WorldWideScience

Sample records for electroshock-induced seizure model

  1. Proconvulsant effects of the ketogenic diet in electroshock-induced seizures in mice.

    Science.gov (United States)

    Zarnowska, Iwona; Luszczki, Jarogniew J; Zarnowski, Tomasz; Wlaz, Piotr; Czuczwar, Stanislaw J; Gasior, Maciej

    2017-04-01

    Among non-pharmacological treatments, the ketogenic diet (KD) has the strongest demonstrated evidence of clinical success in drug resistant epilepsy. In an attempt to model the anticonvulsant effects of the KD pre-clinically, the present study assessed the effects of the KD against electroshock-induced convulsions in mice. After confirming that exposure to the KD for 2 weeks resulted in stable ketosis and hypoglycemia, mice were exposed to electroshocks of various intensities to establish general seizure susceptibility. When compared to mice fed the standard rodent chow diet (SRCD), we found that mice fed the KD were more sensitive to electroconvulsions as reflected by a significant decrease in seizure threshold (3.86 mA in mice on the KD vs 7.29 mA in mice on the SRCD; P < 0.05) in the maximal electroshock seizure threshold (MEST) test. To examine if this increased seizure sensitivity to electroconvulsions produced by the KD would affect anticonvulsant effects of antiepileptic drugs (AEDs), anticonvulsant potencies of carbamazepine (CBZ), phenobarbital (PB), phenytoin (PHT), and valproate (VPA) against maximal electroshock (MES)-induced convulsions were compared in mice fed the KD and SRCD. We found that potencies of all AEDs studied were decreased in mice fed the KD in comparison to those on the SRCD, with decreases in the anticonvulsant potencies ranging from 1.4 fold (PB) to 1.7 fold (PHT). Finally, the lack of differences in brain exposures of the AEDs studied in mice fed the KD and SRCD ruled out a pharmacokinetic nature of the observed findings. Taken together, exposure to the KD in the present study had an overall pro-convulsant effect. Since electroconvulsions require large metabolic reserves to support their rapid spread throughout the brain and consequent generalized tonic-clonic convulsions, this effect may be explained by a high energy state produced by the KD in regards to increased energy storage and utilization.

  2. Effects of WIN 55,212-2 mesylate on the anticonvulsant action of lamotrigine, oxcarbazepine, pregabalin and topiramate against maximal electroshock-induced seizures in mice.

    Science.gov (United States)

    Luszczki, Jarogniew J; Wlaz, Aleksandra; Karwan, Slawomir; Florek-Luszczki, Magdalena; Czuczwar, Stanislaw J

    2013-11-15

    The aim of this study was to determine the effect of WIN 55,212-2 mesylate (WIN - a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of four second-generation antiepileptic drugs (lamotrigine, oxcarbazepine, pregabalin and topiramate) in the mouse maximal electroshock seizure model. Tonic hind limb extension (seizure activity) was evoked in adult male albino Swiss mice by a current (sine-wave, 25 mA, 500 V, 50 Hz, 0.2s stimulus duration) delivered via auricular electrodes. Drug-related adverse effects were ascertained by use of the chimney test (evaluating motor performance), the step-through passive avoidance task (assessing long-term memory) and the grip-strength test (evaluating skeletal muscular strength). Total brain concentrations of antiepileptic drugs were measured by high-pressure liquid chromatography to ascertain any pharmacokinetic contribution to the observed antiseizure effect. Results indicate that WIN (5mg/kg, i.p.) significantly enhanced the anticonvulsant action of lamotrigine (Poxcarbazepine in the maximal electroshock-induced tonic seizure test in mice. Furthermore, none of the investigated combinations of WIN with antiepileptic drugs were associated with any concurrent adverse effects with regards to motor performance, long-term memory or muscular strength. Pharmacokinetic characterization revealed that WIN had no impact on total brain concentrations of lamotrigine, oxcarbazepine, pregabalin and topiramate in mice. These preclinical data would suggest that WIN in combination with lamotrigine, pregabalin and topiramate is associated with beneficial anticonvulsant pharmacodynamic interactions in the maximal electroshock-induced tonic seizure test. © 2013 Published by Elsevier B.V.

  3. Seizures

    Science.gov (United States)

    Secondary seizures; Reactive seizures; Seizure - secondary; Seizure - reactive; Convulsions ... or kidney failure Very high blood pressure ( malignant hypertension ) Venomous bites and stings ( snake bite ) Withdrawal from ...

  4. Neonatal Seizure Models to Study Epileptogenesis

    Directory of Open Access Journals (Sweden)

    Yuka Kasahara

    2018-04-01

    Full Text Available Current therapeutic strategies for epilepsy include anti-epileptic drugs and surgical treatments that are mainly focused on the suppression of existing seizures rather than the occurrence of the first spontaneous seizure. These symptomatic treatments help a certain proportion of patients, but these strategies are not intended to clarify the cellular and molecular mechanisms underlying the primary process of epilepsy development, i.e., epileptogenesis. Epileptogenic changes include reorganization of neural and glial circuits, resulting in the formation of an epileptogenic focus. To achieve the goal of developing “anti-epileptogenic” drugs, we need to clarify the step-by-step mechanisms underlying epileptogenesis for patients whose seizures are not controllable with existing “anti-epileptic” drugs. Epileptogenesis has been studied using animal models of neonatal seizures because such models are useful for studying the latent period before the occurrence of spontaneous seizures and the lowering of the seizure threshold. Further, neonatal seizure models are generally easy to handle and can be applied for in vitro studies because cells in the neonatal brain are suitable for culture. Here, we review two animal models of neonatal seizures for studying epileptogenesis and discuss their features, specifically focusing on hypoxia-ischemia (HI-induced seizures and febrile seizures (FSs. Studying these models will contribute to identifying the potential therapeutic targets and biomarkers of epileptogenesis.

  5. Aging models of acute seizures and epilepsy.

    Science.gov (United States)

    Kelly, Kevin M

    2010-01-01

    Aged animals have been used by researchers to better understand the differences between the young and the aged brain and how these differences may provide insight into the mechanisms of acute seizures and epilepsy in the elderly. To date, there have been relatively few studies dedicated to the modeling of acute seizures and epilepsy in aged, healthy animals. Inherent challenges to this area of research include the costs associated with the purchase and maintenance of older animals and, at times, the unexpected and potentially confounding comorbidities associated with aging. However, recent studies using a variety of in vivo and in vitro models of acute seizures and epilepsy in mice and rats have built upon early investigations in the field, all of which has provided an expanded vision of seizure generation and epileptogenesis in the aged brain. Results of these studies could potentially translate to new and tailored interventional approaches that limit or prevent the development of epilepsy in the elderly.

  6. Seizures

    Science.gov (United States)

    ... wake up between them. Seizures can have many causes, including medicines, high fevers, head injuries and certain diseases. People who have recurring seizures due to a brain disorder have epilepsy. NIH: National Institute of Neurological Disorders and Stroke

  7. Seizures

    Science.gov (United States)

    ... may be diagnosed with epilepsy , also known as seizure disorder. Seizure Basics Usually, electrical activity in the brain involves ... times. Fortunately, fainting rarely is a sign of epilepsy. Most kids recover very quickly (seconds to minutes) ...

  8. Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models

    NARCIS (Netherlands)

    Koppert, M.M.J.; Kalitzin, S.; Lopes da Silva, F.H.; Viergever, M.A.

    2011-01-01

    In previous studies we showed that autonomous absence seizure generation and termination can be explained by realistic neuronal models eliciting bi-stable dynamics. In these models epileptic seizures are triggered either by external stimuli (reflex epilepsies) or by internal fluctuations. This

  9. A new model to study sleep deprivation-induced seizure.

    Science.gov (United States)

    Lucey, Brendan P; Leahy, Averi; Rosas, Regine; Shaw, Paul J

    2015-05-01

    A relationship between sleep and seizures is well-described in both humans and rodent animal models; however, the mechanism underlying this relationship is unknown. Using Drosophila melanogaster mutants with seizure phenotypes, we demonstrate that seizure activity can be modified by sleep deprivation. Seizure activity was evaluated in an adult bang-sensitive seizure mutant, stress sensitive B (sesB(9ed4)), and in an adult temperature sensitive seizure mutant seizure (sei(ts1)) under baseline and following 12 h of sleep deprivation. The long-term effect of sleep deprivation on young, immature sesB(9ed4) flies was also assessed. Laboratory. Drosophila melanogaster. Sleep deprivation. Sleep deprivation increased seizure susceptibility in adult sesB(9ed4)/+ and sei(ts1) mutant flies. Sleep deprivation also increased seizure susceptibility when sesB was disrupted using RNAi. The effect of sleep deprivation on seizure activity was reduced when sesB(9ed4)/+ flies were given the anti-seizure drug, valproic acid. In contrast to adult flies, sleep deprivation during early fly development resulted in chronic seizure susceptibility when sesB(9ed4)/+ became adults. These findings show that Drosophila is a model organism for investigating the relationship between sleep and seizure activity. © 2015 Associated Professional Sleep Societies, LLC.

  10. Modeling Seizure Self-Prediction: An E-Diary Study

    Science.gov (United States)

    Haut, Sheryl R.; Hall, Charles B.; Borkowski, Thomas; Tennen, Howard; Lipton, Richard B.

    2013-01-01

    Purpose A subset of patients with epilepsy successfully self-predicted seizures in a paper diary study. We conducted an e-diary study to ensure that prediction precedes seizures, and to characterize the prodromal features and time windows that underlie self-prediction. Methods Subjects 18 or older with LRE and ≥3 seizures/month maintained an e-diary, reporting AM/PM data daily, including mood, premonitory symptoms, and all seizures. Self-prediction was rated by, “How likely are you to experience a seizure [time frame]”? Five choices ranged from almost certain (>95% chance) to very unlikely. Relative odds of seizure (OR) within time frames was examined using Poisson models with log normal random effects to adjust for multiple observations. Key Findings Nineteen subjects reported 244 eligible seizures. OR for prediction choices within 6hrs was as high as 9.31 (1.92,45.23) for “almost certain”. Prediction was most robust within 6hrs of diary entry, and remained significant up to 12hrs. For 9 best predictors, average sensitivity was 50%. Older age contributed to successful self-prediction, and self-prediction appeared to be driven by mood and premonitory symptoms. In multivariate modeling of seizure occurrence, self-prediction (2.84; 1.68,4.81), favorable change in mood (0.82; 0.67,0.99) and number of premonitory symptoms (1,11; 1.00,1.24) were significant. Significance Some persons with epilepsy can self-predict seizures. In these individuals, the odds of a seizure following a positive prediction are high. Predictions were robust, not attributable to recall bias, and were related to self awareness of mood and premonitory features. The 6-hour prediction window is suitable for the development of pre-emptive therapy. PMID:24111898

  11. Using trend templates in a neonatal seizure algorithm improves detection of short seizures in a foetal ovine model.

    Science.gov (United States)

    Zwanenburg, Alex; Andriessen, Peter; Jellema, Reint K; Niemarkt, Hendrik J; Wolfs, Tim G A M; Kramer, Boris W; Delhaas, Tammo

    2015-03-01

    Seizures below one minute in duration are difficult to assess correctly using seizure detection algorithms. We aimed to improve neonatal detection algorithm performance for short seizures through the use of trend templates for seizure onset and end. Bipolar EEG were recorded within a transiently asphyxiated ovine model at 0.7 gestational age, a common experimental model for studying brain development in humans of 30-34 weeks of gestation. Transient asphyxia led to electrographic seizures within 6-8 h. A total of 3159 seizures, 2386 shorter than one minute, were annotated in 1976 h-long EEG recordings from 17 foetal lambs. To capture EEG characteristics, five features, sensitive to seizures, were calculated and used to derive trend information. Feature values and trend information were used as input for support vector machine classification and subsequently post-processed. Performance metrics, calculated after post-processing, were compared between analyses with and without employing trend information. Detector performance was assessed after five-fold cross-validation conducted ten times with random splits. The use of trend templates for seizure onset and end in a neonatal seizure detection algorithm significantly improves the correct detection of short seizures using two-channel EEG recordings from 54.3% (52.6-56.1) to 59.5% (58.5-59.9) at FDR 2.0 (median (range); p seizures by EEG monitoring at the NICU.

  12. Synchronous inhibitory potentials precede seizure-like events in acute models of focal limbic seizures.

    Science.gov (United States)

    Uva, Laura; Breschi, Gian Luca; Gnatkovsky, Vadym; Taverna, Stefano; de Curtis, Marco

    2015-02-18

    Interictal spikes in models of focal seizures and epilepsies are sustained by the synchronous activation of glutamatergic and GABAergic networks. The nature of population spikes associated with seizure initiation (pre-ictal spikes; PSs) is still undetermined. We analyzed the networks involved in the generation of both interictal and PSs in acute models of limbic cortex ictogenesis induced by pharmacological manipulations. Simultaneous extracellular and intracellular recordings from both principal cells and interneurons were performed in the medial entorhinal cortex of the in vitro isolated guinea pig brain during focal interictal and ictal discharges induced in the limbic network by intracortical and brief arterial infusions of either bicuculline methiodide (BMI) or 4-aminopyridine (4AP). Local application of BMI in the entorhinal cortex did not induce seizure-like events (SLEs), but did generate periodic interictal spikes sensitive to the glutamatergic non-NMDA receptor antagonist DNQX. Unlike local applications, arterial perfusion of either BMI or 4AP induced focal limbic SLEs. PSs just ahead of SLE were associated with hyperpolarizing potentials coupled with a complete blockade of firing in principal cells and burst discharges in putative interneurons. Interictal population spikes recorded from principal neurons between two SLEs correlated with a depolarizing potential. We demonstrate in two models of acute limbic SLE that PS events are different from interictal spikes and are sustained by synchronous activation of inhibitory networks. Our findings support a prominent role of synchronous network inhibition in the initiation of a focal seizure. Copyright © 2015 the authors 0270-6474/15/353048-08$15.00/0.

  13. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures.

    Science.gov (United States)

    Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul

    2016-03-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Evaluation of the pentylenetetrazole seizure threshold test in epileptic mice as surrogate model for drug testing against pharmacoresistant seizures.

    Science.gov (United States)

    Töllner, Kathrin; Twele, Friederike; Löscher, Wolfgang

    2016-04-01

    Resistance to antiepileptic drugs (AEDs) is a major problem in epilepsy therapy, so that development of more effective AEDs is an unmet clinical need. Several rat and mouse models of epilepsy with spontaneous difficult-to-treat seizures exist, but because testing of antiseizure drug efficacy is extremely laborious in such models, they are only rarely used in the development of novel AEDs. Recently, the use of acute seizure tests in epileptic rats or mice has been proposed as a novel strategy for evaluating novel AEDs for increased antiseizure efficacy. In the present study, we compared the effects of five AEDs (valproate, phenobarbital, diazepam, lamotrigine, levetiracetam) on the pentylenetetrazole (PTZ) seizure threshold in mice that were made epileptic by pilocarpine. Experiments were started 6 weeks after a pilocarpine-induced status epilepticus. At this time, control seizure threshold was significantly lower in epileptic than in nonepileptic animals. Unexpectedly, only one AED (valproate) was less effective to increase seizure threshold in epileptic vs. nonepileptic mice, and this difference was restricted to doses of 200 and 300 mg/kg, whereas the difference disappeared at 400mg/kg. All other AEDs exerted similar seizure threshold increases in epileptic and nonepileptic mice. Thus, induction of acute seizures with PTZ in mice pretreated with pilocarpine does not provide an effective and valuable surrogate method to screen drugs for antiseizure efficacy in a model of difficult-to-treat chronic epilepsy as previously suggested from experiments with this approach in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Seizure Dynamics of Coupled Oscillators with Epileptor Field Model

    Science.gov (United States)

    Zhang, Honghui; Xiao, Pengcheng

    The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.

  16. Blockade of T-type calcium channels prevents tonic-clonic seizures in a maximal electroshock seizure model.

    Science.gov (United States)

    Sakkaki, Sophie; Gangarossa, Giuseppe; Lerat, Benoit; Françon, Dominique; Forichon, Luc; Chemin, Jean; Valjent, Emmanuel; Lerner-Natoli, Mireille; Lory, Philippe

    2016-02-01

    T-type (Cav3) calcium channels play important roles in neuronal excitability, both in normal and pathological activities of the brain. In particular, they contribute to hyper-excitability disorders such as epilepsy. Here we have characterized the anticonvulsant properties of TTA-A2, a selective T-type channel blocker, in mouse. Using the maximal electroshock seizure (MES) as a model of tonic-clonic generalized seizures, we report that mice treated with TTA-A2 (0.3 mg/kg and higher doses) were significantly protected against tonic seizures. Although no major change in Local Field Potential (LFP) pattern was observed during the MES seizure, analysis of the late post-ictal period revealed a significant increase in the delta frequency power in animals treated with TTA-A2. Similar results were obtained for Cav3.1-/- mice, which were less prone to develop tonic seizures in the MES test, but not for Cav3.2-/- mice. Analysis of extracellular signal-regulated kinase 1/2 (ERK) phosphorylation and c-Fos expression revealed a rapid and elevated neuronal activation in the hippocampus following MES clonic seizures, which was unchanged in TTA-A2 treated animals. Overall, our data indicate that TTA-A2 is a potent anticonvulsant and that the Cav3.1 isoform plays a prominent role in mediating TTA-A2 tonic seizure protection. Copyright © 2015. Published by Elsevier Ltd.

  17. Clustering of spontaneous recurrent seizures separated by long seizure-free periods: An extended video-EEG monitoring study of a pilocarpine mouse model.

    Science.gov (United States)

    Lim, Jung-Ah; Moon, Jangsup; Kim, Tae-Joon; Jun, Jin-Sun; Park, Byeongsu; Byun, Jung-Ick; Sunwoo, Jun-Sang; Park, Kyung-Il; Lee, Soon-Tae; Jung, Keun-Hwa; Jung, Ki-Young; Kim, Manho; Jeon, Daejong; Chu, Kon; Lee, Sang Kun

    2018-01-01

    Seizure clustering is a common and significant phenomenon in patients with epilepsy. The clustering of spontaneous recurrent seizures (SRSs) in animal models of epilepsy, including mouse pilocarpine models, has been reported. However, most studies have analyzed seizures for a short duration after the induction of status epilepticus (SE). In this study, we investigated the detailed characteristics of seizure clustering in the chronic stage of a mouse pilocarpine-induced epilepsy model for an extended duration by continuous 24/7 video-EEG monitoring. A seizure cluster was defined as the occurrence of one or more seizures per day for at least three consecutive days and at least five seizures during the cluster period. We analyzed the cluster duration, seizure-free period, cluster interval, and numbers of seizures within and outside the seizure clusters. The video-EEG monitoring began 84.5±33.7 days after the induction of SE and continued for 53.7±20.4 days. Every mouse displayed seizure clusters, and 97.0% of the seizures occurred within a cluster period. The seizure clusters were followed by long seizure-free periods of 16.3±6.8 days, showing a cyclic pattern. The SRSs also occurred in a grouped pattern within a day. We demonstrate that almost all seizures occur in clusters with a cyclic pattern in the chronic stage of a mouse pilocarpine-induced epilepsy model. The seizure-free periods between clusters were long. These findings should be considered when performing in vivo studies using this animal model. Furthermore, this model might be appropriate for studying the unrevealed mechanism of ictogenesis.

  18. Gene therapy decreases seizures in a model of Incontinentia pigmenti.

    Science.gov (United States)

    Dogbevia, Godwin K; Töllner, Kathrin; Körbelin, Jakob; Bröer, Sonja; Ridder, Dirk A; Grasshoff, Hanna; Brandt, Claudia; Wenzel, Jan; Straub, Beate K; Trepel, Martin; Löscher, Wolfgang; Schwaninger, Markus

    2017-07-01

    Incontinentia pigmenti (IP) is a genetic disease leading to severe neurological symptoms, such as epileptic seizures, but no specific treatment is available. IP is caused by pathogenic variants that inactivate the Nemo gene. Replacing Nemo through gene therapy might provide therapeutic benefits. In a mouse model of IP, we administered a single intravenous dose of the adeno-associated virus (AAV) vector, AAV-BR1-CAG-NEMO, delivering the Nemo gene to the brain endothelium. Spontaneous epileptic seizures and the integrity of the blood-brain barrier (BBB) were monitored. The endothelium-targeted gene therapy improved the integrity of the BBB. In parallel, it reduced the incidence of seizures and delayed their occurrence. Neonate mice intravenously injected with the AAV-BR1-CAG-NEMO vector developed no hepatocellular carcinoma or other major adverse effects 11 months after vector injection, demonstrating that the vector has a favorable safety profile. The data show that the BBB is a target of antiepileptic treatment and, more specifically, provide evidence for the therapeutic benefit of a brain endothelial-targeted gene therapy in IP. Ann Neurol 2017;82:93-104. © 2017 American Neurological Association.

  19. Models and detection of spontaneous recurrent seizures in laboratory rodents

    Directory of Open Access Journals (Sweden)

    Bin Gu

    2017-07-01

    Full Text Available Epilepsy, characterized by spontaneous recurrent seizures (SRS, is a serious and common neurological disorder afflicting an estimated 1% of the population worldwide. Animal experiments, especially those utilizing small laboratory rodents, remain essential to understanding the fundamental mechanisms underlying epilepsy and to prevent, diagnose, and treat this disease. While much attention has been focused on epileptogenesis in animal models of epilepsy, there is little discussion on SRS, the hallmark of epilepsy. This is in part due to the technical difficulties of rigorous SRS detection. In this review, we comprehensively summarize both genetic and acquired models of SRS and discuss the methodology used to monitor and detect SRS in mice and rats.

  20. Synergistic anticonvulsant effects of pregabalin and amlodipine on acute seizure model of epilepsy in mice.

    Science.gov (United States)

    Qureshi, Itefaq Hussain; Riaz, Azra; Khan, Rafeeq Alam; Siddiqui, Afaq Ahmed

    2017-08-01

    Status epilepticus is a life threatening neurological medical emergency. It may cause serious damage to the brain and even death in many cases if not treated properly. There is limited choice of drugs for the short term and long term management of status epilepticus and the dugs recommended for status epilepticus possess various side effects. The present study was designed to investigate synergistic anticonvulsant effects of pregabalin with amlodipine on acute seizure model of epilepsy in mice. Pentylenetetrazole was used to induce acute seizures which mimic status epilepticus. Pregabalin and amlodipine were used in combination to evaluate synergistic anti-seizure effects on acute seizure model of epilepsy in mice. Diazepam and valproate were used as reference dugs. The acute anti-convulsive activity of pregabalin with amlodipine was evaluated in vivo by the chemical induced seizures and their anti-seizure effects were compared with pentylenetetrazole, reference drugs and to their individual effects. The anti-seizure effects of tested drugs were recorded in seconds on seizure characteristics such as latency of onset of threshold seizures, rearing and fallings and Hind limbs tonic extensions. The seizure protection and mortality to the animals exhibited by the drugs were recorded in percentage. Combination regimen of pregabalin with amlodipine exhibited dose dependent significant synergistic anticonvulsant effects on acute seizures which were superior to their individual effects and equivalent to reference drugs.

  1. Early seizure detection in an animal model of temporal lobe epilepsy

    Science.gov (United States)

    Talathi, Sachin S.; Hwang, Dong-Uk; Ditto, William; Carney, Paul R.

    2007-11-01

    The performance of five seizure detection schemes, i.e., Nonlinear embedding delay, Hurst scaling, Wavelet Scale, autocorrelation and gradient of accumulated energy, in their ability to detect EEG seizures close to the seizure onset time were evaluated to determine the feasibility of their application in the development of a real time closed loop seizure intervention program (RCLSIP). The criteria chosen for the performance evaluation were, high statistical robustness as determined through the predictability index, the sensitivity and the specificity of a given measure to detect an EEG seizure, the lag in seizure detection with respect to the EEG seizure onset time, as determined through visual inspection and the computational efficiency for each detection measure. An optimality function was designed to evaluate the overall performance of each measure dependent on the criteria chosen. While each of the above measures analyzed for seizure detection performed very well in terms of the statistical parameters, the nonlinear embedding delay measure was found to have the highest optimality index due to its ability to detect seizure very close to the EEG seizure onset time, thereby making it the most suitable dynamical measure in the development of RCLSIP in rat model with chronic limbic epilepsy.

  2. Predicting seizure by modeling synaptic plasticity based on EEG signals - a case study of inherited epilepsy

    Science.gov (United States)

    Zhang, Honghui; Su, Jianzhong; Wang, Qingyun; Liu, Yueming; Good, Levi; Pascual, Juan M.

    2018-03-01

    This paper explores the internal dynamical mechanisms of epileptic seizures through quantitative modeling based on full brain electroencephalogram (EEG) signals. Our goal is to provide seizure prediction and facilitate treatment for epileptic patients. Motivated by an earlier mathematical model with incorporated synaptic plasticity, we studied the nonlinear dynamics of inherited seizures through a differential equation model. First, driven by a set of clinical inherited electroencephalogram data recorded from a patient with diagnosed Glucose Transporter Deficiency, we developed a dynamic seizure model on a system of ordinary differential equations. The model was reduced in complexity after considering and removing redundancy of each EEG channel. Then we verified that the proposed model produces qualitatively relevant behavior which matches the basic experimental observations of inherited seizure, including synchronization index and frequency. Meanwhile, the rationality of the connectivity structure hypothesis in the modeling process was verified. Further, through varying the threshold condition and excitation strength of synaptic plasticity, we elucidated the effect of synaptic plasticity to our seizure model. Results suggest that synaptic plasticity has great effect on the duration of seizure activities, which support the plausibility of therapeutic interventions for seizure control.

  3. Classifier models and architectures for EEG-based neonatal seizure detection

    International Nuclear Information System (INIS)

    Greene, B R; Marnane, W P; Lightbody, G; Reilly, R B; Boylan, G B

    2008-01-01

    Neonatal seizures are the most common neurological emergency in the neonatal period and are associated with a poor long-term outcome. Early detection and treatment may improve prognosis. This paper aims to develop an optimal set of parameters and a comprehensive scheme for patient-independent multi-channel EEG-based neonatal seizure detection. We employed a dataset containing 411 neonatal seizures. The dataset consists of multi-channel EEG recordings with a mean duration of 14.8 h from 17 neonatal patients. Early-integration and late-integration classifier architectures were considered for the combination of information across EEG channels. Three classifier models based on linear discriminants, quadratic discriminants and regularized discriminants were employed. Furthermore, the effect of electrode montage was considered. The best performing seizure detection system was found to be an early integration configuration employing a regularized discriminant classifier model. A referential EEG montage was found to outperform the more standard bipolar electrode montage for automated neonatal seizure detection. A cross-fold validation estimate of the classifier performance for the best performing system yielded 81.03% of seizures correctly detected with a false detection rate of 3.82%. With post-processing, the false detection rate was reduced to 1.30% with 59.49% of seizures correctly detected. These results represent a comprehensive illustration that robust reliable patient-independent neonatal seizure detection is possible using multi-channel EEG

  4. A novel seizure detection algorithm informed by hidden Markov model event states

    Science.gov (United States)

    Baldassano, Steven; Wulsin, Drausin; Ung, Hoameng; Blevins, Tyler; Brown, Mesha-Gay; Fox, Emily; Litt, Brian

    2016-06-01

    Objective. Recently the FDA approved the first responsive, closed-loop intracranial device to treat epilepsy. Because these devices must respond within seconds of seizure onset and not miss events, they are tuned to have high sensitivity, leading to frequent false positive stimulations and decreased battery life. In this work, we propose a more robust seizure detection model. Approach. We use a Bayesian nonparametric Markov switching process to parse intracranial EEG (iEEG) data into distinct dynamic event states. Each event state is then modeled as a multidimensional Gaussian distribution to allow for predictive state assignment. By detecting event states highly specific for seizure onset zones, the method can identify precise regions of iEEG data associated with the transition to seizure activity, reducing false positive detections associated with interictal bursts. The seizure detection algorithm was translated to a real-time application and validated in a small pilot study using 391 days of continuous iEEG data from two dogs with naturally occurring, multifocal epilepsy. A feature-based seizure detector modeled after the NeuroPace RNS System was developed as a control. Main results. Our novel seizure detection method demonstrated an improvement in false negative rate (0/55 seizures missed versus 2/55 seizures missed) as well as a significantly reduced false positive rate (0.0012 h versus 0.058 h-1). All seizures were detected an average of 12.1 ± 6.9 s before the onset of unequivocal epileptic activity (unequivocal epileptic onset (UEO)). Significance. This algorithm represents a computationally inexpensive, individualized, real-time detection method suitable for implantable antiepileptic devices that may considerably reduce false positive rate relative to current industry standards.

  5. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Zeid M Rusan

    Full Text Available Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.

  6. Absence seizure

    Science.gov (United States)

    Seizure - petit mal; Seizure - absence; Petit mal seizure; Epilepsy - absence seizure ... Elsevier; 2016:chap 101. Marcdante KJ, Kliegman RM. Seizures (paroxysmal disorders). In: Marcdante KJ, Kliegman RM, eds. Nelson Essentials ...

  7. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    Directory of Open Access Journals (Sweden)

    Ryan T Cleary

    Full Text Available Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+-K(+-2 Cl(- cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  8. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    Science.gov (United States)

    Cleary, Ryan T; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M; Li, Yijun; Rotenberg, Alexander; Talos, Delia M; Kahle, Kristopher T; Jackson, Michele; Rakhade, Sanjay N; Berry, Gerard T; Berry, Gerard; Jensen, Frances E

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  9. Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP).

    Science.gov (United States)

    Klein, Brian D; Jacobson, Catherine A; Metcalf, Cameron S; Smith, Misty D; Wilcox, Karen S; Hampson, Aidan J; Kehne, John H

    2017-07-01

    Cannabidiol (CBD) is a cannabinoid component of marijuana that has no significant activity at cannabinoid receptors or psychoactive effects. There is considerable interest in CBD as a therapy for epilepsy. Almost a third of epilepsy patients are not adequately controlled by clinically available anti-seizure drugs (ASDs). Initial studies appear to demonstrate that CBD preparations may be a useful treatment for pharmacoresistant epilepsy. The National Institute of Neurological Disorders and Stroke (NINDS) funded Epilepsy Therapy Screening Program (ETSP) investigated CBD in a battery of seizure models using a refocused screening protocol aimed at identifying pharmacotherapies to address the unmet need in pharmacoresistant epilepsy. Applying this new screening workflow, CBD was investigated in mouse 6 Hz 44 mA, maximal electroshock (MES), corneal kindling models and rat MES and lamotrigine-resistant amygdala kindling models. Following intraperitoneal (i.p.) pretreatment, CBD produced dose-dependent protection in the acute seizure models; mouse 6 Hz 44 mA (ED 50 164 mg/kg), mouse MES (ED 50 83.5 mg/kg) and rat MES (ED 50 88.9 mg/kg). In chronic models, CBD produced dose-dependent protection in the corneal kindled mouse (ED 50 119 mg/kg) but CBD (up to 300 mg/kg) was not protective in the lamotrigine-resistant amygdala kindled rat. Motor impairment assessed in conjunction with the acute seizure models showed that CBD exerted seizure protection at non-impairing doses. The ETSP investigation demonstrates that CBD exhibits anti-seizure properties in acute seizure models and the corneal kindled mouse. However, further preclinical and clinical studies are needed to determine the potential for CBD to address the unmet needs in pharmacoresistant epilepsy.

  10. BAD knockout provides metabolic seizure resistance in a genetic model of epilepsy with sudden unexplained death in epilepsy.

    Science.gov (United States)

    Foley, Jeannine; Burnham, Veronica; Tedoldi, Meghan; Danial, Nika N; Yellen, Gary

    2018-01-01

    Metabolic alteration, either through the ketogenic diet (KD) or by genetic alteration of the BAD protein, can produce seizure protection in acute chemoconvulsant models of epilepsy. To assess the seizure-protective role of knocking out (KO) the Bad gene in a chronic epilepsy model, we used the Kcna1 -/- model of epilepsy, which displays progressively increased seizure severity and recapitulates the early death seen in sudden unexplained death in epilepsy (SUDEP). Beginning on postnatal day 24 (P24), we continuously video monitored Kcna1 -/- and Kcna1 -/- Bad -/- double knockout mice to assess survival and seizure severity. We found that Kcna1 -/- Bad -/- mice outlived Kcna1 -/- mice by approximately 2 weeks. Kcna1 -/- Bad -/- mice also spent significantly less time in seizure than Kcna1 -/- mice on P24 and the day of death, showing that BadKO provides seizure resistance in a genetic model of chronic epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  11. Orthosiphon stamineus Leaf Extract Affects TNF-α and Seizures in a Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Brandon Kar Meng Choo

    2018-02-01

    Full Text Available Epileptic seizures result from abnormal brain activity and can affect motor, autonomic and sensory function; as well as, memory, cognition, behavior, or emotional state. Effective anti-epileptic drugs (AEDs are available but have tolerability issues due to their side effects. The Malaysian herb Orthosiphon stamineus, is a traditional epilepsy remedy and possesses anti-inflammatory, anti-oxidant and free-radical scavenging abilities, all of which are known to protect against seizures. This experiment thus aimed to explore if an ethanolic leaf extract of O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures in a zebrafish model; and the effects of the extract on the expression levels of several genes in the zebrafish brain which are associated with seizures. The results of this study indicate that O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures as it is pharmacologically active against seizures in a zebrafish model. The anti-convulsive effect of this extract is also comparable to that of diazepam at higher doses and can surpass diazepam in certain cases. Treatment with the extract also counteracts the upregulation of NF-κB, NPY and TNF-α as a result of a Pentylenetetrazol (PTZ treated seizure. The anti-convulsive action for this extract could be at least partially due to its downregulation of TNF-α. Future work could include the discovery of the active anti-convulsive compound, as well as determine if the extract does not cause cognitive impairment in zebrafish.

  12. Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia.

    Directory of Open Access Journals (Sweden)

    Abbie Chapman Johnson

    Full Text Available Eclampsia, defined as unexplained seizure in a woman with preeclampsia, is a life-threatening complication of pregnancy with unclear etiology. Magnesium sulfate (MgSO4 is the leading eclamptic seizure prophylactic, yet its mechanism of action remains unclear. Here, we hypothesized severe preeclampsia is a state of increased seizure susceptibility due to blood-brain barrier (BBB disruption and neuroinflammation that lowers seizure threshold. Further, MgSO4 decreases seizure susceptibility by protecting the BBB and preventing neuroinflammation. To model severe preeclampsia, placental ischemia (reduced uteroplacental perfusion pressure; RUPP was combined with a high cholesterol diet (HC to cause maternal endothelial dysfunction. RUPP+HC rats developed symptoms associated with severe preeclampsia, including hypertension, oxidative stress, endothelial dysfunction and fetal and placental growth restriction. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ; mg/kg required to elicit seizure in RUPP + HC ± MgSO4 and compared to normal pregnant controls (n = 6/group; gestational day 20. RUPP+HC rats were more sensitive to PTZ with seizure threshold being ∼ 65% lower vs. control (12.4 ± 1.7 vs. 36.7 ± 3.9 mg/kg PTZ; p<0.05 that was reversed by MgSO4 (45.7 ± 8.7 mg/kg PTZ; p<0.05 vs. RUPP+HC. BBB permeability to sodium fluorescein, measured in-vivo (n = 5-7/group, was increased in RUPP+HC vs. control rats, with more tracer passing into the brain (15.9 ± 1.0 vs. 12.2 ± 0.3 counts/gram ×1000; p<0.05 and was unaffected by MgSO4 (15.6 ± 1.0 counts/gram ×1000; p<0.05 vs. controls. In addition, RUPP+HC rats were in a state of neuroinflammation, indicated by 35 ± 2% of microglia being active compared to 9 ± 2% in normal pregnancy (p<0.01; n = 3-8/group. MgSO4 treatment reversed neuroinflammation, reducing microglial activation to 6 ± 2% (p<0.01 vs. RUPP+HC. Overall, RUPP+HC rats were in a state of augmented

  13. Molecular and neurochemical substrates of the audiogenic seizure strains: The GASH:Sal model.

    Science.gov (United States)

    Prieto-Martín, Ana I; Aroca-Aguilar, J Daniel; Sánchez-Sánchez, Francisco; Muñoz, Luis J; López, Dolores E; Escribano, Julio; de Cabo, Carlos

    2017-06-01

    Animal models of audiogenic epilepsy are useful tools to understand the mechanisms underlying human reflex epilepsies. There is accumulating evidence regarding behavioral, anatomical, electrophysiological, and genetic substrates of audiogenic seizure strains, but there are still aspects concerning their neurochemical basis that remain to be elucidated. Previous studies have shown the involved of γ-amino butyric acid (GABA) in audiogenic seizures. The aim of our research was to clarify the role of the GABAergic system in the generation of epileptic seizures in the genetic audiogenic seizure-prone hamster (GASH:Sal) strain. We studied the K + /Cl - cotransporter KCC2 and β2-GABAA-type receptor (GABAAR) and β3-GABAAR subunit expressions in the GASH:Sal both at rest and after repeated sound-induced seizures in different brain regions using the Western blot technique. We also sequenced the coding region for the KCC2 gene both in wild- type and GASH:Sal hamsters. Lower expression of KCC2 protein was found in GASH:Sal when compared with controls at rest in several brain areas: hippocampus, cortex, cerebellum, hypothalamus, pons-medulla, and mesencephalon. Repeated induction of seizures caused a decrease in KCC2 protein content in the inferior colliculus and hippocampus and an increase in the pons-medulla. When compared to controls, the basal β 2 -GABA A R subunit in the GASH:Sal was overexpressed in the inferior colliculus, rest of the mesencephalon, and cerebellum, whereas basal β 3 subunit levels were lower in the inferior colliculus and rest of the mesencephalon. Repeated seizures increased β2 both in the inferior colliculus and in the hypothalamus and β 3 in the hypothalamus. No differences in the KCC2 gene-coding region were found between GASH:Sal and wild-type hamsters. These data indicate that GABAergic system functioning is impaired in the GASH:Sal strain, and repeated seizures seem to aggravate this dysfunction. These results have potential clinical

  14. Novel Vitamin K analogues suppress seizures in zebrafish and mouse models of epilepsy

    Science.gov (United States)

    Rahn, Jennifer J.; Bestman, Jennifer E.; Josey, Benjamin J.; Inks, Elizabeth S.; Stackley, Krista D.; Rogers, Carolyn E.; Chou, C. James; Chan, Sherine S. L.

    2014-01-01

    Epilepsy is a debilitating disease affecting 1-2% of the world’s population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit HDACs using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, NQN1, significantly decreased swim activity to levels equal to that of VPA. We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogues. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6 Hz) and corneal kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogues for prevention of seizures and suggest the potential mechanism for this protection may lie in the ability of these compounds to affect energy production. PMID:24291671

  15. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures

    NARCIS (Netherlands)

    Thyrion, L.; Raedt, R.; Portelli, J.; van Loo, P.; Wadman, W.J.; Glorieux, G.; Lambrecht, B.N.; Janssens, S.; Vonck, K.; Boon, P.

    2016-01-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in

  16. Evaluating of the Anticonvulsant Gabapentin against Nerve Agent-Induced Seizures in a Guinea Pig Model

    Science.gov (United States)

    2010-07-01

    treating neuropathic pain. This study evaluated whether gabapentin could terminate or moderate nerve agent-induced seizures using a validated guinea ... pig model. Male Hartley guinea pigs were surgically prepared to record electroencephalographic (EEG) activity. After a week recovery, animals were

  17. Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation

    Directory of Open Access Journals (Sweden)

    Bryce eBeverlin II

    2013-02-01

    Full Text Available Seizure control using deep brain stimulation (DBS provides an alternative therapy to patients with intractable and drug resistant epilepsy. This paper presents novel DBS stimulus protocols to disrupt seizures. Two protocols are presented: open-loop stimulation and a closed-loop feedback system utilizing measured firing rates to adjust stimulus frequency. Stimulation suppression is demonstrated in a computational model using 3000 excitatory Morris-Lecar model neurons connected with depressing synapses. Cells are connected using second order network topology to simulate network topologies measured in cortical networks. The network spontaneously switches from tonic to clonic as synaptic strengths and tonic input to the neurons decreases. To this model we add periodic stimulation pulses to simulate DBS. Periodic forcing can synchronize or desynchronize an oscillating population of neurons, depending on the stimulus frequency and amplitude. Therefore, it is possible to either extend or truncate the tonic or clonic phases of the seizure. Stimuli applied at the firing rate of the neuron generally synchronize the population while stimuli slightly slower than the firing rate prevent synchronization. We present an adaptive stimulation algorithm that measures the firing rate of a neuron and adjusts the stimulus to maintain a relative stimulus frequency to firing frequency and demonstrate it in a computational model of a tonic-clonic seizure. This adaptive algorithm can affect the duration of the tonic phase using much smaller stimulus amplitudes than the open-loop control.

  18. Serotonin depletion increases seizure susceptibility and worsens neuropathological outcomes in kainate model of epilepsy.

    Science.gov (United States)

    Maia, Gisela H; Brazete, Cátia S; Soares, Joana I; Luz, Liliana L; Lukoyanov, Nikolai V

    2017-09-01

    Serotonin is implicated in the regulation of seizures, but whether or not it can potentiate the effects of epileptogenic factors is not fully established. Using the kainic acid model of epilepsy in rats, we tested the effects of serotonin depletion on (1) susceptibility to acute seizures, (2) development of spontaneous recurrent seizures and (3) behavioral and neuroanatomical sequelae of kainic acid treatment. Serotonin was depleted by pretreating rats with p-chlorophenylalanine. In different groups, kainic acid was injected at 3 different doses: 6.5mg/kg, 9.0mg/kg or 12.5mg/kg. A single dose of 6.5mg/kg of kainic acid reliably induced status epilepticus in p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats. The neuroexcitatory effects of kainic acid in the p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats, were associated with the presence of tonic-clonic convulsions and high lethality. Compared to controls, a greater portion of serotonin-depleted rats showed spontaneous recurrent seizures after kainic acid injections. Loss of hippocampal neurons and spatial memory deficits associated with kainic acid treatment were exacerbated by prior depletion of serotonin. The present findings are of particular importance because they suggest that low serotonin activity may represent one of the major risk factors for epilepsy and, thus, offer potentially relevant targets for prevention of epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Evaluation of anticonvulsant and neuroprotective effects of camel milk in strychnine-induced seizure model

    Directory of Open Access Journals (Sweden)

    Humera Khatoon

    2015-10-01

    Full Text Available Objective: To discover the use of camel milk as an alternate medicine for the treatment and prevention of convulsions using strychnine-induced seizure model. Methods: Thirty animals were divided into three equal groups. Group I was on distilled water, Group II was on camel milk for 15 days prior to experiment and Group III was on reference drug diazepam. On the day of experiment, strychnine was administered in all treatment groups after distilled water, camel milk and diazepam treatments respectively. Animals were observed for 30 min for latency of seizure onset, frequency of convulsions and duration of jerks. The mortality rate was also evaluated for each group. Results: Camel milk treatment showed significant seizure protection as observed by delayed seizure onset (P ≤ 0.001, decreased total duration of convulsions (P ≤ 0.001 and mortality rate (P ≤ 0.001 when compared with Group I. Conclusions: Anticonvulsant activity of camel milk could be due to potentiation of glycinergic and GABAergic activities both. Antioxidant activity can also amplify its antiepileptic activity. Further studies are required to confirm the exact mechanism of action.

  20. Evaluation of anticonvulsant actions of dibromophenyl enaminones using in vitro and in vivo seizure models.

    Directory of Open Access Journals (Sweden)

    Mohamed G Qaddoumi

    Full Text Available Epilepsy and other seizure disorders are not adequately managed with currently available drugs. We recently synthesized a series of dibromophenyl enaminones and demonstrated that AK6 and E249 were equipotent to previous analogs but more efficacious in suppressing neuronal excitation. Here we examined the actions of these lead compounds on in vitro and in vivo seizure models. In vitro seizures were induced in the hippocampal slice chemically (zero Mg2+ buffer and picrotoxin and electrically using patterned high frequency stimulation (HFS of afferents. In vivo seizures were induced in rats using the 6 Hz and the maximal electroshock models. AK6 (10 µM and E249 (10 µM depressed the amplitude of population spikes recorded in area CA1 of the hippocampus by -50.5±4.3% and -40.1±3.1% respectively, with partial recovery after washout. In the zero Mg2+ model, AK6 (10 µM depressed multiple population spiking (mPS by -59.3±6.9% and spontaneous bursts (SBs by -65.9±7.2% and in the picrotoxin-model by -43.3±7.2% and -50.0±8.3%, respectively. Likewise, E249 (10 µM depressed the zero-Mg2+-induced mPS by -48.8±9.5% and SBs by -55.8±15.5%, and in the picrotoxin model by -37.1±5.5% and -56.5±11.4%, respectively. They both suppressed post-HFS induced afterdischarges and SBs. AK6 and E249 dose-dependently protected rats in maximal electroshock and 6 Hz models of in vivo seizures after 30 min pretreatment. Their level of protection in both models was similar to that obtained with phenytoin Finally, while AK6 had no effect on locomotion in rats, phenytoin significantly decreased locomotion. AK6 and E249, suppressed in vitro and in vivo seizures to a similar extent. Their in vivo activities are comparable with but not superior to phenytoin. The most efficacious, AK6 produced no locomotor suppression while phenytoin did. Thus, AK6 and E249 may be excellent candidates for further investigation as potential agents for the treatment of epilepsy syndromes

  1. Computational modeling of seizure dynamics using coupled neuronal networks: factors shaping epileptiform activity.

    Directory of Open Access Journals (Sweden)

    Sebastien Naze

    2015-05-01

    Full Text Available Epileptic seizure dynamics span multiple scales in space and time. Understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. Mathematical models have been developed to reproduce seizure dynamics across scales ranging from the single neuron to the neural population. In this study, we develop a network model of spiking neurons and systematically investigate the conditions, under which the network displays the emergent dynamic behaviors known from the Epileptor, which is a well-investigated abstract model of epileptic neural activity. This approach allows us to study the biophysical parameters and variables leading to epileptiform discharges at cellular and network levels. Our network model is composed of two neuronal populations, characterized by fast excitatory bursting neurons and regular spiking inhibitory neurons, embedded in a common extracellular environment represented by a slow variable. By systematically analyzing the parameter landscape offered by the simulation framework, we reproduce typical sequences of neural activity observed during status epilepticus. We find that exogenous fluctuations from extracellular environment and electro-tonic couplings play a major role in the progression of the seizure, which supports previous studies and further validates our model. We also investigate the influence of chemical synaptic coupling in the generation of spontaneous seizure-like events. Our results argue towards a temporal shift of typical spike waves with fast discharges as synaptic strengths are varied. We demonstrate that spike waves, including interictal spikes, are generated primarily by inhibitory neurons, whereas fast discharges during the wave part are due to excitatory neurons. Simulated traces are compared with in vivo experimental data from rodents at different stages of the disorder. We draw the conclusion

  2. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models.

    Science.gov (United States)

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin

    2008-10-01

    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  3. Anticonvulsant activity of DNS II fraction in the acute seizure models.

    Science.gov (United States)

    Raza, Muhammad Liaquat; Zeeshan, Mohammad; Ahmad, Manzoor; Shaheen, Farzana; Simjee, Shabana U

    2010-04-21

    Delphinium nordhagenii belongs to family Ranunculaceae, it is widely found in tropical areas of Pakistan. Other species of Delphinium are reported as anticonvulsant and are traditionally used in the treatment of epilepsy. Delphinium nordhagenii is used by local healer in Pakistan but never used for scientific investigation as anticonvulsant. Thus, Delphinium nordhagenii was subjected to bioassay-guided fractionation and the most active fraction, i.e. DNS II acetone was chosen for further testing in the acute seizure models of epilepsy to study the antiepileptic potential in male mice. Different doses (60, 65 and 70mg/kg, i.p.) of DNS II acetone fraction of Delphinium nordhagenii was administered 30min prior the chemoconvulsant's injection in the male mice. Convulsive doses of chemoconvulsants (pentylenetetrazole 90mg/kg, s.c. and picrotoxin 3.15mg/kg, s.c.) were used. The mice were observed 45-90min for the presence of seizures. Moreover, four different doses of DNS II (60, 65, 70 and 100mg/kg, i.p.) were tested in the MES test. The DNS II acetone fraction of Delphinium nordhagenii has exhibited the anticonvulsant actions by preventing the seizures against PTZ- and picrotoxin-induced seizure as well as 100% seizure protection in MES test. The results are comparable with standard AEDs (diazepam 7.5mg/kg, i.p. and phenytoin 20mg/kg, i.p.). These findings suggest that the Delphinium nordhagenii possesses the anticonvulsant activity. Further analysis is needed to confirm the structure and target the extended activity profile. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Rafal M [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Blaszczak, Piotr [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Dekundy, Andrzej [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Parada-Turska, Jolanta [Department of Rheumatology and Connective Tissue Diseases, Medical University, Jaczewskiego 8, 20-090 Lublin (Poland); Calderazzo, Lineu [Department of Neurology and Neurosurgery, Laboratory of Experimental Neurology, Escola Paulista de Medicina, R. Botucatu 862, BR-04023 Sao Paulo, S.P. (Brazil); Cavalheiro, Esper A [Department of Neurology and Neurosurgery, Laboratory of Experimental Neurology, Escola Paulista de Medicina, R. Botucatu 862, BR-04023 Sao Paulo, S.P. (Brazil); Turski, Waldemar A [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8, 20-090 Lublin (Poland)

    2007-03-15

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithium pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality.

  5. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    International Nuclear Information System (INIS)

    Kaminski, Rafal M.; Blaszczak, Piotr; Dekundy, Andrzej; Parada-Turska, Jolanta; Calderazzo, Lineu; Cavalheiro, Esper A.; Turski, Waldemar A.

    2007-01-01

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithium pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality

  6. Stimulation of Central A1 Adenosine Receptors Suppresses Seizure and Neuropathology in a Soman Nerve Agent Seizure Rat Model

    Science.gov (United States)

    2014-05-22

    implantation site, Nissl stained , and then analyzed by a trained pathologist to verify the accuracy of cannulae placement and evaluate toxicity. The second...transcardial perfusion and fixation, the brains were sectioned and stained with Nissl . A trained pathologist then analyzed the sections and verified that CPA...proto- col was used for assessing neuropathology in the subsequent soman seizure experiments. Those brains were serial sec- tioned at 5 mm, stained

  7. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs.

    Science.gov (United States)

    Löscher, Wolfgang

    2017-07-01

    The identification of potential therapeutic agents for the treatment of epilepsy requires the use of seizure models. Except for some early treatments, including bromides and phenobarbital, the antiseizure activity of all clinically used drugs was, for the most part, defined by acute seizure models in rodents using the maximal electroshock and subcutaneous pentylenetetrazole seizure tests and the electrically kindled rat. Unfortunately, the clinical evidence to date would suggest that none of these models, albeit useful, are likely to identify those therapeutics that will effectively manage patients with drug resistant seizures. Over the last 30 years, a number of animal models have been developed that display varying degrees of pharmacoresistance, such as the phenytoin- or lamotrigine-resistant kindled rat, the 6-Hz mouse model of partial seizures, the intrahippocampal kainate model in mice, or rats in which spontaneous recurrent seizures develops after inducing status epilepticus by chemical or electrical stimulation. As such, these models can be used to study mechanisms of drug resistance and may provide a unique opportunity for identifying a truly novel antiseizure drug (ASD), but thus far clinical evidence for this hope is lacking. Although animal models of drug resistant seizures are now included in ASD discovery approaches such as the ETSP (epilepsy therapy screening program), it is important to note that no single model has been validated for use to identify potential compounds for as yet drug resistant seizures, but rather a battery of such models should be employed, thus enhancing the sensitivity to discover novel, highly effective ASDs. The present review describes the previous and current approaches used in the search for new ASDs and offers some insight into future directions incorporating new and emerging animal models of therapy resistance.

  8. Sleep disruption increases seizure susceptibility: Behavioral and EEG evaluation of an experimental model of sleep apnea.

    Science.gov (United States)

    Hrnčić, Dragan; Grubač, Željko; Rašić-Marković, Aleksandra; Šutulović, Nikola; Šušić, Veselinka; Bjekić-Macut, Jelica; Stanojlović, Olivera

    2016-03-01

    Sleep disruption accompanies sleep apnea as one of its major symptoms. Obstructive sleep apnea is particularly common in patients with refractory epilepsy, but causing factors underlying this are far from being resolved. Therefore, translational studies regarding this issue are important. Our aim was to investigate the effects of sleep disruption on seizure susceptibility of rats using experimental model of lindane-induced refractory seizures. Sleep disruption in male Wistar rats with implanted EEG electrodes was achieved by treadmill method (belt speed set on 0.02 m/s for working and 0.00 m/s for stop mode, respectively). Animals were assigned to experimental conditions lasting 6h: 1) sleep disruption (sleep interrupted, SI; 30s working and 90 s stop mode every 2 min; 180 cycles in total); 2) activity control (AC, 10 min working and 30 min stop mode, 9 cycles in total); 3) treadmill chamber control (TC, only stop mode). Afterwards, the animals were intraperitoneally treated with lindane (L, 4 mg/kg, SI+L, AC+L and TC+L groups) or dimethylsulfoxide (DMSO, SIc, ACc and TCc groups). Convulsive behavior was assessed by seizure incidence, latency time to first seizure, and its severity during 30 min after drug administration. Number and duration of ictal periods were determined in recorded EEGs. Incidence and severity of lindane-induced seizures were significantly increased, latency time significantly decreased in animals undergoing sleep disruption (SI+L group) compared with the animals from TC+L. Seizure latency was also significantly decreased in SI+L compared to AC+L groups. Number of ictal periods were increased and duration of it presented tendency to increase in SI+L comparing to AC+L. No convulsive signs were observed in TCc, ACc and SIc groups, as well as no ictal periods in EEG. These results indicate sleep disruption facilitates induction of epileptic activity in rodent model of lindane-epilepsy enabling translational research of this phenomenon. Copyright

  9. Electrographic waveform structure predicts laminar focus location in a model of temporal lobe seizures in vitro.

    Directory of Open Access Journals (Sweden)

    Christopher Adams

    Full Text Available Temporal lobe epilepsy is the most common form of partial-onset epilepsy and accounts for the majority of adult epilepsy cases in most countries. A critical role for the hippocampus (and to some extent amygdala in the pathology of these epilepsies is clear, with selective removal of these regions almost as effective as temporal lobectomy in reducing subsequent seizure risk. However, there is debate about whether hippocampus is 'victim' or 'perpetrator': The structure is ideally placed to 'broadcast' epileptiform activity to a great many other brain regions, but removal often leaves epileptiform events still occurring in cortex, particularly in adjacent areas, and recruitment of the hippocampus into seizure-like activity has been shown to be difficult in clinically-relevant models. Using a very simple model of acute epileptiform activity with known, single primary pathology (GABAA Receptor partial blockade, we track the onset and propagation of epileptiform events in hippocampus, parahippocampal areas and neocortex. In this model the hippocampus acts as a potential seizure focus for the majority of observed events. Events with hippocampal focus were far more readily propagated throughout parahippocampal areas and into neocortex than vice versa. The electrographic signature of events of hippocampal origin was significantly different to those of primary neocortical origin - a consequence of differential laminar activation. These data confirm the critical role of the hippocampus in epileptiform activity generation in the temporal lobe and suggest the morphology of non-invasive electrical recording of neocortical interictal events may be useful in confirming this role.

  10. Imaging a seizure model in zebrafish with structured illumination light sheet microscopy

    Science.gov (United States)

    Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.

  11. Seizure-like afterdischarges simulated in a model neuron.

    NARCIS (Netherlands)

    Kager, J.; Wadman, W.J.; Somjen, G.G.

    2006-01-01

    To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a "glial-endothelial" buffer system. Ion channels for Na(+), K(+), Ca(2+) and Cl(-) (,) ion antiport 3Na/Ca, and "active" ion pumps

  12. Hippocampal closed-loop modeling and implications for seizure stimulation design

    Science.gov (United States)

    Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.

    2015-10-01

    Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.

  13. MICROARRAY PROFILE OF SEIZURE DAMAGE-REFRACTORY HIPPOCAMPAL CA3 IN A MOUSE MODEL OF EPILEPTIC PRECONDITIONING

    OpenAIRE

    HATAZAKI, S.; BELLVER-ESTELLES, C.; JIMENEZ-MATEOS, E. M.; MELLER, R.; BONNER, C.; MURPHY, N.; MATSUSHIMA, S.; TAKI, W.; PREHN, J. H. M.; SIMON, R. P.; HENSHALL, D. C.

    2007-01-01

    A neuroprotected state can be acquired by preconditioning brain with a stimulus that is subthreshold for damage (tolerance). Acquisition of tolerance involves coordinate, bi-directional changes to gene expression levels and the re-programmed phenotype is determined by the preconditioning stimulus. While best studied in ischemic brain there is evidence brief seizures can confer tolerance against prolonged seizures (status epilepticus). Presently, we developed a model of epileptic preconditioni...

  14. Intraperitoneal administration of docosahexaenoic acid for 14days increases serum unesterified DHA and seizure latency in the maximal pentylenetetrazol model.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Lim, Joonbum; Lai, Terence K Y; Cho, Hye Jin; Domenichiello, Anthony F; Chen, Chuck T; Taha, Ameer Y; Bazinet, Richard P; Burnham, W M

    2014-04-01

    Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) which has been shown to raise seizure thresholds following acute administration in rats. The aims of the present experiment were the following: 1) to test whether subchronic DHA administration raises seizure threshold in the maximal pentylenetetrazol (PTZ) model 24h following the last injection and 2) to determine whether the increase in seizure threshold is correlated with an increase in serum and/or brain DHA. Animals received daily intraperitoneal (i.p.) injections of 50mg/kg of DHA, DHA ethyl ester (DHA EE), or volume-matched vehicle (albumin/saline) for 14days. On day 15, one subset of animals was seizure tested in the maximal PTZ model (Experiment 1). In a separate (non-seizure tested) subset of animals, blood was collected, and brains were excised following high-energy, head-focused microwave fixation. Lipid analysis was performed on serum and brain (Experiment 2). For data analysis, the DHA and DHA EE groups were combined since they did not differ significantly from each other. In the maximal PTZ model, DHA significantly increased seizure latency by approximately 3-fold as compared to vehicle-injected animals. This increase in seizure latency was associated with an increase in serum unesterified DHA. Total brain DHA and brain unesterified DHA concentrations, however, did not differ significantly in the treatment and control groups. An increase in serum unesterified DHA concentration reflecting increased flux of DHA to the brain appears to explain changes in seizure threshold, independent of changes in brain DHA concentrations. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Febrile seizures

    Science.gov (United States)

    ... proper care. Occasionally, a provider will prescribe a medicine called diazepam to prevent or treat febrile seizures that occur more than once. However, no drug is completely effective in preventing febrile seizures. Alternative Names Seizure - fever induced; Febrile convulsions Patient Instructions ...

  16. Acute administration of ginger (Zingiber officinale rhizomes) extract on timed intravenous pentylenetetrazol infusion seizure model in mice.

    Science.gov (United States)

    Hosseini, Abdolkarim; Mirazi, Naser

    2014-03-01

    Zingiber officinale (Zingiberaceae) or ginger, which is used in traditional medicine has antioxidant activity and neuroprotective effects. The effects of this plant on clonic seizure have not yet been studied. The present study evaluated the anticonvulsant effect of ginger in a model of clonic seizures induced with pentylenetetrazole (PTZ) in male mice. The anticonvulsant effect of Z. officinale was investigated using i.v. PTZ-induced seizure models in mice. Different doses of the hydroethanolic extract of Z. officinale (25, 50, and 100mg/kg) were administered intraperitonal (i.p.), 2 and 24h before induction of PTZ. Phenobarbital sodium (30mg/kg), a reference standard, was also tested for comparison. The effect of ginger on to the appearance of three separate seizure endpoints (myoclonic, generalized clonus and forelimb tonic extension phase) was recorded. The results showed that the ginger extract has anticonvulsant effects in all the experimental treatment groups of seizure tested as it significantly increased the seizure threshold. Hydroethanolic extract of Z. officinale significantly increased the onset time of myoclonic seizure at doses of 25-100mg/kg (p<0.001) and significantly prevented generalized clonic (p<0.001) and increased the threshold for the forelimb tonic extension (p<0.01) seizure 2 and 24h before induction of PTZ compared with control group. Based on the results the hydroethanolic extract of ginger has anticonvulsant effects, possibly through an interaction with inhibitory and excitatory system, antioxidant mechanisms, oxidative stress and calcium channel inhibition. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Opportunities for improving animal welfare in rodent models of epilepsy and seizures.

    Science.gov (United States)

    Lidster, Katie; Jefferys, John G; Blümcke, Ingmar; Crunelli, Vincenzo; Flecknell, Paul; Frenguelli, Bruno G; Gray, William P; Kaminski, Rafal; Pitkänen, Asla; Ragan, Ian; Shah, Mala; Simonato, Michele; Trevelyan, Andrew; Volk, Holger; Walker, Matthew; Yates, Neil; Prescott, Mark J

    2016-02-15

    Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Capturing the state transitions of seizure-like events using Hidden Markov models.

    Science.gov (United States)

    Guirgis, Mirna; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L

    2011-01-01

    The purpose of this study was to investigate the number of states present in the progression of a seizure-like event (SLE). Of particular interest is to determine if there are more than two clearly defined states, as this would suggest that there is a distinct state preceding an SLE. Whole-intact hippocampus from C57/BL mice was used to model epileptiform activity induced by the perfusion of a low Mg(2+)/high K(+) solution while extracellular field potentials were recorded from CA3 pyramidal neurons. Hidden Markov models (HMM) were used to model the state transitions of the recorded SLEs by incorporating various features of the Hilbert transform into the training algorithm; specifically, 2- and 3-state HMMs were explored. Although the 2-state model was able to distinguish between SLE and nonSLE behavior, it provided no improvements compared to visual inspection alone. However, the 3-state model was able to capture two distinct nonSLE states that visual inspection failed to discriminate. Moreover, by developing an HMM based system a priori knowledge of the state transitions was not required making this an ideal platform for seizure prediction algorithms.

