoveries ranging from 80.6 to 122.3% and from 83.1 to 114.4%. Method 2 showed LOD and LOQ better than Method 1 for tenofovir and nevirapine and matched Method 1 for lamivudine, but there was high consistency between them in the determination of the three drugs in hair. The population analysis with Method 2 revealed that the concentrations in hair were decreased with the distance of hair segment away from the scalp for the three antiretroviral drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The Effect of Extending the Length of the Coupling Coils in a Muon Ionization Cooling Channel

    International Nuclear Information System (INIS)

    Green, Michael A.

    2007-01-01

    RF cavities are used to re-accelerate muons that have been cooled by absorbers that are in low beta regions of a muon ionization cooling channel. A superconducting coupling magnet (or magnets) are around or among the RF cavities of a muon ionization-cooling channel. The field from the magnet guides the muons so that they are kept within the iris of the RF cavities that are used to accelerate the muons. This report compares the use of a single short coupling magnet with an extended coupling magnet that has one or more superconducting coils as part of a muon-cooling channel of the same design as the muon ionization cooling experiment (MICE). Whether the superconducting magnet is short and thick or long and this affects the magnet stored energy and the peak field in the winding. The magnetic field distribution also affects is the muon beam optics in the cooling cell of a muon cooling channel

  18. Simultaneous determination of carboprost methylate and its active metabolite carboprost in dog plasma by liquid chromatography-tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application to a pharmacokinetic study.

    Science.gov (United States)

    Yin, Lei; Meng, Xiangjun; Zhou, Xiaotong; Zhang, Tinglan; Sun, Heping; Yang, Zhichao; Yang, Bo; Xiao, Ning; Fawcett, J Paul; Yang, Yan; Gu, Jingkai

    2015-08-15

    A liquid chromatography-tandem mass spectrometric (LC-MS/MS) method using positive/negative electrospray ionization (ESI) switching for the simultaneous quantitation of carboprost methylate and carboprost in dog plasma has been developed and validated. After screening, the esterase inhibitor, dichlorvos was added to the whole blood at a ratio of 1:99 (v/v) to stabilize carboprost methylate during blood collection, sample storage and LLE. Indomethacin was added to plasma to inhibit prostaglandins synthesis after sampling. After liquid-liquid extraction of 500μL plasma with ethyl ether-dichloromethane (75:25, v/v), analytes and internal standard (IS), alprostadil-d4, were chromatographed on a CAPCELL PAK Phenyl column (150×2.0mm, 5μm) using acetonitrile-5mM ammonium acetate as mobile phase. Carboprost methylate was detected by positive ion electrospray ionization followed by multiple reaction monitoring (MRM) of the transition at m/z 400.5→329.3; the carboprost and IS were detected by negative ion electrospray ionization followed by MRM of the transitions at m/z 367.2→323.2, and 357.1→321.2, respectively. The method was linear for both analytes in the concentration range 0.05-30ng/mL with intra- and inter-day precisions (as relative standard deviation) of ≤6.75% and accuracy (as relative error) of ≤7.21% and limit of detection (LOD) values were 10 and 20pg/mL, respectively. The method was successfully applied to a pharmacokinetic study of the analytes in beagle dogs after intravaginal administration of a suppository containing 0.5mg carboprost methylate. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using Ultrahigh-Performance Liquid Chromatography and Positive Electrospray Ionization-Quadrupole Orbital Ion Trap High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Liao, Chia-Ding; Wong, Jon W; Zhang, Kai; Yang, Paul; Wittenberg, James B; Trucksess, Mary W; Hayward, Douglas G; Lee, Nathaniel S; Chang, James S

    2015-09-23

    Ultrahigh-performance liquid chromatography using positive electrospray ionization and quadrupole orbital ion trap high-resolution mass spectrometry was evaluated for analyzing mycotoxins in finished cereal and nut products. Optimizing the orbital ion trap mass analyzer in full-scan mode using mycotoxin-fortified matrix extracts gave mass accuracies, δM, of aflatoxin B1 in peanut and almond) to 1175 μg/kg (fumonisin B1 in corn flour) were found in 35 of the 70 commercial grain and nut samples surveyed. Mycotoxins could be identified at δM nut products.

  20. Simultaneous metabolite fingerprinting of hydrophilic and lipophilic compounds in Echinacea pallida by high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection.

    Science.gov (United States)

    Pellati, Federica; Orlandini, Giulia; Benvenuti, Stefania

    2012-06-15

    In this study, a detailed phytochemical characterization of Echinacea pallida (Nutt.) Nutt. root extracts and dietary supplements was carried out for the first time by developing advanced chromatographic techniques, based on HPLC with diode array (DAD) and electrospray ionization-mass spectrometry (ESI-MS) detection (with ion trap and triple quadrupole mass analyzers), for the simultaneous analysis of hydrophilic and lipophilic secondary metabolites. The HPLC analyses were carried out on an Ascentis C(18) column (250 mm × 4.6 mm I.D., 5 μm), with a mobile phase composed by H(2)O and ACN both containing 0.1% formic acid, under gradient elution. The UV spectra, in combination with MS and MS/MS data, allowed the identification of fourteen compounds, including caffeic acid derivatives, polyacetylenes and polyenes, in the analyzed samples. MS and MS/MS data were discussed in detail and the typical fragmentation patterns of each class of secondary metabolites were identified. For the first time, a hydroperoxide intermediate was characterized as an oxidation product of one of E. pallida monocarbonylic acetylenes, providing a confirmation of the mechanism that leads to the generation of hydroxylated derivatives. The HPLC method was fully validated in agreement with ICH guidelines and then applied to real samples. The quantitative analysis indicated that there was a great variability in the amount of the active compounds in the dietary supplements containing E. pallida root extracts: the content of total caffeic acid derivatives ranged from 2.31 to 11.45 mg/g and the amount of total polyacetylenes and polyenes from 6.38 to 30.54 mg/g. In the analyzed samples, the most abundant caffeic acid derivative was found to be echinacoside. Regarding polyacetylenes and polyenes, the most representative compounds were found to be tetradec-(8Z)-ene-11,13-diyn-2-one, pentedeca-(8Z,11Z)-dien-2-one and pentadec-(8Z)-en-2-one. The developed method can be considered suitable for metabolite

  1. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for

  2. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bert Lagrain

    Full Text Available The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS, the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC, and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%, the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and

  3. Differentiation of Boc-protected alpha,delta-/delta,alpha- and beta,delta-/delta,beta-hybrid peptide positional isomers by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Raju, G; Ramesh, V; Srinivas, R; Sharma, G V M; Shoban Babu, B

    2010-06-01

    Two new series of Boc-N-alpha,delta-/delta,alpha- and beta,delta-/delta,beta-hybrid peptides containing repeats of L-Ala-delta(5)-Caa/delta(5)-Caa-L-Ala and beta(3)-Caa-delta(5)-Caa/delta(5)-Caa-beta(3)-Caa (L-Ala = L-alanine, Caa = C-linked carbo amino acid derived from D-xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MS(n) spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc-group, and the side chain. The dipeptide positional isomers are differentiated by the collision-induced dissociation (CID) of the protonated peptides. The loss of 2-methylprop-1-ene is more pronounced for Boc-NH-L-Ala-delta-Caa-OCH(3) (1), whereas it is totally absent for its positional isomer Boc-NH-delta-Caa-L-Ala-OCH(3) (7), instead it shows significant loss of t-butanol. On the other hand, second isomeric pair shows significant loss of t-butanol and loss of acetone for Boc-NH-delta-Caa-beta-Caa-OCH(3) (18), whereas these are insignificant for its positional isomer Boc-NH-beta-Caa-delta-Caa-OCH(3) (13). The tetra- and hexapeptide positional isomers also show significant differences in MS(2) and MS(3) CID spectra. It is observed that 'b' ions are abundant when oxazolone structures are formed through five-membered cyclic transition state and cyclization process for larger 'b' ions led to its insignificant abundance. However, b(1)(+) ion is formed in case of delta,alpha-dipeptide that may have a six-membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di-, tetra-, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright 2010 John Wiley & Sons, Ltd.

  4. Screening therapeutics according to their uptake across the blood-brain barrier: A high throughput method based on immobilized artificial membrane liquid chromatography-diode-array-detection coupled to electrospray-time-of-flight mass spectrometry.

    Science.gov (United States)

    Russo, Giacomo; Grumetto, Lucia; Szucs, Roman; Barbato, Francesco; Lynen, Frederic

    2018-02-07

    The Blood-Brain Barrier (BBB) plays an essential role in protecting the brain tissues against possible injurious substances. In the present work, 79 neutral, basic, acidic and amphoteric structurally unrelated analytes were considered and their chromatographic retention coefficients on immobilized artificial membrane (IAM) stationary phase were determined employing a mass spectrometry (MS) -compatible buffer based on ammonium acetate. Their BBB passage predictive strength was evaluated and the statistical models based on IAM indexes and in silico physico-chemical descriptors showed solid statistics (r 2 (n-1) = 0.78). The predictive strength of the indexes achieved by the MS-compatible method was comparable to that achieved by employing the more "biomimetic" Dulbecco's phosphate buffered saline, even if some differences in the elution order were observed. The method was transferred to the MS, employing a diode-array-detection coupled to an electrospray ionization source and a time-of-flight analyzer. This setup allowed the simultaneous analysis of up to eight analytes, yielding a remarkable acceleration of the analysis time. Copyright © 2018. Published by Elsevier B.V.

  5. Structural analysis and differentiation of reducing and nonreducing neutral model starch oligosaccharides by negative-ion electrospray ionization ion-trap mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Čmelík, Richard; Chmelík, Josef

    2010-01-01

    Roč. 291, 1-2 (2010), s. 33-40 ISSN 1387-3806 R&D Projects: GA MŠk 2B06037 Institutional research plan: CEZ:AV0Z40310501 Keywords : structural analysis * oligosaccharides * electrospray mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.009, year: 2010

  6. Derivatization for LC-Electrospray Ionization-MS: A Tool for Improving Reversed-Phase Separation and ESI Responses of Bases, Ribosides, and Intact Nucleotides

    Czech Academy of Sciences Publication Activity Database

    Nordström, A.; Tarkowski, Petr; Tarkowská, Danuše; Doležal, Karel; Astot, C.; Sandberg, G.; Moritz, T.

    2004-01-01

    Roč. 76, č. 10 (2004), s. 2869-2877 ISSN 0003-2700 R&D Projects: GA ČR GA203/04/1168 Institutional research plan: CEZ:AV0Z5038910 Keywords : Arabidopsis thaliana * LC-Electrospray * AMP, ADP, and ATP Subject RIV: CA - Inorganic Chemistry Impact factor: 5.450, year: 2004

  7. Application of liquid chromatography/electrospray ionization ion trap tandem mass spectrometry for the evaluation of global nucleic acids: methylation in garden cress under exposure to CuO nanoparticles.