  19. Suppression of seizures based on the multi-coupled neural mass model.

    Science.gov (United States)

    Cao, Yuzhen; Ren, Kaili; Su, Fei; Deng, Bin; Wei, Xile; Wang, Jiang

    2015-10-01

    Epilepsy is one of the most common serious neurological disorders, which affects approximately 1% of population in the world. In order to effectively control the seizures, we propose a novel control methodology, which combines the feedback linearization control (FLC) with the underlying mechanism of epilepsy, to achieve the suppression of seizures. The three coupled neural mass model is constructed to study the property of the electroencephalographs (EEGs). Meanwhile, with the model we research on the propagation of epileptiform waves and the synchronization of populations, which are taken as the foundation of our control method. Results show that the proposed approach not only yields excellent performances in clamping the pathological spiking patterns to the reference signals derived under the normal state but also achieves the normalization of the pathological parameter, where the parameters are estimated from EEGs with Unscented Kalman Filter. The specific contribution of this paper is to treat the epilepsy from its pathogenesis with the FLC, which provides critical theoretical basis for the clinical treatment of neurological disorders.

  20. Computational model of neuron-astrocyte interactions during focal seizure generation

    Directory of Open Access Journals (Sweden)

    Davide eReato

    2012-10-01

    Full Text Available Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability through a Ca2+-dependent release of glutamate. The underlying mechanism remains, however, unclear. In this study, we implemented a parsimonious network model of neurons and astrocytes. The model consists of excitatory and inhibitory neurons described by Izhikevich's neuron dynamics. The experimentally observed Ca2+ change in astrocytes in response to neuronal activity was modeled with linear equations. We considered that glutamate is released from astrocytes above certain intracellular Ca2+ concentrations thus providing a non-linear positive feedback signal to neurons. Propagating seizure-like ictal discharges (IDs were reliably evoked in our computational model by repeatedly exciting a small area of the network, which replicates experimental results in a slice model of focal ID in entorhinal cortex. We found that the threshold of focal ID generation was lowered when an excitatory feedback-loop between astrocytes and neurons was included. Simulations show that astrocytes can contribute to ID generation by directly affecting the excitatory/inhibitory balance of the neuronal network. Our model can be used to obtain mechanistic insights into the distinct contributions of the different signaling pathways to the generation and

  1. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models

    Science.gov (United States)

    Willis, Sarah; Stoll, James; Sweetman, Lawrence; Borges, Karin

    2010-01-01

    We hypothesized that in epileptic brains citric acid cycle intermediate levels may be deficient leading to hyperexcitability. Anaplerosis is the metabolic refilling of deficient metabolites. Our goal was to determine the anticonvulsant effects of feeding triheptanoin, the triglyceride of anaplerotic heptanoate. CF1 mice were fed 0-35% calories from triheptanoin. Body weights and dietary intake were similar in mice fed triheptanoin vs. standard diet. Triheptanoin feeding increased blood propionyl-carnitine levels, signifying its metabolism. 35%, but not 20%, triheptanoin delayed development of corneal kindled seizures. After pilocarpine-induced status epilepticus (SE), triheptanoin feeding increased the pentylenetetrazole tonic seizure threshold during the chronically epileptic stage. Mice in the chronically epileptic stage showed various changes in brain metabolite levels, including a reduction in malate. Triheptanoin feeding largely restored a reduction in propionyl-CoA levels and increased methylmalonyl-CoA levels in SE mice. In summary, triheptanoin was anticonvulsant in two chronic mouse models and increased levels of anaplerotic precursor metabolites in epileptic mouse brains. The mechanisms of triheptanoin's effects and its efficacy in humans suffering from epilepsy remain to be determined. PMID:20691264

  2. Unaltered Neuronal and Glial Counts in Animal Models of Magnetic Seizure Therapy and Electroconvulsive Therapy

    DEFF Research Database (Denmark)

    Dwork, A.J.; Christensen, J.R.; Larsen, K.B.

    2009-01-01

    report on its anatomical effects. We discerned no histological lesions in the brains of higher mammals subjected to electroconvulsive shock (ECS) or MST, under conditions that model closely those used in humans. We sought to extend these findings by determining whether these interventions affected...... the number of neurons or glia in the frontal cortex or hippocampus. Twenty-four animals received 6 weeks of ECS, MST, or anesthesia alone, 4 days per week. After perfusion fixation, numbers of neurons and glia in frontal cortex and hippocampus were determined by unbiased stereological methods. We found...... no effect of either intervention on volumes or total number or numerical density of neurons or glia in hippocampus, frontal cortex, or subregions of these structures. Induction of seizures in a rigorous model of human ECT and MST therapy does not cause a change in the number of neurons or glia...

  3. A model based approach in observing the activity of neuronal populations for the prediction of epileptic seizures

    International Nuclear Information System (INIS)

    Chong, M.S.; Nesic, D.; Kuhlmann, L.; Postoyan, R.; Varsavsky, A.; Cook, M.

    2010-01-01

    Full text: Epilepsy is a common neurological disease that affects 0.5-1 % of the world's population. In cases where known treatments cannot achieve complete recovery, seizure prediction is essential so that preventive measures can be undertaken to prevent resultant injury. The elcctroencephalogram (EEG) is a widely used diagnostic tool for epilepsy. However, the EEG does not provide a detailed view of the underlying seizure causing neuronal mechanisms. Knowing the dynamics of the neuronal population is useful because tracking the evolution of the neuronal mechanisms will allow us to track the brain's progression from interictal to ictal state. Wendling and colleagues proposed a parameterised mathematical model that represents the activity of interconnected neuronal populations. By modifying the parameters, this model is able to reproduce signals that are very similar to the real EEG depicting commonly observed patterns during interictal and ictal periods. The transition from non-seizure to seizure activity, as seen in the EEG. is hypothesised to be due to the impairment of inhibition. Using Wendling's model, we designed a deterministic nonlinear estimator to recover the average membrane potential of the neuronal populations from a single channel EEG signal. for any fixed and known parameter values. Our nonlinear estimator is analytically proven to asymptotically converge to the true state of the model and illustrated in simulations. We were able to computationally observe the dynamics of the three neuronal populations described in the model: excitatory, fast and slow inhibitory populations. This forms a first step towards the prediction of epileptic seiwres. (author)

  4. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy

    Science.gov (United States)

    Buckmaster, Paul S.; Abrams, Emily; Wen, Xiling

    2018-01-01

    Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31–61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24–36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. PMID:28425097

  5. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Buckmaster, Paul S; Abrams, Emily; Wen, Xiling

    2017-08-01

    Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. © 2017 Wiley Periodicals, Inc.

  6. Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model.

    Science.gov (United States)

    Saha, Lekha; Bhandari, Swati; Bhatia, Alka; Banerjee, Dibyajyoti; Chakrabarti, Amitava

    2014-12-01

    Studies in the animals suggested that Peroxisome proliferators activated receptors (PPARs) may be involved in seizure control and selective agonists of PPAR α or PPAR γ raise seizure thresholds. The present study was contemplated with the aim of evaluating the anti kindling effects and the mechanism of bezafibrate, a Peroxisome proliferator-activated receptors α (PPAR-α) agonist in pentylenetetrazole (PTZ) induced kindling model of seizures in rats. In a PTZ kindled Wistar rat model, different doses of bezafibrate (100 mg/kg, 200 mg/kg and 300 mg/kg) were administered intraperitoneally 30 minutes before the PTZ injection. The PTZ injection was given on alternate day till the animal became fully kindled or till 10 weeks. The parameters measured were the latency to develop kindling and incidence of kindling, histopathological study of hippocampus, hippocampal lipid peroxidation studies, serum neuron specific enolase, and hippocampal DNA fragmentation study. In this study, bezafibrate significantly reduced the incidence of kindling in PTZ treated rats and exhibited a marked prolongation in the latencies to seizures. In the present study bezafibrate decreased the thiobarbituric acid-reactive substance i.e. Malondialdehyde levels, increased the reduced glutathione levels, catalase and superoxide dismutase activity in the brain. This added to its additional neuroprotective effects. Bezafibrate also reduced the neuronal damage and apoptosis in hippocampal area of the brain. Therefore bezafibrate exerted anticonvulsant properties in PTZ induced kindling model in rats. These findings may provide insights into the understanding of the mechanism of bezafibrate as an anti kindling agent and could offer a useful support to the basic antiepileptic therapy in preventing the development of PTZ induced seizures, suggesting its potential for therapeutic applications in temporal lobe epilepsy.

  7. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy.

    Science.gov (United States)

    Jiruska, Premysl; Shtaya, Anan B Y; Bodansky, David M S; Chang, Wei-Chih; Gray, William P; Jefferys, John G R

    2013-06-01

    Temporal lobe epilepsy alters adult neurogenesis. Existing experimental evidence is mainly from chronic models induced by an initial prolonged status epilepticus associated with substantial cell death. In these models, neurogenesis increases after status epilepticus. To test whether status epilepticus is necessary for this increase, we examined precursor cell proliferation and neurogenesis after the onset of spontaneous seizures in a model of temporal lobe epilepsy induced by unilateral intrahippocampal injection of tetanus toxin, which does not cause status or, in most cases, detectable neuronal loss. We found a 4.5 times increase in BrdU labeling (estimating precursor cells proliferating during the 2nd week after injection of toxin and surviving at least up to 7days) in dentate gyri of both injected and contralateral hippocampi of epileptic rats. Radiotelemetry revealed that the rats experienced 112±24 seizures, lasting 88±11s each, over a period of 8.6±1.3days from the first electrographic seizure. On the first day of seizures, their duration was a median of 103s, and the median interictal period was 23min, confirming the absence of experimentally defined status epilepticus. The total increase in cell proliferation/survival was due to significant population expansions of: radial glial-like precursor cells (type I; 7.2×), non-radial type II/III neural precursors in the dentate gyrus stem cell niche (5.6×), and doublecortin-expressing neuroblasts (5.1×). We conclude that repeated spontaneous brief temporal lobe seizures are sufficient to promote increased hippocampal neurogenesis in the absence of status epilepticus. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Dopey's seizure.

    Science.gov (United States)

    Dan, B; Christiaens, F

    1999-06-01

    Angelman syndrome is a neurogenetic condition namely characterized by developmental delay, virtual absence of expressive verbal language, peculiar organization of movement, seizures and happy demeanor. This syndrome has been recognized since 1965, but it seems that Walt Disney presented an original depiction of it in his first full-length animated film, including myoclonic jerks and an apparently generalized tonic-clonic seizure. Copyright 1999 BEA Trading Ltd.

  9. Envenomation Seizures.

    Science.gov (United States)

    Kharal, Ghulam Abbas; Darby, Richard Ryan; Cohen, Adam B

    2018-01-01

    Insect sting-related envenomation rarely produces seizures. We present a patient with confusion and seizures that began 24 hours after a yellow jacket (wasp) sting. Given the rapid onset and resolution of symptoms, as well as accompanying dermatological and orbital features, and the lack of any infectious or structural abnormalities identified, the toxic effect of the wasp venom (and related anaphylaxis reaction) was believed to be the cause of his presentation.

  10. Long-term consequences of a prolonged febrile seizure in a dual pathology model.

    Science.gov (United States)

    Gibbs, Steve; Chattopadhyaya, Bidisha; Desgent, Sébastien; Awad, Patricia N; Clerk-Lamalice, Olivier; Levesque, Maxime; Vianna, Rose-Mari; Rébillard, Rose-Marie; Delsemme, Andrée-Anne; Hébert, David; Tremblay, Luc; Lepage, Martin; Descarries, Laurent; Di Cristo, Graziella; Carmant, Lionel

    2011-08-01

    Clinical evidence suggests that febrile status epilepticus (SE) in children can lead to acute hippocampal injury and subsequent temporal lobe epilepsy. The contribution of febrile SE to the mechanisms underlying temporal lobe epilepsy are however poorly understood. A rat model of temporal lobe epilepsy following hyperthermic SE was previously established in our laboratory, wherein a focal cortical lesion induced at postnatal day 1 (P1), followed by a hyperthermic SE (more than 30 min) at P10, leads to hippocampal atrophy at P22 (dual pathology model) and spontaneous recurrent seizures (SRS) with mild visuospatial memory deficits in adult rats. The goal of this study was to identify the long term electrophysiological, anatomical and molecular changes in this model. Following hyperthermic SE, all cortically lesioned pups developed progressive SRS as adults, characterized by the onset of highly rhythmic activity in the hippocampus. A reduction of hippocampal volume on the side of the lesion preceded the SRS and was associated with a loss of hippocampal neurons, a marked decrease in pyramidal cell spine density, an increase in the hippocampal levels of NMDA receptor NR2A subunit, but no significant change in GABA receptors. These findings suggest that febrile SE in the abnormal brain leads to hippocampal injury that is followed by progressive network reorganization and molecular changes that contribute to the epileptogenesis as well as the observed memory deficits. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Non-parametric early seizure detection in an animal model of temporal lobe epilepsy

    Science.gov (United States)

    Talathi, Sachin S.; Hwang, Dong-Uk; Spano, Mark L.; Simonotto, Jennifer; Furman, Michael D.; Myers, Stephen M.; Winters, Jason T.; Ditto, William L.; Carney, Paul R.

    2008-03-01

    The performance of five non-parametric, univariate seizure detection schemes (embedding delay, Hurst scale, wavelet scale, nonlinear autocorrelation and variance energy) were evaluated as a function of the sampling rate of EEG recordings, the electrode types used for EEG acquisition, and the spatial location of the EEG electrodes in order to determine the applicability of the measures in real-time closed-loop seizure intervention. The criteria chosen for evaluating the performance were high statistical robustness (as determined through the sensitivity and the specificity of a given measure in detecting a seizure) and the lag in seizure detection with respect to the seizure onset time (as determined by visual inspection of the EEG signal by a trained epileptologist). An optimality index was designed to evaluate the overall performance of each measure. For the EEG data recorded with microwire electrode array at a sampling rate of 12 kHz, the wavelet scale measure exhibited better overall performance in terms of its ability to detect a seizure with high optimality index value and high statistics in terms of sensitivity and specificity.

  12. A Critical Evaluation of the Gamma-Hydroxybutyrate (GHB) Model of Absence Seizures

    Science.gov (United States)

    Venzi, Marcello; Di Giovanni, Giuseppe; Crunelli, Vincenzo

    2015-01-01

    Typical absence seizures (ASs) are nonconvulsive epileptic events which are commonly observed in pediatric and juvenile epilepsies and may be present in adults suffering from other idiopathic generalized epilepsies. Our understanding of the pathophysiological mechanisms of ASs has been greatly advanced by the availability of genetic and pharmacological models, in particular the γ-hydroxybutyrate (GHB) model which, in recent years, has been extensively used in studies in transgenic mice. GHB is an endogenous brain molecule that upon administration to various species, including humans, induces not only ASs but also a state of sedation/hypnosis. Analysis of the available data clearly indicates that only in the rat does there exist a set of GHB-elicited behavioral and EEG events that can be confidently classified as ASs. Other GHB activities, particularly in mice, appear to be mostly of a sedative/hypnotic nature: thus, their relevance to ASs requires further investigation. At the molecular level, GHB acts as a weak GABA-B agonist, while the existence of a GHB receptor remains elusive. The pre- and postsynaptic actions underlying GHB-elicited ASs have been thoroughly elucidated in thalamus, but little is known about the cellular/network effects of GHB in neocortex, the other brain region involved in the generation of ASs. PMID:25403866

  13. Classification of Multiple Seizure-Like States in Three Different Rodent Models of Epileptogenesis.

    Science.gov (United States)

    Guirgis, Mirna; Serletis, Demitre; Zhang, Jane; Florez, Carlos; Dian, Joshua A; Carlen, Peter L; Bardakjian, Berj L

    2014-01-01

    Epilepsy is a dynamical disease and its effects are evident in over fifty million people worldwide. This study focused on objective classification of the multiple states involved in the brain's epileptiform activity. Four datasets from three different rodent hippocampal preparations were explored, wherein seizure-like-events (SLE) were induced by the perfusion of a low - Mg(2+) /high-K(+) solution or 4-Aminopyridine. Local field potentials were recorded from CA3 pyramidal neurons and interneurons and modeled as Markov processes. Specifically, hidden Markov models (HMM) were used to determine the nature of the states present. Properties of the Hilbert transform were used to construct the feature spaces for HMM training. By sequentially applying the HMM training algorithm, multiple states were identified both in episodes of SLE and nonSLE activity. Specifically, preSLE and postSLE states were differentiated and multiple inner SLE states were identified. This was accomplished using features extracted from the lower frequencies (1-4 Hz, 4-8 Hz) alongside those of both the low- (40-100 Hz) and high-gamma (100-200 Hz) of the recorded electrical activity. The learning paradigm of this HMM-based system eliminates the inherent bias associated with other learning algorithms that depend on predetermined state segmentation and renders it an appropriate candidate for SLE classification.

  14. Microarray profile of seizure damage-refractory hippocampal CA3 in a mouse model of epileptic preconditioning.

    Science.gov (United States)

    Hatazaki, S; Bellver-Estelles, C; Jimenez-Mateos, E M; Meller, R; Bonner, C; Murphy, N; Matsushima, S; Taki, W; Prehn, J H M; Simon, R P; Henshall, D C

    2007-12-05

    A neuroprotected state can be acquired by preconditioning brain with a stimulus that is subthreshold for damage (tolerance). Acquisition of tolerance involves coordinate, bi-directional changes to gene expression levels and the re-programmed phenotype is determined by the preconditioning stimulus. While best studied in ischemic brain there is evidence brief seizures can confer tolerance against prolonged seizures (status epilepticus). Presently, we developed a model of epileptic preconditioning in mice and used microarrays to gain insight into the transcriptional phenotype within the target hippocampus at the time tolerance had been acquired. Epileptic tolerance was induced by an episode of non-damaging seizures in adult C57Bl/6 mice using a systemic injection of kainic acid. Neuron and DNA damage-positive cell counts 24 h after status epilepticus induced by intraamygdala microinjection of kainic acid revealed preconditioning given 24 h prior reduced CA3 neuronal death by approximately 45% compared with non-tolerant seizure mice. Microarray analysis of over 39,000 transcripts (Affymetrix 430 2.0 chip) from microdissected CA3 subfields was undertaken at the point at which tolerance was acquired. Results revealed a unique profile of small numbers of equivalently up- and down-regulated genes with biological functions that included transport and localization, ubiquitin metabolism, apoptosis and cell cycle control. Select microarray findings were validated post hoc by real-time polymerase chain reaction and Western blotting. The present study defines a paradigm for inducing epileptic preconditioning in mice and first insight into the global transcriptome of the seizure-damage refractory brain.

  15. Intranasal Delivery of miR-146a Mimics Delayed Seizure Onset in the Lithium-Pilocarpine Mouse Model

    Directory of Open Access Journals (Sweden)

    Hua Tao

    2017-01-01

    Full Text Available Unveiling the key mechanism of temporal lobe epilepsy (TLE for the development of novel treatments is of increasing interest, and anti-inflammatory miR-146a is now considered a promising molecular target for TLE. In the current study, a C57BL/6 TLE mouse model was established using the lithium-pilocarpine protocol. The seizure degree was evaluated according to the Racine scale, and level 5 was considered the threshold for generalized convulsions. Animals were sacrificed to analyze the hippocampus at three time points (2 h and 4 and 8 weeks after pilocarpine administration to evaluate the acute, latent, and chronic phases, resp.. After intranasal delivery of miR-146a mimics (30 min before pilocarpine injection, the percent of animals with no induced seizures increased by 6.7%, the latency to generalized convulsions was extended, and seizure severity was reduced. Additionally, hippocampal damage was alleviated. While the relative miR-146a levels significantly increased, the expression of its target mRNAs (IRAK-1 and TRAF-6 and typical inflammatory modulators (NF-κB, TNF-α, IL-1β, and IL-6 decreased, supporting an anti-inflammatory role of miR-146a via the TLR pathway. This study is the first to demonstrate that intranasal delivery of miR-146a mimics can improve seizure onset and hippocampal damage in the acute phase of lithium-pilocarpine-induced seizures, which provides inflammation-based clues for the development of novel TLE treatments.

  16. Inhibitor effect of dexketoprofen in rat model of pentylenetetrazol-induced seizures.

    Science.gov (United States)

    Erbaş, Oytun; Solmaz, Volkan; Aksoy, Dürdane

    2015-01-01

    The relationship between epilepsy and inflammation is known, and it has been reported that there is an increase in cyclooxygenase (COX) levels in epilepsy. We aim to reveal the anticonvulsant effects of dexketoprofen in pentylenetetrazol (PTZ)-induced seizures in rats. Forty-eight male Sprague-Dawley rats, 24 of them for EEG recording and 24 of them are for behavioral studies, were randomly divided in two groups: Group A for EEG recordings and Group B for behavioral assessment. A weight of 70 mg/kg PTZ was used for behavioral studies after dexketoprofen administration. Thirty-five milligrams per kilogram PTZ were used for EEG recording after dexketoprofen administration. The electrodes were implanted on dura over the left frontal cortex and the reference electrode was implanted over the cerebellum for EEG recording. The Racine convulsion scale (RCS), first myoclonic jerk (FMJ) onset time, and spike percentages were evaluated between the two groups. There was a significant (PDexketoprofen has an antiepileptic feature and this effect increases as the dosage increases, however it is currently unknown through which mechanism this drug shows its anticonvulsant effect. Dexketoprofen, in the group of NSAIDs, shows an anticonvulsant effect on PTZ-induced epilepsy model. This study suggests that dexketoprofen can preferably be used with NSAIDs for epileptic patients in clinical practice.

  17. The role of driver nodes in managing epileptic seizures: Application of Kuramoto model.

    Science.gov (United States)

    Mohseni, Ali; Gharibzadeh, Shahriar; Bakouie, Fatemeh

    2017-04-21

    Synchronization is an important global phenomenon which could be found in a wide range of complex systems such as brain or electronic devices. However, in some circumstances the synchronized states are not desirable for the system and should be suppressed. For example, excessively synchronized activities in the brain network could be the root of neuronal disorders like epileptic seizures. According to the controllability theory of the complex networks, a minimum set of driver nodes has the ability to control the entire system. In this study, we examine the role of driver nodes in suppressing the excessive synchronization in a generalized Kuramoto model, which consists of two types of oscillators: contrarian and regular ones. We used two different structural topologies: Barabási-Albert scale-free (BASF) network and Caenorhabditis elegans (C.elegans) neuronal network. Our results show that contrarian driver nodes have the sufficient ability to break the synchronized level of the systems. In this case, the system coherency level is not fully suppressed that is avoiding dysfunctions of normal brain functions which require the neuronal synchronized activities. Moreover, in this case, the oscillators grouped in two distinct synchronized clusters that could be an indication of chaotic behavior of the system known as resting-state activity of the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Predicting seizures in untreated temporal lobe epilepsy using point-process nonlinear models of heartbeat dynamics.

    Science.gov (United States)

    Valenza, G; Romigi, A; Citi, L; Placidi, F; Izzi, F; Albanese, M; Scilingo, E P; Marciani, M G; Duggento, A; Guerrisi, M; Toschi, N; Barbieri, R

    2016-08-01

    Symptoms of temporal lobe epilepsy (TLE) are frequently associated with autonomic dysregulation, whose underlying biological processes are thought to strongly contribute to sudden unexpected death in epilepsy (SUDEP). While abnormal cardiovascular patterns commonly occur during ictal events, putative patterns of autonomic cardiac effects during pre-ictal (PRE) periods (i.e. periods preceding seizures) are still unknown. In this study, we investigated TLE-related heart rate variability (HRV) through instantaneous, nonlinear estimates of cardiovascular oscillations during inter-ictal (INT) and PRE periods. ECG recordings from 12 patients with TLE were processed to extract standard HRV indices, as well as indices of instantaneous HRV complexity (dominant Lyapunov exponent and entropy) and higher-order statistics (bispectra) obtained through definition of inhomogeneous point-process nonlinear models, employing Volterra-Laguerre expansions of linear, quadratic, and cubic kernels. Experimental results demonstrate that the best INT vs. PRE classification performance (balanced accuracy: 73.91%) was achieved only when retaining the time-varying, nonlinear, and non-stationary structure of heartbeat dynamical features. The proposed approach opens novel important avenues in predicting ictal events using information gathered from cardiovascular signals exclusively.

  19. Kainic Acid-Induced Post-Status Epilepticus Models of Temporal Lobe Epilepsy with Diverging Seizure Phenotype and Neuropathology

    Directory of Open Access Journals (Sweden)

    Daniele Bertoglio

    2017-11-01

    Full Text Available The aim of epilepsy models is to investigate disease ontogenesis and therapeutic interventions in a consistent and prospective manner. The kainic acid-induced status epilepticus (KASE rat model is a widely used, well-validated model for temporal lobe epilepsy (TLE. As we noted significant variability within the model between labs potentially related to the rat strain used, we aimed to describe two variants of this model with diverging seizure phenotype and neuropathology. In addition, we evaluated two different protocols to induce status epilepticus (SE. Wistar Han (Charles River, France and Sprague-Dawley (Harlan, The Netherlands rats were subjected to KASE using the Hellier kainic acid (KA and a modified injection scheme. Duration of SE and latent phase were characterized by video-electroencephalography (vEEG in a subgroup of animals, while animals were sacrificed 1 week (subacute phase and 12 weeks (chronic phase post-SE. In the 12 weeks post-SE groups, seizures were monitored with vEEG. Neuronal loss (neuronal nuclei, microglial activation (OX-42 and translocator protein, and neurodegeneration (Fluorojade C were assessed. First, the Hellier protocol caused very high mortality in WH/CR rats compared to SD/H animals. The modified protocol resulted in a similar SE severity for WH/CR and SD/H rats, but effectively improved survival rates. The latent phase was significantly shorter (p < 0.0001 in SD/H (median 8.3 days animals compared to WH/CR (median 15.4 days. During the chronic phase, SD/H rats had more seizures/day compared to WH/CR animals (p < 0.01. However, neuronal degeneration and cell loss were overall more extensive in WH/CR than in SD/H rats; microglia activation was similar between the two strains 1 week post-SE, but higher in WH/CR rats 12 weeks post-SE. These neuropathological differences may be more related to the distinct neurotoxic effects of KA in the two rat strains than being the outcome of seizure

  20. Kainic Acid-Induced Post-Status Epilepticus Models of Temporal Lobe Epilepsy with Diverging Seizure Phenotype and Neuropathology

    Science.gov (United States)

    Bertoglio, Daniele; Amhaoul, Halima; Van Eetveldt, Annemie; Houbrechts, Ruben; Van De Vijver, Sebastiaan; Ali, Idrish; Dedeurwaerdere, Stefanie

    2017-01-01

    The aim of epilepsy models is to investigate disease ontogenesis and therapeutic interventions in a consistent and prospective manner. The kainic acid-induced status epilepticus (KASE) rat model is a widely used, well-validated model for temporal lobe epilepsy (TLE). As we noted significant variability within the model between labs potentially related to the rat strain used, we aimed to describe two variants of this model with diverging seizure phenotype and neuropathology. In addition, we evaluated two different protocols to induce status epilepticus (SE). Wistar Han (Charles River, France) and Sprague-Dawley (Harlan, The Netherlands) rats were subjected to KASE using the Hellier kainic acid (KA) and a modified injection scheme. Duration of SE and latent phase were characterized by video-electroencephalography (vEEG) in a subgroup of animals, while animals were sacrificed 1 week (subacute phase) and 12 weeks (chronic phase) post-SE. In the 12 weeks post-SE groups, seizures were monitored with vEEG. Neuronal loss (neuronal nuclei), microglial activation (OX-42 and translocator protein), and neurodegeneration (Fluorojade C) were assessed. First, the Hellier protocol caused very high mortality in WH/CR rats compared to SD/H animals. The modified protocol resulted in a similar SE severity for WH/CR and SD/H rats, but effectively improved survival rates. The latent phase was significantly shorter (p < 0.0001) in SD/H (median 8.3 days) animals compared to WH/CR (median 15.4 days). During the chronic phase, SD/H rats had more seizures/day compared to WH/CR animals (p < 0.01). However, neuronal degeneration and cell loss were overall more extensive in WH/CR than in SD/H rats; microglia activation was similar between the two strains 1 week post-SE, but higher in WH/CR rats 12 weeks post-SE. These neuropathological differences may be more related to the distinct neurotoxic effects of KA in the two rat strains than being the outcome of seizure burden

  1. Non-linear models in focus localization, seizure detection and prediction

    DEFF Research Database (Denmark)

    Henriksen, Jonas

    is approaching. The primary obstacle is the lack of sufficient large databases to make a patient-specific algorithm rather than a “one-size-fits-all” approach. At Rigshospitalet, a research project is carried out that aims at collecting enough data to be able to do this. The next couple of years will probably...... to know when and how often there is seizure activity in the brain. It is therefore interesting to make an objective and automatic detection of the quantity of seizure activity, which is not reliable on competence or fatigue by the epileptologist. With the best algorithm it has been possible to obtain...

  2. Dentate gyrus network dysfunctions precede the symptomatic phase in a genetic mouse model of seizures

    Directory of Open Access Journals (Sweden)

    Oana eToader

    2013-08-01

    Full Text Available Neuronal circuit disturbances that lead to hyperexcitability in the cortico-hippocampal network are one of the landmarks of temporal lobe epilepsy. The dentate gyrus (DG network plays an important role in regulating the excitability of the entire hippocampus by filtering and integrating information received via the perforant path. Here, we investigated possible epileptogenic abnormalities in the function of the DG neuronal network in the Synapsin II (Syn II knockout mouse (Syn II-/-, a genetic mouse model of epilepsy. Syn II is a presynaptic protein whose deletion in mice reproducibly leads to generalized seizures starting at the age of two months. We made use of a high-resolution microelectrode array (4096 electrodes and patch-clamp recordings, and found that in acute hippocampal slices of young pre-symptomatic (3-6 weeks-old Syn II-/- mice excitatory synaptic output of the mossy fibers is reduced. Moreover, we showed that the main excitatory neurons present in the polymorphic layer of the DG, hilar mossy cells, display a reduced excitability. We also provide evidence of a predominantly inhibitory regulatory output from mossy cells to granule cells, through feed-forward inhibition, and show that the excitatory-inhibitory ratio is increased in both pre-symptomatic and symptomatic Syn II-/- mice. These results support the key role of the hilar mossy neurons in maintaining the normal excitability of the hippocampal network and show that the late epileptic phenotype of the Syn II-/- mice is preceded by neuronal circuitry dysfunctions. Our data provide new insights into the mechanisms of epileptogenesis in the Syn II-/- mice and open the possibility for early diagnosis and therapeutic interventions.

  3. Postnatal caffeine treatment affects differently two pentylenetetrazol seizure models in rats

    Czech Academy of Sciences Publication Activity Database

    Tchekalarova, Jana; Kubová, Hana; Mareš, Pavel

    2009-01-01

    Roč. 18, č. 7 (2009), s. 463-469 ISSN 1059-1311 R&D Projects: GA MZd NR9184 Institutional research plan: CEZ:AV0Z50110509 Keywords : epileptic seizures * caffeine * development Subject RIV: FH - Neurology Impact factor: 2.233, year: 2009

  4. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy.

    Science.gov (United States)

    Neubauer, Florian B; Sederberg, Audrey; MacLean, Jason N

    2014-01-01

    During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.

  5. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice

    Energy Technology Data Exchange (ETDEWEB)

    Socała, Katarzyna, E-mail: ksocala@op.pl [Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin (Poland); Nieoczym, Dorota [Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin (Poland); Kowalczuk-Vasilev, Edyta [Institute of Animal Nutrition and Bromatology, University of Life Sciences, Lublin (Poland); Wyska, Elżbieta [Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków (Poland); Wlaź, Piotr [Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin (Poland)

    2017-07-01

    Activation of Nrf2 with sulforaphane has recently gained attention as a new therapeutic approach in the treatment of many diseases, including epilepsy. As a plant-derived compound, sulforaphane is considered to be safe and well-tolerated. It is widely consumed, also by patients suffering from seizure and taking antiepileptic drugs, but no toxicity profile of sulforaphane exists. Since many natural remedies and dietary supplements may increase seizure risk and potentially interact with antiepileptic drugs, the aim of our study was to investigate the acute effects of sulforaphane on seizure thresholds and activity of some first- and second-generation antiepileptic drugs in mice. In addition, some preliminary toxicity profile of sulforaphane in mice after intraperitoneal injection was evaluated. The LD{sub 50} value of sulforaphane in mice was estimated at 212.67 mg/kg, while the TD{sub 50} value – at 191.58 mg/kg. In seizure tests, sulforaphane at the highest dose tested (200 mg/kg) significantly decreased the thresholds for the onset of the first myoclonic twitch and generalized clonic seizure in the iv PTZ test as well as the threshold for the 6 Hz-induced psychomotor seizure. At doses of 10–200 mg/kg, sulforaphane did not affect the threshold for the iv PTZ-induced forelimb tonus or the threshold for maximal electroshock-induced hindlimb tonus. Interestingly, sulforaphane (at 100 mg/kg) potentiated the anticonvulsant efficacy of carbamazepine in the maximal electroshock seizure test. This interaction could have been pharmacokinetic in nature, as sulforaphane increased concentrations of carbamazepine in both serum and brain tissue. The toxicity study showed that high doses of sulforaphane produced marked sedation (at 150–300 mg/kg), hypothermia (at 150–300 mg/kg), impairment of motor coordination (at 200–300 mg/kg), decrease in skeletal muscle strength (at 250–300 mg/kg), and deaths (at 200–300 mg/kg). Moreover, blood analysis showed leucopenia in

  6. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice

    International Nuclear Information System (INIS)

    Socała, Katarzyna; Nieoczym, Dorota; Kowalczuk-Vasilev, Edyta; Wyska, Elżbieta; Wlaź, Piotr

    2017-01-01

    Activation of Nrf2 with sulforaphane has recently gained attention as a new therapeutic approach in the treatment of many diseases, including epilepsy. As a plant-derived compound, sulforaphane is considered to be safe and well-tolerated. It is widely consumed, also by patients suffering from seizure and taking antiepileptic drugs, but no toxicity profile of sulforaphane exists. Since many natural remedies and dietary supplements may increase seizure risk and potentially interact with antiepileptic drugs, the aim of our study was to investigate the acute effects of sulforaphane on seizure thresholds and activity of some first- and second-generation antiepileptic drugs in mice. In addition, some preliminary toxicity profile of sulforaphane in mice after intraperitoneal injection was evaluated. The LD 50 value of sulforaphane in mice was estimated at 212.67 mg/kg, while the TD 50 value – at 191.58 mg/kg. In seizure tests, sulforaphane at the highest dose tested (200 mg/kg) significantly decreased the thresholds for the onset of the first myoclonic twitch and generalized clonic seizure in the iv PTZ test as well as the threshold for the 6 Hz-induced psychomotor seizure. At doses of 10–200 mg/kg, sulforaphane did not affect the threshold for the iv PTZ-induced forelimb tonus or the threshold for maximal electroshock-induced hindlimb tonus. Interestingly, sulforaphane (at 100 mg/kg) potentiated the anticonvulsant efficacy of carbamazepine in the maximal electroshock seizure test. This interaction could have been pharmacokinetic in nature, as sulforaphane increased concentrations of carbamazepine in both serum and brain tissue. The toxicity study showed that high doses of sulforaphane produced marked sedation (at 150–300 mg/kg), hypothermia (at 150–300 mg/kg), impairment of motor coordination (at 200–300 mg/kg), decrease in skeletal muscle strength (at 250–300 mg/kg), and deaths (at 200–300 mg/kg). Moreover, blood analysis showed leucopenia in mice injected

  7. Intrahippocampal Injection of Endothelin-1: A New Model of Ischemia-induced Seizures in Immature Rats

    Czech Academy of Sciences Publication Activity Database

    Tsenov, Grygoriy; Máttéffyová, Adéla; Mareš, Pavel; Otáhal, Jakub; Kubová, Hana

    2007-01-01

    Roč. 48, Suppl.5 (2007), s. 7-13 ISSN 0013-9580 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA305/06/0713; GA ČR(CZ) GD305/03/H148 Institutional research plan: CEZ:AV0Z50110509 Keywords : endothelin-1 * epileptic seizures * immature rats Subject RIV: ED - Physiology Impact factor: 3.569, year: 2007

  8. Prognostic models for predicting posttraumatic seizures during acute hospitalization, and at 1 and 2 years following traumatic brain injury.

    Science.gov (United States)

    Ritter, Anne C; Wagner, Amy K; Szaflarski, Jerzy P; Brooks, Maria M; Zafonte, Ross D; Pugh, Mary Jo V; Fabio, Anthony; Hammond, Flora M; Dreer, Laura E; Bushnik, Tamara; Walker, William C; Brown, Allen W; Johnson-Greene, Doug; Shea, Timothy; Krellman, Jason W; Rosenthal, Joseph A

    2016-09-01

    Posttraumatic seizures (PTS) are well-recognized acute and chronic complications of traumatic brain injury (TBI). Risk factors have been identified, but considerable variability in who develops PTS remains. Existing PTS prognostic models are not widely adopted for clinical use and do not reflect current trends in injury, diagnosis, or care. We aimed to develop and internally validate preliminary prognostic regression models to predict PTS during acute care hospitalization, and at year 1 and year 2 postinjury. Prognostic models predicting PTS during acute care hospitalization and year 1 and year 2 post-injury were developed using a recent (2011-2014) cohort from the TBI Model Systems National Database. Potential PTS predictors were selected based on previous literature and biologic plausibility. Bivariable logistic regression identified variables with a p-value models. Multivariable logistic regression modeling with backward-stepwise elimination was used to determine reduced prognostic models and to internally validate using 1,000 bootstrap samples. Fit statistics were calculated, correcting for overfitting (optimism). The prognostic models identified sex, craniotomy, contusion load, and pre-injury limitation in learning/remembering/concentrating as significant PTS predictors during acute hospitalization. Significant predictors of PTS at year 1 were subdural hematoma (SDH), contusion load, craniotomy, craniectomy, seizure during acute hospitalization, duration of posttraumatic amnesia, preinjury mental health treatment/psychiatric hospitalization, and preinjury incarceration. Year 2 significant predictors were similar to those of year 1: SDH, intraparenchymal fragment, craniotomy, craniectomy, seizure during acute hospitalization, and preinjury incarceration. Corrected concordance (C) statistics were 0.599, 0.747, and 0.716 for acute hospitalization, year 1, and year 2 models, respectively. The prognostic model for PTS during acute hospitalization did not

  9. Predicting epileptic seizures in advance.

    Directory of Open Access Journals (Sweden)

    Negin Moghim

    Full Text Available Epilepsy is the second most common neurological disorder, affecting 0.6-0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling, is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance.

  10. Anticonvulsant effect of time-restricted feeding in a pilocarpine-induced seizure model: Metabolic and epigenetic implications.

    Directory of Open Access Journals (Sweden)

    Jorge eLandgrave-Gómez

    2016-01-01

    Full Text Available A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL and a second group underwent a time-restricted feeding (TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE, and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 hours after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (β-HB concentration, an endogenous inhibitor of histone deacetylases (HDACs. Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3 in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the

  11. Intraoperative seizures and seizures outcome in patients underwent awake craniotomy.

    Science.gov (United States)

    Yuan, Yang; Peizhi, Zhou; Xiang, Wang; Yanhui, Liu; Ruofei, Liang; Shu, Jiang; Qing, Mao

    2016-11-25

    Awake craniotomies (AC) could reduce neurological deficits compared with patients under general anesthesia, however, intraoperative seizure is a major reason causing awake surgery failure. The purpose of the study was to give a comprehensive overview the published articles focused on seizure incidence in awake craniotomy. Bibliographic searches of the EMBASE, MEDLINE,were performed to identify articles and conference abstracts that investigated the intraoperative seizure frequency of patients underwent AC. Twenty-five studies were included in this meta-analysis. Among the 25 included studies, one was randomized controlled trials and 5 of them were comparable studies. The pooled data suggested the general intraoperative seizure(IOS) rate for patients with AC was 8%(fixed effect model), sub-group analysis identified IOS rate for glioma patients was 8% and low grade patients was 10%. The pooled data showed early seizure rates of AC patients was 11% and late seizure rates was 35%. This systematic review and meta-analysis shows that awake craniotomy is a safe technique with relatively low intraoperative seizure occurrence. However, few RCTs were available, and the acquisition of further evidence through high-quality RCTs is highly recommended.

  12. Seizures and Teens: Stress, Sleep, & Seizures

    Science.gov (United States)

    Shafer, Patricia Osborne

    2007-01-01

    Most parents are used to erratic sleep patterns and mood swings in their teenagers. When these occur in an adolescent with seizures, however, the parent may wonder if sleep and mood problems are related to seizures. Sorting out the cause and effects of sleep in an adolescent with seizures can be confusing. Since stress can be a contributor to both…

  13. Epidemiology of early stages of epilepsy: Risk of seizure recurrence after a first seizure.

    Science.gov (United States)

    Rizvi, Syed; Ladino, Lady Diana; Hernandez-Ronquillo, Lizbeth; Téllez-Zenteno, José F

    2017-07-01

    A single unprovoked seizure is a frequent phenomenon in the general population and the rate of seizure recurrence can vary widely. Individual risk prognostication is crucial in predicting patient outcomes and guiding treatment decisions. In this article, we review the most important risk factors associated with an increased likelihood of seizure recurrence after a single unprovoked seizure. In summary, the presence of focal seizure, nocturnal seizure, history of prior brain injury, family history of epilepsy, abnormal neurological exam, epileptiform discharges on electroencephalography and neuroimaging abnormalities, portend increased risk of seizure recurrence. Elucidation of these risk factors in patient assessment will augment clinical decision-making and may help determine the appropriateness of instituting anti-epilepsy treatment. We also discuss the Canadian model of single seizure clinics and the potential use to assess these patients. Copyright © 2017. Published by Elsevier Ltd.

  14. Seizure Disorders in Pregnancy

    Science.gov (United States)

    ... If I have a seizure disorder, can it cause problems during pregnancy? • What risks are associated with having a seizure ... If I have a seizure disorder, can it cause problems during pregnancy? Seizure disorders can affect pregnancy in several ways: • ...

  15. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    Directory of Open Access Journals (Sweden)

    Lorenzo L. Pesce

    2013-01-01

    Full Text Available Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons and processor pool sizes (1 to 256 processors. Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  16. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.

    Science.gov (United States)

    Pesce, Lorenzo L; Lee, Hyong C; Hereld, Mark; Visser, Sid; Stevens, Rick L; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  17. Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats

    Directory of Open Access Journals (Sweden)

    Sadek B

    2016-11-01

    Full Text Available Bassem Sadek,1 Ali Saad,1 Gniewomir Latacz,2 Kamil Kuder,2 Agnieszka Olejarz,2 Tadeusz Karcz,2 Holger Stark,3 Katarzyna Kieć-Kononowicz2 1Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 2Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; 3Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany Abstract: A series of twelve novel non-imidazole-based ligands (3–14 was developed and evaluated for its in vitro binding properties at the human histamine H3 receptor (hH3R. The novel ligands were investigated for their in vivo protective effects in different seizure models in male adult rats. Among the H3R ligands (3–14 tested, ligand 14 showed significant and dose-dependent reduction in the duration of tonic hind limb extension in maximal electroshock (MES-induced seizure model subsequent to acute systemic administration (5, 10, and 20 mg/kg, intraperitoneally, whereas ligands 4, 6, and 7 without appreciable protection in MES model were most promising in pentylenetetrazole (PTZ model. Moreover, the protective effect observed for ligand 14 in MES model was lower than that observed for the reference drug phenytoin and was entirely abrogated when rats were co-administered with the brain-penetrant H1R antagonist pyrilamine (PYR but not the brain-penetrant H2R antagonist zolantidine (ZOL, demonstrating that histaminergic neurotransmission by activation of postsynaptically located H1Rs seems to be involved in the protective action. On the contrary, PYR and ZOL failed to abrogate the full protection provided by 4 in PTZ model and the moderate protective effect by 14 in strychnine (STR model. Moreover, the experimental and in silico estimation of properties such as metabolism was

  18. Febrile Seizure Simulation

    Directory of Open Access Journals (Sweden)

    Victor Cisneros

    2017-01-01

    Full Text Available Audience: This simulation session is appropriate for medical students, community physicians, or residents in emergency medicine, neurology, pediatrics, or family medicine. Introduction: Febrile seizures are the most common form of seizures in childhood; they are thought to occur in 2-5% of all children.1-3 Febrile seizures are defined as a seizure in association with a febrile illness in children without a central nervous system infection, previous afebrile seizure, known brain disorder, or electrolyte abnormalities. 1,2 They typically occur between 6 months and 18 months of age though they can occur up to 5 years of age.3 Febrile seizures are categorized as: simple (generalized seizure lasting less than 15 minutes in a child aged 6 months to 5 years, and less than 1 in a 24 hour period or complex (a focal seizure or generalized seizure lasting greater than 15 minutes, or multiple seizures in a 24 hour period. 1,3 Treatment for febrile seizures is based on treating the underlying cause of the fever and giving reassurance and education to the parents.2 Mortality is extremely rare, and there is no difference in the patient’s cognitive abilities after a febrile seizure, even when the seizure is prolonged.1 Objectives: At the end of this simulation session, the learner will be able to: 1 discuss the management of febrile seizures 2 discuss when placement of an advanced airway is indicated in the management of a febrile seizure 3 list the risk factors for febrile seizures 4 prepare a differential diagnosis for the causes of febrile seizures 5 educate family members on febrile seizures. Methods: This educational session is a high-fidelity simulation.

  19. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility.

    Science.gov (United States)

    Yuskaitis, Christopher J; Jones, Brandon M; Wolfson, Rachel L; Super, Chloe E; Dhamne, Sameer C; Rotenberg, Alexander; Sabatini, David M; Sahin, Mustafa; Poduri, Annapurna

    2018-03-01

    DEPDC5 is a newly identified epilepsy-related gene implicated in focal epilepsy, brain malformations, and Sudden Unexplained Death in Epilepsy (SUDEP). In vitro, DEPDC5 negatively regulates amino acid sensing by the mTOR complex 1 (mTORC1) pathway, but the role of DEPDC5 in neurodevelopment and epilepsy has not been described. No animal model of DEPDC5-related epilepsy has recapitulated the neurological phenotypes seen in patients, and germline knockout rodent models are embryonic lethal. Here, we establish a neuron-specific Depdc5 conditional knockout mouse by cre-recombination under the Synapsin1 promotor. Depdc5 flox/flox -Syn1 Cre (Depdc5cc+) mice survive to adulthood with a progressive neurologic phenotype that includes motor abnormalities (i.e., hind limb clasping) and reduced survival compared to littermate control mice. Depdc5cc+ mice have larger brains with increased cortical neuron size and dysplastic neurons throughout the cortex, comparable to the abnormal neurons seen in human focal cortical dysplasia specimens. Depdc5 results in constitutive mTORC1 hyperactivation exclusively in neurons as measured by the increased phosphorylation of the downstream ribosomal protein S6. Despite a lack of increased mTORC1 signaling within astrocytes, Depdc5cc+ brains show reactive astrogliosis. We observed two Depdc5cc+ mice to have spontaneous seizures, including a terminal seizure. We demonstrate that as a group Depdc5cc+ mice have lowered seizure thresholds, as evidenced by decreased latency to seizures after chemoconvulsant injection and increased mortality from pentylenetetrazole-induced seizures. In summary, our neuron-specific Depdc5 knockout mouse model recapitulates clinical, pathological, and biochemical features of human DEPDC5-related epilepsy and brain malformations. We thereby present an important model in which to study targeted therapeutic strategies for DEPDC5-related conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Seizure phenotypes, periodicity, and sleep-wake pattern of seizures in Kcna-1 null mice.

    Science.gov (United States)

    Wright, Samantha; Wallace, Eli; Hwang, Youngdeok; Maganti, Rama

    2016-02-01

    This study was undertaken to describe seizure phenotypes, natural progression, sleep-wake patterns, as well as periodicity of seizures in Kcna-1 null mutant mice. These mice were implanted with epidural electroencephalography (EEG) and electromyography (EMG) electrodes, and simultaneous video-EEG recordings were obtained while animals were individually housed under either diurnal (LD) condition or constant darkness (DD) over ten days of recording. The video-EEG data were analyzed to identify electrographic and behavioral phenotypes and natural progression and to examine the periodicity of seizures. Sleep-wake patterns were analyzed to understand the distribution and onset of seizures across the sleep-wake cycle. Four electrographically and behaviorally distinct seizure types were observed. Regardless of lighting condition that animals were housed in, Kcna-1 null mice initially expressed only a few of the most severe seizure types that progressively increased in frequency and decreased in seizure severity. In addition, a circadian periodicity was noted, with seizures peaking in the first 12h of the Zeitgeber time (ZT) cycle, regardless of lighting conditions. Interestingly, seizure onset differed between lighting conditions where more seizures arose out of sleep in LD conditions, whereas under DD conditions, the majority occurred out of the wakeful state. We suggest that this model be used to understand the circadian pattern of seizures as well as the pathophysiological implications of sleep and circadian disturbances in limbic epilepsies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Neuropeptides and seizures.

    Science.gov (United States)

    Snead, O C

    1986-11-01

    There are four lines of evidence for or against a role of neuropeptides in epilepsy: Administration of a variety of opiate agonists into the ventricles or brain of animals produces a constellation of electrical and behavioral changes, seemingly receptor-specific, both sensitive to the specific opiate antagonist naloxone as well as certain anticonvulsant drugs. The primary reservation concerning these data in terms of their relevance to epilepsy regards the fact that the peptides are exogenously administered in relatively high doses. Hence, these data may reflect neurotoxic effects of peptides rather than physiologic function. A variety of opiate agonists are anticonvulsant and naloxone shortens the postictal state in some experimental seizure models. One could attempt to reconcile these data with those in No. 1 by hypothesizing that the spikes and behavioral changes examined in the latter experimental parodynes represented a sort of isolated model of the postictal state. Naloxone has little effect in clinical epilepsy. These data are far from conclusive for two reasons. First, few patients have been studied. Second, because of the issue of opiate receptor heterogeneity and the high doses of naloxone needed experimentally to block non-mu opiate effects, the doses of naloxone used clinically to date are too low to rule out possible delta- or epsilon-mediated effects. The negative clinical data are illustrative of the dangers and difficulties of extrapolating data generated in animal models of seizures to the human condition. ACTH, a peptide that is derived from the same precursor molecule as beta-endorphin, is clearly an effective anticonvulsant in certain childhood seizure states. However, whether this is due to a direct or indirect (that is, cortisol) effect on brain is far from clear. Paradoxically, in contradistinction to other data concerning pro- and anticonvulsant properties of various opioid peptides, there is no animal model of infantile spasms to help

  2. Grand Mal Seizure

    Science.gov (United States)

    ... grand mal seizures include: A family history of seizure disorders Any injury to the brain from trauma, a ... the risk of birth defects. If you have epilepsy and plan to become pregnant, work with your ...

  3. Frontal Lobe Seizures

    Science.gov (United States)

    ... cause of frontal lobe epilepsy remains unknown. Complications Status epilepticus. Frontal lobe seizures tend to occur in clusters and may provoke a dangerous condition called status epilepticus — in which seizure activity lasts much longer than ...

  4. Antisocial and seizure susceptibility phenotypes in an animal model of epilepsy are normalized by impairment of brain corticotropin-releasing factor.

    Science.gov (United States)

    Turner, Laura H; Lim, Chen E; Heinrichs, Stephen C

    2007-02-01

    Social interaction phenotyping is an unexplored niche in animal modeling of epilepsy despite the sensitivity of affiliative behaviors to emotionality and stress, which are known seizure triggers. Thus, the present studies examined the social phenotype of seizure-susceptible El and nonsusceptible ddY strains both in untreated animals and following preexposure to a handling stressor. The second aim of the present studies was to evaluate the dependence of sociability in El mice on the proconvulsive, stress neuropeptide corticotropin-releasing factor (CRF) using CRF-SAP, a conjugate of CRF and the toxin saporin, which selectively reduced CRF peptide levels in the basolateral amygdala of El mice. El mice exhibited lower social investigation times than ddY counterparts, whereas central administration of CRF-SAP normalized social investigation times relative to ddY controls. Moreover, handling-induced seizures in El mice were reduced by 50% following treatment with CRF-SAP relative to saporin alone-injected El controls. The results of this study suggest that tonically activated CRF systems in the El mouse brain suppress affiliative behavior and facilitate evoked seizures.

  5. Inhibition of IL-1β Signaling Normalizes NMDA-Dependent Neurotransmission and Reduces Seizure Susceptibility in a Mouse Model of Creutzfeldt-Jakob Disease.

    Science.gov (United States)

    Bertani, Ilaria; Iori, Valentina; Trusel, Massimo; Maroso, Mattia; Foray, Claudia; Mantovani, Susanna; Tonini, Raffaella; Vezzani, Annamaria; Chiesa, Roberto

    2017-10-25

    Creutzfeldt-Jakob disease (CJD) is a neurodegenerative disorder caused by prion protein (PrP) misfolding, clinically recognized by cognitive and motor deficits, electroencephalographic abnormalities, and seizures. Its neurophysiological bases are not known. To assess the potential involvement of NMDA receptor (NMDAR) dysfunction, we analyzed NMDA-dependent synaptic plasticity in hippocampal slices from Tg(CJD) mice, which model a genetic form of CJD. Because PrP depletion may result in functional upregulation of NMDARs, we also analyzed PrP knock-out (KO) mice. Long-term potentiation (LTP) at the Schaffer collateral-commissural synapses in the CA1 area of ∼100-d-old Tg(CJD) mice was comparable to that of wild-type (WT) controls, but there was an inversion of metaplasticity, with increased GluN2B phosphorylation, which is indicative of enhanced NMDAR activation. Similar but less marked changes were seen in PrP KO mice. At ∼300 d of age, the magnitude of LTP increased in Tg(CJD) mice but decreased in PrP KO mice, indicating divergent changes in hippocampal synaptic responsiveness. Tg(CJD) but not PrP KO mice were intrinsically more susceptible than WT controls to focal hippocampal seizures induced by kainic acid. IL-1β-positive astrocytes increased in the Tg(CJD) hippocampus, and blocking IL-1 receptor signaling restored normal synaptic responses and reduced seizure susceptibility. These results indicate that alterations in NMDA-dependent glutamatergic transmission in Tg(CJD) mice do not depend solely on PrP functional loss. Moreover, astrocytic IL-1β plays a role in the enhanced synaptic responsiveness and seizure susceptibility, suggesting that targeting IL-1β signaling may offer a novel symptomatic treatment for CJD. SIGNIFICANCE STATEMENT Dementia and myoclonic jerks develop in individuals with Creutzfeldt-Jakob disease (CJD), an incurable brain disorder caused by alterations in prion protein structure. These individuals are prone to seizures and have high

  6. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy.

    Science.gov (United States)

    Löscher, Wolfgang; Ferland, Russell J; Ferraro, Thomas N

    2017-08-01

    It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Immunotherapy by targeting of VGKC complex for seizure control and prevention of cognitive impairment in a mouse model of epilepsy.

    Science.gov (United States)

    Fan, Zhiliang; Feng, Xiaojuan; Fan, Zhigang; Zhu, Xingyuan; Yin, Shaohua

    2018-05-09

    Epilepsy is a type of refractory neurologic disorder mental disease, which is associated with cognitive impairments and memory dysfunction. However, the potential mechanisms of epilepsy are not well understood. Previous evidence has identified the voltage gated potassium channel complex (VGKC) as a target in various cohorts of patients with epilepsy. In the present study, the efficacy of an antibody against VGKC (anti‑VGKC) for the treatment of epilepsy in mice was investigated. A mouse model of lithium‑pilocarpine temporal lobe epilepsy was established and anti‑VGKC treatment was administered for 30 days. Memory impairment, anxiety, visual attention, inhibitory control and neuronal loss were measured in the mouse model of lithium‑pilocarpine temporal lobe epilepsy. The results revealed that epileptic mice treated with anti‑VGKC were able to learn the task and presented attention impairment, even a tendency toward impulsivity and compulsivity. It was also exhibited that anti‑VGKC treatment decreased neuronal loss in structures classically associated with attentional performance in hippocampus. Mice who received Anti‑VGKC treatment had inhibited motor seizures and hippocampal damage as compared with control mice. In conclusion, these results indicated that anti‑VGKC treatment may present benefits for improvements of the condition of motor attention impairment and cognitive competence, which suggests that VGKC may be a potential target for the treatment of epilepsy.

  8. The antiepileptic and neuroprotective effect of the Buxus hyrcana Pojark hydroethanolic extract against the pentylentetrazol induced model of the seizures in the male rats.

    Science.gov (United States)

    Azizi, Vahid; Allahyari, Farzin; Hosseini, Abdolkarim

    2018-03-06

    The genus Buxus grows up widespread in Europe and Western Asia. It is an important traditional plant that has been used in the treatment of many illnesses. In the present study, the effect of hydroethanolic extract of Buxus hyrcana Pojark (BHP) on the animal model of seizure was studied. In this experimental study, 42 male Wistar rats weighing 220-250 g were randomly selected and were divided into experimental and control groups (six rats per group). The experimental groups were treated by the intraperitoneal (i.p.) single injection of 150, 300, 450, 600 and 750 mg kg -1 of hydroalcoholic extracts of BHP. The control negative group received normal saline (0.9%) and the control positive group received phenobarbital (30 mg kg -1 , i.p.) pre-treatment. Thirty minutes after the treatments, the seizure behaviors were evaluated by the pentylenetetrazole (PTZ) (70 mg kg -1 , i.p.) challenge. In addition, after the experiment, the rats were put to death and their brains were removed for the histological study. The ANOVA demonstrated that compared to the control group, all the BHP doses delayed the initiation and duration of the tonic, colonic and tonic-colonic seizures and significantly reduced the tonic and colonic seizures (p < 0.001). Furthermore, the administration of all five doses of the extract significantly prevented the production of the dark neurons (p < 0.001) in different areas of the hippocampus compared to PTZ group. We can conclude that the BHP extract has beneficial effects for the prevention of the PTZ induced seizure.

  9. Zebrafish seizure model identifies p,p -DDE as the dominant contaminant of fetal California sea lions that accounts for synergistic activity with domoic acid.

    Science.gov (United States)

    Tiedeken, Jessica A; Ramsdell, John S

    2010-04-01

    Fetal poisoning of California sea lions (CSLs; Zalophus californianus) has been associated with exposure to the algal toxin domoic acid. These same sea lions accumulate a mixture of persistent environmental contaminants including pesticides and industrial products such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Developmental exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and its stable metabolite 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (p,p -DDE) has been shown to enhance domoic acid-induced seizures in zebrafish; however, the contribution of other co-occurring contaminants is unknown. We formulated a mixture of contaminants to include PCBs, PBDEs, hexachlorocyclohexane (HCH), and chlordane at levels matching those reported for fetal CSL blubber to determine the impact of co-occurring persistent contaminants with p,p -DDE on chemically induced seizures in zebrafish as a model for the CSLs. Embryos were exposed (6-30 hr postfertilization) to p,p -DDE in the presence or absence of a defined contaminant mixture prior to neurodevelopment via either bath exposure or embryo yolk sac microinjection. After brain maturation (7 days postfertilization), fish were exposed to a chemical convulsant, either pentylenetetrazole or domoic acid; resulting seizure behavior was then monitored and analyzed for changes, using cameras and behavioral tracking software. Induced seizure behavior did not differ significantly between subjects with embryonic exposure to a contaminant mixture and those exposed to p,p -DDE only. These studies demonstrate that p,p -DDE--in the absence of PCBs, HCH, chlordane, and PBDEs that co-occur in fetal sea lions--accounts for the synergistic activity that leads to greater sensitivity to domoic acid seizures.

  10. Seizure development after stroke.

    Science.gov (United States)

    Misirli, H; Ozge, A; Somay, G; Erdoğan, N; Erkal, H; Erenoğlu, N Y

    2006-12-01

    Although there have been many studies on seizures following stroke, there is still much we do not know about them. In this study, we evaluated the characteristics of seizures in stroke patients. There were 2267 patients with a first-ever stroke, and after excluding 387 patients, 1880 were available for analysis. Of these 1880 patients, we evaluated 200 patients with seizures and 400 patients without seizures. We investigated the seizures according to age, gender, stroke type, the aetiology of ischaemic stroke and the localisation of the lesion. The seizures were classified as early onset and late onset and the seizure type as partial, generalised or secondarily generalised. Seizures occurred in 200 (10.6%) of 1880 strokes. The number of patients with seizures were 138 (10.6%) in ischaemic stroke group and 62 (10.7%) in haemorrhagic stroke group. Patients with ischaemic strokes had 41 embolic (29.7%) and 97 thrombotic (70.3%) origin, and these were not statistically significant in comparison with controls. Cortical involvement for the development of seizures was the most important risk factor (odds ratios = 4.25, p < 0.01). It was concluded that embolic strokes, being younger than 65 years old, and cortical localisation of stroke were important risks for developing seizures.