    Science.gov (United States)

    Alcazar Magana, Armando; Wrobel, Kazimierz; Corrales Escobosa, Alma Rosa; Wrobel, Katarzyna

    2016-01-15

    A full understanding of the biological impact of nanomaterials demands analytical procedures suitable for the detection/quantification of epigenetic changes that occur in the exposed organisms. Here, the effect of CuO nanoparticles (NPs) on global methylation of nucleic acids in Lepidium sativum was evaluated by liquid chromatography/ion trap mass spectrometry. Enhanced selectivity toward cytosine-containing nucleosides was achieved by using their proton-bound dimers formed in positive electrospray ionization (ESI(+)) as precursor ions for multiple reaction monitoring (MRM) quantification based on one or two ion transitions. Plants were exposed to CuO NPs (0-1000 mg L(-1)); nucleic acid extracts were washed with bathocuproine disulfate; nucleosides were separated on a Luna C18 column coupled via ESI(+) to an AmaZon SL mass spectrometer (Bruker Daltonics). Cytidine, 2´-deoxycytidine, 5-methylcytidine, 5-methyl-2´-deoxycytidine and 5-hydroxymethyl-2´-deoxycytidine were quantified by MRM based on MS(3) ([2M+H](+)/[M+H](+)/[M+H-132](+) or [M+H-116](+)) and MS(2) ([2M+H](+)/[M+H](+) ). Bathocuproine disulfate, added as Cu(I) complexing agent, allowed for elimination of [2M+Cu](+) adducts from the mass spectra. Poorer instrumental detection limits were obtained for MS(3) (20-120 fmol) as compared to MS(2) (9.0-41 fmol); however, two ion transitions helped to eliminate matrix effects in plant extracts. The procedure was tested by analyzing salmon sperm DNA (Sigma) and applied for the evaluation of DNA and RNA methylation in plants; in the absence of NPs, 13.03% and 0.92% methylated cytosines were found in DNA and RNA, respectively; for NPs concentration >50 mg L(-1), DNA hypomethylation was observed with respect to unexposed plants. RNA methylation did not present significant changes upon plant exposure; 5-hydroxymethyl-2´-deoxycytidine was not detected in any sample. The MRM quantification proposed here of cytosine-containing nucleosides using their proton-bound homo

  8. Photo-Ionization of Noble Gases: A Demonstration of Hybrid Coupled Channels Approach

    Directory of Open Access Journals (Sweden)

    Vinay Pramod Majety

    2015-01-01

    Full Text Available We present here an application of the recently developed hybrid coupled channels approach to study photo-ionization of noble gas atoms: Neon and Argon. We first compute multi-photon ionization rates and cross-sections for these inert gas atoms with our approach and compare them with reliable data available from R-matrix Floquet theory. The good agreement between coupled channels and R-matrix Floquet theory show that our method treats multi-electron systems on par with the well established R-matrix theory. We then apply the time dependent surface flux (tSURFF method with our approach to compute total and angle resolved photo-electron spectra from Argon with linearly and circularly polarized 12 nm wavelength laser fields, a typical wavelength available from Free Electron Lasers (FELs.

  9. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Govind, Niranjan; Apra, Edoardo; Klemm, Michael; Hammond, Jeff R.; Kowalski, Karol

    2017-02-03

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.

  10. An electrospray ms-coupled microfluidic device for sub-second hydrogen/deuterium exchange pulse-labelling reveals allosteric effects in enzyme inhibition.

    Science.gov (United States)

    Rob, Tamanna; Gill, Preet Kamal; Golemi-Kotra, Dasantila; Wilson, Derek J

    2013-07-07

    In this work, we introduce an integrated, electrospray mass spectrometry-coupled microfluidic chip that supports the complete workflow for 'bottom up' hydrogen/deuterium exchange (HDX) pulse labelling experiments. HDX pulse labelling is used to measure structural changes in proteins that occur after the initiation of a reaction, most commonly folding. In the present case, we demonstrate the device on the β-lactamase enzyme TEM-1, identifying active site changes that occur upon acylation by a covalent inhibitor and subtle changes in conformational dynamics that occur away from the active site over a period of several second after the inhibitor is bound. Our results demonstrate the power of microfluidics-enabled sub-second HDX pulse labelling as a tool for studying allostery and show some intriguing correlations with mutagenesis studies.

  11. Vibronic coupling in ionized organic molecules. Structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, F.

    2002-01-01

    Complete text of publication follows. Ionized organic molecules (radical cations, RC) are prone to undergo vibronic coupling whenever there is a relatively small energy gap ( 2v point group of the neutral parent molecule by twisting at the olefinic π bond to the lower C 2 symmetry in the RC (Chem. Eur. J. 2002, 8, 1074). These experiments clearly revealed a double minimum in the potential energy surface along the a 2 torsional mode. This is in accord with the coupling of the 2 B 1 and 2 B 2 Born-Oppenheimer states in C 2v symmetry, this mixing of the 2 B 1 π-ionized ground state and the 2 B 2 δ-ionized excited state being facilitated by the low (∼ 1.0 eV) gap between these states, as estimated from photoelectron spectroscopy. Turning to the second class of RC where unimolecular rearrangement reactions are promoted by vibronic interaction, several cases have emerged where the rearrangement would not be expected if it were based only on the ground-state properties of the RC. It was found (Chem. Phy. Lett. 1988, 143, 521) that the ethylene oxide RC undergoes C-C ring opening to the oxallyl species despite the fact that the ground state corresponds to ionization from the nonbonding oxygen π lone-pair orbital. The reaction develops excited-state character as a result of the vibronic mixing so that the activation barrier to ring opening is lowered. We will discuss the unusual rearrangements of the bicyclo[1.1.1.]pentane and [1.1.1]propellane RC from a similar perspective, emphasis being placed on the decisive role of symmetry in predicting the course of these rearrangements. We illustrate how this approach can reconcile conflicting considerations on some of the 'unexpected' reaction pathways followed by highly strained organic RC

  12. Electrospray Collection of Lunar Dust

    Science.gov (United States)

    Dziekan, Michael

    2012-01-01

    A report describes ElectroSpray Ionization based Electrostatic Precipitation (ESIEP) for collecting lunar dust particles. While some HEPA filtration processes may remove a higher fraction (>99.9 percent) of the particles, the high efficiency may not be appropriate from an overall system standpoint, especially in light of the relatively large power requirement that such systems demand. The new electrospray particle capture technology is described as a variant of electrostatic precipitation that eliminates the current drawbacks of electrostatic precipitation. The new approach replaces corona prone field with a mist of highly charged micro-droplets generated by electrospray ionization (ESI) as the mechanism by which incoming particles are attracted and captured. In electrospray, a miniscule flow rate (microliters/minute) of liquid (typically water and a small amount of salt to enhance conductivity) is fed from the tip of a needle held at a high voltage potential relative to an opposite counter electrode. At sufficient field strength, a sharp liquid meniscus forms , which emits a jet of highly charged droplets that drift through the surrounding gas and are collected on the walls of a conductive tube. Particles in the gas have a high probability of contact with the droplets either by adhering to the droplets or otherwise acquiring a high level of charge, causing them to be captured on the collecting electrode as well. The spray acts as a filtration material that is continuously introduced and removed from the gas flow, and thus can never become clogged.

  13. Conformational Reorganization Coupled to the Ionization of Internal Lys Residues in Proteins.

    Science.gov (United States)

    Richman, Daniel E; Majumdar, Ananya; García-Moreno E, Bertrand

    2015-09-29

    Ionizable groups buried in the hydrophobic interior of proteins are essential for energy transduction and catalysis. Because the protein interior is usually neither as polar nor as polarizable as water, these groups tend to have anomalous pKa values, and their ionization tends to be coupled to conformational reorganization. To elucidate mechanisms of energy transduction in proteins, it is necessary to understand the structural determinants of the pKa values of these buried groups, including the range and character of the conformational reorganization that the ionization of these buried groups can elicit. The L25K and L125K variants of staphylococcal nuclease (SNase) were used to characterize the diverse types of structural reorganization that can be promoted by the ionization of buried groups. NMR relaxation dispersion and ZZ-exchange experiments were used to identify the locations and measure the time scales and extent of pH-dependent conformational exchange in these two proteins. The buried Lys-25 and Lys-125 residues titrate with pKa of 6.3 and 6.2, respectively. The L25K protein fluctuates between the native state and an ensemble of locally unfolded states on the 400 μs to 7 ms time scale. On the 100 to 500 ms time scale the native state exchanges with a subglobally unfolded state in which the β-barrel is partially reorganized. The equilibrium between the native state and this alternative state is highly pH dependent; at pH values below the pKa of Lys-25 the state with the partially reorganized β-barrel is the dominant state. In contrast, the L125K protein only exhibited pH-independent fluctuation in the microsecond to millisecond time scale in the region near Lys-125. The study illustrates how diverse and how localized the coupling between conformational reorganization and ionization of buried groups can be. The pH-sensitive exchange between the fully native and subglobally or locally unfolded states in time scales well into hundreds of milliseconds will

  14. Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography-Electrospray Ionization-Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement.

    Science.gov (United States)

    Pérez-Ramírez, Iza F; Reynoso-Camacho, Rosalía; Saura-Calixto, Fulgencio; Pérez-Jiménez, Jara

    2018-01-24

    Grape and pomegranate are rich sources of phenolic compounds, and their derived products could be used as ingredients for the development of functional foods and dietary supplements. However, the profile of nonextractable or macromolecular phenolic compounds in these samples has not been evaluated. Here, we show a comprehensive characterization of extractable and nonextractable phenolic compounds of a grape/pomegranate pomace dietary supplement using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and matrix-assisted laser desorption/ionization (MALDI)-TOF techniques. The main extractable phenolic compounds were several anthocyanins (principally malvidin 3-O-glucoside) as well as gallotannins and gallagyl derivatives; some phenolic compounds were reported in grape or pomegranate for the first time. Additionally, there was a high proportion of nonextractable phenolic compounds, including vanillic acid, and dihydroxybenzoic acid. Unidentified polymeric structures were detected by MALDI-TOF MS analysis. This study shows that mixed grape and pomegranate pomaces are a source of different classes of phenolic compounds including a high proportion of nonextractable phenolic compounds.

  15. Ionization of elements in medium power capacitively coupled argon plasma torch with single and double ring electrodes.

    Science.gov (United States)

    Ponta, Michaela; Frentiu, Maria; Frentiu, Tiberiu

    2012-06-01

    A medium power, low Ar consumption capacitively coupled plasma torch (275 W, 0.4 L min-1) with molybdenum tubular electrode and single or two ring electrodes in non-local thermodynamic equilibrium (LTE) was characterized with respect to its ability to achieve element ionization. Ionization degrees of Ca, Mg, Mn and Cd were determined from ionic-to-atomic emission ratio and ionization equilibrium according to Saha's equation. The ionization degrees resulted from the Saha equation were higher by 9-32% than those obtained from spectral lines intensity in LTE regime and closer to reality. A linear decrease of ionization with increase of ionization energy of elements was observed. Plasma torch with two ring electrodes provided higher ionization degrees (85 ± 7% Ca, 79 ± 7% Mn, 80 ± 7% Mg and 73 ± 8% Cd) than those in single ring arrangement (70 ± 6% Ca, 57 ± 7% Mn, 57 ± 8% Mg and 42 ± 9% Cd). The Ca ionization decreased linearly by up to 79 ± 4% and 53 ± 6% in plasma with two ring electrodes and single ring respectively in the presence of up to 400 µg mL-1 Na as interferent. The studied plasma was effective in element ionization and could be a potential ion source in mass spectrometry.