  11. Intravenous infusion of docosahexaenoic acid increases serum concentrations in a dose-dependent manner and increases seizure latency in the maximal PTZ model.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Kwong, Kei-Man; Domenichiello, Anthony F; Chen, Chuck T; Bazinet, Richard P; Burnham, W M

    2015-09-01

    Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) that has been shown to raise seizure thresholds in the maximal pentylenetetrazole model following acute subcutaneous (s.c.) administration in rats. Following s.c. administration, however, the dose-response relationship for DHA has shown an inverted U-pattern. The purposes of the present experiment were as follows: (1) to determine the pattern of serum unesterified concentrations resulting from the intravenous (i.v.) infusions of various doses of DHA, (2) to determine the time course of these concentrations following the discontinuation of the infusions, and (3) to determine whether seizure protection in the maximal PTZ model would correlate with serum unesterified DHA levels. Animals received 5-minute i.v. infusions of saline or 25, 50, 100, or 200mg/kg of DHA via a cannula inserted into one of the tail veins. Blood was collected during and after the infusions by means of a second cannula inserted into the other tail vein (Experiment 1). A separate group of animals received saline or 12.5-, 25-, 50-, 100-, or 200 mg/kg DHA i.v. via a cannula inserted into one of the tail veins and were then seizure-tested in the maximal PTZ model either during infusion or after the discontinuation of the infusions. Slow infusions of DHA increased serum unesterified DHA concentrations in a dose-dependent manner, with the 200-mg/kg dose increasing the concentration approximately 260-fold compared with saline-infused animals. Following discontinuation of the infusions, serum concentrations rapidly dropped toward baseline, with half-lives of approximately 40 and 11s for the 25-mg/kg dose and 100-mg/kg dose, respectively. In the seizure-tested animals, DHA significantly increased latency to seizure onset in a dose-dependent manner. Following the discontinuation of infusion, seizure latency rapidly decreased toward baseline. Overall, our study suggests that i.v. infusion of unesterified DHA results in

  12. Suppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsy.

    Science.gov (United States)

    Zhu, Xinjian; Dubey, Deepti; Bermudez, Camilo; Porter, Brenda E

    2015-12-01

    Current epilepsy therapies directed at altering the function of neurotransmitter receptors or ion channels, or release of synaptic vesicles fail to prevent seizures in approximately 30% of patients. A better understanding of the molecular mechanism underlying epilepsy is needed to provide new therapeutic targets. The activity of cyclic AMP (cAMP) response element-binding protein (CREB), a major transcription factor promoting CRE-mediated transcription, increases following a prolonged seizure called status epilepticus. It is also increased in the seizure focus of patients with medically intractable focal epilepsy. Herein we explored the effect of acute suppression of CREB activity on status epilepticus and spontaneous seizures in a chronic epilepsy model. Pilocarpine chemoconvulsant was used to induce status epilepticus. To suppress CREB activity, a transgenic mouse line expressing an inducible dominant negative mutant of CREB (CREB(IR) ) with a serine to alanine 133 substitution was used. Status epilepticus and spontaneous seizures of transgenic and wild-type mice were analyzed using video-electroencephalography (EEG) to assess the effect of CREB suppression on seizures. Our findings indicate that activation of CREB(IR) shortens the duration of status epilepticus. The frequency of spontaneous seizures decreased in mice with chronic epilepsy during CREB(IR) induction; however, the duration of the spontaneous seizures was unchanged. Of interest, we found significantly reduced levels of phospho-CREB Ser133 upon activation of CREB(IR) , supporting prior work suggesting that binding to the CRE site is important for CREB phosphorylation. Our results suggest that CRE transcription supports seizure activity both during status epilepticus and in spontaneous seizures. Thus, blocking of CRE transcription is a novel target for the treatment of epilepsy. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  13. Athletes with seizure disorders.

    Science.gov (United States)

    Knowles, Byron Don; Pleacher, Michael D

    2012-01-01

    Individuals with seizure disorders have long been restricted from participation in certain sporting activities. Those with seizure disorders are more likely than their peers to have a sedentary lifestyle and to develop obesity. Regular participation in physical activity can improve both physical and psychosocial outcomes for persons with seizure disorders. Seizure activity often is reduced among those patients who regularly engage in aerobic activity. Recent literature indicates that the diagnosis of seizure disorders remains highly stigmatizing in the adolescent population. Persons with seizure disorders may be more accepted by peer groups if they are allowed to participate in sports and recreational activities. Persons with seizure disorders are encouraged to participate in regular aerobic activities. They may participate in team sports and contact or collision activities provided that they utilize appropriate protective equipment. There seems to be no increased risk of injury or increasing seizure activity as the result of such participation. Persons with seizure disorders still are discouraged from participating in scuba diving and skydiving. The benefits of participation in regular sporting activity far outweigh any risk to the athlete with a seizure disorder who chooses to participate in sports.

  14. Neurobehavioral Deficits in a Rat Model of Recurrent Neonatal Seizures Are Prevented by a Ketogenic Diet and Correlate with Hippocampal Zinc/Lipid Transporter Signals.

    Science.gov (United States)

    Tian, Tian; Ni, Hong; Sun, Bao-liang

    2015-10-01

    The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy in adults, but it has not been extensively tested for its efficacy in neonatal seizure-induced brain damage. We have previously shown altered expression of zinc/lipid metabolism-related genes in hippocampus following penicillin-induced developmental model of epilepsy. In this study, we further investigated the effect of KD on the neurobehavioral and cognitive deficits, as well as if KD has any influence in the activity of zinc/lipid transporters such as zinc transporter 3 (ZnT-3), MT-3, ApoE, ApoJ (clusterin), and ACAT-1 activities in neonatal rats submitted to flurothyl-induced recurrent seizures. Postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizure group (EXP) and control group (CONT). On P28, they were further randomly divided into the seizure group without ketogenic diet (EXP1), seizure plus ketogenic diet (EXP2), the control group without ketogenic diet (CONT1), and the control plus ketogenic diet (CONT2). Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed from P35 to P49. Morris water maze test was performed during P51-P57. Then hippocampal mossy fiber sprouting and the protein levels of ZnT3, MT3, ApoE, CLU, and ACAT-1 were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced neurobehavioral toxicology and aberrant mossy fiber sprouting were blocked by KD. In parallel with these behavioral changes, rats treated with KD (EXP2) showed a significant down-regulated expression of ZnT-3, MT-3, ApoE, clusterin, and ACAT-1 in hippocampus when compared with the non-KD-treated EXP1 group. Our findings provide support for zinc/lipid transporter signals being potential targets for the treatment of neonatal seizure-induced brain damage by KD.

  15. A seizuring alagille syndrome

    Directory of Open Access Journals (Sweden)

    Jomon Mathew John

    2017-01-01

    Full Text Available Alagille syndrome is a rare autosomal dominant inherited disorder with incidence of one in 100,000 live births. This syndrome with seizure as a presentation has been rarely reported in Indian studies. We present a 3-month-old infant who presented to us with seizures was found to have a dysmorphic face, jaundice, hepatomegaly, and soft systolic murmur. Infant was stabilized and remained seizure free. A detailed clinical evaluation of a common presentation may reveal a rare syndrome.

  16. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  17. Epilepsy after Febrile Seizures

    DEFF Research Database (Denmark)

    Seinfeld, S. A.; Pellock, J M; Kjeldsen, Lone Marianne Juel

    2016-01-01

    to evaluate genetic associations of different febrile seizure subtypes. Results Histories of febrile seizures were validated in 1051 twins in 900 pairs. The febrile seizure type was classified as simple, complex, or febrile status epilepticus. There were 61% simple, 12% complex, and 7% febrile status...... epilepticus. There were 78 twins who developed epilepsy. The highest rate of epilepsy (22.2%) occurred in the febrile status epilepticus group. Concordance was highest in simple group. Conclusion A twin with febrile status epilepticus is at the highest risk of developing epilepsy, but simple febrile seizures...

  18. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy

    Czech Academy of Sciences Publication Activity Database

    Jiruška, Přemysl; Shtaya, A.B.Y.; Bodansky, D.M.S.; Chang, W.C.; Gray, W.P.; Jefferys, J. G. R.

    2013-01-01

    Roč. 54, Jun 2013 (2013), s. 492-498 ISSN 0969-9961 R&D Projects: GA ČR(CZ) GAP303/10/0999 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : spontaneous seizures * temporal lobe epilepsy * neurogenesis * tetanus toxin * apoptosis Subject RIV: FH - Neurology Impact factor: 5.202, year: 2013

  19. Dentate gyrus and hilus transection blocks seizure propagation and granule cell dispersion in a mouse model for mesial temporal lobe epilepsy.

    Science.gov (United States)

    Pallud, Johan; Häussler, Ute; Langlois, Mélanie; Hamelin, Sophie; Devaux, Bertrand; Deransart, Colin; Depaulis, Antoine

    2011-03-01

    Epilepsy-associated changes of the anatomical organization of the dentate gyrus and hilus may play a critical role in the initiation and propagation of seizures in mesial temporal lobe epilepsy (MTLE). This study evaluated the role of longitudinal projections in the propagation of hippocampal paroxysmal discharges (HPD) in dorsal hippocampus by performing a selective transection in a mouse model for MTLE obtained by a single unilateral intrahippocampal injection of kainic acid (KA). Full transections of the dentate gyrus and hilus were performed in the transverse axis at 22 days after KA injection when spontaneous HPD were fully developed. They: (i) significantly reduced the occurrence of HPD; (ii) increased their duration at the KA injection site; (iii) abolished their spread along the longitudinal axis of the hippocampal formation and; (iv) limited granule cell dispersion (GCD) of the dentate gyrus posterior to the transection. These data suggest that: (i) longitudinal projections through the dentate gyrus and hilus are involved in HPD spread; (ii) distant hippocampal circuits participate in the generation and cessation of HPD and; (iii) GCD requires continuous HPD to develop, even when seizures are established. Our data reveal a critical role for longitudinal projections in the generation and spread of hippocampal seizures. Copyright © 2010 Wiley-Liss, Inc.

  20. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    Science.gov (United States)

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Influence of vigilance state on physiological consequences of seizures and seizure-induced death in mice.

    Science.gov (United States)

    Hajek, Michael A; Buchanan, Gordon F

    2016-05-01

    Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. SUDEP occurs more commonly during nighttime sleep. The details of why SUDEP occurs at night are not well understood. Understanding why SUDEP occurs at night during sleep might help to better understand why SUDEP occurs at all and hasten development of preventive strategies. Here we aimed to understand circumstances causing seizures that occur during sleep to result in death. Groups of 12 adult male mice were instrumented for EEG, EMG, and EKG recording and subjected to seizure induction via maximal electroshock (MES) during wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Seizure inductions were performed with concomitant EEG, EMG, and EKG recording and breathing assessment via whole body plethysmography. Seizures induced via MES during sleep were associated with more profound respiratory suppression and were more likely to result in death. Despite REM sleep being a time when seizures do not typically occur spontaneously, when seizures were forced to occur during REM sleep, they were invariably fatal in this model. An examination of baseline breathing revealed that mice that died following a seizure had increased baseline respiratory rate variability compared with those that did not die. These data demonstrate that sleep, especially REM sleep, can be a dangerous time for a seizure to occur. These data also demonstrate that there may be baseline respiratory abnormalities that can predict which individuals have higher risk for seizure-induced death.

  2. Generalized tonic-clonic seizure

    Science.gov (United States)

    ... tonic-clonic seizures have vision, taste, smell, or sensory changes, hallucinations, or dizziness before the seizure. This ... longer (called the post-ictal state) Loss of memory (amnesia) about the seizure episode Headache Weakness of ...

  3. On the nature of seizure dynamics

    Science.gov (United States)

    Stacey, William C.; Quilichini, Pascale P.; Ivanov, Anton I.

    2014-01-01

    Seizures can occur spontaneously and in a recurrent manner, which defines epilepsy; or they can be induced in a normal brain under a variety of conditions in most neuronal networks and species from flies to humans. Such universality raises the possibility that invariant properties exist that characterize seizures under different physiological and pathological conditions. Here, we analysed seizure dynamics mathematically and established a taxonomy of seizures based on first principles. For the predominant seizure class we developed a generic model called Epileptor. As an experimental model system, we used ictal-like discharges induced in vitro in mouse hippocampi. We show that only five state variables linked by integral-differential equations are sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence. Two state variables are responsible for generating rapid discharges (fast time scale), two for spike and wave events (intermediate time scale) and one for the control of time course, including the alternation between ‘normal’ and ictal periods (slow time scale). We propose that normal and ictal activities coexist: a separatrix acts as a barrier (or seizure threshold) between these states. Seizure onset is reached upon the collision of normal brain trajectories with the separatrix. We show theoretically and experimentally how a system can be pushed toward seizure under a wide variety of conditions. Within our experimental model, the onset and offset of ictal-like discharges are well-defined mathematical events: a saddle-node and homoclinic bifurcation, respectively. These bifurcations necessitate a baseline shift at onset and a logarithmic scaling of interspike intervals at offset. These predictions were not only confirmed in our in vitro experiments, but also for focal seizures recorded in different syndromes, brain regions and species (humans and zebrafish). Finally, we identified several possible biophysical

  4. Seizures in multiple sclerosis

    NARCIS (Netherlands)

    Koch, Marcus; Uyttenboogaart, Maarten; Polman, Susan; De Keyser, Jacques

    Seizures have long been recognized to be part of the disease spectrum of multiple sclerosis (MS). While they occur in only a minority of patients with MS, epileptic seizures can have serious consequences. The treatment of MS can be epileptogenic, and antiepileptic treatment can conversely worsen the

  5. Screening of the anticonvulsant activity of some plants from Fabaceae family in experimental seizure models in mice

    Directory of Open Access Journals (Sweden)

    S Sardari

    2011-10-01

    Full Text Available "n  Background and purpose of the study: Fabaceae is the third largest family of flowering plants. Lack of essential oils in the plants of this family can be an advantage in search for safe and effective medicines. In this study the anticonvulsant effect of the leaves of Albizzia julibrissin, Acacia juliflora, Acacia nubica and aerial parts of Astragalus obtusifolius was evaluated in pentylenetetrazole (PTZ and maximal electroshock (MES seizure tests. "n  Methods: The hydroalcoholic extracts of the plants were obtained by percolation. Different doses of the extracts were injected to the mice intraperitoneally (i.p. and occurrence of clonic seizures induced by PTZ (60 mg/kg, i.p. or tonic seizures induced by MES (50 mA, 50Hz, 1sec were monitored up to 30 min after administration. Acute toxicity of the extracts was also assessed. The safe and effective extract was then fractionated by dichloromethane and anticonvulsant activity of the fractions was determined. Finally, the constituents of the extract and the fractions were screened by thin layer chromatography. "n  Results: Among the extracts, only A. obtusifolius extract showed low toxicity and protective effect against clonic seizures with ED50 value of 3.97 g/kg. Fractionation of the extract led to increase in anticonvulsant activity and ED50 value of 2.86 g/kg was obtained for the aqueous fraction. Phytochemical screening revealed the presence of alkaloids, flavonoids, anthrones and saponins in the aqueous fraction. "n  Major conclusion: The presence of anticonvulsant compounds in A. obtusifolius suggests further activity-guided fractionation and analytical studies to find out the potential of this plant as a source of anticonvulsant agent.

  6. Prolonged seizure activity leads to increased Protein Kinase A activation in the rat pilocarpine model of status epilepticus.

    Science.gov (United States)

    Bracey, James M; Kurz, Jonathan E; Low, Brian; Churn, Severn B

    2009-08-04

    Status epilepticus is a life-threatening form of seizure activity that represents a major medical emergency associated with significant morbidity and mortality. Protein Kinase A is an important regulator of synaptic strength that may play an important role in the development of status epilepticus-induced neuronal pathology. This study demonstrated an increase in PKA activity against exogenous and endogenous substrates during later stages of SE. As SE progressed, a significant increase in PKA-mediated phosphorylation of an exogenous peptide substrate was demonstrated in cortical structures. The increased activity was not due to altered expression of either regulatory or catalytic subunits of the enzyme. Through the use of phospho-specific antibodies, this study also investigated the effects of SE on the phosphorylation of the GluR1 subunit of the AMPA subtype of glutamate receptor. After the onset of continuous seizure activity, an increase in phosphorylation of the PKA site on the GluR1 subunit of the AMPA receptor was observed. These data suggest a potential mechanism by which SE may increase neuronal excitability in the cortex, potentially leading to maintenance of seizure activity or long-term neuronal pathology.

  7. Methodological standards for in vitro models of epilepsy and epileptic seizures. A TASK1-WG4 report of the AES/ILAE Translational Task Force of the ILAE

    Czech Academy of Sciences Publication Activity Database

    Raimondo, J. V.; Heinemann, U.; de Curtis, M.; Goodkin, H. P.; Dulla, Ch. G.; Janigro, D.; Ikeda, A.; Lin, Ch.-Ch. K.; Jiruška, Přemysl; Galanopoulou, A. S.; Bernard, Ch.

    2017-01-01

    Roč. 58, Suppl.4 (2017), s. 40-52 ISSN 0013-9580 R&D Projects: GA MZd(CZ) NV15-29835A; GA MZd(CZ) NV15-33115A; GA ČR(CZ) GA14-02634S; GA ČR(CZ) GA15-08565S Institutional support: RVO:67985823 Keywords : brain slice preparation * electrophysiological recording methods * recording solution composition * in vitro models of seizures * animal selection and killing Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 5.295, year: 2016

  8. Probability of detection of clinical seizures using heart rate changes.

    Science.gov (United States)

    Osorio, Ivan; Manly, B F J

    2015-08-01

    Heart rate-based seizure detection is a viable complement or alternative to ECoG/EEG. This study investigates the role of various biological factors on the probability of clinical seizure detection using heart rate. Regression models were applied to 266 clinical seizures recorded from 72 subjects to investigate if factors such as age, gender, years with epilepsy, etiology, seizure site origin, seizure class, and data collection centers, among others, shape the probability of EKG-based seizure detection. Clinical seizure detection probability based on heart rate changes, is significantly (pprobability of detecting clinical seizures (>0.8 in the majority of subjects) using heart rate is highest for complex partial seizures, increases with a patient's years with epilepsy, is lower for females than for males and is unrelated to the side of hemisphere origin. Clinical seizure detection probability using heart rate is multi-factorially dependent and sufficiently high (>0.8) in most cases to be clinically useful. Knowledge of the role that these factors play in shaping said probability will enhance its applicability and usefulness. Heart rate is a reliable and practical signal for extra-cerebral detection of clinical seizures originating from or spreading to central autonomic network structures. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  9. Dual Therapeutic Effects of C-10068, a Dextromethorphan Derivative, Against Post-Traumatic Nonconvulsive Seizures and Neuroinflammation in a Rat Model of Penetrating Ballistic-Like Brain Injury

    Science.gov (United States)

    Shear, Deborah A.; Graham, Philip B.; Bridson, Gary W.; Uttamsingh, Vinita; Chen, Zhiyong; Leung, Lai Yee; Tortella, Frank C.

    2015-01-01

    Abstract Post-traumatic seizures can exacerbate injurious outcomes of severe brain trauma, yet effective treatments are limited owing to the complexity of the pathology underlying the concomitant occurrence of both events. In this study, we tested C‐10068, a novel deuterium-containing analog of (+)-N-methyl-3-ethoxymorphinan, in a rat model of penetrating ballistic-like brain injury (PBBI) and evaluated the effects of C-10068 on PBBI-induced nonconvulsive seizures (NCS), acute neuroinflammation, and neurofunctional outcomes. NCS were detected by electroencephalographic monitoring. Neuroinflammation was evaluated by immunohistochemical markers, for example, glial fibrillary acidic protein and major histocompatibility complex class I, for activation of astrocytes and microglia, respectively. Neurofunction was tested using rotarod and Morris water maze tasks. Three infusion doses of C-10068 (1.0, 2.5, and 5.0 mg/kg/h×72 h) were tested in the antiseizure study. Neuroinflammation and neurofunction were evaluated in animals treated with 5.0 mg/kg/h×72 h C-10068. Compared to vehicle treatment, C-10068 dose dependently reduced PBBI-induced NCS incidence (40–50%), frequency (20–70%), and duration (30–82%). The most effective antiseizure dose of C-10068 (5.0 mg/kg/h×72 h) also significantly attenuated hippocampal astrocyte activation and perilesional microglial reactivity post-PBBI. Within C-10068-treated animals, a positive correlation was observed in reduction in NCS frequency and reduction in hippocampal astrocyte activation. Further, C-10068 treatment significantly attenuated astrocyte activation in seizure-free animals. However, C-10068 failed to improve PBBI-induced motor and cognitive functions with the dosing regimen used in this study. Overall, the results indicating that C-10068 exerts both potent antiseizure and antiinflammatory effects are promising and warrant further investigation. PMID:25794265

  10. Dual Therapeutic Effects of C-10068, a Dextromethorphan Derivative, Against Post-Traumatic Nonconvulsive Seizures and Neuroinflammation in a Rat Model of Penetrating Ballistic-Like Brain Injury.

    Science.gov (United States)

    Lu, Xi-Chun May; Shear, Deborah A; Graham, Philip B; Bridson, Gary W; Uttamsingh, Vinita; Chen, Zhiyong; Leung, Lai Yee; Tortella, Frank C

    2015-10-15

    Post-traumatic seizures can exacerbate injurious outcomes of severe brain trauma, yet effective treatments are limited owing to the complexity of the pathology underlying the concomitant occurrence of both events. In this study, we tested C-10068, a novel deuterium-containing analog of (+)-N-methyl-3-ethoxymorphinan, in a rat model of penetrating ballistic-like brain injury (PBBI) and evaluated the effects of C-10068 on PBBI-induced nonconvulsive seizures (NCS), acute neuroinflammation, and neurofunctional outcomes. NCS were detected by electroencephalographic monitoring. Neuroinflammation was evaluated by immunohistochemical markers, for example, glial fibrillary acidic protein and major histocompatibility complex class I, for activation of astrocytes and microglia, respectively. Neurofunction was tested using rotarod and Morris water maze tasks. Three infusion doses of C-10068 (1.0, 2.5, and 5.0 mg/kg/h × 72 h) were tested in the antiseizure study. Neuroinflammation and neurofunction were evaluated in animals treated with 5.0 mg/kg/h × 72 h C-10068. Compared to vehicle treatment, C-10068 dose dependently reduced PBBI-induced NCS incidence (40-50%), frequency (20-70%), and duration (30-82%). The most effective antiseizure dose of C-10068 (5.0 mg/kg/h × 72 h) also significantly attenuated hippocampal astrocyte activation and perilesional microglial reactivity post-PBBI. Within C-10068-treated animals, a positive correlation was observed in reduction in NCS frequency and reduction in hippocampal astrocyte activation. Further, C-10068 treatment significantly attenuated astrocyte activation in seizure-free animals. However, C-10068 failed to improve PBBI-induced motor and cognitive functions with the dosing regimen used in this study. Overall, the results indicating that C-10068 exerts both potent antiseizure and antiinflammatory effects are promising and warrant further investigation.

  11. Epilepsy or seizures - discharge

    Science.gov (United States)

    ... and the people you work with about your seizure disorder. Driving your own car is generally safe and ... References Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...

  12. Temporal Lobe Seizure

    Science.gov (United States)

    ... functions, including having odd feelings — such as euphoria, deja vu or fear. Temporal lobe seizures are sometimes called ... sudden sense of unprovoked fear or joy A deja vu experience — a feeling that what's happening has happened ...

  13. Fibromyalgia and seizures.

    Science.gov (United States)

    Tatum, William O; Langston, Michael E; Acton, Emily K

    2016-06-01

    The purpose of this case-matched study was to determine how frequently fibromyalgia is associated with different paroxysmal neurological disorders and explore the utility of fibromyalgia as a predictor for the diagnosis of psychogenic non-epileptic seizures. The billing diagnosis codes of 1,730 new, non-selected patient encounters were reviewed over a three-year period for an epileptologist in a neurology clinic to identify all patients with historical diagnoses of fibromyalgia. The frequency with which epileptic seizures, psychogenic non-epileptic seizures, and physiological non-epileptic events were comorbid with fibromyalgia was assessed. Age and gender case-matched controls were used for a between-group comparison. Wilcoxon tests were used to analyse interval data, and Chi-square was used to analyse categorical data (pFibromyalgia was retrospectively identified in 95/1,730 (5.5%) patients in this cohort. Females represented 95% of the fibromyalgia sample (age: 53 years; 95% CI: 57, 51). Forty-three percent of those with fibromyalgia had a non-paroxysmal, neurological primary clinical diagnosis, most commonly chronic pain. Paroxysmal events were present in 57% of fibromyalgia patients and 54% of case-matched controls. Among patients with fibromyalgia and paroxysmal disorders, 11% had epileptic seizures, 74% had psychogenic non-epileptic seizures, and 15% had physiological non-epileptic events, compared to case-matched controls with 37% epileptic seizures, 51% psychogenic non-epileptic events, and 12% physiological non-epileptic events (p = 0.009). Fibromyalgia was shown to be a predictor for the diagnosis of psychogenic non-epileptic seizures in patients with undifferentiated paroxysmal spells. However, our results suggest that the specificity and sensitivity of fibromyalgia as a marker for psychogenic non-epileptic seizures in a mixed general neurological population of patients is less than previously described.

  14. Seizures Induced by Music

    Directory of Open Access Journals (Sweden)

    A. O. Ogunyemi

    1993-01-01

    Full Text Available Musicogenic epilepsy is a rare disorder. Much remains to be learned about the electroclinical features. This report describes a patient who has been followed at our institution for 17 years, and was investigated with long-term telemetered simultaneous video-EEG recordings. She began to have seizures at the age of 10 years. She experienced complex partial seizures, often preceded by elementary auditory hallucination and complex auditory illusion. The seizures occurred in relation to singing, listening to music or thinking about music. She also had occasional generalized tonic clonic seizures during sleep. There was no significant antecedent history. The family history was negative for epilepsy. The physical examination was unremarkable. CT and MRI scans of the brain were normal. During long-term simultaneous video-EEG recordings, clinical and electrographic seizure activities were recorded in association with singing and listening to music. Mathematical calculation, copying or viewing geometric patterns and playing the game of chess failed to evoke seizures.

  15. The effects of glycemic control on seizures and seizure-induced excitotoxic cell death

    Directory of Open Access Journals (Sweden)

    Schauwecker Paula

    2012-08-01

    Full Text Available Abstract Background Epilepsy is the most common neurological disorder after stroke, affecting more than 50 million persons worldwide. Metabolic disturbances are often associated with epileptic seizures, but the pathogenesis of this relationship is poorly understood. It is known that seizures result in altered glucose metabolism, the reduction of intracellular energy metabolites such as ATP, ADP and phosphocreatine and the accumulation of metabolic intermediates, such as lactate and adenosine. In particular, it has been suggested that the duration and extent of glucose dysregulation may be a predictor of the pathological outcome of status. However, little is known about neither the effects of glycemic control on brain metabolism nor the effects of managing systemic glucose concentrations in epilepsy. Results In this study, we examined glycemic modulation of kainate-induced seizure sensitivity and its neuropathological consequences. To investigate the relationship between glycemic modulation, seizure susceptibility and its neuropathological consequences, C57BL/6 mice (excitotoxin cell death resistant were subjected to hypoglycemia or hyperglycemia, followed by systemic administration of kainic acid to induce seizures. Glycemic modulation resulted in minimal consequences with regard to seizure severity but increased hippocampal pathology, irrespective of whether mice were hypoglycemic or hyperglycemic prior to kainate administration. Moreover, we found that exogenous administration of glucose following kainic acid seizures significantly reduced the extent of hippocampal pathology in FVB/N mice (excitotoxin cell death susceptible following systemic administration of kainic acid. Conclusion These findings demonstrate that modulation of the glycemic index can modify the outcome of brain injury in the kainate model of seizure induction. Moreover, modulation of the glycemic index through glucose rescue greatly diminishes the extent of seizure

  16. In silico Screening and Evaluation of the Anticonvulsant Activity of Docosahexaenoic Acid-Like Molecules in Experimental Models of Seizures.

    Science.gov (United States)

    Gharibi Loron, Ali; Sardari, Soroush; Narenjkar, Jamshid; Sayyah, Mohammad

    2017-01-01

    Resistance to antiepileptic drugs and the intolerability in 20-30% of the patients raises demand for developing new drugs with improved efficacy and safety. Acceptable anticonvulsant activity, good tolerability, and inexpensiveness of docosahexaenoic acid (DHA) make it as a good candidate for designing and development of the new anticonvulsant medications. Ten DHA-based molecules were screened based on in silico screening of DHA-like molecules by root-mean-square deviation of atomic positions, the biological activity score of Professional Association for SQL Server, and structural requirements suggested by pharmacophore design. Anticonvulsant activity was tested against clonic seizures induced by pentylenetetrazole (PTZ, 60 mg/kg, i.p.) and tonic seizures induced by maximal electroshock (MES, 50 mA, 50 Hz, 1 ms duration) by intracerebroventricular (i.c.v.) injection of the screened compounds to mice. Among screened compounds, 4-Phenylbutyric acid, 4-Biphenylacetic acid, phenylacetic acid, and 2-Phenylbutyric acid showed significant protective activity in pentylenetetrazole test with ED50 values of 4, 5, 78, and 70 mM, respectively. In MES test, shikimic acid and 4-tert-Butylcyclo-hexanecarboxylic acid showed significant activity with ED50 values 29 and 637 mM, respectively. Effective compounds had no mortality in mice up to the maximum i.c.v. injectable dose of 1 mM. Common electrochemical features and three-dimensional spatial structures of the effective compounds suggest the involvement of the anticonvulsant mechanisms similar to the parent compound DHA.

  17. Seizures in dominantly inherited Alzheimer disease.

    Science.gov (United States)

    Zarea, Aline; Charbonnier, Camille; Rovelet-Lecrux, Anne; Nicolas, Gaël; Rousseau, Stéphane; Borden, Alaina; Pariente, Jeremie; Le Ber, Isabelle; Pasquier, Florence; Formaglio, Maite; Martinaud, Olivier; Rollin-Sillaire, Adeline; Sarazin, Marie; Croisile, Bernard; Boutoleau-Bretonnière, Claire; Ceccaldi, Mathieu; Gabelle, Audrey; Chamard, Ludivine; Blanc, Frédéric; Sellal, François; Paquet, Claire; Campion, Dominique; Hannequin, Didier; Wallon, David

    2016-08-30

    To assess seizure frequency in a large French cohort of autosomal dominant early-onset Alzheimer disease (ADEOAD) and to determine possible correlations with causative mutations. A national multicentric study was performed in patients with ADEOAD harboring a pathogenic mutation within PSEN1, PSEN2, APP, or a duplication of APP, and a minimal follow-up of 5 years. Clinical, EEG, and imaging data were systematically recorded. We included 132 patients from 77 families: 94 PSEN1 mutation carriers (MCs), 16 APP duplication carriers, 15 APP MCs, and 7 PSEN2 MCs. Seizure frequency was 47.7% after a mean follow-up of 8.4 years (range 5-25). After 5-year follow-up and using a Cox model analysis, the percentages of patients with seizures were respectively 19.1% (10.8%-26.7%) for PSEN1, 28.6% (0%-55.3%) for PSEN2, 31.2% (4.3%-50.6%) for APP duplications, and no patient for APP mutation. APP duplication carriers showed a significantly increased seizure risk compared to both APP MCs (hazard ratio [HR] = 5.55 [95% confidence interval 1.87-16.44]) and PSEN1 MCs (HR = 4.46 [2.11-9.44]). Among all PSEN1 mutations, those within the domains of protein hydrophilic I, transmembrane II (TM-II), TM-III, TM-IV, and TM-VII were associated with a significant increase in seizure frequency compared to other domains (HR = 4.53 [1.93-10.65], p = 0.0005). Seizures are a common feature of ADEOAD. In this population, risk was significantly higher in the APP duplication group than in all other groups. Within PSEN1, 5 specific domains were associated with a higher seizure risk indicating specific correlations between causative mutation and seizures. © 2016 American Academy of Neurology.

  18. Increase in seizure susceptibility in sepsis like condition explained by spiking cytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides.

    Science.gov (United States)

    Sewal, Rakesh K; Modi, Manish; Saikia, Uma Nahar; Chakrabarti, Amitava; Medhi, Bikash

    2017-09-01

    Epilepsy is a neurological disorder characterized by recurrent unprovoked seizures. Sepsis is a condition which initiates a cascade of a surge of inflammatory mediators. Interplay between seizures and inflammation other than of brain origin is yet to be explored. The present study was designed to evaluate the seizure susceptibility in experimental models of lipopolysaccharide (LPS) induced sepsis. Experimental sepsis was induced using lipopolysaccharides in Wistar rats. Valproic acid, dexametasone were given to two different groups of animals along with LPS. Two groups of animals were subjected to administration of vehicle and LPS respectively with no other treatment. 24h later, animals were subjected to seizures by using either maximal electro shock or pentylenetetrazole. Seizures related parameters, oxidative stress and TNF-α, IL-6, IL-1β, ICAM-1, ICAM-2, VCAM-1, MMP-9 level in serum and brain samples were evaluated. Histopathological and blood brain barrier permeability studies were conducted. Seizures were decreased in valproic acid treated animals. Reduced oxidative stress was seen in dexamethasone plus valproic acid treated groups as compared to LPS alone treated group. TNF-α, IL-6, IL-1β, ICAM-1, VCAM-1, MMP-9 levels were found increased in LPS treated animals whereas a reverse observation was noted for ICAM-2 level in brain and serum. Histopathological findings confirmed the successful establishment of sepsis like state in animals. Blood brain barrier permeability was found increased in LPS treated groups of animals. Seizure susceptibility may escalate during the sepsis like inflammatory conditions and curbing the inflammatory state might reverse the phenomenon. Copyright © 2017. Published by Elsevier B.V.

  19. The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Α, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model.

    Science.gov (United States)

    Oztas, Berrin; Sahin, Deniz; Kir, Hale; Eraldemir, Fatma Ceyla; Musul, Mert; Kuskay, Sevinç; Ates, Nurbay

    2017-02-01

    The objective of this study is to examine the effects of the endogenous ligands leptin, ghrelin, and neuropeptide Y (NPY) on seizure generation, the oxidant/antioxidant balance, and cytokine levels, which are a result of immune response in a convulsive seizure model. With this goal, Wistar rats were divided into 5 groups-Group 1: Saline, Group 2: Saline+PTZ (65mg/kg), Group 3: leptin (4mg/kg)+PTZ, Group 4: ghrelin (80μg/kg)+PTZ, and Group 5: NPY (60μg/kg)+PTZ. All injections were delivered intraperitoneally, and simultaneous electroencephalography (EEG) records were obtained. Seizure activity was scored by observing seizure behavior, and the onset time, latency, and seizure duration were determined according to the EEG records. At the end of the experiments, blood samples were obtained in all groups to assess the serum TNF-α, IL-1β, IL-6, FGF-2, galanin, nitric oxide (NOֹ), malondialdehyde (MDA), and glutathione (GSH) levels. The electrophysiological and biochemical findings (p<0.05) of this study show that all three peptides have anticonvulsant effects in the pentylenetetrazol (PTZ)-induced generalized tonic-clonic convulsive seizure model. The reduction of the levels of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 caused by leptin, ghrelin, and NPY shows that these peptides may have anti-inflammatory effects in epileptic seizures. Also, leptin significantly increases the serum levels of the endogenous anticonvulsive agent galanin. The fact that each one of these endogenous peptides reduces the levels of MDA and increases the serum levels of GSH leads to the belief that they may have protective effects against oxidative damage that is thought to play a role in the pathogenesis of epilepsy. Our study contributes to the clarification of the role of these peptides in the brain in seizure-induced oxidative stress and immune system physiology and also presents new approaches to the etiology and treatment of tendency to epileptic seizures. Copyright

  20. Risk factor for febrile seizures

    Directory of Open Access Journals (Sweden)

    Odalović Dragica

    2014-01-01

    Full Text Available Febrile seizures are the most frequent neurological disorder in the childhood. According to American Academy of Pediatrics (AAP, they have been defined as seizures provoked by high temperature in children aged between 6 months and 5 years, without previous history of afebrile seizures, intracranial infections and other possible causes of seizures. Seizures can be typical and atypical, according to the characteristics. Pathogenesis of this disorder has not been clarified yet, and it is believed to be a combination of genetic factors, high body temperature and brain maturation. The risk factors for recurrence of febrile seizures are: age in which seizures appeared for the first time, epilepsy in the first degree relative, febrile seizures in the first degree relative, frequent diseases with fever and low body temperature on the beginning of seizures. The frequency of recurrent seizures The risk for occurrence of epilepsy in children with simple seizures is about 1-1.5%, which is slightly higher compared to general population, while it increases to 4-15% in patients with complex seizures. However, there is no evidence that therapy prevents occurrence of epilepsy. When the prevention of recurrent seizures is considered, it is necessary to separate simple from complex seizures. The aim of this paper was to analyze the most important risk factors for febrile seizures, and to evaluate their impact on occurrence of recurrent seizures. Our study included 125 children with febrile seizures, aged from 6 months to 5 years. The presence of febrile seizures and epilepsy in the first degree relative has been noted in 22% of children. Typical febrile seizures were observed in 76% of cases, and atypical in 24%. Most patients had only one seizure (73.6%. Children, who had seizure earlier in life, had more frequent recurrences. Both risk factors were present in 25% of patients, while 68% of patients had only one risk factor. For the children with febrile disease

  1. Photogenic partial seizures.

    Science.gov (United States)

    Hennessy, M J; Binnie, C D

    2000-01-01

    To establish the incidence and symptoms of partial seizures in a cohort of patients investigated on account of known sensitivity to intermittent photic stimulation and/or precipitation of seizures by environmental visual stimuli such as television (TV) screens or computer monitors. We report 43 consecutive patients with epilepsy, who had exhibited a significant EEG photoparoxysmal response or who had seizures precipitated by environmental visual stimuli and underwent detailed assessment of their photosensitivity in the EEG laboratory, during which all were questioned concerning their ictal symptoms. All patients were considered on clinical grounds to have an idiopathic epilepsy syndrome. Twenty-eight (65%) patients reported visually precipitated attacks occurring initially with maintained consciousness, in some instances evolving to a period of confusion or to a secondarily generalized seizure. Visual symptoms were most commonly reported and included positive symptoms such as coloured circles or spots, but also blindness and subjective symptoms such as "eyes going funny." Other symptoms described included nonspecific cephalic sensations, deja-vu, auditory hallucinations, nausea, and vomiting. No patient reported any clear spontaneous partial seizures, and there were no grounds for supposing that any had partial epilepsy excepting the ictal phenomenology of some or all of the visually induced attacks. These findings provide clinical support for the physiological studies that indicate that the trigger mechanism for human photosensitivity involves binocularly innervated cells located in the visual cortex. Thus the visual cortex is the seat of the primary epileptogenic process, and the photically triggered discharges and seizures may be regarded as partial with secondary generalization.

  2. Seizure recurrence after a first febrile seizure: a multivariate approach

    NARCIS (Netherlands)

    Offringa, M.; Derksen-Lubsen, G.; Bossuyt, P. M.; Lubsen, J.

    1992-01-01

    The results are presented of a follow-up study of 155 Dutch children after the first febrile seizure. Of these initially untreated children 37 per cent had had at least one, 30 per cent at least two and 17 per cent at least three subsequent seizures. The vulnerable period for recurrent seizures

  3. Influence of caffeine on the protective activity of gabapentin and topiramate in a mouse model of generalized tonic-clonic seizures.

    Science.gov (United States)

    Jargiełło-Baszak, Małgorzata; Chrościńska-Krawczyk, Magdalena; Andres-Mach, Marta; Łuszczki, Jarogniew J; Czuczwar, Stanisław J

    2016-08-01

    Caffeine may interact with classical antiepileptic drugs (AEDs), reducing their anticonvulsant effects in basic seizure models. The aim of the present study was to ascertain whether intraperitoneal caffeine (acute or chronic for 15 days) could attenuate the anticonvulsant effect of some newer AEDs: gabapentin (GBP) and topiramate (TPM) against electroconvulsions in mice. Maximal electroshock (MES)-induced mouse seizure model was used for the estimation of the anticonvulsant activity of TPM whilst the protective activity of GBP was evaluated in the threshold test for maximal (tonic) convulsions. Adverse effects were evaluated by measurement of long-term memory (the step-through passive avoidance task) and motor coordination (chimney test). Plasma AED concentrations were also measured to determinate any pharmacokinetic contribution to the observed effects. Caffeine (both acute and chronic at 23.1 and 46.2mg/kg) significantly reduced the protective effects of TPM against MES. As regards GBP, caffeine (acutely at 46.2mg/kg and chronically at 23.1 or 46.2mg/kg) significantly diminished the GBP-induced increases in the electroconvulsive threshold. In addition, caffeine did not affect the free plasma concentrations of TPM or GBP. Acute and chronic caffeine (23.1 and 46.2mg/kg) enhanced the impairment of motor coordination in mice pretreated with GBP whilst an opposite effect was observed in TPM injected mice and pretreated with chronic caffeine at 46.2mg/kg. The results indicate that newer AEDs, GBP or TPM behave in the exactly same way as classical antiepileptics in mice challenged with caffeine. This hazardous effect of caffeine is not subject to tolerance. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Seizure ending signs in patients with dyscognitive focal seizures.

    Science.gov (United States)

    Gavvala, Jay R; Gerard, Elizabeth E; Macken, Mícheál; Schuele, Stephan U

    2015-09-01

    Signs indicating the end of a focal seizure with loss of awareness and/or responsiveness but without progression to focal or generalized motor symptoms are poorly defined and can be difficult to determine. Not recognizing the transition from ictal to postictal behaviour can affect seizure reporting accuracy by family members and may lead to delayed or a lack of examination during EEG monitoring, erroneous seizure localization and inadequate medical intervention for prolonged seizure duration. Our epilepsy monitoring unit database was searched for focal seizures without secondary generalization for the period from 2007 to 2011. The first focal seizure in a patient with loss of awareness and/or responsiveness and/or behavioural arrest, with or without automatisms, was included. Seizures without objective symptoms or inadequate video-EEG quality were excluded. A total of 67 patients were included, with an average age of 41.7 years. Thirty-six of the patients had seizures from the left hemisphere and 29 from the right. All patients showed an abrupt change in motor activity and resumed contact with the environment as a sign of clinical seizure ending. Specific ending signs (nose wiping, coughing, sighing, throat clearing, or laughter) were seen in 23 of 47 of temporal lobe seizures and 7 of 20 extra-temporal seizures. Seizure ending signs are often subtle and the most common finding is a sudden change in motor activity and resumption of contact with the environment. More distinct signs, such as nose wiping, coughing or throat clearing, are not specific to temporal lobe onset. A higher proportion of seizures during sleep went unexamined, compared to those during wakefulness. This demonstrates that seizure semiology can be very subtle and arousals from sleep during monitoring should alert staff. Patient accounts of seizure frequency appear to be unreliable and witness reports need to be taken into account. [Published with video sequences].

  5. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy

    Science.gov (United States)

    Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that

  6. Early follow-up data from seizure diaries can be used to predict subsequent seizures in same cohort by borrowing strength across participants

    Science.gov (United States)

    Hall, Charles B.; Lipton, Richard B.; Tennen, Howard; Haut, Sheryl R.

    2014-01-01

    Accurate prediction of seizures in persons with epilepsy offers opportunities for both precautionary measures and preemptive treatment. Previously identified predictors of seizures include patient-reported seizure anticipation, as well as stress, anxiety, and decreased sleep. In this study, we developed three models using 30 days of nightly seizure diary data in a cohort of 71 individuals with a history of uncontrolled seizures to predict subsequent seizures in the same cohort over a 30-day follow-up period. The best model combined the individual’s seizure history with that of the remainder of the cohort, resulting in 72% sensitivity for 80% specificity, and 0.83 area under the receiver operating characteristic curve. The possibility of clinically relevant prediction should be examined through electronic data capture and more specific and more frequent sampling, and with patient training to improve prediction. PMID:19138755

  7. Cerebrovascular Diseases and Early Seizure

    Directory of Open Access Journals (Sweden)

    Ayşegül Gündüz

    2006-08-01

    Full Text Available OBJECTIVE: Cerebrovascular disease is one of the important causes of seizures and epilepsy among the advanced age group. Seziures are found to be associated with lesion localization and size in previous studies. METHODS: Here, we aimed to detect prevelance of seizure, relation of seizure and lesion localization, and observed seizure types. RESULTS: Three hundred seventy eight patients with ischemic cerebrovascular disease or intraparenchymal hemorrhage who were followed in Cerrahpasa IVIedical School clinic were studied retrospectively and probability of seizure occurence within 1 month after stroke was evaluated. CONCLUSION: Among 378 patients hospitalized by acute stroke, 339 were diagnosed as ischemic cerebrovascular disease and 39 (10.3% had primary intraparenchymal hematoma. Seizures were observed in 16 patients (4.2%, 2 (%5.1 in intraparenchymal hematoma group and 14 (%4.1 in ischemic cerebrovascular disease. Early seizures were detected in 33% of patients with anterior cerebral artery, in 6.8% of posterior cerebral artery and in 3.3% of middle cerebral artery infarcts and in three patients out of 12 who were known to have epilepsy. Seizure types were secondarily generalised tonic-clonic seizure in nine cases (57%. Among whole group status epilepticus was observed in four patients (1.1%. Conclusion: Early seizure rates are found to be high among patients with anterior cerebral artery infarct and known epilepsy

  8. Sex dimorphism in seizure-controlling networks.

    Science.gov (United States)

    Giorgi, Fillippo Sean; Galanopoulou, Aristea S; Moshé, Solomon L

    2014-12-01

    Males and females show a different predisposition to certain types of seizures in clinical studies. Animal studies have provided growing evidence for sexual dimorphism of certain brain regions, including those that control seizures. Seizures are modulated by networks involving subcortical structures, including thalamus, reticular formation nuclei, and structures belonging to the basal ganglia. In animal models, the substantia nigra pars reticulata (SNR) is the best studied of these areas, given its relevant role in the expression and control of seizures throughout development in the rat. Studies with bilateral infusions of the GABA(A) receptor agonist muscimol have identified distinct roles of the anterior or posterior rat SNR in flurothyl seizure control, that follow sex-specific maturational patterns during development. These studies indicate that (a) the regional functional compartmentalization of the SNR appears only after the third week of life, (b) only the male SNR exhibits muscimol-sensitive proconvulsant effects which, in older animals, is confined to the posterior SNR, and (c) the expression of the muscimol-sensitive anticonvulsant effects become apparent earlier in females than in males. The first three postnatal days are crucial in determining the expression of the muscimol-sensitive proconvulsant effects of the immature male SNR, depending on the gonadal hormone setting. Activation of the androgen receptors during this early period seems to be important for the formation of this proconvulsant SNR region. We describe molecular/anatomical candidates underlying these age- and sex-related differences, as derived from in vitro and in vivo experiments, as well as by [(14)C]2-deoxyglucose autoradiography. These involve sex-specific patterns in the developmental changes in the structure or physiology or GABA(A) receptors or of other subcortical structures (e.g., locus coeruleus, hippocampus) that may affect the function of seizure-controlling networks

  9. Temporal correlation between opiate seizures in East/Southeast Asia and B.C. heroin deaths: a transoceanic model of heroin death risk.

    Science.gov (United States)

    McLean, Mark E

    2003-01-01

    Because heroin supply changes cannot be measured directly, their impact on populations is poorly understood. British Columbia has experienced an injection drug use epidemic since the 1980s that resulted in 2,590 illicit drug deaths from 1990-1999. Since previous work indicates heroin seizures can correlate with supply and B.C. receives heroin only from Southeast Asia, this study examined B.C. heroin deaths against opiate seizures in East/Southeast Asia. Opiate seizures in East/Southeast Asia and data from two B.C. mortality datasets containing heroin deaths were examined. The Pearson correlation coefficient for seizures against each mortality dataset was determined. Opiate seizures, all illicit drug deaths and all opiate deaths concurrently increased twice and decreased twice from 1989-1999, and all reached new peak values in 1993. Three B.C. sub-regions exhibited illicit drug deaths rate trends concurrent with the three principal datasets studied. The Pearson correlation coefficient for opiate-induced deaths against opiate seizures from 1980-1999 was R=0.915 (popiate seizures from 1987-1999 was R=0.896 (popiate seizures in East/Southeast Asia were very strongly correlated with B.C. opiate and illicit drug deaths. The number of B.C. heroin-related deaths may be strongly linked to heroin supply. Enforcement services are not effective in preventing harm caused by heroin in B.C.; therefore, Canada should examine other methods to prevent harm. The case for harm reduction is strengthened by the ineffectiveness of enforcement and the unlikelihood of imminent eradication of heroin production in Southeast Asia.

  10. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2014-12-10

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. Copyright © 2014 the authors 0270-6474/14/3416671-17$15.00/0.

  11. Identifying seizure clusters in patients with psychogenic nonepileptic seizures.

    Science.gov (United States)

    Baird, Grayson L; Harlow, Lisa L; Machan, Jason T; Thomas, Dave; LaFrance, W C

    2017-08-01

    The present study explored how seizure clusters may be defined for those with psychogenic nonepileptic seizures (PNES), a topic for which there is a paucity of literature. The sample was drawn from a multisite randomized clinical trial for PNES; seizure data are from participants' seizure diaries. Three possible cluster definitions were examined: 1) common clinical definition, where ≥3 seizures in a day is considered a cluster, along with two novel statistical definitions, where ≥3 seizures in a day are considered a cluster if the observed number of seizures statistically exceeds what would be expected relative to a patient's: 1) average seizure rate prior to the trial, 2) observed seizure rate for the previous seven days. Prevalence of clusters was 62-68% depending on cluster definition used, and occurrence rate of clusters was 6-19% depending on cluster definition. Based on these data, clusters seem to be common in patients with PNES, and more research is needed to identify if clusters are related to triggers and outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei.

    Science.gov (United States)

    Feng, Li; Motelow, Joshua E; Ma, Chanthia; Biche, William; McCafferty, Cian; Smith, Nicholas; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro; Blumenfeld, Hal

    2017-11-22

    The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal

  13. Seizure tests distinguish intermittent fasting from the ketogenic diet

    Science.gov (United States)

    Hartman, Adam L.; Zheng, Xiangrong; Bergbower, Emily; Kennedy, Michiko; Hardwick, J. Marie

    2010-01-01

    Summary Purpose Calorie restriction can be anticonvulsant in animal models. The ketogenic diet was designed to mimic calorie restriction and has been assumed to work by the same mechanisms. We challenged this assumption by profiling the effects of these dietary regimens in mice subjected to a battery of acute seizure tests. Methods Juvenile male NIH Swiss mice received ketogenic diet or a normal diet fed in restricted quantities (continuously or intermittently) for ~ 12 days, starting at 3–4 weeks of age. Seizures were induced by the 6 Hz test, kainic acid, maximal electroshock, or pentylenetetrazol. Results The ketogenic and calorie-restricted diets often had opposite effects depending on the seizure test. The ketogenic diet protected from 6 Hz–induced seizures, whereas calorie restriction (daily and intermittent) increased seizure activity. Conversely, calorie restriction protected juvenile mice against seizures induced by kainic acid, whereas the ketogenic diet failed to protect. Intermittent caloric restriction worsened seizures induced by maximal electroshock but had no effect on those induced by pentylenetetrazol. Discussion In contrast to a longstanding hypothesis, calorie restriction and the ketogenic diet differ in their acute seizure test profiles, suggesting that they have different underlying anticonvulsant mechanisms. These findings highlight the importance of the 6 Hz test and its ability to reflect the benefits of ketosis and fat consumption. PMID:20477852

  14. Seizure tests distinguish intermittent fasting from the ketogenic diet.

    Science.gov (United States)

    Hartman, Adam L; Zheng, Xiangrong; Bergbower, Emily; Kennedy, Michiko; Hardwick, J Marie

    2010-08-01

    Calorie restriction can be anticonvulsant in animal models. The ketogenic diet was designed to mimic calorie restriction and has been assumed to work by the same mechanisms. We challenged this assumption by profiling the effects of these dietary regimens in mice subjected to a battery of acute seizure tests. Juvenile male NIH Swiss mice received ketogenic diet or a normal diet fed in restricted quantities (continuously or intermittently) for ∼12 days, starting at 3-4 weeks of age. Seizures were induced by the 6 Hz test, kainic acid, maximal electroshock, or pentylenetetrazol. The ketogenic and calorie-restricted diets often had opposite effects depending on the seizure test. The ketogenic diet protected from 6 Hz-induced seizures, whereas calorie restriction (daily and intermittent) increased seizure activity. Conversely, calorie restriction protected juvenile mice against seizures induced by kainic acid, whereas the ketogenic diet failed to protect. Intermittent caloric restriction worsened seizures induced by maximal electroshock but had no effect on those induced by pentylenetetrazol. In contrast to a longstanding hypothesis, calorie restriction and the ketogenic diet differ in their acute seizure test profiles, suggesting that they have different underlying anticonvulsant mechanisms. These findings highlight the importance of the 6 Hz test and its ability to reflect the benefits of ketosis and fat consumption. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  15. Effect of root-extracts of Ficus benghalensis (Banyan) in memory, anxiety, muscle co-ordination and seizure in animal models.

    Science.gov (United States)

    Panday, Dipesh Raj; Rauniar, G P

    2016-11-03

    Ficus benghalensis L. (Banyan) is a commonly found tree in Eastern Nepal. Its different plant parts are used for various neurological ailments. This study was performed in mice to see its effects in various neuropharmacological parameters. Passive-avoidance (memory), Open-field (anxiety), Pentobarbital-induced Sleep potentiation (sleep), Rota-rod (muscle-co-ordination), Pentylenetetrazol-Induced and Maximal Electroshock Seizure Tests were performed. Sample size was calculated using G*Power 3.1.9.2. Aqueous root extracts (Soxhlet method) of Ficus benghalensis 100 mg/kg and 200 mg/kg with negative and positive controls were used. The experimental results were represented as Mean ± SD. P-value was set at test was appropriately used. Passive-avoidance test showed 200 mg/kg group spent significantly less. Time (0.00s + 0.00s) in shock-zone than Normal Saline-group (9.67 s + 14.36 s, P = 0.000) or Diazepam-group (41.07 s + 88.24 s, P = 0.000). Open-field test showed 200 mg/kg group spent significantly longer Time (24.77 s + 12.23 s) in central-square than either Normal Saline group (15.08 s + 6.81 s, P = 0.000) or Diazepam-group (15.32 s + 5.12 s, P = 0.000). In Rota-rod test, 200 mg/kg group fell off the rod significantly (P = 0.000) earlier (33.01 s + 43.61 s) than both Normal Saline (>120 s) and Diazepam (62.07 s + 43.83 s) PTZ model showed that 100 mg/kg significantly (P = 0.004) delayed seizure-onset (184.40s + 36.36 s) compared to Normal Saline (101.79 s + 22.81 s), however, in MES model 200 mg/kg significantly (P = 0.000) prolonged tonic hind-limb extension (17.57 s + 2.15 s) compared to Normal Saline (13.55 s + 2.75 s) or Phenytoin (00.00s + 00.00s). Aerial roots of Ficus benghalensis have memory-enhancing, anxiolytic, musclerelaxant, and seizure-modifying effect.

  16. Effect of caffeine on the anticonvulsant effects of oxcarbazepine, lamotrigine and tiagabine in a mouse model of generalized tonic-clonic seizures.

    Science.gov (United States)

    Chrościńska-Krawczyk, Magdalena; Ratnaraj, Neville; Patsalos, Philip N; Czuczwar, Stanisław J

    2009-01-01

    Caffeine has been reported to be proconvulsant and to reduce the anticonvulsant efficacy of a variety of antiepileptic drugs (carbamazepine, phenobarbital, phenytoin, valproate and topiramate) in animal models of epilepsy and to increase seizure frequency in patients with epilepsy. Using the mouse maximal electroshock model, the present study was undertaken so as to ascertain whether caffeine affects the anticonvulsant efficacy of the new antiepileptic drugs lamotrigine, oxcarbazepine and tiagabine. The results indicate that neither acute nor chronic caffeine administration (up to 46.2 mg/kg) affected the ED(50) values of oxcarbazepine or lamotrigine against maximal electroshock. Similarly, caffeine did not modify the tiagabine electroconvulsive threshold. Furthermore, caffeine had no effect on oxcarbazepine, lamotrigine and tiagabine associated adverse effects such as impairment of motor coordination (measured by the chimney test) or long-term memory (measured by the passive avoidance task). Concurrent plasma concentration measurements revealed no significant effect on lamotrigine and oxcarbazepine concentrations. For tiagabine, however, chronic caffeine (4 mg/kg) administration was associated with an increase in tiagabine concentrations. In conclusion, caffeine did not impair the anticonvulsant effects of lamotrigine, oxcarbazepine, or tiagabine as assessed by electroconvulsions in mice. Also, caffeine was without effect upon the adverse potential of the studied antiepileptic drugs. Thus caffeine may not necessarily adversely affect the efficacy of all antiepileptic drugs and this is an important observation.

  17. Termination of seizure clusters is related to the duration of focal seizures.

    Science.gov (United States)

    Ferastraoaru, Victor; Schulze-Bonhage, Andreas; Lipton, Richard B; Dümpelmann, Matthias; Legatt, Alan D; Blumberg, Julie; Haut, Sheryl R

    2016-06-01

    Clustered seizures are characterized by shorter than usual interseizure intervals and pose increased morbidity risk. This study examines the characteristics of seizures that cluster, with special attention to the final seizure in a cluster. This is a retrospective analysis of long-term inpatient monitoring data from the EPILEPSIAE project. Patients underwent presurgical evaluation from 2002 to 2009. Seizure clusters were defined by the occurrence of at least two consecutive seizures with interseizure intervals of <4 h. Other definitions of seizure clustering were examined in a sensitivity analysis. Seizures were classified into three contextually defined groups: isolated seizures (not meeting clustering criteria), terminal seizure (last seizure in a cluster), and intracluster seizures (any other seizures within a cluster). Seizure characteristics were compared among the three groups in terms of duration, type (focal seizures remaining restricted to one hemisphere vs. evolving bilaterally), seizure origin, and localization concordance among pairs of consecutive seizures. Among 92 subjects, 77 (83%) had at least one seizure cluster. The intracluster seizures were significantly shorter than the last seizure in a cluster (p = 0.011), whereas the last seizure in a cluster resembled the isolated seizures in terms of duration. Although focal only (unilateral), seizures were shorter than seizures that evolved bilaterally and there was no correlation between the seizure type and the seizure position in relation to a cluster (p = 0.762). Frontal and temporal lobe seizures were more likely to cluster compared with other localizations (p = 0.009). Seizure pairs that are part of a cluster were more likely to have a concordant origin than were isolated seizures. Results were similar for the 2 h definition of clustering, but not for the 8 h definition of clustering. We demonstrated that intracluster seizures are short relative to isolated seizures and terminal seizures. Frontal

  18. Seizure Prediction and its Applications

    Science.gov (United States)

    Iasemidis, Leon D.

    2011-01-01

    Epilepsy is characterized by intermittent, paroxysmal, hypersynchronous electrical activity, that may remain localized and/or spread and severely disrupt the brain’s normal multi-task and multi-processing function. Epileptic seizures are the hallmarks of such activity and had been considered unpredictable. It is only recently that research on the dynamics of seizure generation by analysis of the brain’s electrographic activity (EEG) has shed ample light on the predictability of seizures, and illuminated the way to automatic, prospective, long-term prediction of seizures. The ability to issue warnings in real time of impending seizures (e.g., tens of minutes prior to seizure occurrence in the case of focal epilepsy), may lead to novel diagnostic tools and treatments for epilepsy. Applications may range from a simple warning to the patient, in order to avert seizure-associated injuries, to intervention by automatic timely administration of an appropriate stimulus, for example of a chemical nature like an anti-epileptic drug (AED), electromagnetic nature like vagus nerve stimulation (VNS), deep brain stimulation (DBS), transcranial direct current (TDC) or transcranial magnetic stimulation (TMS), and/or of another nature (e.g., ultrasonic, cryogenic, biofeedback operant conditioning). It is thus expected that seizure prediction could readily become an integral part of the treatment of epilepsy through neuromodulation, especially in the new generation of closed-loop seizure control systems. PMID:21939848

  19. Aborting Seizures by Painful Stimulation

    Directory of Open Access Journals (Sweden)

    R. L. Carasso

    1992-01-01

    Full Text Available It has been well established that serious consequences may result from allowing seizures to continue. The opportunities for early interruption of seizures by medication is often restricted to medical personnel, leaving non-trained bystanders unable to intervene. We were able to interrupt seizures (including status epilepticus by application of painful dorsiflexion. The mode of action that enables pain to elevate the seizure threshold remains to be elucidated, although the phenomenon is consistent with earlier laboratory studies in experimental epilepsy. The technique may be recommended as an effective and easily learned procedure that may have wide applicability.

  20. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats.

    Science.gov (United States)

    Ebrahimzadeh-Bideskan, Ali Reza; Mansouri, Somaieh; Ataei, Mariam Lale; Jahanshahi, Mehrdad; Hosseini, Mahmoud

    2018-03-01

    The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.

  1. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome.

    Science.gov (United States)

    Hsiao, J; Yuan, T Y; Tsai, M S; Lu, C Y; Lin, Y C; Lee, M L; Lin, S W; Chang, F C; Liu Pimentel, H; Olive, C; Coito, C; Shen, G; Young, M; Thorne, T; Lawrence, M; Magistri, M; Faghihi, M A; Khorkova, O; Wahlestedt, C

    2016-07-01

    Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT). Using oligonucleotide-based compounds (AntagoNATs) targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome

    Directory of Open Access Journals (Sweden)

    J. Hsiao

    2016-07-01

    Full Text Available Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT. Using oligonucleotide-based compounds (AntagoNATs targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology.

  3. Characteristics of the initial seizure in familial febrile seizures

    NARCIS (Netherlands)

    M. van Stuijvenberg (Margriet); E. van Beijeren; N.H. Wils; G. Derksen-Lubsen (Gerarda); C.M. van Duijn (Cornelia); H.A. Moll (Henriëtte)

    1999-01-01

    textabstractComplex seizure characteristics in patients with a positive family history were studied to define familial phenotype subgroups of febrile seizures. A total of 51 children with one or more affected first degree relatives and 177 without an affected first degree

  4. Predictors of Recurrent Febrile Seizures in Iranian Children

    Directory of Open Access Journals (Sweden)

    Yousef Veisani

    2013-09-01

    Full Text Available A few factors appear to boost a child's risk of having recurrent febrile seizures, including young age during the first seizure, seizure type, and having immediate family members with a history of febrile seizures. The present study aimed to provide reliable information about recurrent febrile seizure in Iranian children. On the computerized literature valid on valid keyword with search in valid database PubMed, Scientific Information Databases (SID (, Global medical article limberly (Medlib, Iranian Biomedical Journals (Iran Medex, Iranian Journal Database (Magiran, and Google Scholar recruited in different geographic areas. To explore heterogeneity in studies I2 index was used. Meta-analysis used to data analysis with random effects model.Hospital data of 4,599 children with febrile seizure. Overall, 21 studies met our inclusion criteria. Febrile seizure in 2 age groups (<2 and 2-6 years were 55.8% (95% CI: 50.4-61.2 and 44.2% (95% CI: 38.8-61.2 respectively. Pooled recurrent rate of febrile seizure in Iran was 20.9% (95% CI: 12.3-29.5. In 28.8 (95% CI: 19.3-38.4, children there was positive family history. The mean prevalence of simple and complex seizures was 69.3% (95% CI: 59.5-79.0 and 28.3% (95% CI: 19.6-31.0 respectively. The rates in different geographical regions of central, east, and west of Iran, 25, 20.8 and 27.1% were estimated, respectively.According to the data the prevalence febrile seizure is higher in males and children under two years. Recurrence rate in Iran, similar to other studies performed in other regions of the world.