  16. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    International Nuclear Information System (INIS)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli; Ostman, Pekka; Ojanperae, Ilkka; Kotiaho, Tapio; Kauppila, Tiina J.; Kostiainen, Risto

    2011-01-01

    Highlights: → DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. → DAPPI-MS has better urine matrix tolerance over DESI-MS. → Urine matrix can affect the ionization mechanism in DAPPI. → DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 μg mL -1 ) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  17. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Ostman, Pekka; Ojanperae, Ilkka [Hjelt Institute, Department of Forensic Medicine, University of Helsinki, P.O. Box 40, Helsinki FI-00014 (Finland); Kotiaho, Tapio [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Kauppila, Tiina J. [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Kostiainen, Risto, E-mail: risto.kostiainen@helsinki.fi [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland)

    2011-08-05

    Highlights: {yields} DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. {yields} DAPPI-MS has better urine matrix tolerance over DESI-MS. {yields} Urine matrix can affect the ionization mechanism in DAPPI. {yields} DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 {mu}g mL{sup -1}) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  18. Gas chromatography-electron ionization mass spectrometry and liquid chromatography-electrospray tandem mass spectrometry for determination of impurities in the anti-cancer drug isophosphoramide mustard

    Science.gov (United States)

    Cole, Richard B.; Chou, Chau-Wen; Boué, Stephen M.; Leblanc, Blaise W.; Rodgers, Andrew H.; Struck, Robert F.; Morgan, Lee Roy

    2004-02-01

    Isophosphoramide mustard (IPM) is known to have substantial anti-cancer activities in various animal models. Liquid chromatography-electrospray mass spectrometry (LC-ES-MS) and LC-ES-MS/MS methodologies have been developed and applied to the analysis of synthesized preparations of IPM. Our studies reveal that the principal impurity in IPM is N-(2-chloroethyl)-N'-ethylphosphorodiamidic acid (MC-IPM) formed by dehydrochlorination of IPM with subsequent hydrogenation during synthesis. This impurity is present at levels in the range of 2-5% depending upon synthesis conditions. In addition, a second IPM derivative has been characterized by LC-ES-MS/MS and has been shown to be the product of a reaction of IPM with the dilute perchloric acid mobile phase used for liquid chromatography separations. The LC-ES-MS/MS method has been successfully employed to detect IPM spiked into a blood plasma sample. This work establishes that LC-ES-MS/MS is a viable tool for the detailed characterization of IPM and related products.

  19. Reversed phase liquid chromatography hyphenated to continuous flow-extractive desorption electrospray ionization-mass spectrometry for analysis and charge state manipulation of undigested proteins

    Czech Academy of Sciences Publication Activity Database

    Li, L.; Yang, S.; Vidová, Veronika; Rice, E. M.; Wijeratne, A.; Havlíček, Vladimír; Schug, K. A.

    2015-01-01

    Roč. 21, č. 3 (2015), s. 361-368 ISSN 1469-0667 R&D Projects: GA ČR(CZ) GAP206/12/1150; GA MŠk(CZ) LH14064; GA MŠk LO1509 Institutional support: RVO:61388971 Keywords : protein chromatography * ambient ionization * charge-state manipulation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.011, year: 2015

  20. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS).

    Science.gov (United States)

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A; Nemes, Peter

    2016-08-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS)*

    Science.gov (United States)

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A.; Nemes, Peter

    2016-01-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. PMID:27317400

  2. Quantitative determination of juvenile hormone III and 20-hydroxyecdysone in queen larvae and drone pupae of Apis mellifera by ultrasonic-assisted extraction and liquid chromatography with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Jinhui; Qi, Yitao; Hou, Yali; Zhao, Jing; Li, Yi; Xue, Xiaofeng; Wu, Liming; Zhang, Jinzhen; Chen, Fang

    2011-09-01

    In this paper, a method for the rapid and sensitive analysis of juvenile hormone III (JH III) and 20-hydroxyecdysone (20E) in queen larvae and drone pupae samples was presented. Ultrasound-assisted extraction provided a significant shortening of the leaching time for the extraction of JH III and 20E and satisfactory sensitivity as compared to the conventional shake extraction procedure. After extraction, determination was carried out by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operating in electrospray ionization positive ion mode via multiple reaction monitoring (MRM) without any clean-up step prior to analysis. A linear gradient consisting of (A) water containing 0.1% formic acid and (B) acetonitrile containing 0.1% formic acid, and a ZORBAX SB-Aq column (100 mm × 2.1 mm, 3.5 μm) were employed to obtain the best resolution of the target analytes. The method was validated for linearity, limit of quantification, recovery, matrix effects, precision and stability. Drone pupae samples were found to contain 20E at concentrations of 18.0 ± 0.1 ng/g (mean ± SD) and JH III was detected at concentrations of 0.20 ± 0.06 ng/g (mean ± SD) in queen larvae samples. This validated method provided some practical information for the actual content of JH III and 20E in queen larvae and drone pupae samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Comparison of microbial communities in Lake Tahoe surface sample with Tonga Trench water column samples using High Pressure Liquid Chromatography - Electrospray Ionization - Mass Spectroscopy (HPLC - ESI - MS) and Global Natural Products Social Molecular Network (GNPS)

    Science.gov (United States)

    Belmonte, M. A.

    2015-12-01

    Intact polar lipids (IPLs) are lipids composed of a head group, a glycerol, and a fatty acid chain that make up the lipid bilayer of cell membranes in living cells; and the varying head groups can be indicative of the type of microbes present in the environment (Van Mooy 2010). So by distinguishing and identifying the IPL distribution in an environment one can make inferences about the microbial communities in the said environment. In this study, we used High Pressure Liquid Chromatography-Electrospray Ionization- Mass Spectroscopy (HPLC-ESI-MS) and Global Natural Products Social Molecular Networking (GNPS) to compare the IPL distributions of two oligotrophic environments: surface waters of Lake Tahoe in the Sierra Nevada Mountains, and the water column of the Tonga Trench in the South Pacific. We hypothesized that the similar nutrient dynamics of the two oligotrophic environments would result in similar eukaryotic and prokaryotic communities, which would be reflected in the IPL composition of suspended particulate organic matter (POM). For simplicity we focused on the classes of IPLs most commonly observed in the marine environment: phosphotidylglycerol (PG), phosphotidylethanolamine (PE), diacylglyceryl-trimethyl-homoserine (DGTS), diacylglyceryl-hydroxymethyl-trimethylalanine (DGTA), sulfoquinovosyldiacylglycerol (SQDG), monoglycosyldiacylglycerol (MGDG) and diglycosyldiacylglycerol (DGDG). Our results showed that all of the marine IPLs of interest were present in Lake Tahoe which confirms that there are many of the same microbial communities in the fresh waters of Lake Tahoe and the salt waters Tonga Trench.

  4. Fingerprint analysis and quality consistency evaluation of flavonoid compounds for fermented Guava leaf by combining high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry and chemometric methods.

    Science.gov (United States)

    Wang, Lu; Tian, Xiaofei; Wei, Wenhao; Chen, Gong; Wu, Zhenqiang

    2016-10-01

    Guava leaves are used in traditional herbal teas as antidiabetic therapies. Flavonoids are the main active of Guava leaves and have many physiological functions. However, the flavonoid compositions and activities of Guava leaves could change due to microbial fermentation. A high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry method was applied to identify the varieties of the flavonoids in Guava leaves before and after fermentation. High-performance liquid chromatography, hierarchical cluster analysis and principal component analysis were used to quantitatively determine the changes in flavonoid compositions and evaluate the consistency and quality of Guava leaves. Monascus anka Saccharomyces cerevisiae fermented Guava leaves contained 2.32- and 4.06-fold more total flavonoids and quercetin, respectively, than natural Guava leaves. The flavonoid compounds of the natural Guava leaves had similarities ranging from 0.837 to 0.927. The flavonoid compounds from the Monascus anka S. cerevisiae fermented Guava leaves had similarities higher than 0.993. This indicated that the quality consistency of the fermented Guava leaves was better than that of the natural Guava leaves. High-performance liquid chromatography fingerprinting and chemometric analysis are promising methods for evaluating the degree of fermentation of Guava leaves based on quality consistency, which could be used in assessing flavonoid compounds for the production of fermented Guava leaves. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Use of liquid chromatography/electrospray ionization tandem mass spectrometry to study the degradation pathways of terbuthylazine (TER) by Typha latifolia in constructed wetlands: identification of a new TER metabolite.

    Science.gov (United States)

    Gikas, Evagelos; Papadopoulos, Nikolaos G; Bazoti, Fotini N; Zalidis, Georgios; Tsarbopoulos, Anthony

    2012-01-30

    S-Triazines are used worldwide as herbicides for agricultural and non-agricultural purposes. Although terbuthylazine (TER) is the second most frequently used S-triazine, there is limited information on its metabolism. For this reason, an analytical method based on liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) has been developed aiming at the identification of TER and its five major metabolites (desisopropyl-hydroxy-atrazine, desethyl-hydroxy-terbuthylazine, desisopropyl-atrazine, hydroxy-terbuthylazine and desethyl-terbuthylazine) in constructed wetland water samples. The separation of TER and its major metabolites was performed by reversed-phase high-performance liquid chromatography (HPLC) on a C(8) column using a gradient elution of aqueous acetic acid 1% (solvent A) and acetonitrile (solvent B), followed by MS/MS analysis on a triple quadrupole mass spectrometer. The data-depended analysis (DDA) scan approach has been employed and the main degradation pathways of both hydroxyl and chloro (dealkylated and alkylated) metabolites are elucidated through the tandem mass spectral (MS/MS) interpretation of triazine fragments under CID conditions. In addition, another major metabolite of TER, namely N2-tert-butyl-N4-ethyl-6-methoxy-1,3,5-triazine-2,4-diamine, has been identified. This methodology can be further employed in biodegradation studies of TER, thus assisting the assessment of its environmental impact. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Detection of previously unknown fumonisin P analogue mycotoxins in a Fusarium verticillioides culture by high-performance liquid chromatography-electrospray ionization time-of-flight and ion trap mass spectrometry.

    Science.gov (United States)

    Bartók, Tibor; Tölgyesi, László; Szécsi, Árpád; Mesterházy, Ákos; Bartók, Mihály; Gyimes, Ernő; Véha, Antal

    2014-07-01

    Five previously unknown fumonisin mycotoxins (iso-FP1, iso-FP(2,3a), iso-FP(2,3b), FP4 and iso-FP4) and three previously described FP analogues (FP(1-3)) were detected in a solid rice culture inoculated with Fusarium verticillioides. The fumonisins were characterized by high-performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry (HPLC-ESI-TOFMS) and ion trap mass spectrometry (ITMS). The FP isomers were separated by using a flat gradient on a special, high-coverage C18, narrow-bore HPLC column (YMC-Pack J'sphere ODS H80), which was suggested for the separation of structural isomers. The verified structures of the FP(1-3) mycotoxins, the relative retention times (by HPLC-ESI-TOFMS and ITMS), the exact masses of the molecular ions (by TOFMS) and the masses of the product ions, including the hydrocarbon backbones (by ITMS) of the new compounds, strongly suggested their structures. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Robust method for investigating nitrogen metabolism of 15N labeled amino acids using AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry: application to a parasitic plant-plant interaction.

    Science.gov (United States)

    Gaudin, Zachary; Cerveau, Delphine; Marnet, Nathalie; Bouchereau, Alain; Delavault, Philippe; Simier, Philippe; Pouvreau, Jean-Bernard

    2014-01-21

    An AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry (AccQ•Tag-UPLC-PDA-ESI-MS) method is presented here for the fast, robust, and sensitive quantification of (15)N isotopologue enrichment of amino acids in biological samples, as for example in the special biotic interaction between the cultivated specie Brassica napus (rapeseed) and the parasitic weed Phelipanche ramosa (broomrape). This method was developed and validated using amino acid standard solutions containing (15)N amino acid isotopologues and/or biological unlabeled extracts. Apparatus optimization, limits of detection and quantification, quantification reproducibility, and calculation method of (15)N isotopologue enrichment are presented. Using this method, we could demonstrate that young parasite tubercles assimilate inorganic nitrogen as (15)N-ammonium when supplied directly through batch incubation but not when supplied by translocation from host root phloem, contrary to (15)N2-glutamine. (15)N2-glutamine mobility from host roots to parasite tubercles followed by its low metabolism in tubercles suggests that the host-derived glutamine acts as an important nitrogen containing storage compound in the young tubercle of Phelipanche ramosa.

  8. Quantitative analysis of tylosin in eggs by high performance liquid chromatography with electrospray ionization tandem mass spectrometry: residue depletion kinetics after administration via feed and drinking water in laying hens.

    Science.gov (United States)

    Hamscher, Gerd; Limsuwan, Sasithorn; Tansakul, Natthasit; Kietzmann, Manfred

    2006-11-29

    Maximum residue limits (MRLs) have been established by the European Union when tylosin is used therapeutically. They are fixed at 200 microg/kg for eggs. A highly sensitive and selective quantitative liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) method suitable for monitoring tylosin residues in eggs to determine its depletion kinetics was developed and validated. For sample pretreatment all samples were liquid-liquid extracted with citrate buffer (pH 5.0) and acetonitrile. Liquid chromatographic separation was carried out on a reversed phase C18 column employing a 0.5% formic acid/acetonitrile gradient system. The tylosin recovery in eggs at a concentration range from 1.0-400 microg/kg was >82% with relative standard deviations between 1.5 and 11.0%. In two experimental studies administrating tylosin via feed (final dosage: 1.5 g/kg) or drinking water (final dosage: 0.5 g/L), no residues above the MRL were found during and after treatment. Moreover, all samples were well below the actual MRL of 200 microg/kg. Therefore, our residue data suggest that a withholding period for eggs is not required when laying hens are treated with tylosin in recommended dosages via feed or drinking water. Tylosin; residue; depletion; laying hen; withholding period; mass spectrometry.

  9. Analysis of monomeric and oligomeric organophosphorus flame retardants in fish muscle tissues using liquid chromatography–electrospray ionization tandem mass spectrometry: Application to Nile tilapia (Oreochromis niloticus from an e-waste processing area in northern Vietnam

    Directory of Open Access Journals (Sweden)

    Hidenori Matsukami

    2016-06-01

    Full Text Available Using electrospray ionization tandem mass spectrometry combined with liquid chromatography (LC, a novel analytical method was developed to quantify eight monomeric organophosphorus flame retardants (m-PFRs and three oligomeric organophosphorus flame retardants (o-PFRs in fish muscle samples. The optimization and validation experiments indicate that the developed method can determine accurately the concentrations of analytes in fish muscle samples. The recoveries of analytes in fish muscle samples were in the range of 74–105%. The coefficients of variation of the concentrations of analytes in fish muscle samples were 0.6–8.9%. The concentrations of analytes in procedural blanks were below the limit of quantification (LOQ values. Furthermore, the developed method was applied to the analysis of m-PFRs and o-PFRs in the muscle samples of tilapias collected from an electronic waste (e-waste processing area in northern Vietnam. The concentrations of m-PFRs such as tris(2-chloroethyl phosphate (TCEP, tris(2-chloroisopropyl phosphate (TCIPP, and triphenyl phosphate (TPHP were dominant among the investigated m-PFRs. The respective concentrations of TCEP, TCIPP, and TPHP were up to 160, 300, and 230 ng g−1 lipid weight, respectively, whereas those of o-PFRs were up to 10 ng g−1 lipid weight. The results of this study indicate lower accumulation potential of o-PFRs compared with m-PFRs for the first time.

  10. Capillary moving-boundary isotachophoresis with electrospray ionization mass-spectrometric detection and hydrogen ion used as essential terminator: Methodology for sensitive analysis of hydroxyderivatives of s-triazine herbicides in waters.

    Science.gov (United States)

    Malá, Zdena; Gebauer, Petr

    2017-10-06

    Capillary isotachophoresis (ITP) is an electrophoretic technique offering high sensitivity due to permanent stacking of the migrating analytes. Its combination with electrospray-ionization mass-spectrometric (ESI-MS) detection is limited by the narrow spectrum of ESI-compatible components but can be compensated by experienced system architecture. This work describes a methodology for sensitive analysis of hydroxyderivatives of s-triazine herbicides, based on implementation of the concepts of moving-boundary isotachophoresis and of H + as essential terminating component into cationic ITP with ESI-MS detection. Theoretical description of such kind of system is given and equations for zone-related boundary mobilities are derived, resulting in a much more general definition of the effective mobility of the terminating H + zone than used so far. Explicit equations allowing direct calculation for selected simple systems are derived. The presented theory allows prediction of stacking properties of particular systems and easy selection of suitable electrolyte setups. A simple ESI-compatible system composed of acetic acid and ammonium with H + and ammonium as a mixed terminator was selected for the analysis of 2-hydroxyatrazine and 2-hydroxyterbutylazine, degradation products of s-triazine herbicides. The proposed method was tested with direct injection without any sample pretreatment and provided excellent linearity and high sensitivity with limits of detection below 100ng/L (0.5nM). Example analyses of unspiked and spiked drinking and river water are shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ionizing radiation effects in Acai oil analysed by gas chromatography coupled to mass spectrometry technique

    International Nuclear Information System (INIS)

    Valli, Felipe; Fernandes, Carlos Eduardo; Moura, Sergio; Machado, Ana Carolina; Furasawa, Helio Akira; Pires, Maria Aparecida Faustino; Bustillos, Oscar Vega

    2007-01-01

    The Acai fruit is a well know Brazilian seed plant used in large scale as a source of feed stock, specially in the Brazilian North-east region. The Acai oil is use in many purposes from fuel sources to medicine. The scope of this paper is to analyzed the chemical structures modification of the acai oil after the ionizing radiation. The radiation were set in the range of 10 to 25 kGy in the extracted Acai oil. The analyses were made by gas chromatography coupled to mass spectrometry techniques. A GC/MS Shimatzu QP-5000 equipped with 30 meters DB-5 capillary column with internal diameter of 0.25 mm and 0.25 μm film thickness was used. Helium was used as carried gas and gave a column head pressure of 12 p.s.i. (1 p.s.i. = 6894.76 Pa) and an average flux of 1 ml/min. The temperature program for the GC column consisted of a 4-minutes hold at 75 deg C, a 15 deg C /min ramp to 200 deg C, 8 minutes isothermal. 20 deg C/min ramp to 250 deg C, 2 minutes isothermal. The extraction of the fatty acids was based on liquid-liquid method using chloroform as solvent. The chromatograms resulted shows the presences of the oleic acid and others fatty acids identify by the mass spectra library (NIST-92). The ionization radiation deplete the fatty acids presents in the Acai oil. Details on the chemical qualitative analytical is present as well in this work. (author)

  12. Advanced PIC-MCC simulation for the investigation of step-ionization effect in intermediate-pressure capacitively coupled plasmas

    Science.gov (United States)

    Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June

    2018-03-01

    A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.

  13. Systematic fragmentation patterns of archaeal intact polar lipids by high-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry

    OpenAIRE

    Yoshinaga, Marcos Y.; Kellermann, Matthias Y.; Rossel, Pamela E.; Schubotz, Florence; Lipp, Julius S.; Hinrichs, Kai-Uwe

    2011-01-01

    Archaea are ubiquitous and abundant microorganisms on Earth that mediate key global biogeochemical cycles. The headgroup attached to the sn-1 position in the glycerol backbone and the ether-linked isoprenoid lipids are among the diagnostic traits that distinguish Archaea from Bacteria and Eukarya. Over the last 30 years, numerous archaeal lipids were purified and described in pure cultures. Coupled high performance liquid chromatography (HPLC) ion trap mass spectrometry (ITMS) now enables the...

  14. Negative electrospray ionization on porous supporting tips for mass spectrometric analysis: electrostatic charging effect on detection sensitivity and its application to explosive detection.

    Science.gov (United States)

    Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming

    2014-03-21

    The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples.

  15. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization

  16. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    Science.gov (United States)

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Tandem mass spectrometric analysis of novel diquaternary ammonium gemini surfactants and their bromide adducts in electrospray-positive ion mode ionization.

    Science.gov (United States)

    Buse, Joshua; Badea, Ildiko; Verrall, Ronald E; El-Aneed, Anas

    2011-10-01

    Gemini surfactants are cationic lipids which are utilized for both in vitro and in vivo gene delivery. Structurally, they are comprised of two hydrophobic tail regions with polar head termini that are attached to one another through a spacer region. Structural elucidation and characterization of 29 novel diquaternary ammonium gemini surfactant molecules were achieved using a quadrupole time-of-flight mass spectrometer (QqToF-MS) and a quadrupole-hexapole-quadrupole mass spectrometer (QhQ-MS). The tested compounds were categorized into four distinct structural families based upon the composition of the spacer region. Single stage (MS), tandem stage (MS/MS) and quasimulti-stage (quasi MS(3)) mass spectrometric analysis allowed for confirmation of each gemini surfactant's molecular composition and structure through the identification of common and unique product ions. Identification of similarities in the gemini surfactants' fragmentation behaviour resulted in the production of a universal fragmentation pathway that can assist in the future MS/MS analysis of novel quaternary ammonium gemini surfactants, with unique product ions being indicative of specific structural elements. Furthermore, evidence for the association of agemini surfactant with bromine counter ion was confirmed during MS analysis of tested gemini surfactants regardless of their chemical composition; previously, evidence for bromine and gemini surfactant association was only observed with compounds bearing short alkyl spacer regions. MS/MS analysis of the bromine adducts was also confirmatory to the molecular structure.Understanding the ionization and fragmentation behaviour of gemini surfactants, including bromine adducts, will allow for future qualitative and quantitative identification of these novel drug delivery agents within biological samples. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Combining two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy, imaging desorption electrospray ionization mass spectrometry, and direct analysis in real-time mass spectrometry for the integral investigation of counterfeit pharmaceuticals.

    Science.gov (United States)

    Nyadong, Leonard; Harris, Glenn A; Balayssac, Stéphane; Galhena, Asiri S; Malet-Martino, Myriam; Martino, Robert; Parry, R Mitchell; Wang, May Dongmei; Fernández, Facundo M; Gilard, Véronique

    2009-06-15

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered (1)H nuclear magnetic resonance spectroscopy (2D DOSY (1)H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY (1)H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug "chemotyping". In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY (1)H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials.

  19. Validation of an online dual-loop cleanup device with an electrospray ionization tandem mass spectrometry-based system for simultaneous quantitative analysis of urinary benzene exposure biomarkers trans, trans-muconic acid and S-phenylmercapturic acid

    International Nuclear Information System (INIS)

    Lin, L.-C.; Chiung, Y.-M.; Shih, J.-F.; Shih, T.-S.G; Liao, P.-C.