  5. Seizure disorders in 43 cattle.

    Science.gov (United States)

    D'Angelo, A; Bellino, C; Bertone, I; Cagnotti, G; Iulini, B; Miniscalco, B; Casalone, C; Gianella, P; Cagnasso, A

    2015-01-01

    Large animals have a relatively high seizure threshold, and in most cases seizures are acquired. No published case series have described this syndrome in cattle. To describe clinical findings and outcomes in cattle referred to the Veterinary Teaching Hospital of the University of Turin (Italy) because of seizures. Client-owned cattle with documented evidence of seizures. Medical records of cattle with episodes of seizures reported between January 2002 and February 2014 were reviewed. Evidence of seizures was identified based on the evaluation of seizure episodes by the referring veterinarian or 1 of the authors. Animals were recruited if physical and neurologic examinations were performed and if diagnostic laboratory test results were available. Forty-three of 49 cases fulfilled the inclusion criteria. The mean age was 8 months. Thirty-one animals were male and 12 were female. Piedmontese breed accounted for 39/43 (91%) animals. Seizures were etiologically classified as reactive in 30 patients (70%) and secondary or structural in 13 (30%). Thirty-six animals survived, 2 died naturally, and 5 were euthanized for reasons of animal welfare. The definitive cause of reactive seizures was diagnosed as hypomagnesemia (n = 2), hypocalcemia (n = 12), and hypomagnesemia-hypocalcemia (n = 16). The cause of structural seizures was diagnosed as cerebrocortical necrosis (n = 8), inflammatory diseases (n = 4), and lead (Pb) intoxication (n = 1). The study results indicate that seizures largely are reported in beef cattle and that the cause can be identified and successfully treated in most cases. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  6. Types of Seizures Affecting Individuals with TSC

    Science.gov (United States)

    ... Policy Sitemap Learn Engage Donate About TSC Epilepsy/Seizure Disorders Seizures remain one of the most common neurological ... TSC Brain and Neurological Function Brain Abnormalities Epilepsy/Seizure Disorders Infantile Spasms Epilepsy in Adults with TSC Epilepsy ...

  7. Antiseizure Effects of Ketogenic Diet on Seizures Induced with ...

    African Journals Online (AJOL)

    olayemitoyin

    experimental data in Nigeria on the usefulness of KD in epilepsy models. This is ... Fasting glucose, ketosis level and serum chemistry were determined and seizure parameters recorded. ..... in animal occurs through the inhibition of GABA.

  8. Curcumin inhibits amygdaloid kindled seizures in rats.

    Science.gov (United States)

    DU, Peng; Li, Xin; Lin, Hao-Jie; Peng, Wei-Feng; Liu, Jian-Ying; Ma, Yu; Fan, Wei; Wang, Xin

    2009-06-20

    Curcumin can reduce the severity of seizures induced by kainate acid (KA), but the role of curcumin in amygdaloid kindled models is still unknown. This study aimed to explore the effect of curcumin on the development of kindling in amygdaloid kindled rats. With an amygdaloid kindled Sprague-Dawley (SD) rat model and an electrophysiological method, different doses of curcumin (10 mgxkg(-1)xd(-1) and 30 mgxkg(-1)xd(-1) as low dose groups, 100 mgxkg(-1)xd(-1) and 300 mgxkg(-1)xd(-1) as high dose groups) were administrated intraperitoneally during the whole kindling days, by comparison with the course of kindling, afterdischarge (AD) thresholds and the number of ADs to reach the stages of class I to V seizures in the rats between control and experimental groups. One-way or two-way ANOVA and Fisher's least significant difference post hoc test were used for statistical analyses. Curcumin (both 100 mgxkg(-1)xd(-1) and 300 mgxkg(-1)xd(-1)) significantly inhibited the behavioral seizure development in the (19.80 +/- 2.25) and (21.70 +/- 2.21) stimulations respectively required to reach the kindled state. Rats treated with 100 mgxkg(-1)xd(-1) curcumin 30 minutes before kindling stimulation showed an obvious increase in the stimulation current intensity required to evoke AD from (703.3 +/- 85.9) microA to (960.0 +/- 116.5) microA during the progression to class V seizures. Rats treated with 300 mgxkg(-1)xd(-1) curcumin showed a significant increase in the stimulation current intensity required to evoke AD from (735.0 +/- 65.2) microA to (867.0 +/- 93.4) microA during the progression to class V seizures. Rats treated with 300 mgxkg(-1)xd(-1) curcumin required much more evoked ADs to reach the stage of class both IV (as (199.83 +/- 12.47) seconds) and V seizures (as (210.66 +/- 10.68) seconds). Rats treated with 100 mgxkg(-1)xd(-1) curcumin required much more evoked ADs to reach the stage of class V seizures (as (219.56 +/- 18.24) seconds). Our study suggests that curcumin has

  9. Seizure clusters: characteristics and treatment.

    Science.gov (United States)

    Haut, Sheryl R

    2015-04-01

    Many patients with epilepsy experience 'clusters' or flurries of seizures, also termed acute repetitive seizures (ARS). Seizure clustering has a significant impact on health and quality of life. This review summarizes recent advances in the definition and neurophysiologic understanding of clustering, the epidemiology and risk factors for clustering and both inpatient and outpatient clinical implications. New treatments for seizure clustering/ARS are perhaps the area of greatest recent progress. Efforts have focused on creating a uniform definition of a seizure cluster. In neurophysiologic studies of refractory epilepsy, seizures within a cluster appear to be self-triggering. Clinical progress has been achieved towards a more precise prevalence of clustering, and consensus guidelines for epilepsy monitoring unit safety. The greatest recent advances are in the study of nonintravenous route of benzodiazepines as rescue medications for seizure clusters/ARS. Rectal benzodiazepines have been very effective but barriers to use exist. New data on buccal, intramuscular and intranasal preparations are anticipated to lead to a greater number of approved treatments. Progesterone may be effective for women who experience catamenial clusters. Seizure clustering is common, particularly in the setting of medically refractory epilepsy. Clustering worsens health and quality of life, and the field requires greater focus on clarifying of definition and clinical implications. Progress towards the development of nonintravenous routes of benzodiazepines has the potential to improve care in this area.

  10. Minimum Electric Field Exposure for Seizure Induction with Electroconvulsive Therapy and Magnetic Seizure Therapy.

    Science.gov (United States)

    Lee, Won H; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

    2017-05-01

    Lowering and individualizing the current amplitude in electroconvulsive therapy (ECT) has been proposed as a means to produce stimulation closer to the neural activation threshold and more focal seizure induction, which could potentially reduce cognitive side effects. However, the effect of current amplitude on the electric field (E-field) in the brain has not been previously linked to the current amplitude threshold for seizure induction. We coupled MRI-based E-field models with amplitude titrations of motor threshold (MT) and seizure threshold (ST) in four nonhuman primates (NHPs) to determine the strength, distribution, and focality of stimulation in the brain for four ECT electrode configurations (bilateral, bifrontal, right-unilateral, and frontomedial) and magnetic seizure therapy (MST) with cap coil on vertex. At the amplitude-titrated ST, the stimulated brain subvolume (23-63%) was significantly less than for conventional ECT with high, fixed current (94-99%). The focality of amplitude-titrated right-unilateral ECT (25%) was comparable to cap coil MST (23%), demonstrating that ECT with a low current amplitude and focal electrode placement can induce seizures with E-field as focal as MST, although these electrode and coil configurations affect differently specific brain regions. Individualizing the current amplitude reduced interindividual variation in the stimulation focality by 40-53% for ECT and 26% for MST, supporting amplitude individualization as a means of dosing especially for ECT. There was an overall significant correlation between the measured amplitude-titrated ST and the prediction of the E-field models, supporting a potential role of these models in dosing of ECT and MST. These findings may guide the development of seizure therapy dosing paradigms with improved risk/benefit ratio.

  11. [Reflex seizures, cinema and television].

    Science.gov (United States)

    Olivares-Romero, Jesús

    2015-12-16

    In movies and television series are few references to seizures or reflex epilepsy even though in real life are an important subgroup of total epileptic syndromes. It has performed a search on the topic, identified 25 films in which they appear reflex seizures. Most seizures observed are tonic-clonic and visual stimuli are the most numerous, corresponding all with flashing lights. The emotions are the main stimuli in higher level processes. In most cases it is not possible to know if a character suffers a reflex epilepsy or suffer reflex seizures in the context of another epileptic syndrome. The main conclusion is that, in the movies, the reflex seizures are merely a visual reinforcing and anecdotal element without significant influence on the plot.

  12. Atypical febrile seizures, mesial temporal lobe epilepsy, and dual pathology.

    Science.gov (United States)

    Sanon, Nathalie T; Desgent, Sébastien; Carmant, Lionel

    2012-01-01

    Febrile seizures occurring in the neonatal period, especially when prolonged, are thought to be involved in the later development of mesial temporal lobe epilepsy (mTLE) in children. The presence of an often undetected, underlying cortical malformation has also been reported to be implicated in the epileptogenesis process following febrile seizures. This paper highlights some of the various animal models of febrile seizures and of cortical malformation and portrays a two-hit model that efficiently mimics these two insults and leads to spontaneous recurrent seizures in adult rats. Potential mechanisms are further proposed to explain how these two insults may each, or together, contribute to network hyperexcitability and epileptogenesis. Finally the clinical relevance of the two-hit model is briefly discussed in light of a therapeutic and preventive approach to mTLE.

  13. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    International Nuclear Information System (INIS)

    Vito, Stephen T.; Austin, Adam T.; Banks, Christopher N.; Inceoglu, Bora; Bruun, Donald A.; Zolkowska, Dorota; Tancredi, Daniel J.; Rogawski, Michael A.; Hammock, Bruce D.; Lein, Pamela J.

    2014-01-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA A R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA A R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA A R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase inhibitor alters

  14. Automatic Epileptic Seizure Onset Detection Using Matching Pursuit

    DEFF Research Database (Denmark)

    Sorensen, Thomas Lynggaard; Olsen, Ulrich L.; Conradsen, Isa

    2010-01-01

    . The combination of Matching Pursuit and SVM for automatic seizure detection has never been tested before, making this a pilot study. Data from red different patients with 6 to 49 seizures are used to test our model. Three patients are recorded with scalp electroencephalography (sEEG) and three with intracranial...... electroencephalography (iEEG). A sensitivity of 78-100% and a detection latency of 5-18s has been achieved, while holding the false detection at 0.16-5.31/h. Our results show the potential of Matching Pursuit as a feature xtractor for detection of epileptic seizures....

  15. Epilepsy research methods update: Understanding the causes of epileptic seizures and identifying new treatments using non-mammalian model organisms.

    Science.gov (United States)

    Cunliffe, Vincent T; Baines, Richard A; Giachello, Carlo N G; Lin, Wei-Hsiang; Morgan, Alan; Reuber, Markus; Russell, Claire; Walker, Matthew C; Williams, Robin S B

    2015-01-01

    This narrative review is intended to introduce clinicians treating epilepsy and researchers familiar with mammalian models of epilepsy to experimentally tractable, non-mammalian research models used in epilepsy research, ranging from unicellular eukaryotes to more complex multicellular organisms. The review focuses on four model organisms: the social amoeba Dictyostelium discoideum, the roundworm Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the zebrafish Danio rerio. We consider recent discoveries made with each model organism and discuss the importance of these advances for the understanding and treatment of epilepsy in humans. The relative ease with which mutations in genes of interest can be produced and studied quickly and cheaply in these organisms, together with their anatomical and physiological simplicity in comparison to mammalian species, are major advantages when researchers are trying to unravel complex disease mechanisms. The short generation times of most of these model organisms also mean that they lend themselves particularly conveniently to the investigation of drug effects or epileptogenic processes across the lifecourse. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  16. Smoking prevalence and seizure control in Chinese males with epilepsy.

    Science.gov (United States)

    Gao, Hui; Sander, Josemir W; Du, Xudong; Chen, Jiani; Zhu, Cairong; Zhou, Dong

    2017-08-01

    Smoking has a negative effect on most diseases, yet it is under-investigated in people with epilepsy; thus its role is not clear in the general population with epilepsy. We performed a retrospective pilot study on males with epilepsy to determine the smoking rate and its relationship with seizure control using univariate analysis to calculate odds ratios (ORs) and also used a multi-variate logistic regression model. The smoking rate in our sample of 278 individuals was 25.5%, which is lower than the general Chinese population smoking rate among males of 52.1%. We used two classifications: the first classified epilepsy as generalized, or by presumed topographic origin (temporal, frontal, parietal and occipital). The second classified the dominant seizure type of an individual as generalized tonic clonic seizure (GTCS), myoclonic seizure (MS), complex partial seizure (CPS), simple partial seizure (SPS), and secondary GTCS (sGTCS). The univariable analysis of satisfactory seizure control profile and smoking rate in both classifications showed a trend towards a beneficial effect of smoking although most were not statistically significant. Considering medication is an important confounding factor that would largely influence seizure control, we also conducted multi-variable analysis for both classifications with drug numbers and dosage. The result of our model also suggested that smoking is a protective factor. Our findings seem to suggest that smoking could have a potential role in seizure control although confounders need exploration particularly in view of the potential long term health effects. Replication in a much larger sample is needed as well as case control studies to elucidate this issue. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A KCNQ channel opener for experimental neonatal seizures and status epilepticus

    Science.gov (United States)

    Raol, YogendraSinh H.; Lapides, David A.; Keating, Jeffery; Brooks-Kayal, Amy R.; Cooper, Edward C.

    2009-01-01

    Objective Neonatal seizures occur frequently, are often refractory to anticonvulsants, and are associated with considerable morbidity and mortality. Genetic and electrophysiological evidence indicates that KCNQ voltage-gated potassium channels are critical regulators of neonatal brain excitability. This study tests the hypothesis that selective openers of KCNQ channels may be effective for treatment of neonatal seizures. Methods We induced seizures in postnatal day 10 rats with either kainic acid or flurothyl. We measured seizure activity using quantified behavioral rating and electrocorticography. We compared the efficacy of flupirtine, a selective KCNQ channel opener, with phenobarbital and diazepam, two drugs in current use for neonatal seizures. Results Unlike phenobarbital or diazepam, flupirtine prevented animals from developing status epilepticus (SE) when administered prior to kainate. In the flurothyl model, phenobarbital and diazepam increased latency to seizure onset, but flupirtine completely prevented seizures throughout the experiment. Flupirtine was also effective in arresting electrographic and behavioral seizures when administered after animals had developed continuous kainate-induced SE. Flupirtine caused dose-related sedation and suppressed EEG activity, but did not result in respiratory suppression or result in any mortality. Interpretation Flupirtine appears more effective than either of two commonly used anti-epileptic drugs, phenobarbital and diazepam, in preventing and suppressing seizures in both the kainic acid and flurothyl models of symptomatic neonatal seizures. KCNQ channel openers merit further study as potential treatments for seizures in infants and children. PMID:19334075

  18. Treating acute seizures with benzodiazepines: does seizure duration matter?

    Science.gov (United States)

    Naylor, David E

    2014-10-01

    Several clinical trials have shown improved seizure control and outcome by early initiation of treatment with benzodiazepines, before arrival in the emergency department and before intravenous access can be established. Here, evidence is provided and reviewed for rapid treatment of acute seizures in order to avoid the development of benzodiazepine pharmacoresistance and the emergence of self-sustaining status epilepticus. Alterations in the physiology, pharmacology, and postsynaptic level of GABA-A receptors can develop within minutes to an hour and hinder the ability of synaptic inhibition to stop seizures while also impairing the efficacy of GABAergic agents, such as benzodiazepines, to boost impaired inhibition. In addition, heightened excitatory transmission further exacerbates the inhibitory/excitatory balance and makes seizure control even more resistant to treatment. The acute increase in the surface expression of NMDA receptors during prolonged seizures also may cause excitotoxic injury, cell death, and other pathological expressions and re-arrangements of receptor subunits that all contribute to long-term sequelae such as cognitive impairment and chronic epilepsy. In conclusion, a short window of opportunity exists when seizures are maximally controlled by first-line benzodiazepine treatment. After that, multiple pathological mechanisms quickly become engaged that make seizures increasingly more difficult to control with high risk for long-term harm.

  19. Indomethacin treatment prior to pentylenetetrazole-induced seizures downregulates the expression of il1b and cox2 and decreases seizure-like behavior in zebrafish larvae.

    Science.gov (United States)

    Barbalho, Patrícia Gonçalves; Lopes-Cendes, Iscia; Maurer-Morelli, Claudia Vianna

    2016-03-09

    It has been demonstrated that the zebrafish model of pentylenetetrazole (PTZ)-evoked seizures and the well-established rodent models of epilepsy are similar pertaining to behavior, electrographic features, and c-fos expression. Although this zebrafish model is suitable for studying seizures, to date, inflammatory response after seizures has not been investigated using this model. Because a relationship between epilepsy and inflammation has been established, in the present study we investigated the transcript levels of the proinflammatory cytokines interleukin-1 beta (il1b) and cyclooxygenase-2 (cox2a and cox2b) after PTZ-induced seizures in the brain of zebrafish 7 days post fertilization. Furthermore, we exposed the fish to the nonsteroidal anti-inflammatory drug indomethacin prior to PTZ, and we measured its effect on seizure latency, number of seizure behaviors, and mRNA expression of il1b, cox2b, and c-fos. We used quantitative real-time PCR to assess the mRNA expression of il1b, cox2a, cox2b, and c-fos, and visual inspection was used to monitor seizure latency and the number of seizure-like behaviors. We found a short-term upregulation of il1b, and we revealed that cox2b, but not cox2a, was induced after seizures. Indomethacin treatment prior to PTZ-induced seizures downregulated the mRNA expression of il1b, cox2b, and c-fos. Moreover, we observed that in larvae exposed to indomethacin, seizure latency increased and the number of seizure-like behaviors decreased. This is the first study showing that il1b and cox-2 transcripts are upregulated following PTZ-induced seizures in zebrafish. In addition, we demonstrated the anticonvulsant effect of indomethacin based on (1) the inhibition of PTZ-induced c-fos transcription, (2) increase in seizure latency, and (3) decrease in the number of seizure-like behaviors. Furthermore, anti-inflammatory effect of indomethacin is clearly demonstrated by the downregulation of the mRNA expression of il1b and cox2b. Our results

  20. Human seizures couple across spatial scales through travelling wave dynamics

    Science.gov (United States)

    Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.

    2017-04-01

    Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.

  1. Population dose-response analysis of daily seizure count following vigabatrin therapy in adult and pediatric patients with refractory complex partial seizures.

    Science.gov (United States)

    Nielsen, Jace C; Hutmacher, Matthew M; Wesche, David L; Tolbert, Dwain; Patel, Mahlaqa; Kowalski, Kenneth G

    2015-01-01

    Vigabatrin is an irreversible inhibitor of γ-aminobutyric acid transaminase (GABA-T) and is used as an adjunctive therapy for adult patients with refractory complex partial seizures (rCPS). The purpose of this investigation was to describe the relationship between vigabatrin dosage and daily seizure rate for adults and children with rCPS and identify relevant covariates that might impact seizure frequency. This population dose-response analysis used seizure-count data from three pediatric and two adult randomized controlled studies of rCPS patients. A negative binomial distribution model adequately described daily seizure data. Mean seizure rate decreased with time after first dose and was described using an asymptotic model. Vigabatrin drug effects were best characterized by a quadratic model using normalized dosage as the exposure metric. Normalized dosage was an estimated parameter that allowed for individualized changes in vigabatrin exposure based on body weight. Baseline seizure rate increased with decreasing age, but age had no impact on vigabatrin drug effects after dosage was normalized for body weight differences. Posterior predictive checks indicated the final model was capable of simulating data consistent with observed daily seizure counts. Total normalized vigabatrin dosages of 1, 3, and 6 g/day were predicted to reduce seizure rates 23.2%, 45.6%, and 48.5%, respectively. © 2014, The American College of Clinical Pharmacology.

  2. In vivo evaluation of anticonvulsant and antioxidant effects of phenobarbital microemulsion for transdermal administration in pilocarpine seizure rat model.

    Science.gov (United States)

    Figueiredo, Kayo Alves; Medeiros, Shirlene Cesário; Neves, Jamilly Kelly Oliveira; da Silva, José Alexsandro; da Rocha Tomé, Adriana; Carvalho, André Luis Menezes; de Freitas, Rivelilson Mendes

    2015-04-01

    This study aimed to evaluate a microemulsion system (ME) containing phenobarbital in epilepsy model induced by pilocarpine in rats and to oxidative stress and histologic lesions in hippocampus. The microemulsion was applied to the shaved back of Wistar rats. The animals were divided into the following groups: control group (P400); ME50 40mg/kg, topically-t.p.; ME100, 40mg/kg, t.p.; EM50, 40mg/kg, t.p.; phenobarbital solution 40mg/kg (PS), oral. After 60min, behavioral changes were evaluated for 1h in the model of epileptical crisis induced by pilocarpine. Phenobarbital in microemulsion was able to increase the latency for status epilepticus (SE) (p<0.05), decrease the number of epileptical crisis (ME50: p<0.001; ME100: p<0.01) and decrease mortality rate by 80% compared to P400. In EM50 and PS groups, deaths were decreased by 53.3% and 100% respectively. The ME50 and ME100 groups were able to reduce oxidative stress in experimental animals when compared to the P400. The microemulsion was still capable of reducing neuronal damage in the hippocampal areas. The results of this study come in an innovative way, demonstrating the ability of transdermal ME50 and ME100 to reduce pilocarpine-induced epileptical crisis, oxidative stress, besides neuronal damages. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hyperspherical Manifold for EEG Signals of Epileptic Seizures

    Directory of Open Access Journals (Sweden)

    Tahir Ahmad

    2012-01-01

    Full Text Available The mathematical modelling of EEG signals of epileptic seizures presents a challenge as seizure data is erratic, often with no visible trend. Limitations in existing models indicate a need for a generalized model that can be used to analyze seizures without the need for apriori information, whilst minimizing the loss of signal data due to smoothing. This paper utilizes measure theory to design a discrete probability measure that reformats EEG data without altering its geometric structure. An analysis of EEG data from three patients experiencing epileptic seizures is made using the developed measure, resulting in successful identification of increased potential difference in portions of the brain that correspond to physical symptoms demonstrated by the patients. A mapping then is devised to transport the measure data onto the surface of a high-dimensional manifold, enabling the analysis of seizures using directional statistics and manifold theory. The subset of seizure signals on the manifold is shown to be a topological space, verifying Ahmad's approach to use topological modelling.

  4. Stress, anxiety, depression, and epilepsy: investigating the relationship between psychological factors and seizures.

    Science.gov (United States)

    Thapar, Ajay; Kerr, Michael; Harold, Gordon

    2009-01-01

    The goal of the study described here was to examine the interrelationship between psychological factors (anxiety, stress, and depression) and seizures. In this longitudinal cohort study, data on anxiety, depression, perceived stress, and seizure recency (time since last seizure) and frequency were collected at two time points using standard validated questionnaire measures. Empirically based models with psychological factors explaining change in (1) seizure recency and (2) seizure frequency scores across time were specified. We then tested how these psychological factors acted together in predicting seizure recency and frequency. Our data were used to test whether these models were valid for the study population. Latent variable structural equation modeling was used for the analysis. Four hundred thirty-three of the 558 individuals who initially consented to participate provided two waves of data for this analysis. Stress (beta=0.25, Panxiety (beta=0.30, Pdepression (beta=0.30, Pdepression that mediated the relationship of both anxiety and stress with modeled change in seizure recency (beta=0.19, PDepression mediates the relationship between stress and anxiety and change in seizure recency and seizure frequency. These findings highlight the importance of depression management in addition to seizure management in the assessment and treatment of epilepsy in an adult population.

  5. A study of the dynamics of seizure propagation across micro domains in the vicinity of the seizure onset zone.

    Science.gov (United States)

    Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J; Anderson, William S

    2015-08-01

    The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the [Formula: see text] Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately [Formula: see text]. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.

  6. A study of the dynamics of seizure propagation across micro domains in the vicinity of the seizure onset zone

    Science.gov (United States)

    Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.

    2015-08-01

    Objective. The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70-110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. Approach. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. Main results. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately 9 m{{m}2}. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. Significance. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.

  7. HMPAO-SPECT in cerebral seizures

    International Nuclear Information System (INIS)

    Gruenwald, F.; Bockisch, A.; Reichmann, K.; Ammari, B.; Hotze, A.; Biersack, H.J.; Durwen, H.; Buelau, P.; Elger, C.E.; Rohde, A.; Penin, H.

    1988-01-01

    In nine patients with suspected psychogenic seizures and in three patients with proven epileptic seizures HMPAO-SPECT was performed prior to and during seizure. In the patients with lateron-proven psychogenic seizures no, or only slight, changes of regional cerebral blood flow were found. Patients with proven epilepsy revealed partly normal findings interictally but during seizure a markedly increased circumscript blood flow was found in all patients. Even though PET is superior to SPECT with respect to spatial resolution, in the diagnosis of seizures HMPAO-SPECT has the advantage of enabling injection of the tracer during the seizure and the performance of the SPECT study subsequently. (orig.) [de

  8. Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures

    Directory of Open Access Journals (Sweden)

    Bruno P. Carreira

    2015-01-01

    Full Text Available Hippocampal neurogenesis is changed by brain injury. When neuroinflammation accompanies injury, activation of resident microglial cells promotes the release of inflammatory cytokines and reactive oxygen/nitrogen species like nitric oxide (NO. In these conditions, NO promotes proliferation of neural stem cells (NSC in the hippocampus. However, little is known about the role of NO in the survival and differentiation of newborn cells in the injured dentate gyrus. Here we investigated the role of NO following seizures in the regulation of proliferation, migration, differentiation, and survival of NSC in the hippocampus using the kainic acid (KA induced seizure mouse model. We show that NO increased the proliferation of NSC and the number of neuroblasts following seizures but was detrimental to the survival of newborn neurons. NO was also required for the maintenance of long-term neuroinflammation. Taken together, our data show that NO positively contributes to the initial stages of neurogenesis following seizures but compromises survival of newborn neurons.

  9. Management of Reflex Anoxic Seizures

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-10-01

    Full Text Available Investigators at the Roald Dahl EEG Unit, Alder Hey Children’s NHS Foundation, Liverpool, UK, review the definition, pathophysiology, clinical presentation, and management of reflex anoxic seizures (RAS in children.

  10. Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention

    Science.gov (United States)

    Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan

    2015-01-01

    Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single

  11. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Vito, Stephen T., E-mail: stvito@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Austin, Adam T., E-mail: aaustin@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Banks, Christopher N., E-mail: Christopher.Banks@oehha.ca.gov [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Inceoglu, Bora, E-mail: abinceoglu@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Bruun, Donald A., E-mail: dabruun@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Zolkowska, Dorota, E-mail: dzolkowska@gmail.com [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Tancredi, Daniel J., E-mail: djtancredi@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Rogawski, Michael A., E-mail: rogawski@ucdavis.edu [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Lein, Pamela J., E-mail: pjlein@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States)

    2014-12-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase

  12. Management Of Post Stroke Seizures

    Directory of Open Access Journals (Sweden)

    Kavian Ghandehari

    2017-02-01

    Full Text Available The incidence of seizures in relation to stroke is 8.9%, with a frequency of 10.6 and 8.6% in haemorrhagic and ischaemic stroke, respectively. In subarachnoid haemorrhage the incidence is 8.5%. Due to the fact that infarcts are significantly more frequent than haemorrhages, seizures are mainly related to occlusive vascular disease of the brain. The general view is to consider stroke-related seizures as harmless complications in the course of a prolonged vascular disease involving the heart and brain. Seizures can be classified as those of early and those of late onset in a paradigm comparable to post-traumatic epilepsy, with an arbitrary dividing point of two weeks after the event. Most early-onset seizures occur during the first day after the stroke. Late-onset seizures occur three times more often than early-onset ones. A first late-onset epileptic event is most likely to take place between six months and two years after the stroke. However, up to 28% of patients develop their first seizure several years later. Simple partial seizures, with or without secondary generalisation, account for about 50% of total seizures, while complex partial spells, with or without secondary generalisation, and primary generalised tonic–clonic insults account for approximately 25% each. Status epilepticus occurs in 12% of stroke patients, but the recurrence rate after an initial status epilepticus is not higher than after a single seizure. Inhibitory seizures, mimicking transient ischaemic attacks, are observed in 7.1% of cases. The only clinical predictor of late-onset seizures is the initial presentation of partial anterior circulation syndrome due to a territorial infarct. Patients with total anterior circulation syndrome have less chance of developing epileptic spells, not only due to their shorter life expectancy but also due to the fact that the large infarcts are sharply demarcated in these patients. The optimal timing and type of antiepileptic drug

  13. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer’s disease

    OpenAIRE

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2014-01-01

    Seizures are a known co-occurring symptom of Alzheimer’s disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer’s disease and epilepsy. The purpose of this stud...

  14. Seizure Prediction: Science Fiction or Soon to Become Reality?

    Science.gov (United States)

    Freestone, Dean R; Karoly, Philippa J; Peterson, Andre D H; Kuhlmann, Levin; Lai, Alan; Goodarzy, Farhad; Cook, Mark J

    2015-11-01

    This review highlights recent developments in the field of epileptic seizure prediction. We argue that seizure prediction is possible; however, most previous attempts have used data with an insufficient amount of information to solve the problem. The review discusses four methods for gaining more information above standard clinical electrophysiological recordings. We first discuss developments in obtaining long-term data that enables better characterisation of signal features and trends. Then, we discuss the usage of electrical stimulation to probe neural circuits to obtain robust information regarding excitability. Following this, we present a review of developments in high-resolution micro-electrode technologies that enable neuroimaging across spatial scales. Finally, we present recent results from data-driven model-based analyses, which enable imaging of seizure generating mechanisms from clinical electrophysiological measurements. It is foreseeable that the field of seizure prediction will shift focus to a more probabilistic forecasting approach leading to improvements in the quality of life for the millions of people who suffer uncontrolled seizures. However, a missing piece of the puzzle is devices to acquire long-term high-quality data. When this void is filled, seizure prediction will become a reality.

  15. Decreased levels of active uPA and KLK8 assessed by [111 In]MICA-401 binding correlate with the seizure burden in an animal model of temporal lobe epilepsy.

    Science.gov (United States)

    Missault, Stephan; Peeters, Lore; Amhaoul, Halima; Thomae, David; Van Eetveldt, Annemie; Favier, Barbara; Thakur, Anagha; Van Soom, Jeroen; Pitkänen, Asla; Augustyns, Koen; Joossens, Jurgen; Staelens, Steven; Dedeurwaerdere, Stefanie

    2017-09-01

    Urokinase-type plasminogen activator (uPA) and kallikrein-related peptidase 8 (KLK8) are serine proteases that contribute to extracellular matrix (ECM) remodeling after brain injury. They can be labelled with the novel radiotracer [ 111 In]MICA-401. As the first step in exploring the applicability of [ 111 In]MICA-401 in tracing the mechanisms of postinjury ECM reorganization in vivo, we performed in vitro and ex vivo studies, assessing [ 111 In]MICA-401 distribution in the brain in two animal models: kainic acid-induced status epilepticus (KASE) and controlled cortical impact (CCI)-induced traumatic brain injury (TBI). In the KASE model, in vitro autoradiography with [ 111 In]MICA-401 was performed at 7 days and 12 weeks post-SE. To assess seizure burden, rats were monitored using video-electroencephalography (EEG) for 1 month before the 12-week time point. In the CCI model, in vitro autoradiography was performed at 4 days and ex vivo autoradiography at 7 days post-TBI. At 7 days post-SE, in vitro autoradiography revealed significantly decreased [ 111 In]MICA-401 binding in hippocampal CA3 subfield and extrahippocampal temporal lobe (ETL). In the chronic phase, when animals had developed spontaneous seizures, specific binding was decreased in CA3 and CA1/CA2 subfields of hippocampus, dentate gyrus, ETL, and parietal cortex. Of interest, KASE rats with the highest frequency of seizures had the lowest hippocampal [ 111 In]MICA-401 binding (r = -0.76, p ≤ 0.05). Similarly, at 4 days post-TBI, in vitro [ 111 In]MICA-401 binding was significantly decreased in medial and lateral perilesional cortex and ipsilateral dentate gyrus. Ex vivo autoradiography at 7 days post-TBI, however, revealed increased tracer uptake in perilesional cortex and hippocampus, which was likely related to tracer leakage due to blood-brain barrier (BBB) disruption. Strong association of reduced [ 111 In]MICA-401 binding with seizure burden in the KASE model suggests that analysis of reduced

  16. The effect of propofol-remifentanil anesthesia on selected seizure quality indices in electroconvulsive therapy.

    Science.gov (United States)

    Dinwiddie, Stephen H; Glick, David B; Goldman, Morris B

    2012-07-01

    Use of a short-acting opiate to potentiate anesthetic induction agents has been shown to increase seizure duration in electroconvulsive therapy (ECT), but little is known of the effect of this combination on indices of seizure quality. To determine whether anesthetic modality affects commonly provided indices of seizure quality. Twenty-five subjects were given propofol 2 mg/kg body weight for their first ECT session, at which time seizure threshold was titrated. Subjects thereafter alternated between that anesthetic regimen or propofol 0.5 mg/kg plus remifentanil 1 mcg/kg. Linear mixed models with random subject effect, adjusting for electrode placement, electrical charge, and number of treatments, were fit to estimate effect of anesthesia on seizure duration and several standard seizure quality indices (average seizure energy, time to peak electroencephalography (EEG) power, maximum sustained power, interhemispheric coherence, early and midictal EEG amplitude, and maximum sustained interhemispheric EEG coherence). Propofol-remifentanil anesthesia significantly lengthened seizure duration and was associated with longer time to reach maximal EEG power and coherence as well as maximal degree of interhemispheric EEG coherence. No effect was seen on early ictal amplitude or average seizure energy index. Propofol-remifentanil anesthesia prolongs seizure duration and has a significant effect on some, but not all, measures of seizure quality. This effect may be of some benefit in cases where adequate seizures are otherwise difficult to elicit. Varying anesthetic technique may allow more precise investigation of the relationships between and relative impacts of commonly used seizure quality indices on clinical outcomes and ECT-related cognitive side effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Hyponatraemia and seizures after ecstasy use

    Science.gov (United States)

    Holmes, S.; Banerjee, A.; Alexander, W.

    1999-01-01

    A patient presented to our unit with seizures and profound hyponatraemia after ingestion of a single tablet of ecstasy. The seizures proved resistant to therapy and ventilation on the intensive care unit was required. Resolution of the seizures occurred on correction of the metabolic abnormalities. The pathogenesis of seizures and hyponatraemia after ecstasy use is discussed. Ecstasy use should be considered in any young patient presenting with unexplained seizures and attention should be directed towards electrolyte levels, particularly sodium.


Keywords: ecstasy; seizures; hyponatraemia PMID:10396584

  18. Automated seizure detection systems and their effectiveness for each type of seizure.

    Science.gov (United States)

    Ulate-Campos, A; Coughlin, F; Gaínza-Lein, M; Fernández, I Sánchez; Pearl, P L; Loddenkemper, T

    2016-08-01

    Epilepsy affects almost 1% of the population and most of the approximately 20-30% of patients with refractory epilepsy have one or more seizures per month. Seizure detection devices allow an objective assessment of seizure frequency and a treatment tailored to the individual patient. A rapid recognition and treatment of seizures through closed-loop systems could potentially decrease morbidity and mortality in epilepsy. However, no single detection device can detect all seizure types. Therefore, the choice of a seizure detection device should consider the patient-specific seizure semiologies. This review of the literature evaluates seizure detection devices and their effectiveness for different seizure types. Our aim is to summarize current evidence, offer suggestions on how to select the most suitable seizure detection device for each patient and provide guidance to physicians, families and researchers when choosing or designing seizure detection devices. Further, this review will guide future prospective validation studies. Copyright © 2016. Published by Elsevier Ltd.

  19. Anticonvulsant Effect of the Aqueous Extract and Essential Oil of Carum Carvi L. Seeds in a Pentylenetetrazol Model of Seizure in Mice

    Science.gov (United States)

    Showraki, Alireza; Emamghoreishi, Masoumeh; Oftadegan, Somayeh

    2016-01-01

    Background: Carum carvi L. (caraway), known as black zeera in Iran, has been indicated for the treatment of epilepsy in Iranian folk medicine. This study evaluated whether the aqueous extract and essential oil of caraway seeds have anticonvulsant effects in mice. Methods: The anticonvulsant effects of the aqueous extract (200, 400, 800, 1600, and 3200 mg/kg, i.p.) and essential oil (25, 50, 100, 200, and 400 mg/kg, i.p.) of caraway were assessed using pentylenetetrazol (PTZ; 95 mg/kg i.p.) induced convulsions. Diazepam (3 mg/kg) was used as positive control. The latency time before the onset of myoclonic, clonic, and tonic convulsions and the percentage of mortality were recorded. In addition, the effect of caraway on neuromuscular coordination was evaluated using the rotarod performance test. Results: The extract and essential oil dose-dependently increased the latency time to the onset of myoclonic (ED50, 1257 and 62.2 mg/kg, respectively) and clonic (ED50, 929 and 42.3 mg/kg, respectively) seizures. The extract and essential oil of caraway prevented the animals from tonic seizure with ED50s of 2142.4 and 97.6 mg/kg, respectively. The extract and essential oil of caraway protected 28.6 and 71.4% of the animals from PTZ-induced death, respectively, and had no significant effect on neuromuscular coordination. Conclusion: This study showed that the aqueous extract and essential oil of caraway had anticonvulsant properties. However, the essential oil was more potent and effective than was the aqueous extract as an anticonvulsant. Additionally, the anticonvulsant effect of caraway was not due to a muscle relaxant activity. These findings support the acclaimed antiepileptic effect of caraway in folk medicine and propose its potential use in petit mal seizure in humans. PMID:27217604

  20. Serotonin neurones have anti-convulsant effects and reduce seizure-induced mortality

    Science.gov (United States)

    Buchanan, Gordon F; Murray, Nicholas M; Hajek, Michael A; Richerson, George B

    2014-01-01

    Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. Defects in central control of breathing are important contributors to the pathophysiology of SUDEP, and serotonin (5-HT) system dysfunction may be involved. Here we examined the effect of 5-HT neurone elimination or 5-HT reduction on seizure risk and seizure-induced mortality. Adult Lmx1bf/f/p mice, which lack >99% of 5-HT neurones in the CNS, and littermate controls (Lmx1bf/f) were subjected to acute seizure induction by maximal electroshock (MES) or pilocarpine, variably including electroencephalography, electrocardiography, plethysmography, mechanical ventilation or pharmacological therapy. Lmx1bf/f/p mice had a lower seizure threshold and increased seizure-induced mortality. Breathing ceased during most seizures without recovery, whereas cardiac activity persisted for up to 9 min before terminal arrest. The mortality rate of mice of both genotypes was reduced by mechanical ventilation during the seizure or 5-HT2A receptor agonist pretreatment. The selective serotonin reuptake inhibitor citalopram reduced mortality of Lmx1bf/f but not of Lmx1bf/f/p mice. In C57BL/6N mice, reduction of 5-HT synthesis with para-chlorophenylalanine increased MES-induced seizure severity but not mortality. We conclude that 5-HT neurones raise seizure threshold and decrease seizure-related mortality. Death ensued from respiratory failure, followed by terminal asystole. Given that SUDEP often occurs in association with generalised seizures, some mechanisms causing death in our model might be shared with those leading to SUDEP. This model may help determine the relationship between seizures, 5-HT system dysfunction, breathing and death, which may lead to novel ways to prevent SUDEP. PMID:25107926

  1. Aminophylline increases seizure length during electroconvulsive therapy.

    Science.gov (United States)

    Stern, L; Dannon, P N; Hirschmann, S; Schriber, S; Amytal, D; Dolberg, O T; Grunhaus, L

    1999-12-01

    Electroconvulsive therapy (ECT) is considered to be one of the most effective treatments for patients with major depression and persistent psychosis. Seizure characteristics probably determine the therapeutic effect of ECT; as a consequence, short seizures are accepted as one of the factors of poor outcome. During most ECT courses seizure threshold increases and seizure duration decreases. Methylxanthine preparations, caffeine, and theophylline have been used to prolong seizure duration. The use of aminophylline, more readily available than caffeine, has not been well documented. The objective of this study was to test the effects of aminophylline on seizure length. Fourteen drug-free patients with diagnoses of affective disorder or psychotic episode receiving ECT participated in this study. Seizure length was assessed clinically and per EEG. Statistical comparisons were done using paired t tests. A significant increase (p < 0.04) in seizure length was achieved and maintained on three subsequent treatments with aminophylline. No adverse events were noted from the addition of aminophylline.

  2. Multiple Sclerosis: Can It Cause Seizures?

    Science.gov (United States)

    ... multiple sclerosis and epilepsy? Answers from B Mark Keegan, M.D. Epileptic seizures are more common in ... controlled with anti-seizure medication. With B Mark Keegan, M.D. Lund C, et al. Multiple sclerosis ...

  3. Etiology and Outcome of Neonatal Seizures

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-04-01

    Full Text Available The prognostic value of seizure etiology, neurologic examination, EEG, and neuroimaging in the neurodevelopmental outcome of 89 term infants with neonatal seizures was determined at the Children’s Hospital and Harvard Medical School, Boston, MA.

  4. Temperature, age, and recurrence of febrile seizure

    NARCIS (Netherlands)

    M. van Stuijvenberg (Margriet); E.W. Steyerberg (Ewout); G. Derksen-Lubsen (Gerarda); H.A. Moll (Henriëtte)

    1998-01-01

    textabstractOBJECTIVE: Prediction of a recurrent febrile seizure during subsequent episodes of fever. DESIGN: Study of the data of the temperatures, seizure recurrences, and baseline patient characteristics that were collected at a randomized placebo controlled trial of ibuprofen

  5. Effects of single-dose neuropeptide Y on levels of hippocampal BDNF, MDA, GSH, and NO in a rat model of pentylenetetrazole-induced epileptic seizure

    Directory of Open Access Journals (Sweden)

    Hale Maral Kir

    2013-11-01

    Full Text Available Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, which may increase the content of reactive oxygen and nitrogen species. Th e objective of this study was to investigate the eff ects of Neuropeptide Y on oxidative and nitrosative balance and brain-derived neurotrophic factor levels induced by pentylenetetrazole (a standard convulsant drug in the hippocampus of Wistar rats. Th ree groups of seven rats were treated intraperitoneally as follows: group  (saline + saline  ml saline, group  (salin + Pentylenetetrazole  ml saline  min before Pentylenetetrazole; and group  (Neuropeptide Y + Pentylenetetrazole  μg/kg Neuropeptide Y  min before  mg/kg Pentylenetetrazole. After  h, the animals were euthanized by decapitation. Hippocampus were isolated to evaluate the malondialdehyde, glutathione, nitric oxide, and brain-derived neurotrophic factor levels in three rat groups. Th e results of this study demonstrated that while intraperitoneally administered neuropeptide Y did not result in a statistically signifi cant diff erence in BDNF levels, its administration caused a statistically signifi cant decrease in malondialdehyde and nitric oxide levels and an increase in glutathione levels in rats with pentylenetetrazole-induced epileptic seizure. Neuropeptide Y were able to reduce nitroxidative damage induced by pentylenetetrazole in the hippocampus of Wistar rats.

  6. Morphine potentiates seizures induced by GABA antagonists and attenuates seizures induced by electroshock in the rat.

    Science.gov (United States)

    Foote, F; Gale, K

    1983-11-25

    In a naloxone-reversible, dose-dependent manner, morphine (10-50 mg/kg i.p.) protected against seizures induced by maximal electroshock and increased the incidence and severity of seizures induced by bicuculline, in rats. Morphine also potentiated seizures induced by isoniazid and by picrotoxin. Thus, opiate activity influences the expression of seizures in contrasting ways depending upon the mode of seizure induction. Since morphine consistently potentiated seizures induced by interference with GABA transmission, it appears that GABAergic systems may be of particular significance for the elucidation of the varied effects of morphine on seizure susceptibility.

  7. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    Science.gov (United States)

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  8. The effect of albendazole treatment on seizure outcomes in patients with symptomatic neurocysticercosis.

    Science.gov (United States)

    Romo, Matthew L; Wyka, Katarzyna; Carpio, Arturo; Leslie, Denise; Andrews, Howard; Bagiella, Emilia; Hauser, W Allen; Kelvin, Elizabeth A

    2015-11-01

    Randomized controlled trials have found an inconsistent effect of anthelmintic treatment on long-term seizure outcomes in neurocysticercosis. The objective of this study was to further explore the effect of albendazole treatment on long-term seizure outcomes and to determine if there is evidence for a differential effect by seizure type. In this trial, 178 patients with active or transitional neurocysticercosis cysts and new-onset symptoms were randomized to 8 days of treatment with albendazole (n=88) or placebo (n=90), both with prednisone, and followed for 24 months. We used negative binomial regression and logistic regression models to determine the effect of albendazole on the number of seizures and probability of recurrent or new-onset seizures, respectively, over follow-up. Treatment with albendazole was associated with a reduction in the number of seizures during 24 months of follow-up, but this was only significant for generalized seizures during months 1-12 (unadjusted rate ratio [RR] 0.19; 95% CI: 0.04-0.91) and months 1-24 (unadjusted RR 0.06; 95% CI: 0.01-0.57). We did not detect a significant effect of albendazole on reducing the number of focal seizures or on the probability of having a seizure, regardless of seizure type or time period. Albendazole treatment may be associated with some symptomatic improvement; however, this association seems to be specific to generalized seizures. Future research is needed to identify strategies to better reduce long-term seizure burden in patients with neurocysticercosis. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Hippocampal Abnormalities and Seizure Recurrence

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-08-01

    Full Text Available Hippocampal volumetry and T2 relaxometry were performed on 84 consecutive patients (adolescents and adults with partial epilepsy submitted to antiepileptic drug (AED withdrawal after at least 2 years of seizure control, in a study at State University of Campinas-UNICAMP, Brazil.

  10. SVM-Based System for Prediction of Epileptic Seizures from iEEG Signal

    Science.gov (United States)

    Cherkassky, Vladimir; Lee, Jieun; Veber, Brandon; Patterson, Edward E.; Brinkmann, Benjamin H.; Worrell, Gregory A.

    2017-01-01

    Objective This paper describes a data-analytic modeling approach for prediction of epileptic seizures from intracranial electroencephalogram (iEEG) recording of brain activity. Even though it is widely accepted that statistical characteristics of iEEG signal change prior to seizures, robust seizure prediction remains a challenging problem due to subject-specific nature of data-analytic modeling. Methods Our work emphasizes understanding of clinical considerations important for iEEG-based seizure prediction, and proper translation of these clinical considerations into data-analytic modeling assumptions. Several design choices during pre-processing and post-processing are considered and investigated for their effect on seizure prediction accuracy. Results Our empirical results show that the proposed SVM-based seizure prediction system can achieve robust prediction of preictal and interictal iEEG segments from dogs with epilepsy. The sensitivity is about 90–100%, and the false-positive rate is about 0–0.3 times per day. The results also suggest good prediction is subject-specific (dog or human), in agreement with earlier studies. Conclusion Good prediction performance is possible only if the training data contain sufficiently many seizure episodes, i.e., at least 5–7 seizures. Significance The proposed system uses subject-specific modeling and unbalanced training data. This system also utilizes three different time scales during training and testing stages. PMID:27362758

  11. Galanin gene transfer curtails generalized seizures in kindled rats without altering hippocampal synaptic plasticity

    DEFF Research Database (Denmark)

    Kanter-Schlifke, I; Toft Sørensen, Andreas; Ledri, M

    2007-01-01

    Gene therapy-based overexpression of endogenous seizure-suppressing molecules represents a promising treatment strategy for epilepsy. Viral vector-based overexpression of the neuropeptide galanin has been shown to effectively suppress generalized seizures in various animal models of epilepsy...

  12. The prevalence of thyrotoxicosis-related seizures.

    Science.gov (United States)

    Song, Tae-Jin; Kim, Sun-Jung; Kim, Gyu Sik; Choi, Young-Chul; Kim, Won-Joo

    2010-09-01

    Central nervous system dysfunction, such as hyperexcitation, irritability, and disturbance of consciousness, may occur in patients with thyrotoxicosis. There are also a few case reports of seizures attributed to thyrotoxicosis. The objective of the present study was to determine the prevalence of seizures that appeared to be related to the thyrotoxic state in patients with thyrotoxicosis. We retrospectively determined the prevalence and clinical features of seizures in 3382 patients with hyperthyroidism. Among patients with seizures, we excluded those with other causes of seizures or a history of epilepsy. We did not exclude two patients in whom later work-up showed an abnormal magnetic resonance imaging, as their seizures resolved after they became euthyroid. Among the 3382 patients with hyperthyroidism, there were seven patients (0.2%) with seizures who met our criteria. Primary generalized tonic-clonic seizures occurred in four patients (57%), complex partial seizures with secondary generalized tonic-clonic seizures occurred in two patients (29%), and one patient had a focal seizure (14%). The initial electroencephalography (EEG) was normal in two patients (29%), had generalized slow activity in four patients (57%), and had diffuse generalized beta activity in one patient (14%). On magnetic resonance imaging, one patient had diffuse brain atrophy, and one had an old basal ganglia infarct. After the patients became euthyroid, the EEG was repeated and was normal in all patients. During follow-up periods ranging from 18 to 24 months, none of the patients had seizures. Hyperthyroidism is the precipitating cause of seizures in a small percentage of these patients. In these patients, the prognosis is good if they become euthyroid. The prevalence of thyrotoxicosis-related seizures reported here can be used in conjunction with the prevalence of thyrotoxicosis in the population to estimate the prevalence of thyrotoxicosis-related seizures in populations.

  13. Pretreatment seizure semiology in childhood absence epilepsy.

    Science.gov (United States)

    Kessler, Sudha Kilaru; Shinnar, Shlomo; Cnaan, Avital; Dlugos, Dennis; Conry, Joan; Hirtz, Deborah G; Hu, Fengming; Liu, Chunyan; Mizrahi, Eli M; Moshé, Solomon L; Clark, Peggy; Glauser, Tracy A

    2017-08-15

    To determine seizure semiology in children with newly diagnosed childhood absence epilepsy and to evaluate associations with short-term treatment outcomes. For participants enrolled in a multicenter, randomized, double-blind, comparative-effectiveness trial, semiologic features of pretreatment seizures were analyzed as predictors of treatment outcome at the week 16 to 20 visit. Video of 1,932 electrographic absence seizures from 416 participants was evaluated. Median seizure duration was 10.2 seconds; median time between electrographic seizure onset and clinical manifestation onset was 1.5 seconds. For individual seizures and by participant, the most common semiology features were pause/stare (seizure 95.5%, participant 99.3%), motor automatisms (60.6%, 86.1%), and eye involvement (54.9%, 76.5%). The interrater agreement for motor automatisms and eye involvement was good (72%-84%). Variability of semiology features between seizures even within participants was high. Clustering analyses revealed 4 patterns (involving the presence/absence of eye involvement and motor automatisms superimposed on the nearly ubiquitous pause/stare). Most participants experienced more than one seizure cluster pattern. No individual semiologic feature was individually predictive of short-term outcome. Seizure freedom was half as likely in participants with one or more seizure having the pattern of eye involvement without motor automatisms than in participants without this pattern. Almost all absence seizures are characterized by a pause in activity or staring, but rarely is this the only feature. Semiologic features tend to cluster, resulting in identifiable absence seizure subtypes with significant intraparticipant seizure phenomenologic heterogeneity. One seizure subtype, pause/stare and eye involvement but no motor automatisms, is specifically associated with a worse treatment outcome. © 2017 American Academy of Neurology.

  14. From cognitive networks to seizures: Stimulus evoked dynamics in a coupled cortical network

    Science.gov (United States)

    Lee, Jaejin; Ermentrout, Bard; Bodner, Mark

    2013-12-01

    Epilepsy is one of the most common neuropathologies worldwide. Seizures arising in epilepsy or in seizure disorders are characterized generally by uncontrolled spread of excitation and electrical activity to a limited region or even over the entire cortex. While it is generally accepted that abnormal excessive firing and synchronization of neuron populations lead to seizures, little is known about the precise mechanisms underlying human epileptic seizures, the mechanisms of transitions from normal to paroxysmal activity, or about how seizures spread. Further complication arises in that seizures do not occur with a single type of dynamics but as many different phenotypes and genotypes with a range of patterns, synchronous oscillations, and time courses. The concept of preventing, terminating, or modulating seizures and/or paroxysmal activity through stimulation of brain has also received considerable attention. The ability of such stimulation to prevent or modulate such pathological activity may depend on identifiable parameters. In this work, firing rate networks with inhibitory and excitatory populations were modeled. Network parameters were chosen to model normal working memory behaviors. Two different models of cognitive activity were developed. The first model consists of a single network corresponding to a local area of the brain. The second incorporates two networks connected through sparser recurrent excitatory connectivity with transmission delays ranging from approximately 3 ms within local populations to 15 ms between populations residing in different cortical areas. The effect of excitatory stimulation to activate working memory behavior through selective persistent activation of populations is examined in the models, and the conditions and transition mechanisms through which that selective activation breaks down producing spreading paroxysmal activity and seizure states are characterized. Specifically, we determine critical parameters and architectural

  15. Long-Term Effects of Ketogenic Diet on Subsequent Seizure-Induced Brain Injury During Early Adulthood: Relationship of Seizure Thresholds to Zinc Transporter-Related Gene Expressions.

    Science.gov (United States)

    Tian, Tian; Li, Li-Li; Zhang, Shu-Qi; Ni, Hong

    2016-12-01

    The divalent cation zinc is associated with cortical plasticity. However, the mechanism of zinc in the pathophysiology of cortical injury-associated neurobehavioral damage following neonatal seizures is uncertain. We have previously shown upregulated expression of ZnT-3; MT-3 in hippocampus of neonatal rats submitted to flurothyl-induced recurrent seizures, which was restored by pretreatment with ketogenic diet (KD). In this study, utilizing a novel "twist" seizure model by coupling early-life flurothyl-induced seizures with later exposure to penicillin, we further investigated the long-term effects of KD on cortical expression of zinc homeostasis-related genes in a systemic scale. Ten Sprague-Dawley rats were assigned each averagely into the non-seizure plus normal diet (NS + ND), non-seizure plus KD (NS + KD), recurrent seizures plus normal diet (RS + ND) and recurrent seizures plus KD (RS + KD) group. Recurrent seizures were induced by volatile flurothyl during P9-P21. During P23-P53, rats in NS + KD and RS + KD groups were dieted with KD. Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed at P43. At P63, we examined seizure threshold using penicillin, then the cerebral cortex were evaluated for real-time RT-PCR and western blot study. The RS + ND group showed worse performances in neurological reflex tests and reduced latencies to myoclonic seizures induced by penicillin compared with the control, which was concomitant with altered expressions of ZnT-7, MT-1, MT-2, and ZIP7. Specifically, there was long-term elevated expression of ZIP7 in RS + ND group compared with that in NS + ND that was restored by chronic ketogenic diet (KD) treatment in RS + KD group, which was quite in parallel with the above neurobehavioral changes. Taken together, these findings indicate that the long-term altered expression of the metal transporter ZIP7 in adult cerebral cortex might

  16. Age-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters

    Directory of Open Access Journals (Sweden)

    Seok Kyu eKang

    2015-05-01

    Full Text Available Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB, with NKCC1 antagonist bumetanide (BTN as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in postnatal day 7, 10 and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy.

  17. Electroencephalography after a single unprovoked seizure.

    Science.gov (United States)

    Debicki, Derek B

    2017-07-01

    Electroencephalography (EEG) is an essential diagnostic tool in the evaluation of seizure disorders. In particular, EEG is used as an additional investigation for a single unprovoked seizure. Epileptiform abnormalities are related to seizure disorders and have been shown to predict recurrent unprovoked seizures (i.e., a clinical definition of epilepsy). Thus, the identification of epileptiform abnormalities after a single unprovoked seizure can inform treatment options. The current review addresses the relationship between EEG abnormalities and seizure recurrence. This review also addresses factors that are found to improve the yield of recording epileptiform abnormalities including timing of EEG relative to the new-onset seizure, use of repeat studies, use of sleep deprivation and prolonged recordings. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  18. Phenobarbital and midazolam increase neonatal seizure-associated neuronal injury.

    Science.gov (United States)

    Torolira, Daniel; Suchomelova, Lucie; Wasterlain, Claude G; Niquet, Jerome

    2017-07-01

    Status epilepticus is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. γ-Aminobutyric acidergic (GABAergic) drugs, the standard treatment for neonatal seizures, can have excitatory effects in the neonatal brain, which may worsen the seizures and their effects. Using a recently developed model of status epilepticus in postnatal day 7 rat pups that results in widespread neuronal injury, we found that the GABA A agonists phenobarbital and midazolam significantly increased status epilepticus-associated neuronal injury in various brain regions. Our results suggest that more research is needed into the possible deleterious effects of GABAergic drugs on neonatal seizures and on excitotoxic neuronal injury in the immature brain. Ann Neurol 2017;82:115-120. © 2017 American Neurological Association.

  19. Lack of effect of naloxone on prolactin and seizures in electroconvulsive therapy.

    Science.gov (United States)

    Sperling, M R; Melmed, S; McAllister, T; Price, T R

    1989-01-01

    Both opiate agonist and antagonist injection have been reported to modulate prolactin secretion, alter brain excitability and produce seizures, and modify the postictal state. We studied the effects of administration of high-dose naloxone, an opiate antagonist, on postictal prolactin levels, seizure duration, and postictal behavior, using patients undergoing electroconvulsive therapy (ECT) as a seizure model. Seven patients had 8 mg naloxone injected prior to one ECT treatment and saline injected prior to another treatment, with the order of injection randomized. Before ECT and 15 min after ECT, prolactin levels were drawn, and no blunting of the expected postictal prolactin elevation by naloxone injection was observed. We found no evidence that endogenous opiates trigger prolactin secretion during seizures. Seizure duration was also similar in saline and naloxone groups, and naloxone did not reverse postictal depression, as has been reported in an animal model.

  20. Seizure characteristics of epilepsy in childhood after acute encephalopathy with biphasic seizures and late reduced diffusion.

    Science.gov (United States)

    Ito, Yuji; Natsume, Jun; Kidokoro, Hiroyuki; Ishihara, Naoko; Azuma, Yoshiteru; Tsuji, Takeshi; Okumura, Akihisa; Kubota, Tetsuo; Ando, Naoki; Saitoh, Shinji; Miura, Kiyokuni; Negoro, Tamiko; Watanabe, Kazuyoshi; Kojima, Seiji

    2015-08-01

    The aim of this study was to clarify characteristics of post-encephalopathic epilepsy (PEE) in children after acute encephalopathy with biphasic seizures and late reduced diffusion (AESD), paying particular attention to precise diagnosis of seizure types. Among 262 children with acute encephalopathy/encephalitis registered in a database of the Tokai Pediatric Neurology Society between 2005 and 2012, 44 were diagnosed with AESD according to the clinical course and magnetic resonance imaging (MRI) findings and were included in this study. Medical records were reviewed to investigate clinical data, MRI findings, neurologic outcomes, and presence or absence of PEE. Seizure types of PEE were determined by both clinical observation by pediatric neurologists and ictal video-electroencephalography (EEG) recordings. Of the 44 patients after AESD, 10 (23%) had PEE. The period between the onset of encephalopathy and PEE ranged from 2 to 39 months (median 8.5 months). Cognitive impairment was more severe in patients with PEE than in those without. Biphasic seizures and status epilepticus during the acute phase of encephalopathy did not influence the risk of PEE. The most common seizure type of PEE on clinical observation was focal seizures (n = 5), followed by epileptic spasms (n = 4), myoclonic seizures (n = 3), and tonic seizures (n = 2). In six patients with PEE, seizures were induced by sudden unexpected sounds. Seizure types confirmed by ictal video-EEG recordings were epileptic spasms and focal seizures with frontal onset, and all focal seizures were startle seizures induced by sudden acoustic stimulation. Intractable daily seizures remain in six patients with PEE. We demonstrate seizure characteristics of PEE in children after AESD. Epileptic spasms and startle focal seizures are common seizure types. The specific seizure types may be determined by the pattern of diffuse subcortical white matter injury in AESD and age-dependent reorganization of the brain

  1. Mouse epileptic seizure detection with multiple EEG features and simple thresholding technique

    Science.gov (United States)

    Tieng, Quang M.; Anbazhagan, Ashwin; Chen, Min; Reutens, David C.

    2017-12-01

    Objective. Epilepsy is a common neurological disorder characterized by recurrent, unprovoked seizures. The search for new treatments for seizures and epilepsy relies upon studies in animal models of epilepsy. To capture data on seizures, many applications require prolonged electroencephalography (EEG) with recordings that generate voluminous data. The desire for efficient evaluation of these recordings motivates the development of automated seizure detection algorithms. Approach. A new seizure detection method is proposed, based on multiple features and a simple thresholding technique. The features are derived from chaos theory, information theory and the power spectrum of EEG recordings and optimally exploit both linear and nonlinear characteristics of EEG data. Main result. The proposed method was tested with real EEG data from an experimental mouse model of epilepsy and distinguished seizures from other patterns with high sensitivity and specificity. Significance. The proposed approach introduces two new features: negative logarithm of adaptive correlation integral and power spectral coherence ratio. The combination of these new features with two previously described features, entropy and phase coherence, improved seizure detection accuracy significantly. Negative logarithm of adaptive correlation integral can also be used to compute the duration of automatically detected seizures.

  2. Occipital lobe seizures and epilepsies.

    Science.gov (United States)

    Adcock, Jane E; Panayiotopoulos, Chrysostomos P

    2012-10-01

    Occipital lobe epilepsies (OLEs) manifest with occipital seizures from an epileptic focus within the occipital lobes. Ictal clinical symptoms are mainly visual and oculomotor. Elementary visual hallucinations are common and characteristic. Postictal headache occurs in more than half of patients (epilepsy-migraine sequence). Electroencephalography (EEG) is of significant diagnostic value, but certain limitations should be recognized. Occipital spikes and/or occipital paroxysms either spontaneous or photically induced are the main interictal EEG abnormalities in idiopathic OLE. However, occipital epileptiform abnormalities may also occur without clinical relationship to seizures particularly in children. In cryptogenic/symptomatic OLE, unilateral posterior EEG slowing is more common than occipital spikes. In neurosurgical series of symptomatic OLE, interictal EEG abnormalities are rarely strictly occipital. The most common localization is in the posterior temporal regions and less than one-fifth show occipital spikes. In photosensitive OLE, intermittent photic stimulation elicits (1) spikes/polyspikes confined in the occipital regions or (2) generalized spikes/polyspikes with posterior emphasis. In ictal EEG, a well-localized unifocal rhythmic ictal discharge during occipital seizures is infrequent. A bioccipital field spread to the temporal regions is common. Frequency, severity, and response to treatment vary considerably from good to intractable and progressive mainly depending on underlying causes.