    2006-01-01

    The aim of this study is to validate isotope-dilution electrospray ionization tandem mass spectrometry (ESI-MS-MS) method with a dual-loop cleanup device for simultaneous quantitation of two benzene metabolites, trans, trans-muconic acid (ttMA) and S-phenylmercapturic acid (SPMA), in human urine. In this study, a pooled blank urine matrix from rural residents was adopted for validation of the analytical method. The calibration curve, detection limit, recovery, precision, accuracy and the stability of sample storage for the system have been characterized. Calibration plots of ttMA and SPMA standards spiked into two kinds of urine matrixes over a wide concentration range, 1/32-8-fold biological exposure indices (BEIs) values, showed good linearity (R > 0.9992). The detection limits in pooled urine matrix for ttMA and SPMA were 1.27 and 0.042 μg g -1 creatinine, respectively. For both of ttMA and SPMA, the intra- and inter-day precision values were considered acceptable well below 25% at the various spiked concentrations. The intra- and inter-day apparent recovery values were also considered acceptable (apparent recovery >90%). The ttMA accuracy was estimated by urinary standard reference material (SRM). The accuracy reported in terms of relative error (RE) was 5.0 ± 2.0% (n = 3). The stability of sample storage at 4 or -20 deg. C were assessed. Urinary ttMA and SPMA were found to be stable for at least 8 weeks when stored at 4 or -20 deg. C. In addition, urine samples from different benzene exposure groups were collected and measured in this system. Without tedious manual sample preparation procedure, the analytical system was able to quantify simultaneously ttMA and SPMA in less than 20 min

  20. Evaluation of immobilized metal-ion affinity chromatography and electrospray ionization tandem mass spectrometry for recovery and identification of copper(II-binding ligands in seawater using the model ligand 8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Richard L Nixon

    2016-11-01

    Full Text Available Complexation by organic ligands dominates the speciation of iron (Fe, copper (Cu, and other bioactive trace metals in seawater, controlling their bioavailability and distribution in the marine environment. Several classes of high-affinity Fe-binding ligands (siderophores have been identified in seawater but the chemical structures of marine Cu-complexing ligands remain unknown. Immobilized metal-ion affinity chromatography (IMAC allows Cu ligands to be isolated from bulk dissolved organic matter (DOM in seawater and separated into fractions which can be characterized independently using electrochemical and spectroscopic techniques. Attempts have been made to combine IMAC with electrospray ionization mass spectrometry (ESI-MS to characterize marine Cu ligands, but results have proven inconclusive due to the lack of tandem mass spectrometry (MS/MS data to confirm ligand recovery. We used 8-hydroxyquinoline (8-HQ, a well-characterized model ligand that forms strong 1:2 metal:ligand complexes with Cu2+ at pH 8 (log β2 = 18.3, to evaluate Cu(II-IMAC and ESI-MS/MS for recovery and identification of copper(II-complexing ligands in seawater. One-litre samples of 0.45µm-filtered surface seawater were spiked with 8-HQ at low concentrations (up to 100 nM and fractionated by IMAC. Fractions eluted with acidified artificial seawater were desalted and re-suspended in methanol via solid-phase extraction (SPE to obtain extracts suitable for ESI-MS analysis. Recovery of 8-HQ by Cu(II-IMAC was confirmed unambiguously by MS/MS and found to average 81% based upon accurate quantitation via multiple reaction monitoring (MRM. Cu(II-IMAC fractionation of unspiked seawater using multiple UV detection wavelengths suggests an optimal fraction size of 2 mL for isolating and analyzing Cu ligands with similar properties.

  1. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI-MS/MS Study for the Identification and Characterization of In Vivo Metabolites of Cisplatin in Rat Kidney Cancer Tissues: Online Hydrogen/Deuterium (H/D Exchange Study.

    Directory of Open Access Journals (Sweden)

    Raju Bandu

    Full Text Available In vivo rat kidney tissue metabolites of an anticancer drug, cisplatin (cis-diamminedichloroplatinum [II] (CP which is used for the treatment of testicular, ovarian, bladder, cervical, esophageal, small cell lung, head and neck cancers, have been identified and characterized by using liquid chromatography positive ion electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS in combination with on line hydrogen/deuterium exchange (HDX experiments. To identify in vivo metabolites, kidney tissues were collected after intravenous administration of CP to adult male Sprague-Dawley rats (n = 3 per group. The tissue samples were homogenized and extracted using newly optimized metabolite extraction procedure which involves liquid extraction with phosphate buffer containing ethyl acetate and protein precipitation with mixed solvents of methanol-water-chloroform followed by solid-phase clean-up procedure on Oasis HLB 3cc cartridges and then subjected to LC/ESI-HRMS analysis. A total of thirty one unknown in vivo metabolites have been identified and the structures of metabolites were elucidated using LC-MS/MS experiments combined with accurate mass measurements. Online HDX experiments have been used to further support the structural characterization of metabolites. The results showed that CP undergoes a series of ligand exchange biotransformation reactions with water and other nucleophiles like thio groups of methionine, cysteine, acetylcysteine, glutathione and thioether. This is the first research approach focused on the structure elucidation of biotransformation products of CP in rats, and the identification of metabolites provides essential information for further pharmacological and clinical studies of CP, and may also be useful to develop various effective new anticancer agents.

  2. Structural Definition of Trehalose 6-Monomycolates and Trehalose 6,6'-Dimycolates from the Pathogen Rhodococcus equi by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization

    Science.gov (United States)

    Hsu, Fong-Fu; Wohlmann, Jens; Turk, John; Haas, Albert

    2011-12-01

    The cell wall of the pathogenic bacterium Rhodococcus equi ( R. equi) contains abundant trehalose monomycolate (TMM) and trehalose dimycolate (TDM), the glycolipids bearing mycolic acids. Here, we describe multiple-stage (MS n ) linear ion-trap (LIT) mass spectrometric approaches toward structural characterization of TMM and TDM desorbed as [M + Alk]+ (Alk = Na, Li) and as [M + X]- (X = CH3CO2, HCO2) ions by electrospray ionization (ESI). Upon MS n ( n = 2, 3, 4) on the [M + Alk]+ or the [M + X]- adduct ions of TMM and TDM, abundant structurally informative fragment ions are readily available, permitting fast assignment of the length of the meromycolate chain and of the α-branch on the mycolyl residues. In this way, structures of TMM and TDM isolated from pathogenic R. equi strain 103 can be determined. Our results indicate that the major TMM and TDM molecules possess 6, and/or 6'-mycolyl groups that consist of mainly C14 and C16 α-branches with meromycolate branches ranging from C18 to C28, similar to the structures of the unbound mycolic acids found in the cell envelope. Up to 60 isobaric isomers varying in chain length of the α-branch and of the meromycolate backbone were observed for some of the TDM species in the mixture. This mass spectrometric approach provides a direct method that affords identification of various TMM and TDM isomers in a mixture of which the complexity of this lipid class has not been previously reported using other analytical methods.

  3. Neutral losses of sodium benzoate and benzoic acid in the fragmentation of the [M + Na]+ ions of methoxyfenozide and tebufenozide via intramolecular rearrangement in electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Chai, Yunfeng; Gao, Guanwei; Shen, Shanshan; Liu, Xin; Lu, Chengyin

    2017-02-15

    Electrospray ionization (ESI) tandem mass spectrometry can be applied to determine structural information about organic compounds. The [M + Na] + ion is one of the major precursor ions in ESI mass spectrometry, but its fragmentation mechanism study is still insufficient. This study reveals the interesting fragmentation reactions of the [M + Na] + ions of methoxyfenozide and tebufenozide. The fragmentations of the [M + Na] + , [M + Li] + , and [M + H] + ions of methoxyfenozide and tebufenozide were studied using a hybrid quadrupole-orbitrap mass spectrometer and an ion trap mass spectrometer. A hydrogen/deuterium (H/D)-exchange experiment in the amide group of methoxyfenozide allowed for the confirmation of the fragmentation mechanism. Density functional theory (DFT) calculations were performed for a further understanding of the fragmentation mechanism of the [M + Na] + ion of methoxyfenozide. Neutral losses of sodium benzoate and benzoic acid in the fragmentation of the [M + Na] + ions of methoxyfenozide and tebufenozide were observed as the major fragmentation pathways. In contrast, similar fragmentations were not observed or minor pathways in the fragmentation of the [M + Li] + and [M + H] + ions of methoxyfenozide and tebufenozide. In addition, a minor product ion resulting from loss of NaOH was identified, which was the first reported example in the fragmentation of sodiated compounds in mass spectrometry. Losses of sodium benzoate and benzoic acid in the fragmentation of the [M + Na] + ions of methoxyfenozide and tebufenozide are proposed to be formed through an intramolecular rearrangement reaction, which is supported by DFT calculations. An H/D-exchange experiment confirms that the carboxyl hydrogen of benzoic acid and the hydrogen of NaOH exclusively derive from the amide hydrogen of the precursor ion. This study enriches our knowledge on the Na + -induced fragmentation reactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright

  4. Simultaneous determination of phentermine and topiramate in human plasma by liquid chromatography-tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application in pharmacokinetic study.

    Science.gov (United States)

    Ni, Yang; Zhou, Ying; Xu, Mingzhen; He, Xiaomeng; Li, Huqun; Haseeb, Satter; Chen, Hui; Li, Weiyong

    2015-03-25

    A new method for simultaneous determination of phentermine and topiramate by liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) operated in positive and negative ionization switching modes was developed and validated. Protein precipitation with acetonitrile was selected for sample preparation. Analyses were performed on a liquid chromatography system employing a Kromasil 60-5CN column (2.1 mm × 100 mm, 5 μm) and an isocratic elution with mixed solution of acetonitrile-20mM ammonium formate containing 0.3% formic acid (40:60, v/v), at a flow rate of 0.35 mL/min. Doxazosin mesylate and pioglitazone were used as the internal standard (IS) respectively for quantification. The determination was carried out on an API 4000 triple-quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode using the following transitions monitored simultaneously: positive m/z 150.0/91.0 for phentermine, m/z 452.1/344.3 for doxazosin, and negative m/z 338.3/77.9 for topiramate, m/z 355.0/41.9 for pioglitazone. The method was validated to be linear over the concentration range of 1-800 ng mL(-1) for phentermine, 1-1000 ng mL(-1) for topiramate. Within- and between-day accuracy and precision of the validated method at three different concentration levels were within the acceptable limits of <15% at all concentrations. Blood samples were collected into heparinized tubes before and after administration. The simple and robust LC/MS/MS method was successfully applied for the simultaneous determination of phentermine and topiramate in a pharmacokinetic study in healthy male Chinese volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-03-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Differentiation of Positional Isomers of Hybrid Peptides Containing Repeats of β-Nucleoside Derived Amino Acid (β-Nda-) and L-Amino Acids by Positive and Negative Ion Electrospray Ionization Tandem Mass Spectrometry (ESI-MS n )

    Science.gov (United States)

    Raju, B.; Ramesh, M.; Srinivas, R.; Chandrasekhar, S.; Kiranmai, N.; Sarma, V. U. M.

    2011-04-01

    A new class of positional isomeric pairs of -Boc protected oligopeptides comprised of alternating nucleoside derived β-amino acid (β-Nda-) and L-amino acid residues (alanine, valine, and phenylalanine) have been differentiated by both positive and negative ion electrospray ionization ion-trap tandem mass spectrometry (ESI-MS n ). The protonated dipeptide positional isomers with β-Nda- at the N-terminus lose CH3OH, NH3, and C2H4O2, whereas these processes are absent for the peptides with L-amino acids at the N-terminus. Instead, the presence of L-amino acids at the N-terminus results in characteristic retro-Mannich reaction involving elimination of imine. A good correlation has been observed between the conformational structure of the peptides and the abundance of y{n/+} and b{n/+} ions in MS n spectra. In the case of tetrapeptide isomers that are reported to form helical structures in solution phase, no y{n/+} and b{n/+} ions are observed when the corresponding amide -NH- participates in the helical structures. In contrast, significant y{n/+} and b{n/+} ions are formed when the amide -NH- is not involved in the H-bonding. In the case of tetra- and hexapeptides, it is observed that abundant b{n/+} ions are formed, presumably with stable oxazolone structures when the C-terminus of the b{n/+} ions possessed L-amino acid and the β-Nda- at the C-terminus appears to prevent the cyclization process leading to the absence of corresponding b{n/+} ions.

  7. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry

    Science.gov (United States)

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-01-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three-and two-aromatic ring products. The structurally similar four-and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. PMID:24325265

  8. Validation of a liquid chromatography-electrospray ionization tandem mass spectrometric method to determine six polyether ionophores in raw, UHT, pasteurized and powdered milk.

    Science.gov (United States)

    Pereira, Mararlene Ulberg; Spisso, Bernardete Ferraz; Jacob, Silvana do Couto; Monteiro, Mychelle Alves; Ferreira, Rosana Gomes; Carlos, Betânia de Souza; da Nóbrega, Armi Wanderley

    2016-04-01

    This study aimed to validate a method developed for the determination of six antibiotics from the polyether ionophore class (lasalocid, maduramicin, monensin, narasin, salinomycin and semduramicin) at residue levels in raw, UHT, pasteurized and powdered milk using QuEChERS extraction and high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The validation was conducted under an in-house laboratory protocol that is primarily based on 2002/657/EC Decision, but takes in account the variability of matrix sources. Overall recoveries between 93% and 113% with relative standard deviations up to 16% were obtained under intermediate precision conditions. CCα calculated values did not exceed 20% the Maximum Residue Limit for monensin and 25% the Maximum Levels for all other substances. The method showed to be simple, fast and suitable for verifying the compliance of raw and processed milk samples regarding the limits recommended by Codex Alimentarius and those adopted in European Community for polyether ionophores. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Validated method for the simultaneous determination of Delta9-THC and Delta9-THC-COOH in oral fluid, urine and whole blood using solid-phase extraction and liquid chromatography-mass spectrometry with electrospray ionization.

    Science.gov (United States)

    Teixeira, Helena; Verstraete, Alain; Proença, Paula; Corte-Real, Francisco; Monsanto, Paula; Vieira, Duarte Nuno

    2007-08-06

    A fully validated, sensitive and specific method for the extraction and quantification of Delta(9)-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-Delta(9)-THC (THC-COOH) and for the detection of 11-hydroxy-Delta(9)-THC (11-OH THC) in oral fluid, urine and whole blood is presented. Solid-phase extraction and liquid chromatography-mass spectrometry (LC-MS) technique were used, with electrospray ionization. Three ions were monitored for THC and THC-COOH and two for 11-OH THC. The compounds were quantified by selected ion recording of m/z 315.31, 329.18 and 343.16 for THC, 11-OH THC and THC-COOH, respectively, and m/z 318.27 and 346.26 for the deuterated internal standards, THC-d(3) and THC-COOH-d(3), respectively. The method proved to be precise for THC and THC-COOH both in terms of intra-day and inter-day analysis, with intra-day coefficients of variation (CV) less than 6.3, 6.6 and 6.5% for THC in saliva, urine and blood, respectively, and 6.8 and 7.7% for THC-COOH in urine and blood, respectively. Day-to-day CVs were less than 3.5, 4.9 and 11.3% for THC in saliva, urine and blood, respectively, and 6.2 and 6.4% for THC-COOH in urine and blood, respectively. Limits of detection (LOD) were 2 ng/mL for THC in oral fluid and 0.5 ng/mL for THC and THC-COOH and 20 ng/mL for 11-OH THC, in urine and blood. Calibration curves showed a linear relationship for THC and THC-COOH in all samples (r(2)>0.999) within the range investigated. The procedure presented here has high specificity, selectivity and sensitivity. It can be regarded as an alternative method to GC-MS for the confirmation of positive immunoassay test results, and can be used as a suitable analytical tool for the quantification of THC and THC-COOH in oral fluid, urine and/or blood samples.

  10. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Tsutsui, Haruhito; Maeda, Toshio; Min, Jun Zhe; Inagaki, Shinsuke; Higashi, Tatsuya; Kagawa, Yoshiyuki; Toyo'oka, Toshimasa

    2011-05-12

    The number of diabetic patients has recently been increasing worldwide. Diabetes is a multifactorial disorder based on environmental factors and genetic background. In many cases, diabetes is asymptomatic for a long period and the patient is not aware of the disease. Therefore, the potential biomarker(s), leading to the early detection and/or prevention of diabetes mellitus, are strongly required. However, the diagnosis of the prediabetic state in humans is a very difficult issue, because the lifestyle is variable in each person. Although the development of a diagnosis method in humans is the goal of our research, the extraction and structural identification of biomarker candidates in several biological specimens (i.e., plasma, hair, liver and kidney) of ddY strain mice, which undergo naturally occurring diabetes along with aging, were carried out based upon a metabolite profiling study. The low-molecular-mass compounds including metabolites in the biological specimens of diabetic mice (ddY-H) and normal mice (ddY-L) were globally separated by ultra-performance liquid chromatography (UPLC) using different reversed-phase columns (i.e., T3-C18 and HS-F5) and detected by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The biomarker candidates related to diabetes mellitus were extracted from a multivariate statistical analysis, such as an orthogonal partial least-squares-discriminant analysis (OPLS-DA), followed by a database search, such as ChemSpider, KEGG and HMDB. Many metabolites and unknown compounds in each biological specimen were detected as the biomarker candidates related to diabetic mellitus. Among them, the elucidation of the chemical structures of several possible metabolites, including more than two biological specimens, was carried out along with the comparison of the tandem MS/MS analyses using authentic compounds. One metabolite was clearly identified as N-acetyl-L-leucine based upon the MS/MS spectra and the retention time on

  11. The influence of salt matrices on the reversed-phase liquid chromatography behavior and electrospray ionization tandem mass spectrometry detection of glyphosate, glufosinate, aminomethylphosphonic acid and 2-aminoethylphosphonic acid in water.

    Science.gov (United States)

    Skeff, Wael; Recknagel, Constantin; Schulz-Bull, Detlef E

    2016-12-02

    The analysis of highly polar and amphoteric compounds in seawater is a continuing challenge in analytical chemistry due to the possible formation of complexes with the metal cations present in salt-based matrices. Here we provide information for the development of analytical methods for glyphosate, glufosinate, AMPA, and 2-AEP in salt water, based on studies of the effects of salt matrices on reversed-phase liquid chromatography-heated electrospray ionization-tandem mass spectrometry (RP-LC-HESI-MS/MS) after derivatization of the target compounds with FMOC-Cl. The results showed that glyphosate was the only analyte with a strong tendency to form glyphosate-metal complexes (GMC), which clearly influenced the analysis. The retention times (RTs) of GMC and free glyphosate differed by approximately 7.00min, reflecting their distinct RP-LC behaviors. Divalent cations, but not monovalent (Na + , K + ) or trivalent (Al 3+ , Fe 3+ ) cations, contributed to this effect and their influence was concentration-dependent. In addition, Cu 2+ , Co 2+ , Zn 2+ , and Mn 2+ prevented glyphosate detection whereas Ca 2+ , Mg 2+ , and Sr 2+ altered the retention time. At certain tested concentrations of Ca 2+ and Sr 2+ glyphosate yielded two peaks, which violated the fundamental rule of LC, that under the same analytical conditions a single substance yields only one LC-peak with a specific RT. Salt-matrix-induced ion suppression was observed for all analytes, especially under high salt concentrations. For glyphosate and AMPA, the use of isotopically labeled internal standards well-corrected the salt-matrix effects, with better results achieved for glufosinate and 2-AEP with the AMPA internal standard than with the glyphosate internal standard. Thus, our study demonstrated that Ca 2+ , Mg 2+ , and Sr 2+ can be used together with FMOC-Cl to form GMC-FMOC which is suitable for RP-LC-HESI-MS/MS analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma by liquid chromatography-tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application in pharmacokinetic study.

    Science.gov (United States)

    Zhu, He; Ding, Li; Shakya, Shailendra; Qi, Xiemin; Hu, Linlin; Yang, Xiaolin; Yang, Zhonglin

    2011-11-15

    A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference

  13. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  14. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments

    Science.gov (United States)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 1019 m-3 in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  15. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-06-18

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Ion-exchange chromatography/electrospray mass spectrometry for the identification of organic and inorganic species in topiramate tablets.

    Science.gov (United States)

    Xiang, X; Ko, C Y; Guh, H Y

    1996-11-01

    An ion-exchange chromatograph/electrospray ionization mass spectrometer (IC/ESI-MS) was used successfully to identify organic and inorganic species present in topiramate tablets. An ion suppressor is placed between the column and detectors to replace sodium ions in the mobile phase with hydrogen ions supplied by the suppressor. The ensuing combination of the hydrogen ions with the mobile phase hydroxide ions produces water and thus allows simultaneous ion detection by an ion conductivity detector and a mass spectrometer. Analytes, including lactate, glycolate, chloride, formate, sulfate, and oxalate, were unambiguously identified by matching the mass spectra and retention times with those of the authentic compounds. Due to its capability of detecting positive and negative as well as neutral species, ESI-MS provides valuable information which is not available with ion conductivity detection alone. Though the coupling of ion-exchange chromatography to mass spectrometry has been reported previously, this is the first demonstration of IC/ESI-MS for the identification of unknown species in real samples. Finally, with the use of deuterium/carbon-13 labeling and MS/MS techniques, we have confirmed that oxalic acid (HOOC-COOH) is formed from formic acid (HCOOH) at the electrospray interface in the presence of the electric field. This observation not only confirms the identity of an unknown peak, but it also provides new insight into chemistry that can take place during electrospray ionization.

  17. Rapid and simultaneous determination of sulfonate ester genotoxic impurities in drug substance by liquid chromatography coupled to tandem mass spectrometry: comparison of different ionization modes.