  3. Smartphone applications for seizure management.

    Science.gov (United States)

    Pandher, Puneet Singh; Bhullar, Karamdeep Kaur

    2016-06-01

    Technological advancements continue to provide innovative ways of enhancing patient care in medicine. In particular, the growing popularity of smartphone technology has seen the recent emergence of a myriad of healthcare applications (or apps) that promise to help shape the way in which health information is delivered to people worldwide. While limited research already exists on a range of such apps, our study is the first to examine the salient features of smartphone applications as they apply to the area of seizure management. For the purposes of this review, we conducted a search of the official online application stores of the five major smartphone platforms: iPhone, Android, Blackberry, Windows Mobile and Nokia-Symbian. Apps were included if they reported to contain some information or tools relating to seizure management and excluded if they were aimed exclusively at health professionals. A total of 28 applications met these criteria. Overall, we found an increasing number of epilepsy apps available on the smartphone market, but with only a minority offering comprehensive educational information alongside tools such as seizure diaries, medication tracking and/or video recording. © The Author(s) 2014.

  4. Controlled-release oxycodone-induced seizures.

    Science.gov (United States)

    Klein, Moti; Rudich, Zvia; Gurevich, Boris; Lifshitz, Matityahu; Brill, Silviu; Lottan, Michael; Weksler, Natan

    2005-11-01

    The use of the opioid oxycodone hydrochloride in the management of chronic pain is gaining popularity principally because of its tolerability. However, opioid-related seizure in patients with epilepsy or other conditions that may decrease seizure threshold has been described in the literature; in particular, oxycodone has been associated with seizure in a patient with acute renal failure. The aim of this article was to report a patient with a history of seizures but normal renal and hepatic function who developed seizure on 2 occasions after oxycodone ingestion. A 54-year-old male patient presented with a history of tonic-clonic seizures that developed immediately after intracranial surgery. Long-term treatment with carbamazepine 400 mg QD was started, and the patient was free of convulsions for approximately 7 years. The patient presented to us with severe headache that was nonresponsive to an NSAID and the opiate agonist tramadol. Treatment with controlled-release (CR) oxycodone and tramadol drops (50 mg QID if necessary) was started, and tonic-clonic seizures developed 3 days later. Based on laboratory analysis, the patient had normal renal and hepatic function. On discontinuation of oxycodone treatment, the seizures resolved. However, due to effective pain relief with oxycodone, the patient decided to continue treatment, and seizures recurred. Carbamazepine was then administered 4 hours before oxycodone dosing, which allowed continuation of treatment without seizure. A patient with a history of seizures controlled with long-term carbamazepine therapy developed seizures when he started treatment with oxycodone CR at recommended doses. Oxycodone CR should be used with extreme caution in patients with epilepsy or other conditions that may decrease seizure threshold.

  5. Homozygous Expression of Mutant ELOVL4 Leads to Seizures and Death in a Novel Animal Model of Very Long-Chain Fatty Acid Deficiency.

    Science.gov (United States)

    Hopiavuori, Blake R; Deák, Ferenc; Wilkerson, Joseph L; Brush, Richard S; Rocha-Hopiavuori, Nicole A; Hopiavuori, Austin R; Ozan, Kathryn G; Sullivan, Michael T; Wren, Jonathan D; Georgescu, Constantin; Szweda, Luke; Awasthi, Vibhudutta; Towner, Rheal; Sherry, David M; Anderson, Robert E; Agbaga, Martin-Paul

    2018-02-01

    Lipids are essential components of the nervous system. However, the functions of very long-chain fatty acids (VLC-FA; ≥ 28 carbons) in the brain are unknown. The enzyme ELOngation of Very Long-chain fatty acids-4 (ELOVL4) catalyzes the rate-limiting step in the biosynthesis of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35): 12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698-708, 2014), which we identified in the brain as saturated fatty acids (VLC-SFA). Homozygous mutations in ELOVL4 cause severe neuropathology in humans (Ozaki et al., JAMA Neurol 72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25, 2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475, 2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015; Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011) and are post-natal lethal in mice (Cameron et al., Int J Biol Sci 3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128, 2007; McMahon et al., Molecular Vision 13: 258-272, 2007; Vasireddy et al., Hum Mol Genet 16(5): 471-482, 2007) from dehydration due to loss of VLC-SFA that comprise the skin permeability barrier. Double transgenic mice with homozygous knock-in of the Stargardt-like macular dystrophy (STDG3; 797-801_AACTT) mutation of Elovl4 with skin-specific rescue of wild-type Elovl4 expression (S + Elovl4 mut/mut mice) develop seizures by P19 and die by P21. Electrophysiological analyses of hippocampal slices showed aberrant epileptogenic activity in S + Elovl4 mut/mut mice. FM1-43 dye release studies showed that synapses made by cultured hippocampal neurons from S + Elovl4 mut/mut mice exhibited accelerated synaptic release kinetics. Supplementation of VLC-SFA to cultured hippocampal neurons from mutant mice rescued defective synaptic release to wild-type rates. Together, these studies establish a critical, novel role for ELOVL4 and its VLC-SFA products in regulating synaptic release kinetics and epileptogenesis. Future studies aimed at understanding the molecular

  6. Impact of sleep duration on seizure frequency in adults with epilepsy: a sleep diary study.

    Science.gov (United States)

    Cobabe, Maurine M; Sessler, Daniel I; Nowacki, Amy S; O'Rourke, Colin; Andrews, Noah; Foldvary-Schaefer, Nancy

    2015-02-01

    Prolonged sleep deprivation activates epileptiform EEG abnormalities and seizures in people with epilepsy. Few studies have addressed the effect of chronic partial sleep deprivation on seizure occurrence in populations with epilepsy. We tested the primary hypothesis that partial sleep deprivation over 24- and 72-hour periods increases seizure occurrence in adults with epilepsy. Forty-four subjects completed a series of self-reported instruments, as well as 1-month sleep and seizure diaries, to characterize their sleep and quality of life. Diaries were used to determine the relationship between seizure occurrence and total sleep time 24 and 72h before seizure occurrence using random effects models and a logistic regression model fit by generalized estimating equations. A total of 237 seizures were recorded during 1295 diary days, representing 5.5±7.0 (mean±SD) seizures per month. Random effects models for 24- and 72-hour total sleep times showed no clinically or statistically significant differences in the total sleep time between preseizure periods and seizure-free periods. The average 24-hour total sleep time during preseizure 24-hour periods was 8min shorter than that during seizure-free periods (p=0.51). The average 72-hour total sleep time during preseizure periods was 20min longer than that during seizure-free periods (p=0.86). The presence of triggers was a significant predictor of seizure occurrence, with stress/anxiety noted most often as a trigger. Mean total sleep time was 9h, and subjects took an average of 12±10 naps per month, having a mean duration of 1.9±1.2h. Daytime sleepiness, fatigue, and insomnia symptoms were commonly reported. Small degrees of sleep loss were not associated with seizure occurrence in our sample of adults with epilepsy. Our results also include valuable observations of the altered sleep times and frequent napping habits of adults with refractory epilepsy and the potential contribution of these habits to quality of life and

  7. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  8. A hypothesis regarding the molecular mechanism underlying dietary soy-induced effects on seizure propensity.

    Directory of Open Access Journals (Sweden)

    Cara Jean Westmark

    2014-09-01

    Full Text Available Numerous neurological disorders including fragile X syndrome, Down syndrome, autism and Alzheimer’s disease are comorbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold.

  9. Susceptibility to hippocampal kindling seizures is increased in aging C57 black mice

    Directory of Open Access Journals (Sweden)

    Kurt R. Stover

    2017-12-01

    Full Text Available The incidence of seizures increases with old age. Stroke, dementia and brain tumors are recognized risk factors for new-onset seizures in the aging populations and the incidence of these conditions also increased with age. Whether aging is associated with higher seizure susceptibility in the absence of the above pathologies remains unclear. We used classic kindling to explore this issue as the kindling model is highly reproducible and allows close monitoring of electrographic and motor seizure activities in individual animals. We kindled male young and aging mice (C57BL/6 strain, 2–3 and 18–22 months of age via daily hippocampal CA3 stimulation and monitored seizure activity via video and electroencephalographic recordings. The aging mice needed fewer stimuli to evoke stage-5 motor seizures and exhibited longer hippocampal afterdischarges and more frequent hippocampal spikes relative to the young mice, but afterdischarge thresholds and cumulative afterdischarge durations to stage 5 motor seizures were not different between the two age groups. While hippocampal injury and structural alterations at cellular and micro-circuitry levels remain to be examined in the kindled mice, our present observations suggest that susceptibility to hippocampal CA3 kindling seizures is increased with aging in male C57 black mice.

  10. Channel selection for automatic seizure detection

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas; Kjaer, Troels Wesenberg; Madsen, Rasmus Elsborg

    2012-01-01

    Objective: To investigate the performance of epileptic seizure detection using only a few of the recorded EEG channels and the ability of software to select these channels compared with a neurophysiologist. Methods: Fifty-nine seizures and 1419 h of interictal EEG are used for training and testing...... of an automatic channel selection method. The characteristics of the seizures are extracted by the use of a wavelet analysis and classified by a support vector machine. The best channel selection method is based upon maximum variance during the seizure. Results: Using only three channels, a seizure detection...... sensitivity of 96% and a false detection rate of 0.14/h were obtained. This corresponds to the performance obtained when channels are selected through visual inspection by a clinical neurophysiologist, and constitutes a 4% improvement in sensitivity compared to seizure detection using channels recorded...

  11. Seizure Recognition and Observation: A Guide for Allied Health Professionals.

    Science.gov (United States)

    Epilepsy Foundation of America, Landover, MD.

    Intended for allied health professionals, this guide provides information on seizure recognition and classification to help them assist the patient, the family, and the treating physician in obtaining control of epileptic seizures. A section on seizure recognition describes epilepsy and seizures, covering seizure classification and the causes of…

  12. 19 CFR 162.22 - Seizure of conveyances.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Seizure of conveyances. 162.22 Section 162.22... TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Seizures § 162.22 Seizure of conveyances. (a) General applicability. If it shall appear to any officer authorized to board conveyances and make seizures that there...

  13. SEIZURE PREDICTION: THE FOURTH INTERNATIONAL WORKSHOP

    Science.gov (United States)

    Zaveri, Hitten P.; Frei, Mark G.; Arthurs, Susan; Osorio, Ivan

    2010-01-01

    The recently convened Fourth International Workshop on Seizure Prediction (IWSP4) brought together a diverse international group of investigators, from academia and industry, including epileptologists, neurosurgeons, neuroscientists, computer scientists, engineers, physicists, and mathematicians who are conducting interdisciplinary research on the prediction and control of seizures. IWSP4 allowed the presentation and discussion of results, an exchange of ideas, an assessment of the status of seizure prediction, control and related fields and the fostering of collaborative projects. PMID:20674508

  14. Treating seizures in Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Ng, Marcus C; Westover, M Brandon; Cole, Andrew J

    2014-01-01

    Seizures are known to occur in Creutzfeldt-Jakob disease (CJD). In the setting of a rapidly progressive condition with no effective therapy, determining appropriate treatment for seizures can be difficult if clinical morbidity is not obvious yet the electroencephalogram (EEG) demonstrates a worrisome pattern such as status epilepticus. Herein, we present the case of a 39-year-old man with CJD and electrographic seizures, discuss how this case challenges conventional definitions of seizures, and discuss a rational approach toward treatment. Coincidentally, our case is the first report of CJD in a patient with Stickler syndrome.

  15. Genetics Home Reference: benign familial neonatal seizures

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Epilepsy Educational Resources (7 links) Boston Children's Hospital: My Child Has...Seizures and Epilepsy Centers ...

  16. Deep Recurrent Neural Networks for seizure detection and early seizure detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Talathi, S. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-05

    Epilepsy is common neurological diseases, affecting about 0.6-0.8 % of world population. Epileptic patients suffer from chronic unprovoked seizures, which can result in broad spectrum of debilitating medical and social consequences. Since seizures, in general, occur infrequently and are unpredictable, automated seizure detection systems are recommended to screen for seizures during long-term electroencephalogram (EEG) recordings. In addition, systems for early seizure detection can lead to the development of new types of intervention systems that are designed to control or shorten the duration of seizure events. In this article, we investigate the utility of recurrent neural networks (RNNs) in designing seizure detection and early seizure detection systems. We propose a deep learning framework via the use of Gated Recurrent Unit (GRU) RNNs for seizure detection. We use publicly available data in order to evaluate our method and demonstrate very promising evaluation results with overall accuracy close to 100 %. We also systematically investigate the application of our method for early seizure warning systems. Our method can detect about 98% of seizure events within the first 5 seconds of the overall epileptic seizure duration.

  17. Seizure semiology identifies patients with bilateral temporal lobe epilepsy.

    Science.gov (United States)

    Loesch, Anna Mira; Feddersen, Berend; Tezer, F Irsel; Hartl, Elisabeth; Rémi, Jan; Vollmar, Christian; Noachtar, Soheyl

    2015-01-01

    Laterality in temporal lobe epilepsy is usually defined by EEG and imaging results. We investigated whether the analysis of seizure semiology including lateralizing seizure phenomena identifies bilateral independent temporal lobe seizure onset. We investigated the seizure semiology in 17 patients in whom invasive EEG-video-monitoring documented bilateral temporal seizure onset. The results were compared to 20 left and 20 right consecutive temporal lobe epilepsy (TLE) patients who were seizure free after anterior temporal lobe resection. The seizure semiology was analyzed using the semiological seizure classification with particular emphasis on the sequence of seizure phenomena over time and lateralizing seizure phenomena. Statistical analysis included chi-square test or Fisher's exact test. Bitemporal lobe epilepsy patients had more frequently different seizure semiology (100% vs. 40%; p<0.001) and significantly more often lateralizing seizure phenomena pointing to bilateral seizure onset compared to patients with unilateral TLE (67% vs. 11%; p<0.001). The sensitivity of identical vs. different seizure semiology for the identification of bilateral TLE was high (100%) with a specificity of 60%. Lateralizing seizure phenomena had a low sensitivity (59%) but a high specificity (89%). The combination of lateralizing seizure phenomena and different seizure semiology showed a high specificity (94%) but a low sensitivity (59%). The analysis of seizure semiology including lateralizing seizure phenomena adds important clinical information to identify patients with bilateral TLE. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Anti-Seizure Medications: Relief from Nerve Pain

    Science.gov (United States)

    Anti-seizure medications: Relief from nerve pain Anti-seizure drugs often are used to help control the type of ... by damaged nerves. By Mayo Clinic Staff Anti-seizure medications were originally designed to treat people with ...

  19. Anticonvulsants for Nerve Agent-Induced Seizures: The Influence of the Therapeutic Dose of Atropine

    National Research Council Canada - National Science Library

    Shih, Tsung-Ming; Rowland, Tami C; McDonough, John H

    2007-01-01

    Two guinea pig models were used to study the anticonvulsant potency of diazepam, midazolam, and scopolamine against seizures induced by the nerve agents tabun, sarin, soman, cyclosarin, O-ethyl S-(2-(diisopropylamino)ethyl...

  20. Economic evaluation of seizures associated with solitary cysticercus granuloma.

    Science.gov (United States)

    Murthy, J M K; Rajshekar, G

    2007-01-01

    Patients with solitary cysticercus granuloma (SCG) develop acute symptomatic seizures because of the inflammatory response of the brain and the seizures are self-limiting. Thus seizure disorder associated with SCG provides a good model to study the total cost of illness (COI). COI of new-onset seizures associated with SCG was studied in 59 consecutive patients registered at the epilepsy clinic. Direct treatment-related costs and indirect costs, man-days lost and wages lost were evaluated. The relative cost was calculated as the percentage of per capita gross national product (GNP) at current prices for the year 1997-1998. The total COI, for treating seizure disorder associated with SCG per the period of CT resolution of the lesion per patient was INR 7273.7 (US$ 174.66, I$ 943.16) and he/she would be spending 50.9% of per capita GNP The direct cost per patient was INR 5916 (US$ 137.14, 41.4% of per capita GNP). If the patient had received only AEDs for the period of resolution of CT lesion, the cost would be INR 5702.48 (US$132.2, 40% of per capita GNP). The extra expenditure on albendazole and steroid was INR 213.72 (US$ 4.95), 3.6% of the total direct cost and 20.7% of the medication cost. Indirect cost (average wage loss) per patient was INR 1312.7 (US$ 30.42) and it accounted for 9% of per capita GNP. The one-time expenditure at present costs (adjusted for inflation) to the nation to treat all the prevalence cases is to the tune of INR 1.184 billion (US$ 2.605) and 0.0037% of GNP. This study suggests that seizure disorder associated with SCG, a potentially preventable disorder, is a good model to study the total COI. The one-time expenditure at present costs to the nation to treat all the prevalence cases of seizure disorder associated with SCG is to the tune of INR 1.184 billion (US$ 2.605 million) and 0.0037% of GNP.

  1. Complex partial seizures: cerebellar metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Fishbein, D.; Deitz, M.; Baldwin, P.

    1987-07-01

    We used positron emission tomography (PET) with (/sup 18/F)2-deoxyglucose to study cerebellar glucose metabolism (LCMRglu) and the effect of phenytoin (PHT) in 42 patients with complex partial seizures (CPS), and 12 normal controls. Mean +/- SD patient LCMRglu was 6.9 +/- 1.8 mg glucose/100 g/min (left = right), significantly lower than control values of 8.5 +/- 1.8 (left, p less than 0.006), and 8.3 +/- 1.6 (right, p less than 0.02). Only four patients had cerebellar atrophy on CT/MRI; cerebellar LCMRglu in these was 5.5 +/- 1.5 (p = 0.054 vs. total patient sample). Patients with unilateral temporal hypometabolism or EEG foci did not have lateralized cerebellar hypometabolism. Patients receiving phenytoin (PHT) at the time of scan and patients with less than 5 years total PHT exposure had lower LCMRglu, but the differences were not significant. There were weak inverse correlations between PHT level and cerebellar LCMRglu in patients receiving PHT (r = -0.36; 0.05 less than p less than 0.1), as well as between length of illness and LCMRglu (r = -0.22; 0.05 less than p less than 0.1). Patients with complex partial seizures have cerebellar hypometabolism that is bilateral and due only in part to the effect of PHT.

  2. A new potential AED, carisbamate, substantially reduces spontaneous motor seizures in rats with kainate-induced epilepsy

    Science.gov (United States)

    Grabenstatter, Heidi L.; Dudek, F. Edward

    2010-01-01

    Purpose Animal models with spontaneous epileptic seizures may be useful in the discovery of new antiepileptic drugs (AEDs). The purpose of the present study was to evaluate the efficacy of carisbamate on spontaneous motor seizures in rats with kainate-induced epilepsy. Methods Repeated, low-dose (5 mg/kg), intraperitoneal injections of kainate were administered every hour until each male Sprague-Dawley rat had experienced convulsive status epilepticus for at least 3 h. Five 1-month trials (n= 8–10 rats) assessed the effects of 0.3, 1, 3, 10 and 30 mg/kg carisbamate on spontaneous seizures. Each trial involved six AED-versus-vehicle tests comprised of carisbamate or 10% solutol-HS-15 treatments administered as intraperitoneal injections on alternate days with a recovery day between each treatment day. Results Carisbamate significantly reduced motor seizure frequency at doses of 10 and 30 mg/kg, and caused complete seizure cessation during the 6-h post-drug epoch in 7 of 8 animals at 30 mg/kg. The effects of carisbamate (0.3–30 mg/kg) on spontaneous motor seizures appeared dose dependent. Conclusions These data support the hypothesis that a repeated-measures, cross-over protocol in animal models with spontaneous seizures is an effective method for testing AEDs. Carisbamate reduced the frequency of spontaneous motor seizures in a dose-dependent manner, and was more effective than topiramate at reducing seizures in rats with kainate-induced epilepsy. PMID:18494790

  3. Seizure Disorders: A Review for School Psychologists.

    Science.gov (United States)

    Sachs, Henry T.; Barrett, Rowland P.

    1995-01-01

    Recognizing possible seizure disorders, medication side-effects, behavioral and cognitive effects of seizures, and their treatments are important skills for school psychologists because they affect 500,000 United States school-aged children attending regular education. A knowledgeable school professional serves a critical role in integrating…

  4. A Neonate with persistent hypoglycemia and seizures.

    African Journals Online (AJOL)

    MBY

    disorder was diagnosed and managed with limited success as the episodes hydroglycemic seizures persisted. ... the presence of hyperinsulinemia as the cause of the hypoglycemic dependent seizures. Case Presentation. A three day old girl was admitted to the neonatal .... the Prader-Willi syndrome, has been reported.

  5. 43 CFR 3.16 - Seizure.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Seizure. 3.16 Section 3.16 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.16 Seizure. Any object of antiquity taken, or collection made, on lands owned or controlled by the United States, without...

  6. Effect of Seizure Clustering on Epilepsy Outcome

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-05-01

    Full Text Available A prospective, long-term population-based study was performed to determine whether seizure clustering (3 or more afebrile seizures during a 24 hour period is associated with drug resistance and increased mortality in childhood-onset epilepsy, in a study at University of Turku, Finland, and the Epilepsy Research Group, Berlin, Germany.

  7. Orgasm Induced Seizures: A Rare Phenomenon

    African Journals Online (AJOL)

    testing of the brain revealed no structural abnormality. His blood examination findings were ... A variety of stimuli can cause reflex seizures, Some triggers include light, music and cognitive phenomenon. There are case reports ... seizures cause great personal distress and significantly affect marital relationships. Though ...

  8. Respiratory alkalosis in children with febrile seizures.

    Science.gov (United States)

    Schuchmann, Sebastian; Hauck, Sarah; Henning, Stephan; Grüters-Kieslich, Annette; Vanhatalo, Sampsa; Schmitz, Dietmar; Kaila, Kai

    2011-11-01

    Febrile seizures (FS) are the most common type of convulsive events in children. FS are suggested to result from a combination of genetic and environmental factors. However, the pathophysiologic mechanisms underlying FS remain unclear. Using an animal model of experimental FS, it was demonstrated that hyperthermia causes respiratory alkalosis with consequent brain alkalosis and seizures. Here we examine the acid-base status of children who were admitted to the hospital for FS. Children who were admitted because of gastroenteritis (GE), a condition known to promote acidosis, were examined to investigate a possible protective effect of acidosis against FS. We enrolled 433 age-matched children with similar levels of fever from two groups presented to the emergency department. One group was admitted for FS (n = 213) and the other for GE (n = 220). In the FS group, the etiology of fever was respiratory tract infection (74.2%), otitis media (7%), GE (7%), tonsillitis (4.2%), scarlet fever (2.3%) chickenpox (1.4%), urinary tract infection (1.4%), postvaccination reaction (0.9%), or unidentified (1.4%). In all patients, capillary pH and blood Pco(2) were measured immediately on admission to the hospital. Respiratory alkalosis was found in children with FS (pH 7.46 ± 0.04, [mean ± standard deviation] Pco(2) 29.5 ± 5.5 mmHg), whereas a metabolic acidosis was seen in all children admitted for GE (pH 7.31 ± 0.03, Pco(2) 37.7 ± 4.3 mmHg; p respiratory alkalosis, irrespective of the severity of the underlying infection as indicated by the level of fever. The lack of FS in GE patients is attributable to low pH, which also explains the fact that children with a susceptibility to FS do not have seizures when they have GE-induced fever that is associated with acidosis. The present demonstration of a close link between FS and respiratory alkalosis may pave the way for further clinical studies and attempts to design novel therapies for the treatment of FS by controlling the

  9. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Science.gov (United States)

    Tejada, Julian; Garcia-Cairasco, Norberto; Roque, Antonio C

    2014-05-01

    Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  10. Source and sink nodes in absence seizures.

    Science.gov (United States)

    Rodrigues, Abner C; Machado, Birajara S; Caboclo, Luis Otavio S F; Fujita, Andre; Baccala, Luiz A; Sameshima, Koichi

    2016-08-01

    As opposed to focal epilepsy, absence seizures do not exhibit a clear seizure onset zone or focus since its ictal activity rapidly engages both brain hemispheres. Yet recent graph theoretical analysis applied to absence seizures EEG suggests the cortical focal presence, an unexpected feature for this type of epilepsy. In this study, we explore the characteristics of absence seizure by classifying the nodes as to their source/sink natures via weighted directed graph analysis based on connectivity direction and strength estimation using information partial directed coherence (iPDC). By segmenting the EEG signals into relatively short 5-sec-long time windows we studied the evolution of coupling strengths from both sink and source nodes, and the network dynamics of absence seizures in eight patients.

  11. Febrile seizures and risk of schizophrenia

    DEFF Research Database (Denmark)

    Vestergaard, Mogens; Pedersen, Carsten Bøcker; Christensen, Jakob

    2005-01-01

    BACKGROUND: Febrile seizure is a benign condition for most children, but experiments in animals and neuroimaging studies in humans suggest that some febrile seizures may damage the hippocampus, a brain area of possible importance in schizophrenia. METHODS: A population-based cohort of all children...... with schizophrenia. A history of febrile seizures was associated with a 44% increased risk of schizophrenia [relative risk (RR)=1.44; 95% confidence interval (CI), 1.07-1.95] after adjusting for confounding factors. The association between febrile seizures and schizophrenia remained virtually unchanged when...... restricting the analyses to people with no history of epilepsy. A history of both febrile seizures and epilepsy was associated with a 204% increased risk of schizophrenia (RR=3.04; 95% CI, 1.36-6.79) as compared with people with no such history. CONCLUSIONS: We found a slightly increased risk of schizophrenia...

  12. Efficacy of the GluK1/AMPA Receptor Antagonist LY293558 against Seizures and Neuropathology in a Soman-Exposure Model without Pretreatment and its Pharmacokinetics after Intramuscular Administration

    Science.gov (United States)

    2013-01-01

    from where electrical activity was sampled, as shown diagrammatically in (C) (1, left frontal; 2, right frontal; 3, left parietal; 4, right parietal; 5...authors thank Dr. Cara Olsen for expert advice on the statistical analyses of the data. Authorship Contributions Participated in research design...Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294. Sang CN, Ramadan NM, and

  13. Gap junctions and epileptic seizures--two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Vladislav Volman

    Full Text Available Electrical synapses (gap junctions play a pivotal role in the synchronization of neuronal ensembles which also makes them likely agonists of pathological brain activity. Although large body of experimental data and theoretical considerations indicate that coupling neurons by electrical synapses promotes synchronous activity (and thus is potentially epileptogenic, some recent evidence questions the hypothesis of gap junctions being among purely epileptogenic factors. In particular, an expression of inter-neuronal gap junctions is often found to be higher after the experimentally induced seizures than before. Here we used a computational modeling approach to address the role of neuronal gap junctions in shaping the stability of a network to perturbations that are often associated with the onset of epileptic seizures. We show that under some circumstances, the addition of gap junctions can increase the dynamical stability of a network and thus suppress the collective electrical activity associated with seizures. This implies that the experimentally observed post-seizure additions of gap junctions could serve to prevent further escalations, suggesting furthermore that they are a consequence of an adaptive response of the neuronal network to the pathological activity. However, if the seizures are strong and persistent, our model predicts the existence of a critical tipping point after which additional gap junctions no longer suppress but strongly facilitate the escalation of epileptic seizures. Our results thus reveal a complex role of electrical coupling in relation to epileptiform events. Which dynamic scenario (seizure suppression or seizure escalation is ultimately adopted by the network depends critically on the strength and duration of seizures, in turn emphasizing the importance of temporal and causal aspects when linking gap junctions with epilepsy.

  14. Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures

    Science.gov (United States)

    Fan, Denggui; Duan, Lixia; Wang, Qian; Luan, Guoming

    2017-01-01

    The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In particular, it is thought that in some areas of cortex there exists feedforward inhibition from specific relay nucleus of thalamus (TC) to inhibitory neuronal population (IN) which has even more stronger functions on cortical activities than the known feedforward excitation from TC to excitatory neuronal population (EX). Inspired by this, we proposed a modified computational model by introducing feedforward inhibitory connectivity within thalamocortical circuit, to systematically investigate the combined effects of feedforward inhibition and excitation on transitions of epileptic seizures. We first found that the feedforward excitation can induce the transition from tonic oscillation to spike and wave discharges (SWD) in cortex, i.e., the epileptic tonic-absence seizures, with the fixed weak feedforward inhibition. Thereinto, the phase of absence seizures corresponding to strong feedforward excitation can be further transformed into the clonic oscillations with the increasing of feedforward inhibition, representing the epileptic absence-clonic seizures. We also observed the other fascinating dynamical states, such as periodic 2/3/4-spike and wave discharges, reversed SWD and clonic oscillations, as well as saturated firings. More importantly, we can identify the stable parameter regions representing the tonic-clonic oscillations and SWD discharges of epileptic seizures on the 2-D plane composed of feedforward inhibition and excitation, where the physiologically plausible transition pathways between tonic-clonic and absence seizures can be figured out. These results indicate the functional role of feedforward pathways in controlling epileptic seizures and

  15. Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures

    Directory of Open Access Journals (Sweden)

    Denggui Fan

    2017-07-01

    Full Text Available The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In particular, it is thought that in some areas of cortex there exists feedforward inhibition from specific relay nucleus of thalamus (TC to inhibitory neuronal population (IN which has even more stronger functions on cortical activities than the known feedforward excitation from TC to excitatory neuronal population (EX. Inspired by this, we proposed a modified computational model by introducing feedforward inhibitory connectivity within thalamocortical circuit, to systematically investigate the combined effects of feedforward inhibition and excitation on transitions of epileptic seizures. We first found that the feedforward excitation can induce the transition from tonic oscillation to spike and wave discharges (SWD in cortex, i.e., the epileptic tonic-absence seizures, with the fixed weak feedforward inhibition. Thereinto, the phase of absence seizures corresponding to strong feedforward excitation can be further transformed into the clonic oscillations with the increasing of feedforward inhibition, representing the epileptic absence-clonic seizures. We also observed the other fascinating dynamical states, such as periodic 2/3/4-spike and wave discharges, reversed SWD and clonic oscillations, as well as saturated firings. More importantly, we can identify the stable parameter regions representing the tonic-clonic oscillations and SWD discharges of epileptic seizures on the 2-D plane composed of feedforward inhibition and excitation, where the physiologically plausible transition pathways between tonic-clonic and absence seizures can be figured out. These results indicate the functional role of feedforward pathways in controlling epileptic

  16. The role of stress as a trigger for epileptic seizures: a narrative review of evidence from human and animal studies.

    Science.gov (United States)

    Novakova, Barbora; Harris, Peter R; Ponnusamy, Athi; Reuber, Markus

    2013-11-01

    Stress is one of the most frequently self-identified seizure triggers in patients with epilepsy; however, most previous publications on stress and epilepsy have focused on the role of stress in the initial development of epilepsy. This narrative review explores the causal role of stress in triggering seizures in patients with existing epilepsy. Findings from human studies of psychological stress, as well as of physiologic stress responses in humans and animals, and evidence from nonpharmacologic interventions for epilepsy are considered. The evidence from human studies for stress as a trigger of epileptic seizures is inconclusive. Although retrospective self-report studies show that stress is the most common patient-perceived seizure precipitant, prospective studies have yielded mixed results and studies of life events suggest that stressful experiences only trigger seizures in certain individuals. There is limited evidence suggesting that autonomic arousal can precede seizures. Interventions designed to improve coping with stress reduce seizures in some individuals. Studies of physiologic stress using animal epilepsy models provide more convincing evidence. Exposure to exogenous and endogenous stress mediators has been found to increase epileptic activity in the brain and trigger overt seizures, especially after repeated exposure. In conclusion, stress is likely to exacerbate the susceptibility to epileptic seizures in a subgroup of individuals with epilepsy and may play a role in triggering "spontaneous" seizures. However, there is currently no strong evidence for a close link between stress and seizures in the majority of people with epilepsy, although animal research suggests that such links are likely. Further research is needed into the relationship between stress and seizures and into interventions designed to reduce perceived stress and improve quality of life with epilepsy. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  17. Control of epileptic seizures in WAG/Rij rats by means of brain-computer interface

    Science.gov (United States)

    Makarov, Vladimir V.; Maksimenko, Vladimir A.; van Luijtelaar, Gilles; Lüttjohann, Annika; Hramov, Alexander E.

    2018-02-01

    The main issue of epileptology is the elimination of epileptic events. This can be achieved by a system that predicts the emergence of seizures in conjunction with a system that interferes with the process that leads to the onset of seizure. The prediction of seizures remains, for the present, unresolved in the absence epilepsy, due to the sudden onset of seizures. We developed an algorithm for predicting seizures in real time, evaluated it and implemented it into an online closed-loop brain stimulation system designed to prevent typical for the absence of epilepsy of spike waves (SWD) in the genetic rat model. The algorithm correctly predicts more than 85% of the seizures and the rest were successfully detected. Unlike the old beliefs that SWDs are unpredictable, current results show that they can be predicted and that the development of systems for predicting and preventing closed-loop capture is a feasible step on the way to intervention to achieve control and freedom from epileptic seizures.

  18. The SAFARI Score to Assess the Risk of Convulsive Seizure During Admission for Aneurysmal Subarachnoid Hemorrhage.

    Science.gov (United States)

    Jaja, Blessing N R; Schweizer, Tom A; Claassen, Jan; Le Roux, Peter; Mayer, Stephan A; Macdonald, R Loch

    2018-06-01

    Seizure is a significant complication in patients under acute admission for aneurysmal SAH and could result in poor outcomes. Treatment strategies to optimize management will benefit from methods to better identify at-risk patients. To develop and validate a risk score for convulsive seizure during acute admission for SAH. A risk score was developed in 1500 patients from a single tertiary hospital and externally validated in 852 patients. Candidate predictors were identified by systematic review of the literature and were included in a backward stepwise logistic regression model with in-hospital seizure as a dependent variable. The risk score was assessed for discrimination using the area under the receiver operator characteristics curve (AUC) and for calibration using a goodness-of-fit test. The SAFARI score, based on 4 items (age ≥ 60 yr, seizure occurrence before hospitalization, ruptured aneurysm in the anterior circulation, and hydrocephalus requiring cerebrospinal fluid diversion), had AUC = 0.77, 95% confidence interval (CI): 0.73-0.82 in the development cohort. The validation cohort had AUC = 0.65, 95% CI 0.56-0.73. A calibrated increase in the risk of seizure was noted with increasing SAFARI score points. The SAFARI score is a simple tool that adequately stratified SAH patients according to their risk for seizure using a few readily derived predictor items. It may contribute to a more individualized management of seizure following SAH.

  19. Controlling absence seizures by deep brain stimulus applied on substantia nigra pars reticulata and cortex

    International Nuclear Information System (INIS)

    Hu, Bing; Wang, Qingyun

    2015-01-01

    Epilepsy is a typical neural disease in nervous system, and the control of seizures is very important for treating the epilepsy. It is well known that the drug treatment is the main strategy for controlling the epilepsy. However, there are about 10–15 percent of patients, whose seizures cannot be effectively controlled by means of the drug. Alternatively, the deep brain stimulus (DBS) technology is a feasible method to control the serious seizures. However, theoretical explorations of DBS are still absent, and need to be further made. Presently, we will explore to control the absence seizures by introducing the DBS to a basal ganglia thalamocortical network model. In particular, we apply DBS onto substantia nigra pars reticulata (SNr) and the cortex to explore its effects on controlling absence seizures, respectively. We can find that the absence seizure can be well controlled within suitable parameter ranges by tuning the period and duration of current stimulation as DBS is implemented in the SNr. And also, as the DBS is applied onto the cortex, it is shown that for the ranges of present parameters, only adjusting the duration of current stimulation is an effective control method for the absence seizures. The obtained results can have better understanding for the mechanism of DBS in the medical treatment.

  20. Randomized, controlled trial of ibuprofen syrup administered during febrile illnesses to prevent febrile seizure recurrences

    NARCIS (Netherlands)

    M. van Stuijvenberg (Margriet); G. Derksen-Lubsen (Gerarda); E.W. Steyerberg (Ewout); J.D.F. Habbema (Dik); H.A. Moll (Henriëtte)

    1998-01-01

    textabstractOBJECTIVES: Febrile seizures recur frequently. Factors increasing the risk of febrile seizure recurrence include young age at onset, family history of febrile seizures, previous recurrent febrile seizures, time lapse since previous seizure <6 months,

  1. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  2. Do reflex seizures and spontaneous seizures form a continuum? - triggering factors and possible common mechanisms.

    Science.gov (United States)

    Irmen, Friederike; Wehner, Tim; Lemieux, Louis

    2015-02-01

    Recent changes in the understanding and classification of reflex seizures have fuelled a debate on triggering mechanisms of seizures and their conceptual organization. Previous studies and patient reports have listed extrinsic and intrinsic triggers, albeit their multifactorial and dynamic nature is poorly understood. This paper aims to review literature on extrinsic and intrinsic seizure triggers and to discuss common mechanisms among them. Among self-reported seizure triggers, emotional stress is most frequently named. Reflex seizures are typically associated with extrinsic sensory triggers; however, intrinsic cognitive or proprioceptive triggers have also been assessed. The identification of a trigger underlying a seizure may be more difficult if it is intrinsic and complex, and if triggering mechanisms are multifactorial. Therefore, since observability of triggers varies and triggers are also found in non-reflex seizures, the present concept of reflex seizures may be questioned. We suggest the possibility of a conceptual continuum between reflex and spontaneous seizures rather than a dichotomy and discuss evidence to the notion that to some extent most seizures might be triggered. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. Modulation of seizure activity in mice by metabotropic glutamate receptor ligands

    DEFF Research Database (Denmark)

    Dalby, Nils Ole; Thomsen, C

    1996-01-01

    The anticonvulsant properties of ligands at metabotropic glutamate receptors (mGluRs) were examined in different seizure models by use of intracerebroventricular infusion. The mGluR1a antagonist/mGluR2 agonist, (S)-4-carboxy-3-hydroxyphenylglycine [(S)-4C3HPG] dose-dependently antagonized...... pentylenetetrazol- and methyl-6,7-dimethoxy-4-ethyl-beta-carboline-2-carboxylate (DMCM)-induced clonic convulsions in mice with ED50 values of 400 and 180 nmol/mice, respectively. A modest increase in electrical seizure threshold was observed in mice injected with (S)-4C3HPG. No effect on seizures induced...... by systemic administration of N-methyl-D-aspartate was observed by prior intracerebroventricular infusion of (S)-4C3HPG. The more selective (but less potent) mGluR1a antagonist, (S)-4-carboxyphenylglycine, was a weak anticonvulsant in similar seizure models with the exception of convulsions induced...

  4. Neurodevelopmental comorbidities and seizure control 24 months after a first unprovoked seizure in children.

    Science.gov (United States)

    Jason, Eva Åndell; Tomson, Torbjörn; Carlsson, Sofia; Tedroff, Kristina; Åmark, Per

    2018-07-01

    To follow children with newly diagnosed unprovoked seizures to determine (1) whether the prevalence of neurodevelopmental comorbidities and cerebral palsy (CP) changed after the initial seizure, and (2) the association between studied comorbidities and seizures 13-24 months after seizure onset or initiation of treatment. Analyses were based on 750 children (28 days-18 years) with a first unprovoked seizure (index) included in a population-based Incidence Registry in Stockholm between 2001 and 2006. The children were followed for two years and their medical records were examined for a priori defined neurodevelopmental/psychiatric comorbidities and CP and seizure frequency. Baseline information was collected from medical records from before, and up to six months after, the index seizure. Odds ratios (OR) of repeated seizures 13-24 months after the first seizure or after initiation of anti-epileptic drug treatment was calculated by logistic regression and adjusted for age and sex. At baseline, 32% of the children had neurodevelopmental/psychiatric comorbidities or CP compared to 35%, 24 months later. Children with such comorbidities more often experienced seizures 13-24 months after the index seizure (OR 2.87, CI 2.07-3.99) with the highest OR in those with CP or attention deficit hyperactivity disorder (ADHD). Children diagnosed at age neurodevelopmental comorbidities and CP in children with epilepsy tend to be present already at seizure onset and that such comorbidities are strong indicators of poor outcome regarding seizure control with or without treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Improving staff response to seizures on the epilepsy monitoring unit with online EEG seizure detection algorithms.

    Science.gov (United States)

    Rommens, Nicole; Geertsema, Evelien; Jansen Holleboom, Lisanne; Cox, Fieke; Visser, Gerhard

    2018-05-11

    User safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the added value above staff response is unclear. We ascertained the added value of two electroencephalograph (EEG) seizure detection algorithms in terms of additional detected seizures or faster detection time. EEG-video seizure recordings of people admitted to an EMU over one year were included, with a maximum of two seizures per subject. All recordings were retrospectively analyzed using Encevis EpiScan and BESA Epilepsy. Detection sensitivity and latency of the algorithms were compared to staff responses. False positive rates were estimated on 30 uninterrupted recordings (roughly 24 h per subject) of consecutive subjects admitted to the EMU. EEG-video recordings used included 188 seizures. The response rate of staff was 67%, of Encevis 67%, and of BESA Epilepsy 65%. Of the 62 seizures missed by staff, 66% were recognized by Encevis and 39% by BESA Epilepsy. The median latency was 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). After correcting for walking time from the observation room to the subject, both algorithms detected faster than staff in 65% of detected seizures. The full recordings included 617 h of EEG. Encevis had a median false positive rate of 4.9 per 24 h and BESA Epilepsy of 2.1 per 24 h. EEG-video seizure detection algorithms may improve reaction to seizures by improving the total number of seizures detected and the speed of detection. The false positive rate is feasible for use in a clinical situation. Implementation of these algorithms might result in faster diagnostic testing and better observation during seizures. Copyright © 2018. Published by Elsevier Inc.

  6. Oxaliplatin-Induced Tonic-Clonic Seizures

    Directory of Open Access Journals (Sweden)

    Ahmad K. Rahal

    2015-01-01

    Full Text Available Oxaliplatin is a common chemotherapy drug used for colon and gastric cancers. Common side effects are peripheral neuropathy, hematological toxicity, and allergic reactions. A rare side effect is seizures which are usually associated with posterior reversible leukoencephalopathy syndrome (PRES. A 50-year-old male patient presented with severe abdominal pain. CT scan of the abdomen showed acute appendicitis. Appendectomy was done and pathology showed mixed adenoneuroendocrine carcinoma. Adjuvant chemotherapy was started with Folinic acid, Fluorouracil, and Oxaliplatin (FOLFOX. During the third cycle of FOLFOX, the patient developed tonic-clonic seizures. Laboratory workup was within normal limits. EEG and MRI of the brain showed no acute abnormality. The patient was rechallenged with FOLFOX but he had tonic-clonic seizures for the second time. His chemotherapy regimen was switched to Folinic acid, Fluorouracil, and Irinotecan (FOLFIRI. After 5 cycles of FOLFIRI, the patient did not develop any seizures, making Oxaliplatin the most likely culprit for his seizures. Oxaliplatin-induced seizures rarely occur in the absence of PRES. One case report has been described in the literature. We present a rare case of tonic-clonic seizures in a patient receiving Oxaliplatin in the absence of PRES.

  7. Anticonvulsant activity of B2, an adenosine analog, on chemical convulsant-induced seizures.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Epilepsy is a chronic neurological disorder characterized by recurrent seizures. However, approximately one-third of epilepsy patients still suffer from uncontrolled seizures. Effective treatments for epilepsy are yet to be developed. N (6-(3-methoxyl-4-hydroxybenzyl adenine riboside (B2 is a N(6-substitued adenosine analog. Here we describe an investigation of the effects and mechanisms of B2 on chemical convulsant-induced seizures. Seizures were induced in mice by administration of 4-aminopyridine (4-AP, pentylenetetrazol (PTZ, picrotoxin, kainite acid (KA, or strychnine. B2 has a dose-related anticonvulsant effect in these chemical-induced seizure models. The protective effects of B2 include increased latency of seizure onset, decreased seizure occurrence, shorter seizure duration and reduced mortality rate. Radioligand binding and cAMP accumulation assays indicated that B2 might be a functional ligand for both adenosine A1 and A2A receptors. Furthermore, DPCPX, a selective A1 receptor antagonist, but not SCH58261, a selective A2A receptor antagonist, blocked the anticonvulsant effect of B2 on PTZ-induced seizure. c-Fos is a cellular marker for neuronal activity. Immunohistochemical and western blot analyses indicated that B2 significantly reversed PTZ-induced c-Fos expression in the hippocampus. Together, these results indicate that B2 has significant anticonvulsant effects. The anticonvulsant effects of B2 may be attributed to adenosine A1 receptor activation and reduced neuronal excitability in the hippocampus. These observations also support that the use of adenosine receptor agonist may be a promising approach for the treatment of epilepsy.

  8. Phenobarbital and neonatal seizures affect cerebral oxygen metabolism: a near-infrared spectroscopy study.

    Science.gov (United States)

    Sokoloff, Max D; Plegue, Melissa A; Chervin, Ronald D; Barks, John D E; Shellhaas, Renée A

    2015-07-01

    Near-infrared spectroscopy (NIRS) measures oxygen metabolism and is increasingly used for monitoring critically ill neonates. The implications of NIRS-recorded data in this population are poorly understood. We evaluated NIRS monitoring for neonates with seizures. In neonates monitored with video-electroencephalography, NIRS-measured cerebral regional oxygen saturation (rSO2) and systemic O2 saturation were recorded every 5 s. Mean rSO2 was extracted for 1-h blocks before, during, and after phenobarbital doses. For each electrographic seizure, mean rSO2 was extracted for a period of three times the duration of the seizure before and after the ictal pattern, as well as during the seizure. Linear mixed models were developed to assess the impact of phenobarbital administration and of seizures on rSO2 and fractional tissue oxygen extraction. For 20 neonates (estimated gestational age: 39.6 ± 1.5 wk), 61 phenobarbital doses and 40 seizures were analyzed. Cerebral rSO2 rose (P = 0.005), and fractional tissue oxygen extraction declined (P = 0.018) with increasing phenobarbital doses. rSO2 declined during seizures, compared with baseline and postictal phases (baseline 81.2 vs. ictal 77.7 vs. postictal 79.4; P = 0.004). Fractional tissue oxygen extraction was highest during seizures (P = 0.002). Cerebral oxygen metabolism decreases after phenobarbital administration and increases during seizures. These small, but clear, changes in cerebral oxygen metabolism merit assessment for potential clinical impact.

  9. Risk of seizures and status epilepticus in older patients with liver disease.

    Science.gov (United States)

    Alkhachroum, Ayham M; Rubinos, Clio; Kummer, Benjamin R; Parikh, Neal S; Chen, Monica; Chatterjee, Abhinaba; Reynolds, Alexandra; Merkler, Alexander E; Claassen, Jan; Kamel, Hooman

    2018-06-06

    Seizures can be provoked by systemic diseases associated with metabolic derangements, but the association between liver disease and seizures remains unclear. We performed a retrospective cohort study using inpatient and outpatient claims between 2008 and 2015 from a nationally representative 5% sample of Medicare beneficiaries. The primary exposure variable was cirrhosis, and the secondary exposure was mild, noncirrhotic liver disease. The primary outcome was seizure, and the secondary outcome was status epilepticus. Diagnoses were ascertained using validated International Classification of Diseases, Ninth Edition, Clinical Modification codes. Survival statistics were used to calculate incidence rates, and Cox proportional hazards models were used to examine the association between exposures and outcomes while adjusting for seizure risk factors. Among 1 782 402 beneficiaries, we identified 10 393 (0.6%) beneficiaries with cirrhosis and 19 557 (1.1%) with mild, noncirrhotic liver disease. Individuals with liver disease were older and had more seizure risk factors than those without liver disease. Over 4.6 ± 2.2 years of follow-up, 49 843 (2.8%) individuals were diagnosed with seizures and 25 patients (0.001%) were diagnosed with status epilepticus. Cirrhosis was not associated with seizures (hazard ratio [HR] = 1.1, 95% confidence interval [CI] = 1.0-1.3), but there was an association with status epilepticus (HR = 1.9, 95% CI = 1.3-2.8). Mild liver disease was not associated with a higher risk of seizures (HR = 0.8, 95% CI = 0.6-0.9) or status epilepticus (HR = 1.1, 95% CI = 0.7-1.5). In a large, population-based cohort, we found an association between cirrhosis and status epilepticus, but no overall association between liver disease and seizures. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  10. Biotelemetry system for Epilepsy Seizure Control

    Energy Technology Data Exchange (ETDEWEB)

    Smith, LaCurtise; Bohnert, George W.

    2009-07-02

    The Biotelemetry System for Epilepsy Seizure Control Project developed and tested an automated telemetry system for use in an epileptic seizure prevention device that precisely controls localized brain temperature. This project was a result of a Department of Energy (DOE) Global Initiatives for Proliferation Prevention (GIPP) grant to the Kansas City Plant (KCP), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL) to partner with Flint Hills Scientific, LLC, Lawrence, KS and Biophysical Laboratory Ltd (BIOFIL), Sarov, Russia to develop a method to help control epileptic seizures.

  11. Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters.

    Science.gov (United States)

    Kang, Seok Kyu; Markowitz, Geoffrey J; Kim, Shin Tae; Johnston, Michael V; Kadam, Shilpa D

    2015-01-01

    Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB), with NKCC1 antagonist bumetanide (BTN) as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in post-natal day 7, 10, and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs) quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy.

  12. Seizure prognosis of patients with low-grade tumors.

    Science.gov (United States)

    Kahlenberg, Cynthia A; Fadul, Camilo E; Roberts, David W; Thadani, Vijay M; Bujarski, Krzysztof A; Scott, Rod C; Jobst, Barbara C

    2012-09-01

    Seizures frequently impact the quality of life of patients with low grade tumors. Management is often based on best clinical judgment. We examined factors that correlate with seizure outcome to optimize seizure management. Patients with supratentorial low-grade tumors evaluated at a single institution were retrospectively reviewed. Using multiple regression analysis the patient characteristics and treatments were correlated with seizure outcome using Engel's classification. Of the 73 patients with low grade tumors and median follow up of 3.8 years (range 1-20 years), 54 (74%) patients had a seizure ever and 46 (63%) had at least one seizure before tumor surgery. The only factor significantly associated with pre-surgical seizures was tumor histology. Of the 54 patients with seizures ever, 25 (46.3%) had a class I outcome at last follow up. There was no difference in seizure outcome between grade II gliomas (astrocytoma grade II, oligodendroglioma grade II, mixed oligo-astrocytoma grade II) and other pathologies (pilocytic astrocytoma, ependymomas, DNET, gangliocytoma and ganglioglioma). Once seizures were established seizure prognosis was similar between different pathologies. Chemotherapy (p=0.03) and radiation therapy (p=0.02) had a positive effect on seizure outcome. No other parameter including significant tumor growth during the follow up period predicted seizure outcome. Only three patients developed new-onset seizures after tumor surgery that were non-perioperative. Anticonvulsant medication was tapered in 14 patients with seizures and 10 had no further seizures. Five patients underwent additional epilepsy surgery with a class I outcome in four. Two patients received a vagal nerve stimulator with >50% seizure reduction. Seizures at presentation are the most important factor associated with continued seizures after tumor surgery. Pathology does not influence seizure outcome. Use of long term prophylactic anticonvulsants is unwarranted. Chemotherapy and

  13. 27 CFR 478.152 - Seizure and forfeiture.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Seizure and forfeiture... Exemptions, Seizures, and Forfeitures § 478.152 Seizure and forfeiture. (a) Any firearm or ammunition... demonstrated by clear and convincing evidence, shall be subject to seizure and forfeiture, and all provisions...

  14. 19 CFR 162.92 - Notice of seizure.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Notice of seizure. 162.92 Section 162.92 Customs... (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Civil Asset Forfeiture Reform Act § 162.92 Notice of seizure. (a) Generally. Customs will send written notice of seizure as provided in this section to all known interested...

  15. 8 CFR 1280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 1280.21 Section 1280... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.21 Seizure of aircraft. Seizure of an aircraft under the... that its value is less than the amount of the fine which may be imposed. If seizure of an aircraft for...

  16. 8 CFR 280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 280.21 Section 280.21... OF FINES § 280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of... than the amount of the fine which may be imposed. If seizure of an aircraft for violation of section...

  17. 50 CFR 12.11 - Notification of seizure.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Notification of seizure. 12.11 Section 12... SEIZURE AND FORFEITURE PROCEDURES Preliminary Requirements § 12.11 Notification of seizure. Except where the owner or consignee is personally notified or seizure is made pursuant to a search warrant, the...

  18. 50 CFR 12.5 - Seizure by other agencies.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Seizure by other agencies. 12.5 Section 12... SEIZURE AND FORFEITURE PROCEDURES General Provisions § 12.5 Seizure by other agencies. Any authorized... the laws listed in § 12.2 will, if so requested, deliver such seizure to the appropriate Special Agent...

  19. Individualized prediction of seizure relapse and outcomes following antiepileptic drug withdrawal after pediatric epilepsy surgery.

    Science.gov (United States)

    Lamberink, Herm J; Boshuisen, Kim; Otte, Willem M; Geleijns, Karin; Braun, Kees P J

    2018-03-01

    The objective of this study was to create a clinically useful tool for individualized prediction of seizure outcomes following antiepileptic drug withdrawal after pediatric epilepsy surgery. We used data from the European retrospective TimeToStop study, which included 766 children from 15 centers, to perform a proportional hazard regression analysis. The 2 outcome measures were seizure recurrence and seizure freedom in the last year of follow-up. Prognostic factors were identified through systematic review of the literature. The strongest predictors for each outcome were selected through backward selection, after which nomograms were created. The final models included 3 to 5 factors per model. Discrimination in terms of adjusted concordance statistic was 0.68 (95% confidence interval [CI] 0.67-0.69) for predicting seizure recurrence and 0.73 (95% CI 0.72-0.75) for predicting eventual seizure freedom. An online prediction tool is provided on www.epilepsypredictiontools.info/ttswithdrawal. The presented models can improve counseling of patients and parents regarding postoperative antiepileptic drug policies, by estimating individualized risks of seizure recurrence and eventual outcome. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  20. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.

    Science.gov (United States)

    Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M

    2017-10-01

    The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2...... and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment....

  2. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    Energy Technology Data Exchange (ETDEWEB)

    Netopilova, M; Drsata, J [Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Kralove (Czech Republic); Haugvicova, R; Kubova, H; Mares, P [Institute of Physiology, Czech Academy of Sciences, 14220 Prague (Czech Republic)

    1998-07-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using {sup 14}C-carboxyl-labelled glutamate and measurement of {sup 14}CO{sub 2} radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  3. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    International Nuclear Information System (INIS)

    Netopilova, M.; Drsata, J.; Haugvicova, R.; Kubova, H.; Mares, P.

    1998-01-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using 14 C-carboxyl-labelled glutamate and measurement of 14 CO 2 radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  4. Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Dutta, Srimonti; Chakraborty, Sayantan

    2014-01-01

    Highlights: • We analyze EEG of patients during seizure and in seizure free interval. • Data from different sections of the brain and seizure activity was analyzed. • Assessment of cross-correlation in seizure and seizure free interval using MF-DXA technique. - Abstract: This paper reports a study of EEG data of epileptic patients in terms of multifractal detrended cross-correlation analysis (MF-DXA). The EEG clinical data were obtained from the EEG Database available with the Clinic of Epileptology of the University Hospital of Bonn, Germany. The data sets (C, D, and E) were taken from five epileptic patients undergoing presurgical evaluations. The data sets consist of intracranial EEG recordings during seizure-free intervals (interictal periods) from within the epileptogenic zone (D) and from the hippocampal formation of the opposite hemisphere of the epileptic patients’ brain, respectively (C). The data set (E) was recorded during seizure activity (ictal periods). MF-DXA is a very rigorous and robust tool for assessment of cross-correlation among two nonlinear time series. The study reveals the degree of cross-correlation is more among seizure and seizure free interval in epileptogenic zone. These data are very significant for diagnosis, onset and prognosis of epileptic patients

  5. Hemorrhagic Retinopathy after Spondylosis Surgery and Seizure.

    Science.gov (United States)

    Kord Valeshabad, Ali; Francis, Andrew W; Setlur, Vikram; Chang, Peter; Mieler, William F; Shahidi, Mahnaz

    2015-08-01

    To report bilateral hemorrhagic retinopathy in an adult female subject after lumbar spinal surgery and seizure. A 38-year-old woman presented with bilateral blurry vision and spots in the visual field. The patient had lumbar spondylosis surgery that was complicated by a dural tear with persistent cerebrospinal fluid leak. Visual symptoms started immediately after witnessed seizure-like activity. At presentation, visual acuity was 20/100 and 20/25 in the right and left eye, respectively. Dilated fundus examination demonstrated bilateral hemorrhagic retinopathy with subhyaloid, intraretinal, and subretinal involvement. At 4-month follow-up, visual acuity improved to 20/60 and 20/20 in the right and left eye, respectively. Dilated fundus examination and fundus photography showed resolution of retinal hemorrhages in both eyes. The first case of bilateral hemorrhagic retinopathy after lumbar spondylosis surgery and witnessed seizure in an adult was reported. Ophthalmic examination may be warranted after episodes of seizure in adults.

  6. Seizure detection algorithms based on EMG signals

    DEFF Research Database (Denmark)

    Conradsen, Isa

    Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective...... on the amplitude of the signal. The other algorithm was based on information of the signal in the frequency domain, and it focused on synchronisation of the electrical activity in a single muscle during the seizure. Results: The amplitude-based algorithm reliably detected seizures in 2 of the patients, while...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....

  7. Serum Prolactin in Diagnosis of Epileptic Seizures

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-09-01

    Full Text Available The results of studies in databases and references concerning serum prolactin levels (PRL in patients with suspected seizures were rated for quality and analyzed by members of the Therapeutics Subcommittee of the American Academy of Neurology.

  8. Effect of prophylactic phenobarbital on seizures, encephalopathy ...

    African Journals Online (AJOL)

    cerebral metabolism and re-oxygenation, which lead to cerebral oedema .... their serum electrolytes and glucose, calcium and magnesium levels measured. ..... Dzhala V, Ben-Ari Y, Khazipov R. Seizures accelerate anoxia-induced neuronal.

  9. Counselling adults who experience a first seizure.

    Science.gov (United States)

    Legg, Karen T; Newton, Mark

    2017-07-01

    A first seizure can result in significant uncertainty, fear and apprehension. One of the key roles of the clinician in the setting of first seizure is to provide accurate, timely information and counselling. We review the numerous components to be considered when counselling an adult patient after a first seizure. We provide a framework and manner to provide that counselling. We focus on an individualized approach and provide recommendations and information on issues of diagnosis, etiology, prognosis, the role and importance of medical testing, lifestyle considerations, driving, medication and other key counselling considerations. Accurate, timely counselling can allay fears and anxieties, remove misconceptions and reduce the risk for injury in seizure recurrence. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  10. The Epilepsies and Seizures: Hope Through Research

    Science.gov (United States)

    ... epilepticus and sudden unexpected death in epilepsy (SUDEP) . Status Epilepticus Status epilepticus is a potentially life-threatening condition ... otherwise experience good seizure control with their medication. status epilepticus – a potentially life-threatening condition in which a ...

  11. Predictors of acute symptomatic seizures after intracranial hemorrhage in infants.

    Science.gov (United States)

    Bansal, Seema; Kebede, Tewodros; Dean, Nathan P; Carpenter, Jessica L

    2014-10-01

    To determine the prevalence of acute symptomatic seizures in infants with supratentorial intracranial hemorrhage, to identify potential risk factors, and to determine the effect of acute seizures on long-term morbidity and mortality. Children less than 24 months with intracranial hemorrhage were identified from a neurocritical care database. All patients who received seizure prophylaxis beginning at admission were included in the study. Risk factors studied were gender, etiology, location of hemorrhage, seizure(s) on presentation, and the presence of parenchymal injury. Acute clinical and electrographic seizures were identified from hospital medical records. Subsequent development of late seizures was determined based on clinical information from patients' latest follow-up. Patients with idiopathic neonatal intracranial hemorrhage, premature infants, and those with prior history of seizures were excluded from analysis. Seventy-two infants met inclusion criteria. None. Forty percent of infants had acute symptomatic seizures. The prevalence was similar regardless of whether etiology of hemorrhage was traumatic or nontraumatic. Seizures on presentation and parenchymal injury were independent risk factors of acute seizures (p = 0.001 and p = 0.006, respectively). Younger children and women were also at higher risk (p Acute seizures were not predictive of mortality, but nearly twice as many patients with acute seizures developed late seizures when compared with those without. Electrographic seizures and parenchymal injury were also predictive of development of late seizures (p hemorrhage are at high risk for acute symptomatic seizures. This is regardless of the etiology of hemorrhage. Younger patients, women, patients with parenchymal injury, and patients presenting with seizure are most likely to develop acute seizures. Although the benefits of seizure prophylaxis have not been studied in this specific population, these results suggest that it is an important component

  12. 15 CFR 904.501 - Notice of seizure.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Notice of seizure. 904.501 Section 904... Seizure and Forfeiture Procedures § 904.501 Notice of seizure. Within 60 days from the date of the seizure, NOAA will serve the Notice of Seizure as provided in § 904.3 to the owner or consignee, if known or...

  13. Seizure characteristics in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Vahid Shaygannejad

    2013-01-01

    Full Text Available Background: To evaluate seizure characteristic among multiple sclerosis patients with coexistent seizure activity compared to control group. Materials and Methods : This study is a cross-sectional study which was conducted by reviewing the clinical records of patients with definite diagnosis of MS according to McDonald′s criteria from March 2007 to June 2011, who referred to the MS clinic of the university. Results : A total of 920 patients with a diagnosis of MS were identified, among whom 29 patients (3.15% with seizure activity (case due to MS with the mean age of 32.6 ± 6.23 years were analyzed. Also, fifty MS patients without any seizure occurrence with the mean age of 33.7 ± 7.4 years were used as our control group. In case group, seizure was general tonic clonic in 23 patients (79.3%, complex partial in four (13.8%, and simple partial in two (5.9%. The 26 available interictal EEGs in MS patients showed abnormal EEG pattern in 22 (84.6% of them, including focal epileptic form discharge or focal slowing in 10 (38.5%, generalized discharge (spike-wave, polyspike, or general paroxysmal fast activity in 10 (38.5%, and general slowing activity in 10 record (38.5%. MRI reviews of the 26 available brain MRIs showed subcortical white mater lesions in 22 (84.6% of patients with seizure. All MRIs were performed within one month after the first seizure episode. Amongst 48 available MRIs in our control group, 91.7% (44 cases showed periventricular lesions and in 8.3% (4 cases subcortical white matter lesions were reported. Conclusion : The result of this study demonstrated the higher rate of subcortical whit matter lesion in MS patients with seizure occurrence compared to control group.

  14. Ketogenic diet: Predictors of seizure control.

    Science.gov (United States)

    Agarwal, Nitin; Arkilo, Dimitrios; Farooq, Osman; Gillogly, Cynthia; Kavak, Katelyn S; Weinstock, Arie

    2017-01-01

    The ketogenic diet is an effective non-pharmacologic treatment for medically resistant epilepsy. The aim of this study was to identify any predictors that may influence the response of ketogenic diet. A retrospective chart review for all patients with medically resistant epilepsy was performed at a tertiary care epilepsy center from 1996 to 2012. Patient- and diet-related variables were evaluated with respect to seizure reduction at 1, 3, 6, 9 and 12-month intervals and divided into four possible outcome classes. Sixty-three patients met inclusion. Thirty-seven (59%) reported >50% seizure reduction at 3 months with 44% and 37% patients benefiting at 6-month and 12-month follow up, respectively. A trend toward significant seizure improvement was noted in 48% patients with seizure onset >1 year at 12-month (p = 0.09) interval and in 62% patients with >10 seizure/day at 6-month interval (p = 0.054). An ordinal logistic regression showed later age of seizure to have higher odds of favorable response at 1-month (p = 0.005) and 3-month (p = 0.013) follow up. Patients with non-fasting diet induction were more likely to have a favorable outcome at 6 months (p = 0.008) as do females (p = 0.037) and those treated with higher fat ratio diet (p = 0.034). Our study reports the effectiveness of ketogenic diet in children with medically resistant epilepsy. Later age of seizure onset, female gender, higher ketogenic diet ratio and non-fasting induction were associated with better odds of improved seizure outcome. A larger cohort is required to confirm these findings.

  15. Acute recurrent seizures in a dog

    International Nuclear Information System (INIS)

    Wheeler, S.J.

    1990-01-01

    A detailed account is given, in question and answer format, of the diagnosis of meningioma in the left cerebral cortex of a 9-year-old male Shetland sheepdog with a history of sudden onset of seizures. The seizures were controlled by phenobarbital. Surgery was also performed to debulk the tumour. One year later the dog's neurological condition deteriorated again. Meningioma was confirmed by PM examination

  16. Administrative management of the soldier with seizures.

    Science.gov (United States)

    Gunderson, C H

    1991-07-01

    Based on improvement in our understanding of the prognosis of young adults with new onset seizures, and cumulative experience with the rules in effect for the last 30 years, a substantial change in the regulations affecting the fitness and profiling of these soldiers has been made. In general, these liberalize retention and profiling, set limits on the duration of trials of duty, provide for fitness determinations in soldiers with pseudo-seizures, and specify when neurologic consultation is required.

  17. Seizure-Induced Oxidative Stress in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Sreekanth Puttachary

    2015-01-01

    Full Text Available An insult to the brain (such as the first seizure causes excitotoxicity, neuroinflammation, and production of reactive oxygen/nitrogen species (ROS/RNS. ROS and RNS produced during status epilepticus (SE overwhelm the mitochondrial natural antioxidant defense mechanism. This leads to mitochondrial dysfunction and damage to the mitochondrial DNA. This in turn affects synthesis of various enzyme complexes that are involved in electron transport chain. Resultant effects that occur during epileptogenesis include lipid peroxidation, reactive gliosis, hippocampal neurodegeneration, reorganization of neural networks, and hypersynchronicity. These factors predispose the brain to spontaneous recurrent seizures (SRS, which ultimately establish into temporal lobe epilepsy (TLE. This review discusses some of these issues. Though antiepileptic drugs (AEDs are beneficial to control/suppress seizures, their long term usage has been shown to increase ROS/RNS in animal models and human patients. In established TLE, ROS/RNS are shown to be harmful as they can increase the susceptibility to SRS. Further, in this paper, we review briefly the data from animal models and human TLE patients on the adverse effects of antiepileptic medications and the plausible ameliorating effects of antioxidants as an adjunct therapy.

  18. The anticonvulsant action of nafimidone on kindled amygdaloid seizures in rats.

    Science.gov (United States)

    Albertson, T E; Walby, W F

    1988-01-01

    The anticonvulsant effectiveness of nafimidone (1-[2-naphthoylmethyl]imidazole hydrochloride) was evaluated in the kindled amygdaloid seizure model in rats. Nafimidone (3.1-120 mg/kg i.p.) was evaluated at 30 min in previously kindled rats using both threshold (20 microA increments) and supranthreshold (400 microA) paradigms. Nafimidone (25-50 mg/kg) significantly reduced supranthreshold elicited afterdischarge length and seizure severity only at doses with some prestimulation toxicity. The maximum anticonvulsant effectiveness for the 25 mg/kg i.p. dose of nafimidone was seen between 15 and 30 min utilizing a suprathreshold kindling paradigm. Nafimidone did not significantly elevate seizure thresholds at the doses tested; however, nafimidone (3.1-50 mg/kg) reduced the severity and afterdischarge duration of threshold elicited seizures in a non-dose response manner. Drug-induced electroencephalographic spikes were seen in both cortex and amygdala in most kindled rats receiving 100-120 mg/kg i.p. within 30 min of dosing before electrical stimulation. The frequency of spike and wave complexes increased in most of these animals leading to drug-induced spontaneous seizures and death in approximately 25% before electrical stimulation. This study has demonstrated that although nafimidone can modify both threshold and suprathreshold elicited kindled amygdaloid seizures, it lacks significant specificity in this model of epilepsy.

  19. Cerebrospinal fluid findings after epileptic seizures.

    Science.gov (United States)

    Chatzikonstantinou, Anastasios; Ebert, Anne D; Hennerici, Michael G

    2015-12-01

    We aimed to evaluate ictally-induced CSF parameter changes after seizures in adult patients without acute inflammatory diseases or infectious diseases associated with the central nervous system. In total, 151 patients were included in the study. All patients were admitted to our department of neurology following acute seizures and received an extensive work-up including EEG, cerebral imaging, and CSF examinations. CSF protein elevation was found in most patients (92; 60.9%) and was significantly associated with older age, male sex, and generalized seizures. Abnormal CSF-to-serum glucose ratio was found in only nine patients (5.9%) and did not show any significant associations. CSF lactate was elevated in 34 patients (22.5%) and showed a significant association with focal seizures with impaired consciousness, status epilepticus, the presence of EEG abnormalities in general and epileptiform potentials in particular, as well as epileptogenic lesions on cerebral imaging. Our results indicate that non-inflammatory CSF elevation of protein and lactate after epileptic seizures is relatively common, in contrast to changes in CSF-to-serum glucose ratio, and further suggest that these changes are caused by ictal activity and are related to seizure type and intensity. We found no indication that these changes may have further-reaching pathological implications besides their postictal character.

  20. Hungry Neurons: Metabolic Insights on Seizure Dynamics

    Directory of Open Access Journals (Sweden)

    Paolo Bazzigaluppi

    2017-10-01

    Full Text Available Epilepsy afflicts up to 1.6% of the population and the mechanisms underlying the appearance of seizures are still not understood. In past years, many efforts have been spent trying to understand the mechanisms underlying the excessive and synchronous firing of neurons. Traditionally, attention was pointed towards synaptic (dysfunction and extracellular ionic species (dysregulation. Recently, novel clinical and preclinical studies explored the role of brain metabolism (i.e., glucose utilization of seizures pathophysiology revealing (in most cases reduced metabolism in the inter-ictal period and increased metabolism in the seconds preceding and during the appearance of seizures. In the present review, we summarize the clinical and preclinical observations showing metabolic dysregulation during epileptogenesis, seizure initiation, and termination, and in the inter-ictal period. Recent preclinical studies have shown that 2-Deoxyglucose (2-DG, a glycolysis blocker is a novel therapeutic approach to reduce seizures. Furthermore, we present initial evidence for the effectiveness of 2-DG in arresting 4-Aminopyridine induced neocortical seizures in vivo in the mouse.

  1. Intravenous Carbamazepine for Adults With Seizures.

    Science.gov (United States)

    Vickery, P Brittany; Tillery, Erika E; DeFalco, Alicia Potter

    2018-03-01

    To review the pharmacology, pharmacokinetics, efficacy, safety, dosage and administration, potential drug-drug interactions, and place in therapy of the intravenous (IV) formulation of carbamazepine (Carnexiv) for the treatment of seizures in adult patients. A comprehensive PubMed and EBSCOhost search (1945 to August 2017) was performed utilizing the keywords carbamazepine, Carnexiv, carbamazepine intravenous, IV carbamazepine, seizures, epilepsy, and seizure disorder. Additional data were obtained from literature review citations, manufacturer's product labeling, and Lundbeck website as well as Clinicaltrials.gov and governmental sources. All English-language trials evaluating IV carbamazepine were analyzed for this review. IV carbamazepine is FDA approved as temporary replacement therapy for treatment of adult seizures. Based on a phase I trial and pooled data from 2 open-label bioavailability studies comparing oral with IV dosing, there was no noted indication of loss of seizure control in patients switched to short-term replacement antiepileptic drug therapy with IV carbamazepine. The recommended dose of IV carbamazepine is 70% of the patient's oral dose, given every 6 hours via 30-minute infusions. The adverse effect profile of IV carbamazepine is similar to that of the oral formulation, with the exception of added infusion-site reactions. IV carbamazepine is a reasonable option for adults with generalized tonic-clonic or focal seizures, previously stabilized on oral carbamazepine, who are unable to tolerate oral medications for up to 7 days. Unknown acquisition cost and lack of availability in the United States limit its use currently.

  2. Brivaracetam: a novel antiepileptic drug for focal-onset seizures.

    Science.gov (United States)

    Stephen, Linda J; Brodie, Martin J

    2018-01-01

    Brivaracetam (BRV), the n -propyl analogue of levetiracetam (LEV), is the latest antiepileptic drug (AED) to be licensed in Europe and the USA for the adjunctive treatment of focal-onset seizures with or without secondary generalization in patients aged 16 years or older. Like LEV, BRV binds to synaptic vesicle protein 2A (SV2A), but BRV has more selective binding and a 15- to 30-fold higher binding affinity than LEV. BRV is more effective than LEV in slowing synaptic vesicle mobilization and the two AEDs may act at different binding sites or interact with different conformational states of the SV2A protein. In animal models, BRV provides protection against focal and secondary generalized seizures and has significant anticonvulsant effects in genetic models of epilepsy. The drug undergoes first-order pharmacokinetics with an elimination half-life of 7-8 h. Although BRV is metabolized extensively, the main circulating compound is unchanged BRV. Around 95% of metabolites undergo renal elimination. No dose reduction is required in renal impairment, but it is recommended that the daily dose is reduced by one-third in hepatic dysfunction that may prolong half-life. BRV has a low potential for drug interactions. The efficacy and tolerability of adjunctive BRV in adults with focal-onset seizures have been explored in six randomized, placebo-controlled studies. These showed significant efficacy outcomes for doses of 50-200 mg/day. The most common adverse events reported were headache, somnolence, dizziness, fatigue and nausea. Patients who develop psychiatric symptoms with LEV appear to be at risk of similar side effects with BRV, although preliminary data suggest that these issues are likely to be less frequent and perhaps less severe. As with all AEDs, a low starting dose and slow titration schedule help to minimize side effects and optimize seizure control and thereby quality of life.

  3. Monitor for status epilepticus seizures

    Science.gov (United States)

    Johnson, Mark; Simkins, Thomas

    1994-01-01

    This paper describes the sensor technology and associated electronics of a monitor designed to detect the onset of a seizure disorder called status epilepticus. It is a condition that affects approximately 3-5 percent of those individuals suffering from epilepsy. This form of epilepsy does not follow the typical cycle of start-peak-end. The convulsions continue until medically interrupted and are life threatening. The mortality rate is high without prompt medical treatment at a suitable facility. The paper describes the details of a monitor design that provides an inexpensive solution to the needs of those responsible for the care of individuals afflicted with this disorder. The monitor has been designed as a cooperative research and development effort involving the United States Army Armament Research, Development, and Engineering Center's Benet Laboratories (Benet) and the Cerebral Palsy Center for the Disabled (Center), in association with the Department of Neurology at Albany Medical College (AMC). Benet has delivered a working prototype of the device for field testing, in collaboration with Albany Medical College. The Center has identified several children in need of special monitoring and has agreed to pursue commercialization of the device.

  4. Epileptic seizures in Neuro-Behcet disease: why some patients develop seizure and others not?

    Science.gov (United States)

    Kutlu, Gulnihal; Semercioglu, Sencer; Ucler, Serap; Erdal, Abidin; Inan, Levent E

    2015-03-01

    Behcet disease (BD) is a chronic relapsing inflammatory disorder. Neuro BD (NBD) is seen in approximately 5% of all patients. The aim of this study is to investigate the frequency, type and prognosis of epileptic seizures in different forms of NBD. All files of 42 patients with NBD were evaluated between 2006 and 2012, retrospectively. The demographic data, the presentation of NBD, clinical findings including seizures, EEG and neuroimaging findings were reviewed. The mean age of patients was 35.02±8.43 years. Thirty (71.4%) patients were male; the remaining 12 of them were female. Twenty-four patients had brainstem lesions; 16 patients had cerebral venous thrombosis. Spinal cord involvement was seen in two patients. Seven patients had epileptic seizures (six partial onset seizures with or without secondary generalization). Six of them had cerebral sinus thrombosis (CVT). Four patients had a seizure as the first symptom of the thrombosis. One patient had late onset seizure due to chronic venous infarct. The other patient with seizure had brainstem involvement. The remaining was diagnosed as epilepsy before the determination of NBD. CVT seen in BD seems to be the main risk factor for epileptic seizures in patients with NBD. The prognosis is usually good especially in patients with CVT. Epileptic seizures in patients with brainstem involvement may be an indicator for poor prognosis. Superior sagittal thrombosis or cortical infarct would be predictor of seizures occurrence because of the high ratio in patients with seizures. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  5. CNS activity of leaves extract of Calotropis gigantea

    Directory of Open Access Journals (Sweden)

    Santosh Dattatraya Ghule

    2014-09-01

    Full Text Available Objective: To study central nervous system activity of ethanolic extract of leaves of Calotropis gigantea (C. gigantea (Asclepiadaceae, such as anticonvulsant, sedative and muscle relaxation activity. Methods: The ethanolic extract of C. gigantea administered orally in experimental animals at different doses 100, 200 and 500 mg/kg body weight. The anticonvulsant properties were studied on maximal electroshock test and strychnine-induced convulsions model. Sedative property studied using actophotometer and skeletal muscle relaxant property studied using rota rod. Results: This extract protected rats against maximal electroshock induced seizures, but had no or a moderate effect only against strychnine-induced seizures. Locomotor activity in mice found to be decreased and motor coordination was also decreased. The acute toxicity study revealed safely of the extract up to a dose of 2 000 mg/kg. Conclusions: With these effects, the leaves of C. gigantea possess anticonvulsant sedative and muscle relaxant effect that might explain its use as a traditional medicine.

  6. Multiple sensor integration for seizure onset detection in human patients comparing conventional disc versus novel tripolar concentric ring electrodes.

    Science.gov (United States)

    Makeyev, Oleksandr; Ding, Quan; Martínez-Juárez, Iris E; Gaitanis, John; Kay, Steven M; Besio, Walter G

    2013-01-01

    As epilepsy affects approximately one percent of the world population, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Closed-loop systems that apply electrical stimulation when seizure onset is automatically detected require high accuracy of automatic seizure detection based on electrographic brain activity. To improve this accuracy we propose to use noninvasive tripolar concentric ring electrodes that have been shown to have significantly better signal-to-noise ratio, spatial selectivity, and mutual information compared to conventional disc electrodes. The proposed detection methodology is based on integration of multiple sensors using exponentially embedded family (EEF). In this preliminary study it is validated on over 26.3 hours of data collected using both tripolar concentric ring and conventional disc electrodes concurrently each from 7 human patients with epilepsy including five seizures. For a cross-validation based group model EEF correctly detected 100% and 80% of seizures respectively with tripolar concentric ring electrodes.

  7. Seizure variables and their relationship to genotype and functional abilities in the CDKL5 disorder.

    Science.gov (United States)

    Fehr, Stephanie; Wong, Kingsley; Chin, Richard; Williams, Simon; de Klerk, Nick; Forbes, David; Krishnaraj, Rahul; Christodoulou, John; Downs, Jenny; Leonard, Helen

    2016-11-22

    To investigate seizure outcomes and their relationships to genotype and functional abilities in individuals with the cyclin-dependent kinase-like-5 (CDKL5) disorder. Using the International CDKL5 Disorder Database, we identified 172 cases with a pathogenic CDKL5 mutation. We categorized individual mutations into 4 groups based on predicted structural and functional consequences. Negative binomial regression was used to model the linear association between current seizure rate and mutation group, current level of assistance required to walk 10 steps, and the highest level of expressive communication used to convey refusal or request. All but 3 (169/172) patients had a history of epilepsy. The median age at seizure onset was 6 weeks (range 1 week-1.5 years) and the median seizure rate at ascertainment was 2 per day (range 0-20 per day). After adjusting for walking ability and confounders including use or otherwise of polytherapy, seizure rate was lower in those with truncating mutations between aa172 and aa781 compared to those with no functional protein (incidence rate ratio [IRR] 0.57; 95% confidence interval [CI] 0.35-0.93). Ability to walk and use of spoken language were associated with lower rates of current seizures when compared to those with the least ability after adjusting for genotype (walking: IRR 0.62; 95% CI 0.39-0.99, communication: IRR 0.48; 95% CI 0.23-1.02). At a median age at questionnaire completion of 5 years, those previously treated with corticosteroids had more frequent seizures than those who have never been treated, whether or not there was a history of infantile spasms. Epilepsy is pervasive but not mandatory for the CDKL5 disorder. Genotype and functional abilities were related to seizure frequency, which appears refractory to antiepileptic drugs. © 2016 American Academy of Neurology.

  8. Seizures and Teens: Surgery for Seizures--What's It All About?

    Science.gov (United States)

    Duchowny, Michael S.; Dean, Patricia

    2006-01-01

    Nearly 1 out of 2 children and teens with seizures may need to take medications throughout their lives. At least 25% will develop a condition called refractory epilepsy--meaning that their seizures do not respond to medical therapy. For these children and teens, non-drug therapies such as brain surgery are available that may offer a chance to…

  9. Towards an Online Seizure Advisory System—An Adaptive Seizure Prediction Framework Using Active Learning Heuristics

    NARCIS (Netherlands)

    Karuppiah Ramachandran, Vignesh Raja; Alblas, Huibert J.; Le Viet Duc, Duc Viet; Meratnia, Nirvana

    2018-01-01

    In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the

  10. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures

    NARCIS (Netherlands)

    Wang, Lei; Long, Xi; Arends, J.B.A.M.; Aarts, R.M.

    2017-01-01

    Background The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. New method A single-channel

  11. Support Vector Machine and Application in Seizure Prediction

    KAUST Repository

    Qiu, Simeng

    2018-04-01

    Nowadays, Machine learning (ML) has been utilized in various kinds of area which across the range from engineering field to business area. In this paper, we first present several kernel machine learning methods of solving classification, regression and clustering problems. These have good performance but also have some limitations. We present examples to each method and analyze the advantages and disadvantages for solving different scenarios. Then we focus on one of the most popular classification methods, Support Vectors Machine (SVM). In addition, we introduce the basic theory, advantages and scenarios of using Support Vector Machine (SVM) deal with classification problems. We also explain a convenient approach of tacking SVM problems which are called Sequential Minimal Optimization (SMO). Moreover, one class SVM can be understood in a different way which is called Support Vector Data Description (SVDD). This is a famous non-linear model problem compared with SVM problems, SVDD can be solved by utilizing Gaussian RBF kernel function combined with SMO. At last, we compared the difference and performance of SVM-SMO implementation and SVM-SVDD implementation. About the application part, we utilized SVM method to handle seizure forecasting in canine epilepsy, after comparing the results from different methods such as random forest, extremely randomized tree, and SVM to classify preictal (pre-seizure) and interictal (interval-seizure) binary data. We draw the conclusion that SVM has the best performance.

  12. Identifying seizure onset zone from electrocorticographic recordings: A machine learning approach based on phase locking value.

    Science.gov (United States)

    Elahian, Bahareh; Yeasin, Mohammed; Mudigoudar, Basanagoud; Wheless, James W; Babajani-Feremi, Abbas

    2017-10-01

    Using a novel technique based on phase locking value (PLV), we investigated the potential for features extracted from electrocorticographic (ECoG) recordings to serve as biomarkers to identify the seizure onset zone (SOZ). We computed the PLV between the phase of the amplitude of high gamma activity (80-150Hz) and the phase of lower frequency rhythms (4-30Hz) from ECoG recordings obtained from 10 patients with epilepsy (21 seizures). We extracted five features from the PLV and used a machine learning approach based on logistic regression to build a model that classifies electrodes as SOZ or non-SOZ. More than 96% of electrodes identified as the SOZ by our algorithm were within the resected area in six seizure-free patients. In four non-seizure-free patients, more than 31% of the identified SOZ electrodes by our algorithm were outside the resected area. In addition, we observed that the seizure outcome in non-seizure-free patients correlated with the number of non-resected SOZ electrodes identified by our algorithm. This machine learning approach, based on features extracted from the PLV, effectively identified electrodes within the SOZ. The approach has the potential to assist clinicians in surgical decision-making when pre-surgical intracranial recordings are utilized. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Bilateral hippocampal atrophy in temporal lobe epilepsy: Effect of depressive symptoms and febrile seizures

    Science.gov (United States)

    Finegersh, Andrey; Avedissian, Christina; Shamim, Sadat; Dustin, Irene; Thompson, Paul M.; Theodore, William H.

    2011-01-01

    Summary Purpose Neuroimaging studies suggest a history of febrile seizures, and depression, are associated with hippocampal volume reductions in patients with temporal lobe epilepsy (TLE). Methods We used radial atrophy mapping (RAM), a three-dimensional (3D) surface modeling tool, to measure hippocampal atrophy in 40 patients with unilateral TLE, with or without a history of febrile seizures and symptoms of depression. Multiple linear regression was used to single out the effects of covariates on local atrophy. Key Findings Subjects with a history of febrile seizures (n = 15) had atrophy in regions corresponding to the CA1 and CA3 subfields of the hippocampus contralateral to seizure focus (CHC) compared to those without a history of febrile seizures (n = 25). Subjects with Beck Depression Inventory II (BDI-II) score ≥14 (n = 11) had atrophy in the superoanterior portion of the CHC compared to subjects with BDI-II <14 (n = 29). Significance Contralateral hippocampal atrophy in TLE may be related to febrile seizures or depression. PMID:21269286

  14. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy.

    Science.gov (United States)

    Ramgopal, Sriram; Thome-Souza, Sigride; Jackson, Michele; Kadish, Navah Ester; Sánchez Fernández, Iván; Klehm, Jacquelyn; Bosl, William; Reinsberger, Claus; Schachter, Steven; Loddenkemper, Tobias

    2014-08-01

    Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy. Copyright © 2014. Published by Elsevier Inc.

  15. Synaptic transmission modulates while non-synaptic processes govern the transition from pre-ictal to seizure activity in vitro

    OpenAIRE

    Jefferys, John; Fox, John; Jiruska, Premysl; Kronberg, Greg; Miranda, Dolores; Ruiz-Nuño, Ana; Bikson, Marom

    2018-01-01

    It is well established that non-synaptic mechanisms can generate electrographic seizures after blockade of synaptic function. We investigated the interaction of intact synaptic activity with non-synaptic mechanisms in the isolated CA1 region of rat hippocampal slices using the 'elevated-K+' model of epilepsy. Elevated K+ ictal bursts share waveform features with other models of electrographic seizures, including non-synaptic models where chemical synaptic transmission is suppressed, such as t...

  16. Prevalence of non-febrile seizures in children with idiopathic autism spectrum disorder and their unaffected siblings: a retrospective cohort study.

    Science.gov (United States)

    McCue, Lena M; Flick, Louise H; Twyman, Kimberly A; Xian, Hong; Conturo, Thomas E

    2016-11-28

    Autism spectrum disorder (ASD) is a heterogeneous disorder characterized not only by deficits in communication and social interactions but also a high rate of co-occurring disorders, including metabolic abnormalities, gastrointestinal and sleep disorders, and seizures. Seizures, when present, interfere with cognitive development and are associated with a higher mortality rate in the ASD population. To determine the relative prevalence of non-febrile seizures in children with idiopathic ASD from multiplex and simplex families compared with the unaffected siblings in a cohort of 610 children with idiopathic ASD and their 160 unaffected siblings, participating in the Autism Genetic Resource Exchange project, the secondary analysis was performed comparing the life-time prevalence of non-febrile seizures. Statistical models to account for non-independence of observations, inherent with the data from multiplex families, were used in assessing potential confounding effects of age, gender, and history of febrile seizures on odds of having non-febrile seizures. The life-time prevalence of non-febrile seizures was 8.2% among children with ASD and 2.5% among their unaffected siblings. In a logistic regression analysis that adjusted for familial clustering, children with ASD had 5.27 (95%CI: 1.51-18.35) times higher odds of having non-febrile seizures compared to their unaffected siblings. In this comparison, age, presence of gastrointestinal dysfunction, and history of febrile seizures were significantly associated with the prevalence of non-febrile seizures. Children with idiopathic ASD are significantly more likely to have non-febrile seizures than their unaffected siblings, suggesting that non-febrile seizures may be ASD-specific. Further studies are needed to determine modifiable risk factors for non-febrile seizures in ASD.

  17. Detection of Epileptic Seizures with Multi-modal Signal Processing

    DEFF Research Database (Denmark)

    Conradsen, Isa

    convulsive seizures tested. Another study was performed, involving quantitative parameters in the time and frequency domain. The study showed, that there are several differences between tonic seizures and the tonic phase of GTC seizures and furthermore revealed differences of the epileptic (tonic and tonic...... phase of GTC) and simulated seizures. This was valuable information concerning a seizure detection algorithm, and the findings from this research provided evidence for a change in the definition of these seizures by the International League Against Epilepsy (ILAE). Our final study presents a novel...

  18. Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice

    DEFF Research Database (Denmark)

    Lehre, A C; Rowley, N M; Zhou, Y

    2011-01-01

    of the GAT1 by the clinically available anti-epileptic drug tiagabine has been an effective strategy for the treatment of some patients with partial seizures. Recently, the investigational drug EF1502, which inhibits both GAT1 and BGT1, was found to exert an anti-convulsant action synergistic...... to that of tiagabine, supposedly due to inhibition of BGT1. The present study addresses the role of BGT1 in seizure control and the effect of EF1502 by developing and exploring a new mouse line lacking exons 3-5 of the BGT1 (slc6a12) gene. The deletion of this sequence abolishes the expression of BGT1 mRNA. However......, homozygous BGT1-deficient mice have normal development and show seizure susceptibility indistinguishable from that in wild-type mice in a variety of seizure threshold models including: corneal kindling, the minimal clonic and minimal tonic extension seizure threshold tests, the 6Hz seizure threshold test...

  19. Prenatal exposure to ionizing radiation and subsequent development of seizures

    International Nuclear Information System (INIS)

    Dunn, K.; Yoshimaru, H.; Otake, M.; Annegers, J.F.; Schull, W.J.

    1990-01-01

    Seizures are a frequent sequela of impaired brain development and can be expected to affect more children with radiation-related brain damage than children without such damage. This report deals with the incidence and type of seizures among survivors prenatally exposed to the atomic bombing of Hiroshima and Nagasaki, and their association with specific stages of prenatal development at the time of irradiation. Fetal radiation dose was assumed to be equal to the dose to the maternal uterus. Seizures here include all references in the clinical record to seizure, epilepsy, or convulsion. Histories of seizures were obtained at biennial routine clinical examinations starting at about the age of 2 years. These clinical records were used to classify seizures as febrile or unprovoked (without precipitating cause). No seizures were ascertained among subjects exposed 0-7 weeks after fertilization at doses higher than 0.10 Gy. The incidence of seizures was highest with irradiation at the eighth through the 15th week after fertilization among subjects with doses exceeding 0.10 Gy and was linearly related to the level of fetal exposure. This obtains for all seizures without regard to the presence of fever or precipitating causes, and for unprovoked seizures. When the 22 cases of severe mental retardation were excluded, the increase in seizures was only suggestively significant and only for unprovoked seizures. After exposure at later stages of development, there was no increase in recorded seizures

  20. Widespread EEG changes precede focal seizures.

    Directory of Open Access Journals (Sweden)

    Piero Perucca

    Full Text Available The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal, and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline. Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma and high-frequency bands (ripples and fast ripples. At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development, but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures.

  1. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice.

    Science.gov (United States)

    Roundtree, Harrison M; Simeone, Timothy A; Johnson, Chaz; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Kristina A

    2016-02-01

    Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models. © 2016 Associated

  2. Seizures after intravenous tramadol given as premedication

    Directory of Open Access Journals (Sweden)

    Lalit Kumar Raiger

    2012-01-01

    Full Text Available A 35-year-old, 50-kg female with a history of epilepsy was scheduled for elective breast surgery (fibroadenoma under general anaesthesia. She was given glycopyrrolate 0.2 mg, ondansetron 4 mg and tramadol 100 mg i.v. as premedication. Within 5 min, she had an acute episode of generalised tonic-clonic seizure that was successfully treated with 75 mg thiopentone i.v. and after 30 min, she was given general anaesthesia with endotracheal intubation. Surgery, intra-operative period, extubation and post-operative period were uneventful. We conclude that tramadol may provoke seizures in patients with epilepsy even within the recommended dose range.

  3. Treating seizures and epilepsy with anticoagulants?

    Directory of Open Access Journals (Sweden)

    Nicola eMaggio

    2013-03-01

    Full Text Available Thrombin is a serine protease playing an essential role in the blood coagulation cascade. Recent work, however, has identified a novel role for thrombin-mediated signaling pathways in the central nervous system. Binding of thrombin to protease-activated receptors (PARs in the brain appears to have multiple actions affecting both health and disease. Specifically, thrombin has been shown to lead to the onset of seizures via PAR-1 activation. In this perspective article, we review the putative mechanisms by which thrombin causes seizures and epilepsy. We propose a potential role of PAR-1 antagonists and novel thrombin inhibitors as new, possible antiepileptic drugs.

  4. Seizure After Local Anesthesia for Nasopharyngeal Angiofibroma

    Directory of Open Access Journals (Sweden)

    Cheng-Jing Tsai

    2007-02-01

    Full Text Available We report a young male patient who experienced seizure after local injection of 3 mL 2% lidocaine with epinephrine 1:200,000 around a recurrent nasal angiofibroma. After receiving 100% oxygen via mask and thiamylal sodium, the patient had no residual neurologic sequelae. Seizure immediately following the injection of local anesthetics in the nasal cavity is probably due to injection into venous or arterial circulation with retrograde flow to the brain circulation. Further imaging study or angiography should be done before head and neck surgeries, especially in such highly vascular neoplasm.

  5. Repeated 6-Hz Corneal Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral Amygdala and Induces Seizure Generalization to the Hippocampus.

    Directory of Open Access Journals (Sweden)

    Carmela Giordano

    Full Text Available Exposure to repetitive seizures is known to promote convulsions which depend on specific patterns of network activity. We aimed at evaluating the changes in seizure phenotype and neuronal network activation caused by a modified 6-Hz corneal stimulation model of psychomotor seizures. Mice received up to 4 sessions of 6-Hz corneal stimulation with fixed current amplitude of 32 mA and inter-stimulation interval of 72 h. Video-electroencephalography showed that evoked seizures were characterized by a motor component and a non-motor component. Seizures always appeared in frontal cortex, but only at the fourth stimulation they involved the hippocampus, suggesting the establishment of an epileptogenic process. Duration of seizure non-motor component progressively decreased after the second session, whereas convulsive seizures remained unchanged. In addition, a more severe seizure phenotype, consisting of tonic-clonic generalized convulsions, was predominant after the second session. Immunohistochemistry and double immunofluorescence experiments revealed a significant increase in neuronal activity occurring in the lateral amygdala after the fourth session, most likely due to activity of principal cells. These findings indicate a predominant role of amygdala in promoting progressively more severe convulsions as well as the late recruitment of the hippocampus in the seizure spread. We propose that the repeated 6-Hz corneal stimulation model may be used to investigate some mechanisms of epileptogenesis and to test putative antiepileptogenic drugs.

  6. A systematic review of suggestive seizure induction for the diagnosis of psychogenic nonepileptic seizures.

    Science.gov (United States)

    Popkirov, Stoyan; Grönheit, Wenke; Wellmer, Jörg

    2015-09-01

    Suggestive seizure induction is a widely used method for diagnosing psychogenic nonepileptic seizures (PNES). Despite seven decades of multidisciplinary research, however, there is still no unified protocol, no definitive agreement on the ethical framework and no consensus on diagnostic utility. This systematic review surveys the evidence at hand and addresses clinically relevant aspects of suggestive seizure induction. In addition to its use for facilitating the diagnostic process, its mechanism of action and utility in elucidating the psychopathology of PNES will be discussed. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  7. Computed tomography and childhood seizure disorder in Ibadan ...

    African Journals Online (AJOL)

    Computed tomography and childhood seizure disorder in Ibadan. ... neuroimaging, it offers an opportunity to investigate structural lesions as a cause of seizures ... The presence of neurologic deficit increased the yield of abnormal CT features.

  8. Epileptic seizures in patients with glioma: A single centre- based ...

    African Journals Online (AJOL)

    were used for analysis of seizure incidence differences as per WHO Grades, histology, location ... Keywords: Brain tumour, Epilepsy, Glioma, Seizures, Levetiracetam, .... glioma patients. Characteristics. N (%). Gender. Male. Female. Histology.

  9. Puerperal seizures: not the usual suspects | Hayes | Southern ...

    African Journals Online (AJOL)

    Abstract. We present a case of puerperal seizures and neonatal flaccidity due to abuse and abrupt withdrawal from zolpidem, following an elective Caesarean delivery at term. Keywords: zolpidem, puerperal seizures, withdrawal ...

  10. SLC6A1 Mutation and Ketogenic Diet in Epilepsy With Myoclonic-Atonic Seizures.

    Science.gov (United States)

    Palmer, Samantha; Towne, Meghan C; Pearl, Phillip L; Pelletier, Renee C; Genetti, Casie A; Shi, Jiahai; Beggs, Alan H; Agrawal, Pankaj B; Brownstein, Catherine A

    2016-11-01

    Epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy or Doose syndrome, has been recently linked to variants in the SLC6A1 gene. Epilepsy with myoclonic-atonic seizures is often refractory to antiepileptic drugs, and the ketogenic diet is known for treating medically intractable seizures, although the mechanism of action is largely unknown. We report a novel SLC6A1 variant in a patient with epilepsy with myoclonic-atonic seizures, analyze its effects, and suggest a mechanism of action for the ketogenic diet. We describe a ten-year-old girl with epilepsy with myoclonic-atonic seizures and a de novo SLC6A1 mutation who responded well to the ketogenic diet. She carried a c.491G>A mutation predicted to cause p.Cys164Tyr amino acid change, which was identified using whole exome sequencing and confirmed by Sanger sequencing. High-resolution structural modeling was used to analyze the likely effects of the mutation. The SLC6A1 gene encodes a transporter that removes gamma-aminobutyric acid from the synaptic cleft. Mutations in SLC6A1 are known to disrupt the gamma-aminobutyric acid transporter protein 1, affecting gamma-aminobutyric acid levels and causing seizures. The p.Cys164Tyr variant found in our study has not been previously reported, expanding on the variants linked to epilepsy with myoclonic-atonic seizures. A 10-year-old girl with a novel SLC6A1 mutation and epilepsy with myoclonic-atonic seizures had an excellent clinical response to the ketogenic diet. An effect of the diet on gamma-aminobutyric acid reuptake mediated by gamma-aminobutyric acid transporter protein 1 is suggested. A personalized approach to epilepsy with myoclonic-atonic seizures patients carrying SLC6A1 mutation and a relationship between epilepsy with myoclonic-atonic seizures due to SLC6A1 mutations, GABAergic drugs, and the ketogenic diet warrants further exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Phenobarbital reduces EEG amplitude and propagation of neonatal seizures but does not alter performance of automated seizure detection.

    Science.gov (United States)

    Mathieson, Sean R; Livingstone, Vicki; Low, Evonne; Pressler, Ronit; Rennie, Janet M; Boylan, Geraldine B

    2016-10-01

    Phenobarbital increases electroclinical uncoupling and our preliminary observations suggest it may also affect electrographic seizure morphology. This may alter the performance of a novel seizure detection algorithm (SDA) developed by our group. The objectives of this study were to compare the morphology of seizures before and after phenobarbital administration in neonates and to determine the effect of any changes on automated seizure detection rates. The EEGs of 18 term neonates with seizures both pre- and post-phenobarbital (524 seizures) administration were studied. Ten features of seizures were manually quantified and summary measures for each neonate were statistically compared between pre- and post-phenobarbital seizures. SDA seizure detection rates were also compared. Post-phenobarbital seizures showed significantly lower amplitude (pphenobarbital reduces both the amplitude and propagation of seizures which may help to explain electroclinical uncoupling of seizures. The seizure detection rate of the algorithm was unaffected by these changes. The results suggest that users should not need to adjust the SDA sensitivity threshold after phenobarbital administration. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors.

    Science.gov (United States)

    Onorati, Francesco; Regalia, Giulia; Caborni, Chiara; Migliorini, Matteo; Bender, Daniel; Poh, Ming-Zher; Frazier, Cherise; Kovitch Thropp, Eliana; Mynatt, Elizabeth D; Bidwell, Jonathan; Mai, Roberto; LaFrance, W Curt; Blum, Andrew S; Friedman, Daniel; Loddenkemper, Tobias; Mohammadpour-Touserkani, Fatemeh; Reinsberger, Claus; Tognetti, Simone; Picard, Rosalind W

    2017-11-01

    New devices are needed for monitoring seizures, especially those associated with sudden unexpected death in epilepsy (SUDEP). They must be unobtrusive and automated, and provide false alarm rates (FARs) bearable in everyday life. This study quantifies the performance of new multimodal wrist-worn convulsive seizure detectors. Hand-annotated video-electroencephalographic seizure events were collected from 69 patients at six clinical sites. Three different wristbands were used to record electrodermal activity (EDA) and accelerometer (ACM) signals, obtaining 5,928 h of data, including 55 convulsive epileptic seizures (six focal tonic-clonic seizures and 49 focal to bilateral tonic-clonic seizures) from 22 patients. Recordings were analyzed offline to train and test two new machine learning classifiers and a published classifier based on EDA and ACM. Moreover, wristband data were analyzed to estimate seizure-motion duration and autonomic responses. The two novel classifiers consistently outperformed the previous detector. The most efficient (Classifier III) yielded sensitivity of 94.55%, and an FAR of 0.2 events/day. No nocturnal seizures were missed. Most patients had seizure frequency. When increasing the sensitivity to 100% (no missed seizures), the FAR is up to 13 times lower than with the previous detector. Furthermore, all detections occurred before the seizure ended, providing reasonable latency (median = 29.3 s, range = 14.8-151 s). Automatically estimated seizure durations were correlated with true durations, enabling reliable annotations. Finally, EDA measurements confirmed the presence of postictal autonomic dysfunction, exhibiting a significant rise in 73% of the convulsive seizures. The proposed multimodal wrist-worn convulsive seizure detectors provide seizure counts that are more accurate than previous automated detectors and typical patient self-reports, while maintaining a tolerable FAR for ambulatory monitoring. Furthermore, the multimodal system

  13. Specific features of early post-stroke seizures

    Directory of Open Access Journals (Sweden)

    Tatyana Valeryevna Danilova

    2012-01-01

    Full Text Available The paper presents the results of examining 101 patients (68 men and 33 women aged 48 to 89 years with seizures in the first 7 days of stroke. A control group comprised 97 patients who had experienced ischemic stroke without seizures. Early seizures more frequently occurred in the cardioembolic subtype of stroke as simple partial seizures. The neuroimaging features of ischemic foci were revealed and the cerebrovascular responsiveness was evaluated in different vascular basins in these patients.

  14. Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures

    Science.gov (United States)

    Li, Min; Ma, Tao; Wu, Shengdun; Ma, Jingling; Cui, Yan; Xia, Yang; Xu, Peng; Yao, Dezhong

    2015-01-01

    The basal ganglia (BG), serving as an intermediate bridge between the cerebral cortex and thalamus, are believed to play crucial roles in controlling absence seizure activities generated by the pathological corticothalamic system. Inspired by recent experiments, here we systematically investigate the contribution of a novel identified GABAergic pallido-cortical pathway, projecting from the globus pallidus externa (GPe) in the BG to the cerebral cortex, to the control of absence seizures. By computational modelling, we find that both increasing the activation of GPe neurons and enhancing the coupling strength of the inhibitory pallido-cortical pathway can suppress the bilaterally synchronous 2–4 Hz spike and wave discharges (SWDs) during absence seizures. Appropriate tuning of several GPe-related pathways may also trigger the SWD suppression, through modulating the activation level of GPe neurons. Furthermore, we show that the previously discovered bidirectional control of absence seizures due to the competition between other two BG output pathways also exists in our established model. Importantly, such bidirectional control is shaped by the coupling strength of this direct GABAergic pallido-cortical pathway. Our work suggests that the novel identified pallido-cortical pathway has a functional role in controlling absence seizures and the presented results might provide testable hypotheses for future experimental studies. PMID:26496656

  15. Seizure control in patients with epilepsy: the physician vs. medication factors

    Directory of Open Access Journals (Sweden)

    Lindsell Christopher J

    2008-12-01

    Full Text Available Abstract Background Little is known about the relationship between types of healthcare providers and outcomes in patients with epilepsy. This study compares the relative effects of provider type (epileptologist vs. other neurologist and pharmacologic treatment (newer vs. older antiepileptic drugs on seizure control in patients with epilepsy. Methods We conducted a retrospective study of patients with medication-resistant epilepsy. Consecutive charts of 200 patients were abstracted using a standard case report form. For each patient, data included seizure frequency and medication use prior to, and while being treated by an epileptologist. Changes in seizure frequency were modeled using a generalized linear model. Results After transferring care from a general neurologist to specialized epilepsy center, patients experienced fewer seizures (p Conclusion Our findings suggest an association between subspecialty epilepsy care and improved seizure control in patients with medication-resistant epilepsy. Further research should prospectively determine whether patients with medication-resistant epilepsy would benefit from being routinely referred to an epilepsy specialist.

  16. pre-hospital management of febrile seizures in children seen

    African Journals Online (AJOL)

    INTRODUCTION. A febrile seizure refers to a seizure occurring in infancy or childhood usually between three months and five years of age as a result of elevated body temperature in the absence of pathology in the brain.1 Febrile seizures are commonly encountered in emergency paediatric practice and have been ...

  17. Out-of-body experiences associated with seizures

    Directory of Open Access Journals (Sweden)

    Bruce eGreyson

    2014-02-01

    Full Text Available Alterations of consciousness are critical factors in the diagnosis of epileptic seizures. With these alterations in consciousness, some persons report sensations of separating from the physical body, experiences that may in rare cases resemble spontaneous out-of-body experiences. This study was designed to identify and characterize these out-of-body-like subjective experiences associated with seizure activity. 55% of the patients in this study recalled some subjective experience in association with their seizures. Among our sample of 100 patients, 7 reported out-of-body experiences associated with their seizures. We found no differentiating traits that were associated with patients’ reports of out-of-body experiences, in terms of either demographics; medical history, including age of onset and duration of seizure disorder, and seizure frequency; seizure characteristics, including localization, lateralization, etiology, and type of seizure, and epilepsy syndrome; or ability to recall any subjective experiences associated with their seizures. Reporting out-of-body experiences in association with seizures did not affect epilepsy-related quality of life. It should be noted that even in those patients who report out-of-body experiences, such sensations are extremely rare events that do not occur routinely with their seizures. Most patients who reported out-of-body experiences described one or two experiences that occurred an indeterminate number of years ago, which precludes the possibility of associating the experience with the particular characteristics of that one seizure or with medications taken or other conditions at the time.

  18. Complex partial seizure, disruptive behaviours and the Nigerian ...

    African Journals Online (AJOL)

    Background: Complex partial seizure is an epileptic seizure which results in impairment of responsiveness or awareness such as altered level of consciousness. Complex partial seizures are often preceded by an aura such as depersonalization, feelings of de javu, jamais vu and fear. The ictal phase of complex partial ...

  19. The determinants of seizure severity in Nigerian epileptics | Imam ...

    African Journals Online (AJOL)

    This assesses generalisation of seizures, falls, injuries, urinary incontinence, warning interval before loss of consciousness, automatisms and time of recovery on a graded scale. Results: The most frequent indices of seizure severity in Nigerian epileptics is the generalisation of seizures in 85.7% of subjects, incontinence of ...

  20. 19 CFR 162.21 - Responsibility and authority for seizures.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Responsibility and authority for seizures. 162.21 Section 162.21 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... authority for seizures. (a) Seizures by Customs officers. Property may be seized, if available, by any...

  1. Rapidly Learned Identification of Epileptic Seizures from Sonified EEG

    Directory of Open Access Journals (Sweden)

    Psyche eLoui

    2014-10-01

    Full Text Available Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG. However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here we describe an algorithm we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determine whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures vs. non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy.

  2. Patterns of antiepileptic drug use and seizure control among people ...

    African Journals Online (AJOL)

    Background Epilepsy is characterized by episodic and unpredictable seizure recurrences which are often amenable to medical treatment. Simple and readily available medications can be used to control seizures in epilepsy. However, in many communities in developing countries seizure control among people living with ...

  3. 26 CFR 403.25 - Personal property subject to seizure.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Personal property subject to seizure. 403.25... AND ADMINISTRATION DISPOSITION OF SEIZED PERSONAL PROPERTY Seizures and Forfeitures § 403.25 Personal property subject to seizure. Personal property may be seized by the Commissioner of Internal Revenue or his...

  4. 28 CFR 0.86 - Seizure of gambling devices.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Seizure of gambling devices. 0.86 Section... Bureau of Investigation § 0.86 Seizure of gambling devices. The Director, Associate Director, Assistants... General to make seizures of gambling devices (18 U.S.C. 1955(d), 15 U.S.C. 1171 et seq.) and wire or oral...

  5. 27 CFR 447.63 - Seizure and forfeiture.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Seizure and forfeiture. 447.63 Section 447.63 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... IMPLEMENTS OF WAR Penalties, Seizures and Forfeitures § 447.63 Seizure and forfeiture. Whoever knowingly...

  6. 77 FR 11437 - Inspection Service Authority; Seizure and Forfeiture

    Science.gov (United States)

    2012-02-27

    ... POSTAL SERVICE 39 CFR Part 233 Inspection Service Authority; Seizure and Forfeiture AGENCY: Postal... Service's rules and regulations regarding the seizure and forfeiture of property into three sections, 39.... The proposed revision consolidates sections 233.8 and 233.9, and treats seizures involving personal...

  7. 14 CFR 13.17 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Seizure of aircraft. 13.17 Section 13.17... INVESTIGATIVE AND ENFORCEMENT PROCEDURES Legal Enforcement Actions § 13.17 Seizure of aircraft. (a) Under... officer, or a Federal Aviation Administration safety inspector, authorized in an order of seizure issued...

  8. 9 CFR 118.4 - Seizure and condemnation.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Seizure and condemnation. 118.4... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DETENTION; SEIZURE AND CONDEMNATION § 118.4 Seizure and condemnation. Any biological product which is prepared, sold, bartered...

  9. 27 CFR 555.166 - Seizure or forfeiture.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Seizure or forfeiture. 555... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Unlawful Acts, Penalties, Seizures and Forfeitures § 555.166 Seizure or forfeiture. Any explosive materials involved or used or intended to be used...

  10. 26 CFR 301.7321-1 - Seizure of property.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Seizure of property. 301.7321-1 Section 301... ADMINISTRATION PROCEDURE AND ADMINISTRATION Other Offenses § 301.7321-1 Seizure of property. Any property subject... director or assistant regional commissioner (alcohol, tobacco, and firearms). Upon seizure of property by...

  11. 19 CFR 12.101 - Seizure of prohibited switchblade knives.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Seizure of prohibited switchblade knives. 12.101...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Switchblade Knives § 12.101 Seizure of prohibited... accordance with § 12.100(a) shall be seized under 19 U.S.C. 1595a(c). (b) Notice of seizure. Notice of...

  12. 76 FR 26660 - Consolidation of Seizure and Forfeiture Regulations

    Science.gov (United States)

    2011-05-09

    ... CFR Parts 8 and 9 [Docket No. OAG 127; AG Order No. 3263-2011] RIN 1105-AA74 Consolidation of Seizure... seizure and forfeiture regulations, to conform those regulations to the Civil Asset Forfeiture Reform Act..., Tobacco, Firearms, and Explosives'' and generally transferred law enforcement functions, and seizure and...

  13. 8 CFR 274.1 - Seizure and forfeiture authority.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure and forfeiture authority. 274.1 Section 274.1 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS SEIZURE AND FORFEITURE OF CONVEYANCES § 274.1 Seizure and forfeiture authority. Any officer of Customs and Border...

  14. 27 CFR 555.186 - Seizure or forfeiture.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Seizure or forfeiture. 555... Seizure or forfeiture. Any plastic explosive that does not contain a detection agent in violation of 18 U.S.C. 842(l)-(n) is subject to seizure and forfeiture, and all provisions of 19 U.S.C. 1595a...

  15. Stimulation of the nervous system for the management of seizures: current and future developments.

    Science.gov (United States)

    Murphy, Jerome V; Patil, Arunangelo

    2003-01-01

    Vagal nerve stimulation (VNS) for the treatment of refractory epilepsy appears to have started from the theory that since VNS can alter the EEG, it may influence epilepsy. It proved effective in several models of epilepsy and was then tried in short-term, open-label and double-blind trials, leading to approval in Canada, Europe and the US. Follow-up observations in these patients demonstrated continued improvement in seizure control for up to 2 years. Close to 50% of treated patients have achieved at least a 50% reduction in seizure frequency. This therapy was also useful as rescue therapy for ongoing seizures in some patients; many patients are more alert. The initial trials were completed in patients >/=12 years of age with refractory partial seizures. Subsequently, similar benefits were shown in patients with tuberous sclerosis complex, Lennox-Gastaut syndrome, hypothalamic hamartomas and primary generalised seizures. Implanting the generator and leads is technically easy, and complications are few. The method of action is largely unknown, although VNS appears to alter metabolic activity in specific brain nuclei. Considering that improvement in mood is frequently found in patients using VNS, it has undergone trials in patients with depression. Other illnesses deserving exploration with this unusual therapy are Alzheimer's disease and autism. Some aspects of VNS have proven disappointing. Although patients have fewer seizures, the number of antiepileptic drugs they take is not significantly reduced. In addition, there is no way to accurately predict the end of life of the generator. Optimal stimulation parameters, if they exist, are unknown. Deep brain stimulation is a new method for controlling medically refractory seizures. It is based on the observation that thalamic stimulation can influence the EEG over a wide area. Several thalamic nuclei have been the object of stimulation in different groups of patients. Intraoperative brain imaging is essential for

  16. Automatic Seizure Detection in Rats Using Laplacian EEG and Verification with Human Seizure Signals

    Science.gov (United States)

    Feltane, Amal; Boudreaux-Bartels, G. Faye; Besio, Walter

    2012-01-01

    Automated detection of seizures is still a challenging problem. This study presents an approach to detect seizure segments in Laplacian electroencephalography (tEEG) recorded from rats using the tripolar concentric ring electrode (TCRE) configuration. Three features, namely, median absolute deviation, approximate entropy, and maximum singular value were calculated and used as inputs into two different classifiers: support vector machines and adaptive boosting. The relative performance of the extracted features on TCRE tEEG was examined. Results are obtained with an overall accuracy between 84.81 and 96.51%. In addition to using TCRE tEEG data, the seizure detection algorithm was also applied to the recorded EEG signals from Andrzejak et al. database to show the efficiency of the proposed method for seizure detection. PMID:23073989

  17. Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Crepel, Valérie; Represa, Alfonso

    2008-01-01

    Do temporal lobe epilepsy (TLE) seizures in adults promote further seizures? Clinical and experimental data suggest that new synapses are formed after an initial episode of status epilepticus, however their contribution to the transformation of a naive network to an epileptogenic one has been debated. Recent experimental data show that newly formed aberrant excitatory synapses on the granule cells of the fascia dentate operate by means of kainate receptor-operated signals that are not present on naive granule cells. Therefore, genuine epileptic networks rely on signaling cascades that differentiate them from naive networks. Recurrent limbic seizures generated by the activation of kainate receptors and synapses in naive animals lead to the formation of novel synapses that facilitate the emergence of further seizures. This negative, vicious cycle illustrates the central role of reactive plasticity in neurological disorders.

  18. Using Dictionary Pair Learning for Seizure Detection.

    Science.gov (United States)

    Ma, Xin; Yu, Nana; Zhou, Weidong

    2018-02-13

    Automatic seizure detection is extremely important in the monitoring and diagnosis of epilepsy. The paper presents a novel method based on dictionary pair learning (DPL) for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. First, for the EEG data, wavelet filtering and differential filtering are applied, and the kernel function is performed to make the signal linearly separable. In DPL, the synthesis dictionary and analysis dictionary are learned jointly from original training samples with alternating minimization method, and sparse coefficients are obtained by using of linear projection instead of costly [Formula: see text]-norm or [Formula: see text]-norm optimization. At last, the reconstructed residuals associated with seizure and nonseizure sub-dictionary pairs are calculated as the decision values, and the postprocessing is performed for improving the recognition rate and reducing the false detection rate of the system. A total of 530[Formula: see text]h from 20 patients with 81 seizures were used to evaluate the system. Our proposed method has achieved an average segment-based sensitivity of 93.39%, specificity of 98.51%, and event-based sensitivity of 96.36% with false detection rate of 0.236/h.

  19. Protection against generalised seizured by Dalbergia saxatilis ...

    African Journals Online (AJOL)

    The aqueous root decoction of Dalbergia saxatilis (DS) is used to manage convulsive disorders in African herbal medicine practice. We had previously reported the anticonvulsant effects of the aqueous root extract of DS against strychnine and picrotoxin seizures. In this study, DS was tested against pentylenetetrazole (PTZ) ...

  20. Seizures and Teens: Maximizing Health and Safety

    Science.gov (United States)

    Sundstrom, Diane

    2007-01-01

    As parents and caregivers, their job is to help their children become happy, healthy, and productive members of society. They try to balance the desire to protect their children with their need to become independent young adults. This can be a struggle for parents of teens with seizures, since there are so many challenges they may face. Teenagers…

  1. Treatment Of Seizures In The Elderly

    Directory of Open Access Journals (Sweden)

    Aleem MA

    2005-01-01

    Full Text Available The increasing life expectancy over the preceding decades and trend towards further increase means that the elderly is now a growing section of the population. Seizures are a particularly common disorder in the age group. Considering that above the age of 50 years, one is prone to suffer from atleast one chromic illness, the interplay between associated medical and neurologic diseases and seizures need to be understood. These comorbidities like hypertension, cerebrovascular accidents, diabetes, renal failure and others not only contribute to seizures, they may also interfere with their appropriate treatment. Seizures, on the other hand, may be the cause of added morbidity like fractures, head injury and poor self esteem which may lead to poor quality of life. In addition, the unique pharmacokinetics, pharmacodynamics and side effect profile of the various antieplileptic drugs in the elderly and the multiple drug interactions, require judicious use along with regular monitoring. However, an ideal antiepileptic drug for the elderly is yet to be found.

  2. Photosensitivity and visually induced seizures: review

    NARCIS (Netherlands)

    Parra, J.; Kalitzin, S.; Lopes da Silva, F.H.

    2005-01-01

    PURPOSE OF REVIEW: Interest in visually induced seizures has increased in recent years as a result of the increasing number of precipitants in our modern environment. This review addresses new developments in this field with special attention given to the emergence of new diagnostic, therapeutic and

  3. febrile seizures, Tripoli, Libya, knowledge, attitude

    African Journals Online (AJOL)

    kim

    the knowledge, attitude and practice of mothers regarding febrile seizures in Tripoli, Libya. ... aim of the audit is to assess the attitude and knowledge of parents of children with .... The following exclusion criteria were used: child who has fever due CNS ... department after giving prior first aid-a similar results was reported.

  4. S100B proteins in febrile seizures

    DEFF Research Database (Denmark)

    Mikkonen, Kirsi; Pekkala, Niina; Pokka, Tytti

    2011-01-01

    at the hospital after FS and S100B concentration in serum (r=-0.130, P=0.28) or in cerebrospinal fluid samples (r=-0.091, P=0.52). Our findings indicate that FS does not cause significant blood-brain barrier openings, and increase the evidence that these seizures are relatively harmless for the developing brain....

  5. Accelerometry based detection of epileptic seizures

    NARCIS (Netherlands)

    Nijsen, T.M.E.

    2008-01-01

    Epilepsy is one of the most common neurological disorders. Epileptic seizures are the manifestation of abnormal hypersynchronous discharges of cortical neurons that impair brain function. Most of the people affected can be treated successfully with drug therapy or neurosurgical procedures. But there

  6. Anticonvulsant properties of methanol leaf extract of Laggera Aurita Linn. F. (Asteraceae) in laboratory animals.

    Science.gov (United States)

    Malami, S; Kyari, H; Danjuma, N M; Ya'u, J; Hussaini, I M

    2016-09-15

    Preparation of Laggera aurita Linn. (Asteraceae) is widely used in traditional medicine to treat various kinds of diseases such as epilepsy, malaria, fever, pain and asthma. Its efficacy is widely acclaimed among communities in Northern Nigeria. The present study is aimed at establishing the possible anticonvulsant effects of the methanol leaf extract of Laggera aurita using acute and chronic anticonvulsant models. Median lethal dose (LD50) was determined in mice and rats via oral and intraperitoneal routes. Anticonvulsant screening of the extract was performed using maximal electroshock-induced seizure test in day-old chicks; pentylenetetrazole-, strychnine- and picrotoxin- induced seizure models in mice. Similarly; its effects on pentylenetetrazole-induce kindling in rats as well as when co-administered with fluphenamic and cyproheptadine in mice, were evaluated. Median lethal dose (LD50) values were found to be >5000mg/kg, p.o. and 2154mg/kg, i.p., each for both rats and mice. The extract showed dose dependent protection against tonic hind limb extension (THLE) and significantly (p<0.05) decreased the mean recovery from seizure in the maximal electroshock-induced seizure. In the pentylenetetrazole-induced seizure model, the extract offered 50% protection at 600mg/kg and also increased the mean onset of seizure at all doses with significant (p<0.05) increase at the highest dose (600mg/kg). Similarly the extract produced significant (p<0.05) increase in the onset of seizures in both strychnine- and picrotoxin- induced seizure models, at all the doses except at 150mg/kg for the picrotoxin model. Co-administration of fluphenamic acid (FFA) (5mg/kg) and the extract (600mg/kg) showed an enhanced effect with percentage protection of 70% while co-administration of FFA (5mg/kg) and phenytoin (5mg/kg) as well phenytoin (5mg/kg) and the extract (600mg/kg) produced an additive effect. Administration of the extract (600mg/kg), phenytoin (20mg/kg) and cyproheptadine (4mg

  7. Characteristics of seizure-induced signal changes on MRI in patients with first seizures.

    Science.gov (United States)

    Kim, Si Eun; Lee, Byung In; Shin, Kyong Jin; Ha, Sam Yeol; Park, JinSe; Park, Kang Min; Kim, Hyung Chan; Lee, Joonwon; Bae, Soo-Young; Lee, Dongah; Kim, Sung Eun

    2017-05-01

    The aim of this study was to investigate the predictive factors and identify the characteristics of the seizure-induced signal changes on MRI (SCM) in patients with first seizures. We conducted a retrospective study of patients with first seizures from March 2010 to August 2014. The inclusion criteria for this study were patients with 1) first seizures, and 2) MRI and EEG performed within 24h of the first seizures. The definition of SCM was hyper-intensities in the brain not applying to cerebral arterial territories. Multivariate logistic regression was performed with or without SCM as a dependent variable. Of 431 patients with seizures visiting the ER, 69 patients met the inclusion criteria. Of 69 patients, 11 patients (15.9%) had SCM. Epileptiform discharge on EEG (OR 29.7, 95% CI 1.79-493.37, p=0.018) was an independently significant variable predicting the presence of SCM in patients with first seizures. In addition, the topography of SCM was as follows; i) ipsilateral hippocampus, thalamus and cerebral cortex (5/11), ii) unilateral cortex (4/11), iii) ipsilateral thalamus and cerebral cortex (1/11), iv) bilateral hippocampus (1/11). Moreover, 6 out of 7 patients who underwent both perfusion CT and MRI exhibited unilateral cortical hyperperfusion with ipsilateral thalamic involvement reflecting unrestricted vascular territories. There is an association between epileptiform discharges and SCM. Additionally, the involvement of the unilateral cortex and ipsilateral thalamus in SCM and its hyperperfusion state could be helpful in differentiating the consequences of epileptic seizures from other pathologies. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  8. Coprolalia as a manifestation of epileptic seizures.

    Science.gov (United States)

    Massot-Tarrús, Andreu; Mousavi, Seyed Reza; Dove, Carin; Hayman-Abello S, Susan; Hayman-Abello, Brent; Derry, Paul A; Diosy, David C; McLachlan, Richard S; Burneo, Jorge G; Steven, David A; Mirsattari, Seyed M

    2016-07-01

    The aim of this study was to investigate the lateralizing and localizing value of ictal coprolalia and brain areas involved in its production. A retrospective search for patients manifesting ictal coprolalia was conducted in our EMU database. Continuous video-EEG recordings were reviewed, and EEG activity before and during coprolalia was analyzed using independent component analysis (ICA) technique and was compared to the seizures without coprolalia among the same patients. Nine patients were evaluated (five women), eight with intracranial video-EEG recordings (icVEEG). Four had frontal or temporal lesions, and five had normal MRIs. Six patients showed impairment in the language functions and five in the frontal executive tasks. Two hundred six seizures were reviewed (60.7% from icVEEG). Ictal coprolalia occurred in 46.6% of them, always associated with limbic auras or automatisms. They arose from the nondominant hemisphere in five patients, dominant hemisphere in three, and independently from the right and left hippocampus-parahippocampus in one. Electroencephalographic activity always involved orbitofrontal and/or mesial temporal regions of the nondominant hemisphere when coprolalia occurred. Independent component analysis of 31 seizures in seven patients showed a higher number of independent components in the nondominant hippocampus-parahippocampus before and during coprolalia and in the dominant lateral temporal region in those seizures without coprolalia (p=0.009). Five patients underwent surgery, and all five had an ILAE class 1 outcome. Ictal coprolalia occurs in both males and females with temporal or orbitofrontal epilepsy and has a limited lateralizing value to the nondominant hemisphere but can be triggered by seizures from either hemisphere. It involves activation of the paralimbic temporal-orbitofrontal network. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Early and late postoperative seizure outcome in 97 patients with supratentorial meningioma and preoperative seizures: a retrospective study.

    Science.gov (United States)

    Zheng, Zhe; Chen, Peng; Fu, Weiming; Zhu, Junming; Zhang, Hong; Shi, Jian; Zhang, Jianmin

    2013-08-01

    We identified factors associated with early and late postoperative seizure control in patients with supratentorial meningioma plus preoperative seizures. In this retrospective study, univariate analysis and multivariate logistic regression analysis compared 24 clinical variables according to the occurrence of early (≤1 week) or late (>1 week) postoperative seizures. Sixty-two of 97 patients (63.9 %) were seizure free for the entire postoperative follow-up period (29.5 ± 11.8 months), while 13 patients (13.4 %) still had frequent seizures at the end of follow-up. Fourteen of 97 patients (14.4 %) experienced early postoperative seizures, and emergence of new postoperative neurological deficits was the only significant risk factor (odds ratio = 7.377). Thirty-three patients (34.0 %) experienced late postoperative seizures at some time during follow-up, including 12 of 14 patients with early postoperative seizures. Associated risk factors for late postoperative seizures included tumor progression (odds ratio = 7.012) and new permanent postoperative neurological deficits (odds ratio = 4.327). Occurrence of postoperative seizures in patients with supratentorial meningioma and preoperative seizure was associated with new postoperative neurological deficits. Reduced cerebral or vascular injury during surgery may lead to fewer postoperative neurological deficits and better seizure outcome.

  10. Evaluation of Seizure Attacks in Patients with Cerebrovascular Accident

    Directory of Open Access Journals (Sweden)

    Ebrahim Koochaki

    2013-04-01

    Full Text Available Background: The most common reason for seizure in elderly duration is the stroke. This study was conducted aiming to assess the frequency of seizure attack occurrence in those patients. Materials and Methods: This investigation was carried out through a cross-sectional method for one year on 330 patients admitted to the neurology ward as diagnosed with stroke. The required data was collected through the researcher-made questionnaire from the patients suffering from stoke which was diagnosed based on clinical findings, CT-Scan and MRI as required. Results: Among 330 patient suffering from stroke (162 men and 168 women, 48 cases (14.5% were suffering from seizure. Six percent of the patients had early seizure and another 8.5% had late seizure. Among 162 men suffering from the stroke, 32 ones were without seizures and 30 men were suffering the seizure. A number of 150 women out of total 168 ones suffering from the stroke, had no seizure and 18 others had seizures; frequency of seizure occurrence was more in male samples (p=0.044. In the people under 60 year, there were mostly early types of seizure (45% and in the age range above 60 year, it was mostly late type (89.3%. A 68.5% of the patients suffering from the seizure had experienced ischemic stroke. However, the frequency of seizure occurrence in the patients with hemorrhagic stroke was statistically greater (p=0.003. Conclusion: This examination showed that occurrence of seizure attacks in the people with stroke is 14.5% and it is seen more in the hemorrhagic strokes than ischemic ones. The frontoparietal area is the most common location involved and tonic clonic was the most common seizure in the patients suffering from it who have experienced the stroke

  11. Focal Electrically Administered Seizure Therapy (FEAST): A novel form of ECT illustrates the roles of current directionality, polarity, and electrode configuration in seizure induction

    Science.gov (United States)

    Spellman, Timothy; Peterchev, Angel V.; Lisanby, Sarah H.

    2009-01-01

    Electroconvulsive therapy (ECT) is a mainstay in the treatment of severe, medication resistant depression. The antidepressant efficacy and cognitive side effects of ECT are influenced by the position of the electrodes on the head and by the degree to which the electrical stimulus exceeds the threshold for seizure induction. However, surprisingly little is known about the effects of other key electrical parameters such as current directionality, polarity, and electrode configuration. Understanding these relationships may inform the optimization of therapeutic interventions to improve their risk/benefit ratio. To elucidate these relationships, we evaluated a novel form of ECT (focal electrically administered seizure therapy, FEAST) that combines unidirectional stimulation, control of polarity, and an asymmetrical electrode configuration, and contrasted it with conventional ECT in a nonhuman primate model. Rhesus monkeys had their seizure thresholds determined on separate days with ECT conditions that crossed the factors of current directionality (unidirectional or bidirectional), electrode configuration (standard bilateral or FEAST (small anterior and large posterior electrode)), and polarity (assignment of anode and cathode in unidirectional stimulation). Ictal expression and post-ictal suppression were quantified via scalp EEG. Findings were replicated and extended in a second experiment with the same subjects. Seizures were induced in each of 75 trials, including 42 FEAST procedures. Seizure thresholds were lower with unidirectional than with bidirectional stimulation (pFEAST than in bilateral ECS (p=0.0294). Ictal power was greatest in posterior-anode unidirectional FEAST, and post-ictal suppression was strongest in anterior-anode FEAST (p=0.0008 and p=0.0024, respectively). EEG power was higher in the stimulated hemisphere in posterior-anode FEAST (p=0.0246), consistent with the anode being the site of strongest activation. These findings suggest that current

  12. Unilateral Thalamic Infarct Presenting as a Convulsive Seizure.

    Science.gov (United States)

    Kumar, Rajesh; Brohi, Hazim; Mughul, Afshan

    2017-09-01

    Lesions of the thalamus and those extending into midbrain can cause various types of movement disorders such as dystonia, asterixis and ballism-chorea. Seizures are rare manifestation of thalamic disorder. Occurrence of seizures in bilateral thalamic infarct has been reported; but seizures in unilateral thalamic infarct have been reported very rarely. Literature review showed only single case of perinatal unilateral thalamic infarct presenting with seizures. We are reporting a unique case of convulsive seizure at the onset of unilateral thalamic infarct in an adult male, which has never been reported to the best of our knowledge.

  13. Pediatric intracerebral hemorrhage: acute symptomatic seizures and epilepsy.

    Science.gov (United States)

    Beslow, Lauren A; Abend, Nicholas S; Gindville, Melissa C; Bastian, Rachel A; Licht, Daniel J; Smith, Sabrina E; Hillis, Argye E; Ichord, Rebecca N; Jordan, Lori C

    2013-04-01

    Seizures are believed to be common presenting symptoms in neonates and children with spontaneous intracerebral hemorrhage (ICH). However, few data are available on the epidemiology of acute symptomatic seizures or the risk for later epilepsy. To define the incidence of and explore risk factors for seizures and epilepsy in children with spontaneous ICH. Our a priori hypotheses were that younger age at presentation, cortical involvement of ICH, acute symptomatic seizures after presentation, ICH due to vascular malformation, and elevated intracranial pressure requiring urgent intervention would predict remote symptomatic seizures and epilepsy. Prospective cohort study conducted between March 1, 2007, and January 1, 2012. Three tertiary care pediatric hospitals. Seventy-three pediatric subjects with spontaneous ICH including 20 perinatal (≥37 weeks' gestation to 28 days) and 53 childhood subjects (>28 days to Acute symptomatic seizures (clinically evident and electrographic-only seizures within 7 days), remote symptomatic seizures, and epilepsy. Acute symptomatic seizures occurred in 35 subjects (48%). Acute symptomatic seizures as a presenting symptom of ICH occurred in 12 perinatal (60%) and 19 childhood (36%) subjects (P = .07). Acute symptomatic seizures after presentation occurred in 7 children. Electrographic-only seizures were present in 9 of 32 subjects (28%) with continuous electroencephalogram monitoring. One-year and 2-year remote symptomatic seizure-free survival rates were 82% (95% CI, 68-90) and 67% (95% CI, 46-82), respectively. One-year and 2-year epilepsy-free survival rates were 96% (95% CI, 83-99) and 87% (95% CI, 65-95), respectively. Elevated intracranial pressure requiring acute intervention was a risk factor for seizures after presentation (P = .01; Fisher exact test), remote symptomatic seizures, and epilepsy (P = .03, and P = .04, respectively; log-rank test). Presenting seizures are common in perinatal and childhood ICH. Continuous

  14. Disparity in regional cerebral blood flow during electrically induced seizure

    DEFF Research Database (Denmark)

    Sestoft, D; Meden, P; Hemmingsen, R

    1993-01-01

    This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized on electroencepha......This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized...... electroencephalography-verified generalized seizures....

  15. Characterization of seizures induced by acute exposure to an organophosphate herbicide, glufosinate-ammonium.

    Science.gov (United States)

    Calas, André-Guilhem; Perche, Olivier; Richard, Olivier; Perche, Astrid; Pâris, Arnaud; Lauga, Fabien; Herzine, Ameziane; Palomo, Jennifer; Ardourel, Marie-Yvonne; Menuet, Arnaud; Mortaud, Stéphane; Pichon, Jacques; Montécot-Dubourg, Céline

    2016-05-04

    Glufosinate-ammonium (GLA), the active component of a widely used herbicide, induces convulsions in rodents and humans. In mouse, intraperitoneal treatment with 75 mg/kg GLA generates repetitive tonic-clonic seizures associated with 100% mortality within 72 h after treatment. In this context, we characterized GLA-induced seizures, their histological consequences and the effectiveness of diazepam treatment. Epileptic discharges on electroencephalographic recordings appeared simultaneously in the hippocampus and the cerebral cortex. Diazepam treatment at 6 h immediately stopped the seizures and prevented animal death. However, intermittent seizures were recorded on electroencephalogram from 6 h after diazepam treatment until 24 h, but had disappeared after 15 days. In our model, neuronal activation (c-Fos immunohistochemistry) was observed 6 h after GLA exposure in the dentate gyrus, CA1, CA3, amygdala, piriform and entorhinal cortices, indicating the activation of the limbic system. In these structures, Fluoro-Jade C and Cresyl violet staining did not show neuronal suffering. However, astroglial activation was clearly observed at 24 h and 15 days after GLA treatment in the amygdala, piriform and entorhinal cortices by PCR quantitative, western blot and immunohistochemistry. Concomitantly, glutamine synthetase mRNA expression (PCR quantitative), protein expression (western blot) and enzymatic activity were upregulated. In conclusion, our study suggests that GLA-induced seizures: (a) involved limbic structures and (b) induced astrocytosis without neuronal degeneration as an evidence of a reactive astrocyte beneficial effect for neuronal protection.

  16. An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks.

    Science.gov (United States)

    Sareen, Sanjay; Sood, Sandeep K; Gupta, Sunil Kumar

    2016-11-01

    Epilepsy is one of the most common neurological disorders which is characterized by the spontaneous and unforeseeable occurrence of seizures. An automatic prediction of seizure can protect the patients from accidents and save their life. In this article, we proposed a mobile-based framework that automatically predict seizures using the information contained in electroencephalography (EEG) signals. The wireless sensor technology is used to capture the EEG signals of patients. The cloud-based services are used to collect and analyze the EEG data from the patient's mobile phone. The features from the EEG signal are extracted using the fast Walsh-Hadamard transform (FWHT). The Higher Order Spectral Analysis (HOSA) is applied to FWHT coefficients in order to select the features set relevant to normal, preictal and ictal states of seizure. We subsequently exploit the selected features as input to a k-means classifier to detect epileptic seizure states in a reasonable time. The performance of the proposed model is tested on Amazon EC2 cloud and compared in terms of execution time and accuracy. The findings show that with selected HOS based features, we were able to achieve a classification accuracy of 94.6 %.

  17. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy

    Science.gov (United States)

    de Curtis, Marco; Gnatkovsky, Vadym; Gotman, Jean; Köhling, Rüdiger; Lévesque, Maxime; Manseau, Frédéric; Shiri, Zahra; Williams, Sylvain

    2016-01-01

    Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80–200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250–500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well. PMID:27075542

  18. The anticonvulsant action of AHR-11748 on kindled amygdaloid seizures in rats.

    Science.gov (United States)

    Albertson, T E; Walby, W F

    1987-03-01

    The anticonvulsant effectiveness of AHR-11748 (3-[3-(trifluoromethyl)phenoxy]-1-azetidinecarboxamide) was evaluated in the kindled amygdaloid seizure model in rats. Doses of AHR-11748 that did not cause prestimulation toxicity significantly attenuated elicited afterdischarge durations and the severity of the accompanying behavioral convulsive response in previously kindled rats. AHR-11748 (25-100 mg/kg i.p.) was evaluated at 30 min in previously kindled rats using both threshold (20 microA increments) and suprathreshold (400 microA) paradigms. AHR-11748 (50-100.mg/kg) reduced suprathreshold elicited after discharges and seizure severity. Utilizing a suprathreshold kindling paradigm, the maximum anticonvulsant effectiveness for the 100 mg/kg i.p. dose of AHR-11748 was seen at 180 min. AHR-11748 significantly elevated seizure thresholds only at the 100 mg/kg dose. AHR-11748 (25-100 mg/kg) significantly reduced the severity of threshold elicited seizures. When AHR-11748 (50 and 100 mg/kg i.p.) was administered daily during kindling acquisition, the number of daily trials necessary to complete kindling significantly increased. A reduction in both the duration and the severity of the responses induced by the daily stimulations during the acquisition period was seen with AHR-11748 treatment. This study has demonstrated that AHR-11748 significantly modifies both the acquisition of kindling and the fully kindled amygdaloid seizures at doses that do not cause behavioral toxicity.

  19. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: A potential mechanism for the anticonvulsive effects

    OpenAIRE

    Feng, Yangzheng; LeBlanc, Michael H.; Regunathan, Soundar

    2005-01-01

    Glutamate has been implicated in the initiation and spread of seizure activity. Agmatine, an endogenous neuromodulator, is an antagonist of NMDA receptors and has anticonvulsive effects. Whether agmatine regulate glutamate release, as measured by in vivo microdialysis, is not known. In this study, we used pentylenetetrazole (PTZ)-induced seizure model to determine the effect of agmatine on extracellular glutamate in rat brain. We also determined the time course and the amount of agmatine that...

  20. Predictability of uncontrollable multifocal seizures - towards new treatment options

    Science.gov (United States)

    Lehnertz, Klaus; Dickten, Henning; Porz, Stephan; Helmstaedter, Christoph; Elger, Christian E.

    2016-04-01

    Drug-resistant, multifocal, non-resectable epilepsies are among the most difficult epileptic disorders to manage. An approach to control previously uncontrollable seizures in epilepsy patients would consist of identifying seizure precursors in critical brain areas combined with delivering a counteracting influence to prevent seizure generation. Predictability of seizures with acceptable levels of sensitivity and specificity, even in an ambulatory setting, has been repeatedly shown, however, in patients with a single seizure focus only. We did a study to assess feasibility of state-of-the-art, electroencephalogram-based seizure-prediction techniques in patients with uncontrollable multifocal seizures. We obtained significant predictive information about upcoming seizures in more than two thirds of patients. Unexpectedly, the emergence of seizure precursors was confined to non-affected brain areas. Our findings clearly indicate that epileptic networks, spanning lobes and hemispheres, underlie generation of seizures. Our proof-of-concept study is an important milestone towards new therapeutic strategies based on seizure-prediction techniques for clinical practice.

  1. Risk Factors for Preoperative Seizures and Loss of Seizure Control in Patients Undergoing Surgery for Metastatic Brain Tumors.

    Science.gov (United States)

    Wu, Adela; Weingart, Jon D; Gallia, Gary L; Lim, Michael; Brem, Henry; Bettegowda, Chetan; Chaichana, Kaisorn L

    2017-08-01

    Metastatic brain tumors are the most common brain tumors in adults. Patients with metastatic brain tumors have poor prognoses with median survival of 6-12 months. Seizures are a major presenting symptom and cause of morbidity and mortality. In this article, risk factors for the onset of preoperative seizures and postoperative seizure control are examined. Adult patients who underwent resection of one or more brain metastases at a single institution between 1998 and 2011 were reviewed retrospectively. Of 565 patients, 114 (20.2%) patients presented with seizures. Factors independently associated with preoperative seizures were preoperative headaches (P = 0.044), cognitive deficits (P = 0.031), more than 2 intracranial metastatic tumors (P = 0.013), temporal lobe location (P = 0.031), occipital lobe location (P = 0.010), and bone involvement by tumor (P = 0.029). Factors independently associated with loss of seizure control after surgical resection were preoperative seizures (P = 0.001), temporal lobe location (P = 0.037), lack of postoperative chemotherapy (P = 0.010), subtotal resection of tumor (P = 0.022), and local recurrence (P = 0.027). At last follow-up, the majority of patients (93.8%) were seizure-free. Thirty patients (5.30%) in total had loss of seizure control, and only 8 patients (1.41%) who did not have preoperative seizures presented with new-onset seizures after surgical resection of their metastases. The brain is a common site for metastases from numerous primary cancers, such as breast and lung. The identification of factors associated with onset of preoperative seizures as well as seizure control postoperatively could aid management strategies for patients with metastatic brain tumors. Patients with preoperative seizures who underwent resection tended to have good seizure control after surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Elevated Ictal Brain Network Ictogenicity Enables Prediction of Optimal Seizure Control

    Directory of Open Access Journals (Sweden)

    Marinho A. Lopes

    2018-03-01

    Full Text Available Recent studies have shown that mathematical models can be used to analyze brain networks by quantifying how likely they are to generate seizures. In particular, we have introduced the quantity termed brain network ictogenicity (BNI, which was demonstrated to have the capability of differentiating between functional connectivity (FC of healthy individuals and those with epilepsy. Furthermore, BNI has also been used to quantify and predict the outcome of epilepsy surgery based on FC extracted from pre-operative ictal intracranial electroencephalography (iEEG. This modeling framework is based on the assumption that the inferred FC provides an appropriate representation of an ictogenic network, i.e., a brain network responsible for the generation of seizures. However, FC networks have been shown to change their topology depending on the state of the brain. For example, topologies during seizure are different to those pre- and post-seizure. We therefore sought to understand how these changes affect BNI. We studied peri-ictal iEEG recordings from a cohort of 16 epilepsy patients who underwent surgery and found that, on average, ictal FC yield higher BNI relative to pre- and post-ictal FC. However, elevated ictal BNI was not observed in every individual, rather it was typically observed in those who had good post-operative seizure control. We therefore hypothesize that elevated ictal BNI is indicative of an ictogenic network being appropriately represented in the FC. We evidence this by demonstrating superior model predictions for post-operative seizure control in patients with elevated ictal BNI.

  3. Exposure to traffic noise and air pollution and risk for febrile seizure: a cohort study.

    Science.gov (United States)

    Hjortebjerg, Dorrit; Nybo Andersen, Anne-Marie; Ketzel, Matthias; Raaschou-Nielsen, Ole; Sørensen, Mette

    2018-03-25

    Objectives Exposure to traffic noise and air pollution is suspected to increase susceptibility to viral infections - the main triggering factor for febrile seizures. No studies have examined these two exposures in relation to febrile seizures. We aimed to investigate whether exposure to road traffic noise and air pollution are associated with risk of febrile seizures in childhood. Methods From our study base of 51 465 singletons from a national birth cohort, we identified 2175 cases with febrile seizures using a nationwide registry. Residential address history from conception to six years of age were found in national registers, and road traffic noise (L den ) and air pollution (NO 2 ) were modeled for all addresses. Analyses were done using Cox proportional hazard model with adjustment for potential confounders, including mutual exposure adjustment. Results An interquartile range (IQR) increase in childhood exposure to road traffic noise and air pollution was associated with an 11% [incidence rate ratio (IRR) 1.11, 95% confidence interval (CI) 1.04-1.19) and 5% (IRR 1.05, 95% CI 1.02-1.07) higher risk for febrile seizures, respectively, after adjustment for potential confounders. Weaker tendencies were seen for pregnancy exposure. In models with mutual exposure adjustment, the estimates were slightly lower, with IRR of 1.08 (95% CI 1.00-1.16) and 1.03 (95% CI 0.99-1.06) per IQR increase in childhood exposure to road traffic noise and air pollution, respectively. Conclusions This study suggests that residential exposure to road traffic noise and air pollution is associated with higher risk for febrile seizures.

  4. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory.

    Science.gov (United States)

    Bui, Anh D; Nguyen, Theresa M; Limouse, Charles; Kim, Hannah K; Szabo, Gergely G; Felong, Sylwia; Maroso, Mattia; Soltesz, Ivan

    2018-02-16

    Temporal lobe epilepsy (TLE) is characterized by debilitating, recurring seizures and an increased risk for cognitive deficits. Mossy cells (MCs) are key neurons in the hippocampal excitatory circuit, and the partial loss of MCs is a major hallmark of TLE. We investigated how MCs contribute to spontaneous ictal activity and to spatial contextual memory in a mouse model of TLE with hippocampal sclerosis, using a combination of optogenetic, electrophysiological, and behavioral approaches. In chronically epileptic mice, real-time optogenetic modulation of MCs during spontaneous hippocampal seizures controlled the progression of activity from an electrographic to convulsive seizure. Decreased MC activity is sufficient to impede encoding of spatial context, recapitulating observed cognitive deficits in chronically epileptic mice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qizhi; Carney, Paul R; Yuan Zhen; Jiang Huabei [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu Zhao [Department of Pediatrics, Division of Pediatric Neurology, University of Florida, Gainesville, FL 32610 (United States); Chen Huanxin; Roper, Steven N [Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265 (United States)], E-mail: hjiang@bme.ufl.edu

    2008-04-07

    Non-invasive laser-induced photoacoustic tomography (PAT) is an emerging imaging modality that has the potential to image the dynamic function of the brain due to its unique ability of imaging biological tissues with high optical contrast and ultrasound resolution. Here we report the first application of our finite-element-based PAT for imaging of epileptic seizures in an animal model. In vivo photoacoustic images were obtained in rats with focal seizures induced by microinjection of bicuculline, a GABA{sub A} antagonist, into the neocortex. The seizure focus was accurately localized by PAT as confirmed with gold-standard electroencephalogram (EEG). Compared to the existing neuroimaging modalities, PAT not only has the unprecedented advantage of high spatial and temporal resolution in a single imaging modality, but also is portable and low in cost, making it possible to bring brain imaging to the bedside.

  6. Thalamic functional connectivity predicts seizure laterality in individual TLE patients: Application of a biomarker development strategy

    Directory of Open Access Journals (Sweden)

    Daniel S. Barron

    2015-01-01

    No significant differences in functional connection strength in patient and control groups were observed with Mann-Whitney Tests (corrected for multiple comparisons. Notwithstanding the lack of group differences, individual patient difference scores (from control mean connection strength successfully predicted seizure onset zone as shown in ROC curves: discriminant analysis (two-dimensional predicted seizure onset zone with 85% sensitivity and 91% specificity; logistic regression (four-dimensional achieved 86% sensitivity and 100% specificity. The strongest markers in both analyses were left thalamo-hippocampal and right thalamo-entorhinal cortex functional connection strength. Thus, this study shows that thalamic functional connections are sensitive and specific markers of seizure onset laterality in individual temporal lobe epilepsy patients. This study also advances an overall strategy for the programmatic development of neuroimaging biomarkers in clinical and genetic populations: a disease model informed by coordinate-based meta-analysis was used to anatomically constrain individual patient analyses.

  7. Computed Tomography Findings in Patients with Seizure Disorder

    Directory of Open Access Journals (Sweden)

    Sumnima Acharya

    2016-06-01

    Full Text Available Introduction: Seizure occurs in up to 10% of the population, whereas epilepsy is a chronic disease characterized by recurrent seizures that may affect up to 2% of the population. Modern neuroimaging is useful in diagnosis of  abnormalities underlying the epilepsies, but the information provided by imaging techniques can also contribute to proper classification of certain epileptic disorders and can delineate the genetics of some underlying syndromes. Neuroimaging is even more important for those patients who have medically intractable seizures. This study was carried out to establish different etiologies of seizures, to correlate the clinical data and radiological findings in cases of seizure, and to identify the common etiologies in different types of seizures. Methods: This was a retrospective hospital-based study conducted in the Department of Radiodiagnosis of Lumbini Medical College Teaching Hospital. Records of patients of past two years, admitted in any department of the hospital with history of seizure disorder and underwent a Computed Tomography  (CT of brain were included. The CT patterns were assessed and the data were tabulated and statistically analyzed. Results: There were a total of 480 cases out of which 263 (55% were male and 217 (45% were female with M:F ratio of 1.2:1. Generalized seizure was more frequent than partial seizure in both gender. In 274 cases of generalized seizures, CT scan findings were abnormal in 151 cases and normal finding observed in 123 cases. In 206 cases of partial seizures, 125 cases were abnormal and 81 having normal CT scan findings. Age wise distribution showed highest number (n=218 of cases in young group (60 yr. The most common cause of seizure  was  calcified granuloma (n=79, 16.5% followed by neurocysticercosis (NCC, n=64, 13%. Diffuse cerebral edema, sub-arachnoid hemorrhage, and hydrocephalus was seen only in lower age group particularly among 1-20 years. Infarct and diffuse cortical

  8. Role of biomarkers in differentiating new-onset seizures from psychogenic nonepileptic seizures

    Directory of Open Access Journals (Sweden)

    Mahendra Javali

    2017-01-01

    Full Text Available Introduction: Review of literature revealed very limited studies considering a combination of serum prolactin (PRL and serum creatine kinase (CK as markers for differentiating epileptic and psychogenic nonepileptic seizures (PNES. Therefore, in the present study, we analyzed the role of serum PRL and serum CK, individually and in combination. Methodology: This prospective study was conducted in a tertiary care medical teaching hospital over a period of 18 months. Patients aged over 15 years suspected to have new-onset seizures presenting within 5 h of ictus were included in this study. CK, serum PRL was measured at 0–1, 1–3, and 3–5 h after seizures. Results: Hundred subjects were studied for the role of serum PRL and serum CK in differentiating epileptic and PNES. The mean age was 42.24 years with a male:female ratio of 1.27:1. All patients of generalized tonic–clonic seizures (GTCS, who presented within 1 h, had elevated PRL, whereas 75% of patients with partial seizures had elevated PRL within 1 h of presentation. Nearly 91.66% of patients with GTCS who presented within 1 h had elevated CPK, whereas 70% of patients with partial seizures had elevated CPK. None of the patients diagnosed with PNES showed rise in either of the markers. Conclusion: In the present study, none of the patients with PNES showed raise in either serum PRL or CK. However, there was no correlation between the types of seizure and PRL or serum CK levels.

  9. Comparison of Nootropic and Neuroprotective Features of Aryl-Substituted Analogs of Gamma-Aminobutyric Acid.

    Science.gov (United States)

    Tyurenkov, I N; Borodkina, L E; Bagmetova, V V; Berestovitskaya, V M; Vasil'eva, O S

    2016-02-01

    GABA analogs containing phenyl (phenibut) or para-chlorophenyl (baclofen) substituents demonstrated nootropic activity in a dose of 20 mg/kg: they improved passive avoidance conditioning, decelerated its natural extinction, and exerted antiamnestic effect on the models of amnesia provoked by scopolamine or electroshock. Tolyl-containing GABA analog (tolibut, 20 mg/kg) exhibited antiamnestic activity only on the model of electroshock-induced amnesia. Baclofen and, to a lesser extent, tolibut alleviated seizures provoked by electroshock, i.e. both agents exerted anticonvulsant effect. All examined GABA aryl derivatives demonstrated neuroprotective properties on the maximum electroshock model: they shortened the duration of coma and shortened the period of spontaneous motor activity recovery. In addition, these agents decreased the severity of passive avoidance amnesia and behavioral deficit in the open field test in rats exposed to electroshock. The greatest neuroprotective properties were exhibited by phenyl-containing GABA analog phenibut.

  10. Presurgical EEG-fMRI in a complex clinical case with seizure recurrence after epilepsy surgery

    Science.gov (United States)

    Zhang, Jing; Liu, Qingzhu; Mei, Shanshan; Zhang, Xiaoming; Wang, Xiaofei; Liu, Weifang; Chen, Hui; Xia, Hong; Zhou, Zhen; Li, Yunlin

    2013-01-01

    Epilepsy surgery has improved over the last decade, but non-seizure-free outcome remains at 10%–40% in temporal lobe epilepsy (TLE) and 40%–60% in extratemporal lobe epilepsy (ETLE). This paper reports a complex multifocal case. With a normal magnetic resonance imaging (MRI) result and nonlocalizing electroencephalography (EEG) findings (bilateral TLE and ETLE, with more interictal epileptiform discharges [IEDs] in the right frontal and temporal regions), a presurgical EEG-functional MRI (fMRI) was performed before the intraoperative intracranial EEG (icEEG) monitoring (icEEG with right hemispheric coverage). Our previous EEG-fMRI analysis results (IEDs in the left hemisphere alone) were contradictory to the EEG and icEEG findings (IEDs in the right frontal and temporal regions). Thus, the EEG-fMRI data were reanalyzed with newly identified IED onsets and different fMRI model options. The reanalyzed EEG-fMRI findings were largely concordant with those of EEG and icEEG, and the failure of our previous EEG-fMRI analysis may lie in the inaccurate identification of IEDs and wrong usage of model options. The right frontal and temporal regions were resected in surgery, and dual pathology (hippocampus sclerosis and focal cortical dysplasia in the extrahippocampal region) was found. The patient became seizure-free for 3 months, but his seizures restarted after antiepileptic drugs (AEDs) were stopped. The seizures were not well controlled after resuming AEDs. Postsurgical EEGs indicated that ictal spikes in the right frontal and temporal regions reduced, while those in the left hemisphere became prominent. This case suggested that (1) EEG-fMRI is valuable in presurgical evaluation, but requires caution; and (2) the intact seizure focus in the remaining brain may cause the non-seizure-free outcome. PMID:23926432

  11. From here to epilepsy: the risk of seizure in patients with Alzheimer's disease.

    Science.gov (United States)

    Nicastro, Nicolas; Assal, Frédéric; Seeck, Margitta

    2016-03-01

    To describe the association between Alzheimer's disease and seizures by reviewing epidemiological data from available literature and to assess the putative pathophysiological links between neurodegeneration and altered cortical excitability. We also discuss specific antiepileptic treatment strategies in patients with Alzheimer's disease, as well as transient epileptic amnesia as a possible crossroads between degeneration and epilepsy. Regarding epidemiology, we searched publications in Pubmed, Medline, Scopus and Web of Science (until September 2015) using the keywords "incidence", "prevalence" and "frequency", as well as "Alzheimer's disease" and "seizures". In addition, therapeutic aspects for seizures in Alzheimer's disease were searched using the key words "antiepileptic drugs", "seizure treatment" and "Alzheimer". The prevalence and incidence rates of seizures were found to be increased 2 to 6-fold in patients with Alzheimer's disease compared to age-adjusted control patients. Treatment strategies have mainly been extrapolated from elderly patients without dementia, except for one single randomised trial, in which levetiracetam, lamotrigine and phenobarbital efficacy and tolerance were investigated in patients with Alzheimer's disease. Mouse models appear to show a major role of amyloid precursor protein and its cleavage products in the generation of cortical hyperexcitability. A link between Alzheimer's disease and epilepsy has long been described and recent cohort studies have more clearly delineated risk factors associated with the genesis of seizures, such as early onset and possibly severity of dementia. As genetic forms of Alzheimer's disease and experimental mouse models suggest, beta-amyloid may play a prominent role in the propagation of synchronised abnormal discharges, perhaps more via an excitatory mode than a direct neurodegenerative effect.

  12. Anticonvulsive effect of paeoniflorin on experimental febrile seizures in immature rats: possible application for febrile seizures in children.

    Directory of Open Access Journals (Sweden)

    Hitomi Hino

    Full Text Available Febrile seizures (FS is the most common convulsive disorder in children, but there have been no clinical and experimental studies of the possible treatment of FS with herbal medicines, which are widely used in Asian countries. Paeoniflorin (PF is a major bioactive component of Radix Paeoniae alba, and PF-containing herbal medicines have been used for neuromuscular, neuropsychiatric, and neurodegenerative disorders. In this study, we analyzed the anticonvulsive effect of PF and Keishikashakuyaku-to (KS; a PF-containing herbal medicine for hyperthermia-induced seizures in immature rats as a model of human FS. When immature (P5 male rats were administered PF or KS for 10 days, hyperthermia-induced seizures were significantly suppressed compared to control rats. In cultured hippocampal neurons, PF suppressed glutamate-induced elevation of intracellular Ca(2+ ([Ca(2+](i, glutamate receptor-mediated membrane depolarization, and glutamate-induced neuronal death. In addition, PF partially suppressed the elevation in [Ca(2+](i induced by activation of the metabotropic glutamate receptor 5 (mGluR5, but not that mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA or N-methyl-D-aspartate (NMDA receptors. However, PF did not affect production or release of γ-aminobutyric acid (GABA in hippocampal neurons. These results suggest that PF or PF-containing herbal medicines exert anticonvulsive effects at least in part by preventing mGluR5-dependent [Ca(2+](i elevations. Thus, it could be a possible candidate for the treatment of FS in children.

  13. Effects of dietary zinc status on seizure susceptibility and hippocampal zinc content in the El (epilepsy) mouse.

    Science.gov (United States)

    Fukahori, M; Itoh, M

    1990-10-08

    The effects of dietary zinc status on the development of convulsive seizures, and zinc concentrations in discrete hippocampal areas and other parts of the limbic system were studied in the El mouse model receiving zinc-adequate, zinc-deficient or zinc-loaded diets. Seizure susceptibility of the El mouse was increased by zinc deficiency, and decreased by zinc loading, while an adequate diet had no effect. Zinc loading was accompanied by a marked increase in hippocampal zinc content in the El mouse. Conversely, hippocampal zinc content declined in the El mouse fed a zinc-deficient diet. These results suggest that zinc may have a preventive effect on the development of seizures in the El mouse, and hippocampal zinc may play an important role in the pathophysiology of convulsive seizures of epilepsy.

  14. Local cerebral metabolism during partial seizures

    International Nuclear Information System (INIS)

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.; Rausch, R.; Nuwer, M.

    1983-01-01

    Interictal and ictal fluorodeoxyglucose scans were obtained with positron CT from four patients with spontaneous recurrent partial seizures, one with epilepsia partialis continua, and one with a single partial seizure induced by electrical stimulation of the hippocampus. Ictal metabolic patterns were different for each patient studied. Focal and generalized increased and decreased metabolism were observed. Ictal hypermetabolism may exceed six times the interictal rate and could represent activation of excitatory or inhibitory synapses in the epileptogenic region and its projection fields. Hypometabolism seen on ictal scans most likely reflects postictal depression and may indicate projection fields of inhibited neurons. No quantitative relationship between alterations in metabolism and EEG or behavioral measurements of ictal events could be demonstrated

  15. Tramadol: seizures, serotonin syndrome, and coadministered antidepressants.

    Science.gov (United States)

    Sansone, Randy A; Sansone, Lori A

    2009-04-01

    This ongoing column is dedicated to the challenging clinical interface between psychiatry and primary care-two fields that are inexorably linked.Tramadol (Ultram(®)) is a commonly prescribed analgesic because of its relatively lower risk of addiction and better safety profile in comparison with other opiates. However, two significant adverse reactions are known to potentially occur with tramadol-seizures and serotonin syndrome. These two adverse reactions may develop during tramadol monotherapy, but appear much more likely to emerge during misuse/overdose as well as with the coadministration of other drugs, particularly antidepressants. In this article, we review the data relating to tramadol, seizures, and serotonin syndrome. This pharmacologic intersection is of clear relevance to both psychiatrists and primary care clinicians.

  16. Local cerebral metabolism during partial seizures

    Energy Technology Data Exchange (ETDEWEB)

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.; Rausch, R.; Nuwer, M.

    1983-04-01

    Interictal and ictal fluorodeoxyglucose scans were obtained with positron CT from four patients with spontaneous recurrent partial seizures, one with epilepsia partialis continua, and one with a single partial seizure induced by electrical stimulation of the hippocampus. Ictal metabolic patterns were different for each patient studied. Focal and generalized increased and decreased metabolism were observed. Ictal hypermetabolism may exceed six times the interictal rate and could represent activation of excitatory or inhibitory synapses in the epileptogenic region and its projection fields. Hypometabolism seen on ictal scans most likely reflects postictal depression and may indicate projection fields of inhibited neurons. No quantitative relationship between alterations in metabolism and EEG or behavioral measurements of ictal events could be demonstrated.

  17. Acute Pancreatitis Case Presented with Epileptic Seizure

    Directory of Open Access Journals (Sweden)

    Uygar Utku

    2013-09-01

    Full Text Available Acute pancreatitis, defined as the acute non-bacte¬rial inflammatory condition of the pancreas. A 53-year-old woman was admitted to our emergency service after a first episode of generalized tonic-clonic seizure. There was no past medical history. The initial laboratory findings showed a low serum calcium level (5.8 mg/dL normal value 8.8-10.2 mg/dL. High Amylase-802 U/L, Lipase-489 U/L levels. CT abdomen showed pancreatic edema and inflammation suggestive of acute pancreatitis. This case report demonstrates a rare but important differential diagnosis in generalised tonic-clonic seizures of adult onset

  18. Brain imaging during seizure: ictal brain SPECT

    International Nuclear Information System (INIS)

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  19. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain.

    Science.gov (United States)

    Semple, Bridgette D; O'Brien, Terence J; Gimlin, Kayleen; Wright, David K; Kim, Shi Eun; Casillas-Espinosa, Pablo M; Webster, Kyria M; Petrou, Steven; Noble-Haeusslein, Linda J

    2017-08-16

    Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1β and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility. SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments

  20. Hungry Neurons: Metabolic Insights on Seizure Dynamics

    OpenAIRE

    Paolo Bazzigaluppi; Azin Ebrahim Amini; Iliya Weisspapir; Bojana Stefanovic; Peter L. Carlen

    2017-01-01

    Epilepsy afflicts up to 1.6% of the population and the mechanisms underlying the appearance of seizures are still not understood. In past years, many efforts have been spent trying to understand the mechanisms underlying the excessive and synchronous firing of neurons. Traditionally, attention was pointed towards synaptic (dys)function and extracellular ionic species (dys)regulation. Recently, novel clinical and preclinical studies explored the role of brain metabolism (i.e., glucose utilizat...

  1. Biomarkers of epileptic seizures and epilepsy

    Directory of Open Access Journals (Sweden)

    Bogdan Lorber

    2013-07-01

    Full Text Available The purpose of this article is to review biological markers, their importance and usefulness in the diagnosis of epileptic seizure or epilepsy. Assessed are also their prognostic value, their use in the evaluation of antiepileptic therapy effect and some other useful properties. The article reviews prolactin, neuron specific enolase, S–100 protein, creatin kinase, laminin, matrix metalloproteinase, nesfatin–1, ghrelin, obestatin and chromogranin A. The authors stress the need for further research studies in this area.

  2. Seizure Following Topical Gammabenzene Hexachloride Therapy

    Directory of Open Access Journals (Sweden)

    Biswas Animesh

    2002-01-01

    Full Text Available Development of short-lived, self-limiting major epileptic seizures following an improper application of gammabenzene hexachloride (GBHC lotion in a 15 month old boy suffering from scabies with secondary bacterial infection is reported here due to its rarity in clinical practice and, more particularly, to stress the need of correct instructions on the use of GBHC application for the prevention of iatrogenic neurotoxicity.

  3. Dissociation in patients with dissociative seizures: relationships with trauma and seizure symptoms.

    Science.gov (United States)

    Pick, S; Mellers, J D C; Goldstein, L H

    2017-05-01

    This study aimed to extend the current understanding of dissociative symptoms experienced by patients with dissociative (psychogenic, non-epileptic) seizures (DS), including psychological and somatoform types of symptomatology. An additional aim was to assess possible relationships between dissociation, traumatic experiences, post-traumatic symptoms and seizure manifestations in this group. A total of 40 patients with DS were compared with a healthy control group (n = 43), matched on relevant demographic characteristics. Participants completed several self-report questionnaires, including the Multiscale Dissociation Inventory (MDI), Somatoform Dissociation Questionnaire-20, Traumatic Experiences Checklist and the Post-Traumatic Diagnostic Scale. Measures of seizure symptoms and current emotional distress (Hospital Anxiety and Depression Scale) were also administered. The clinical group reported significantly more psychological and somatoform dissociative symptoms, trauma, perceived impact of trauma, and post-traumatic symptoms than controls. Some dissociative symptoms (i.e. MDI disengagement, MDI depersonalization, MDI derealization, MDI memory disturbance, and somatoform dissociation scores) were elevated even after controlling for emotional distress; MDI depersonalization scores correlated positively with trauma scores while seizure symptoms correlated with MDI depersonalization, derealization and identity dissociation scores. Exploratory analyses indicated that somatoform dissociation specifically mediated the relationship between reported sexual abuse and DS diagnosis, along with depressive symptoms. A range of psychological and somatoform dissociative symptoms, traumatic experiences and post-traumatic symptoms are elevated in patients with DS relative to healthy controls, and seem related to seizure manifestations. Further studies are needed to explore peri-ictal dissociative experiences in more detail.

  4. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors

    DEFF Research Database (Denmark)

    Woldbye, David P D; Nanobashvili, Avtandil; Sørensen, Andreas Vehus

    2005-01-01

    Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the...

  5. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas Toft

    2012-01-01

    We recently demonstrated that recombinant adeno-associated viral vector-induced hippocampal overexpression of neuropeptide Y receptor, Y2, exerts a seizure-suppressant effect in kindling and kainate-induced models of epilepsy in rats. Interestingly, additional overexpression of neuropeptide Y...

  6. The Subcellular Localization of GABA Transporters and Its Implication for Seizure Management

    DEFF Research Database (Denmark)

    Madsen, Karsten K; Hansen, Gert H; Danielsen, E Michael

    2015-01-01

    anticonvulsant effect in several seizure models in mice. The pharmacological profile of these and similar compounds has been thoroughly investigated in in vitro systems, comparing the GAT subtype selectivity with the ability to inhibit GABA uptake in primary cultures of neurons and astrocytes. However, an exact...

  7. Magnetic resonance imaging in complex partial seizures

    International Nuclear Information System (INIS)

    Furune, Sunao; Negoro, Tamiko; Maehara, Mitsuo; Nomura, Kazushi; Miura, Kiyokuni; Takahashi, Izumi; Watanabe, Kazuyoshi

    1989-01-01

    Magnetic resonance imaging (MRI) and computed tomography (CT) were performed on 45 patients with intractable complex partial seizures. MRI was performed with a superconducting whole-body scanner operating at 0.5 tesla (T) and 1.5 T. In patients with temporal lobe epilepsy, 8 of 24 patients had abnormal CT, but 16 or 24 patients showed abnormal MRI. 1.5 T MRI detected more abnormality than 0.5 T MRI when CT was normal. In patients with frontal lobe epilepsy, 5 of 7 patients had normal CT and MRI. In 2 other patients, MRI demonstrated an arachnoid cyst and increased signal intensity area on the T2-weighted images which were not detected by CT. In patients with occipital lobe epilepsy, 5 of 6 patients show abnormal CT and MRI. In patients with tuberous sclerosis, MRI revealed some increased signal intensity areas on the T2-weighted images in the occipital and temporal lobe, which were not detected by CT. Most surface EEG foci corresponded with the side of MRI abnormality. These data indicate that MRI is more informative than CT in complex partial seizures. MRI is the imaging technique of choice in the diagnosis of complex partial seizures. (author)

  8. Optimizing therapy of seizures in neurosurgery.

    Science.gov (United States)

    Michelucci, Roberto

    2006-12-26

    The use of antiepileptic drugs (AEDs) in the neurosurgical setting has a number of implications, including their possible role in the prevention of seizures after acute cerebral insults or brain tumors and the potential for toxicity and interactions when these agents are administered in association with radiotherapy or chemotherapy. This review discusses these controversial issues and draws the following conclusions. 1) AEDs should be prescribed on a short-term basis to prevent seizures occurring within the first week after a cerebral insult (trauma, neurosurgical procedure) but are ineffective to avoid true post-traumatic epilepsy or first seizures in patients with primary or secondary cerebral neoplasms. 2) The use of phenytoin and, to a lesser extent, phenobarbital and carbamazepine during cranial irradiation is associated with an increased risk for severe, potentially fatal, mucocutaneous reactions. In this context, new AEDs with a very low potential for allergic cutaneous reactions should be preferred. 3) Enzyme-inducing AEDs, such as phenytoin, phenobarbital, and carbamazepine, may increase the clearance and reduce the clinical efficacy of corticosteroids and anticancer agents that are also metabolized by the cytochrome P450 system. The newly developed AEDs that are devoid of hepatic metabolism, such as levetiracetam and gabapentin, are now recommended because of good results in preliminary studies and because they do not show interactions with anticancer agents.

  9. Seizure Associated Takotsubo Syndrome: A Rare Combination

    Directory of Open Access Journals (Sweden)

    Htay Htay Kyi

    2017-01-01

    Full Text Available Takotsubo cardiomyopathy (TC is increasingly recognized in neurocritical care population especially in postmenopausal females. We are presenting a 61-year-old African American female with past medical history of epilepsy, bipolar disorder, and hypertension who presented with multiple episodes of seizures due to noncompliance with antiepileptic medications. She was on telemetry which showed ST alarm. Electrocardiogram (ECG was ordered and showed ST elevation in anterolateral leads and troponins were positive. Subsequently Takotsubo cardiomyopathy was diagnosed by left ventriculography findings and absence of angiographic evidence of obstructive coronary artery disease. Echocardiogram showed apical hypokinesia, ejection fraction of 40%, and systolic anterior motion of mitral valve with hyperdynamic left ventricle, in the absence of intracoronary thrombus formation in the angiogram. Electroencephalography showed evidence of generalized tonic-clonic seizure. She was treated with supportive therapy. This case illustrates importance of ECG in all patients with seizure irrespective of cardiac symptoms as TC could be the cause of Sudden Unexpected Death in Epilepsy (SUDEP and may be underdiagnosed and so undertreated.

  10. Unsupervised EEG analysis for automated epileptic seizure detection

    Science.gov (United States)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  11. Proton MR spectroscopy in patients with acute temporal lobe seizures.

    Science.gov (United States)

    Castillo, M; Smith, J K; Kwock, L

    2001-01-01

    Decreases in N-acetyl aspartate (NAA) as seen by proton MR spectroscopy are found in hippocampal sclerosis, and elevated levels of lipids/lactate have been observed after electroconvulsive therapy. Our purpose was to determine whether increased levels of lipids/lactate are found in patients with acute seizures of hippocampal origin. Seventeen patients with known temporal lobe epilepsy underwent proton MR spectroscopy of the mesial temporal lobes within 24 hours of their last seizure. Four of them were restudied when they were seizure-free. Five healthy individuals were used as control subjects. All MR spectroscopy studies were obtained using a single-voxel technique with TEs of 135 and 270. The relationship between the presence of lipids/lactate and seizures was tested using Fisher's exact test. Mean and standard deviations for NAA/creatine (Cr) were obtained in the hippocampi in patients with seizures on initial and follow-up studies and these values were compared with those in the control subjects. Seizure lateralization was obtained in 15 patients. Of the 17 seizure locations that involved hippocampi, 16 showed lipids/lactate by proton MR spectroscopy. Of the 13 hippocampi not directly affected by seizures, 10 showed no lipids/lactate and three showed lipids/lactate. The relationship between lipids/lactate and seizure location was confirmed. A comparison of NAA/Cr ratios for the involved hippocampi with those in control subjects showed significant differences on initial MR spectroscopy; however, no significant difference was found between acute and follow-up NAA/Cr ratios in hippocampi affected by seizures. Lipids/lactate were present in the hippocampi of patients with acute seizures and decreased when the patients were seizure-free. Thus, lipids/lactate may be a sensitive marker for acute temporal lobe seizures.

  12. Epileptic seizures in patients with a posterior circulation infarct

    Directory of Open Access Journals (Sweden)

    Yüksel Kaplan

    2014-08-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate the frequency of seizures and the clinical features of patients with seizures related to a posterior circulation infarct (POCI. METHODS: We reviewed all ischemic stroke patients admitted to our clinic between January 2011 and January 2012. The patients’ database information was retrospectively analyzed. Fifty-five patients with a POCI were included in the study. We reviewed all patients with epileptic seizures related to a POCI. Age, gender, recurrent stroke, risk factors, etiology, radiographic localization, the seizure type and onset time, and the electroencephalographic findings of patients were evaluated. We excluded all patients who had precipitating conditions during seizures such as taking drugs, acid-base disturbances, electrolyte imbalance, and history of epilepsy. RESULTS: Seizures were observed in four patients (3 male, 1 female with a POCI related epileptic seizures (7.2%. The etiology of strokes was cardiac-embolic in 3 patients and vertebral artery dissection in 1 patient. Seizures occurred in 2 patients as presenting finding, in 1 patient within 7 days, and 1 patient within 28 days. Primary generalized tonic-clonic seizures occurred in 3 patients and simple partial seizures with secondary generalization in 1 patient. Three patients had cerebellum infarction at the left hemisphere. One patient had lateral medullary infarction at the right side. The electroencephalographic findings of patients were normal. CONCLUSION: Studies involving patients with seizures related to a POCI are novel and few in number. Three patients with seizure had cerebellum infarction. The cerebellum in these patients may contribute via different mechanisms over seizure activity.

  13. Effect of traditional medicine brahmi vati and bacoside A-rich fraction of Bacopa monnieri on acute pentylenetetrzole-induced seizures, amphetamine-induced model of schizophrenia, and scopolamine-induced memory loss in laboratory animals.

    Science.gov (United States)

    Mishra, Amrita; Mishra, Arun K; Jha, Shivesh

    2018-03-01

    Brahmi vati (BV) is an Ayurvedic polyherbal formulation used since ancient times and has been prescribed in seizures associated with schizophrenia and related memory loss by Ayurvedic practitioners in India. The aim of the study was to investigate these claims by evaluation of anticonvulsant, antischizophreniac, and memory-enhancing activities. Antioxidant condition of brain was determined by malondialdehyde (MDA) and reduced glutathione (GSH) levels estimations. Acetylcholinesterase (AChE) was quantitatively estimated in the brain tissue. Brahmi vati was prepared in-house by strictly following the traditional Ayurvedic formula. Bacoside A rich fraction (BA) of Bacopa monnieri was prepared by extraction and fractionation. It was than standardized by High Performance Liquid Chromatography (HPLC) and given in the dose of 32.5mg/kg body weight to the different groups of animals for 7days. On the seventh day, activities were performed adopting standard procedures. Brahmi vati showed significant anticonvulsant, memory-enhancing and antischizophrenia activities, when compared with the control groups and BA. It cause significantly higher brain glutathione levels. Acetylcholinesterase activity was found to be significantly low in BV-treated group. The finding of the present study suggests that BV may be used to treat seizures associated with schizophrenia and related memory loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Psychogenic seizures and frontal disconnection: EEG synchronisation study.

    Science.gov (United States)

    Knyazeva, Maria G; Jalili, Mahdi; Frackowiak, Richard S; Rossetti, Andrea O

    2011-05-01

    Psychogenic non-epileptic seizures (PNES) are paroxysmal events that, in contrast to epileptic seizures, are related to psychological causes without the presence of epileptiform EEG changes. Recent models suggest a multifactorial basis for PNES. A potentially paramount, but currently poorly understood factor is the interplay between psychiatric features and a specific vulnerability of the brain leading to a clinical picture that resembles epilepsy. Hypothesising that functional cerebral network abnormalities may predispose to the clinical phenotype, the authors undertook a characterisation of the functional connectivity in PNES patients. The authors analysed the whole-head surface topography of multivariate phase synchronisation (MPS) in interictal high-density EEG of 13 PNES patients as compared with 13 age- and sex-matched controls. MPS mapping reduces the wealth of dynamic data obtained from high-density EEG to easily readable synchronisation maps, which provide an unbiased overview of any changes in functional connectivity associated with distributed cortical abnormalities. The authors computed MPS maps for both Laplacian and common-average-reference EEGs. In a between-group comparison, only patchy, non-uniform changes in MPS survived conservative statistical testing. However, against the background of these unimpressive group results, the authors found widespread inverse correlations between individual PNES frequency and MPS within the prefrontal and parietal cortices. PNES appears to be associated with decreased prefrontal and parietal synchronisation, possibly reflecting dysfunction of networks within these regions.

  15. ACTH Prevents Deficits in Fear Extinction Associated with Early Life Seizures

    Directory of Open Access Journals (Sweden)

    Andrew T Massey

    2016-05-01

    Full Text Available Early life seizures are often associated with cognitive and psychiatric comorbidities that are detrimental to quality of life. In a rat model of early life seizures (ELS, we explored long-term cognitive outcomes in adult rats. Using ACTH, an endogeneous HPA-axis hormone given to children with severe epilepsy, we sought to prevent cognitive deficits. Through comparisons with dexamethasone, we sought to dissociate the corticosteroid effects of ACTH from other potential mechanisms of action. We found that while rats with a history of ELS were able to acquire a conditioned fear learning paradigm as well as controls, these rats had significant deficits in their ability to extinguish fearful memories. ACTH treatment did not alter any seizure parameters but nevertheless was able to significantly improve this fear extinction, while dexamethasone treatment during the same period did not. This ACTH effect was specific for fear extinction deficits and not for spatial learning deficits in a water maze. Additionally, ACTH did not alter seizure latency or duration suggesting that cognitive and seizure outcomes may be dissociable. Expression levels of melanocortin receptors, which bind ACTH, were found to be significantly lower in animals that had experienced ELS than in control animals, potentially implicating central melanocortin receptor dysregulation in the effects of ELS and suggesting a mechanism of action for ACTH. Taken together, these data suggest that early treatment with ACTH can have significant long-term consequences for cognition in animals with a history of ELS independently of seizure cessation, and may act in part through a CNS melanocortin receptor pathway.

  16. Different as night and day: Patterns of isolated seizures, clusters, and status epilepticus.

    Science.gov (United States)

    Goldenholz, Daniel M; Rakesh, Kshitiz; Kapur, Kush; Gaínza-Lein, Marina; Hodgeman, Ryan; Moss, Robert; Theodore, William H; Loddenkemper, Tobias

    2018-05-01

    Using approximations based on presumed U.S. time zones, we characterized day and nighttime seizure patterns in a patient-reported database, Seizure Tracker. A total of 632 995 seizures (9698 patients) were classified into 4 categories: isolated seizure event (ISE), cluster without status epilepticus (CWOS), cluster including status epilepticus (CIS), and status epilepticus (SE). We used a multinomial mixed-effects logistic regression model to calculate odds ratios (ORs) to determine night/day ratios for the difference between seizure patterns: ISE versus SE, ISE versus CWOS, ISE versus CIS, and CWOS versus CIS. Ranges of OR values were reported across cluster definitions. In adults, ISE was more likely at night compared to CWOS (OR = 1.49, 95% adjusted confidence interval [CI] = 1.36-1.63) and to CIS (OR = 1.61, 95% adjusted CI = 1.34-1.88). The ORs for ISE versus SE and CWOS versus SE were not significantly different regardless of cluster definition. In children, ISE was less likely at night compared to SE (OR = 0.85, 95% adjusted CI = 0.79-0.91). ISE was more likely at night compared to CWOS (OR = 1.35, 95% adjusted CI = 1.26-1.44) and CIS (OR = 1.65, 95% adjusted CI = 1.44-1.86). CWOS was more likely during the night compared to CIS (OR = 1.22, 95% adjusted CI = 1.05-1.39). With the exception of SE in children, our data suggest that more severe patterns favor daytime. This suggests distinct day/night preferences for different seizure patterns in children and adults. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  17. [Neuroprotective effect of naloxone in brain damage caused by repeated febrile seizure].

    Science.gov (United States)

    Shan, Ying; Qin, Jiong; Chang, Xing-zhi; Yang, Zhi-xian

    2004-04-01

    The brain damage caused by repeated febrile seizure (FS) during developing age is harmful to the intellectual development of children. So how to decrease the related damage is a very important issue. The main purpose of the present study was to find out whether the non-specific opiate antagonist naloxone at low dose has the neuroprotective effect on seizure-induced brain damage. Warm water induced rat FS model was developed in this study. Forty-seven rats were randomly divided into two groups: normal control group (n = 10) and hyperthermic seizure groups (n = 37). The latter was further divided into FS control group (n = 13) and naloxone-treated group (n = 24). The dose of naloxone is different in two naloxone-treated groups (12/each group), in one group the dose was 1 mg/kg, in the other one 2 mg/kg. Seven febrile seizures were induced in each rat of hyperthermic seizure groups with the interval of 2 days. The rats were weighed and injected intraperitoneally with naloxone once the FS occurred in naloxone-treated group, while the rats of the other groups were injected with 0.9% sodium chloride. Latency, duration and grade of FS in different groups were observed and compared. HE-staining and the electron microscopy (EM) were used to detect the morphologic and ultrastructural changes of hippocampal neurons. In naloxone-treated group, the rats' FS duration and FS grade (5.02 +/- 0.63, 2.63 +/- 0.72) were significantly lower (t = 5.508, P seizure, it could lighten the brain damage resulted from repeated FS to some extent.

  18. Automatic identification of epileptic seizures from EEG signals using linear programming boosting.

    Science.gov (United States)

    Hassan, Ahnaf Rashik; Subasi, Abdulhamit

    2016-11-01

    Computerized epileptic seizure detection is essential for expediting epilepsy diagnosis and research and for assisting medical professionals. Moreover, the implementation of an epilepsy monitoring device that has low power and is portable requires a reliable and successful seizure detection scheme. In this work, the problem of automated epilepsy seizure detection using singe-channel EEG signals has been addressed. At first, segments of EEG signals are decomposed using a newly proposed signal processing scheme, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Six spectral moments are extracted from the CEEMDAN mode functions and train and test matrices are formed afterward. These matrices are fed into the classifier to identify epileptic seizures from EEG signal segments. In this work, we implement an ensemble learning based machine learning algorithm, namely linear programming boosting (LPBoost) to perform classification. The efficacy of spectral features in the CEEMDAN domain is validated by graphical and statistical analyses. The performance of CEEMDAN is compared to those of its predecessors to further inspect its suitability. The effectiveness and the appropriateness of LPBoost are demonstrated as opposed to the commonly used classification models. Resubstitution and 10 fold cross-validation error analyses confirm the superior algorithm performance of the proposed scheme. The algorithmic performance of our epilepsy seizure identification scheme is also evaluated against state-of-the-art works in the literature. Experimental outcomes manifest that the proposed seizure detection scheme performs better than the existing works in terms of accuracy, sensitivity, specificity, and Cohen's Kappa coefficient. It can be anticipated that owing to its use of only one channel of EEG signal, the proposed method will be suitable for device implementation, eliminate the onus of clinicians for analyzing a large bulk of data manually, and

  19. Febrile seizures: a population-based study

    Directory of Open Access Journals (Sweden)

    Juliane S. Dalbem

    2015-11-01

    Full Text Available Objectives: To determine the prevalence of benign febrile seizures of childhood and describe the clinical and epidemiological profile of this population. Methods: This was a population-based, cross-sectional study, carried out in the city of Barra do Bugres, MT, Brazil, from August 2012 to August 2013. Data were collected in two phases. In the first phase, a questionnaire that was previously validated in another Brazilian study was used to identify suspected cases of seizures. In the second phase, a neurological evaluation was performed to confirm diagnosis. Results: The prevalence was 6.4/1000 inhabitants (95% CI: 3.8–10.1. There was no difference between genders. Simple febrile seizures were found in 88.8% of cases. A family history of febrile seizures in first-degree relatives and history of epilepsy was present in 33.3% and 11.1% of patients, respectively. Conclusions: The prevalence of febrile seizures in Midwestern Brazil was lower than that found in other Brazilian regions, probably due to the inclusion only of febrile seizures with motor manifestations and differences in socioeconomic factors among the evaluated areas. Resumo: Objetivos: Estabelecer a prevalência das crises febris e descrever o perfil clínico e epidemiológico dessa população. Métodos: Estudo transversal de base populacional realizado na cidade de Barra do Bugres (MT, no período de agosto de 2012 a agosto de 2013. Os dados foram coletados em duas etapas. Na primeira fase utilizamos um questionário validado previamente em outro estudo brasileiro, para identificação de casos suspeitos de crises epilépticas. Na segunda etapa realizamos a avaliação neuroclínica para confirmação diagnóstica. Resultados: A prevalência de crise febril foi de 6,4/1000 habitantes (IC95% 3,8; 10,1. Não houve diferença entre os sexos. As crises febris simples foram encontradas em 88,8% dos casos. A história familiar de crise febril e epilepsia em parentes de 1° grau esteve

  20. Mechanisms of seizure propagation in 2-dimensional centre-surround recurrent networks.

    Directory of Open Access Journals (Sweden)

    David Hall

    Full Text Available Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity propagation speeds (0.1-100 mm/s observed in two animal-slice-based models of epilepsy: (1 low extracellular [Formula: see text], which creates excess excitation and (2 introduction of gamma-aminobutyric acid (GABA antagonists, which reduce inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate. For the case of the low extracellular [Formula: see text] model simulation, it was found that activity-dependent reductions in inhibition provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.

  1. Tranexamic acid-associated seizures: Causes and treatment.

    Science.gov (United States)

    Lecker, Irene; Wang, Dian-Shi; Whissell, Paul D; Avramescu, Sinziana; Mazer, C David; Orser, Beverley A

    2016-01-01

    Antifibrinolytic drugs are routinely used worldwide to reduce the bleeding that results from a wide range of hemorrhagic conditions. The most commonly used antifibrinolytic drug, tranexamic acid, is associated with an increased incidence of postoperative seizures. The reported increase in the frequency of seizures is alarming, as these events are associated with adverse neurological outcomes, longer hospital stays, and increased in-hospital mortality. However, many clinicians are unaware that tranexamic acid causes seizures. The goal of this review is to summarize the incidence, risk factors, and clinical features of these seizures. This review also highlights several clinical and preclinical studies that offer mechanistic insights into the potential causes of and treatments for tranexamic acid-associated seizures. This review will aid the medical community by increasing awareness about tranexamic acid-associated seizures and by translating scientific findings into therapeutic interventions for patients. © 2015 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  2. Tranexamic acid–associated seizures: Causes and treatment

    Science.gov (United States)

    Lecker, Irene; Wang, Dian‐Shi; Whissell, Paul D.; Avramescu, Sinziana; Mazer, C. David

    2015-01-01

    Antifibrinolytic drugs are routinely used worldwide to reduce the bleeding that results from a wide range of hemorrhagic conditions. The most commonly used antifibrinolytic drug, tranexamic acid, is associated with an increased incidence of postoperative seizures. The reported increase in the frequency of seizures is alarming, as these events are associated with adverse neurological outcomes, longer hospital stays, and increased in‐hospital mortality. However, many clinicians are unaware that tranexamic acid causes seizures. The goal of this review is to summarize the incidence, risk factors, and clinical features of these seizures. This review also highlights several clinical and preclinical studies that offer mechanistic insights into the potential causes of and treatments for tranexamic acid–associated seizures. This review will aid the medical community by increasing awareness about tranexamic acid–associated seizures and by translating scientific findings into therapeutic interventions for patients. ANN NEUROL 2016;79:18–26 PMID:26580862

  3. The incidence, aetiology and outcome of acute seizures in children admitted to a rural Kenyan district hospital

    Directory of Open Access Journals (Sweden)

    Maitland Kathryn

    2008-02-01

    Full Text Available Abstract Background Acute seizures are a common cause of paediatric admissions to hospitals in resource poor countries and a risk factor for neurological and cognitive impairment and epilepsy. We determined the incidence, aetiological factors and the immediate outcome of seizures in a rural malaria endemic area in coastal Kenya. Methods We recruited all children with and without seizures, aged 0–13 years and admitted to Kilifi District hospital over 2 years from 1st December 2004 to 30th November 2006. Only incident admissions from a defined area were included. Patients with epilepsy were excluded. The population denominator, the number of children in the community on 30th November 2005 (study midpoint, was modelled from a census data. Results Seizures were reported in 900/4,921(18.3% incident admissions and at least 98 had status epilepticus. The incidence of acute seizures in children 0–13 years was 425 (95%CI 386, 466 per 100,000/year and was 879 (95%CI 795, 968 per 100,000/year in children Conclusion There is a high incidence of acute seizures in children living in this malaria endemic area of Kenya. The most important causes are diseases that are preventable with available public health programs.

  4. Hypoxia-Induced neonatal seizures diminish silent synapses and long-term potentiation in hippocampal CA1 neurons

    Science.gov (United States)

    Zhou, Chengwen; Bell, Jocelyn J. Lippman; Sun, Hongyu; Jensen, Frances E.

    2012-01-01

    Neonatal seizures can lead to epilepsy and long-term cognitive deficits in adulthood. Using a rodent model of the most common form of human neonatal seizures, hypoxia-induced seizures (HS), we aimed to determine whether these seizures modify long-term potentiation (LTP) and “silent” N-methyl-D-aspartate receptor (NMDAR)-only synapses in hippocampal CA1. At 48-72 hours (hrs) post-HS, electrophysiology and immunofluorescent confocal microscopy revealed a significant decrease in the incidence of silent synapses, and an increase in amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at the synapses. Coincident with this decrease in silent synapses, there was an attenuation of LTP elicited by either tetanic stimulation of Schaffer collaterals or a pairing protocol, and persistent attenuation of LTP in slices removed in later adulthood after P10 HS. Furthermore, post-seizure treatment in vivo with the AMPAR antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX) protected against the HS-induced depletion of silent synapses and preserved LTP. Thus, this study demonstrates a novel mechanism by which early-life seizures could impair synaptic plasticity, suggesting a potential target for therapeutic strategies to prevent long-term cognitive deficits. PMID:22171027

  5. A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals.

    Science.gov (United States)

    Tsiouris, Κostas Μ; Pezoulas, Vasileios C; Zervakis, Michalis; Konitsiotis, Spiros; Koutsouris, Dimitrios D; Fotiadis, Dimitrios I

    2018-05-17

    The electroencephalogram (EEG) is the most prominent means to study epilepsy and capture changes in electrical brain activity that could declare an imminent seizure. In this work, Long Short-Term Memory (LSTM) networks are introduced in epileptic seizure prediction using EEG signals, expanding the use of deep learning algorithms with convolutional neural networks (CNN). A pre-analysis is initially performed to find the optimal architecture of the LSTM network by testing several modules and layers of memory units. Based on these results, a two-layer LSTM network is selected to evaluate seizure prediction performance using four different lengths of preictal windows, ranging from 15 min to 2 h. The LSTM model exploits a wide range of features extracted prior to classification, including time and frequency domain features, between EEG channels cross-correlation and graph theoretic features. The evaluation is performed using long-term EEG recordings from the open CHB-MIT Scalp EEG database, suggest that the proposed methodology is able to predict all 185 seizures, providing high rates of seizure prediction sensitivity and low false prediction rates (FPR) of 0.11-0.02 false alarms per hour, depending on the duration of the preictal window. The proposed LSTM-based methodology delivers a significant increase in seizure prediction performance compared to both traditional machine learning techniques and convolutional neural networks that have been previously evaluated in the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Seizure-induced damage to substantia nigra and globus pallidus is accompanied by pronounced intra- and extracellular acidosis

    International Nuclear Information System (INIS)

    Inamura, K.; Smith, M.L.; Hansen, A.J.; Siesjoe, B.K.

    1989-01-01

    Status epilepticus of greater than 30-min duration in rats gives rise to a conspicuous lesion in the substantia nigra pars reticulata (SNPR) and globus pallidus (GP). The objective of the present study was to explore whether the lesion, which encompasses necrosis of both neurons and glial cells, is related to intra- and extracellular acidosis. Using the flurothyl model previously described to produce seizures, we assessed regional pH values with the autoradiographic 5,5-dimethyl[2-14C]oxazolidine-2,4-dione technique. Regional pH values were assessed in animals with continuous seizures for 20 and 60 min, as well as in those allowed to recover for 30 and 120 min after seizure periods of 20 or 60 min. In additional animals, changes in extracellular fluid pH (pHe) were measured with ion-selective microelectrodes, and extracellular fluid (ECF) volume was calculated from the diffusion profile for electrophoretically administered tetramethylammonium. In structures such as the neocortex and the hippocampus, which show intense metabolic activation during seizures, status epilepticus of 20- and 60-min duration was accompanied by a reduction of the composite tissue pH (pHt) of 0.2-0.3 unit. Recovery of pHt was observed upon termination of seizures. In SNPR and in GP, the acidosis was marked to excessive after 20 and 60 min of seizures (delta pHt approximately 0.6 after 60 min)

  7. 78 FR 24301 - Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders

    Science.gov (United States)

    2013-04-24

    ...-0106] Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders AGENCY: Federal... history of epilepsy/ seizures, off anti-seizure medication and seizure-free for 10 years, may be qualified.... Jandreau is a 46 year-old Class A CMV driver in Maine. He has a diagnosis of seizure disorder. He has...

  8. 75 FR 38599 - Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders

    Science.gov (United States)

    2010-07-02

    ...-0203] Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders AGENCY: Federal... individuals with seizure disorders to operate CMVs in interstate commerce. DATES: Comments must be received on... anti-seizure medication. Drivers with a history of epilepsy/seizures off anti-seizure medication and...

  9. 76 FR 18822 - Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders

    Science.gov (United States)

    2011-04-05

    ...-0089] Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders AGENCY: Federal... individuals with seizure disorders to operate CMVs in interstate commerce. DATES: Comments must be received on... anti-seizure medication. Drivers with a history of epilepsy/seizures off anti-seizure medication and...

  10. 78 FR 41988 - Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders

    Science.gov (United States)

    2013-07-12

    ...-0107] Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders AGENCY: Federal... history of epilepsy/ seizures, off anti-seizure medication and seizure-free for 10 years, may be qualified... Bird Mr. Bird is a 29 year-old driver in Ohio. He has a diagnosis of epilepsy and has remained seizure...

  11. Psychogenic non-epileptic seizures: our video-EEG experience.

    Science.gov (United States)

    Nežádal, Tomáš; Hovorka, Jiří; Herman, Erik; Němcová, Iveta; Bajaček, Michal; Stichová, Eva

    2011-09-01

    The aim of our study was to assess the number of psychogenic non-epileptic seizures (PNES) in our patients with a refractory seizure disorder, to determine the 'typical' PNES semiology using video-EEG monitoring and describe other PNES parameters. We evaluated prospectively 596 patients with pharmacoresistant seizures. All these patients underwent continuous video-EEG monitoring. In consenting patients, we used suggestive seizure provocation. We assessed seizure semiology, interictal EEG, brain MRI, psychiatric co-morbidities, personality profiles, and seizure outcome. In the sample of 596 monitored patients, we detected 111 (19.3%) patients with PNES. Of the 111 patients with PNES, 86.5% had spontaneous and 76.5% had provoked seizures. The five most typical symptoms were: initially closed eyelids (67.6%), rapid tremor (47.7%), asynchronous limb movement (37.8%), preictal pseudosleep (33.3%), and side-to-side head movement (32.4%). Interictal EEG was rated as abnormal in 46.2% and with epileptiform abnormality in 9%. Brain MRI was abnormal in 32 (28.8%) patients. Personality disorders (46.8%), anxiety (39.6%), and depression (12.6%) were the most frequent additional psychiatric co-morbidities. PNES outcome after at least 2 years is reported; 22.5% patients was seizure-free; one-third had markedly reduced seizure frequency. We have not seen any negative impact of the provocative testing on the seizure outcome. Video-EEG monitoring with suggestive seizure provocation supported by clinical psychiatric and psychological evaluation significantly contributes to the correct PNES diagnosis, while interictal EEG and brain MRI are frequently abnormal. Symptoms typical for PNES, as opposed to epileptic seizures, could be distinguished.

  12. Methadone-induced Torsades de Pointes Masquerading as Seizures

    Directory of Open Access Journals (Sweden)

    David C. Traficante

    2017-01-01

    Full Text Available The authors herein present the case of a 53-year-old female who was being treated as an outpatient for seizure disorder but was also receiving high-dose methadone therapy. She presented to the emergency department (ED for what appeared to be a seizure and was found to have a prolonged QT interval, as well as runs of paroxysmal polymorphic ventricular tachycardia with seizure-like activity occurring during the arrhythmia. The markedly prolonged QT interval corrected after treatment with intravenous magnesium; subsequent electroencephalogram, neurology and cardiology consultations confirmed the cause of the recurrent seizure-like episodes to be secondary to the cardiotoxic effects of methadone.

  13. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    Science.gov (United States)

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Genetics Home Reference: malignant migrating partial seizures of infancy

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Epilepsy Educational Resources (7 links) Boston Children's Hospital: Seizures Centers for Disease Control and Prevention: ...

  15. Daytime encopresis associated with gland mal epileptic seizures: case report.

    Science.gov (United States)

    Oyatsi, D P

    2005-08-01

    Sphincteric incontinence of stool and urine are not unusual features of generalised epileptic seizures. Isolated secondary encopresis as a manifestation of an epileptic seizure is unusual. This report is of, a four year old boy, with daytime secondary non-retentive encopresis. The onset of encopresis was preceded by several episodes of nocturnal generalised tonic clonic epileptic seizures. An electroencephalogram showed features consistent with complex partial seizures. He was commenced on anti-epileptic treatment with phenytoin sodium, and by the third day of treatment, the patient had achieved stool control.

  16. Seizure precipitants (triggering factors) in patients with epilepsy.

    Science.gov (United States)

    Ferlisi, Monica; Shorvon, Simon

    2014-04-01

    adult epilepsy clinic population: (a) to identify the frequency of seizure precipitants (triggering factors) and their relative frequency in those with psychiatric disorders, and in those in remission or with active epilepsy, differences in frequency with regard to gender, seizure duration, number of drugs taken; (b) to determine which precipitants patients most commonly report; and (c) to identify differences in the distribution of precipitants among generalized, temporal, and extratemporal epilepsies. Consecutive patients attending a tertiary-care epilepsy clinic were prospectively and an open personal interview to identify and characterize seizure precipitants. Information about the epilepsy and clinical characteristics of patients was collected during the interview and from medical records. Of 104 patients, 97% cited at least one precipitant. Stress, sleep deprivation, and fatigue were the most frequently reported precipitants. Patients with psychological comorbidities reported a greater percentage of seizures with seizure precipitants. Patients with idiopathic generalized epilepsy seemed to be more sensitive to seizures during awakening and sleep deprivation, patients with extratemporal epilepsy reported more frequent seizures during sleep. There were no differences in frequency or type of seizure precipitants with regard to gender, seizure duration or frequency, and the number of antiepileptic drugs taken. The findings may have implications for the better management of epilepsy by increasing a focus on nonpharmacological therapy. The implications of the findings for nosology and causation of epilepsy are also briefly discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Treatment Outcome Of Seizures Associated With Intracranial Cavernous Angiomas

    Directory of Open Access Journals (Sweden)

    Nievera Conrad C

    1999-01-01

    Full Text Available Seizures are among the typical presentations of intracranial cavernous angiomas (ICA. Twenty-one patients (age range: 2 to 53 years treated for seizures associated with ICA between 1983 and 1997 were restrospectively studied to evaluate their outcome following medical or surgical intervention. The mean interval between seizure onset and initial presentation at our institution was 7.6 years. Seizures were simple partial in 3 patients, complex partial in 15 and secondarily generalized tonic-clonic in 13. The commonest site of the lesion was the temporal lobe (52%. Multiple angiomas were observed in 5 (24% patients. Seven (32% patients were medically-managed with antiepileptic therapy and 14 (68% underwent either lesionectomy with resection of the epileptogenic zone (9 patients or temporal lobectomy (5 patients. Mean follow-up time was 4 years (range: 3 months to 14 years. Of the medically-managed patients, 3 (43% remained seizure-free whereas 4 (57% continued to have seizures with an average frequency of one per day. Of the surgically-managed patients, 12 (86% became seizure-free and 2 (14% had no more than two seizures per year. Surgery appears to be extremely effective in the management of seizures associated with ICA and should receive a strong and early consideration in patients who fail medical therapy.

  18. Abnormal radionuclide cerebral angiograms and scans due to seizures

    International Nuclear Information System (INIS)

    Stevens, J.S.; Mishkin, F.S.

    1975-01-01

    The effect of recent seizures on the brain scan was determined in a retrospective study of patients who had had seizures. All patients who underwent brain scanning within eight days of seizures and who did not have a specific intracranial lesion were included. The /sup 99m/Tc-pertechnetate cerebral angiogram and/or delayed scan was abnormal in 73 percent of 22 patients. The data suggest that if seizures occur within six days of the brain imaging, the image is likely to be abnormal. (auth)

  19. Activation of specific neuronal networks leads to different seizure onset types.

    Science.gov (United States)

    Shiri, Zahra; Manseau, Frédéric; Lévesque, Maxime; Williams, Sylvain; Avoli, Massimo

    2016-03-01

    Ictal events occurring in temporal lobe epilepsy patients and in experimental models mimicking this neurological disorder can be classified, based on their onset pattern, into low-voltage, fast versus hypersynchronous onset seizures. It has been suggested that the low-voltage, fast onset pattern is mainly contributed by interneuronal (γ-aminobutyric acidergic) signaling, whereas the hypersynchronous onset involves the activation of principal (glutamatergic) cells. Here, we tested this hypothesis using the optogenetic control of parvalbumin-positive or somatostatin-positive interneurons and of calmodulin-dependent, protein kinase-positive, principal cells in the mouse entorhinal cortex in the in vitro 4-aminopyridine model of epileptiform synchronization. We found that during 4-aminopyridine application, both spontaneous seizure-like events and those induced by optogenetic activation of interneurons displayed low-voltage, fast onset patterns that were associated with a higher occurrence of ripples than of fast ripples. In contrast, seizures induced by the optogenetic activation of principal cells had a hypersynchronous onset pattern with fast ripple rates that were higher than those of ripples. Our results firmly establish that under a similar experimental condition (ie, bath application of 4-aminopyridine), the initiation of low-voltage, fast and of hypersynchronous onset seizures in the entorhinal cortex depends on the preponderant involvement of interneuronal and principal cell networks, respectively. © 2016 American Neurological Association.

  20. Neonatal hypocalcemia, neonatal seizures, and intellectual disability in 22q11.2 deletion syndrome

    Science.gov (United States)

    Cheung, Evelyn Ning Man; George, Susan R.; Andrade, Danielle M.; Chow, Eva W. C.; Silversides, Candice K.; Bassett, Anne S.

    2015-01-01

    Purpose Hypocalcemia is a common endocrinological condition in 22q11.2 deletion syndrome. Neonatal hypocalcemia may affect neurodevelopment. We hypothesized that neonatal hypocalcemia would be associated with rare, more severe forms of intellectual disability in 22q11.2 deletion syndrome. Methods We used a logistic regression model to investigate potential predictors of intellectual disability severity, including neonatal hypocalcemia, neonatal seizures, and complex congenital heart disease, e.g., interrupted aortic arch, in 149 adults with 22q11.2 deletion syndrome. Ten subjects had moderate-to-severe intellectual disability. Results The model was highly significant (P < 0.0001), showing neonatal seizures (P = 0.0018) and neonatal hypocalcemia (P = 0.047) to be significant predictors of a more severe level of intellectual disability. Neonatal seizures were significantly associated with neonatal hypocalcemia in the entire sample (P < 0.0001), regardless of intellectual level. There was no evidence for the association of moderate- to-severe intellectual disability with other factors such as major structural brain malformations in this sample. Conclusion The results suggest that neonatal seizures may increase the risk for more severe intellectual deficits in 22q11.2 deletion syndrome, likely mediated by neonatal hypocalcemia. Neonatal hypocalcemia often remains unrecognized until the postseizure period, when damage to neurons may already have occurred. These findings support the importance of early recognition and treatment of neonatal hypocalcemia and potentially neonatal screening for 22q11.2 deletions. PMID:23765047

  1. Benign focal epilepsy of childhood with centrotemporal spikes (BECTS: clinical characteristics of seizures according to age at first seizure

    Directory of Open Access Journals (Sweden)

    Miziara Carmen Silvia M.G.

    2002-01-01

    Full Text Available BECTS is characterized by the presence of simple partial motor seizures in the face and/or oropharynx, with or without sensory symptoms and often with secondary generalization. These seizures tend to occur more often during sleep or drowsiness. According to some authors, generalized seizures prevail over other types particularly among children aged five or less. The purpose of this study is to determine the characteristics of the first epileptic episode among children with BECTS, grouped by age as of their first epileptic seizure, as well as to analyze how such seizures change over the course of clinical evolution. A total of 61 children were examined, 16 of whom below the age of 5 and 45 above. With regard to the first and recurrent epileptic episodes, our final assessment showed that partial seizures occurred more frequently than generalized tonic-clonic seizures in both groups. Although no conclusive relation could be established between the type of partial seizure (i.e. simple versus complex and the children's age as of their first epileptic episode, it was possible to correlate the type of epileptic seizure with their clinical evolution, in which case simple partial seizures proved to be more frequent than complex partial seizures. It should be noted that the number of children under the age of five was relatively small, which evinces the need for further studies. It should also be borne in mind that the reported frequency of generalized seizures in these children's first epileptic episode may be due to their parents' lack of attention and familiarity with this pathology and their attendant difficulty in characterizing its clinical symptoms.

  2. Regulation of emotions in psychogenic nonepileptic seizures.

    Science.gov (United States)

    Urbanek, Monika; Harvey, Martin; McGowan, John; Agrawal, Niruj

    2014-08-01

    Despite the long history of psychogenic nonepileptic seizures (PNES), relatively little is known about the mechanisms that cause and maintain this condition. Emerging research evidence suggests that patients with PNES might have difficulties in regulating their emotions. However, much remains to be learned about the nature of these difficulties and the emotional responses of individuals with PNES. This study aimed to gain a detailed understanding of emotion regulation processes in patients with PNES by examining differences between patients with PNES and a healthy control group with regard to intensity of emotional reactions, understanding of one's emotional experience, beliefs about emotions, and managing emotions by controlling emotional expression. A cross-sectional design was used to compare the group with PNES (n=56) and the healthy control group (n=88) on a range of self-report measures. Participants with a diagnosis of PNES reported significantly poorer understanding of their emotions, more negative beliefs about emotions, and a greater tendency to control emotional expression compared to the control group. While intensity of emotions did not discriminate between the groups, poor understanding and negative beliefs about emotions were found to be significant predictors of PNES, even after controlling for age, education level, and emotional distress. Furthermore, the presence of some emotion regulation difficulties was associated with self-reported seizure severity. The results of this study are largely consistent with previous literature and provide evidence for difficulties in emotion regulation in patients with PNES. However, this research goes further in bringing together different aspects of emotion regulation, including beliefs about emotions, which have not been examined before. As far as it is known, this is the first study to suggest that levels of alexithymia in a population with PNES are positively associated with self-reported seizure severity. The

  3. Acute postoperative seizures and long-term seizure outcome after surgery for hippocampal sclerosis.

    Science.gov (United States)

    Di Gennaro, Giancarlo; Casciato, Sara; Quarato, Pier Paolo; Mascia, Addolorata; D'Aniello, Alfredo; Grammaldo, Liliana G; De Risi, Marco; Meldolesi, Giulio N; Romigi, Andrea; Esposito, Vincenzo; Picardi, Angelo

    2015-01-01

    To assess the incidence and the prognostic value of acute postoperative seizures (APOS) in patients surgically treated for drug-resistant temporal lobe epilepsy due to hippocampal sclerosis (TLE-HS). We studied 139 consecutive patients with TLE-HS who underwent epilepsy surgery and were followed up for at least 5 years (mean duration of follow-up 9.1 years, range 5-15). Medical charts were reviewed to identify APOS, defined as ictal events with the exception of auras occurring within the first 7 days after surgery. Seizure outcome was determined at annual intervals. Patients who were in Engel Class Ia at the last contact were classified as having a favorable outcome. Seizure outcome was favorable in 99 patients (71%). Six patients (4%) experienced APOS and in all cases their clinical manifestations were similar to the habitual preoperative seizures. All patients with APOS had unfavorable long-term outcome, as compared with 35 (26%) of 133 in whom APOS did not occur (pseizure outcome. Given some study limitations, our findings should be regarded as preliminary and need confirmation from future larger, prospective, multicenter studies. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Intractable Seizures and Rehabilitation in Ciguatera Poisoning.

    Science.gov (United States)

    Derian, Armen; Khurana, Seema; Rothenberg, Joshua; Plumlee, Charles

    2017-05-01

    Ciguatera fish poisoning is the most frequently reported seafood toxin illness associated with the ingestion of contaminated tropical fish. Diagnosis relies on a history of recent tropical fish ingestion and subsequent development of gastrointestinal, cardiovascular, and neurological symptoms. Ciguatera poisoning usually has a self-limited time course, and its management involves symptomatic control and supportive care. This case report presents an uncommon case of ciguatera poisoning with prolonged intractable seizures refractory to standard antiseizure medications. The patient also had significant functional decline that responded to rigorous inpatient rehabilitation not previously described in literature.

  5. Detection and Prediction of Epileptic Seizures

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas

    % from 16 cm2. The coherences of different frequency bands below 16 Hz all seem to have similar declines as a function of the Euclidean distance between channels. Frequencies between 16 and 30 Hz have a steeper decline and will only show coherent parts to cortical channels within 60 cm2....... There is no coherence for frequencies above 30 Hz at any distance. A lot of patients with epilepsy still struggle with a dreadful fear of suddenly having a seizure. The current PhD study identified topics where an EEG monitor could provide improvement in the patient’s quality of life. By algorithm development...

  6. S100B proteins in febrile seizures

    DEFF Research Database (Denmark)

    Mikkonen, Kirsi; Pekkala, Niina; Pokka, Tytti

    2011-01-01

    S100B protein concentrations correlate with the severity and outcome of brain damage after brain injuries, and have been shown to be markers of blood-brain barrier damage. In children elevated S100B values are seen as a marker of damage to astrocytes even after mild head injuries. S100B proteins...... may also give an indication of an ongoing pathological process in the brain with respect to febrile seizures (FS) and the likelihood of their recurrence. To evaluate this, we measured S100B protein concentrations in serum and cerebrospinal fluid from 103 children after their first FS. 33 children...

  7. Children with new onset seizures: A prospective study of parent variables, child behavior problems, and seizure occurrence.

    Science.gov (United States)

    Austin, Joan K; Haber, Linda C; Dunn, David W; Shore, Cheryl P; Johnson, Cynthia S; Perkins, Susan M

    2015-12-01

    Parent variables (stigma, mood, unmet needs for information and support, and worry) are associated with behavioral difficulties in children with seizures; however, it is not known how this relationship is influenced by additional seizures. This study followed children (ages 4-14 years) and their parents over a 24-month period (with data collected at baseline and 6, 12, and 24 months) and investigated the effect of an additional seizure on the relationship between parenting variables and child behavior difficulties. The sample was parents of 196 children (104 girls and 92 boys) with a first seizure within the past 6 weeks. Child mean age at baseline was 8 years, 3 months (SD 3 years). Data were analyzed using t-tests, chi-square tests, and repeated measures analyses of covariance. Relationships between parent variables, additional seizures, and child behavior problems were consistent across time. Several associations between parent variables and child behavior problems were stronger in the additional seizure group than in the no additional seizure group. Findings suggest that interventions that assist families to respond constructively to the reactions of others regarding their child's seizure condition and to address their needs for information and support could help families of children with continuing seizures to have an improved quality of life. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Individualized Low-Amplitude Seizure Therapy: Minimizing Current for Electroconvulsive Therapy and Magnetic Seizure Therapy

    Science.gov (United States)

    Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H

    2015-01-01

    Electroconvulsive therapy (ECT) at conventional current amplitudes (800–900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112–174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST. PMID:25920013

  9. Diagnosing psychogenic nonepileptic seizures: Video-EEG monitoring, suggestive seizure induction and diagnostic certainty.

    Science.gov (United States)

    Popkirov, Stoyan; Jungilligens, Johannes; Grönheit, Wenke; Wellmer, Jörg

    2017-08-01

    Psychogenic nonepileptic seizures (PNES) can remain undiagnosed for many years, leading to unnecessary medication and delayed treatment. A recent report by the International League Against Epilepsy Nonepileptic Seizures Task Force recommends a staged approach to the diagnosis of PNES (LaFrance, et al., 2013). We aimed to investigate its practical utility, and to apply the proposed classification to evaluate the role of long-term video-EEG monitoring (VEEG) and suggestive seizure induction (SSI) in PNES workup. Using electronic medical records, 122 inpatients (mean age 36.0±12.9years; 68% women) who received the diagnosis of PNES at our epilepsy center during a 4.3-year time period were included. There was an 82.8% agreement between diagnostic certainty documented at discharge and that assigned retroactively using the Task Force recommendations. In a minority of cases, having used the Task Force criteria could have encouraged the clinicians to give more certain diagnoses, exemplifying the Task Force report's utility. Both VEEG and SSI were effective at supporting high level diagnostic certainty. Interestingly, about one in four patients (26.2%) had a non-diagnostic ("negative") VEEG but a positive SSI. On average, this subgroup did not have significantly shorter mean VEEG recording times than VEEG-positive patients. However, VEEG-negative/SSI-positive patients had a significantly lower habitual seizure frequency than their counterparts. This finding emphasizes the utility of SSI in ascertaining the diagnosis of PNES in patients who do not have a spontaneous habitual event during VEEG due to, for example, low seizure frequency. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Seizure Self-Efficacy Scale for Children with Epilepsy: Confirmatory and Exploratory Factor Analysis

    Directory of Open Access Journals (Sweden)

    Şerife Tutar Güven

    2017-12-01

    Full Text Available Aim: In the past few years, the concept of self-efficacy in children with epilepsy has become increasingly important. This study aimed to analyze the psychometric aspects of the Turkish version of the Seizure Self-Efficacy Scale for Children. Materials and Methods: This is a cross-sectional survey. The study data were collected using the Seizure Self-Efficacy Scale for Children and Child Introduction Form. The study sample included 166 children who were between 9 and 17 years of age. The authors assessed the reliability and construct validity of the study data using exploratory and confirmatory factor analyses (CFA. Results: The original model was not confirmed by the CFA. The analysis tool included 15 items in two factors. Reliability analysis showed that the two factors were acceptable and valid. The tool was valid and reliable for measuring the self-efficacy of epileptic children. The factor structure was derived from and confirmed by the original tool. It was found that the Turkish version of the modified Seizure Self-Efficacy Scale for Children had excellent satisfactory psychometric aspects for a Turkish population. Conclusion: Health professionals can present a more effective drug process and nursing care by identifying and assessing seizure self-efficacy levels in children with epilepsy, and they can make a positive contribution to disease management and the way the child deals with the disease.

  11. Contribution of a natural polymorphism, protein kinase G, modulates electroconvulsive seizure recovery in D. melanogaster.

    Science.gov (United States)

    Kelly, Stephanie P; Risley, Monica G; Miranda, Leonor E; Dawson-Scully, Ken

    2018-05-24

    Drosophila melanogaster is a well-characterized model for neurological disorders and is widely used for investigating causes of altered neuronal excitability leading to seizure-like behavior. One method used to analyze behavioral output of neuronal perturbance is recording the time to locomotor recovery from an electroconvulsive shock. Based on this behavior, we sought to quantify seizure susceptibility in larval D. melanogaster with differences in the enzymatic activity levels of a major protein, cGMP-dependent protein kinase (PKG). PKG, encoded by foraging , has two natural allelic variants and has previously been implicated in several important physiological characteristics including: foraging patterns, learning and memory, and environmental stress tolerance. The well-established NO/cGMP/PKG signaling pathway found in the fly, which potentially targets downstream K + channel(s), which ultimately impacts membrane excitability; leading to our hypothesis: altering PKG enzymatic activity modulates time to recovery from an electroconvulsive seizure. Our results show that by both genetically and pharmacologically increasing PKG enzymatic activity, we can decrease the locomotor recovery time from an electroconvulsive seizure in larval D. melanogaster . © 2018. Published by The Company of Biologists Ltd.

  12. Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block

    International Nuclear Information System (INIS)

    Li, Jiajia; Wang, Rong; Du, Mengmeng; Tang, Jun; Wu, Ying

    2016-01-01

    The involvement of astrocytes in neuronal firing dynamics is becoming increasingly evident. In this study, we used a classical hippocampal tripartite synapse model consisting of soma-dendrite coupled neuron models and a Hodgkin–Huxley-like astrocyte model, to investigate the seizure-like firing in the somatic neuron induced by the over-expressed neuronal N-methyl-d-aspartate (NMDA) receptors. Based on this model, we further investigated the effect of the astrocytic channel block on the neuronal firing through a bifurcation analysis. Results show that blocking inositol-1,4,5-triphosphate(IP3)-dependent calcium channel in astrocytes efficiently suppresses the astrocytic calcium oscillation, which in turn suppresses the seizure-like firing in the neuron.

  13. Serum zinc status of neonates with seizure

    Directory of Open Access Journals (Sweden)

    Olia Sharmeen

    2016-08-01

    Full Text Available Background: Seizure is a common neurological disorder in neonatal age group!. Primary metabolic derangement is one of the important reason behind this convulsion during this period. Among primary metabolic derangement hypoglycemia, is most common followed by bypocalcaemia, hypomagnesaemia, low zinc status etc. As causes of many cases of convul­sion remain unknown in neonate. Objectives: To see the zinc status in the sera of neonate with convulsion. So that if needed early intervention can be taken up and thereby prevent complications. Method: A total of 50 neonates (1-28 days who had convulsion with no apparent reasons of convulsion were enrolled as cases and 50 healthy age and sex matched neonates were enrolled as controls. After a quick clinical evaluation serum zinc status was estimated from venous blood by atomic absorption method in Chemistry Division, Atomic Energy Centre. Low zinc was considered if serum value was <0.7mg/L. Results: Among a total of 50 cases 6% had low zinc value & 2% of controls also had low zinc level. The mean serwu zinc level of cases and controls were 1.57±0.95 and 2.37±1.06 mmol/1 respectively (p<0.01. Conclusion: From the study it is seen that low zinc value is an important cause of neonatal seizure due to primary metabolic abnormalities. So early recognition and treatment could save these babies from long term neurological sequelies.

  14. Epileptic seizures due to multiple cerebral cavernomatosis

    Directory of Open Access Journals (Sweden)

    Spasić Mirjana

    2007-01-01

    Full Text Available Background. Cavernous angiomas are angiographically occult vascular malformations that are present in 0.4−0.9 % of people, and represent around 5% of all cerebrovascular malformations. They can be single or multiple, and sporadic or familial. The presence of multiple lesions is more frequent in familial cavernomatosis. Ten to 30 % are associated with familial clustering. Case report. We presented the case of a 43-year-old man, admitted to the Emergency Department due to unprovoked seizure during the wide awake and everyday activities. Neurological examination was with no focal signs. A 32-channel standard digital EEG was without any significant changes of normal baseline activity. After sleep deprivation EEG showed multifocal, bilateral and asymmetric polyspikes and sharpwaves activity. Hyperventilation induced generalized epileptiform discharges. MRI scan demonstrated multiple small cavernous angiomas. Neuropsychological testing demonstrated a delayed memory impairment. Neurosurgery treatment was not recommended, and the therapy with valproate 1 250 mg/day had an excellent efficacy with no singnificant adverse effects. Conclusion. This patient considered as a rare case with multiple cavernomatosis highlights the importance of neuroradiological examination in adult patients with the first epileptic seizure but with no focal neurological signs. .

  15. Barriers to Seizure Management in Schools: Perceptions of School Nurses.

    Science.gov (United States)

    Terry, Debbie; Patel, Anup D; Cohen, Daniel M; Scherzer, Daniel; Kline, Jennifer

    2016-12-01

    The purpose of this study was to assess school nurses' perceptions of barriers to optimal management of seizures in schools. Eighty-three school nurses completed an electronic survey. Most agreed they felt confident they could identify a seizure (97.6%), give rectal diazepam (83.8%), and handle cluster seizures (67.1%), but fewer were confident they could give intranasal midazolam (63.3%), had specific information about a student's seizures (56.6%), or could swipe a vagus nerve stimulator magnet (47.4%). Nurses were more likely to be available at the time of a seizure in rural (17/20) (85%) versus suburban (21/34) (62%) or urban (8/25) (32%) schools (P = .001). School nurses are comfortable managing seizures in the school setting. However, a specific seizure plan for each child and education on intranasal midazolam and vagus nerve stimulator magnet use are needed. A barrier in urban schools is decreased availability of a nurse to identify seizures and administer treatment. © The Author(s) 2016.

  16. [Subacute encephalopathy with epileptic seizures in an alcoholic patient].

    Science.gov (United States)

    Kozian, R; Otto, F G

    2000-09-01

    We introduce a case of a 66 year-old male with chronic alcoholism who suffered from confusion, Wernicke-aphasia and epileptic seizures. Several EEG revealed periodic lateralized epileptiform discharges. The patient's case resembles the symptoms of a subacute encephalopathy with epileptic seizures which can occur in alcoholics.

  17. Automated differentiation between epileptic and non-epileptic convulsive seizures

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Conradsen, Isa; Moldovan, Mihai

    2015-01-01

    Our objective was the clinical validation of an automated algorithm based on surface electromyography (EMG) for differentiation between convulsive epileptic and psychogenic nonepileptic seizures (PNESs). Forty-four consecutive episodes with convulsive events were automatically analyzed with the a......%) and 18 PNESs (95%). The overall diagnostic accuracy was 95%. This algorithm is useful for distinguishing between epileptic and psychogenic convulsive seizures....

  18. Neuroimaging findings in pediatric patients with seizure from an ...

    African Journals Online (AJOL)

    Background: Pediatric seizures in developing countries are often poorly investigated and consequently poorly managed. Sociocultural misconceptions, financial difficulties, and lack of facilities are often blamed. This study studies the structural intracranial abnormalities associated with pediatric seizures and the proportion of ...

  19. Paradoxical Seizure Response to Phenytoin in an Epileptic Heroin Addict.

    Science.gov (United States)

    Vasagar, Brintha; Verma, Beni R; Dewberry, Robert G; Pula, Thaddeus

    2015-06-01

    Phenytoin has a narrow therapeutic window and seizures can occur at both ends of the spectrum. A 41-year-old man with a history of a seizure disorder and heroin addiction presented with dizziness following 2 generalized tonic-clonic seizures that occurred earlier that day. The patient had received a loading dose of phenytoin for seizures associated with a subtherapeutic level 5 days previously. Initial evaluation revealed an elevated phenytoin level of 32.6 mcg/mL and an opiate-positive toxicology screen. Levetiracetam was started on the day of presentation and phenytoin was held until the level returned to the therapeutic range. The patient's dizziness resolved and he had no additional seizures. Evaluation for reversible causes of seizure activity along with anticonvulsant administration is generally the standard of care for breakthrough seizures. Phenytoin blood levels, if supratherapeutic, may be at least partially responsible for breakthrough seizure activity; in this circumstance, holding phenytoin and temporarily adding another anticonvulsant may be indicated.

  20. Picrotoxin-induced seizures modified by morphine and opiate antagonists.

    Science.gov (United States)

    Thomas, J; Nores, W L; Kenigs, V; Olson, G A; Olson, R D

    1993-07-01

    The effects of naloxone, Tyr-MIF-1, and MIF-1 on morphine-mediated changes in susceptibility to picrotoxin-induced seizures were studied. Rats were pretreated with naloxone, MIF-1, Tyr-MIF-1, or saline. At 15-min intervals, they received a second pretreatment of morphine or saline and then were tested for seizures following a convulsant dose of picrotoxin. Several parameters of specific categories of seizures were scored. Morphine increased the number of focal seizure episodes, duration of postseizure akinesis, and incidence of generalized clonic seizures. Naloxone tended to block the morphine-mediated changes in susceptibility. Tyr-MIF-1 had effects similar to naloxone on duration of postseizure immobility but tended to potentiate the effects of morphine on focal seizure episodes. The effects of morphine and the opiate antagonists on focal seizure episodes and postseizure duration suggest the general involvement of several types of opiate receptors in these picrotoxin-induced behaviors. However, the observation of antagonistic effects for Tyr-MIF-1 on immobility but agonistic effects for focal seizures suggests that the type of effect exerted by opiate agents may depend upon other neuronal variables.

  1. How the environment shapes genetically induced seizure activity in rats

    NARCIS (Netherlands)

    Schridde, U.; Luijtelaar, E.L.J.M. van; Takahashi, T.; Fukuyama, Y.

    2008-01-01

    Underling biology that governs the age-dependent seizure susceptibility is a new, exciting research field for every pediatric epileptologists and developmental nouroscientists. From daily practice, clinicians are well aware about a close correlation between the degree of seizure susceptibility and

  2. Congenital hypoparathyroidism presenting as recurrent seizures in an adult

    OpenAIRE

    Acharya, Sourya; Shukla, Samarth; Singh, Dinesh; Deshpande, Rohit; Mahajan, S. N.

    2012-01-01

    Hypocalcemia due to hypoparathyroidism may manifest as serious neurologic symptoms such as seizures, movement disorders, or raised intracranial pressure. Several patients were observed to have these dangerous neurologic complications even without subtle signs of hypocalcemia like tetany, chvostek's sign or carpopedal spasms. We present a case of recurrent hypocalcemic seizures due to congenital hypoparathyroidism.

  3. Responding to Seizures (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-11-26

    As traumatic as epilepsy can be for the person experiencing seizures, it can be just as troubling for witnesses who want to try and help. In this podcast, Rosemarie Kobau discusses the appropriate way to help someone who is experiencing a seizure.  Created: 11/26/2015 by MMWR.   Date Released: 11/26/2015.

  4. Responding to Seizures (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-11-26

    When helping someone with a seizure, it’s important to remain calm. This podcast discusses what to do if you witness someone having a seizure.  Created: 11/26/2015 by MMWR.   Date Released: 11/26/2015.

  5. 19 CFR 162.63 - Arrests and seizures.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Arrests and seizures. 162.63 Section 162.63 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Controlled Substances, Narcotics, and Marihuana § 162...

  6. Seizure Disorders: An Alternative Explanation for Students' Inattention.

    Science.gov (United States)

    Agnew, Christina M.; Nystul, Michael S.; Conner, Mary Catherine

    1998-01-01

    Provides an overview of seizure disorders. They are more common than previously thought, and most have their onset in adolescence. Types of seizure disorders common in children, their symptoms, and treatment are described. A case example illustrates behavior in school and a paradoxical medication effect. (EMK)

  7. epilepsy following simple febrile seizure in a rural community in ...

    African Journals Online (AJOL)

    2011-12-12

    Dec 12, 2011 ... family history of epilepsy did not significantly influence the development of later epilepsy X2 ... following a single simple febrile seizure. MATERIALS ANd ... If the parent did not witness the seizure, an adult who witnessed the ...

  8. Recognition Memory Is Impaired in Children after Prolonged Febrile Seizures

    Science.gov (United States)

    Martinos, Marina M.; Yoong, Michael; Patil, Shekhar; Chin, Richard F. M.; Neville, Brian G.; Scott, Rod C.; de Haan, Michelle

    2012-01-01

    Children with a history of a prolonged febrile seizure show signs of acute hippocampal injury on magnetic resonance imaging. In addition, animal studies have shown that adult rats who suffered febrile seizures during development reveal memory impairments. Together, these lines of evidence suggest that memory impairments related to hippocampal…

  9. Self‑perceived seizure precipitants among patients with epilepsy in ...

    African Journals Online (AJOL)

    Most (80%) patients rightly indicated that antiepileptic drug was the best treatment for their seizure control. Conclusion: The result of this study showed that the leading perceived seizure precipitants among epilepsy patients attending the neurology clinic of UITH were stress, inadequate sleep, head trauma, and demonic ...

  10. Temporal epileptic seizures and occupational exposure to solvents

    DEFF Research Database (Denmark)

    Jacobsen, M; Bælum, Jesper; Bonde, J P

    1994-01-01

    Long term exposure to organic solvents is usually not considered as a possible cause of chronic epileptic seizures. A case that shows a remarkable coincidence between exposure to organic solvents and occurrence of epileptic seizures is reported. The man was a 58 year old sign writer with lifelong...

  11. Responding to Seizures (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    As traumatic as epilepsy can be for the person experiencing seizures, it can be just as troubling for witnesses who want to try and help. In this podcast, Rosemarie Kobau discusses the appropriate way to help someone who is experiencing a seizure.

  12. Seizure detection using dynamic warping for patients with intellectual disability

    NARCIS (Netherlands)

    Wang, L.; Arends, J.B.A.M.; Long, X.; Wu, Y.; Cluitmans, P.J.M.

    2016-01-01

    Electroencephalography (EEG) is paramount for both retrospective analysis and real-time monitoring of epileptic seizures. Studies have shown that EEG-based seizure detection is very difficult for a specific epileptic population with intellectual disability due to the cerebral development disorders.

  13. The debate: Treatment after the first seizure - The CONTRA.

    Science.gov (United States)

    Steinhoff, Bernhard J

    2017-07-01

    In many instances antiepileptic drug (AED) treatment of epilepsy patients is sustained for a long time and is even a lifelong therapy. Chronic drug treatment naturally means the potential burden of adverse effects. The prognosis to remain seizure-free is good after a first seizure even without AEDs. Therefore one has to consider the possibility that freedom from seizures when AED treatment has been initiated after the first seizure may not in fact be the result of the AED treatment. On the other hand seizure-free patients without severe side effects most probably will not consider discontinuing AEDs. Therefore in these cases it will not be possible to discover whether AEDs are really necessary to maintain freedom from seizures. Furthermore it has been shown that the long-term prognosis is independent of whether AED treatment started after the first or a following seizure. Therefore in most instances AED treatment after a first seizure should be avoided. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  14. 19 CFR 12.109 - Seizure and forfeiture.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Seizure and forfeiture. 12.109 Section 12.109 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE... § 12.109 Seizure and forfeiture. (a) Whenever any pre-Columbian monumental or architectural sculpture...

  15. Validation of an automated seizure detection algorithm for term neonates

    Science.gov (United States)

    Mathieson, Sean R.; Stevenson, Nathan J.; Low, Evonne; Marnane, William P.; Rennie, Janet M.; Temko, Andrey; Lightbody, Gordon; Boylan, Geraldine B.

    2016-01-01

    Objective The objective of this study was to validate the performance of a seizure detection algorithm (SDA) developed by our group, on previously unseen, prolonged, unedited EEG recordings from 70 babies from 2 centres. Methods EEGs of 70 babies (35 seizure, 35 non-seizure) were annotated for seizures by experts as the gold standard. The SDA was tested on the EEGs at a range of sensitivity settings. Annotations from the expert and SDA were compared using event and epoch based metrics. The effect of seizure duration on SDA performance was also analysed. Results Between sensitivity settings of 0.5 and 0.3, the algorithm achieved seizure detection rates of 52.6–75.0%, with false detection (FD) rates of 0.04–0.36 FD/h for event based analysis, which was deemed to be acceptable in a clinical environment. Time based comparison of expert and SDA annotations using Cohen’s Kappa Index revealed a best performing SDA threshold of 0.4 (Kappa 0.630). The SDA showed improved detection performance with longer seizures. Conclusion The SDA achieved promising performance and warrants further testing in a live clinical evaluation. Significance The SDA has the potential to improve seizure detection and provide a robust tool for comparing treatment regimens. PMID:26055336

  16. Increasing Epilepsy Awareness in Schools: A Seizure Smart Schools Project

    Science.gov (United States)

    Brook, Heather A.; Hiltz, Cynthia M.; Kopplin, Vicki L.; Lindeke, Linda L.

    2015-01-01

    A high prevalence of epilepsy diagnoses and seizure events among students was identified at a large Midwestern school district. In partnership with the Epilepsy Foundation of Minnesota (EFMN), a quality improvement project was conducted to provide education and resources to staff caring for school children with seizures. School nurses (N = 26)…

  17. 32 CFR 935.101 - Seizure of property.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Seizure of property. 935.101 Section 935.101 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Criminal Actions § 935.101 Seizure of property. Any property seized in connection...

  18. Frequency of fever episodes related to febrile seizure recurrence

    NARCIS (Netherlands)

    M. van Stuijvenberg (Margriet); N.E. Jansen (Nichon); E.W. Steyerberg (Ewout); G. Derksen-Lubsen (Gerarda); H.A. Moll (Henriëtte)

    1999-01-01

    textabstractThe aim of this study was to assess the number of fever episodes as a risk factor for febrile seizure recurrence during the first 6 months after the last previous febrile seizure. In a 6-month follow-up study of 155 children, aged 3 months to 5 y, with a first or a recurrent febrile

  19. 19 CFR 12.104e - Seizure and forfeiture.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Seizure and forfeiture. 12.104e Section 12.104e Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Cultural Property § 12.104e Seizure and forfeiture. (a) Whenever...

  20. Seizures and Epilepsy and Their Relationship to Autism Spectrum Disorders

    Science.gov (United States)

    Matson, Johnny L.; Neal, Daniene

    2009-01-01

    Autism spectrum disorders (ASD) are serious neurodevelopmental disorders which often co-occur with intellectual disabilities. A disorder which is strongly correlated with both of these disabilities are seizures and epilepsy. The purpose of this review was to provide an overview of available research on seizures and epilepsy in the ASD population…

  1. Complex partial seizure with severe depression and conduct ...

    African Journals Online (AJOL)

    Complex partial seizure complicated by psychiatric comorbidities like depression and conduct disorder presents management challenges for both the physician and parents. The etiology of such psychiatric comorbidities may be related to the seizure or to several other unrelated risk factors. The psychiatric comorbidities and ...

  2. [Brain lateralization and seizure semiology: ictal clinical lateralizing signs].

    Science.gov (United States)

    Horváth, Réka; Kalmár, Zsuzsanna; Fehér, Nóra; Fogarasi, András; Gyimesi, Csilla; Janszky, József

    2008-07-30

    Clinical lateralizing signs are the phenomena which can unequivocally refer to the hemispheric onset of epileptic seizures. They can improve the localization of epileptogenic zone during presurgical evaluation, moreover, their presence can predict a success of surgical treatment. Primary sensory phenomena such as visual aura in one half of the field of vision or unilateral ictal somatosensory sensation always appear on the contralateral to the focus. Periictal unilateral headache, although it is an infrequent symptom, is usually an ipsilateral sign. Primary motor phenomena like epileptic clonic, tonic movements, the version of head ubiquitously appear contralateral to the epileptogenic zone. Very useful lateralization sign is the ictal hand-dystonia which lateralizes to the contralateral hemisphere in nearly 100%. The last clonus of the secondarily generalized tonic-clonic seizure lateralizes to the ipsilateral hemisphere in 85%. The fast component of ictal nystagmus appears in nearly 100% on the contralateral side of the epileptic focus. Vegetative symptoms during seizures arising from temporal lobe such as spitting, nausea, vomiting, urinary urge are typical for seizures originating from non-dominant (right) hemisphere. Ictal pallor and cold shivers are dominant hemispheric lateralization signs. Postictal unilateral nose wiping refers to the ipsilateral hemispheric focus compared to the wiping hand. Ictal or postictal aphasia refers to seizure arising from dominant hemisphere. Intelligable speech during complex partial seizures appears in non-dominant seizures. Automatism with preserved consciousness refers to the seizures of non-dominant temporal lobe.

  3. Seizures in Fragile X Syndrome: Characteristics and Comorbid Diagnoses

    Science.gov (United States)

    Berry-Kravis, Elizabeth; Raspa, Melissa; Loggin-Hester, Lisa; Bishop, Ellen; Holiday, David; Bailey, Donald B., Jr.

    2010-01-01

    A national survey of caregivers of individuals with fragile X syndrome addressed characteristics of epilepsy and co-occurring conditions. Of the 1,394 individuals (1,090 males and 304 females) with the full mutation, 14% of males and 6% of females reported seizures. Seizures were more often partial, began between ages 4 and 10 years, and were…

  4. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    Science.gov (United States)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  5. Precipitants of seizure among patients with epilepsy: Experience at Kano, Northwestern Nigeria

    Directory of Open Access Journals (Sweden)

    L F Owolabi

    2012-01-01

    Conclusion: Common precipitating factors of seizure included stress, febrile illness and non adherence to antiepileptic drugs. Knowledge of these precipitating factors are vital prevention of seizure.

  6. Hypoparathyroidism Causing Seizures: When Epilepsy Does Not Fit

    Directory of Open Access Journals (Sweden)

    Faheem Seedat

    2018-01-01

    Full Text Available A 24-year-old man presented to the Chris Hani Baragwanath Academic Hospital emergency department with recurrent seizures having previously been diagnosed with epilepsy from age 14. The biochemical investigations and brain imaging were suggestive of seizures secondary to hypocalcemia, and a diagnosis of idiopathic hypoparathyroidism was confirmed. After calcium and vitamin D replacement, the patient recovered well and is seizure free, and off antiepileptic therapy. This case highlights the occurrence of brain calcinosis in idiopathic hypoparathyroidism; the occurrence of acute symptomatic seizures due to provoking factors other than epilepsy; and the importance, in the correct clinical setting, of considering alternative, and sometimes treatable, causes of seizures other than epilepsy.

  7. Sex and Hormonal influences on Seizures and Epilepsy

    Science.gov (United States)

    Velíšková, Jana; DeSantis, Kara A.

    2012-01-01

    Epilepsy is the third most common chronic neurological disorder. Clinical and experimental evidence supports the role of sex and influence of sex hormones on seizures and epilepsy as well as alterations of the endocrine system and levels of sex hormones by epileptiform activity. Conversely, seizures are sensitive to changes in sex hormone levels, which in turn may affect the seizure-induced neuronal damage. The effects of reproductive hormones on neuronal excitability and seizure-induced damage are complex to contradictory and depend on different mechanisms, which have to be accounted for in data interpretation. Both estradiol and progesterone/allopregnanolone may have beneficial effects for patients with epilepsy. Individualized hormonal therapy should be considered as adjunctive treatment in patients with epilepsy to improve seizure control as well as quality of life. PMID:22504305

  8. Inter-modality comparisons of seizure focus lateralization in complex partial seizures

    International Nuclear Information System (INIS)

    Meyer, P.T.; Cortes-Blanco, A.; Pourdehnad, M.; Desiderio, L.; Jang, S.; Alavi, A.; Levy-Reis, I.

    2001-01-01

    Anterior temporal lobectomy offers a high chance of seizure-free outcome in patients suffering from drug-refractory complex partial seizure (CPS) originating from the temporal lobe. Other than EEG, several functional and morphologic imaging methods are used to define the spatial seizure origin. The present study was undertaken to compare the merits of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET), magnetic resonance imaging (MRI) and single-voxel proton MR spectroscopy (MRS) for the lateralization of temporal lobe seizure foci. The clinical charts and imaging data of 43 consecutive CPS patients were reviewed. Based on surface EEG, 31 patients were classified with temporal lobe epilepsy (TLE; 25 lateralized, 6 not lateralized) and 12 with non-temporal lobe epilepsy. All were examined by FDG-PET, MRS and MRI within 6 weeks. FDG-PET and MRI were interpreted visually, while the N-acetyl-aspartate to creatine ratio was used for MRS interpretation. One FDG-PET scan was invalid due to seizure activity post injection. The MR spectra could not be evaluated in five cases bilaterally and three cases unilaterally for technical reasons. A total of 15 patients underwent anterior temporal lobectomy. All showed a beneficial postoperative outcome. When the proportions of agreement between FDG-PET (0.77), MRI (0.58) and MRS (0.56) and surface EEG in TLE cases were compared, there were no significant differences (P>0.10). However, FDG-PET showed a significantly higher agreement (0.93) than MRI (0.60; P=0.03) with the side of successful temporal lobectomy. The concordance of MRS with the side of successful temporal lobectomy was intermediate (0.75). When the results of functional and morphologic imaging were combined, no significant differences were found between the rates of agreement of FDG-PET/MRI and MRS/MRI with EEG (0.80 vs 0.68; P=0.50) and with the side of successful temporal lobectomy (0.87 vs 0.92; P=0.50) in TLE cases. However, MRS/MRI showed

  9. Inter-modality comparisons of seizure focus lateralization in complex partial seizures

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.T.; Cortes-Blanco, A.; Pourdehnad, M.; Desiderio, L.; Jang, S.; Alavi, A. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Radiology; Levy-Reis, I. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Neurology

    2001-10-01

    Anterior temporal lobectomy offers a high chance of seizure-free outcome in patients suffering from drug-refractory complex partial seizure (CPS) originating from the temporal lobe. Other than EEG, several functional and morphologic imaging methods are used to define the spatial seizure origin. The present study was undertaken to compare the merits of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET), magnetic resonance imaging (MRI) and single-voxel proton MR spectroscopy (MRS) for the lateralization of temporal lobe seizure foci. The clinical charts and imaging data of 43 consecutive CPS patients were reviewed. Based on surface EEG, 31 patients were classified with temporal lobe epilepsy (TLE; 25 lateralized, 6 not lateralized) and 12 with non-temporal lobe epilepsy. All were examined by FDG-PET, MRS and MRI within 6 weeks. FDG-PET and MRI were interpreted visually, while the N-acetyl-aspartate to creatine ratio was used for MRS interpretation. One FDG-PET scan was invalid due to seizure activity post injection. The MR spectra could not be evaluated in five cases bilaterally and three cases unilaterally for technical reasons. A total of 15 patients underwent anterior temporal lobectomy. All showed a beneficial postoperative outcome. When the proportions of agreement between FDG-PET (0.77), MRI (0.58) and MRS (0.56) and surface EEG in TLE cases were compared, there were no significant differences (P>0.10). However, FDG-PET showed a significantly higher agreement (0.93) than MRI (0.60; P=0.03) with the side of successful temporal lobectomy. The concordance of MRS with the side of successful temporal lobectomy was intermediate (0.75). When the results of functional and morphologic imaging were combined, no significant differences were found between the rates of agreement of FDG-PET/MRI and MRS/MRI with EEG (0.80 vs 0.68; P=0.50) and with the side of successful temporal lobectomy (0.87 vs 0.92; P=0.50) in TLE cases. However, MRS/MRI showed

  10. A brief history of typical absence seizures - Petit mal revisited.

    Science.gov (United States)

    Brigo, Francesco; Trinka, Eugen; Lattanzi, Simona; Bragazzi, Nicola Luigi; Nardone, Raffaele; Martini, Mariano

    2018-03-01

    In this article, we have traced back the history of typical absence seizures, from their initial clinical description to the more recent nosological position. The first description of absence seizures was made by Poupart in 1705 and Tissot in 1770. In 1824, Calmeil introduced the term "absences", and in 1838, Esquirol for the first time used the term petit mal. Reynolds instead used the term "epilepsia mitior" (milder epilepsy) and provided a comprehensive description of absence seizures (1861). In 1854, Delasiauve ranked absences as the seizure type with lower severity and introduced the concept of idiopathic epilepsy. Otto Binswanger (1899) discussed the role of cortex in the pathophysiology of "abortive seizures", whereas William Gowers (1901) emphasized the importance of a detailed clinical history to identify nonmotor seizures or very mild motor phenomena which otherwise may go unnoticed or considered not epileptic. At the beginning of the 20th Century, the term pyknolepsy was introduced, but initially was not universally considered as a type of epilepsy; it was definitely recognized as an epileptic entity only in 1945, based on electroencephalogram (EEG) recordings. Hans Berger, the inventor of the EEG, made also the first EEG recording of an atypical absence (his results were published only in 1933), whereas the characteristic EEG pattern was reported by neurophysiologists of the Harvard Medical School in 1935. The discovery of EEG made it also possible to differentiate absence seizures from so called "psychomotor" seizures occurring in temporal lobe epilepsy. Penfield and Jasper (1938) considered absences as expression of "centrencephalic epilepsy". Typical absences seizures are now classified by the International League Against Epilepsy among generalized nonmotor (absence) seizures. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Optogenetic control of thalamus as a tool for interrupting penicillin induced seizures.

    Science.gov (United States)

    Han, Yechao; Ma, Feiqiang; Li, Hongbao; Wang, Yueming; Xu, Kedi

    2015-01-01

    Penicillin epilepsy model, whose discharge resembles that of human absence epilepsy, is one of the most useful acute experimental epilepsy models. Though closed-loop optogenetic strategy of interrupting seizures was proved sufficient to switch off epilepsy by controlling thalamus in the post-lesion partial chronic epilepsy model, doubts still exist in absence epilepsy attenuation through silencing thalamus. Here we directly arrested the thalamus to modulate penicillin-induced absence seizures through pseudorandom responsive stimulation on eNpHR-transfected rats. Our data suggested that the duration of epileptiform bursts under light conditions, compared with no light conditions, did not increase or decrease when modulated specific eNpHR-expressing neurons in thalamus.

  12. Neuroimaging abnormalities and seizure recurrence in a prospective cohort study of Zambians with human immunodeficiency virus and first seizure

    Directory of Open Access Journals (Sweden)

    Michael J. Potchen

    2014-10-01

    Full Text Available In HIV-positive individuals with first seizure, we describe neuroimaging findings, detail clinical and demographic risk factors for imaging abnormalities, and evaluate the relationship between imaging abnormalities and seizure recurrence to determine if imaging abnormalities predict recurrent seizures. Among 43 participants (mean 37.4 years, 56% were male, 16 (37% were on antiretroviral drugs, 32 (79% had advanced HIV disease, and (28 66% had multiple seizures and/or status epilepticus at enrollment. Among those with cerebrospinal fluid studies, 14/31 (44% had opportunistic infections (OIs. During follow-up, 9 (21% died and 15 (35% experienced recurrent seizures. Edema was associated with OIs (odds ratio: 8.79; confidence interval: 1.03-236 and subcortical atrophy with poorer scores on the International HIV Dementia Scale (5.2 vs. 9.3; P=0.002. Imaging abnormalities were not associated with seizure recurrence or death (P>0.05. Seizure recurrence occurred in at least a third and over 20% died during follow-up. Imaging was not predictive of recurrent seizure or death, but imaging abnormalities may offer additional diagnostic insights in terms of OI risk and cognitive impairment.

  13. Seizure, Fit or Attack? The Use of Diagnostic Labels by Patients with Epileptic or Non-Epileptic Seizures

    Science.gov (United States)

    Plug, Leendert; Sharrack, Basil; Reuber, Markus

    2010-01-01

    We present an analysis of the use of diagnostic labels such as "seizure", "attack", "fit", and "blackout" by patients who experience seizures. While previous research on patients' preferences for diagnostic terminology has relied on questionnaires, we assess patients' own preferences and their responses to a doctor's use of different labels…

  14. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages.

    Science.gov (United States)

    Ng, Marcus; Pavlova, Milena

    2013-01-01

    Since the formal characterization of sleep stages, there have been reports that seizures may preferentially occur in certain phases of sleep. Through ascending cholinergic connections from the brainstem, rapid eye movement (REM) sleep is physiologically characterized by low voltage fast activity on the electroencephalogram, REMs, and muscle atonia. Multiple independent studies confirm that, in REM sleep, there is a strikingly low proportion of seizures (~1% or less). We review a total of 42 distinct conventional and intracranial studies in the literature which comprised a net of 1458 patients. Indexed to duration, we found that REM sleep was the most protective stage of sleep against focal seizures, generalized seizures, focal interictal discharges, and two particular epilepsy syndromes. REM sleep had an additional protective effect compared to wakefulness with an average 7.83 times fewer focal seizures, 3.25 times fewer generalized seizures, and 1.11 times fewer focal interictal discharges. In further studies REM sleep has also demonstrated utility in localizing epileptogenic foci with potential translation into postsurgical seizure freedom. Based on emerging connectivity data in sleep, we hypothesize that the influence of REM sleep on seizures is due to a desynchronized EEG pattern which reflects important connectivity differences unique to this sleep stage.

  15. Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures

    Science.gov (United States)

    Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer

    2016-03-01

    Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intra