    Science.gov (United States)

    Guo, Tian; Shi, Yuanyuan; Zheng, Li; Feng, Feng; Zheng, Feng; Liu, Wenyuan

    2014-08-15

    Two ionization techniques for liquid chromatography-mass spectrometry (LC-MS) determination of sulfonate ester potentially genotoxic impurities (PGIs) were evaluated. Twelve PGIs including methyl, ethyl, propyl and isopropyl esters of methanesulfonate, benzenesulfonate and p-toluenesulfonate were studied in this research. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources were compared in terms of performance and quality parameters for detection of the twelve PGIs. Their mass spectra obtained by APCI and ESI were very different in both fragment ions and relative abundances. In APCI negative ion mode the twelve sulfonate esters showed their stable precursor ions of [M-alkyl](-), which readily yielded product ions of [M-alkyl-CH3](-) (for aliphatic sulfonate esters) or [M-alkyl-SO2](-) (for aromatic sulfonate esters) with collision-induced dissociation (CID) applied; and working in selected reaction monitoring (SRM) mode has allowed limits of detection to be decreased. In the case of ESI ionization, these compounds showed their precursor ions [M+H](+), but their abundance was easily competed by formation of ions [M+NH4](+) and/or [M+Na](+), which led to poor analytical sensitivity and reproducibility. Although mobile phase additives could enhance the responses of adduct ions like [M+NH4](+) and [M+Na](+), no improvement was obtained when using SRM mode. Twelve sulfonate esters were systematically compared and APCI was shown to be a better ionization technique for rapid and sensitive determination of these PGIs. Performance of the developed approach for rapid determination of 12 PGIs was also evaluated. Quality parameters were established and good precision (relative standard deviations <8%) and very low limits (2-4ng/mL) of detection were obtained, mainly when using APCI in SRM mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Determination of sulfonamides in meat by liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dal Ho; Choi, Jong Oh; Kim, Jin Seog [Korea Research Institute of Standards and Science, Daejon (Korea, Republic of); Lee, Dai Woon [Yonsei Univ., Seoul (Korea, Republic of)

    2002-11-01

    Liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) has been used for the determination of sulfonamides in meat. Five typical sulfonamides were selected as target compounds, and beef meat was selected as a matrix sample. As internal standards, sulfapyridine and isotope labeled sulfamethazine ({sup 13}C{sub 6}-SMZ) were used. Compared to the results of recent reports, our results have shown improved precision to a RSD of 1.8% for the determination of sulfamethazine spiked with 75 ng/g level in meat.

  19. Evaluation of atmospheric pressure ionization interfaces for quantitative measurement of sulfonamides in honey using isotope dilution liquid chromatography coupled with tandem mass spectrometry techniques.

    Science.gov (United States)

    Mohamed, Rayane; Hammel, Yves-Alexis; LeBreton, Marie-Hélène; Tabet, Jean-Claude; Jullien, Laure; Guy, Philippe A

    2007-08-10

    A comparison was made between electrospray, atmospheric pressure chemical and atmospheric pressure photospray ionizations to evaluate the MS/MS responses of standard sulfonamides and honey spiked samples. The sample preparation entails an acidic hydrolysis followed by a liquid/liquid extraction. Full method validation was realised by LC-APPI-MS/MS. Decision limit and detection capability were calculated for each analyte (at 50 microg/kg) and ranged between 53.6 and 56.9 and 57.5 and 63.2 microg/kg, respectively. Limits of detection and of quantification ranged, respectively, at 0.4-4.5 and 1.2-15.0 microg/kg. Precursor ion scan experiments of m/z 92 were also carried out as a survey experiment, linked with an enhanced product ion scan experiment to potentially identified additional sulfonamides via a library search.

  20. Liquid chromatography-mass spectrometry coupling by the intermediary of a liquid micro chromatography-electro spray interface; Couplage chromatographie liquide-spectrometrie de masse par l`intermediaire d`une interface electrospray-microchromatographie liquide

    Energy Technology Data Exchange (ETDEWEB)

    Gillard Factor, C.

    1996-12-06

    The objective of this work is to realize a liquid chromatography- mass spectrometry coupling by the intermediary of an electro spray interface and the evaluation of performances of tis analytical tool to study pollutants in water, and more particularly pesticides whom maximum admissible concentration in a table water is 0.1{mu}g/l. This study has allowed to bring to the fore the interest of the ionization mode by electro spray in a LC/MS coupling to identify and quantify pesticides in the state of traces without treating the sample. Then, it was demonstrated the usefulness of this analytical tool to detect high molecular masses molecules. (N.C.)

  1. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  2. Metabolic profiling of Actaea (Cimicifuga) species extracts using high performance liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry

    Science.gov (United States)

    Ma, Chunhui; Kavalier, Adam R.; Jiang, Bei; Kennelly, Edward J.

    2012-01-01

    Despite persistent questions about the safety of black cohosh (Actaea racemosa L., syn. Cimicifuga racemosa L.), black cohosh products continue to be one of the most popular botanical supplements in the United States market. Black cohosh products have been associated with cases of liver toxicity, but subsequent evaluation found some products to be adulterated with other related plants from the same genus. US FDA regulations require that black cohosh products be unadulterated, and correct identification of different species of Actaea is a key first step for their good manufacturing practice. We have developed a phytochemical method to distinguish four different groups of Actaea, including: species other than A. racemosa; Asian species; A. racemosa; and North American species other than A. racemosa. Using HPLC-TOF-ESI-MS technique and principal component analysis, we identified 15 chemical markers (1–3, 5–6, 8–10, 12, 16–21). Three marker compounds were unambiguously identified using authentic standards, and twelve marker compounds were tentatively identified by comparison of fragmentation patterns with previously reported data. The presence of these marker compounds is critical for discrimination among the four groups of closely related plants. The use of metabolic profiling to distinguish black cohosh from related species of Actaea has broader implications in the identification of markers to help authenticate other important medicinal plants. PMID:21316686

  3. Measurement of excitation, ionization, and electron temperatures and positive ion concentrations in a 144 MHz inductively coupled radiofrequency plasma

    International Nuclear Information System (INIS)

    Walters, P.E.; Chester, T.L.; Winefordner, J.D.

    1977-01-01

    Diagnostic measurements of 144 MHz radiofrequency inductively coupled plasmas at pressures between 0.5 and 14 Torr have been made. Other variables studied included the gas type (Ar or Ne) and material in plasma (Ti or Tl). Parameters measured included excitation temperatures via the atomic Boltzmann plot and the two-line method, ionization electric probes. Excitation temperatures increased as the pressure of Ar or Ne plasmas decreased and reached a maximum of approx.9000 degreeK in the latter case and approx.6700 degreeK in the former case; Tl in the Ar plasma resulted in in a smaller rate of decrease of excitation temperature with increase of pressure of Ar. The ionization temperatures were lower than the excitation temperatures and were similar for both the Ar and Ne plasmas. Electron temperatures were about 10 times higher than the excitation temperatures indicating non-LTE behavior. Again, the electron temperatures indicating in Ne were considerably higher than in Ar. With the presence of metals, the electron temperatures with a metal in the Ar plasma were higher than in the absence. Positive ion concentrations were also measured for the various plasmas and were found to be similar (approx.10 18 m -3 ) in both the Ar and Ne plasmas. The presence of metals caused significant increase in the positive ion concentrations. From the results obtained, the optimum Ar pressure for Tl electrodeless discharge lamps operated at 144 MHz would be between 2 and 4 Torr

  4. Profile of phenolic compounds of Brazilian virgin olive oils by rapid resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry (RRLC-ESI-TOF-MS).

    Science.gov (United States)

    Ballus, Cristiano Augusto; Quirantes-Piné, Rosa; Bakhouche, Abdelhakim; da Silva, Luiz Fernando de Oliveira; de Oliveira, Adelson Francisco; Coutinho, Enilton Fick; da Croce, Dorli Mario; Segura-Carretero, Antonio; Godoy, Helena Teixeira

    2015-03-01

    In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, N.K., E-mail: nora.sousa@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Calderon, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Carvalho, I. [GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Henriques, M. [CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Carvalho, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal)

    2016-07-30

    Highlights: • Amorphous carbon (a-C), Ag/a-C and Ag coatings were deposited by magnetron sputtering. • a-C/Ag coating shows antibacterial activity against S. epidermidis. • The formation of nano-galvanic couples in a-C/Ag enhances the Ag{sup +} ionization rate. • The Ag{sup +} ionization occurs along with Ag nanoparticles agglomeration in 0.9% NaCl. - Abstract: Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag{sup +} due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  6. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    International Nuclear Information System (INIS)

    Manninen, N.K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    Highlights: • Amorphous carbon (a-C), Ag/a-C and Ag coatings were deposited by magnetron sputtering. • a-C/Ag coating shows antibacterial activity against S. epidermidis. • The formation of nano-galvanic couples in a-C/Ag enhances the Ag + ionization rate. • The Ag + ionization occurs along with Ag nanoparticles agglomeration in 0.9% NaCl. - Abstract: Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag + due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  7. Relativistic equation-of-motion coupled-cluster method using open-shell reference wavefunction: Application to ionization potential

    International Nuclear Information System (INIS)

    Pathak, Himadri; Sasmal, Sudip; Vaval, Nayana; Nayak, Malaya K.; Pal, Sourav

    2016-01-01

    The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.

  8. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    Science.gov (United States)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  9. Gas-phase studies of copper catalyzed aerobic cross coupling of thiol esters and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Tsybizová, A.; Schröder, Detlef; Roithová, J.; Henke, A.; Šrogl, Jiří

    2014-01-01

    Roč. 27, č. 3 (2014), s. 198-203 ISSN 0894-3230 R&D Projects: GA ČR GAP207/12/0846 Grant - others:GA ČR(CZ) GAP207/11/0338 Institutional support: RVO:61388963 Keywords : boronic acids * catalysis * copper * cross coupling * electrospray ionization * mass spectrometry * kinetic studies Subject RIV: CC - Organic Chemistry Impact factor: 1.380, year: 2014

  10. Development of a He/CdI$_2$ gas-jet system coupled to a surface-ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103)

    CERN Document Server

    Sato, T K; Sato, N; Tsukada, K; Toyoshima, A; Ooe, K; Miyashita, S; Kaneya, Y; Osa, A; Schädel, M; Nagame, Y; Ichikawa, S; Stora, T; Kratz, J V

    2015-01-01

    We report on development of a gas-jet transport system coupled to a surface ionization ion-source in the JAEA-ISOL (Isotope Separator On-Line) system. As a new aerosol material for the gas-jet system, CdI2, which has a low boiling point of 713 °C, is exploited to prevent deposition of the aerosol material on the surface of the ion-source. An additional filament is newly installed in the previous ion-source to provide uniform heating of an ionizer. The present system is applied to the measurement of absolute efficiencies of various short-lived lanthanide isotopes produced in nuclear reactions.

  11. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    Science.gov (United States)

    Manninen, N. K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-07-01

    Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  12. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  13. An Investigation of Chemical Landscapes in Aqueous Electrosprays by Tracking Oligomerization of Isoprene

    KAUST Repository

    Junior, Adair Gallo

    2017-12-01

    Electrospray ionization mass spectrometry (ESIMS) is widely used to characterize neutral and ionic species in solvents. Typically, electrical, thermal, and pneumatic potentials are applied to create electrosprays from which charged ionic species are ejected for downstream analysis by mass spectrometry. Most recently, ESIMS has been exploited to investigate ambient proton transfer reactions at air-water interfaces in real time. We assessed the validity of these experiments via complementary laboratory experiments. Specifically, we characterized the products of two reaction scenarios via ESIMS and proton nuclear magnetic resonance (1H-NMR): (i) emulsions of pH-adjusted water and isoprene (C5H8) that were mechanically agitated, and (ii) electrosprays of pH-adjusted water that were collided with gas-phase isoprene. Our experiments unambiguously demonstrate that, while isoprene does not oligomerize in emulsions, it does undergo protonation and oligomerization in electrosprays, both with and without pH-adjusted water, confirming that C-C bonds form along myriad high-energy pathways during electrospray ionization. We also compared our experimental results with some quantum mechanics simulations of isoprene molecules interacting with hydronium at different hydration levels (gas versus liquid phase). In agreement with our experiments, the kinetic barriers to protonation and oligomerization of isoprene were inaccessible under ambient conditions. Rather, the gas-phase chemistries during electrospray ionization drove the oligomerization of isoprene. Therefore, we consider that ESIMS could induce artifacts in interfacial reactions. These findings warrant a reassessment of previous reports on tracking chemistries under ambient conditions at liquid-vapor interfaces via ESIMS. Further, we took some high-speed images of electrosprays where it was possible to observe the main characteristics of the phenomena, i.e. Taylor cone, charge separation, and Coulomb fission. Finally, we took

  14. Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab.

    Science.gov (United States)

    Damen, Carola W N; Chen, Weibin; Chakraborty, Asish B; van Oosterhout, Mike; Mazzeo, Jeffrey R; Gebler, John C; Schellens, Jan H M; Rosing, Hilde; Beijnen, Jos H

    2009-11-01

    Monoclonal antibodies are typically glycosylated at asparagine residues in the Fc domain, and glycosylation heterogeneity at the Fc sites is well known. This paper presents a method for rapid analysis of glycosylation profile of the therapeutic monoclonal antibody trastuzumab from different production batches using electrospray quadrupole ion-mobility time-of-flight mass spectrometry (ESI-Q-IM-TOF). The global glycosylation profile for each production batch was obtained by a fast LC-MS analysis, and comparisons of the glycoprofiles of trastuzumab from different lots were made based on the deconvoluted intact mass spectra. Furthermore, the heterogeneity at each glycosylation site was characterized at the reduced antibody level and at the isolated glycopeptide level. The glycosylation site and glycan structures were confirmed by performing a time-aligned-parallel fragmentation approach using the unique dual-collision cell design of the instrument and the incorporated ion-mobility separation function. Four different production batches of trastuzumab were analyzed and compared in terms of global glycosylation profiles as well as the heterogeneity at each glycosylation site. The results show that each batch of trastuzumab shares the same types of glycoforms but relative abundance of each glycoforms is varied.

  15. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    Science.gov (United States)

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  16. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in toxicological analysis. Studies on the detection of clobenzorex and its metabolites within a systematic toxicological analysis procedure by GC-MS and by immunoassay and studies on the detection of alpha- and beta-amanitin in urine by atmospheric pressure ionization electrospray LC-MS.

    Science.gov (United States)

    Maurer, H H; Kraemer, T; Ledvinka, O; Schmitt, C J; Weber, A A

    1997-02-07

    GC-MS is the method of choice for toxicological analysis of toxicants volatile in GC while non-volatile and/or thermally labile toxicants need LC-MS for their determination. Studies are presented on the toxicological detection of the amphetamine-like anorectic clobenzorex in urine by GC-MS after acid hydrolysis, extraction and acetylation and by fluorescence polarization immunoassay (FPIA, TDx (meth)amphetamine II). After ingestion of 60 mg of clobenzorex, the parent compound and/or its metabolites could be detected by GC-MS for up to 84 h or by FPIA for up to 60 h. Since clobenzorex shows no cross-reactivity with the used immunoassay, the N-dealkylated metabolite amphetamine is responsible for the positive TDx results. The intake of clobenzorex instead of amphetamine can be differentiated by GC-MS detection of hydroxyclobenzorex which is detectable for at least as long as amphetamine. In addition, the described GC-MS procedure allows the simultaneous detection of most of the toxicologically relevant drugs. Furthermore, studies are described on the atmospheric pressure ionization electrospray LC-MS detection of alpha- and beta-amanitin, toxic peptides of amanita mushrooms, in urine after solid-phase extraction on RP-18 columns. Using the single ion monitoring mode with the ions m/z 919 and 920 the amanitins could be detected down to 10 ng/ml of urine which allows us to diagnose intoxications with amanita mushrooms.

  17. High-performance liquid chromatography/mass spectrometric identification of dibenzylbutyrolactone-type lignans: insights into electrospray ionization tandem mass spectrometric fragmentation of lign-7-eno-9,9'-lactones and application to the lignans of Linum usitatissimum L. (Common Flax).

    Science.gov (United States)

    Schmidt, Thomas J; Alfermann, A Wilhelm; Fuss, Elisabeth

    2008-11-01

    In continuation of our studies into the mass spectrometric detection of natural lignans and their identification in complex mixtures such as crude plant extracts, the electrospray ionization tandem mass spectrometric (ESI-MS/MS) fragmentation of Delta(7,8)-unsaturated dibenzylbutyrolactone-type lignans (lign-7-eno-9,9'-lactones) was studied in detail. It is demonstrated that the characteristic fragmentation allows unambiguous identification including distinction between constitutional isomers. These lignans containing an alpha,beta-unsaturated lactone structure exist as equilibrium mixtures of E- and Z-isomers indistinguishable by mass spectrometry, but it is shown that chromatographic retention time can be used to distinguish between the isomeric forms. Based on these observations, re-analysis of the dichloromethane extract obtained from flowering aerial parts of Linum usitatissimum L. by high-performance liquid chromatography (HPLC)/ESI-MS/MS led to the identification of eighteen lignans of these types (five lignano- and one lignenolactone previously reported along with five further lignano- as well as seven lignenolactones hitherto unreported for this plant). The simultaneous identification of eighteen different lignans in the complex matrix of a crude plant extract by a single analysis demonstrates the potential of this method, which will certainly lead to new insights into the lignan composition and metabolism of different Linum species and many other plants.

  18. Optimization of the Extraction of Anthocyanins from the Fruit Skin of Rhodomyrtus tomentosa (Ait. Hassk and Identification of Anthocyanins in the Extract Using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS

    Directory of Open Access Journals (Sweden)

    Yuan-Ming Sun

    2012-05-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants. In this study, the extraction of anthocyanins from freeze-dried fruit skin of downy rose-myrtle (Rhodomyrtus tomentosa (Ait. Hassk var. Gangren was optimized using response surface methodology (RSM. Using 60% ethanol containing 0.1% (v/v hydrochloric acid as extraction solvent, the optimal conditions for maximum yields of anthocyanin (4.358 ± 0.045 mg/g were 15.7:1 (v/w liquid to solid ratio, 64.38 °C with a 116.88 min extraction time. The results showed good fits with the proposed model for the anthocyanin extraction (R2 = 0.9944. Furthermore, the results of high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS analysis of the anthocyanins extracted from the fruit skin of downy rose-myrtle revealed the presence of five anthocyanin components, which were tentatively identified as delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, petunidin-3-glucoside and malvidin-3-glucoside.

  19. Acceleration of Vaporization, Atomization, and Ionization Efficiencies in Inductively Coupled Plasma by Merging Laser-Ablated Particles with Hydrochloric Acid Gas.

    Science.gov (United States)

    Nakazawa, Takashi; Izumo, Saori; Furuta, Naoki

    2016-01-01

    To accelerate the vaporization, atomization, and ionization efficiencies in laser ablation inductively coupled plasma mass spectrometry, we merged HCl gas with laser-ablated particles before introduction into the plasma, to convert their surface constituents from oxides to lower-melting chlorides. When particles were merged with HCl gas generated from a HCl solution at 200°C, the measured concentrations of elements in the particles were 135% higher on average than the concentrations in particles merged with ultrapure water vapor. Particle corrosion and surface roughness were observed by scanning electron microscopy, and oxide conversion to chlorides was confirmed by X-ray photoelectron spectroscopy. Under the optimum conditions, the recoveries of measured elements improved by 23% on average, and the recoveries of elements with high-melting oxides (Sr, Zr, and Th) improved by as much as 36%. These results indicate that vaporization, atomization, and ionization in the ICP improved when HCl gas was merged with the ablated particles.

  20. Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications

    National Research Council Canada - National Science Library

    Cole, Richard B

    2010-01-01

    .... Electrochemistry of the Electrospray Ion Source Gary J. Van Berkel and Vilmos Kertesz 75 4. ESI Source Design Andries P. Bruins 123 Part III ES and MALDI Coupling to Mass Spectrometry Instrumentation 9. Coup...

  1. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  2. A comprehensive library-based, automated screening procedure for 46 synthetic cannabinoids in serum employing liquid chromatography-quadrupole ion trap mass spectrometry with high-temperature electrospray ionization.

    Science.gov (United States)

    Huppertz, Laura M; Kneisel, Stefan; Auwärter, Volker; Kempf, Jürgen

    2014-02-01

    Considering the vast variety of synthetic cannabinoids and herbal mixtures - commonly known as 'Spice' or 'K2' - on the market and the resulting increase of severe intoxications related to their consumption, there is a need in clinical and forensic toxicology for comprehensive up-to-date screening methods. The focus of this project aimed at developing and implementing an automated screening procedure for the detection of synthetic cannabinoids in serum using a liquid chromatography-ion trap-MS (LC-MS(n)) system and a spectra library-based approach, currently including 46 synthetic cannabinoids and 8 isotope labelled analogues. In the process of method development, a high-temperature ESI source (IonBooster(TM), Bruker Daltonik) and its effects on the ionization efficiency of the investigated synthetic cannabinoids were evaluated and compared to a conventional ESI source. Despite their structural diversity, all investigated synthetic cannabinoids benefitted from high-temperature ionization by showing remarkably higher MS intensities compared to conventional ESI. The employed search algorithm matches retention time, MS and MS(2)/MS(3) spectra. With the utilization of the ionBooster source, limits for the automated detection comparable to cut-off values of routine MRM methods were achieved for the majority of analytes. Even compounds not identified when using a conventional ESI source were detected using the ionBooster-source. LODs in serum range from 0.1 ng/ml to 0.5 ng/ml. The use of parent compounds as analytical targets offers the possibility of instantly adding new emerging compounds to the library and immediately applying the updated method to serum samples, allowing the rapid adaptation of the screening method to ongoing forensic or clinical requirements. The presented approach can also be applied to other specimens, such as oral fluid or hair, and herbal mixtures and was successfully applied to authentic serum samples. Quantitative MRM results of samples with

  3. A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential.

    Science.gov (United States)

    Maitra, Rahul; Akinaga, Yoshinobu; Nakajima, Takahito

    2017-08-21

    A single reference coupled cluster theory that is capable of including the effect of connected triple excitations has been developed and implemented. This is achieved by regrouping the terms appearing in perturbation theory and parametrizing through two different sets of exponential operators: while one of the exponentials, involving general substitution operators, annihilates the ground state but has a non-vanishing effect when it acts on the excited determinant, the other is the regular single and double excitation operator in the sense of conventional coupled cluster theory, which acts on the Hartree-Fock ground state. The two sets of operators are solved as coupled non-linear equations in an iterative manner without significant increase in computational cost than the conventional coupled cluster theory with singles and doubles excitations. A number of physically motivated and computationally advantageous sufficiency conditions are invoked to arrive at the working equations and have been applied to determine the ground state energies of a number of small prototypical systems having weak multi-reference character. With the knowledge of the correlated ground state, we have reconstructed the triple excitation operator and have performed equation of motion with coupled cluster singles, doubles, and triples to obtain the ionization potential and excitation energies of these molecules as well. Our results suggest that this is quite a reasonable scheme to capture the effect of connected triple excitations as long as the ground state remains weakly multi-reference.

  4. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures.

    Science.gov (United States)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex