WorldWideScience

Sample records for electroplating wastewater epww

  1. Application of three tailing-based composites in treating comprehensive electroplating wastewater.

    Science.gov (United States)

    Liu, Hongbo; Zhu, Mengling; Gao, Saisai

    2014-01-01

    Heavy metals and chemical oxygen demand (COD) are major challenging pollutants for most electroplating wastewater treatment plants. A novel composite material, prepared with a mixture of calcium and sodium compounds and tailings, was simply mixed by ratios and used to treat a comprehensive electroplating wastewater with influent COD, total copper (T-Cu), and total nickel (T-Ni) respectively as 690, 4.01, and 20.60 mg/L on average. Operational parameters, i.e. the contact time, pH, mass ratio of calcium and sodium compounds and tailings, were optimized as 30 min, 10.0, and 4:2:1. Removal rates for COD, T-Cu, and T-Ni could reach 71.8, 90.5, and 98.1%, respectively. No significant effect of initial concentrations on removal of T-Cu and T-Ni was observed for the composite material. The adsorption of Cu(II) and Ni(II) on the material fitted Langmuir and Freundlich isotherms respectively. Weight of waste sludge from the calcium/sodium-tailing system after reaction was 10% less than that from the calcium-tailing system. The tailing-based composite is cost-effective in combating comprehensive electroplating pollution, which shows a possibility of applying the tailings in treating electroplating wastewater.

  2. Precious Metals Recovery from Electroplating Wastewater: A Review

    Science.gov (United States)

    Azmi, A. A.; Jai, J.; Zamanhuri, N. A.; Yahya, A.

    2018-05-01

    Metal bearing electroplating wastewater posts great health and environmental concerns, but could also provide opportunities for precious and valuable metal recovery, which can make the treatment process more cost-effective and sustainable. Current conventional electroplating wastewater treatment and metal recovery methods include chemical precipitation, coagulation and flocculation, ion exchange, membrane filtration, adsorption, electrochemical treatment and photocatalysis. However, these physico-chemical methods have several disadvantages such as high initial capital cost, high operational cost due to expensive chemical reagents and electricity supply, generation of metal complexes sludge which requires further treatment, ineffective in diluted and/or concentrated wastewater, low precious metal selectivity, and slow recovery process. On the other hand, metal bio-reduction assisted by bioactive phytochemical compounds extracted from plants and plant parts is a new found technology explored by several researchers in recent years aiming to recover precious and valuable metals from secondary sources mainly industrial wastewater by utilizing low-cost and eco-friendly biomaterials as reagents. Extract of plants contains polyphenolic compounds which have great antioxidant properties and reducing capacities, able to reduce metal ions into zerovalent metal atoms and stabilize the metal particles formed. This green bio-recovery method has a value added in their end products since the metals are recovered in nano-sized particles which are more valuable and have high commercial demand in other fields ranging from electrochemistry to medicine.

  3. In-plant testing of membranes to treat electroplating wastewater

    Science.gov (United States)

    Shah, D. B.; Talu, Orhan

    1995-01-01

    This is the final report submitted for the work performed under the NASA Cooperative Agreement NCC3-301 for the project entitled 'In-Plant Testing of Membranes To Treat Electroplating Waste water'. The main objective of the research project was to determine if the crosslinked polyacrylic acid salt films developed by NASA scientists could be used for heavy metal removal from the wastewater generated by the metals-finishing or electroplating industry. A variety of tasks identified in the original proposal were completed. These included: (1) analysis of our industrial partner Aetna Plating's zinc electroplating process and its wastewater treatment needs for zinc removal; (2) design and construction of a laboratory-scale unit to continuously supply and remove the ion exchange films from the zinc wastewater; (3) performance of a series of runs on such a unit to determine its operating characteristics; and (4) design of a prototype unit for use at the industrial site. In addition, there were a number of tasks that had not been identified in the original proposal but were later judged to be necessary for the successful completion of the project. These were: (1) batch equilibrium and kinetic experiments with analysis of the experimental results to accurately determine the equilibrium and kinetic parameters for the ion exchange films; (2 ) simulation studies for proper design of the prototype unit; and (3) preliminary runs to exchange the films from H form to Calcium form.

  4. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  5. Influence of voltage input to heavy metal removal from electroplating wastewater using electrocoagulation process

    Science.gov (United States)

    Wulan, D. R.; Cahyaningsih, S.; Djaenudin

    2017-03-01

    In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.

  6. Novel Dual Stage Membrane Bioreactor for the Continuous Remediation of Electroplating Wastewater

    OpenAIRE

    B. A. Q. Santos; S. K. O. Ntwampe; G. Muchatibaya

    2013-01-01

    In this study, the designed dual stage membrane bioreactor (MBR) system was conceptualized for the treatment of cyanide and heavy metals in electroplating wastewater. The design consisted of a primary treatment stage to reduce the impact of fluctuations and the secondary treatment stage to remove the residual cyanide and heavy metal contaminants in the wastewater under alkaline pH conditions. The primary treatment stage contained hydrolyzed Citrus sinensis (C. sinensis) p...

  7. Assessment of the effectiveness of orange (Citrus reticulata) peel in the recovery of nickel from electroplating wastewater.

    Science.gov (United States)

    Hussein, Rim A

    2014-12-01

    Wastewater discharged from electroplating industry contains different concentrations of heavy metals, which when released into the environment pose a health hazard to human beings. The aim of this study was to assess the effectiveness of orange peel as an adsorbent in the recovery of Nickel (Ni) from electroplating wastewater. The effectiveness of orange peel as an adsorbent was assessed by determining the optimum conditions of adsorption (adsorbent dose, pH, and contact time), calculating the recovery percentage, and characterizing the orange peel sludge resulting from adsorption/desorption process as being hazardous or not. Under optimum conditions for adsorption, orange peel was found to be an effective adsorbent of Ni from electroplating wastewater. It achieved 59.28% removal of the metal from a solution containing 528 mg/l, at a dose of 60 g/l, at pH 7, and for 1-h contact time. The nickel uptake capacity of orange peel was calculated to be 5.2 mg/g. Using HCl for desorption of adsorbed Ni, a recovery of 44.46% of Ni discharged in the wastewater could be reached. Orange peel resulting from the adsorption/desorption process was characterized as being nonhazardous. Orange peel was found to be effective in the recovery of nearly half of the amount of Ni discharged in electroplating wastewater. Further studies are required to determine (a) the impact of the recovered NiCl2 solution on the quality of the plated product, (b) the effect of activation of orange peel on the adsorption process, and (c) the number of cycles during which orange peel can be reused as an effective adsorbent.

  8. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    Science.gov (United States)

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides.

    Science.gov (United States)

    Zhou, Ji Zhi; Wu, Yue Ying; Liu, Chong; Orpe, Ajay; Liu, Qiang; Xu, Zhi Ping; Qian, Guang Ren; Qiao, Shi Zhang

    2010-12-01

    Heavy metal ions (Ni(2+), Zn(2+), and Cr(3+)) can be effectively removed from real polynary metal ions-bearing electroplating wastewaters by a carbonation process, with ∼99% of metal ions removed in most cases. The synchronous formation of layered double hydroxide (LDH) precipitates containing these metal ions was responsible for the self-purification of wastewaters. The constituents of formed polynary metals-LDHs mainly depended on the Ni(2+):Zn(2+):Cr(3+) molar ratio in wastewaters. LDH was formed at pH of 6.0-8.0 when the Ni(2+)/Zn(2+) molar ratio ≥ 1 where molar fraction of trivalent metal in the wastewaters was 0.2-0.4, otherwise ZnO, hydrozincite, or amorphous precipitate was observed. In the case of LDH formation, the residual concentration of Ni(2+), Zn(2+), and Cr(3+) in the treated wastewaters was very low, about 2-3, ∼2, and ∼1 mg/L, respectively, at 20-80 °C and pH of 6.0-8.0, indicating the effective incorporation of heavy metal ions into the LDH matrix. Furthermore, the obtained LDH materials were used to adsorb azoic dye GR, with the maximum adsorption amount of 129-134 mg/g. We also found that the obtained LDHs catalyzed more than 65% toluene to decompose at 350 °C under ambient pressure. Thus the current research has not only shown effective recovery of heavy metal ions from the electroplating wastewaters in an environmentally friendly process but also demonstrated the potential utilization of recovered materials.

  10. Feasibility of a two-stage biological aerated filter for depth processing of electroplating-wastewater.

    Science.gov (United States)

    Liu, Bo; Yan, Dongdong; Wang, Qi; Li, Song; Yang, Shaogui; Wu, Wenfei

    2009-09-01

    A "two-stage biological aerated filter" (T-SBAF) consisting of two columns in series was developed to treat electroplating-wastewater. Due to the low BOD/CODcr values of electroplating-wastewater, "twice start-up" was employed to reduce the time for adaptation of microorganisms, a process that takes up of 20 days. Under steady-state conditions, the removal of CODcr and NH(4)(+)-N increased first and then decreased while the hydraulic loadings increased from 0.75 to 1.5 m(3) m(-2) h(-1). The air/water ratio had the same influence on the removal of CODcr and NH(4)(+)-N when increasing from 3:1 to 6:1. When the hydraulic loadings and air/water ratio were 1.20 m(3) m(-2) h(-1) and 4:1, the optimal removal of CODcr, NH(4)(+)-N and total-nitrogen (T-N) were 90.13%, 92.51% and 55.46%, respectively. The effluent steadily reached the wastewater reuse standard. Compared to the traditional BAF, the period before backwashing of the T-SBAF could be extended to 10days, and the recovery time was considerably shortened.

  11. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.

    Science.gov (United States)

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu; Chung, Ying-Chien

    2017-10-27

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship ( r ² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

  12. BIOSORPTION OF Cr(VI FROM SYNTHETIC WASTEWATER USING THE FRUIT SHELL OF GULMOHAR (Delonix regia: APPLICATION TO ELECTROPLATING WASTEWATER

    Directory of Open Access Journals (Sweden)

    Attimodde Girirajanna Devi Prasad

    2010-05-01

    Full Text Available The biosorption of Cr(VI from synthetic solutions and electroplating wastewater using the fruit shell of gulmohar has been investigated in a batch system. The effects of various parameters such as pH, contact time, adsorbent dosage, and initial concentration of Cr(VI on the biosorption process were studied. The complete removal of Cr(VI was observed at pH < 3.0. Studies indicated that both biosorption and bioreduction were involved in the removal of Cr(VI. The sorption equilibrium exhibited a better fit to the Langmuir isotherm than the Freundlich isotherm. The maximum biosorption capacity of fruit shell of gulmohar to remove Cr(VI was 12.28 mg/g. A kinetic model of pseudo-second order provided a good description of the experimental data as compared to a pseudo-first order kinetic model. The sorption rate was found to be dependent on the initial concentration of Cr(VI and biomaterials dosage. The study showed that the abundant and inexpensive fruit shell of gulmohar biosorbent has a potential application in the removal of Cr(VI from electroplating wastewater and its conversion into less or non-toxic Cr (III.

  13. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    Science.gov (United States)

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  14. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.

    Science.gov (United States)

    Sousa, Francisco W; Sousa, Marcelo James; Oliveira, Isadora R N; Oliveira, André G; Cavalcante, Rivelino M; Fechine, Pierre B A; Neto, Vicente O S; de Keukeleire, Denis; Nascimento, Ronaldo F

    2009-08-01

    In this study, sugar cane residue or bagasse was used for removal of toxic metal ions from wastewater of an electroplating factory located in northeast Brazil. Prior acid treatment increased the adsorption efficacies in batch wise experiments. The microstructure of the material before and after the treatment was investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Column operations showed that removals of Cu(2+), Ni(2+) and Zn(2+) from wastewater (in the absence of cyanide) were 95.5%, 96.3.0%, and 97.1%, respectively. Regeneration of the adsorbent obtained in acid indicated that the efficiencies decreased only after the fourth cycle of re-use. Acid-treated sugar cane bagasse can be considered a viable alternative to common methods to remove toxic metal ions from aqueous effluents of electroplating industries.

  15. The Survey of Melia Azaderach L. ash in Removal of Hexavalent Chromium from Synthetic Electroplating Industry Wastewater

    Directory of Open Access Journals (Sweden)

    MT Ghaneian

    2014-11-01

    Conclusion: Melia azedarach ash is an effective adsorbent in removal of hexavalent chromium from synthetic electroplating industries wastewater. In addition, the use of this biosorbent in preparation and application aspects is simple and cheap compared to many other natural and man-made adsorbent.

  16. Enhanced nitrogen removal from electroplating tail wastewater through two-staged anoxic-oxic (A/O) process.

    Science.gov (United States)

    Yan, Xinmei; Zhu, Chunyan; Huang, Bin; Yan, Qun; Zhang, Guangsheng

    2018-01-01

    Consisted of anaerobic (ANA), anoxic-1 (AN1), aerobic-1 (AE1), anoxic-2 (AN2), aerobic-2 (AE2) reactors and sediment tank, the two-staged A/O process was applied for depth treatment of electroplating tail wastewater with high electrical conductivity and large amounts of ammonia nitrogen. It was found that the NH 4 + -N and COD removal efficiencies reached 97.11% and 83.00%, respectively. Besides, the short-term salinity shock of the control, AE1 and AE2 indicated that AE1 and AE2 have better resistance to high salinity when the concentration of NaCl ranged from 1 to 10g/L. Meanwhile, it was found through high-throughput sequencing that bacteria genus Nitrosomonas, Nitrospira and Thauera, which are capable of nitrogen removal, were enriched in the two-staged A/O process. Moreover, both salt-tolerant bacteria and halophili bacteria were also found in the combined process. Therefore, microbial community within the two-staged A/O process could be acclimated to high electrical conductivity, and adapted for electroplating tail wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Microbial Fuel Cell Inoculated with Ochrobactrum Tritici KCC210 for Chromium (VI) Measurement in Electroplating Wastewater

    Science.gov (United States)

    Kuo, Jongtar; Kuo, Juiling; Cheng, Chiuyu; Chung, Yingchien

    2018-01-01

    Many methods/techniques have been developed for Cr(VI) measurement, but they are often conducted offsite or/and cannot provide real-time for Cr(VI) monitoring. A microbial fuel cell (MFC) is a self-sustaining device and has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Ochrobactrum tritici KCC210, a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic bacterium, was isolated and inoculated into the MFC to evaluate its feasibility as a Cr(VI) biosensor. The results indicated that O. tritici KCC210 exhibited high adaptability to pH, and temperature under anaerobic conditions. The maximum power density of the MFC biosensor was 17.5±0.9 mW/m2 at 2,000 Ω. A good linear relationship was observed between the Cr(VI) concentration (10-80 mg/L) and voltage output. The stable performance of the MFC biosensor indicated its potential as a reliable biosensor system. Moreover, the developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater generated from different electroplating units within 15 min with low deviations (-1.8% to 7.8%) in comparison with the values determined using standard method. Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents and has potential as an early warning detection device.

  18. PHOTOCATALYTIC REMOVAL OF TR I- AND HEXA-VALENT CHROMIUM IONS FROM CHROME-ELECTROPL ATING WASTEWATER

    OpenAIRE

    Puangrat Kajitvichyanukul; Chulaluck Changul

    2017-01-01

    A novel technique based on photocatalysis was applied to eliminate chromium ions, a toxic hazardous environmental pollutant. The photoreduction of each species of chromium (total, hexavalent, and trivalent chromiums) from chrome-electroplating wastewater was investigated using a titanium dioxide suspension under irradiation by a low-pressure mercury lamp. The initial concentration of total chromium was 300 mg/l. The applied conditions were the direct photocatalytic reduction process at pH 3.6...

  19. Amine-functionalized mesoporous polymer as potential sorbent for nickel preconcentration from electroplating wastewater.

    Science.gov (United States)

    Islam, Aminul; Zaidi, Noushi; Ahmad, Hilal; Kumar, Suneel

    2015-05-01

    In this study, mesoporous glycidyl methacrylate-divinylbenzene-based chelating resin was synthesized and grafted with diethylenetriamine through epoxy ring-opening reaction. The synthesized resin was characterized by elemental analysis, infrared spectroscopy, surface area and pore size analysis, scanning electron microscopy, energy-dispersive spectroscopy, and thermogravimetry. The resin was used for the first time as an effective sorbent for the preconcentration of nickel in electroplating wastewater samples. The analytical variables like pH, flow rate for sorption/desorption, and eluate selection were systematically investigated and optimized. The uniform and monolayer sorption behavior of resin for nickel was proved by an evident fit of the equilibrium data to a Langmuir isotherm model. Under optimized conditions, the resin was observed to show a good sorption capacity of 20.25 mg g(-1) and >96% recovery of nickel even in the presence of a large number of competitive matrix ions. Its ability to extract trace amount of nickel was exhibited by low preconcentration limit (5.9 μg L(-1)). The calibration curve was found to be linear (R(2) = 0.998) in the concentration range of 6.0-400.0 μg L(-1). Coefficient of variation of less than 5 for all the analysis indicated good reproducibility. The reliability was evaluated by the analysis of standard reference material (SRM) and recovery experiments. The applicability of the resin for the systematic preconcentration of nickel is substantiated by the analysis of electroplating wastewater and river water samples. Graphical abstract ᅟ.

  20. Removal of chromium (VI) from electroplating wastewater using an anion exchanger derived from rice straw.

    Science.gov (United States)

    Cao, Wei; Dang, Zhi; Yia, Xiao-Yun; Yang, Chen; Lu, Gui-Ning; Liu, Yun-Feng; Huang, Se-Yan; Zheng, Liu-Chun

    2013-01-01

    An anion exchanger from rice straw was used to remove Cr (VI) from synthetic wastewater and electroplating effluent. The exchanger was characterized using Fourier transform infrared (FTIR) spectrum and scanning electron microscopy (SEM), and it was found that the quaternary amino group and hydroxyl group are the main functional groups on the fibrous surface of the exchanger. The effect of contact time, initial concentration and pH on the removal of Cr (VI), and adsorption isotherms at different temperature, was investigated. The results showed that the removal of Cr (VI) was very rapid and was significantly affected by the initial pH of the solution. Although acidic conditions (pH = 2-6) facilitated Cr (VI) adsorption, the exchanger was effective in neutral solution and even under weak base conditions. The equilibrium data fitted well with Langmuir adsorption model, and the maximum Cr (VI) adsorption capacities at pH 6.4 were 0.35, 0.36 and 0.38 mmol/g for 15, 25 and 35 degrees C, respectively. The exchanger was finally tested with real electroplating wastewater, and at sorbent dosage of 10 g/L, the removal efficiencies for Cr (VI) and total Cr were 99.4% and 97.8%, respectively. In addition, the positive relationship between adsorbed Cr (VI) and desorbed Cl- suggested that Cr (VI) was mainly removed by ion exchange with chlorine.

  1. Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn(II) removal from electroplating wastewater.

    Science.gov (United States)

    Basak, Geetanjali; Das, Nilanjana

    2014-11-01

    The present study aimed at elucidating the role of biosurfactant produced by yeast for the removal of Zn(II) ions from electroplating wastewater. The yeast species isolated from CETP, Vellore, Tamilnadu was identified as Cryptococcus sp.VITGBN2, based on molecular techniques, and was found to be potent producer of biosurfactant in mineral salt media containing vegetable oil as additional carbon source. Chemical structure of the purified biosurfactant was identified as acidic diacetate sophorolipid through GC-MS analysis. Interaction of Zn(II) ions with biosurfactant was monitored using FT-IR, SEM and EDS analysis. Zn (II) removal at 100 mg l(-1) concentration was 84.8% compared were other synthetic surfactants (Tween 80 and sodium dodecyl sulphate), yeast mediated biosurfactant showed enhanced Zn (II) removal in batch mode. The role of biosurfactant on Zn(II) removal was evaluated in column mode packed with biosurfactant entrapped in sodium alginate beads. At a flow rate of 1 ml min(-1) and bed height of 12 cm, immobilized biosurfactant showed 94.34% Zn(II) removal from electroplating wastewater. The present study confirmed that Zn(II) removal was biosurfactant mediated. This is the first report establishing the involvement of yeast mediated biosurfactant in Zn(II) removal from wastewater.

  2. Application of alkaline solid residue of electric arc furnace dust for neutralization/purification of electroplating wastewaters.

    Science.gov (United States)

    Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir

    2008-10-01

    The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.

  3. Electroplating wastewater treatment by the combined electrochemical and ozonation methods.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Mikelic, Ivanka Lovrencic; Nad, Karlo

    2013-01-01

    This article presents a pilot-plant study of the electroplating wastewater treatment by the processes of electroreduction with iron electrode plates, and electrocoagulation/ozonation with aluminum electrode set, followed by the process of ozonation. The initial effluent was found to be highly enriched in heavy metals and to possess the elevated levels of organic contaminants. The values of Cr(VI), Fe, Ni, Cu, Zn, Pb, TOC, and COD exceeded the upper permissible limits of 63, 220.2, 1.1, 7, 131.3, 1.7, 12.3, and 11.4 times, respectively. The heavy metal removal was forced either by the coagulation/flocculation using Fe(II), Fe(III), and Al(III) ions released into the treated solution by the electrochemical corrosion of the sacrificial iron and aluminum electrodes, or the precipitation of the metal hydroxides as well as co-precipitation with iron and aluminum hydroxides. The principle organic matter destruction mechanisms were ozone oxidation and the indirect oxidation with chlorine/hypochlorite formed by the anodic oxidation of chloride already present in the wastewater. Following the combined treatment, the removal efficiencies of Cr(VI), Fe, Ni, Cu, Zn, Pb, TOC, and COD were 99.94%, 100.00%, 95.86%, 98.66%, 99.97%, 96.81%, 93.24%, and 93.43%, respectively, thus complying with the regulated values.

  4. Determination of total Cr in wastewaters of Cr electroplating factories in the I.organize industry region (Kayseri, Turkey) by ICP-AES.

    Science.gov (United States)

    Yilmaz, Selehattin; Türe, Melike; Sadikoglu, Murat; Duran, Ali

    2010-08-01

    The wastewater pollution in industrial areas is one of the most important environmental problems. Heavy metal pollution, especially chromium pollution in the wastewater sources from electroplating, dyeing, and tannery, has affected the life on earth. This pollution can affect on all ecosystems and human health directly or by food chain. Therefore, the determination of total chromium in this study is of great importance. In this study, accurate, rapid, sensitive, selective, simple, and low-cost technique for the direct determination of total Cr in wastewater samples collected from the some Cr electroplating factories in March 2008 by inductively coupled plasma-atomic emission spectrometry has been developed. The analysis of a given sample is completed in about 15 min by this technique applied. As the result of the chromium analysis, the limit of quantification for the total Cr were founded to be over the limit value (0.05 mg L(-1); WHO, EPA, TSE 266, and inland water quality classification) as 1,898.78+/-0.34 mg/L at station 1 and 3,189.02+/-0.56 mg/L at station 2. The found concentration of total Cr has been determined to be IV class quality water according to the inland water classification. In order to validate the applied method, recovery studies were performed.

  5. Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD).

    Science.gov (United States)

    Pereira, Flaviane Vilela; Gurgel, Leandro Vinícius Alves; Gil, Laurent Frédéric

    2010-04-15

    This work describes the preparation of a new chelating material derived from wood sawdust, Manilkara sp., and not only the use of a new support, but also a chemically modified sugarcane bagasse synthesized in our previous work to remove Zn(2+) from aqueous solutions and electroplating wastewater. The first part describes the chemical modification of wood sawdust and sugarcane bagasse using ethylenediaminetetraacetic dianhydride (EDTAD) as modifying agent in order to introduce carboxylic acid and amine functional groups into these materials. The obtained materials such as the modified sugarcane bagasse, EB, and modified wood sawdust, ES were then characterized by infrared spectroscopy (IR) and CHN. The second part evaluates the adsorption capacity of Zn(2+) by EB and ES from aqueous single metal solutions and real electroplating wastewater, which concentration was determined through direct titration with EDTA and inductively coupled plasma (ICP-OES). Adsorption isotherms were developed using Langmuir model. Zn(2+) adsorption capacities were found to be 80 mg/g for ES and 105 mg/g for EB whereas for the industrial wastewater these values were found to be 47 mg/g for ES and 45 mg/g for EB. Zn(2+) adsorption in the wastewater was found to be lower than in Zn(2+) spiked solution due to the competition between other cations and/or interference of other ions, mainly Ca(2+) and Cl(-) that were present in the wastewater. 2009 Elsevier B.V. All rights reserved.

  6. Effective Reuse of Electroplating Rinse Wastewater by Combining PAC with H2O2/UV Process.

    Science.gov (United States)

    Yen, Hsing Yuan; Kang, Shyh-Fang; Lin, Chen Pei

    2015-04-01

    This study evaluated the performance of treating electroplating rinse wastewater by powder activated carbon (PAC) adsorption, H2O2/UV oxidation, and their combination to remove organic compounds and heavy metals. The results showed that neither the process of PAC adsorption nor H2O2/UV oxidation could reduce COD to 100 mg/L, as enforced by the Taiwan Environmental Protection Agency. On the other hand, the water sample treated by the combined approach of using PAC (5 g/L) pre-adsorption and H2O2/UV post-oxidation (UV of 64 W, H2O2 of 100 mg/L, oxidation time of 90 min), COD and DOC were reduced to 8.2 mg/L and 3.8 mg/L, respectively. Also, the combined approach reduced heavy metals to meet the effluent standards and to satisfy the in-house water reuse criteria for the electroplating factory. The reaction constant analysis indicated that the reaction proceeded much more rapidly for the combined process. Hence, it is a more efficient, economic and environmentally friendly process.

  7. Microwave discharge electrodeless lamps (MDEL). V. Microwave-assisted photolytic disinfection of Bacillus subtilis in simulated electroplating wash wastewaters.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Abe, Masahiko; Ohba, Naoki; Uchida, Masayoshi; Serpone, Nick

    2010-01-01

    This short article examines the microwave-assisted photolytic disinfection of aqueous solutions contaminated by Bacillus subtilis microorganisms using UV and vacuum-UV radiation emitted from a microwave discharge electrodeless lamp (MDEL), a device containing a Hg/Ar gas-fill that was proposed recently for use in Advanced Oxidation Processes (AOPs). Results of the disinfection are compared with those obtained from UV radiation emitted by a low-pressure electrode Hg lamp and by an excimer lamp. Also examined is the disinfection of B. subtilis aqueous media that contained Au3+ or Ni2+ ions, species often found in the treatment of electroplating wash wastewaters.

  8. INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)

    Science.gov (United States)

    AbstractWastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...

  9. Priorities for toxic wastewater management in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, A. [Sustainable Development Policy Institute, Islamabad (Pakistan)

    1996-12-31

    This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, while the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.

  10. PHOTOCATALYTIC REMOVAL OF TR I- AND HEXA-VALENT CHROMIUM IONS FROM CHROME-ELECTROPL ATING WASTEWATER

    Directory of Open Access Journals (Sweden)

    Puangrat Kajitvichyanukul

    2017-11-01

    Full Text Available A novel technique based on photocatalysis was applied to eliminate chromium ions, a toxic hazardous environmental pollutant. The photoreduction of each species of chromium (total, hexavalent, and trivalent chromiums from chrome-electroplating wastewater was investigated using a titanium dioxide suspension under irradiation by a low-pressure mercury lamp. The initial concentration of total chromium was 300 mg/l. The applied conditions were the direct photocatalytic reduction process at pH 3.65 and the indirect photocatalytic reduction with added hole scavengers at the same solution pH. Results from both processes were comparatively discussed. Result show that chromium was not efficiently removed by direct photoreduction. In contrast, with the adding of hole scavengers, which were formate ions, the photoreduction of chromium was very favorable. Both hexavalent and trivalent chromiums were efficiently removed. The photocatalytic mechanism is purposed in this study.

  11. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater.

    Science.gov (United States)

    Wang, Sheng-ye; Tang, Yan-kui; Li, Kun; Mo, Ya-yuan; Li, Hao-feng; Gu, Zhan-qi

    2014-12-01

    Magnetic biochar was prepared with eucalyptus leaf residue remained after essential oil being extracted. Batch experiments were conducted to examine the capacity of the magnetic biochar to remove Cr (VI) from electroplating wastewater and to be separated by an external magnetic field. The results show that the initial solution pH plays an important role on both sorption and separation. The removal rates of Cr (VI), total Cr, Cu (II), and Ni (II) were 97.11%, 97.63%, 100% and 100%, respectively. The turbidity of the sorption-treated solution was reduced to 21.8NTU from 4075NTU after 10min magnetic separation. The study also confirms that the magnetic biochar still retains the original magnetic separation performance after the sorption process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process

    International Nuclear Information System (INIS)

    Chen, S.-S.; Cheng, C.-Y.; Li, C.-W.; Chai, P.-H.; Chang, Y.-M.

    2007-01-01

    Fluidized zero valent iron (ZVI) process was conducted to reduce hexavalent chromium (chromate, CrO 4 2- ) to trivalent chromium (Cr 3+ ) from electroplating wastewater due to the following reasons: (1) Extremely low pH (1-2) for the electroplating wastewater favoring the ZVI reaction. (2) The ferric ion, produced from the reaction of Cr(VI) and ZVI, can act as a coagulant to assist the precipitation of Cr(OH) 3(s) to save the coagulant cost. (3) Higher ZVI utilization for fluidized process due to abrasive motion of the ZVI. For influent chromate concentration of 418 mg/L as Cr 6+ , pH 2 and ZVI dosage of 3 g (41 g/L), chromate removal was only 29% with hydraulic detention time (HRT) of 1.2 min, but was increased to 99.9% by either increasing HRT to 5.6 min or adjusting pH to 1.5. For iron species at pH 2 and HRT of 1.2 min, Fe 3+ was more thermodynamically stable since oxidizing agent chromate was present. However, if pH was adjusted to 1.5 or 1, where chromate was completely removed, high Fe 2+ but very low Fe 3+ was present. It can be explained that ZVI reacted with chromate to produce Fe 2+ first and the presence of chromate would keep converting Fe 2+ to Fe 3+ . Therefore, Fe 2+ is an indicator for complete reduction from Cr(VI) to Cr(III). X-ray diffraction (XRD) was conducted to exam the remained species at pH 2. ZVI, iron oxide and iron sulfide were observed, indicating the formation of iron oxide or iron sulfide could stop the chromate reduction reaction

  13. Biosynthesis of Cr(III) nanoparticles from electroplating wastewater using chromium-resistant Bacillus subtilis and its cytotoxicity and antibacterial activity.

    Science.gov (United States)

    Kanakalakshmi, A; Janaki, V; Shanthi, K; Kamala-Kannan, S

    2017-11-01

    The aim of this study was to synthesize and characterize Cr(III) nanoparticles using wastewater from electroplating industries and chromium-resistant Bacillus subtilis. Formation of Cr(III) nanoparticles was confirmed by UV-visible (UV-Vis) spectroscopy at 300 nm. The size of the nanoparticles varied from 4 to 50 nm and energy dispersive spectroscopy profile shows strong Cr peak approximately at 4.45 and 5.2 keV. The nanoparticles inhibited the growth of pathogenic bacteria Staphylococcus aureus and Escherichia coli. The cytotoxic effect of the synthesized Cr(III) nanoparticle was studied using HEK 293 cells, and the cell viability was found to decrease with increasing concentration of Cr(III) nanoparticles.

  14. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.

    Science.gov (United States)

    Sochacki, Adam; Guy, Bernard; Faure, Olivier; Surmacz-Górska, Joanna

    2015-01-01

    The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.

  15. Development of small-scale electroplating system for Ni-63 electroplating onto Ni foil

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Choi, Sang Mu; Son, Kwang Jae; Hong, Jintae

    2016-01-01

    Betavoltaic battery is a device that converts the decay energy of beta-emitting radioisotopes into electric energy. Ni-63 is pure betaemitter with a low energy spectrum and significantly long half-life of 100.1 years and thus is widely used as the power source of betavoltaic battery. There are several methods for the formation of a Ni deposit onto a semiconductor such as electroplating, electroless plating, and chemical vapor deposition. In this study, small-scale radioisotope electroplating system was designed and fabricated to perform electroplating with a small amount of plating buffer and minimum exposure of radioactive materials. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery. In this study, an electroplating system for small-scale Ni electroplating was designed and manufactured. The process for the fabrication of a Ni-63 foil as the energy source of a betavoltaic battery was developed using the minimum concentration of Ni. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery

  16. Development of small-scale electroplating system for Ni-63 electroplating onto Ni foil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Choi, Sang Mu; Son, Kwang Jae; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Betavoltaic battery is a device that converts the decay energy of beta-emitting radioisotopes into electric energy. Ni-63 is pure betaemitter with a low energy spectrum and significantly long half-life of 100.1 years and thus is widely used as the power source of betavoltaic battery. There are several methods for the formation of a Ni deposit onto a semiconductor such as electroplating, electroless plating, and chemical vapor deposition. In this study, small-scale radioisotope electroplating system was designed and fabricated to perform electroplating with a small amount of plating buffer and minimum exposure of radioactive materials. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery. In this study, an electroplating system for small-scale Ni electroplating was designed and manufactured. The process for the fabrication of a Ni-63 foil as the energy source of a betavoltaic battery was developed using the minimum concentration of Ni. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery.

  17. THE EFFECT OF IRON ION TO THE REMOVAL OF NICKEL ION FROM ELECTROPLATING WASTEWATER USING DOUBLE CHAMBER ELECTRODEPOSITION CELL (DCEC REACTOR

    Directory of Open Access Journals (Sweden)

    Djaenudin Djaenudin

    2017-05-01

    Full Text Available Modern society demands industrial technology advances to produce products that have high durability and long utilization lives. Materials made from ferrous metal become a solution to meet these industry needs. Ferrous metal is corrosive and it requires more care to support the performance. Electroplating or metal coating applied to iron or nickel solves this problem. In the production process, the usage of nickel is only 30%-40% and the remaining 60-70% is wasted through effluent. Nickel is a toxic heavy metal that can cause cancer. The purpose of this study is to evaluate the effect of iron concentration on nickel metal removal in electroplating wastewater using an insulated electrolytic reactor double chamber electrodeposition cell (DCEC. The result of this study shows that any ratio variation of iron concentration to nickel gives varying impacts on nickel removal efficiency, electric current efficiency, and specific energy. On the fourth variation, the iron ratio of 1.29% removed 83.1% nickel (the highest removal efficiency at the cost of 20.687 kWh / kg specific energy. The number is extremely high for energy needs. On the other hand, the variation of iron ratio of 1.73% consumpting only 15.067 kWh / kg, the lowest specific energy needs, resulted in the lowest removal efficiency of 63.6%.

  18. SUBSTITUTION OF CADMIUM CYANIDE ELECTROPLATING WITH ZINC CHLORIDE ELECTROPLATING

    Science.gov (United States)

    The study evaluated the zinc chloride electroplating process as a substitute for cadmium cyanide electroplating in the manufacture of industrial connectors and fittings at Aeroquip Corporation. The process substitution eliminates certain wastes, specifically cadmium and cyanide, ...

  19. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin.

    Science.gov (United States)

    Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J

    2015-05-01

    The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.

  20. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin

    Directory of Open Access Journals (Sweden)

    T Benvenuti

    Full Text Available The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO. The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.

  1. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant.

    Science.gov (United States)

    Liu, Jie; Zhang, Xue-Hong; Tran, Henry; Wang, Dun-Qiu; Zhu, Yi-Nian

    2011-11-01

    The objective of this paper is to assess the impact of long-term electroplating industrial activities on heavy metal contamination in agricultural soils and potential health risks for local residents. Water, soil, and rice samples were collected from sites upstream (control) and downstream of the electroplating wastewater outlet. The concentrations of heavy metals were determined by an atomic absorption spectrophotometer. Fractionation and risk assessment code (RAC) were used to evaluate the environmental risks of heavy metals in soils. The health risk index (HRI) and hazard index (HI) were calculated to assess potential health risks to local populations through rice consumption. Hazardous levels of Cu, Cr, and Ni were observed in water and paddy soils at sites near the plant. According to the RAC analysis, the soils showed a high risk for Ni and a medium risk for Cu and Cr at certain sites. The rice samples were primarily contaminated with Ni, followed by Cr and Cu. HRI values >1 were not found for any heavy metal. However, HI values for adults and children were 2.075 and 1.808, respectively. Water, paddy soil, and rice from the studied area have been contaminated by Cu, Cr, and Ni. The contamination of these elements is related to the electroplating wastewater. Although no single metal poses health risks for local residents through rice consumption, the combination of several metals may threaten the health of local residents. Cu and Ni are the key components contributing to the potential health risks.

  2. Remediation of lead from lead electroplating industrial effluent using sago waste.

    Science.gov (United States)

    Jeyanthi, G P; Shanthi, G

    2007-01-01

    Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.

  3. Treatment of Electroplating Wastewater Containing Heavy Metal%浅谈含重金属电镀废水的治理

    Institute of Scientific and Technical Information of China (English)

    王洪奎

    2013-01-01

    Electroplating wastewater containing heavy metal is extremely serious harmful to ecological environment due to its large quantity and complex composition. Accumulation of the heavy metal ions inside human body could cause cancer,distortion and chromosomal anomaly. Now,heavy metal pollution control has been listed in the National " 12th Five-Year Plan". Source controlling,process blocking and discharging up to standard through end treatment are effective means of heavy metal pollution control. Take a long view of this matter, innovation of pollution control technology, cleaner production and recycling economy, minimization of wastewater quantity and its pollution are very important issue, in so doing, the recycling target could be achieved.%电镀加工产生的含重金属离子废水数量大,成分复杂.重金属废水对生态环境危害极大.重金属离子富集在人体内可致癌、致畸和致染色体异常.重金属的治理已列入国家“十二五”规划.源头控制,过程阻断,末端治理达标排放是治理重金属污染有效手段;从長远考虑,应创新重金属废水的整治技术;开展清洁生产和循环经济,使电镀产生的重金属废水数量和危害最小化,最终实现回收利用的目标.

  4. Direct electroplating of plastic for advanced electrical applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2017-01-01

    Electrodeposition or electroplating is predominantly applied to metallic components. Electroplating of plastics is possible in some cases where an initial electroless plating layer of nickel or copper is made to provide a conductive surface on the plastic part. This paper proposes a method...... for direct electroplating of plastic eliminating the need for slow and expensive processes like electroless metal deposition, PVD coating, painting with conductive inks etc. The results obtained from the test demonstrate the potential of direct electroplating of plastic to enhance the electrical conductivity...... and the use of electroplated plastics for advanced applications like Moulded Interconnect Devices (MIDs)....

  5. Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

    Science.gov (United States)

    Luo, Keqin

    1999-11-01

    The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained. This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner. The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and

  6. Dithizone as novel and efficient chromogenic probe for cyanide detection in aqueous media through nucleophilic addition into diazenylthione moiety.

    Science.gov (United States)

    Tavallali, Hossein; Deilamy-Rad, Gohar; Parhami, Abolfath; Kiyani, Sajede

    2014-01-01

    A new selective chemodosimeter probe was developed by the introduction of dithizone (DTZ) as a simple and available dye for detection of cyanide in aqueous media which enables recognition of cyanide over other competing anions such as acetate, dihydrogen phosphate, fluoride and benzoate through covalent bonding. The sensing properties of DTZ were investigated in DMSO/H2O (1:9) and have demonstrated a very high selectivity toward the cyanide anions. A reasonable recognition mechanism was suggested using UV-Vis, (1)H NMR and FTIR spectroscopy techniques. Time dependent density function theory (TDDFT) computations of UV-Vis excitation for DTZ2-CN adduct agreed well with our experimental findings. The detection limit of the new chromogenic probe was measured to be 0.48 μmol L(-1) which is much lower than most recently reported chromogenic probes for cyanide determination. The analytical utility of the method for the analysis of cyanide ions in electroplating wastewater (EPWW), human serum, tap and mineral water samples was demonstrated and the results were compared successfully with the conventional reference method. The short time response and the detection by the naked eye make the method available for the detection and quantitative determination of cyanide in a variety of real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Preparation of protactinium measurement source by electroplating method

    International Nuclear Information System (INIS)

    Li Zongwei; Yang Weifan; Fang Keming; Yuan Shuanggui; Guo Junsheng; Pan Qiangyan

    1998-01-01

    An electroplating method for the preparation of Pa sources is described, and the main factors (such as pH value of solution, electroplating time and current density) influencing the electroplating of Pa are tested and discussed with 233 Pa as a tracer. A thin and uniform electroplating Pa-Layer of 1 mg/cm 2 thick on thin stainless steel disk was obtained. The Pa source was measured by a HPGe detector to determine the chemical efficiency

  8. A new approach to control a deflection of an electroplated microstructure: dual current electroplating methods

    International Nuclear Information System (INIS)

    Yang, Hyun-Ho; Seo, Min-Ho; Han, Chang-Hoon; Yoon, Jun-Bo

    2013-01-01

    We propose and demonstrate a simple and novel method to control the deflection in a suspended microstructure by using a dual current electroplating (DuCE) method. The key concept of this method is to divide the structure into two layers—a bottom layer and a top layer—and then apply respective current densities in electroplating to those two layers while all other conditions are kept the same. In addition to a flat structure, the direction of structure bending is freely controlled by virtue of the DuCE method. Cantilever Ni beams with a length of 400 µm, which were electroplated by the conventional single current electroplating method, bent downward with a deflection of 3.4 µm. On the contrary, by the DuCE method, cantilever beams with a length of 400 µm showed an almost flat structure as desired. (The current densities of the bottom layer, the top layer, and the ratio of the two current densities, are 0.15, 1.24 A dm −2 , and 8.3, respectively.) Consequently, a nickel electroplated spiral structure with a length of 8600 µm was suspended flat with an end deflection of less than 0.7 µm (the ratio between the deflection and length is 0.007%). This work therefore represents the unprecedented ultra-long suspended microstructure with submicrometer deflection. (paper)

  9. Treatment of chrome plating wastewater (Cr+6) using activated alumina.

    Science.gov (United States)

    Sarkar, Sudipta; Gupta, Anirban

    2003-01-01

    Suitability of activated alumina for removal of hexavalent chromium from electroplating wastewater has been investigated. Activated alumina exhibited good sorption capacity for hexavalent chromium and pH has no pronounced effect on the sorption capacity. Both batch and column adsorption studies have been carried out and an adsorption column design indicated reasonable depth of column for practical application.

  10. Electroplating of Uranium -Foil Target With Ni And Zn

    International Nuclear Information System (INIS)

    Husna AI Hasa, Muhammad; Suripto, Asmedi

    2001-01-01

    The uranium foil target, which was produced by rolling, was subjected to preparation treatment prior to the electroplating. The electroplating produced certain plate thickness on the foil surface. The electroplating was applied to the uranium foil of 71 mm long and 46 mm wide using plating materials of Ni and Zn. The plating is intended to serve as barrier for fission fragment recoils, which are produced during irradiation. The plate thickness produced by the electroplating was measured by a micrometer and an analytical balance. The electroplating with Ni produced plate-thickness of 8,9 mm when measured by the micrometer, or 11.4 mm when measured by the analytical balance, while the Zn electroplating produced greater plate-thickness, i.e. 16.2 mm by the micrometer measurement or 13.7 mm by the analytical balance measurement. The current efficiency of the electroplating was 62 % for Ni and 80 % for Zn. It was observed that the optimum condition for the electroplating depended on the plating materials, plating time, and current density. The plate-thickness produced under the optimum condition was 7-15 mm at 15 mA/cm 2 for Ni and ]0 mA/cm 2 for Zn with plating time of 60 minutes

  11. [Hexavalent chromium pollution and exposure level in electroplating workplace].

    Science.gov (United States)

    Zhang, Xu-hui; Zhang, Xuan; Yang, Zhang-ping; Jiang, Cai-xia; Ren, Xiao-bin; Wang, Qiang; Zhu, Yi-min

    2012-08-01

    To investigate the pollution of hexavalent chromium in the electroplating workplace and screen the biomarkers of chromium exposure. Field occupational health investigation was conducted in 25 electroplating workplaces. 157 electroplating workers and 93 healthy unexposed controls were recruited. The epidemiological information was collected with face to face interview. Chromium in erythrocytes was determined by graphite furnace atomic absorption spectrophotometer. The median of short-term exposure concentration of chromium in the air at electroplating workplace was 0.06 mg/m(3) (median) and ranging from 0.01 (detect limit) to 0.53 mg/m(3)). The median concentration of Cr (VI) in erythrocytes in electroplating workers was 4.41 (2.50 ∼ 5.29) µg/L, which was significantly higher than that in control subjects [1.54 (0.61 ∼ 2.98) µg/L, P electroplating workers and control subjects, except for the subjects of age less than 30 years old (P = 0.11). There was hexavalent chromium pollution in electroplating workplace. Occupational hazards prevention measures should be taken to control the chromium pollution hazards.

  12. Impurity Effects in Electroplated-Copper Solder Joints

    Directory of Open Access Journals (Sweden)

    Hsuan Lee

    2018-05-01

    Full Text Available Copper (Cu electroplating is a mature technology, and has been extensively applied in microelectronic industry. With the development of advanced microelectronic packaging, Cu electroplating encounters new challenges for atomic deposition on a non-planar substrate and to deliver good throwing power and uniform deposit properties in a high-aspect-ratio trench. The use of organic additives plays an important role in modulating the atomic deposition to achieve successful metallic coverage and filling, which strongly relies on the adsorptive and chemical interactions among additives on the surface of growing film. However, the adsorptive characteristic of organic additives inevitably results in an incorporation of additive-derived impurities in the electroplated Cu film. The incorporation of high-level impurities originating from the use of polyethylene glycol (PEG and chlorine ions significantly affects the microstructural evolution of the electroplated Cu film, and the electroplated-Cu solder joints, leading to the formation of undesired voids at the joint interface. However, the addition of bis(3-sulfopropyl disulfide (SPS with a critical concentration suppresses the impurity incorporation and the void formation. In this article, relevant studies were reviewed, and the focus was placed on the effects of additive formula and plating parameters on the impurity incorporation in the electroplated Cu film, and the void formation in the solder joints.

  13. PENGARUH JENIS ANODA PADA PROSES PEMULIHAN LOGAM NIKEL DARI TIRUAN AIR LIMBAH ELECTROPLATING MENGGUNAKAN SEL ELEKTRODEPOSISI

    Directory of Open Access Journals (Sweden)

    Djaenudin Dhaenudin

    2013-11-01

    Full Text Available EFFECT OF ANODES TYPES ON NICKEL RECOVERY FROM SYNTHETIC ELECTROPLATING WASTE ELECTRODEPOSITION CELLS. A study concerning the recovery of nickel from electroplating wastewater artificial solution. The study was conducted with a batch system using electrodeposition cell consisting of two spaces separated by water hyacinth leaf, copper cathode plate, H2SO4 solution anolyte, catholyte solution of NiSO4 plus NaCl supporting electrolyte and anode varied. Electrodeposition performed at the direct current of 5V power for 4 hours each run. The research objective was to obtain the best anode in nickel electrodeposition process of electroplating waste artificial solution. Graphite, stainless steel type AISI 316 and the lead were used as a variation of the anode. Concentration of nickel in the catholyte at baseline 2200 mg/L. The results showed that the anode was a graphite anode with best value decreased by 72.44% nickel concentration, deposition of nickel on the cathode of 0.188 grams and specific energy values ​​of 6.1625 kWh/kg.nickel.   Telah dilakukan penelitian tentang pemulihan logam nikel dari larutan tiruan air limbah electroplating. Penelitian dilakukan dengan sistem batch menggunakan sel elektrodeposisi yang terdiri dari dua ruang yang dipisahkan dengan daun eceng gondok, katoda pelat tembaga, anolit larutan H2SO4, katolit larutan NiSO4 ditambah elektrolit pendukung larutan NaCl dan anoda divariasikan. Elektrodeposisi dilakukan pada listrik searah sebesar 5V selama 4 jam setiap tempuhan. Tujuan penelitian adalah memperoleh anoda terbaik pada proses elektrodeposisi nikel dari larutan tiruan limbah electroplating. Grafit, Stainless Steel  tipe AISI 316 dan timbal digunakan sebagai variasi jenis anoda. Konsentrasi nikel dalam katolit pada awal penelitian 2200 mg/L. Hasil penelitian menunjukkan bahwa anoda grafit merupakan anoda yang paling baik dengan nilai penurunan konsentrasi nikel sebesar 72,44%, deposisi nikel di katoda sebesar 0

  14. Electroplating eliminates gas leakage in brazed areas

    Science.gov (United States)

    Leigh, J. D.

    1966-01-01

    Electroplating method seals brazed or welded joints against gas leakage under high pressure. Any conventional electroplating process with many different metal anodes can be used, as well as the build up of layers of different metals to any required thickness.

  15. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition

    International Nuclear Information System (INIS)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2017-01-01

    A novel process for separation of heavy metals from liquid wastes and/or industrial effluents has been developed as described in this paper wherein the technique of supported liquid membrane based extraction and stripping of heavy metals has been augmented with electroplating inside the stripping chamber of SLM. Wastewater, infested with cadmium and lead, has been subject of research in this work. The said process is employed in transporting the heavy metals from the polluted source phase (wastewater) to the sink (or strip) phase while simultaneously depositing the heavy metals in-situ on the electrode placed inside the strip phase, and thereby the strip phase is remained ever-unsaturated. This arrangement yields high gradient of chemical potential across the liquid membrane and thereby facilitates enhanced and faster recovery of said heavy metals and also yields value added component, viz. electroplated items, for suitable end use.

  16. Drilling of optical glass with electroplated diamond tools

    Science.gov (United States)

    Wang, A. J.; Luan, C. G.; Yu, A. B.

    2010-10-01

    K9 optical glass drilling experiments were carried out. Bright nickel electroplated diamond tools with small slots and under heat treatment in different temperature were fabricated. Scan electro microscope was applied to analyze the wear of electroplated diamond tool. The material removal rate and grinding ratio were calculated. Machining quality was observed. Bond coating hardness was measured. The experimental results show that coolant is needed for the drilling processes of optical glasses. Heat treatment temperature of diamond tool has influence on wearability of diamond tool and grinding ratio. There were two wear types of electroplated diamond tool, diamond grit wear and bond wear. With the machining processes, wear of diamond grits included fracture, blunt and pull-out, and electroplated bond was gradually worn out. High material removal rates could be obtained by using diamond tool with suitable slot numbers. Bright nickel coating bond presents smallest grains and has better mechanical properties. Bright nickel electroplated diamond tool with slot structure and heat treatment under 200°C was suitable for optical glass drilling.

  17. Creating low-impedance tetrodes by electroplating with additives

    Science.gov (United States)

    Ferguson, John E.; Boldt, Chris; Redish, A. David

    2011-01-01

    A tetrode is a bundle of four microwires that can record from multiple neurons simultaneously in the brain of a freely moving animal. Tetrodes are usually electroplated to reduce impedances from 2-3 MΩ to 200-500 kΩ (measured at 1 kHz), which increases the signal-to-noise ratio and allows for the recording of small amplitude signals. Tetrodes with even lower impedances could improve neural recordings but cannot be made using standard electroplating methods without shorting. We were able to electroplate tetrodes to 30-70 kΩ by adding polyethylene glycol (PEG) or multi-walled carbon nanotube (MWCNT) solutions to a commercial gold-plating solution. The MWCNTs and PEG acted as inhibitors in the electroplating process and created large-surface-area, low-impedance coatings on the tetrode tips. PMID:21379404

  18. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.

    Science.gov (United States)

    Suksabye, Parinda; Thiravetyan, Paitip

    2012-07-15

    Coir pith samples were chemically modified by grafting with acrylic acid for the removal of Cr(VI) from electroplating wastewater. The presence of acrylic acid on the coir pith surface was verified by a scanning electron microscope with an electron dispersive x-ray spectrometer (SEM/EDX), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG). The carbonyl groups (C==O) from the carboxylic acids (COOH) increased on the coir pith surface after grafting with acrylic acid. In addition, the thermal stability of the acrylic acid-grafted coir pith also improved. The optimum conditions for grafting the acrylic acid on the coir pith consisted of 2 M acrylic acid and 0.00125 M ceric ammonium nitrate (CAN, as an initiator). The maximum Cr(VI) removal (99.99 ± 0.07%) was obtained with the following conditions: a 1.3% (w/v) dosage of acrylic acid-grafted coir pith, a system pH of 2, a contact time of 22 h, a temperature of 30 °C, a particle size of <150 μm and an initial Cr(VI) of 1,171 mg l(-1). At system pH of 2, Cr(VI) in the HCrO(4)(-) form can be adsorbed with acrylic acid-grafted coir pith via an electrostatic attraction. The adsorption isotherm of 2 M acrylic acid-grafted coir pith exhibited a good fit with the Langmuir isotherm. The maximum Cr(VI) adsorption capacity of the 2 M acrylic acid-grafted coir pith was 196.00 mg Cr(VI) g(-1) adsorbent, whereas for coir pith without grafting, the maximum Cr(VI) removal was 165.00 mg Cr(VI) g(-1) adsorbent. The adsorption capacity of the acrylic acid-grafted coir pith for Cr(VI) was higher compared to the original coir pith. This result was due to the enhancement of the carbonyl groups on the coir pith surface that may have involved the mechanism of chromium adsorption. The X-ray absorption near edged structure (XANES) and desorption studies suggested that most of the Cr(III) that presented on the acrylic acid-grafted coir pith was due to the Cr(VI) being reduced to Cr(III) on the adsorbent surface. FTIR

  19. Electroplating on titanium alloy

    Science.gov (United States)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  20. 40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.

    Science.gov (United States)

    2010-07-01

    ... electroplating of precious metals subcategory. 413.20 Section 413.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroplating of Precious Metals Subcategory § 413.20 Applicability: Description of the electroplating of...

  1. 40 CFR 413.10 - Applicability: Description of the electroplating of common metals subcategory.

    Science.gov (United States)

    2010-07-01

    ... electroplating of common metals subcategory. 413.10 Section 413.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroplating of Common Metals Subcategory § 413.10 Applicability: Description of the electroplating of common...

  2. Electroplating of gold using a sulfite-based electrolyte

    NARCIS (Netherlands)

    Smalbrugge, E.; Jacobs, B.; Falcone, S.; Geluk, E.J.; Karouta, F.; Leijtens, X.J.M.; Besten, den J.H.

    2000-01-01

    Electroplating of gold is often used in optoelectronic and microelectronic devices for air-bridges, heat-sinks or gold-bumps for flip-chip techniques. The gold-cyanide electrolytes, which are commonly used in gold-electroplating, are toxic and attack resist patterns causing cracks during the plating

  3. Fungal biotrap for retrieval of heavy metals from industrial wastewaters

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Weathers, P.; Baker, E.

    1989-01-01

    Biotraps are living cells or specific cell components capable of removing or stabilizing toxic substances form waste streams. The fungus Penicillium ochro-chloron was discovered growing in an electroplating wastewater stream in Japan. It is not only tolerant to very high concentrations of divalent metal ions, but it can effectively remove heavy metals (such as uranium cadmium, nickel, etc.) from almost any aqueous waste stream. This paper discussed P. ochro-chloron biotrap which was prepared by growing spores in a glucose-minimal salts medium supplemented with 0.5 percent Tween 80 for 5 days with constant gentle agitation. The while mycelia beads 4-6 mm dia. were treated in a Buchner funnel with 80% ethanol to kill the cells, 15 percent sodium carbonate/bicarbonate pH 9.5, and then resuspended in an aqueous slurry at pH 4.0. The mycelia beads were used as an adsorbent in a batch experiment to determine copper-to-mycelia binding. This system should be capable of heavy metal uptake and recovery from both electroplating wastewaters and contaminated aqueous environments. The use of this fungus biotrap will rival synthetic cation environments. The use of this fungus biotrap will rival synthetic cation exchange resins because of lower cost, lower weight per unit of exchange capacity and ease of application

  4. Optimizing the recovery of copper from electroplating rinse bath solution by hollow fiber membrane.

    Science.gov (United States)

    Oskay, Kürşad Oğuz; Kul, Mehmet

    2015-01-01

    This study aimed to recover and remove copper from industrial model wastewater solution by non-dispersive solvent extraction (NDSX). Two mathematical models were developed to simulate the performance of an integrated extraction-stripping process, based on the use of hollow fiber contactors using the response surface method. The models allow one to predict the time dependent efficiencies of the two phases involved in individual extraction or stripping processes. The optimal recovery efficiency parameters were determined as 227 g/L of H2SO4 concentration, 1.22 feed/strip ratio, 450 mL/min flow rate (115.9 cm/min. flow velocity) and 15 volume % LIX 84-I concentration in 270 min by central composite design (CCD). At these optimum conditions, the experimental value of recovery efficiency was 95.88%, which was in close agreement with the 97.75% efficiency value predicted by the model. At the end of the process, almost all the copper in the model wastewater solution was removed and recovered as CuSO4.5H2O salt, which can be reused in the copper electroplating industry.

  5. Electroplating lithium transition metal oxides

    Science.gov (United States)

    Zhang, Huigang; Ning, Hailong; Busbee, John; Shen, Zihan; Kiggins, Chadd; Hua, Yuyan; Eaves, Janna; Davis, Jerome; Shi, Tan; Shao, Yu-Tsun; Zuo, Jian-Min; Hong, Xuhao; Chan, Yanbin; Wang, Shuangbao; Wang, Peng; Sun, Pengcheng; Xu, Sheng; Liu, Jinyun; Braun, Paul V.

    2017-01-01

    Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700° to 1000°C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility. PMID:28508061

  6. Chemical analysis of zinc electroplating solutions by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jung, Sung-Mo; Cho, Young-Mo; Na, Han-Gil

    2007-01-01

    A quantitative analysis method used to analyze chlorine, iron and zinc in electroplating solutions, using X-ray spectrometry in atmospheric He mode, is proposed. The present research concerns the replacement of the conventional analyses of electroplating solutions with rapid and reproducible quantification using X-ray fluorescence spectrometer. An in-depth investigation conducted in the present study identifies the species present in the real electroplating solutions. XRD patterns and semi-quantitative results for the electroplating solutions show synthetic standards based on the compositional range of solutions by analyzing the electroplating solutions obtained in real processes. 28 calibration standard solutions are prepared by diluting liquid standard solutions certified by titration and ICP-OES analyses used to construct the XRF calibration curves for Cl, Fe and Zn. The suggested method showed satisfactory precision and accuracy in the analysis of electroplating solutions. The present study provides evidences that the proposed XRF spectrometry could be an alternative analytical method to replace the conventional techniques by comparing the uncertainties estimated for each method. (author)

  7. Effects of pattern characteristics on the copper electroplating process

    International Nuclear Information System (INIS)

    Ruan Wenbiao; Chen Lan; Li Zhigang; Ye Tianchun; Ma Tianyu; Wang Qiang

    2011-01-01

    The non-planarity of a surface post electroplating process is usually dependent on variations of key layout characteristics including line width, line spacing and metal density. A test chip is designed and manufactured in a semiconductor foundry to test the layout dependency of the electroplating process. By checking test data such as field height, array height, step height and SEM photos, some conclusions are made. Line width is a critical factor of topographical shapes such as the step height and height difference. After the electroplating process, the fine line has a thicker copper thickness, while the wide line has the greatest step height. Three typical topographies, conformal-fill, supper-fill and over-fill, are observed. Moreover, quantified effects are found using the test data and explained by theory, which can be used to develop electroplating process modeling and design for manufacturability (DFM) research. (semiconductor integrated circuits)

  8. Quantitative Analysis of Electroplated Nickel Coating on Hard Metal

    Directory of Open Access Journals (Sweden)

    Hassan A. Wahab

    2013-01-01

    Full Text Available Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt’s solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5 constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models.

  9. Electroplating method for producing ultralow-mass fissionable deposits

    International Nuclear Information System (INIS)

    Ruddy, F.H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit

  10. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region.

  11. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  12. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  13. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  14. Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor.

    Science.gov (United States)

    Zhao, Yuxin; He, Zhaoyang; Yan, Zifeng

    2013-01-21

    In the pursuit of electrocatalysts with great economic and ecological values for non-enzymatic glucose sensors, one-dimensional copper@carbon (Cu@C) core-shell coaxial nanowires (NWs) have been successfully prepared via a simple continuous flow wet-chemistry approach from electroplating wastewater. The as-obtained products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy and Raman spectroscopy. The electrocatalytic activity of the modified electrodes by Cu@C NWs towards glucose oxidation was investigated by cyclic voltammetry and chronoamperometry. It was found that the as-obtained Cu@C NWs showed good electrochemical properties and could be used as an electrochemical sensor for the detection of glucose molecules. Compared to the other electrodes including the bare Nafion/glassy carbon electrode (GCE) and several hot hybrid nanostructures modified GCE, a substantial decrease in the overvoltage of the glucose oxidation was observed at the Cu@C NWs electrodes with oxidation starting at ca. 0.20 V vs. Ag/AgCl (3 M KCl). At an applied potential of 0.65 V, Cu@C NWs electrodes had a high and reproducible sensitivity of 437.8 µA cm(-2) mM(-1) to glucose. Linear responses were obtained with a detection limit of 50 nM. More importantly, the proposed electrode also had good stability, high resistance against poisoning by chloride ion and commonly interfering species. These good analytical performances make Cu@C NWs promising for the future development of enzyme-free glucose sensors.

  15. Electroplating and Cyanide Waste.

    Science.gov (United States)

    Torpy, Michael F.; Runke, Henry M.

    1978-01-01

    Presents a literature review of wastes from electroplating industry, covering publications of 1977. This review covers studies such as: (1) ion exchange treatment process; (2) use of reverse osmosis; and (3) cyanide removal and detection. A list of 75 references is also presented. (HM)

  16. A study of direct- and pulse-current chromium electroplating on rotating cylinder electrode (RCE)

    International Nuclear Information System (INIS)

    Chang, J.H.; Hsu, F.Y.; Liao, M.J.; Huang, C.A.

    2007-01-01

    Direct- and pulse-current (DC and PC) chromium electroplating on Cr-Mo steel were performed in a sulfate-catalyzed chromic acid solution at 50 deg. C using a rotating cylinder electrode (RCE). The electroplating cathodic current densities were at 30, 40, 50 and 60 A dm -2 , respectively. The relationship between electroplating current efficiency and the rotating speed of the RCE was studied. The cross-sectional microstructure of Cr-deposit was examined by transmission electron microscope (TEM). Results showed that DC-plating exhibited higher current efficiency than the PC-plating under the same conditions of electroplating current density and the rotating speed. We found the critical rotating speed of RCE used in the chromium electroplating, above this rotating speed the chromium deposition is prohibited. At the same plating current density, the critical rotating speed for DC-plating was higher than that for PC-plating. The higher plating current density is, the larger difference in critical rotating speeds appears between DC- and PC-electroplating. Equiaxed grains, in a nanoscale size with lower dislocation density, nucleate on the cathodic surface in both DC- and PC-electroplating. Adjacent to the equiaxed grains, textured grains were found in other portion of chromium deposit. Fine columnar grains were observed in the DC-electroplated deposit. On the other hand, very long slender grains with high degree of preferred orientation were detected in PC-electroplated deposit

  17. Non-permeable substrate carrier for electroplating

    Science.gov (United States)

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  18. Audible monitor for electroplating

    Science.gov (United States)

    Burowick, E. A.

    1979-01-01

    "No buzzer" indicates early problem in electroplating when parts are properly immersed into electropolating bath. Buzzer sounds when current flows through part; however, if current is cut, buzzer stops warning that parts must be removed and refinished thus preventing unnecessary waste of electrical energy and labor.

  19. 2π absolute measurement research for α-electroplating source covering ZnS(Ag)

    International Nuclear Information System (INIS)

    Zhu Tianxia

    1999-01-01

    2π absolute measurement can be completed after the quantitative deposit (5 +- 1) mg/cm 2 with ZnS(Ag) on surface of the alpha electroplating source. The measuring efficiency is 100%. This method is suitable for both of electroplating ordinary sample and electroplating standard (of reference) source

  20. Polyurethane Filler for Electroplating

    Science.gov (United States)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  1. Texture Formation of Electroplated Nickel and Nickel Alloy on Cu Substrate

    International Nuclear Information System (INIS)

    Lee, Hee Gyoun; Hong, Gye Won; Kim, Jae Geun; Lee, Sun Wang; Kim, Ho Jin

    2006-01-01

    Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at 400-800 degrees C. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above 900 degrees C. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was 9.9 degree and 13.4 degree, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was 8.6 degree, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above 900 degrees C by electroplated nickel.

  2. Cement stabilization of hazardous and radioactive electroplating sludge

    International Nuclear Information System (INIS)

    Langton, C.A.; Pickett, J.B.; Martin, M.L.

    1991-01-01

    Cement stabilization was evaluated for treatment of nickel and uranium in electroplating sludge at the Savannah River Site. Waste forms were prepared by pretreating the sludge and the solidifying it in a variety of cement, cement plus flyash, and cement-flyash-slag mixes. The sludge was also treated by one-step filtration-solidification. Leaching results and processing data indicate the cement solidification is an effective method of treating hazardous-low-level electroplating waste

  3. Target preparation by electroplating of enriched thallium-203 and its quality control

    International Nuclear Information System (INIS)

    Al-Rayyes, A. H.; Ailouti, Y.

    2009-02-01

    In this study, the optimum conditions of enriched thallium-203 electroplating on copper holders have been determined starting from different electroplating electrolytes. These conditions include current intensity and thallium concentration. The different solutions were: Newly prepared electrolyte using 203 Tl 2 O 3 , depleted solution used in a previous operations of electroplating, and recovery solutions, coming from Tl-203 separation from lead-201.(author)

  4. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    Science.gov (United States)

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  5. Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers

    International Nuclear Information System (INIS)

    Liu, Yu-Chia; Tsai, Ming-Han; Fang, Weileun; Tang, Tsung-Lin

    2011-01-01

    This study presents a simple approach to improve the performance of the CMOS-MEMS capacitive accelerometer by means of the post-CMOS metal electroplating process. The metal layer can be selectively electroplated on the MEMS structures at low temperature and the thickness of the metal layer can be easily adjusted by this process. Thus the performance of the capacitive accelerometer (i.e. sensitivity, noise floor and the minimum detectable signal) can be improved. In application, the proposed accelerometers have been implemented using (1) the standard CMOS 0.35 µm 2P4M process by CMOS foundry, (2) Ti/Au seed layers deposition/patterning by MEMS foundry and (3) in-house post-CMOS electroplating and releasing processes. Measurements indicate that the sensitivity is improved 2.85-fold, noise is decreased near 1.7-fold and the minimum detectable signal is improved from 1 to 0.2 G after nickel electroplating. Moreover, unwanted structure deformation due to the temperature variation is significantly suppressed by electroplated nickel.

  6. [Quantitative classification-based occupational health management for electroplating enterprises in Baoan District of Shenzhen, China].

    Science.gov (United States)

    Zhang, Sheng; Huang, Jinsheng; Yang, Baigbing; Lin, Binjie; Xu, Xinyun; Chen, Jinru; Zhao, Zhuandi; Tu, Xiaozhi; Bin, Haihua

    2014-04-01

    To improve the occupational health management levels in electroplating enterprises with quantitative classification measures and to provide a scientific basis for the prevention and control of occupational hazards in electroplating enterprises and the protection of workers' health. A quantitative classification table was created for the occupational health management in electroplating enterprises. The evaluation indicators included 6 items and 27 sub-items, with a total score of 100 points. Forty electroplating enterprises were selected and scored according to the quantitative classification table. These electroplating enterprises were classified into grades A, B, and C based on the scores. Among 40 electroplating enterprises, 11 (27.5%) had scores of >85 points (grade A), 23 (57.5%) had scores of 60∼85 points (grade B), and 6 (15.0%) had scores of electroplating enterprises is a valuable attempt, which is helpful for the supervision and management by the health department and provides an effective method for the self-management of enterprises.

  7. The effects of ultrasonic agitation on supercritical CO2 copper electroplating.

    Science.gov (United States)

    Chuang, Ho-Chiao; Yang, Hsi-Min; Wu, Guan-Lin; Sánchez, Jorge; Shyu, Jenq-Huey

    2018-01-01

    Applying ultrasound to the electroplating process can improve mechanical properties and surface roughness of the coating. Supercritical electroplating process can refine grain to improve the surface roughness and hardness. However, so far there is no research combining the above two processes to explore its effect on the coating. This study aims to use ultrasound (42kHz) in supercritical CO 2 (SC-CO 2 ) electroplating process to investigate the effect of ultrasonic powers and supercritical pressures on the properties of copper films. From the results it was clear that higher ultrasonic irradiation resulted in higher current efficiency, grain refinement, higher hardness, better surface roughness and higher internal stress. SEM was also presented to verify the correctness of the measured data. The optimal parameters were set to obtain the deposit at pressure of 2000psi and ultrasonic irradiation of 0.157W/cm 3 . Compared with SC-CO 2 electroplating process, the current efficiency can be increased from 77.57% to 93.4%, the grain size decreases from 24.34nm to 22.45nm, the hardness increases from 92.87Hv to 174.18Hv, and the surface roughness decreases from 0.83μm to 0.28μm. Therefore, this study has successfully integrated advantages of ultrasound and SC-CO 2 electroplating, and proved that applied ultrasound to SC-CO 2 electroplating process can significantly improve the mechanical properties of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Joining of HHF materials applying electroplating technology

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang, E-mail: wolfgang.krauss@kit.edu; Lorenz, Julia; Konys, Jürgen

    2014-10-15

    Highlights: • Electroplating of fillers is industrially relevant for brazing in fusion. • Interlayers (Ni or Pd) improve adherence and reduce failure risks. • Tungsten and Eurofer joints successfully fabricated by electroplating. • Mechanical and non-destructive testing integrated into qualification. • Shear strength of W joints comparable with conventionally brazed steel. - Abstract: Tungsten will be used as armor material for blanket shielding and is designated as high heat flux material for divertors, beyond application of improved W composite alloys as structural material. Independent from design (water- or helium-cooled), a successful development is inherently correlated with joining of tungsten with functional components. Depending on the design variants, the fabricated joints have to guarantee specific functional or structural properties, e.g., good thermal conductivity or mechanical load transmission. Tungsten shows lacks in adapted joining due to its metallurgical behavior ranging from immiscibility over bad wetting to brittle intermetallic phase formation. Electroplating has shown to overcome such drawbacks and that homogeneous functional (e.g., Ni or Pd) and filler (e.g., Cu) layers can be deposited. In this paper the progress achieved in development of electroplating processes for joining W to W or steel to steel will be shown. The main focus will be the characterization of the processed joints applying metallurgical investigations including SEM/EDX analyses and non-destructive testing. The mechanical stability of the produced joints is demonstrated by presenting recent shear test data. The W–W joints failed due to cracking in W, whereas the steel–steel joints cracked in the brazing zone at about 200 N/mm{sup 2} load.

  9. Rule of formation of aluminum electroplating layer on Q235 steel.

    Science.gov (United States)

    Ding, Zhimin; Feng, Qiuyuan; Shen, Changbin; Gao, Hong

    2011-06-01

    Aluminum electroplating layer on Q235 steel in AlCl3-NaCl-KCl molten salt was obtained, and the rule of its nucleation and growth were investigated. The results showed that aluminum electroplating layer formed through nucleating and growing of aluminum particles, and thickened by delaminating growth pattern. At low current density, the morphology of aluminum particles took on flake-like, while at high current density they changed to spherical. The thickness of plating layer increases with increasing current density and electroplating time. The relationship between the plating thickness (δ) and electroplating time (t) or current density (i) can be expressed as δ = 0.28f(137), and δ = 1.1i(1-39). Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Efficient treatment of an electroplating wastewater containing heavy metal ions, cyanide, and organics by H2O2 oxidation followed by the anodic Fenton process.

    Science.gov (United States)

    Zhao, Xu; Wang, Haidong; Chen, Fayuan; Mao, Ran; Liu, Huijuan; Qu, Jiuhui

    2013-01-01

    A real electroplating wastewater, containing heavy metals, cyanide, and organic contaminants, was treated by electrocoagulation (EC), H2O2 oxidation, H2O2 pre-oxidation followed by EC, and the anodic Fenton process and the efficacy of the processes was compared. Concentration of cyanide, Cu, Ni, Zn, and Cr was largely decreased by EC within 5 min. When the reaction time was extended, removal of residual cyanide, Cu, and Ni was limited. In H2O2 oxidation, the concentration of cyanide decreased from initial 75 to 12 mg L(-1) in 30 min. The effluents from the H2O2 oxidation were further treated by EC or anodic Fenton. In EC, the concentration of total cyanide, Ni, and Cu decreased to below 0.3, 0.5, and 1.5 mg L(-1), respectively. Removal efficiency of chemical oxygen demand by EC was less than 20.0%. By contrast, there was 73.5% reduction by the anodic Fenton process with 5 mM H2O2 at 30 min; this can be attributed to the oxidation induced by hydroxyl radicals generated by the reaction of H2O2 with the electrogenerated Fe(2+). Meanwhile, residual cyanide, Cu, and Ni can also be efficiently removed. Transformation of organic components in various processes was analyzed using UV-visible and fluorescence excitation-emission spectra.

  11. Monolith electroplating process

    Science.gov (United States)

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  12. Electroplated thick-film cobalt platinum permanent magnets

    International Nuclear Information System (INIS)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P.

    2016-01-01

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L1 0 CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25–200 mA/cm 2 ), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L1 0 ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (B r ~0.8 T, H ci ~800 kA/m, squareness close to 0.9, and BH max of 100 kJ/m 3 ) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm 2 , pH of 7, and subsequently annealed at 675 °C for 30 min. - Highlights: • CoPt films plated up to 6 μm thick on silicon substrates. • A1 to L1 0 phase transformation by annealing in forming gas. • Various process–structure–property relationships explored. • Key results: B r ~0.8 T, H ci ~800 kA/m, squareness 0.9, and BH max ~100 kJ/m 3 .

  13. [Mortality study in metal electroplating workers in Bologna (Northern Italy)].

    Science.gov (United States)

    Gerosa, Alberto; Scarnato, Corrado; Giacomozzi, Giuseppe; d'Errico, Angelo

    2013-01-01

    to investigate general and cause-specific mortality of workers exposed to metals and other chemicals in the electroplating industry in Bologna Province. factory records of workers employed in 90 electroplating companies present in 1995 were used to build a cohort of subjects potentially exposed to carcinogenic and other substances in this industry, defined as "revised cohort", which was followed-up for mortality from 1960, or since first employment in an electroplating company if later, to 2008. Mortality risk was also examined separately in a subset of the cohort, composed of workers with at least one year of employment in electroplating, denominated "final cohort". Death rates of residents in Emilia-Romagna Region (Northern Italy) were used as a reference. follow-up completeness was 99%. During the observation period, 533 deaths out of 2,983 subjects were observed in the revised cohort and 317 out of 1,739 in the final cohort. Significantly increased Standardized Mortality Ratios were estimated for overall mortality and for mortality from AIDS in the revised cohort and for bladder and rectal cancer in both cohorts. the present study is, to authors' knowledge, the largest mortality investigation conducted in Italy on electroplating workers, for both size and temporal extension. The presence of excess mortality from causes of death not consistently associated in the literature with exposure to agents in this industry suggests that further research is needed to confirm these associations.

  14. Longitudinal magnetic bistability of electroplated wires

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Garcia-Miquel, H.; Vazquez, M.; Svalov, A.V.; Vas'kovskiy, V.O.

    2002-01-01

    Fe 20 Ni 74 Co 6 and Fe 20 Ni 64 Co 16 1 μm thick magnetic tubes electroplated onto Cu 98 Be 2 conductive wire have been investigated in as-deposited state, after heat treatment under longitudinal magnetic field for 1 h at 330 deg. C, and after rf-sputtering deposition of the additional 2 μm Fe 19 Ni 81 layer. Heat treatments and an additional layer deposition modify the shape of hysteresis loops. Magnetically bistable behaviour, observed after the field annealing at a temperature of 330 deg. C, is studied as a function of the length of the samples. This is the first report by our knowledge on the bistable behaviour of the electroplated wires. The bistability of these wires is promising for applications such as tagging or pulse generator applications

  15. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers.

    Science.gov (United States)

    Zhang, Xu-Hui; Zhang, Xuan; Wang, Xu-Chu; Jin, Li-Fen; Yang, Zhang-Ping; Jiang, Cai-Xia; Chen, Qing; Ren, Xiao-Bin; Cao, Jian-Zhong; Wang, Qiang; Zhu, Yi-Min

    2011-04-12

    Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI)) exposure can cause DNA damage in electroplating workers. 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%). Urinary 8-OHdG levels were measured by ELISA. Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L) than that in control subjects (1.54 μg/L, P electroplating workers. Low-level occupational chromium exposure induced DNA damage.

  16. Plasma source ion implantation of ammonia into electroplated chromium

    International Nuclear Information System (INIS)

    Scheuer, J.T.; Walter, K.C.; Rej, D.J.; Nastasi, M.; Blanchard, J.P.

    1995-01-01

    Ammonia gas (NH 3 ) has been used as a nitrogen source for plasma source ion implantation processing of electroplated chromium. No evidence was found of increased hydrogen concentrations in the bulk material, implying that ammonia can be used without risking hydrogen embrittlement. The retained nitrogen dose of 2.1 x 10 17 N-at/cm 2 is sufficient to increase the surface hardness of electroplated Cr by 24% and decrease the wear rate by a factor of 4

  17. Electroplated thick-film cobalt platinum permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P., E-mail: darnold@ufl.edu

    2016-10-15

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L1{sub 0} CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25–200 mA/cm{sup 2}), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L1{sub 0} ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (B{sub r} ~0.8 T, H{sub ci} ~800 kA/m, squareness close to 0.9, and BH{sub max} of 100 kJ/m{sup 3}) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm{sup 2}, pH of 7, and subsequently annealed at 675 °C for 30 min. - Highlights: • CoPt films plated up to 6 μm thick on silicon substrates. • A1 to L1{sub 0} phase transformation by annealing in forming gas. • Various process–structure–property relationships explored. • Key results: B{sub r} ~0.8 T, H{sub ci} ~800 kA/m, squareness 0.9, and BH{sub max} ~100 kJ/m{sup 3}.

  18. Electroplating of low stress permalloy for MEMS

    International Nuclear Information System (INIS)

    Zhang Yonghua; Ding Guifu; Cai Yuli; Wang Hong; Cai Bingchu

    2006-01-01

    With the wafer-bending method and spectrophotometry, the internal stress in electroplated Ni-Fe alloy for MEMS has been investigated as a function of bath concentration. This investigation demonstrated that low concentration plating solution is useful for the decrease of the residual stress in the electrodeposits, and the stress could further decrease with an increase of saccharin additive content. And the change of stress from tensile to compressive was not observed with the increase of the additive content in plating path. The low stress permalloy (Ni 81 Fe 19 ) was reached in our experimental conditions. A bistable electromagnetic RF MEMS switch with deformation-free bilayer cantilever beam was fabricated successfully by electroplated permalloy

  19. Effects of plasma cleaning of the Cu seed layer surface on Cu electroplating

    International Nuclear Information System (INIS)

    O, Jun Hwan; Lee, Seong Wook; Kim, Jae Bum; Lee, Chong Mu

    2001-01-01

    Effects of plasma pretreatment to Cu seed/tantalum nitride (TaN)/ borophosphosilicate glass (BPSG) samples on copper (Cu) electroplating were investigated. Copper seed layers were deposited by magnetron sputtering onto tantalum nitride barrier layers before electroplating copper in the forward pulsed mode. The Cu seed layer was cleaned by plasma H 2 and N 2 prior to electroplating a copper film. Cu films electroplated on the copper seed layer with plasma pretreatment showed better electrical and physical properties such as electrical resistivities, surface morphologies, levels of impurities, adhesion and surface roughness than those without plasma pretreatment. It is shown that carbon and metal oxide contaminants at the sputtered Cu seed/TaN surface could be effectively removed by plasma H 2 cleaning. The degree of the (111) prefered orientation of the Cu film with plasma H 2 pretreatment is as high as pulse plated Cu film without plasma pretreatment. Also, plasma H 2 precleaning is more effective in enhancing the Cu electroplating properties onto the Cu seed layer than plasma N 2 precleaning

  20. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.

    Science.gov (United States)

    Tong, Xuejiao; Xu, Renkou

    2013-04-01

    The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.

  1. Removal of Cu(Ⅱ) from acidic electroplating effluent by biochars generated from crop straws

    Institute of Scientific and Technical Information of China (English)

    Xuejiao Tong; Renkou Xu

    2013-01-01

    The removal efficiency of copper (Cu(Ⅱ)) from an actual acidic electroplating effluent by biochars generated from canola,rice,soybean and peanut straws was investigated.The biochars simultaneously removed Cu(Ⅱ) from the effluent,mainly through the mechanisms of adsorption and precipitation,and neutralized its acidity.The removal efficiency of Cu(Ⅱ) by the biochars followed the order:peanut straw char > soybean straw char > canola straw char > rice straw char >> a commercial activated carbonaceous material,which is consistent with the alkalinity of the biochars.The pH of the effluent was a key factor determining the removal efficiency of Cu(Ⅱ)by biochars.Raising the initial pH of the effluent enhanced the removal of Cu(Ⅱ) from it.The optimum pyrolysis temperature was 400℃ for producing biochar from crop straws for acidic wastewater treatment,and the optimum reaction time was 8 hr.

  2. An investigation of supercritical-CO2 copper electroplating parameters for application in TSV chips

    International Nuclear Information System (INIS)

    Chuang, Ho-Chiao; Lai, Wei-Hong; Sanchez, Jorge

    2015-01-01

    This study uses supercritical electroplating for the filling of through silicon vias (TSVs) in chips. The present study utilizes the inductively coupled plasma reactive ion etching (ICP RIE) process technique to etch the TSVs and discusses different supercritical-CO 2 electroplating parameters, such as the supercritical pressure, the electroplating current density’s effect on the TSV Cu pillar filling time, the I–V curve, the electrical resistance and the hermeticity. In addition, the results for all the tests mentioned above have been compared to results from traditional electroplating techniques. For the testing, we will first discuss the hermeticity of the TSV Cu pillars, using a helium leaking test apparatus to assess the vacuum sealing of the fabricated TSV Cu pillars. In addition, this study also conducts tests for the electrical properties, which include the measurement of the electrical resistance of the TSV at both ends in the horizontal direction, followed by the passing of a high current (10 A, due to probe limitations) to check if the TSV can withstand it without burnout. Finally, the TSV is cut in half in cross-section to observe the filling of Cu pillars by the supercritical electroplating and check for voids. The important characteristic of this study is the use of the supercritical electroplating process without the addition of any surfactants to aid the filling of the TSVs, but by taking advantage of the high permeability and low surface tension of supercritical fluids to achieve our goal. The results of this investigation point to a supercritical pressure of 2000 psi and a current density of 3 A dm −2 giving off the best electroplating filling and hermeticity, while also being able to withstand a high current of 10 A, with a relatively short electroplating time of 3 h (when compared to our own traditional dc electroplating). (paper)

  3. Process Technology Development of Ni Electroplating in Steam Generator Tube

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, H. P.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Yi, Y. S.; Kim, D. J.; Jeong, M. K.

    2009-11-01

    Operating nuclear power steam generator tubing material, Alloy 600, having superior resistance to corrosion has many experiences of damage by various corrosion mechanisms during long term operation period. In this research project, a new Ni electroplating technology to be applied to repair the damaged steam generator tubes has been developed. In this technology development, the optimum conditions for variables affecting the Ni electroplating process, optimum process conditions for maximum adhesion forces at interface between were established. The various mechanical properties (RT and HT tensile, fatigue, creep, burst, etc.) and corrosion properties (general corrosion, pitting, crevice corrosion, stress corrosion cracking, boric acid corrosion, doped steam) of the Ni plated layers made at the established optimum conditions have been evaluated and confirmed to satisfy the specifications. In addition, a new ECT probe developed at KAERI enable to detect defects from magnetic materials was confirmed to be used for Ni electroplated Alloy 600 tubes at the field. For the application of this developed technology to operating plants, a mock-up electroplating system has been designed and manufactured, and set up at Doosan Heavy Industry Co. and also its performance test has been done. At same time, the anode probe has been modified and improved to be used with the established mock-up system without any problem

  4. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers

    Directory of Open Access Journals (Sweden)

    Ren Xiao-Bin

    2011-04-01

    Full Text Available Abstract Background Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI exposure can cause DNA damage in electroplating workers. Methods 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%. Urinary 8-OHdG levels were measured by ELISA. Results Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L than that in control subjects (1.54 μg/L, P P P P Conclusion The findings in this study indicated that there was detectable chromium exposure in electroplating workers. Low-level occupational chromium exposure induced DNA damage.

  5. Genotoxic Effects Due to Exposure to Chromium and Nickel Among Electroplating Workers.

    Science.gov (United States)

    El Safty, Amal Mohamed Kamal; Samir, Aisha Mohamed; Mekkawy, Mona Kamal; Fouad, Marwa Mohamed

    Using chromium and nickel for electroplating is important in many industries. This process induces variable adverse health effects among exposed workers. The aim of this study is to detect the genotoxic effects of combined exposure to chromium and nickel among electroplating workers. This study was conducted on 41 male workers occupationally exposed to chromium and nickel in the electroplating section of a factory compared to 41 male nonexposed individuals, where full history and clinical examination were performed. Laboratory investigations included measurement of serum chromium, nickel, 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei were measured in buccal cells. In exposed workers, serum chromium ranged from 0.09 to 7.20 µg/L, serum nickel ranged from 1.20 to 28.00 µg/L, serum 8-OHdG ranged from 1.09 to12.60 ng/mL, and these results were statistically significantly increased compared to nonexposed group ( P electroplating industry are at risk of significant cytogenetic damage.

  6. Investigation of the suppression effect of polyethylene glycol on copper electroplating by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Hung, C.-C.; Lee, W.-H.; Wang, Y.-L.; Chan, D.-Y.; Hwang, G.-J.

    2008-01-01

    Polyethylene glycol (PEG) is an additive that is commonly used as a suppressor in the semiconductor copper (Cu)-electroplating process. In this study, electrochemical impedance spectroscopy (EIS) was used to analyze the electrochemical behavior of PEG in the Cu-electroplating process. Polarization analysis, cyclic-voltammetry stripping, and cell voltage versus plating time were examined to clarify the suppression behavior of PEG. The equivalent circuit simulated from the EIS data shows that PEG inhibited the Cu-electroplating rate by increasing the charge-transfer resistance as well as the resistance of the adsorption layer. The presence of a large inductance demonstrated the strong adsorption of cuprous-PEG-chloride complexes on the Cu surface during the Cu-electroplating process. Increasing the PEG concentration appears to increase the resistances of charge transfer, the adsorption layer, and the inductance of the electroplating system

  7. Fluctuations of nickel concentrations in urine of electroplating workers

    International Nuclear Information System (INIS)

    Bernacki, E.J.; Zygowicz, E.; Sunderman, F.W. Jr.

    1980-01-01

    Nickel analyses were performed by electrothermal atomic absorption spectrometry upon urine specimens obtained from electroplating workers at the beginning, middle and end of the work-shift. The means (+- S.D.) for nickel concentrations in urine specimens from seven electroplating workers on three regular workdays were: 34 +- 32 μg/L (pre-shift); 64 +- μg/L (mid-shift) and 46 +- μg/L (end-shift), compared to 2.7 +- 1.6 μg/L (pre-shift) in 19 controls (hospital workers). Nickel concentrations in urine specimens from six electroplating workers on the first workday after a two-week vacation averaged: 5 +- 3 μg/L (pre-shift); 9 +- 6 μg/L (mid-shift), and 12 +- 6 μg/L (end-shift). Nickel concentrations in personal air samples (seven hours) collected from the breathing zones of five electroplating workers on three regular workdays averaged 9.3 +- 4.4 μg/m 3 . Nickel concentrations in the air samples were correlated with nickel concentrations in end-shift urine specimens (corr. coef. = 0.70; P < 0.05), but were not correlated with nickel concentrations in pre-shift or mid-shift urine specimens. In view of the fluctuations of urine nickel concentrations that occur during the work-shift, the authors recommend that nickel analyses of eight hour urine specimens be used routinely to monitor occupational exposures to nickel. In situations where timed urine collections are impractical, analyses of end-shift urine specimens are the best alternative

  8. Type conversion, contacts, and surface effects in electroplated CdTe films

    International Nuclear Information System (INIS)

    Basol, B.M.; Ou, S.S.; Stafsudd, O.M.

    1985-01-01

    Efficient electroplated CdS/CdTe solar cells can be fabricated by heat treating and type-converting the n-CdTe films deposited on CdS layers. In this paper, various mechanisms which may give rise to the conversion of electroplated CdTe films from n to p type are investigated. It is concluded that Cd-vacancy generation is the main mechanism of type conversion. Possible effects of oxygen on this mechanism are also discussed. Evaporated Au contacts to electroplated p-CdTe films were studied. It was found that the Au contacts depleted the excess Te present on the surface of Br 2 -methanol etched p-CdTe films. Oxygen was found to affect the electrical characteristics of such contacts

  9. The modern resource saving system for the electroplating industry wastewater treatment and reuse Современная ресурсосберегающая система оборотного водоснабжения гальванического производства

    Directory of Open Access Journals (Sweden)

    Pavlov Denis Vladimirovich

    2013-09-01

    Full Text Available The article presents the authors’ analysis of the industrial wastewater treatment and recycling technologies based on conventional technologies. It is pointed out that conventional electroplating waste water treatment plants in Russian Federation have several disadvantages, such relatively high operating costs and low wastewater processing efficiency. Thus electroplating wastewater treatment plants have to be modernized according to Best Available Technologies (BAT.A modern electroplating wastewater treatment and recycling technology based on BAT such as electroflotation, ultrafiltration and industrial reverse osmosis has been developed and successfully implemented at several RF industrial enterprises. The represented system is free from the disadvantages such as conventional wastewater processing technologies have. It allows to achieve integrated treatment of electroplating wastewater from heavy metal ions down to 0,04 mg/l and from oil products down to 0,05 mg/l within low power and chemicals consumptions with further water reuse, significantly reducing water disposal and WWTPs operating costs and thus ensuring the profitability of WWTPs usage and as a result electroplating industry in general.Разработана и успешно внедряется на всей территории РФ современная ресурсосберегающая технология очистки сточных вод и оборотного водоснабжения гальванических производств. Представленная технология лишена недостатков традиционных очистных сооружений, позволяет добиться глубокой очистки сточных вод сложного состава, значительно сократить водоотведение и эксплуатационные затраты и, следовательно,

  10. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes

    International Nuclear Information System (INIS)

    Rodriguez R, Miriam G.; Mendoza, Victor; Puebla, Hector; Martinez D, Sergio A.

    2009-01-01

    In Mexico, most of the electroplating and textile industries are small facilities and release relatively large amounts of hexavalent chromium (Cr(VI)) in surface waters. In this work, the results obtained during the operation of a batch reactor with a capacity of 170 L, and three electrochemical flow reactors-in-series system with a total capacity of 510 L (both using iron rotating ring electrodes to remove Cr(VI) from wastewaters) are presented. The reactors were scaled up from a laboratory reactor to a semi-industrial level, based on the similarity (dynamical, geometrical and electrochemical). An empirical Cr(VI) removal model was validated in batch and continuous reactors at different operating conditions. Cr(VI) concentration of the industrial wastewaters was reduced from about 500 mg/L to values lower than 0.5 mg/L. A very important parameter that affects the process is the pH, which affects the solubility of the Fe(III). Finally, the electrochemical treated wastewater can be reused

  11. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez R, Miriam G. [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Mendoza, Victor [Depto. Electronica, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Puebla, Hector [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Martinez D, Sergio A. [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico)], E-mail: samd@correo.azc.uam.mx

    2009-04-30

    In Mexico, most of the electroplating and textile industries are small facilities and release relatively large amounts of hexavalent chromium (Cr(VI)) in surface waters. In this work, the results obtained during the operation of a batch reactor with a capacity of 170 L, and three electrochemical flow reactors-in-series system with a total capacity of 510 L (both using iron rotating ring electrodes to remove Cr(VI) from wastewaters) are presented. The reactors were scaled up from a laboratory reactor to a semi-industrial level, based on the similarity (dynamical, geometrical and electrochemical). An empirical Cr(VI) removal model was validated in batch and continuous reactors at different operating conditions. Cr(VI) concentration of the industrial wastewaters was reduced from about 500 mg/L to values lower than 0.5 mg/L. A very important parameter that affects the process is the pH, which affects the solubility of the Fe(III). Finally, the electrochemical treated wastewater can be reused.

  12. Experimental study on manufacturing of grits-spiral- distribution electroplated wire saw

    Directory of Open Access Journals (Sweden)

    Yufei GAO

    2016-12-01

    Full Text Available In order to obtain high performance electroplating diamond wire saw, experimental studies are conducted for development of grits-spiral-distribution electroplated diamond wire saw using sand-suspend electroplating method. The influences of pre-plating cathode current density, grits electro-embedding cathode current density and time on composite deposite coating appearance and grits distribution of wire saw are analyzed, and the sawing experiment is carried out by using the trial wire saw. The results show that good bonding strength between the coating and the steel wire can be obtained when the adopted cathode current density is 5.0 A/dm2 at pre-plating stage; good coating and girts distribution can be obtained when the adopted cathode current density is 5.0 A/dm2 and the electroplating time is 7~8 min at grits electro-embedding stage. By winding insulation wire on the surface of steel wire and reasonably selecting technological parameters before pre-plating can make the diamond wire saw with grits-spiral-distribution on surface, and the new type of wire saw has a better crumbs-clearing effect in wire sawing process.

  13. Optimization of copper electroplating process applied for microfabrication on flexible polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Le, Nguyen Ngan; Hue Phan, Thi Cam; Le, Anh Duy; Dung Dang, Thi My; Dang, Mau Chien

    2015-01-01

    Electroplating is an important step in microfabrication in order to increase thickness of undersized parts up to a few micrometers with a low-cost, fast method that is easy to carry out, especially for metals such as copper, nickel, and silver. This important step promotes the development of the fabrication technology of electronic devices on a flexible substrate, also known as flexible electronic devices. Nevertheless, this technology has some disadvantages such as low surface uniformity and high resistivity. In this paper, parameters of copper electroplating were studied, such as the ratio of copper (II) sulfate (CuSO_4) concentration to sulfuric acid (H_2SO_4) concentration and electroplating current density, in order to obtain low resistivity and high surface uniformity of the copper layer. Samples were characterized by scanning electron microscopy (SEM), four-point probe, and surface profiler. The results showed that the sample resistivity could be controlled from about 2.0 to about 3.5 μΩ · cm, and the lowest obtained resistivity was 1.899 μΩ · cm. In addition, surface uniformity of the electroplated copper layer was also acceptable. The thickness of the copper layer was about 10 μm with an error of about 0.5 μm. The most suitable conditions for the electroplating process were CuSO_4 concentration of 0.4 mol l"−"1, H_2SO_4 concentration of 1.0 mol l"−"1, and low electroplating current density of 10–20 mA cm"−"2. All experiments were performed on a flexible polyethylene terephthalate (PET) substrate. (paper)

  14. Dry ice blasting as a substitution for the conventional electroplating pre-treatments

    Directory of Open Access Journals (Sweden)

    Uhlmann Eckart

    2016-01-01

    Full Text Available For high quality electroplated products, surfaces must be thoroughly pre-treated. For this purpose electroplating currently needs a variety of chemical baths. The used chemicals are injurious to health and harmful to the environment. In addition, the conventional pre-treatment has a long process time which results in high costs. Dry ice blasting alone or in combination with other processes has the potential to completely substitute these conventional pre-treatment processes. Three process sequences as pre-treatment methods prior to electroplating were investigated on the aluminium alloys AlSi12 and AlMg3. The used processes are dry ice blasting, tempering during dry ice blasting and glass bead blasting followed by dry ice blasting. The influence of the parameters on the surface roughness, surface topography and surface tension of the workpieces was examined. A model to describe the correlation between the dry ice blasting parameters and surface parameters was developed. Finally, an adhesion test of electroplated specimen was conducted in order to determine the suitability of these alternative pre-treatment processes.

  15. Removal of Chromium from Industrial Wastewater Using Silicon Nanoparticle

    Directory of Open Access Journals (Sweden)

    Laleh Ranandeh Kalankesh

    2015-03-01

    Full Text Available Hexavalent chromium is a pollutant found in surface and underground waters that causes serious environmental hazards. Chromium enters water as a result of industrial activities such as electroplating, dyeing, leather tanning, and metal manufacturing. The objective of the present laboratory-experimental study was to remove chromate from industrial effluents using silicon nanoparticles. The experiments were performed with both simulated synthetic wastewater and true wastewater. Various parameters such as pH, contact time, and different concentrations of Cr(VI and SiO2 were examined. The data obtained were analyzed using the Excel and SPSS Ver. 16. It was found that Cr(VI removal increased with decreasing pH and increasing contact time. The highest Cr(VI removal was achieved at pH=3 and a contact time of 120 minutes. It was also observed that removal observed to obey the Langmuir isotherm and pseudo second-order kinetic models, respectively. The findings indicate that silicon nanoparticles are capable of removeing Cr(VI from industrial effluents. Given the Cr(VI removal efficiency of 93.6% achieved under optimum conditions and  the removal efficiency of 88.6% achieved in real samples, the method may be recommended as a highly efficient one for removing Cr(VI from industrial wastewaters.

  16. Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.

    Science.gov (United States)

    Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.

  17. Air Pollution Potential from Electroplating Operations.

    Science.gov (United States)

    Diamond, Philip

    Measurements were made of emission rates from electroplating operations considered to have maximum air pollution potential. Sampling was performed at McClellan and additional data from a previous survey at Hill Air Force Base was used. Values obtained were extremely low. Based on existing Federal standards, no collectors are specifically required…

  18. Electroplating and stripping copper on molybdenum and niobium

    Science.gov (United States)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  19. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - THE ELECTROPLATING INDUSTRY

    Science.gov (United States)

    This 44-page Technology Transfer Environmental Regulations and Technology publication is an update of a 1980 EPA publication that has been revised to reflect changes in the EPA regulations, as well as in the pollution control technologies that affect the electroplating industry. ...

  20. Electroplating and characterization of cobalt-nickel-iron and nickel-iron for magnetic microsystems applications

    DEFF Research Database (Denmark)

    Rasmussen, Frank Engel; Ravnkilde, Jan Tue; Tang, Peter Torben

    2001-01-01

    The magnetic properties of pulse reverse (PR) electroplated CoNiFe and DC electroplated NiTe are presented. CoNiFe is a very promising material for magnetic microsystems due to the possibility of achieving a high saturation flux density (B-s) and a low coercivity (H-c). A new bath formulation has...... been developed, which by means of PR electroplating makes it possible to deposit high B-s CoNiFe with a low residual stress level. The magnetic properties have been determined using a new simple measurement setup that allows for wafer level characterization. The results have been validated...

  1. Multi-technique characterization of gold electroplating on silver substrates for cultural heritage applications

    Science.gov (United States)

    Ortega-Feliu, I.; Ager, F. J.; Roldán, C.; Ferretti, M.; Juanes, D.; Scrivano, S.; Respaldiza, M. A.; Ferrazza, L.; Traver, I.; Grilli, M. L.

    2017-09-01

    This work presents a detailed study of a series of silver plates gilded via electroplating techniques in which the characteristics of the coating gold layers are investigated as a function of the electroplating variables (voltage, time, anode surface and temperature). Some reference samples were coated by radio frequency sputtering in order to compare gold layer homogeneity and effective density. Surface analysis was performed by means of atomic and nuclear techniques (SEM-EDX, EDXRF, PIXE and RBS) to obtain information about thickness, homogeneity, effective density, profile concentration of the gold layers and Au-Ag diffusion profiles. The gold layer thickness obtained by PIXE and EDXRF is consistent with the thickness obtained by means of RBS depth profiling. Electroplated gold mass thickness increases with electroplating time, anode area and voltage. However, electrodeposited samples present rough interfaces and gold layer effective densities lower than the nominal density of Au (19.3 g/cm3), whereas sputtering produces uniform layers with nominal density. These analyses provide valuable information to historians and curators and can help the restoration process of gold-plated silver objects.

  2. PRETREATING THORIUM FOR ELECTROPLATING

    Science.gov (United States)

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  3. In-situ realtime monitoring of nanoscale gold electroplating using micro-electro-mechanical systems liquid cell operating in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Minoru; Fujita, Hiroyuki [Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); Ishida, Tadashi, E-mail: ishida.t.ai@m.titech.ac.jp [Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); Graduate School of Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 225-8503 (Japan); Jalabert, Laurent [LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France and University of Toulouse, LAAS, F-31400 Toulouse (France)

    2016-01-11

    The dynamics of nanoscale electroplating between gold electrodes was investigated using a microfabricated liquid cell mounted on a scanning transmission electron microscope. The electroplating was recorded in-situ for 10 min with a spatial resolution higher than 6 nm. At the beginning of the electroplating, gold spike-like structures of about 50 nm in size grew from an electrode, connected gold nanoclusters around them, and form three dimensional nanoscale structures. We visualized the elementary process of the gold electroplating, and believe that the results lead to the deeper understanding of electroplating at the nanoscale.

  4. In-situ realtime monitoring of nanoscale gold electroplating using micro-electro-mechanical systems liquid cell operating in transmission electron microscopy

    International Nuclear Information System (INIS)

    Egawa, Minoru; Fujita, Hiroyuki; Ishida, Tadashi; Jalabert, Laurent

    2016-01-01

    The dynamics of nanoscale electroplating between gold electrodes was investigated using a microfabricated liquid cell mounted on a scanning transmission electron microscope. The electroplating was recorded in-situ for 10 min with a spatial resolution higher than 6 nm. At the beginning of the electroplating, gold spike-like structures of about 50 nm in size grew from an electrode, connected gold nanoclusters around them, and form three dimensional nanoscale structures. We visualized the elementary process of the gold electroplating, and believe that the results lead to the deeper understanding of electroplating at the nanoscale

  5. Electroplating method and apparatus

    International Nuclear Information System (INIS)

    Looney, R.B.; Smith, W.E.L.

    1978-01-01

    Disclosed is an apparatus for high speed electroplating or anodizing tubular members such as nuclear reactor fuel elements. A loading arm positions the member on a base for subsequent support by one of two sets of electrical contacts. A carriage assembly positions electrodes into and around the member. Electrolyte is pumped between the electrodes and the member while electric current is applied. Programmed controls sequentially employ each of the two sets of contacts to expose all surfaces of the member to the electrolyte. The member is removed from the apparatus by an unloading arm

  6. Electroplating method and apparatus

    Science.gov (United States)

    Looney, Robert B.; Smith, William E. L.

    1978-06-20

    An apparatus for high speed electroplating or anodizing tubular members such as nuclear reactor fuel elements. A loading arm positions the member on a base for subsequent support by one of two sets of electrical contacts. A carriage assembly positions electrodes into and around the member. Electrolyte is pumped between the electrodes and the member while electric current is applied. Programmed controls sequentially employ each of the two sets of contacts to expose all surfaces of the member to the electrolyte. The member is removed from the apparatus by an unloading arm.

  7. Metal coatings for laser fusion targets by electroplating

    International Nuclear Information System (INIS)

    Illige, J.D.; Yu, C.M.; Letts, S.A.

    1980-01-01

    Metal coated laser fusion targets must be dense, uniform spherically symmetric to within a few percent of their diameters and smooth to better than a few tenths of a micron. Electroplating offers some unique advantages including low temperature deposition, a wide choice of elements and substantial industrial plating technology. We have evaluatd electroless and electroplating systems for gold and copper, identified the factors responsible for small grain size, and plated glass microspheres with both metals to achieve smooth surfaces and highly symmetric coatings. We have developed plating cells which sustain the microspheres in continuous random motion during plating. We have established techniques for deposition of the initial conductive adherent layer on the glass microsphere surface. Coatings as thick as 15 μm have been made. The equipment is simple, relatively inexpensive and may be adopted for high volume production of laser fusion targets

  8. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating

    International Nuclear Information System (INIS)

    Gu, Changdong; Zhang, Tong-Yi; Xu, Hui

    2009-01-01

    This study aims to fabricate high aspect ratio through-wafer copper interconnects by a simple reverse pulse electroplating technique. High aspect-ratio (∼18) through-wafer holes obtained by a two-step deep reactive ion etching (DRIE) process exhibit a taper profile, which might automatically optimize the local current density distribution during the electroplating process, thereby achieving void-free high aspect-ratio copper vias

  9. Ink-jet printing technology enables self-aligned mould patterning for electroplating in a single step

    International Nuclear Information System (INIS)

    Meissner, M V; Spengler, N; Mager, D; Wang, N; Kiss, S Z; Höfflin, J; While, P T; Korvink, J G

    2015-01-01

    We present a new self-aligned, mask-free micro-fabrication method with which to form thick-layered conductive metal micro-structures inside electroplating moulds. Seed layer patterning for electroplating was performed by ink-jet printing using a silver nano-particle ink deposited on SU-8 or Ordyl SY permanent resist. The silver ink contact angle on SU-8 was adjusted by oxygen plasma followed by a hard bake. Besides functioning as a seed layer, the printed structures further served as a shadow mask during patterning of electroplating moulds into negative photoresist. The printed silver tracks remained in strong adhesion to the substrate when exposed to the acidic chemistry of the electroplating bath. To demonstrate the process, we manufactured rectangular, low-resistivity planar micro-coils for use in magnetic resonance microscopy. MRI images of a spring onion with an in-plane resolution down to 10 µm × 10 µm were acquired using a micro-coil on an 11.7 T MRI scanner. (paper)

  10. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  11. Obtention of ceramic pigments with residue from electroplating

    International Nuclear Information System (INIS)

    Boss, A.; Kniess, C.T.; Aguiar, B.M. de; Prates, P.B.; Milanez, K.

    2011-01-01

    The incorporation of industrial residues in industrial processes opens up new business opportunities and reduces the volume of extraction of raw materials, preserving natural resources, which are limited. An important residue is the mud from galvanic industry, consisting of alkali and transition metals. According to NBR 10004/2004, this residue can be classified as Class I (hazardous), depending on the concentration of metals present in the mud. This paper proposes a method for reusing the residue from electroplating in ceramic pigments. The characterization of residual plating was obtained by chemical analysis, mineralogical analysis and pH measurements. The electroplating waste was incorporated in different percentages on a standard pigment formula of industrial ceramic, consisting mainly of Zn, Fe and Cr. The obtained pigments were applied in ceramic glazes to colorimetric and visual analysis, which showed good results with the addition of up to 15% of industrial waste. (author)

  12. Efficient removal of dyes by a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Li, Yang; Zhang, Jia [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Li, Wenhui [Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhou, Jizhi; Shao, Li [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Qian, Guangren, E-mail: grqian@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China)

    2012-12-15

    Graphical abstract: To purify heavy metal wastewater (pickling waste liquor (PWL{sub A} and PWL{sub B}) and electroplating wastewater (EPW{sub C} and EPW{sub D})), a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-LDH material was formed via two-step microwave hydrothermal method (Step 1 and Step 2) and applicable for organic dyes wastewater treatment. Highlights: Black-Right-Pointing-Pointer Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from wastewater. Black-Right-Pointing-Pointer RSM was successfully applied to the optimization of the preparation conditions. Black-Right-Pointing-Pointer The maximum adsorption capacity of MO was found to be 240.16 mg/g. Black-Right-Pointing-Pointer The MO adsorption mechanism on MFLA was certified. Black-Right-Pointing-Pointer MFLA could be recycled after catalytic regeneration by the oxidation technology. - Abstract: A novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe{sup 2+}, Fe{sup 3+}, Cr{sup 3+}, and Zn{sup 2+}) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The

  13. Effects of organic additives on preferred plane and residual stress of copper electroplated on polyimide

    International Nuclear Information System (INIS)

    Kim, Jongsoo; Kim, Heesan

    2010-01-01

    Effects of the preferred plane and the residual stress of an electroplated copper on polyethylene glycol (PEG) and 3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonic acid (DPS) were studied. Polyimide film coated with sputtered copper was used as a substrate. Preferred plane, residual stress, and impurity level in the electroplated copper were measured by an X-ray diffractometry (XRD), calculated by Stoney's equation, and analyzed with secondary ion mass spectroscopy (SMS), respectively. With increasing the concentration of PEG, the preferred plane changed in the order (1 0 0) and (1 1 0) while with increasing the concentration of DPS, the preferred plane changed in the order (1 1 0), (1 0 0), and (1 1 1). Based on the modified preferred growth model, where the amount of additive adsorbed on a plane is newly assumed to be proportional to its surface energy in vacuum, the predicted preferred planes correspond to the experimental results. The residual stress of the electroplated copper depended on the type of additive as well as its concentration but was independent of the preferred plane. For example, PEG and DPS induced tensile and compressive residual stresses in the electroplated copper, respectively, and their magnitudes increased with their concentrations. The dependency of residual stress on the additives was explained by the incorporated additives into the electroplated copper.

  14. Synthesis of electroplated 63Ni source and betavoltaic battery

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Yoo, Kwon Mo; Choi, Sang Mu; Kim, Jin Joo; Son, Kwang Jae

    2015-01-01

    Radioisotope (Nuclear) battery using 63 Ni was prepared as beta cell. The electroplated 63 Ni on Ni foil is fabricated, and beta cell and photovoltaic hybrid battery was designed to use at both day and night in space project. A Ni-plating solution is prepared by dissolving metal particles including 62 Ni and 63 Ni from neutron irradiation of (n,γ). Electroplating solution of a chloride bath consists on nickel ions in HCl, H 3 BO 3 , and KOH. The deposition was carried out at current density of 10 mA cm -2 . The prepared beta source was attached on a PN junction and measured I-V properties. The power output at activity of 0.07 mCi and 0.45 mCi were 0.55 pW and 2.69 nW, respectively

  15. EFFECT OF CURRENT, TIME, FEED AND CATHODE TYPE ON ELECTROPLATING PROCESS OF URANIUM SOLUTION

    Directory of Open Access Journals (Sweden)

    Sigit Sigit

    2017-02-01

    Full Text Available ABSTRACT   EFFECT OF CURRENT, TIME, FEED AND CATHODE TYPE ON ELECTROPLATING PROCESS OF URANIUM SOLUTION. Electroplating process of uranyl nitrate and effluent process has been carried out in order to collect uranium contained therein using electrode Pt / Pt and Pt / SS at various currents and times. Material used for electrode were Pt (platinum and SS (Stainlees Steel. Feed solution of 250 mL was entered into a beaker glass equipped with Pt anode - Pt cathode or Pt anode - SS cathode, then fogged direct current from DC power supply with specific current and time so that precipitation of uranium sticking to the cathode. After the processes completed, the cathode was removed and weighed to determine weight of precipitates, while the solution was analyzed to determine the uranium concentration decreasing after and before electroplating process. The experiments showed that a relatively good time to acquire uranium deposits at the cathode was 1 hour by current 7 ampere, uranyl nitrate as feed, and Pt (platinum as cathode. In these conditions, uranium deposits attached to the cathode amounted to 74.96% of the original weight of uranium oxide in the feed or 206.5 mg weight. The use of Pt cathode for  uranyl nitrate, SS and Pt cathode for effluent process feed gave uranium specific weight at the cathode of 12.99 mg/cm2, 2.4 mg/cm2 and 5.37 mg/cm2 respectively for current 7 ampere and electroplating time 1 hour. Keywords: Electroplating, uranyl nitrate, effluent process, Pt/Pt electrode, Pt/SS electrode

  16. Electroplating Ni-63 metal ions in chloride bath on the Cu-plate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwon Mo; Uhm, Young Rang; Son, Kwang Jae; Park, Keun Yung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ni-63 plating is similar to other electroplating processes that employ soluble metal anodes. The nickel plating solution described by Watts in 1916 eventually replaced all other strategies in use up to that time. Charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged Ni-63 ions are formed by dissolving metal Ni-63. Specifically, it requires the passage of direct current (DC) between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The flow of a DC causes one of the electrodes (the anode) to dissolve and the other electrode (the cathode) to become covered with nickel. The nickel in the solution is present in the form of divalent positively charged ions (Ni{sup 2+}). When the current flows, the positive ions react with two electrons (2e{sup -}) and are converted into metallic nickel (Ni{sup 0}) at the cathode surface. In the present study, we optimize and established process for the electroplating Ni-63 on Cu-plate. Nanocrystalline nickel (Ni) coatings were synthesized by DC electro deposition at a current density of 15 mA/cm{sup 2}. The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni-63 metal particles in HCl. The prototype for electroplating radioactive Ni-63 has been established. The electroplating was carried out by two-step processes such as preparation of ionic solution including Ni-63, and coating processes on the substrate.

  17. Electroplating Ni-63 metal ions in chloride bath on the Cu-plate

    International Nuclear Information System (INIS)

    Yoo, Kwon Mo; Uhm, Young Rang; Son, Kwang Jae; Park, Keun Yung

    2014-01-01

    Ni-63 plating is similar to other electroplating processes that employ soluble metal anodes. The nickel plating solution described by Watts in 1916 eventually replaced all other strategies in use up to that time. Charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged Ni-63 ions are formed by dissolving metal Ni-63. Specifically, it requires the passage of direct current (DC) between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The flow of a DC causes one of the electrodes (the anode) to dissolve and the other electrode (the cathode) to become covered with nickel. The nickel in the solution is present in the form of divalent positively charged ions (Ni 2+ ). When the current flows, the positive ions react with two electrons (2e - ) and are converted into metallic nickel (Ni 0 ) at the cathode surface. In the present study, we optimize and established process for the electroplating Ni-63 on Cu-plate. Nanocrystalline nickel (Ni) coatings were synthesized by DC electro deposition at a current density of 15 mA/cm 2 . The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni-63 metal particles in HCl. The prototype for electroplating radioactive Ni-63 has been established. The electroplating was carried out by two-step processes such as preparation of ionic solution including Ni-63, and coating processes on the substrate

  18. Venturi/Vortex Scrubber Technology for Controlling/Recycling Chromium Electroplating Emissions

    National Research Council Canada - National Science Library

    Hay, K

    1999-01-01

    ...) above the plating tank. Venturi/Vortex Scrubber Technology (VVST) was designed to control chromium electroplating emissions by collecting the gas bubbles before they burst at the solution's surface...

  19. Titanium electroplating of copper in molten salt media

    International Nuclear Information System (INIS)

    Renaud, Denis

    1985-01-01

    After a bibliographical survey on electroplating in molten salt media and on the electrolytic production of titanium, the author explains the reasons for the choice of the LiF-NaF-KF eutectic mix as solvent. He recalls the main properties which are used, and describes the conventional and convolutional processing of data obtained by linear volt-amperometry. He presents the electrolyte preparation mode which takes into account the existence of titanium ions with intermediate oxidation degree, and the reactivity of titanium with oxygenated species. Experimental results are discussed. Then, after the study of the mechanism of reduction of trivalent titanium into titanium on molybdenum (intermetallic diffusion is here negligible), he reports the study of this mechanism on copper (it is a more complicated situation, due to combinations between titanium and copper). The effect of different parameters (electrolyte purity, current density, electrode potential and temperature) is interpreted in order to identify optimal conditions for titanium electroplating of copper [fr

  20. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry

    DEFF Research Database (Denmark)

    Petrinic, Irena; Korenak, Jasmina; Povodnik, Damijan

    2015-01-01

    that the ultrafiltration-reverse osmosis treatment removed between 91.3% and 99.8% of the contaminants from the effluent, such as metal elements, organic, and inorganic compounds. Contaminants such as suspended solids, nickel, ammonium nitrogen, sulphate nitrogen, chemical oxygen demand, and biochemical oxygen demand were...... completely removed, the concentrations in the permeate being under the detection limits, thus the quality of the ultrafiltration-reverse osmosis process met the reuse criteria. This demonstrates the technological feasibility of wastewater reuse during electro-plating processes and the pre-treatment of powder...

  2. Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto López-Maldonado

    2014-01-01

    Full Text Available Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration through zeta potential measurements. Under this scenario the zeta potential, ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a key factor for assessing the efficiency of coagulation-flocculation processes based on the optimum dosages and windows for polyelectrolytes coagulation-flocculation effectiveness. In this paper, strategic pH variations allowed the prediction of the dosage of polyelectrolyte on wastewater from real electroplating baths, including the isoelectric point (IEP of the dispersions of water and commercial polyelectrolytes used in typical semiconductor industries. The results showed that there is a difference between polyelectrolyte demand required for the removal of suspended solids, turbidity, and organic matter from wastewater (23.4 mg/L and 67 mg/L, resp.. It was also concluded that the dose of polyelectrolytes and coagulation-flocculation window to achieve compliance with national and international regulations as EPA in USA and SEMARNAT in Mexico is influenced by the physicochemical characteristics of the dispersions and treatment conditions (pH and polyelectrolyte dosing strategy.

  3. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    Science.gov (United States)

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures.

  4. Industrial Implementation of Environmentally Friendly Nanometal Electroplating Process for Chromium and Copper Beryllium Replacement using Low Cost Pulse Current Power Supplies

    Science.gov (United States)

    2014-09-10

    FINAL REPORT Industrial Implementation of Environmentally Friendly Nanometal Electroplating Process for Chromium and Copper Beryllium...35 3.2 Phase II – Development/Verification that Nanotechnology Based Electroplating Process to Replace EHC/Cu-Be Processes are Compatible With...36 3.3 Phase III – Development of 200kW Power Supply and Compatible Nanostructured Electroplating Processed for Commercialization

  5. Fabrication of solenoid-type inductor with electroplated NiFe magnetic core

    International Nuclear Information System (INIS)

    Gao Xiaoyu; Cao Ying; Zhou Yong; Ding Wen; Lei Chong; Chen Jian

    2006-01-01

    Solenoid-type inductor with ultra-low profile was fabricated by MEMS (Microelectromechanical systems) technique. NiFe film was electroplated as the magnetic core, and polyimide with a low relative permittivity was used as the insulation material. In the fabrication process, UV-LIGA, dry etching, fine polishing and electroplating technique have been adopted to achieve high performance of the solenoid-type inductor. The inductor was in size of 1.5 mmx0.9 mmx0.1 mm with coil width of 20 μm and aspect ratio of 5:1. The inductance and the quality factor were 0.42-0.345 μH and 1.8-5.3 in the frequency range of 1-10 MHz, respectively

  6. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.

    Science.gov (United States)

    Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady

    2011-05-30

    In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Electroplating of erbium on steel surface in ErCl3 doped LiCl-KCl

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Tanaka, Teruya; Muroga, Takeo; Tsujimura, Hiroyuki; Ito, Yasuhiko

    2012-01-01

    The electroplating of Er metal on the reduced activation ferritic martensitic steel, JLF-1 (Fe-9Cr-2W-0.1C), in a molten salt was studied. The specimen was immersed in the molten ErCl 3 doped LiCl-KCl electrolyte. The electroplating was carried out by a constant potential electrolysis method and a pulsed current electrolysis method. It was found that the Er metal was deposited on the specimen surface due to the electrochemical reaction. (author)

  8. Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Zuolian Cheng

    2012-01-01

    Full Text Available This study investigated the applicability of maghemite (γ-Fe2O3 nanoparticles for the selective removal of toxic heavy metals from electroplating wastewater. The maghemite nanoparticles of 60 nm were synthesized using a coprecipitation method and characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM equipped with energy dispersive X-ray spectroscopy (EDX. Batch experiments were carried out for the removal of Pb2+ ions from aqueous solutions by maghemite nanoparticles. The effects of contact time, initial concentration of Pb2+ ions, solution pH, and salinity on the amount of Pb2+ removed were investigated. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb this metal from wastewater. The adsorption of Pb2+ reached equilibrium rapidly within 15 min and the adsorption data were well fitted with the Langmuir isotherm.

  9. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    Science.gov (United States)

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Electroplating moulds using dry film thick negative photoresist

    Science.gov (United States)

    Kukharenka, E.; Farooqui, M. M.; Grigore, L.; Kraft, M.; Hollinshead, N.

    2003-07-01

    This paper reports on progress on the feasibility of fabricating moulds for electroplating using Ordyl P-50100 (negative) acrylate polymer based dry film photoresist, commercially available from Elga Europe (http://www.elgaeurope.it). We used this photoresist as an alternative to SU8 negative epoxy based photoresist, which is very difficult to process and remove after electroplating (Lorenz et al 1998 Microelectron. Eng. 41/42 371-4, Eyre et al 1998 Proc. MEMS'98 (Heidelberg) (Piscataway, NJ: IEEE) pp 218-22). Ordyl P-50100 is easy to work with and can be easily removed after processing. A single layer of Ordyl P-50100 was deposited by lamination up to 20 µm thickness. Thicker layers (200 µm and more) can be achieved with multilayer lamination using a manual laminator. For our applications we found that Ordyl P-50100 dry film photoresist is a very good alternative to SU8 for the realization of 100 µm high moulds. The results presented will open up new possibilities for low-cost LIGA-type processes for MEMS applications.

  11. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  12. Sealed substrate carrier for electroplating

    Science.gov (United States)

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  13. The use of bio-monitoring to assess exposure in the electroplating industry.

    Science.gov (United States)

    Beattie, Helen; Keen, Chris; Coldwell, Matthew; Tan, Emma; Morton, Jackie; McAlinden, John; Smith, Paul

    2017-01-01

    Workers in the electroplating industry are potentially exposed to a range of hazardous substances including nickel and hexavalent chromium (chromium VI) compounds. These can cause serious health effects, including cancer, asthma and dermatitis. This research aimed to investigate whether repeat biological monitoring (BM) over time could drive sustainable improvements in exposure control in the industry. BM was performed on multiple occasions over 3 years, at 53 electroplating companies in Great Britain. Surface and dermal contamination was also measured, and controls were assessed. Air monitoring was undertaken on repeat visits where previous BM results were of concern. There were significant reductions in urinary nickel and chromium levels over the lifetime of this work in the subset of companies where initially, control deficiencies were more significant. Increased risk awareness following provision of direct feedback to individual workers and targeted advice to companies is likely to have contributed to these reductions. This study has shown that exposures to chromium VI and nickel in the electroplating industry occur via a combination of inhalation, dermal and ingestion routes. Surface contamination found in areas such as canteens highlights the potential for transferral from work areas, and the importance of a regular cleaning regime.

  14. Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass

    International Nuclear Information System (INIS)

    Ravi Sankar, A; Lahiri, S K; Das, S

    2009-01-01

    Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass is presented in this paper. The fabricated accelerometer device consists of a heavy proof mass supported by four thin flexures. Boron-diffused piezoresistors located near the fixed ends of the flexures are used for sensing the developed stress and hence acceleration. Performance enhancement is achieved by electroplating a gold mass of 20 µm thickness on top of the proof mass. A commercially available sulfite-based solution TSG-250(TM) was used for the electroplating process. Aluminum metal lines were used to form a Wheatstone bridge for signal pick-up. To avoid galvanic corrosion between two dissimilar metals having contact in an electrolyte, a shadow mask technique was used to selectively deposit a Cr/Au seed layer on an insulator atop the proof mass for subsequent electrodeposition. Bulk micromachining was performed using a 5% dual-doped TMAH solution. Fabricated devices with different electroplated gold areas were tested up to ±13 g acceleration. For electroplated gold dimensions of 2500 µm × 2500 µm × 20 µm on a proof mass, sensitivity along the Z-axis is increased by 21.8% as compared to the structure without gold. Off-axis sensitivities along the X- and Y-axes are reduced by 7.6% and 6.9%, respectively

  15. Synthesis of electroplated {sup 63}Ni source and betavoltaic battery

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Yoo, Kwon Mo; Choi, Sang Mu; Kim, Jin Joo; Son, Kwang Jae [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Radioisotope (Nuclear) battery using {sup 63}Ni was prepared as beta cell. The electroplated {sup 63}Ni on Ni foil is fabricated, and beta cell and photovoltaic hybrid battery was designed to use at both day and night in space project. A Ni-plating solution is prepared by dissolving metal particles including {sup 62}Ni and {sup 63}Ni from neutron irradiation of (n,γ). Electroplating solution of a chloride bath consists on nickel ions in HCl, H{sub 3}BO{sub 3}, and KOH. The deposition was carried out at current density of 10 mA cm{sup -2}. The prepared beta source was attached on a PN junction and measured I-V properties. The power output at activity of 0.07 mCi and 0.45 mCi were 0.55 pW and 2.69 nW, respectively.

  16. Work Environment Factors and Their Influence on Urinary Chromium Levels in Informal Electroplating Workers

    Science.gov (United States)

    Setyaningsih, Yuliani; Husodo, Adi Heru; Astuti, Indwiani

    2018-02-01

    One of the informal sector which absorbs labor was electroplating business. This sector uses chromium as coating material because it was strong, corrosion resistant and strong. Nonetheless hexavalent chromium is highly toxic if inhaled, swallowed and contact with skin. Poor hygiene, the lack of work environment factors and sanitation conditions can increase the levels of chromium in the body. This aimed of this study was to analyze the association between work environment factors and levels of urinary chromium in informal electroplating worker. A Purposive study was conducted in Tegal Central Java. The research subjects were 66 male workers. Chi Square analysis was used to establish an association between work environment factors and level of urinary chromium. There is a relationship between heat stress and wind direction to the chromium levels in urine (p 0.05). This explains that work environment factors can increase chromium levels in the urine of informal electroplating workers.

  17. Work Environment Factors and Their Influence on Urinary Chromium Levels in Informal Electroplating Workers

    Directory of Open Access Journals (Sweden)

    Setyaningsih Yuliani

    2018-01-01

    Full Text Available One of the informal sector which absorbs labor was electroplating business. This sector uses chromium as coating material because it was strong, corrosion resistant and strong. Nonetheless hexavalent chromium is highly toxic if inhaled, swallowed and contact with skin. Poor hygiene, the lack of work environment factors and sanitation conditions can increase the levels of chromium in the body. This aimed of this study was to analyze the association between work environment factors and levels of urinary chromium in informal electroplating worker. A Purposive study was conducted in Tegal Central Java. The research subjects were 66 male workers. Chi Square analysis was used to establish an association between work environment factors and level of urinary chromium. There is a relationship between heat stress and wind direction to the chromium levels in urine (p 0.05. This explains that work environment factors can increase chromium levels in the urine of informal electroplating workers.

  18. Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium.

    Science.gov (United States)

    Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar

    2011-08-01

    Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.

  19. Method of electroplating a conversion electron emitting source on implant

    Science.gov (United States)

    Srivastava, Suresh C [Setauket, NY; Gonzales, Gilbert R [New York, NY; Adzic, Radoslav [East Setauket, NY; Meinken, George E [Middle Island, NY

    2012-02-14

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  20. Patterned Electroplating of Micrometer Scale Magnetic Structures on Glass Substrates

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, Johannes S.; Krenn, Bea E.; van Driel, Roel

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  1. Patterned electroplating of micrometer scale magnetic structures on glass substrates.

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, S.J.; Krenn, G.E.; van Driel, R.

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  2. Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: opportunities and challenges

    Science.gov (United States)

    Gyenge, Elod; Jung, Joey; Mahato, Basanta

    Reticulated, open-cell structures based on vitreous carbon substrates electroplated with a Pb-Sn (1 wt.%) alloy were investigated as current collectors for lead-acid batteries. Scanning and backscattered electron microscopy, cyclic voltammetry, anodic polarization and flooded 2 V single-cell battery testing was employed to characterize the performance of the proposed collectors. A battery equipped with pasted electroplated reticulated vitreous carbon (RVC) electrodes of 137 cm 2 geometric area, at the time of manuscript submission, completed 500 cycles and over 1500 h of continuous operation. The cycling involved discharges at 63 A kg PAM-1 corresponding to a nominal 0.75 h rate and a positive active mass (PAM) utilization efficiency of 21%. The charging protocol was composed of two voltage limited (i.e. 2.6 V/cell), constant current steps of 35 and 9.5 A kg PAM-1, respectively, with a total duration of about 2 h. The charge factor was 1.05-1.15. The observed cycling behavior in conjunction with the versatility of electrodeposition to produce application-dependent optimized lead alloy coating thickness and composition shows promise for the development of lead-acid batteries using electroplated reticulated vitreous carbon collectors.

  3. A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist

    International Nuclear Information System (INIS)

    Vulto, Paul; Urban, G A; Huesgen, Till; Albrecht, Björn

    2009-01-01

    A full-wafer process is presented for fast and simple fabrication of glass microfluidic chips with integrated electroplated electrodes. The process employs the permanent dry film resist (DFR) Ordyl SY300 to create microfluidic channels, followed by electroplating of silver and subsequent chlorination. The dry film resist is bonded directly to a second substrate, without intermediate gluing layers, only by applying pressure and moderate heating. The process of microfluidic channel fabrication, electroplating and wafer bonding can be completed within 1 day, thus making it one of the fastest and simplest full-wafer fabrication processes. (note)

  4. Chemically-modified graphene sheets as an active layer for eco-friendly metal electroplating on plastic substrates

    International Nuclear Information System (INIS)

    Oh, Joon-Suk; Hwang, Taeseon; Nam, Gi-Yong; Hong, Jung-Pyo; Bae, Ah-Hyun; Son, Sang-Ik; Lee, Geun-Ho; Sung, Hak kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Nam, Jae-Do

    2012-01-01

    Eco-friendly nickel (Ni) electroplating was carried out on a plastic substrate using chemically modified graphene sheets as an active and conductive layer to initiate electroplating without using conventional pre-treatment or electroless metal-seeding processes. A graphene oxide (GO) solution was self-assembled on a polyethylene terephthalate (PET) film followed by evaporation to give GO layers (thickness around 6.5 μm) on PET (GO/PET) film. Then, the GO/PET film was chemically and thermally reduced to convert the GO layers to reduced graphene oxide (RGO) layers on the PET substrate. The RGO-coated PET (RGO/PET) film showed the sheet resistance of 100 Ω per square. On RGO/PET film, Ni electroplating was conducted under the constant-current condition and the entire surface of the PET film was completely metalized with Ni without any voids.

  5. Lung cancer risk in the electroplating industry in Lombardy, Italy, using the Italian occupational cancer monitoring (OCCAM) information system.

    Science.gov (United States)

    Panizza, Celestino; Bai, Edoardo; Oddone, Enrico; Scaburri, Alessandra; Massari, Stefania; Modonesi, Carlo; Contiero, Paolo; Marinaccio, Alessandro; Crosignani, Paolo

    2012-01-01

    Occupational Cancer Monitoring (OCCAM) is an Italian organization that monitors occupational cancers, by area and industrial sector, by retrieving cases and employment history from official databases. OCCAM previously estimated a relative risk (RR) of lung cancer of about 1.32 among "metal treatment" workers in Lombardy, northern Italy, potentially exposed to chrome and nickel. In the present study, lung cancer risk was estimated among electroplating workers only. Lombardy electroplating companies were identified from descriptions in Social Security files. Lung cancer risk was evaluated from 2001 to 2008 incident cases identified from hospital discharge records. The RR for lung cancer among electroplating workers was 2.03 (90% CI 1.33-3.10, 18 cases) for men; 3.00 (90% CI 1.38-9.03, 4 cases) for women. Electroplaters had higher risks than "metal treatment" workers. Although the risks were due to past exposure, case histories and recent acute effects indicate a present carcinogenic hazard in some Lombardy electroplating factories. Copyright © 2011 Wiley Periodicals, Inc.

  6. Optimization of factors affecting hexavalent chromium removal from simulated electroplating wastewater by synthesized magnetite nanoparticles.

    Science.gov (United States)

    Ataabadi, Mitra; Hoodaji, Mehran; Tahmourespour, Arezoo; Kalbasi, Mahmoud; Abdouss, Majid

    2015-01-01

    Hexavalent chromium is a mutagen and carcinogen that is of significant concern in water and wastewater. In the present study, magnetite nanoparticles (n-Mag) were investigated as a potential remediation technology for the decontamination of Cr (VI)-contaminated wastewater. Synthesized n-Mag was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET-N2 technology. To screen and optimize the factors affecting Cr (VI) removal efficiency by synthesized nanoparticles, Plackett-Burman (PB) and Taguchi experimental designs were used respectively. The crystalline produced n-Mag was in the size range of 60-70 nm and had a specific surface area (SSA) of 31.55 m(2) g(-1). Results of PB design showed that the most significant factors affecting Cr (VI) removal efficiency were initial Cr (VI) concentration, pH, n-Mag dosage, and temperature. In a pH of 2, 20 mg L(-1) of Cr (VI) concentration, 4 g L(-1)of n-Mag, temperature of 40 °C, 220 rpm of shaking speed, and 60 min of contact time, the complete removal efficiency of Cr (VI) was achieved. Batch experiments revealed that the removal of Cr (VI) by n-Mag was consistent with pseudo-second order reaction kinetics. The competition from common coexisting ions such as NO₃(-), SO₄(2-), and Cl(-) were not considerable, unless in the higher concentration of SO₄(2-). These results indicated that the readily synthesized magnetite nanoparticles have promising applications for the removal of Cr (VI) from aqueous solution.

  7. Studies on adsorption capacity of clay-Sargassum sp biosorbent for Cr (VI) removal in wastewater from electroplating industry

    Science.gov (United States)

    Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati

    2017-11-01

    Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.

  8. Reliability improvement of PMZNT relaxor ferroelectrics through surface modification by MnO2 doping against electroplating-induced degradation

    International Nuclear Information System (INIS)

    Cao Jiangli; Li Longtu; Gui Zhilun

    2003-01-01

    Electroplating treatment, scanning electron microscopy (SEM) observation, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses were conducted to investigate the reliability improvement of lead magnesium niobate-based ceramics (PMZNT) through MnO 2 vaporous doping against hydrogen reduction during electroplating. The results showed that manganese dopant was reduced to be +3 oxidation state during the sintering and Mn 3+ was incorporated into the perovskite lattice; however, only the outermost ceramics surface was doped while 50 μm beneath kept unchanged. This technique proved to enhance the reliability of PMZNT against electroplating significantly without changing the dielectric properties of ceramics body. Based on the above results, the modification mechanism of MnO 2 vaporous doping was analyzed from the viewpoint of defect chemistry

  9. Influence of branched quaternary ammonium surfactant molecules as levelers for copper electroplating from acidic sulfate bath

    International Nuclear Information System (INIS)

    Wang, An-yin; Chen, Biao; Fang, Lei; Yu, Jian-jun; Wang, Li-min

    2013-01-01

    A family of branched quaternary ammonium surfactants (compounds 1a–1c) with different carbon chains were synthesized for levelers applied in copper electroplating. Their inhibitory actions on copper electroplating were characterized by cyclic voltammetry (CV). Compound 1b, as representative structure type, was tested by means of different electrochemical methods including CV, polarization curve and electrochemical impedance spectroscopy (EIS) with different concentrations. The interaction between compound 1b and copper surface was investigated using atomic force microscope (AFM) and X-ray photoelectron spectra (XPS). The results indicated that our newly synthesized compounds, particular 1b, were effective levelers used for copper electroplating. Compound 1b could adsorb on copper surface to form an adsorption layer. The adsorption behavior of compound 1b on copper surface indicated that compound 1b could inhibit the copper electrodeposition, which provided favorable conditions used as a leveler. Moreover, the addition of compound 1b could increase the cathodic polarization, which was attributed to the adsorption of compound 1b during copper electroplating process. In addition, various surface morphologies and crystalline orientation of the plated copper films caused by different concentrations of compound 1b were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Effects of compound 1b on refining the grain size and changing the preferential orientation of the plated copper films were exhibited

  10. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  11. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    Science.gov (United States)

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  12. Recovery of Chromium Ions From Electroplating Wastewater by Flotation, Gamma Irradiation and Adsorption onto Hydrogels

    International Nuclear Information System (INIS)

    Eid, M.; Dessouki, A.M.; Omar, A.M.

    2005-01-01

    At present, the wastewater treatment facilities in many plating plants are approaching their time for replacement. On this occasion there is a strong requirement to re-evaluate the wastewater treatment measures from the point of view of treatment technology. Laboratory investigation was undertaken on the flotation of Cr (VI) from aqueous suspension over whole ph range, aiming at the separation of chromium by flotation. The cationic surfactant (hexadecyl triethyl ammonium bromide) was applied as a collector. Surface properties, in particular the critical micelle concentration, the effectiveness of surface tension reduction, efficiency, surface excess and the minimum surface area were measured at 30 μ C. The electro-flotation was applied with and without the collector at different times for the removal of chromium (VI). The results were discussed in term of surface properties of the collectors at the solution/air interface. Further work took place by irradiating the water samples by gamma- irradiation to reduce the highly toxic Cr(VI) to the much less toxic and less soluble Cr1 in water; therefore, there is a potential for the complete removal of chromium from aqueous solutions. The possibility of using hydrogels for the uptake of irradiated chromium solutions by different hydrogels was investigated. The structure of the hydrogels was estimated by using FT1R and the pore structure of the hydrogels before and after dictating with chromium ions was monitored by SEM. The adsorption studies show that, it is ph dependent. Lowering of the chromium concentration below the maximum permissible value have been achieved after the treatment of chromium solution by flotation, gamma irradiation and adsorption onto hydrogels

  13. Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium.

    Science.gov (United States)

    Pan, Chih-Hong; Jeng, Hueiwang Anna; Lai, Ching-Huang

    2018-01-01

    This study evaluates levels of biomarkers of oxidative DNA damage and lipid peroxidation in 105 male workers at 16 electroplating companies who had been exposed to hexavalent chromium (Cr(VI)). The study participants were 230 non-smoking male workers, comprising 105 electroplating workers who had been exposed to chromium and 125 control subjects who performed office tasks. Personal air samples, spot urine samples, hair samples, fingernail samples and questionnaires were used to quantify exposure to Cr(VI), oxidative DNA damage, lipid peroxidation, and environmental pollutants. Both the geometric mean personal concentrations of Cr(VI) of the Cr-exposed workers and the total Cr concentrations in the air to which they were exposed significantly exceeded those for the control subjects. The geometric mean concentrations of Cr in urine, hair and fingernails, and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) levels in the Cr(VI) exposed workers exceeded those in the control subjects. Daily cumulative Cr(VI) exposure and urinary Cr were significantly correlated with urinary 8-OHdG levels following adjustments for covariates. A ten-fold increase in urinary Cr level was associated with a 1.73-fold increase in urinary 8-OHdG level. Daily cumulative Cr(VI) exposure and urinary Cr level were significantly correlated with urinary MDA level following adjustments for covariates. A ten-fold increase in urinary Cr was associated with a 1.45-fold increase in urinary MDA. Exposure to Cr(VI) increased oxidative DNA injury and the oxidative deterioration of lipids in electroplating workers.

  14. Effects of barrier composition and electroplating chemistry on adhesion and voiding in copper/dielectric diffusion barrier films

    Energy Technology Data Exchange (ETDEWEB)

    Birringer, Ryan P.; Dauskardt, Reinhold H. [Department of Materials Science and Engineering, Stanford University, Durand Building, Stanford, California 94305-4034 (United States); Shaviv, Roey [Novellus Systems Inc., 4000 North First Street, San Jose, California 95134 (United States); Geiss, Roy H.; Read, David T. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2011-08-15

    The effects of electroplating chemistry and dielectric diffusion barrier composition on copper voiding and barrier adhesion are reported. Adhesion was quantified using the four-point bend thin film adhesion technique, and voiding in the Cu films was quantified using scanning electron microscopy. A total of 12 different film stacks were investigated, including three different Cu electroplating chemistries and four different barrier materials (SiN, N-doped SiC, O-doped SiC, and dual-layer SiC). Both plating chemistry and barrier composition have a large effect on interface adhesion and voiding in the Cu film. X-ray photoelectron spectroscopy was used to investigate the segregation of Cu electroplating impurities, such as S and Cl, to the Cu/barrier interface. Secondary ion mass spectrometry was used to quantify oxygen content at the Cu/barrier interface in a subset of samples. This interface oxygen content is correlated with measured adhesion values.

  15. RECYCLING NICKEL ELECTROPLATING RINSE WATERS BY LOW TEMPERATURE EVAPORATION AND REVERSE OSMOSIS

    Science.gov (United States)

    Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperat...

  16. Estimation of Pb from metal and electroplating industrial waste by ...

    African Journals Online (AJOL)

    The concentration of lead in sediment and liquid waste samples of selected metal electroplating industries was measured by atomic absorption spectrophotometer. The data obtained revealed that lead content in liquid wastes varies in the range of 0.582-14.97 mg L-1 and 1.300-757.8 mg Kg-1 in sediments. Removal of ...

  17. Laboratory scale electroplating and processing of long lengths of an in situ Cu-Nb3Sn superconductors

    International Nuclear Information System (INIS)

    LeHuy, H.; Germain, L.; Roberge, R.; Foner, S.; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    A laboratory scale continuous tin electroplating system is described and used to evaluate the effect of various parameters of the alkaline and acid baths plating process. Tin electroplating is shown to be simple and reliable. With an 8 m immersion length production speeds of the order of 1 m min -1 are possible in an alkaline bath at 80degC. An acid bath gives satisfactory tinning deposits with a production speed of up to 3 m min -1 at room temperature. (author)

  18. Fabrication of Ni stamp with high aspect ratio, two-leveled, cylindrical microstructures using dry etching and electroplating

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Keller, Stephan Sylvest; Hansen, Ole

    2015-01-01

    obtained by defining a reservoir and a separating trench with different depths of 85 and 125 μm, respectively, in a single embossing step. The fabrication of the required two leveled stamp is done using a modified DEEMO (dry etching, electroplating and molding) process. Dry etching using the Bosch process...... and electroplating are optimized to obtain a stamp with smooth stamp surfaces and a positive sidewall profile. Using this stamp, hot embossing is performed successfully with excellent yield and high replication fidelity....

  19. A gradient surface produced by combined electroplating and incremental frictional sliding

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hong, Chuanshi; Kitamura, K.

    2017-01-01

    A Cu plate was first electroplated with a Ni layer, with a thickness controlled to be between 1 and 2 mu m. The coated surface was then deformed by incremental frictional sliding with liquid nitrogen cooling. The combined treatment led to a multifunctional surface with a gradient in strain...

  20. Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry.

    Science.gov (United States)

    Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant

    2017-08-01

    The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.

  1. Sewage water-free electroplating: Block heating power plant as part of a waste disposal plant. Abwasserfreie Galvanik: Blockheizkraftwerk als Teil einer Entsorgungsanlage

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, R.

    1992-04-01

    The way leading to sewage water-free electroplating requires a lot of measures which have to be attuned to each other. At the end of every planning there comes the energy balance which, specifically for sewage water-free electroplating, is far from satisfactory. (orig.).

  2. Synthesis of Quaternary Ammonium Salts Based on Diketopyrrolopyrroles Skeletons and Their Applications in Copper Electroplating.

    Science.gov (United States)

    Chen, Biao; Xu, Jie; Wang, Limin; Song, Longfeng; Wu, Shengying

    2017-03-01

    A series of DPP derivatives bearing quaternary ammonium salt centers with different lengths of carbon chains have been designed and synthesized. Their inhibition actions on copper electroplating were first investigated. A total of four diketopyrrolopyrrole (DPP) derivatives showed different inhibition capabilities on copper electroplating. To investigate interactions between metal surface and additives, we used quantum chemical calculations. Static and dynamic surface tension of four DPP derivatives had been measured, and the results showed DPP-10C (1c) with a faster-decreasing rate of dynamic surface tension among the four derivatives, which indicated higher adsorption rate of additive on the cathode surface and gives rise to stronger inhibiting effect of copper electrodeposition. Then, DPP-10C (1c) as the representative additive, was selected for the systematic study of the leveling influence during microvia filling through comprehensive electroplating tests. In addition, field-emission scanning electron microscope images and X-ray diffraction results showed the surface morphology, which indicated that addition of DPP derivative (1c) could lead a fine copper deposit and cause the preferential orientations of copper deposits to change from [220] to [111], which happened in particular at higher concentrations.

  3. Electroplated Ni on the PN Junction Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm{sup 2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased.

  4. Electroplated Ni on the PN Junction Semiconductor

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae

    2015-01-01

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm 2 . The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased

  5. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    International Nuclear Information System (INIS)

    Santos, Sílvia C.R.; Boaventura, Rui A.R.

    2015-01-01

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD 5 removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD 5 removals above 91% and average color removals of 60–69%

  6. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  7. Fabrication of combined-scale nano- and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process

    DEFF Research Database (Denmark)

    Tanzi, Simone; Østergaard, Peter Friis; Matteucci, Marco

    2012-01-01

    Microfabricated single-cell capture and DNA stretching devices have been produced by injection molding. The fabrication scheme employed deep reactive ion etching in a silicon substrate, electroplating in nickel and molding in cyclic olefin polymer. This work proposes technical solutions to fabric......Microfabricated single-cell capture and DNA stretching devices have been produced by injection molding. The fabrication scheme employed deep reactive ion etching in a silicon substrate, electroplating in nickel and molding in cyclic olefin polymer. This work proposes technical solutions...

  8. MEMS device for bending test: measurements of fatigue and creep of electroplated nickel

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Rasmussen, Anette Alsted; Ravnkilde, Jan Tue

    2003-01-01

    In situ bending test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel. The device features approximately pure in-plane bending of the test beam. The excitation of the test beam has fixed displacement amplitude as the actuation electrodes...

  9. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater.

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-11-15

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu 2+ ) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu 2+ , showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm -1 to ~1504 cm -1 on AuNPs at a high concentration of Cu 2+ above 1 μM. The other ions of Zn 2+ , Pb 2+ , Ni 2+ , NH₄⁺, Mn 2+ , Mg 2+ , K⁺, Hg 2+ , Fe 2+ , Fe 3+ , Cr 3+ , Co 2+ , Cd 2+ , and Ca 2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe 3+ , Ni 2+ , and Zn 2+ . The Raman spectroscopy-based quantification of Cu 2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu 2+ ions. A micromolar range detection limit of Cu 2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

  10. Interaction between Diethyldithiocarbamate and Cu(II on Gold in Non-Cyanide Wastewater

    Directory of Open Access Journals (Sweden)

    Nguyễn Hoàng Ly

    2017-11-01

    Full Text Available A surface-enhanced Raman scattering (SERS detection method for environmental copper ions (Cu2+ was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC on gold nanoparticles (AuNPs. The ultraviolet-visible (UV-Vis absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm−1 to ~1504 cm−1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of Zn2+, Pb2+, Ni2+, NH4+, Mn2+, Mg2+, K+, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

  11. Enhancing the CuCrZr/316L HIP-joint by Ni electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Wei, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Zhao, S.X., E-mail: sxzhao@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 (China); Dong, H.; Che, H.Y. [Advanced Technology and Materials Co. Ltd., Beijing, 100081 (China); Li, Q.; Wang, W.J.; Wang, J.C.; Wang, X.L.; Sun, Z.X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Hefei Center for Physical Science and Technology, Hefei, 230022 (China); Hefei Science Center of Chinese Academy of Sciences, Hefei, 230027 (China)

    2017-04-15

    Highlights: • The quality of CuCrZr/316L HIP-joint can be enhanced by nickel electroplating on CuCrZr and 316L. • Nickel layer can prevent the occurrence of nickel-poor region in 316L and protect CuCrZr from oxidation. • A Charpy Impact Value as high as 111.5 ± 3.3 J/cm{sup 2} can be obtained by HIP at 980 °C, 140 MPa for 2 h. • At high temperature, CuCrZr is easily oxidized even in the situation of a high vacuum degree of 2 × 10{sup −5} Pa. - Abstract: The quality of CuCrZr/316L joint is crucial for the safety of ITER hypervapotron cooling structure and hot isostatic pressing (HIP) is an important bonding technique for this structure. In this paper, the authors present a finding that the CuCrZr/316L HIP-joint can be enhanced by nickel electroplating on 316L and CuCrZr. A Charpy Impact Value as high as 111.5 ± 3.3 J/cm{sup 2}, which is more than two times the value in a published article, is obtained. The influence of nickel electroplating is twofold: (1) it can prevent the occurrence of nickel-poor region in 316L and the formation of ferrite; (2) it can protect CuCrZr from oxidation during the heating stage of HIP. However, tensile test is not as effective as Charpy Impact Test in characterizing the bonding quality of the CuCrZr/316L HIP-joint. The surface treatment employed in this study is amenable to batch-scale industrial manufacturing at low cost.

  12. Cleaner Production Practices, Environmental Management and National Policy Development in Malaysia for Electroplating Enterprises

    DEFF Research Database (Denmark)

    Wangel, Arne; Mohamed, Maketab; Agamuthu, P.

    2004-01-01

    -operation for Environment and Development (DANCED), Ministry of Environment and Energy. SMEs were targeted within three sectors: Textile, food and electroplating industries. The paper illustrates the change process from the perspective of electroplating SMEs by reviewing the cleaner production options chosen, presenting...... figures on the results achieved, and discussing the experiences gained. Reviewing the approach and results of the Centre, as well as the status of cleaner production (CP) in Malaysia, the paper outlines the challenges for national policy making, when moving from promotion by project intervention towards...... sustainable practices in the SME sector at large. The paper draws upon data collection conducted by the research project 'A Study on Promotion and Implementation of Cleaner Production Practices in Malaysian Industry - Development of a National Program and Action Plan for Promotion of Cleaner Production'....

  13. A flip chip process based on electroplated solder bumps

    Science.gov (United States)

    Salonen, J.; Salmi, J.

    1994-01-01

    Compared to wire bonding and TAB, flip chip technology using solder joints offers the highest pin count and packaging density and superior electrical performance. The chips are mounted upside down on the substrate, which can be made of silicon, ceramic, glass or - in some cases - even PCB. The extra processing steps required for chips are the deposition of a suitable thin film metal layer(s) on the standard Al pad and the formation of bumps. Also, the development of new fine line substrate technologies is required to utilize the full potential of the technology. In our bumping process, bump deposition is done by electroplating, which was chosen for its simplicity and economy. Sputter deposited molybdenum and copper are used as thin film layers between the aluminum pads and the solder bumps. A reason for this choice is that the metals can be selectively etched after bumping using the bumps as a mask, thus circumventing the need for a separate mask for etching the thin film metals. The bumps are electroplated from a binary Pb-Sn bath using a thick liquid photoresist. An extensively modified commercial flip chip bonder is used for alignment and bonding. Heat assisted tack bonding is used to attach the chips to the substrate, and final reflow joining is done without flux in a vacuum furnace.

  14. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Shih, Pai-Haung; Chiang, Li-Choung; Chang, Yi-Kuo; Lu, Hsing-Cheng; Chang, Juu-En

    2009-10-15

    The purpose of this study is to utilize an electroplating sludge for belite-rich clinker production and to observe the influence of heavy metals on the polymorphs of dicalcium silicate (C(2)S). Belite-rich clinkers prepared with 0.5-2% of NiO, ZnO, CuO, and Cr(2)O(3) were used to investigate the individual effects of the heavy metals in question. The Reference Intensity Ratio (RIR) method was employed to determine the weight fractions of gamma-C(2)S and beta-C(2)S in the clinkers, and their microstructures were examined by the transmission electron microscopy (TEM). The results showed that nickel, zinc, and chromium have positive effects on beta-C(2)S stabilization (Cr(3+)>Ni(2+)>Zn(2+)), whereas copper has a negative effect. The addition of up to 10% electroplating sludge did not have any negative influence on the formation of C(2)S. It was observed that gamma-C(2)S decreased while beta-C(2)S increased with a rise in the addition of the electroplating sludge. Moreover, nickel and chromium mainly contributed to stabilizing beta-C(2)S in the belite-rich clinkers produced from the electroplating sludge.

  15. Adsorption studies on fruits of Gular (Ficus glomerata): Removal of Cr(VI) from synthetic wastewater

    International Nuclear Information System (INIS)

    Rao, Rifaqat A.K.; Rehman, Fouzia

    2010-01-01

    The adsorption of Cr(VI) was studied in batch system using fruits of Ficus glomerata as adsorbent. The effect of temperature, pH, initial Cr(VI) concentration and time was investigated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) was used to investigate surface morphology and active functional groups present on the adsorbent surface. Thermodynamic parameters like free energy change (ΔG 0 ), enthalpy (ΔH 0 ) and entropy (ΔS 0 ) indicate the spontaneous, endothermic and increased randomness nature of Cr(VI) adsorption. Equilibrium data were fitted well with Langmuir isotherm at 50 deg. C. The magnitude of mean free energy indicates chemical nature of adsorption. The breakthrough and exhaustive capacities were found to be 5 and 23.1 mg g -1 respectively. The applicability of the adsorbent has been demonstrated by removing Cr(VI) from electroplating wastewater.

  16. Study of the electroplating mechanism and physicochemical proprieties of deposited Ni-W-Silicate composite alloy

    International Nuclear Information System (INIS)

    Sassi, W.; Dhouibi, L.; Berçot, P.; Rezrazi, M.; Triki, E.

    2014-01-01

    In this work, layers based on Nickel-Tungsten (Ni-W) were electroplated from citrate-ammonia bath with and without silicate addition. Firstly, Electrochemical Quartz Crystal Microbalance (EQCM) and Global Discharge Optical Emission Spectroscopy (GDOES) were used to investigate the electroplating mechanism of both coatings. The gain mass was 14 and 4.13 μg cm −2 for Ni-W-Sil and Ni-W coatings, respectively. Secondly, the morphology of the composite alloy shows a smooth and homogenous surface with compact cauliflower like-structure identified as silicate incorporation. Finally, after a long immersion into chloride solution, Ni-W-Sil composite film showed a good surface stability and a remarkable mechanical hardness. These proprieties enhanced the electrochemical behavior of the composite alloy

  17. [Study of lung cancer risk in the electroplating industry in Lombardy based on the OCCAM method].

    Science.gov (United States)

    Panizza, C; Bai, E; Oddone, E; Scaburri, Alessandra; Massari, Stefania; Modonesi, C; Crosignani, P

    2011-01-01

    The OCCAM method consists of case-control studies aimed at estimating occupational risks by cancer site, by area and by economic sector, using available archives to identify cases and controls; for exposure definition each subject is assigned to the category code of the economic sector or company where he/she worked the longest, obtained by automatic link with the Social Security Institute (INPS) files. The reference category (unexposed) consists of service industry workers. The economic sector is given by the ATECO category that INPS assigns to each firm. In the Lombardy Region, lung cancer risk evaluated for the "metal treatment" industry as a whole was 1.32 (90% CI 1.33-3.10, 67 cases) for males and 1.33 (90% CI 0.51-3.59, 10 cases) for females. The aim of the study was to estimate lung cancer risk among metal electroplating workers only. The metal electroplating firms were identified according to the detailed description of production, data which was also contained in INPS files, instead of using the "metal treatment" ATECO code. Lung cancer risk was evaluated using 2001-2008 incident cases identified from hospital discharge records of residents in the Lombardy Region. Controls were a sample from National Health Service files. For the group of firms identified as metal electroplating industries the risk was 2.03 (90% CI 1.69-8.32, 18 cases) for males and 3.75 (90% CI 1.38-9.03, 4 cases) for females. Focusing on the true electroplating firms increased the risk estimates. Even though these risk were due to past exposures, case histories and recent acute effects indicate that, at least in some factories, a carcinogenic hazard still exists.

  18. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black

    Science.gov (United States)

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.

    2010-01-01

    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478

  19. Nickel electroplating on copper pre-activated Al alloy in the electrolyte containing PEG1000 as an additive

    Science.gov (United States)

    Guan, Jie; Wang, Jinwei; Zhang, Dawei

    2018-06-01

    Ni coatings are prepared on Cu-pretreated anodic Al alloy by electroplating technique in environment-friendly electrolytes with PEG1000 as an additive. Some defects like pores, cracks and even uncovered areas are observed for the sample of the Cu-pretreated anodic Al alloy, and these defects seem to be remedied with the following Ni electroplating as observed from their SEM images; while the covering effect of Ni onto the Cu layer is rather limited as judged by their corrosion current data of polarization test. After adding PEG1000 in the Ni electroplating electrolyte, the obtained coating surfaces are seen smoother and thicker; and most of the tiny particles are seen closely packed together with some bigger particles on them. The diffusion of nickel particles into copper layer are confirmed by the line and mapping mode of EDS element analysis for the Ni-Cu composite coating. Their much lower corrosion current density ( I corr) and higher micro-hardness support the fact that the addition of PEG1000 in Ni plating electrolyte has a function of promoting the refinement of Ni particles and the formation of more compacter, thicker and smoother Ni-Cu composite coating.

  20. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  1. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    International Nuclear Information System (INIS)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  2. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li, Yi, E-mail: envly@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Lianos, Panagiotis [Department of Chemical Engineering, University of Patras, 26500 Patras (Greece); Wang, Chao; Wang, Peifang [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China)

    2017-02-05

    Highlights: • Polymer capped TiO{sub 2} photoanode consumes photogenerated holes. • Heavy metals reduce on the cathode according to their reduction potentials. • Simultaneous recovery of heavy metals and production of electricity. • Industrial wastewater treatment and production of renewable energy. - Abstract: The feasibility of simultaneous recovery of heavy metals from wastewater (e.g., acid mining and electroplating) and production of electricity is demonstrated in a novel photoelectrochemical cell (PEC). The photoanode of the cell bears a nanoparticulate titania (TiO{sub 2}) film capped with the block copolymer [poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)] hole scavenger, which consumed photogenerated holes, while the photogenerated electrons transferred to a copper cathode reducing dissolved metal ions and produced electricity. Dissolved silver Ag{sup +}, copper Cu{sup 2+}, hexavalent chromium as dichromate Cr{sub 2}O{sub 7}{sup 2−} and lead Pb{sup 2+} ions in a mixture (0.2 mM each) were removed at different rates, according to their reduction potentials. Reduced Ag{sup +}, Cu{sup 2+} and Pb{sup 2+} ions produced metal deposits on the cathode electrode which were mechanically recovered, while Cr{sub 2}O{sub 7}{sup 2−} reduced to the less toxic Cr{sup 3+} in solution. The cell produced a current density J{sub sc} of 0.23 mA/cm{sup 2}, an open circuit voltage V{sub oc} of 0.63 V and a maximum power density of 0.084 mW/cm{sup 2}. A satisfactory performance of this PEC for the treatment of lead-acid battery wastewater was observed. The cathodic reduction of heavy metals was limited by the rate of electron-hole generation at the photoanode. The PEC performance decreased by 30% after 9 consecutive runs, caused by the photoanode progressive degradation.

  3. Development of an Electroplating Method Using the Emulsion Under Supercritical C02

    International Nuclear Information System (INIS)

    Choi, Jeongmin; Park, Kwangheon; Ha, Sungwoo

    2015-01-01

    The development of an internal cladding metal coating technology is required as a measure for manufacturing homogeneous burnable poison and preventing PCI. This study applied nickel plating obtaining a film on the metal surface by making the emulsion of supercritical CO2 and plating solution. It is an eco-friendly process that reduced an electrolyte used in the electroplating process to 40% and a method that can inhibit the effect of bubbles generated during plating. According to the experimental results, it was found that emulsion can be formed through agitation by using ultrasonic horn. And the nickel plating film in the relatively uniform and dense from was formed in Zry-4 and Cu specimens with the formed emulsion. Additionally, the side effects of pinhole in existing electroplating were diminished through the emulsion electroplating. Process development research is underway in order to secure a plating layer with the smoother and generally even specimen surface and find optimized plating conditions and this study can be used as the basic data for new plating process development. Recently, pressurized-water reactor nuclear fuel has been developed as high burn up nuclear fuel that can be operated for a long time. To this end, the nuclear fuel aggregate adding neutron absorber (Burnable absorber-BA) is required. To this end, a new technology to replace burnable poison in the form of pellet is required. If BA coating is made inside the nuclear fuel cladding, it is possible to produce burnable poison that improved performance more than that of burnable poison in the form of existing pellet. Generally, coating using plating can be simply manufactured at a low temperature compared to the complex process of making pellet and can also distribute burnable poison overall evenly. The problem in the behavior of high burn up nuclear fuel is pellet-cladding interaction (PCI) shown while burning. Several methods to reduce it have been devised and recently, research on nuclear

  4. Technology Demonstration of the Zero Emissions Chromium Electroplating System; Appendix I: CHPPM Report on Air Sampling

    National Research Council Canada - National Science Library

    Hay, K. J; Maloney, Stephen W; Cannon, John J; Phelps, Max R; Modrell, Jason

    2008-01-01

    This volume is an Appendix to the main report, Volume 1, which documents the demonstration of a technology developed by PRD, Inc, for control of chromium emissions during hard chromium electroplating...

  5. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  6. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  7. Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus.

    Science.gov (United States)

    Mishra, Abhishek; Malik, Anushree

    2012-10-15

    Toxic impacts of heavy metals in the environment have lead to intensive research on various methods of heavy metal remediation. However, in spite of abundant work on heavy metals removal from simple synthetic solutions, a very few studies demonstrate the potential of microbial strains for the treatment of industrial effluents containing mixtures of metals. In the present study, the efficiency of an environmental isolate (Aspergillus lentulusFJ172995), for simultaneous removal of chromium, copper and lead from a small-scale electroplating industry effluent was investigated. Initial studies with synthetic solutions infer that A. lentulus has a remarkable tolerance against Cr, Cu, Pb and Ni. During its growth, a significant bioaccumulation of individual metal was recorded. After 5 d of growth, the removal of metals from synthetic solutions followed the trend Pb(2+) (100%) > Cr(3+) (79%) > Cu(2+) (78%), > Ni(2+) (42%). When this strain was applied to the treatment of multiple metal containing electroplating effluent (after pH adjustment), the metal concentrations decreased by 71%, 56% and 100% for Cr, Cu and Pb, respectively within 11 d. Based on our results, we propose that the simultaneous removal of hazardous metals from industrial effluents can be accomplished using A. lentulus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Use of Hg-Electroplated-Pt Ultramicroelectrode for Determining Elemental Sulphur in Naphtha Samples

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Andrade

    2012-01-01

    Full Text Available This paper describes the applicability of a Hg-electroplated-Pt ultramicroelectrode in the quantification of elemental sulphur in naphtha samples by square-wave voltammetry. A reproducible deposition methodology was studied and is reported in this paper. This methodology is innovative and relies on the quality of the mercury stock solution to obtain reproducible surfaces required for the analytical methodology. All analyses were performed using a Hg-electroplated-Pt ultramicroelectrode (Hg-Pt UME due to the low sensibility of such devices to ohmic drops in resistive solutions. The responses of the peak areas in voltammetric experiments were linear in all of the range studied. The method developed here is accurate and reproducible, with a detection limit of 0.010 mg L−1 and a good recovery range for both standard solutions of elemental sulphur (85 to 99% and real naphtha sample (79%. These results attest to the potential for the application of this electroanalytical methodology in determining elemental sulphur in naphtha samples containing mercaptans and disulphides.

  9. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2013-06-18

    This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.

  10. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions

    International Nuclear Information System (INIS)

    Greul, Thomas; Comenda, Christian; Preis, Karl; Gerdenitsch, Johann; Sagl, Raffaela; Hassel, Achim Walter

    2013-01-01

    Highlights: •EBSD of electroplated Zn on Fe or steel was performed. •Zn grows epitaxially on electropolished ferritic steel following Burger's orientation relation. •Surface deformation of steel leads to multiple electroplated zinc grains with random orientation. •Zn grows epitaxially even on industrial surfaces with little surface deformation. •Multiple zinc grains on one steel grain can show identical orientation relations. -- Abstract: The dependence of the crystal orientation of electrodeposited zinc of the grain orientation on ferritic steel substrate at high current density deposition (400 mA cm −2 ) during a pulse-plating process was investigated by means of EBSD (electron backscatter diffraction) measurements. EBSD-mappings of surface and cross-sections were performed on samples with different surface preparations. Furthermore an industrial sample was investigated to compare lab-coated samples with the industrial process. The epitaxial growth of zinc is mainly dependent on the condition of the steel grains. Deformation of steel grains leads to random orientation while zinc grows epitaxially on non-deformed steel grains even on industrial surfaces

  11. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.

    2004-02-01

    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  12. X-ray fluorescence analysis of metal concentration in an alloy electroplating bath

    International Nuclear Information System (INIS)

    Hines, R.A.

    1980-06-01

    An energy-dispersive x-ray fluorescence analysis system has been developed for rapid, simultaneous analysis of gold and copper concentrations in an aqueous electroplating bath. The speed and repeatability of the system make it well suited for in-process control. Data collection and reduction are automatic. The analysis requires less than 10 minutes from taking the sample to printing the gold and copper concentrations

  13. Rapid determination of chromium(VI) in electroplating waste water by use of a spectrophotometric flow injection system.

    Science.gov (United States)

    Yuan, Dong; Fu, Dayou; Wang, Rong; Yuan, Jigang

    2008-11-01

    A new rapid and sensitive FI method is reported for spectrophotometric determination of trace chromium(VI) in electroplating waste water. The method is based on the reaction of Cr(VI) with sodium diphenylamine sulfonate (DPH) in acidic medium to form a purple complex (lambda(max) = 550 nm). Under the optimized conditions, the calibration curve is linear in the range 0.04-3.8 microg ml(-1) at a sampling rate of 30 h(-1). The detection limit of the method is 0.0217 microg ml(-1), and the relative standard deviation is 1.1% for eight determinations of 2 microg ml(-1) Cr(VI). The proposed method was applied to the determination of chromium in electroplating waste water with satisfactory results.

  14. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    Science.gov (United States)

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    Directory of Open Access Journals (Sweden)

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  16. Effect of an annealing on magnetic properties of Fe-Ni films electroplated in citric-acid-based plating baths

    Science.gov (United States)

    Yanai, T.; Koda, K.; Eguchi, K.; Morimura, T.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-04-01

    We have already reported Fe-Ni films with good soft magnetic properties prepared by using an electroplating method. In the present study, we employed an annealing for further improvement in soft magnetic properties of the electroplated Fe-Ni films. The annealing reduces the coercivity of the films, and the reduction rate of the coercivity depended on the Cl- ion concentration in the bath. The Fe22Ni78 films prepared in the plating bath with high Cl- ion concentration showed large reduction rate of the coercivity, and we found that the annealing is more effective for high Cl- ion concentration bath since much lower coercivity value can be obtained compared with that for low Cl- ion concentration one.

  17. An isotropic suspension system for a biaxial accelerometer using electroplated thick metal with a HAR SU-8 mold

    International Nuclear Information System (INIS)

    Lee, Jin Seung; Lee, Seung S

    2008-01-01

    In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators

  18. Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath

    International Nuclear Information System (INIS)

    Dubent, S.; Mertens, M.L.A.D.; Saurat, M.

    2010-01-01

    Tin-zinc alloy electroplated coatings are recognized as a potential alternative to toxic cadmium as corrosion resistant deposits because they combine the barrier protection of tin with the cathodic protection afforded by zinc. The coatings containing 20 wt.% zinc, balance tin, offer excellent corrosion protection for steel and do not form gross voluminous white corrosion products like pure zinc or high zinc alloy deposits. In this study, the effects of variables of the process (i.e. cathodic current density, pH and temperature) on deposit composition have been evaluated using a Hull cell to obtain 20 wt.% zinc alloy coatings. The tin-20 wt.% zinc deposits, produced with electroplating optimized conditions, were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray fluorescence spectrometry (XRF) and glow discharge optical emission spectrometry (GDOES). On the other hand, the corrosion behaviour of tin-zinc alloy electroplated coatings on steel has been investigated using electrochemical methods in a 3 wt.% NaCl solution and the salt spray test. The performance of the deposits was compared with cadmium and zinc-nickel electrodeposited coatings. The results show that the corrosion resistance of tin-20 wt.% zinc alloy coating is superior to that of cadmium and zinc-12 wt.% nickel coatings. Finally, sliding friction tests were conducted.

  19. Development of copper electroplating for large accelerating structures for heavy-ion fusion

    International Nuclear Information System (INIS)

    Klimczak, G.W.; Stockley, R.L.

    1981-01-01

    The purpose of this investigation was to determine the effects of changes in operating parameters on the physical and mechanical properties of high electrical conductivity electrodeposits. Based upon the information discerned from the small-scale laboratory evaluation, the process was geared up to a full-scale operation. An engineering study was required to determine the proper electroplating parameters to be utilized within the constraints of a commercial electroplater

  20. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay.

    Science.gov (United States)

    Orescanin, Visnja; Durgo, Ksenija; Mikelic, Ivanka Lovrencic; Halkijevic, Ivan; Kuspilic, Marin

    2018-04-30

    The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.

  1. Warpage Analysis of Electroplated Cu Films on Fiber-Reinforced Polymer Packaging Substrates

    Directory of Open Access Journals (Sweden)

    Cheolgyu Kim

    2015-06-01

    Full Text Available This paper presents a warpage analysis method that predicts the warpage behavior of electroplated Cu films on glass fiber-reinforced polymer (GFRP packaging substrates. The analysis method is performed using the following sequence: fabricate specimens for scanning 3D contours, transform 3D data into curvatures, compute the built-in stress of the film using a stress-curvature analytic model, and verify it through comparisons of the finite element method (FEM simulations with the measured data. The curvature is used to describe the deflection and warpage modes and orientations of the specimen. Two primary factors that affect the warpage behavior of the electroplated Cu film on FRP substrate specimens are investigated. The first factor is the built-in stress in a Cu film that explains the room temperature warpage of the specimen under no thermal process. The second factor is the misfit of the coefficient of thermal expansion (CTE between the Cu and FRP layer, which is a dominant factor during the temperature change. The calculated residual stress, and predicted curvatures using FEM simulation throughout the reflow process temperature range between 25 and 180 °C are proven to be accurate by the comparison of the FEM simulations and experiment measurements.

  2. Effect of an annealing on magnetic properties of Fe-Ni films electroplated in citric-acid-based plating baths

    Directory of Open Access Journals (Sweden)

    T. Yanai

    2018-04-01

    Full Text Available We have already reported Fe-Ni films with good soft magnetic properties prepared by using an electroplating method. In the present study, we employed an annealing for further improvement in soft magnetic properties of the electroplated Fe-Ni films. The annealing reduces the coercivity of the films, and the reduction rate of the coercivity depended on the Cl- ion concentration in the bath. The Fe22Ni78 films prepared in the plating bath with high Cl- ion concentration showed large reduction rate of the coercivity, and we found that the annealing is more effective for high Cl- ion concentration bath since much lower coercivity value can be obtained compared with that for low Cl- ion concentration one.

  3. Electroplating targets for production of unique PET radionuclides

    International Nuclear Information System (INIS)

    Bui, V.; Sheh, Y.; Finn, R.

    1994-01-01

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators

  4. Preparation of the electroplated Ni and Co films for applying betavoltaic battery and Moessbauer source

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Choi, Sang Mu; Kim, Jin Joo; Kim, Jong Bum; Son, Kwang Jae; Hong, Jintae

    2016-01-01

    The reverse occurs at the anode where metallic nickel is dissolved to form divalent positively charged ions that enter the solution. The nickel ions discharged at the cathode are replenished by those formed at the anode. In this study, a Co-and Ni- plating solution is prepared using two different baths. One is the acid-based buffer (pH 3-4) containing boric acid, sodium chloride, and saccharin. The rest is the base-based buffer (pH 10) containing hydrazine hydrate and ammonium citrate. The optimization of the electroplating parameters for the deposition of Co on plate was considered as indispensable. A betavoltaic battery was fabricated using Ni-63 attached on a P-N junction semiconductor, and the I-V characteristics were measured using a probe station. The thickness-dependent self-shielding effect of the radioisotope layer was investigated. Also, the aim of this work was determination of the optimal parameters for thermal diffusion of the electroplated Co into the Rh structure. To establish preparation of betavoltaic battery, and Moessbauer source, natural Ni and Co were electroplated on the Rh plate. Both the acid-based buffer (pH 3) and the alkarine-based buffer (pH 10) are used for plating bath. The deposition yield of the alkarine electrolyte is relatively higher than those of the acidic bath. optimum conditions for the homogeneous diffusion is determined at annealing temperatures of 1100 .deg. C for 3h under the high vacuum atmosphere (10"-"5 hPa). The proposed condition in this study should be applied to prepare 57Co/Rh Moessbauer source at near future

  5. Preparation of the electroplated Ni and Co films for applying betavoltaic battery and Moessbauer source

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Choi, Sang Mu; Kim, Jin Joo; Kim, Jong Bum; Son, Kwang Jae; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The reverse occurs at the anode where metallic nickel is dissolved to form divalent positively charged ions that enter the solution. The nickel ions discharged at the cathode are replenished by those formed at the anode. In this study, a Co-and Ni- plating solution is prepared using two different baths. One is the acid-based buffer (pH 3-4) containing boric acid, sodium chloride, and saccharin. The rest is the base-based buffer (pH 10) containing hydrazine hydrate and ammonium citrate. The optimization of the electroplating parameters for the deposition of Co on plate was considered as indispensable. A betavoltaic battery was fabricated using Ni-63 attached on a P-N junction semiconductor, and the I-V characteristics were measured using a probe station. The thickness-dependent self-shielding effect of the radioisotope layer was investigated. Also, the aim of this work was determination of the optimal parameters for thermal diffusion of the electroplated Co into the Rh structure. To establish preparation of betavoltaic battery, and Moessbauer source, natural Ni and Co were electroplated on the Rh plate. Both the acid-based buffer (pH 3) and the alkarine-based buffer (pH 10) are used for plating bath. The deposition yield of the alkarine electrolyte is relatively higher than those of the acidic bath. optimum conditions for the homogeneous diffusion is determined at annealing temperatures of 1100 .deg. C for 3h under the high vacuum atmosphere (10{sup -5} hPa). The proposed condition in this study should be applied to prepare 57Co/Rh Moessbauer source at near future.

  6. Development of a Low-Cost TiO2/CuO/Cu Solar Cell by using Combined Spraying and Electroplating Method

    Directory of Open Access Journals (Sweden)

    Mamat Rokhmat

    2018-03-01

    Full Text Available A simple method is proposed to develop a low-cost TiO2/CuO/Cu based solar cell. The cell is made by employing a lower grade (technical grade of TiO2 as the active material. CuO powder is synthesized using a wet chemical method and mixed with TiO2 powder to give impurity to the TiO2. A layer of TiO2/CuO is then deposited onto fluorin-doped tin oxide (FTO by spraying. Copper particles are grown on the spaces between the TiO2 and/or CuO particles by electroplating for more feasible electron migration. The TiO2/CuO/Cu solar cell is finalized by sandwiching a polymer electrolyte between the film and the counter electrode. Current-voltage measurement was performed for various parameters, such as the molarity of NaOH for producing CuO particles, the weight ratio of CuO over TiO2, and the current in the electroplating process. A highest efficiency of 1.40% and a fill factor of 0.37 were achieved by using this combined spray and electroplating method.

  7. Changes in the Strength of the Polymer Concrete Used in the Electroplating Vats Under Operational Load

    Directory of Open Access Journals (Sweden)

    Radna Lidia

    2017-12-01

    Full Text Available Due to the strong and aggressive electrolyte media and thermal load, design of the electroplating vats in the copper industry often relies on the resin concrete. The article presents the results of the strength tests of the polymer concrete based on the "Derakane" resin, used in the construction of electroplating vats. Samples were taken from the real vats - both new and 17-year old. Strength tests included compression and bending tensile strength test. To assess the effect of operational conditions the tests were performed on the same-age vats, some of which were never used while others were subjected to the operational load. During the operation, the vats sustained load of the anode and cathode weights, cyclic electrolyte loading with a temperatures up to 60°C. As a result, it was noted that the operational conditions led to the increased strength of the polymer concrete material.

  8. Changes in the Strength of the Polymer Concrete Used in the Electroplating Vats Under Operational Load

    Science.gov (United States)

    Radna, Lidia; Sakharov, Volodymyr

    2017-12-01

    Due to the strong and aggressive electrolyte media and thermal load, design of the electroplating vats in the copper industry often relies on the resin concrete. The article presents the results of the strength tests of the polymer concrete based on the "Derakane" resin, used in the construction of electroplating vats. Samples were taken from the real vats - both new and 17-year old. Strength tests included compression and bending tensile strength test. To assess the effect of operational conditions the tests were performed on the same-age vats, some of which were never used while others were subjected to the operational load. During the operation, the vats sustained load of the anode and cathode weights, cyclic electrolyte loading with a temperatures up to 60°C. As a result, it was noted that the operational conditions led to the increased strength of the polymer concrete material.

  9. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  10. Electrochemistry of metal complexes applications from electroplating to oxide layer formation

    CERN Document Server

    Survila, Arvydas

    2015-01-01

    This book aims to sequentially cover all the major stages of electrochemical processes (mass transport, adsorption, charge transfer), with a special emphasis on their deep interrelation. Starting with general considerations on equilibria in solutions and at interfaces as well as on mass transport, the text acquaints readers with the theory and common experimental practice for studying electrochemical reactions of metals complexes. The core part of the book deals with all important aspects of electroplating, including a systematic discussion of co-deposition of metals and formation of alloys.

  11. Development of an Electroplating Method Using the Emulsion Under Supercritical C0{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeongmin; Park, Kwangheon; Ha, Sungwoo [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The development of an internal cladding metal coating technology is required as a measure for manufacturing homogeneous burnable poison and preventing PCI. This study applied nickel plating obtaining a film on the metal surface by making the emulsion of supercritical CO2 and plating solution. It is an eco-friendly process that reduced an electrolyte used in the electroplating process to 40% and a method that can inhibit the effect of bubbles generated during plating. According to the experimental results, it was found that emulsion can be formed through agitation by using ultrasonic horn. And the nickel plating film in the relatively uniform and dense from was formed in Zry-4 and Cu specimens with the formed emulsion. Additionally, the side effects of pinhole in existing electroplating were diminished through the emulsion electroplating. Process development research is underway in order to secure a plating layer with the smoother and generally even specimen surface and find optimized plating conditions and this study can be used as the basic data for new plating process development. Recently, pressurized-water reactor nuclear fuel has been developed as high burn up nuclear fuel that can be operated for a long time. To this end, the nuclear fuel aggregate adding neutron absorber (Burnable absorber-BA) is required. To this end, a new technology to replace burnable poison in the form of pellet is required. If BA coating is made inside the nuclear fuel cladding, it is possible to produce burnable poison that improved performance more than that of burnable poison in the form of existing pellet. Generally, coating using plating can be simply manufactured at a low temperature compared to the complex process of making pellet and can also distribute burnable poison overall evenly. The problem in the behavior of high burn up nuclear fuel is pellet-cladding interaction (PCI) shown while burning. Several methods to reduce it have been devised and recently, research on nuclear

  12. Mortality among workers in a die-casting and electroplating plant.

    Science.gov (United States)

    Silverstein, M; Mirer, F; Kotelchuck, D; Silverstein, B; Bennett, M

    1981-01-01

    A proportional mortality and case-referent analysis of 238 deaths among hourly employees in an automobile hardware manufacturing plant was conducted. The major operations of the plant were zinc die casting and electroplating. Chemical exposure included die-casting emissions and mists from chrome and nickel plating. The chief proportional mortality finding was a significant excess of lung cancer among both white men and women. A case-referent analysis indicated a possible association between lung cancer and work in certain departments. The findings support the hypothesis of a work-related carcinogenic risk. Follow-up recommendations have been made.

  13. [Effect of simulated inorganic anion leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    Science.gov (United States)

    Chen, Yan; Huang, Fang; Xie, Xin-Yuan

    2014-04-01

    An Acidithiobacillus ferrooxidans strain WZ-1 (GenBank sequence number: JQ968461) was used as the research object. The effects of Cl-, NO3-, F- and 4 kinds of simulated inorganic anions leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Cl-, NO3(-)- didn't have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1), 1.0 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Cl- and NO3- (about 10.0 g x L(-1), 5.0 g x L(-1), respectively), but it had lower tolerance to F- (25 mg x L(-1)). Different kinds of simulated inorganic anions leaching solutions of electroplating sludge had significant differences in terms of their effects on bioactivity of WZ-1 with a sequence of Cl-/NO3(-)/F(-) > or = NO3(-)/F(-) > Cl-/F(-) > Cl(-)/NO3(-).

  14. Structural, mechanical and magnetic study on galvanostatic electroplated nanocrystalline NiFeP thin films

    Science.gov (United States)

    Kalaivani, A.; Senguttuvan, G.; Kannan, R.

    2018-03-01

    Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.

  15. Performance of electro-plated and joined components for divertor application

    International Nuclear Information System (INIS)

    Krauss, Wolfgang; Lorenz, Julia; Konys, Jürgen

    2013-01-01

    Highlights: • Active interlayers of Ni and Pd were electroplated on W to assist joining. • Demonstrator types of W-steel and W–W joints were successfully fabricated. • Diffusion processes increase operation temperature above brazing temperature. • Ni electro-plating is less sensitive to variation of deposition parameters than Pd. • Shear tests showed values in resistance comparable to those of commercial fillers. -- Abstract: A general challenge in divertor development, independently of design type and cooling medium water or helium, is the reliable and adapted joining of components. Depending on the design variants, the characteristics of the joints will be focused on functional or structural behavior to guarantee e.g. good thermal conductivity and sufficient mechanical strength. All variants will have in common that tungsten is the plasma facing material. Thus, material combinations to be joined will range from Cu base over steel to tungsten. Especially tungsten shows lacks in adapted joining due to its metallurgical behavior ranging from immiscibility over bad wetting up to brittle intermetallic phase formation. Joining assisted by electro-chemical deposition of functional and filler layers showed that encouraging progress was achieved in wetting applying nickel interlayers. Nickel proved to be a good reference material but alternative elements (e.g. Pd, Fe) may be more attractive in fusion to manufacture suitable joints. Replacing of Ni as activator element by Pd for W/W or W/steel joints was achieved and joining with Cu-filler was successfully performed. Manufactured joints were characterized applying metallurgical testing and SEM/EDX analyses demonstrating the applicability of Pd activator. First shear tests showed that the joints exhibit mechanical stability sufficient for technical application

  16. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.

    Science.gov (United States)

    Li, Chuncheng; Xie, Fengchun; Ma, Yang; Cai, Tingting; Li, Haiying; Huang, Zhiyuan; Yuan, Gaoqing

    2010-06-15

    An ultrasonically enhanced two-stage acid leaching process on extracting and recovering multiple heavy metals from actual electroplating sludge was studied in lab tests. It provided an effective technique for separation of valuable metals (Cu, Ni and Zn) from less valuable metals (Fe and Cr) in electroplating sludge. The efficiency of the process had been measured with the leaching efficiencies and recovery rates of the metals. Enhanced by ultrasonic power, the first-stage acid leaching demonstrated leaching rates of 96.72%, 97.77%, 98.00%, 53.03%, and 0.44% for Cu, Ni, Zn, Cr, and Fe respectively, effectively separated half of Cr and almost all of Fe from mixed metals. The subsequent second-stage leaching achieved leaching rates of 75.03%, 81.05%, 81.39%, 1.02%, and 0% for Cu, Ni, Zn, Cr, and Fe that further separated Cu, Ni, and Zn from mixed metals. With the stabilized two-stage ultrasonically enhanced leaching, the resulting over all recovery rates of Cu, Ni, Zn, Cr and Fe from electroplating sludge could be achieved at 97.42%, 98.46%, 98.63%, 98.32% and 100% respectively, with Cr and Fe in solids and the rest of the metals in an aqueous solution discharged from the leaching system. The process performance parameters studied were pH, ultrasonic power, and contact time. The results were also confirmed in an industrial pilot-scale test, and same high metal recoveries were performed. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Square pulse current wave’s effect on electroplated nickel hardness

    Directory of Open Access Journals (Sweden)

    Bibian Alonso Hoyos

    2006-09-01

    Full Text Available The effects of frequency, average current density and duty cycle on the hardness of electroplated nickel were studied in Watts and sulphamate solutions by means of direct and square pulse current. The results in Watts’ solutions revealed greater hardness at low duty cycle, high average current density and high square pulse current frequency. There was little variation in hardness in nickel sulphamate solutions to changes in duty cycle and wave frequency. Hardness values obtained in the Watts’ bath with square pulse current were higher than those achieved with direct current at the same average current density; such difference was not significant in sulphamate bath treatment.

  18. Adsorption of chromium species from industrial effluent using magnesium-bentonite clay composite: kinetics, equilibrium and risk assessment study

    CSIR Research Space (South Africa)

    Tjia, FH

    2017-07-01

    Full Text Available technologies have been developed and implemented for removal of chromium from wastewaters. These include: adsorption, precipitation, ion exchange, reverse osmosis, electroplating, phytoremediation and wetlands (Vlasov and D'Yakonov, 1965, Tan et al., 1993, Qu...

  19. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meinhardt, Kerry D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pederson, Larry R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce a uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that

  20. Obtention of ceramic pigments with residue from electroplating; Obtencao de pigmentos ceramicos a partir de residuo de galvanoplastia

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A. [Servico Nacional de Aprendizagem Industrial (SENAI), Tijucas, SC (Brazil); Kniess, C.T. [Universidade Nove de Julho (UNINOVE), SP (Brazil); Aguiar, B.M. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Prates, P.B.; Milanez, K., E-mail: kniesscl@gmail.com [Universidade Federal de Santa Catarina (EMC/UFSC), SC (Brazil). Depto de Engenharia Mecanica

    2011-07-01

    The incorporation of industrial residues in industrial processes opens up new business opportunities and reduces the volume of extraction of raw materials, preserving natural resources, which are limited. An important residue is the mud from galvanic industry, consisting of alkali and transition metals. According to NBR 10004/2004, this residue can be classified as Class I (hazardous), depending on the concentration of metals present in the mud. This paper proposes a method for reusing the residue from electroplating in ceramic pigments. The characterization of residual plating was obtained by chemical analysis, mineralogical analysis and pH measurements. The electroplating waste was incorporated in different percentages on a standard pigment formula of industrial ceramic, consisting mainly of Zn, Fe and Cr. The obtained pigments were applied in ceramic glazes to colorimetric and visual analysis, which showed good results with the addition of up to 15% of industrial waste. (author)

  1. Electrochemical kinetic performances of electroplating Co–Ni on La–Mg–Ni-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Tao, Yang; Ke, Dandan; Ma, Yufei [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Han, Shumin, E-mail: hanshm@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The Co–Ni composite coating was prepared by electroplating. • The alloy treated at 10 mA/cm{sup 2} has superior kinetic performances. • The Co–Ni layer accelerates the charge transfer rate on the surface of the alloy. - Abstract: Electroplating Co–Ni treatment was applied to the surface of the La{sub 0.75}Mg{sub 0.25}Ni{sub 3.48} alloy electrodes in order to improve the electrochemical and kinetic performances. The Scanning electron microscope-Energy dispersive spectroscopy and X-ray diffraction results showed that the electrodes were plated with a homogeneous Co–Ni alloy film. The alloy coating significantly improved the high rate dischargeability of the alloy electrode, and the HRD value increased to 57.5% at discharge current density 1875 mA/g after the Co–Ni-coating. The exchange current density I{sub 0}, the limiting current density I{sub L} and the oxidation peak current also increased for the coated alloy. The improvement of overall electrode performances was attributed to an enhancement in electro-catalytic activity and conductivity at the alloy surface, owing to the precipitation of the Co–Ni layer.

  2. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    Science.gov (United States)

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor.

  3. Controlled electroplating and electromigration in nickel electrodes for nanogap formation

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos Valladares, Luis; Mitrelias, Thanos; Sfigakis, Francois; Barnes, Crispin H W [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Leon Felix, Lizbet; Bustamante Dominguez, Angel [Laboratorio de Ceramicos y Nanomateriales, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Khondaker, Saiful I [NanoScience Technology Center and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Majima, Yutaka, E-mail: ld301@cam.ac.uk, E-mail: luisitodv@yahoo.es [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2010-11-05

    We report the fabrication of nickel nanospaced electrodes by electroplating and electromigration for nanoelectronic devices. Using a conventional electrochemical cell, nanogaps can be obtained by controlling the plating time alone and after a careful optimization of electrodeposition parameters such as electrolyte bath, applied potential, cleaning, etc. During the process, the gap width decreases exponentially with time until the electrode gaps are completely bridged. Once the bridge is formed, the ex situ electromigration technique can reopen the nanogap. When the gap is {approx} 1 nm, tunneling current-voltage characterization shows asymmetry which can be corrected by an external magnetic field. This suggests that charge transfer in the nickel electrodes depends on the orientation of magnetic moments.

  4. Controlled electroplating and electromigration in nickel electrodes for nanogap formation

    International Nuclear Information System (INIS)

    De Los Santos Valladares, Luis; Mitrelias, Thanos; Sfigakis, Francois; Barnes, Crispin H W; Leon Felix, Lizbet; Bustamante Dominguez, Angel; Khondaker, Saiful I; Majima, Yutaka

    2010-01-01

    We report the fabrication of nickel nanospaced electrodes by electroplating and electromigration for nanoelectronic devices. Using a conventional electrochemical cell, nanogaps can be obtained by controlling the plating time alone and after a careful optimization of electrodeposition parameters such as electrolyte bath, applied potential, cleaning, etc. During the process, the gap width decreases exponentially with time until the electrode gaps are completely bridged. Once the bridge is formed, the ex situ electromigration technique can reopen the nanogap. When the gap is ∼ 1 nm, tunneling current-voltage characterization shows asymmetry which can be corrected by an external magnetic field. This suggests that charge transfer in the nickel electrodes depends on the orientation of magnetic moments.

  5. Devices for fatigue testing of electroplated nickel (MEMS)

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, J. T.; Ginnerup, Morten

    2002-01-01

    μm and an effective length from 4μm to 27μm. Maximum stresses of the test beam were calculated to be 500MPa to 2100MPa by use of FEM tools. The test results indicate very promising fatigue properties of nano-nickel, as none of the test devices have shown fatigue failure or even initiation of cracks......In-situ fatigue test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel (nano-nickel). The devices feature in-plane approximately pure bending with fixed displacement of the test specimen of the dimensions: widths from 2μm to 3.7μm, a height of 7...... after 108 cycles. The combination of high strength and toughness, which is known for nanocrystalline materials, together with very small test specimens and low surface roughness could be the explanation for the good fatigue properties....

  6. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  7. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith.

    Science.gov (United States)

    Suksabye, Parinda; Thiravetyan, Paitip; Nakbanpote, Woranan

    2008-12-15

    The removal of Cr(VI) from electroplating wastewater by coir pith was investigated in a fixed-bed column. The experiments were conducted to study the effect of important parameters such as bed depth (40-60cm) and flow rate (10-30ml min(-1)). At 0.05 C(t)/C(0), the breakthrough volume increased as flow rate decreased or a bed depth increased due to an increase in empty bed contact time (EBCT). The bed depth service time model (BDST) fit well with the experimental data in the initial region of the breakthrough curve, while the simulation of the whole curve using non-linear regression analysis was effective using the Thomas model. The adsorption capacity estimated from the BDST model was reduced with increasing flow rate, which was 16.40mg cm(-3) or 137.91mg Cr(VI)g(-1) coir pith for the flow rates of 10ml min(-1) and 14.05mg cm(-3) or 118.20mg Cr(VI)g(-1) coir pith for the flow rates of 30ml min(-1). At the highest bed depth (60cm) and the lowest flow rate (10mlmin(-1)), the maximum adsorption reached 201.47mg Cr(VI)g(-1) adsorbent according to the Thomas model. The column was regenerated by eluting chromium using 2M HNO(3) after adsorption studies. The desorption of Cr(III) in each of three cycles was about 67-70%. The desorption of Cr(III) in each cycle did not reach 100% due to the fact that Cr(V) was present through the reduction of Cr(VI), and was still in coir pith, possibly bound to glucose in the cellulose part of coir pith. Therefore, the Cr(V) complex cannot be desorbed in solution. The evidence of Cr(V) signal was observed in coir pith, alpha-cellulose and holocellulose extracted from coir pith using electron spin resonance (ESR).

  8. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith

    Energy Technology Data Exchange (ETDEWEB)

    Suksabye, Parinda [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 91 Pracha-Utit Road, Bangmod, Thungkru, Bangkok 10140 (Thailand); Thiravetyan, Paitip [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo.8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand)], E-mail: paitip.thi@kmutt.ac.th; Nakbanpote, Woranan [Pilot Plant Development and Training Institute, King Mongkut' s University of Technology Thonburi, 83 Moo.8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand)

    2008-12-15

    The removal of Cr(VI) from electroplating wastewater by coir pith was investigated in a fixed-bed column. The experiments were conducted to study the effect of important parameters such as bed depth (40-60 cm) and flow rate (10-30 ml min{sup -1}). At 0.05 C{sub t}/C{sub 0}, the breakthrough volume increased as flow rate decreased or a bed depth increased due to an increase in empty bed contact time (EBCT). The bed depth service time model (BDST) fit well with the experimental data in the initial region of the breakthrough curve, while the simulation of the whole curve using non-linear regression analysis was effective using the Thomas model. The adsorption capacity estimated from the BDST model was reduced with increasing flow rate, which was 16.40 mg cm{sup -3} or 137.91 mg Cr(VI) g{sup -1} coir pith for the flow rates of 10 ml min{sup -1} and 14.05 mg cm{sup -3} or 118.20 mg Cr(VI) g{sup -1} coir pith for the flow rates of 30 ml min{sup -1}. At the highest bed depth (60 cm) and the lowest flow rate (10 ml min{sup -1}), the maximum adsorption reached 201.47 mg Cr(VI) g{sup -1} adsorbent according to the Thomas model. The column was regenerated by eluting chromium using 2 M HNO{sub 3} after adsorption studies. The desorption of Cr(III) in each of three cycles was about 67-70%. The desorption of Cr(III) in each cycle did not reach 100% due to the fact that Cr(V) was present through the reduction of Cr(VI), and was still in coir pith, possibly bound to glucose in the cellulose part of coir pith. Therefore, the Cr(V) complex cannot be desorbed in solution. The evidence of Cr(V) signal was observed in coir pith, {alpha}-cellulose and holocellulose extracted from coir pith using electron spin resonance (ESR)

  9. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith

    International Nuclear Information System (INIS)

    Suksabye, Parinda; Thiravetyan, Paitip; Nakbanpote, Woranan

    2008-01-01

    The removal of Cr(VI) from electroplating wastewater by coir pith was investigated in a fixed-bed column. The experiments were conducted to study the effect of important parameters such as bed depth (40-60 cm) and flow rate (10-30 ml min -1 ). At 0.05 C t /C 0 , the breakthrough volume increased as flow rate decreased or a bed depth increased due to an increase in empty bed contact time (EBCT). The bed depth service time model (BDST) fit well with the experimental data in the initial region of the breakthrough curve, while the simulation of the whole curve using non-linear regression analysis was effective using the Thomas model. The adsorption capacity estimated from the BDST model was reduced with increasing flow rate, which was 16.40 mg cm -3 or 137.91 mg Cr(VI) g -1 coir pith for the flow rates of 10 ml min -1 and 14.05 mg cm -3 or 118.20 mg Cr(VI) g -1 coir pith for the flow rates of 30 ml min -1 . At the highest bed depth (60 cm) and the lowest flow rate (10 ml min -1 ), the maximum adsorption reached 201.47 mg Cr(VI) g -1 adsorbent according to the Thomas model. The column was regenerated by eluting chromium using 2 M HNO 3 after adsorption studies. The desorption of Cr(III) in each of three cycles was about 67-70%. The desorption of Cr(III) in each cycle did not reach 100% due to the fact that Cr(V) was present through the reduction of Cr(VI), and was still in coir pith, possibly bound to glucose in the cellulose part of coir pith. Therefore, the Cr(V) complex cannot be desorbed in solution. The evidence of Cr(V) signal was observed in coir pith, α-cellulose and holocellulose extracted from coir pith using electron spin resonance (ESR)

  10. Electroplating chromium on CVD SiC and SiCf-SiC advanced cladding via PyC compatibility coating

    Science.gov (United States)

    Ang, Caen; Kemery, Craig; Katoh, Yutai

    2018-05-01

    Electroplating Cr on SiC using a pyrolytic carbon (PyC) bond coat is demonstrated as an innovative concept for coating of advanced fuel cladding. The quantification of coating stress, SEM morphology, XRD phase analysis, and debonding test of the coating on CVD SiC and SiCf-SiC is shown. The residual tensile stress (by ASTM B975) of electroplated Cr is > 1 GPa prior to stress relaxation by microcracking. The stress can remove the PyC/Cr layer from SiC. Surface etching of ∼20 μm and roughening to Ra > 2 μm (by SEM observation) was necessary for successful adhesion. The debonding strength (by ASTM D4541) of the coating on SiC slightly improved from 3.6 ± 1.4 MPa to 5.9 ± 0.8 MPa after surface etching or machining. However, this improvement is limited due to the absence of an interphase, and integrated CVI processing may be required for further advancement.

  11. Reliability and validity of expert assessment based on airborne and urinary measures of nickel and chromium exposure in the electroplating industry

    Science.gov (United States)

    Chen, Yu-Cheng; Coble, Joseph B; Deziel, Nicole C.; Ji, Bu-Tian; Xue, Shouzheng; Lu, Wei; Stewart, Patricia A; Friesen, Melissa C

    2014-01-01

    The reliability and validity of six experts’ exposure ratings were evaluated for 64 nickel-exposed and 72 chromium-exposed workers from six Shanghai electroplating plants based on airborne and urinary nickel and chromium measurements. Three industrial hygienists and three occupational physicians independently ranked the exposure intensity of each metal on an ordinal scale (1–4) for each worker's job in two rounds: the first round was based on responses to an occupational history questionnaire and the second round also included responses to an electroplating industry-specific questionnaire. Spearman correlation (rs) was used to compare each rating's validity to its corresponding subject-specific arithmetic mean of four airborne or four urinary measurements. Reliability was moderately-high (weighted kappa range=0.60–0.64). Validity was poor to moderate (rs= -0.37–0.46) for both airborne and urinary concentrations of both metals. For airborne nickel concentrations, validity differed by plant. For dichotomized metrics, sensitivity and specificity were higher based on urinary measurements (47–78%) than airborne measurements (16–50%). Few patterns were observed by metal, assessment round, or expert type. These results suggest that, for electroplating exposures, experts can achieve moderately-high agreement and (reasonably) distinguish between low and high exposures when reviewing responses to in-depth questionnaires used in population-based case-control studies. PMID:24736099

  12. Reliability and validity of expert assessment based on airborne and urinary measures of nickel and chromium exposure in the electroplating industry.

    Science.gov (United States)

    Chen, Yu-Cheng; Coble, Joseph B; Deziel, Nicole C; Ji, Bu-Tian; Xue, Shouzheng; Lu, Wei; Stewart, Patricia A; Friesen, Melissa C

    2014-11-01

    The reliability and validity of six experts' exposure ratings were evaluated for 64 nickel-exposed and 72 chromium-exposed workers from six Shanghai electroplating plants based on airborne and urinary nickel and chromium measurements. Three industrial hygienists and three occupational physicians independently ranked the exposure intensity of each metal on an ordinal scale (1-4) for each worker's job in two rounds: the first round was based on responses to an occupational history questionnaire and the second round also included responses to an electroplating industry-specific questionnaire. The Spearman correlation (r(s)) was used to compare each rating's validity to its corresponding subject-specific arithmetic mean of four airborne or four urinary measurements. Reliability was moderately high (weighted kappa range=0.60-0.64). Validity was poor to moderate (r(s)=-0.37-0.46) for both airborne and urinary concentrations of both metals. For airborne nickel concentrations, validity differed by plant. For dichotomized metrics, sensitivity and specificity were higher based on urinary measurements (47-78%) than airborne measurements (16-50%). Few patterns were observed by metal, assessment round, or expert type. These results suggest that, for electroplating exposures, experts can achieve moderately high agreement and (reasonably) distinguish between low and high exposures when reviewing responses to in-depth questionnaires used in population-based case-control studies.

  13. Directed batch assembly of three-dimensional helical nanobelts through angular winding and electroplating

    International Nuclear Information System (INIS)

    Bell, D J; Bauert, T E; Zhang, L; Dong, L X; Sun, Y; Gruetzmacher, D; Nelson, B J

    2007-01-01

    This paper presents a new technique for the directed batch assembly of rolled-up three-dimensional helical nanobelts. The wet etch time is controlled in order for the loose end of the self-formed SiGe/Si/Cr nanobelts to be located over an electrode by taking advantage of the additional angular winding motion in the lateral direction. In a subsequent Au electroplating step, contacts are electroformed and the batch assembly is completed, while at the same time the conductance of the structures is increased

  14. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.

    Science.gov (United States)

    Huang, Ruth; Huang, Kuo-Lin; Lin, Zih-Yi; Wang, Jian-Wen; Lin, Chitsan; Kuo, Yi-Ming

    2013-11-15

    In this study, vitrification was applied to treat Ni-Cu electroplating sludge. The sludge was mixed with additives (limestone:cullet = 4:6) and then heated to 1450 °C. The cooled product could be separated into slag and ingot. An atomic absorption spectrometer was used to determine the metal levels of specimens and toxicity characteristic leaching procedure (TCLP) tests, whereas the crystalline and surface characteristics were examined using quantitative X-ray diffraction (XRD) analysis and scanning electron microscopy, respectively. With a glassy structure, the slag was mainly composed of Ca, Si, and Mg. The TCLP results of slags met the Taiwan regulated standards, suggesting that slag can be used for recycling purposes. With the aid of additives, the crystalline phase of slag was transformed form CaMgSiO4 into CsSiO3. The ingots were mainly composed of Ni (563,000-693,800 mg/kg), Cu (79,900-87,400 mg/kg), and Fe (35,000-43,600 mg/kg) (target metals) due the gravity separation during vitrification. At appropriate additives/sludge ratios (>0.2), >95% of target metals gathered in the ingot as a recoverable form (Ni-Fe alloy). The high Ni level of slag suggests that the ingot can be used as the raw materials for smelters or the additives for steel making. Therefore, the vitrification approach of this study is a promising technology to recover valuable metals from Ni-Cu electroplating sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    Bio-process modelling is increasingly used in design, modification and troubleshooting of wastewater treatment plants (WWTPs). Characterisation of the influent wastewater to a WWTP is an important part of developing such a model. The characterisation required for modelling is more detailed than that routinely employed ...

  16. PENGOLAHAN AIR LIMBAH INDUSTRI KECIL PELAPISAN LOGAM

    OpenAIRE

    Yudo, Satmoko; Said, Nusa Idaman

    2017-01-01

    Water pollution in Jakarta area, especially river and shallow groundwater, had become a very serious problem. Pollution problem caused by small industrial activities had not been got attetion. Some activities, which often cause water pollution problem, were wastewater from electroplating small industry. This wastewater was one of the most potential pollutant sources, because it contains high concentration of heavy metal pollutant such as Fe, Ni, Zn, Cr, ect. To anticipate its negative effect ...

  17. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2016-07-01

    Full Text Available Hexavalent chromium [Cr(VI] is a toxic oxidized form and an important metal pollutant in the water bodies. Biosorption of chromium(VI offers a potential alternative to conventional metal removal methods. Dried biomass of Chlorella vulgaris was used as biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents as a function of biosorbent dosage, contact time, pH, salinity and initial metal ion concentration. Batch experiments were conducted for biosorption and the optimum conditions were 1 g/L biomass, 4 h contact time, pH 2 and 2.893 mS/cm of electrical conductivity. The chromium biosorption was strictly pH dependent with a maximum Cr removal of 63.2 mg/L at pH 2. Highest Cr removal at a concentration of 81.3 mg/L was observed at Electrical conductivity (EC value of 2.893 mS/cm. A comparison of Langmuir and Freundlich isotherm models revealed that Freundlich isotherm model fitted the experimental data based on R2, qmax and standard error values. The results suggest that C. vulgaris biomass could be considered a promising low-cost biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents. Keywords: Biosorption, Chlorella vulgaris, Microalgae, Hexavalent chromium

  18. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  19. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-01-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter. (author)

  20. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-10-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter

  1. Effects of supporting electrolytes on copper electroplating for filling through-hole

    International Nuclear Information System (INIS)

    Chen, Chien-Hung; Lu, Chun-Wei; Huang, Su-Mei; Dow, Wei-Ping

    2011-01-01

    Highlights: → The through-holes of a printed circuit boardare directly filled by copper electroplating using single organic additive. → The inhibiting strength of the additive on copper deposition is related to a supporting electrolyte. → H 2 SO 4 strongly enhances the inhibiting strength of the additive and results in a conformal deposition, whereas Na 2 SO 4 and K 2 SO 4 do not affect the inhibiting strength and lead to good filling capability. - Abstract: The filling of micron through-holes (THs) in a printed circuit board (PCB) by copper electroplating was investigated in this study. The role of supporting electrolytes, such as H 2 SO 4 , Na 2 SO 4 and K 2 SO 4 , was explored using practical TH filling plating and linear-sweep voltammetry (LSV) analysis of plating solutions. The copper could selectively fill THs using one organic additive, namely, tetranitroblue tetrazolium chloride (TNBT), as an inhibitor. The inhibiting strength of TNBT depended on the supporting electrolytes. Although H 2 SO 4 could enhance the inhibiting strength of TNBT, it also decreased the filling capability of the copper plating solution; Na 2 SO 4 and K 2 SO 4 did not enhance the inhibiting strength of TNBT but they increased the filling capability of the copper plating solution. Additionally, the protons could chemically interact with TNBT to form precipitate, whereas sodium and potassium ions did not easily interact with TNBT. The filling capability of the copper plating solution using Na 2 SO 4 and K 2 SO 4 as supporting electrolytes could be greatly improved by adding a small amount of bis(3-sulfopropyl)-disulfide (SPS) and poly(ethylene glycol) (PEG) with a molecular weight of 600.

  2. Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients

    International Nuclear Information System (INIS)

    Baumert, E.K.; Pierron, O.N.

    2012-01-01

    A characterization technique based on kilohertz micro-resonators is presented to investigate the very high cycle fatigue behavior of 20 μm thick electroplated Ni films with a columnar microstructure (grain diameter less than 2 μm). The films exhibit superior fatigue resistance due to the extreme stress gradients at the surface. The effects of stress amplitude and environment on the formation of fatigue extrusions and micro-cracks are discussed based on scanning electron microscopy and the tracking of the specimens’ resonant frequency.

  3. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    Full Text Available Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food safety and the influence of the countries which import food are influencing policy makers and agriculturists to improve the standards of wastewater reuse in agriculture. The environmental awareness of consumers has been putting pressure on the producers (industries to opt for environmentally sound technologies including those which conserve water and reduce the level of pollution. It may be observed that we have to move forwards to implement strategies and plans for wastewater reuse. However, their success and sustainability will depend on political will, public awareness and active support from national and international agencies to create favorable    environment for the promotion of environmentally sustainable technologies. Wastewater treatment has a long history, especially in agriculture, but also in industry and households. Poor quality of wastewater can pose a significant risk to the health of farmers and users of agricultural products. The World Health Organization (WHO is working on a project for the reuse of wastewater in agriculture. To reduce effects of human activities to the minimum, it is necessary to provide such technical and technological solutions that would on the one hand ensure complying with  the existing regulations and legislation, and on the other hand provide economically viable systems as seen through investments and operating costs. The use of wastewater The practice of using wastewater varies from country to country. Its

  4. Wastewater Treatment

    Science.gov (United States)

    ... day before releasing it back to the environment. Treatment plants reduce pollutants in wastewater to a level nature can handle. Wastewater is used water. It includes substances such as human waste, food ...

  5. Wastewater Characteristics, Treatment and Disposal

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations f...

  6. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  7. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    International Nuclear Information System (INIS)

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-01-01

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  8. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    Science.gov (United States)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  9. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  10. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.

    Science.gov (United States)

    Cao, Zhenbang; Zhang, Jia; Zhou, Jizhi; Ruan, Xiuxiu; Chen, Dan; Liu, Jianyong; Liu, Qiang; Qian, Guangren

    2017-05-15

    A zinc-dominant ferrite catalyst for efficient degradation of organic dye was prepared by the calcination of electroplating sludge (ES). Characterizations indicated that zinc ferrite (ZnFe 2 O 4 ) coexisted with Fe 2 O 3 structure was the predominant phase in the calcined electroplating sludge (CES). CES displayed a high decolorization ratio (88.3%) of methylene blue (MB) in the presence of H 2 O 2 combined with UV irradiation. The high efficiency could be ascribed to the photocatalytic process induced by ZnFe 2 O 4 and the photo-Fenton dye degradation by ferrous content, and a small amount of Al and Mg in the sludge might also contribute to the catalysis. Moreover, the degradation capability of dye by CES was supported by the synthetic ZnFe 2 O 4 with different Zn to Fe molar ratio (n(Zn): n(Fe)), as 84.81%-86.83% of dye was removed with n(Zn): n(Fe) ranged from 1:0.5 to 1:3. All synthetic ferrite samples in the simulation achieved adjacent equilibrium decolorization ratio, the flexible proportioning of divalent metal ions (M 2+ ) to trivalent metal ions (M 3+ ) applied in the synthesis indicated that the catalyst has a high availability. Therefore, an efficacious catalyst for the degradation of dye can potentially be derived from heavy metal-containing ES, it's a novel approach for the reutilization of ES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. NUSC Technical Volunteer Service (TVS).

    Science.gov (United States)

    1982-12-12

    unique evaporator wastewater recycling methods. In this system, water, electroplating metals, and waste heat can all be reused. More information on...lore, leqnd, and trivia to make the ir oject mor, Int: resting. if you scrved aboard the Nautii :, or know someone who did, and have interesting

  12. Electrochemical behaviors of Janus Green B in through-hole copper electroplating: An insight by experiment and density functional theory calculation using Safranine T as a comparison

    International Nuclear Information System (INIS)

    Wang, Chong; Zhang, Jinqiu; Yang, Peixia; An, Maozhong

    2013-01-01

    Highlights: ► Using Safranine T as a comparison to study the mechanism of JGB in the through-hole electroplating. ► Quantum chemical calculation is employed to analysis electronic properties and orbital information of levelers in the present paper. ► Finding out the probable reactive site for the adsorption of JGB on the copper surface. ► Offering some theoretical information to design and synthesize new additives for electroplating. -- Abstract: Janus Green B (JGB) and Safranine T (ST) were used as levelers in the through-hole (TH) copper electroplating experiments. Although JGB and ST have a similar part in the structure, the results indicate that JGB is an effective leveler used for TH electroplating whereas ST is not. A uniform plating is obtained using 1 ppm JGB as a leveler. In contrast, ST could not increase the value of uniformity power (UP). Electrochemical behaviors of JGB and ST were evaluated by potentiodynamic polarization and galvanostatic measurements using rotating disk electrode (RDE). JGB could effectively affect the cathodic polarization. However, the addition of ST changed the cathodic polarization weakly. Quantum chemical calculations based on density functional theory (DFT) were used to obtain some electronic properties and orbital information. The calculations on frontier molecular orbital suggested that the electron donating ability of JGB was higher than that of ST, which gave rise to stronger adsorption of JGB on the cathodic surface and stronger inhibition of copper electrodeposition on the cathode. Furthermore, the results of frontier molecular orbital and Fukui function distributions showed that the N=N region or aminoazobenzene region of JGB was the probable reactive site for the adsorption of JGB on the copper surface

  13. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  14. Study of the electroplated of Ni for betavoltaic battery using PN junction without seed layer

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Kim, Jong Bum; Son, Kwang Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Byoung Gun [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The mechanism of a nuclear battery is same as the P.N junction diode for solar cell application. The photovoltaic is operated by converting photons into electrical energy in the junction. In a betavoltaic battery, beta particles are collected and converted into electrical energy with a similar principle as a photovoltaic. If a radioisotope (RI) with a long half-life (over 100 years) is used, the lifetime of the power source is extended to as long as the half-life time of the RI. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system can gain learned behavior without worrying about the power turning off. The beta spectrum of {sup 63}Ni is below the radiation damage threshold (approximately 200 keV for Si) of semiconductors such as Si and SiC. Beta particles of 63Ni were deposited by electroplating on the Ni-foil substrate and attached on the trench P-N absorber with a spacing of 50 μm. The optimum total thickness of the 63Ni layer was determined to be about 2 μm, when regarding the minimum self-shielding effect of the beta-ray (β-ray). The optimum condition of the electroplating {sup 63}Ni was determined at current density of 20 mA/cm{sup 2}.

  15. Micro-scale metallization on flexible polyimide substrate by Cu electroplating using SU-8 photoresist mask

    International Nuclear Information System (INIS)

    Cho, S.H.; Kim, S.H.; Lee, N.-E.; Kim, H.M.; Nam, Y.W.

    2005-01-01

    Technologies for flexible electronics have been developed to make electronic or microelectromechanical (MEMS) devices on inexpensive and flexible organic substrates. In order to fabricate the interconnect lines between device elements or layers in flexible electronic devices, metallization on the flexible substrate is essential. In this case, the width and conductivity of metallization line are very important for minimizing the size of device. Therefore, the realization of metallization process with the scale of a few micrometers on the flexible substrate is required. In this work, micro-scale metallization lines of Cu were fabricated on the flexible substrate by electroplating using the patterned mask of a negative-tone SU-8 photoresist. Polyimide surface was treated by O 2 /Ar atmospheric plasma for the improvement in adhesion between Cr layer and polyimide and in situ sputter deposition of 100-nm-thick Cu seed layers on the sputter-deposited 50-nm-thick Cr adhesion layer was followed. SU-8 photoresist was spin-coated and patterned by photolithography. Electroplating of Cu line, removal of SU-8, and selective wet etch of Cr adhesion and Cu seed layers were carried out. Gap between the Cu lines was successfully filled by spin-coating of polyimide. Micro-scale Cu metal lines with gap filling on the polyimide substrate with a thickness of 6-12 μm and an aspect ratio of 1-3 were successfully fabricated

  16. Study of the electroplated of Ni for betavoltaic battery using PN junction without seed layer

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jong Bum; Son, Kwang Jae; Cho, Byoung Gun

    2015-01-01

    The mechanism of a nuclear battery is same as the P.N junction diode for solar cell application. The photovoltaic is operated by converting photons into electrical energy in the junction. In a betavoltaic battery, beta particles are collected and converted into electrical energy with a similar principle as a photovoltaic. If a radioisotope (RI) with a long half-life (over 100 years) is used, the lifetime of the power source is extended to as long as the half-life time of the RI. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system can gain learned behavior without worrying about the power turning off. The beta spectrum of 63 Ni is below the radiation damage threshold (approximately 200 keV for Si) of semiconductors such as Si and SiC. Beta particles of 63Ni were deposited by electroplating on the Ni-foil substrate and attached on the trench P-N absorber with a spacing of 50 μm. The optimum total thickness of the 63Ni layer was determined to be about 2 μm, when regarding the minimum self-shielding effect of the beta-ray (β-ray). The optimum condition of the electroplating 63 Ni was determined at current density of 20 mA/cm 2

  17. Wastewater garden--a system to treat wastewater with environmental benefits to community.

    Science.gov (United States)

    Nair, Jaya

    2008-01-01

    Many communities and villages around the world face serious problems with lack of sanitation especially in disposing of the wastewater-black water and grey water from the houses, or wash outs from animal rearing sheds. Across the world diverting wastewater to the surroundings or to the public spaces are not uncommon. This is responsible for contaminating drinking water sources causing health risks and environmental degradation as they become the breeding grounds of mosquitoes and pathogens. Lack of collection and treatment facilities or broken down sewage systems noticed throughout the developing world are associated with this situation. Diverting the wastewater to trees and vegetable gardens was historically a common practice. However the modern world has an array of problems associated with such disposal such as generation of large quantity of wastewater, unavailability of space for onsite disposal or treatment and increase in population. This paper considers the wastewater garden as a means for wastewater treatment and to improve the vegetation and biodiversity of rural areas. This can also be implemented in urban areas in association with parks and open spaces. This also highlights environmental safety in relation to the nutrient, pathogen and heavy metal content of the wastewater. The possibilities of different types of integration and technology that can be adopted for wastewater gardens are also discussed. IWA Publishing 2008.

  18. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  19. Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater.

    Science.gov (United States)

    Liu, Hui; Chen, Yinguang; Wu, Jiang

    2017-11-01

    Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.

  20. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  1. Investigation of coercivity for electroplated Fe-Ni thick films

    Science.gov (United States)

    Yanai, T.; Eguchi, K.; Koda, K.; Kaji, J.; Aramaki, H.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    We have already reported Fe-Ni firms with good soft magnetic properties prepared by using an electroplating method. In our previous studies, we prepared the Fe-Ni films from citric-acid-based baths (CA-baths) and ammonium-chloride-based ones (AC-baths), and confirmed that the coercivity for the AC-baths was lower than that for the CA-baths. In the present study, we investigated reasons for the lower coercivity for the AC-baths to further improve the soft magnetic properties. From an observation of magnetic domains of the Fe22Ni78 films, we found that Fe22Ni78 film for AC-bath had a magnetic anisotropy in the width direction, and also found that the coercivity in the width direction was lower than the longitudinal one for the AC-bath. As an annealing for a stress relaxation in the films reduced the difference in the coercivity, we considered that the anisotropy is attributed to the magneto-elastic effect.

  2. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    Microorganisms play a vital role in heavy metal contaminated soil and wastewater by the mechanisms of biosorption. In this study, heavy metal resistant bacteria were isolated from an electroplating industrial effluent samples that uses copper, cadmium and lead for plating. These isolates were characterized to evaluate their ...

  3. Electroplated Fe-Co-Ni films prepared in ammonium-chloride-based plating baths

    Science.gov (United States)

    Yanai, T.; Koda, K.; Kaji, J.; Aramaki, H.; Eguchi, K.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    We electroplated Fe-Co-Ni films in ammonium-chloride-based plating baths, and investigated the effect of the Co content on the magnetic properties and the structural ones of the as-plated films. The coercivity increased abruptly when the Co content become more than 60 at.%. As the rough surfaces were observed in the high Co content region, we considered that degradation of the surface is a factor of the abrupt increase in the coercivity. From the XRD analysis, we found that another factor of the abrupt increase is fcc-bcc phase transformation, and concluded that we need to keep the fcc structure to obtain Fe-Co-Ni films with low coercivity.

  4. Influence of wastewater characteristics on methane potential in food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Baun, Anders; Angelidaki, Irini

    2008-01-01

    ) were compared to the theoretical methane yields (Bo,th) in order to evaluate the biodegradability of the tested wastewaters and the influence of their physico-chemical characteristics. The analytical method applied to quantify the wastewaters’ organic content proved to influence the estimation...... of their theoretical yields. The substrate:inoculum ratio as well as the dilution factor of the wastewaters influenced the ultimate practical methane yields differently in each of the wastewaters assessed. Substrate chemical oxygen demand (COD) concentrations did not present any influence on ultimate practical methane...... yields; on the other hand, it was found that they were affected positively by concentrations of total inorganic carbon when wastewaters were 25% and 50% diluted and affected negatively by concentrations of total acetate when wastewaters were undiluted. Carbohydrate and protein concentrations affected...

  5. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  6. Preparation and Characterization of Ni Spines Grown on the Surface of Cubic Boron Nitride Grains by Electroplating Method

    Science.gov (United States)

    Gui, Yanghai; Zhao, Jianbo; Chen, Jingbo; Jiang, Yuanli

    2016-01-01

    Cubic boron nitride (cBN) is widely applied in cutting and grinding tools. cBN grains plated by pure Ni and Ni/SiC composite were produced under the same conditions from an additive-free nickel Watts type bath. The processed electroplating products were characterized by the techniques of scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermoanalysis (TG-DTA). Due to the presence of SiC particles, there are some additional nodules on the surface of Ni/SiC plated cBN compared with the pure Ni plated cBN. The unique morphology of Ni/SiC plated cBN should attain greater retention force in resin bond. Moreover, the coating weight of cBN grains could be controlled by regulating the plating time. cBN grains with 60% coating weight possess the optimum grinding performance due to their roughest and spiniest surface. In addition, Ni spines plated cBN grains show good thermal stability when temperature is lower than 464 °C. Therefore, the plated cBN grains are more stable and suitable for making resin bond abrasive tools below 225 °C. Finally, the formation mechanism of electroplating products is also discussed. PMID:28773283

  7. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  8. Enhancement of Life Time of the Dimensionally Stable Anode for Copper Electroplating Applications

    Directory of Open Access Journals (Sweden)

    Son Seong Ho

    2017-06-01

    Full Text Available In order to enhance the long-term stability of DSA for copper electroplating process, in the present study, noble metal oxides with excellent electrochemical properties was used and optimum condition was determined the ratio of noble metal oxides, surface pre-treatment of titanium substrate and heat treatment. The effect of the surface pretreatment of titanium substrate and ratio of noble metal oxides were estimated by accelerated test at the highly current density conditions. The lifetime of DSA increase six-fold higher as the oxide thickness of Ta 7 : Ir 3 composition ratio. Under the optimal condition, surface pretreatment led to dramatic increase in the lifetime of DSA.

  9. Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Jin, S.H.

    2010-01-01

    This study presents a screening protocol to evaluate the applicability of the ZVI pretreatment to various industrial wastewaters of which major constituents are not identified. The screening protocol consisted of a sequential analysis of UV-vis spectrophotometry, high-performance liquid chromatograph (HPLC), and bioassay. The UV-vis and HPLC analyses represented the potential reductive transformation of unknown constituents in wastewater by the ZVI. The UV-vis and HPLC results were quantified using principal component analysis (PCA) and Euclidian distance (ED). The short-term bioassay was used to assess the increased biodegradability of wastewater constituents after ZVI treatment. The screening protocol was applied to seven different types of real industrial wastewaters. After identifying one wastewater as the best candidate for the ZVI treatment, the benefit of ZVI pretreatment was verified through continuous operation of an integrated iron-sequencing batch reactor (SBR) resulting in the increased organic removal efficiency compared to the control. The iron pretreatment was suggested as an economical option to modify some costly physico-chemical processes in the existing wastewater treatment facility. The screening protocol could be used as a robust strategy to estimate the applicability of ZVI pretreatment to a certain wastewater with unknown composition.

  10. [Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    Science.gov (United States)

    Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang

    2013-01-01

    An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.

  11. Hazardous substances in wastewater systems:a delicate issue for wastewater management

    OpenAIRE

    Palmquist, Helena

    2001-01-01

    Many substances derived from human activity end up in wastewater systems at some point. A large number of different substances - up to 30,000 - are present in wastewater. Some of them are valuable, such as nitrogen and phosphorus, but there are also hazardous substances such as heavy metals and anthropogenic organic substances. To be able to utilise the wastewater nutrients on arable land (agriculture, forestry or other alternatives), it is of great importance to investigate the sources of ha...

  12. Hydrogen embrittlement of high strength steel electroplated with zincâ  cobalt allo

    OpenAIRE

    Hillier, Elizabeth M. K.; Robinson, M. J.

    2004-01-01

    Slow strain rate tests were performed on quenched and tempered AISI 4340 steel to measure the extent of hydrogen embrittlement caused by electroplating with zincâ  cobalt alloys. The effects of bath composition and pH were studied and compared with results for electrodeposited cadmium and zincâ  10%nickel. It was found that zincâ  1%cobalt alloy coatings caused serious hydrogen embrittlement (EI 0.63); almost as severe as that of cadmium (EI 0.78). Baking cadmium plate...

  13. Characterization of room temperature recrystallization kinetics in electroplated copper thin films with concurrent x-ray diffraction and electrical resistivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Treger, Mikhail; Noyan, I. C. [Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027 (United States); Witt, Christian [GlobalFoundries, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Cabral, Cyril; Murray, Conal; Jordan-Sweet, Jean [IBM, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Rosenberg, Robert [State University of New York, the University at Albany, Albany, NY 12203 (United States); Eisenbraun, Eric [College of Nanoscale Science and Engineering, University at Albany, Albany, NY 12203 (United States)

    2013-06-07

    Concurrent in-situ four-point probe resistivity and high resolution synchrotron x-ray diffraction measurements were used to characterize room temperature recrystallization in electroplated Cu thin films. The x-ray data were used to obtain the variation with time of the integrated intensities and the peak-breadth from the Cu 111 and 200 reflections of the transforming grains. The variation of the integrated intensity and resistivity data with time was analyzed using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. For both 111-textured and non-textured electroplated Cu films, four-point probe resistivity measurements yielded shorter transformation times than the values obtained from the integrated intensities of the corresponding Cu 111 reflections. In addition, the JMAK exponents fitted to the resistivity data were significantly smaller. These discrepancies could be explained by considering the different material volumes from which resistivity and diffraction signals originated, and the physical processes which linked these signals to the changes in the evolving microstructure. Based on these issues, calibration of the resistivity analysis with direct structural characterization techniques is recommended.

  14. Assessment of in vitro cyto/genotoxicity of sequentially treated electroplating effluent on the human hepatocarcinoma HuH-7 cell line.

    Science.gov (United States)

    Naik, Umesh Chandra; Das, Mihir Tanay; Sauran, Swati; Thakur, Indu Shekhar

    2014-03-01

    The present study compares in vitro toxicity of electroplating effluent after the batch treatment process with that obtained after the sequential treatment process. Activated charcoal prepared from sugarcane bagasse through chemical carbonization, and tolerant indigenous bacteria, Bacillus sp. strain IST105, were used individually and sequentially for the treatment of electroplating effluent. The sequential treatment involving activated charcoal followed by bacterial treatment removed 99% of Cr(VI) compared with the batch processes, which removed 40% (charcoal) and 75% (bacteria), respectively. Post-treatment in vitro cyto/genotoxicity was evaluated by the MTT test and the comet assay in human HuH-7 hepatocarcinoma cells. The sequentially treated sample showed an increase in LC50 value with a 6-fold decrease in comet-assay DNA migration compared with that of untreated samples. A significant decrease in DNA migration and an increase in LC50 value of treated effluent proved the higher effectiveness of the sequential treatment process over the individual batch processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Review of wastewater problems and wastewater-management planning in the San Francisco Bay region, California

    Science.gov (United States)

    Hines, Walter G.

    1973-01-01

    The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the

  16. Basic Principles of Wastewater Treatment

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Basic Principles of Wastewater Treatment is the second volume in the series Biological Wastewater Treatment, and focusses on the unit operations and processes associated with biological wastewater treatment. The major topics covered are: microbiology and ecology of wastewater treatment reaction kinetics and reactor hydraulics conversion of organic and inorganic matter sedimentation aeration The theory presented in this volume forms the basis upon which the other books...

  17. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  18. Wastewater treatment by nanofiltration membranes

    Science.gov (United States)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  19. Neutralization of wastewater from nitrite passivation

    International Nuclear Information System (INIS)

    Pawlowski, L.; Mientki, B.; Wasag, H.

    1982-01-01

    A method for neutralization of wastewater formed in nitrite passivation has been presented. The method consists of introducing urea into wastewater and acidifying it with sulphuric acid. Wastewater is neutralized with lime. After clarification, wastewater can be drained outside the plant

  20. Nitrification in Saline Industrial Wastewater

    NARCIS (Netherlands)

    Moussa, M.S.

    2004-01-01

    Biological nitrogen removal is widely and successfully applied for municipal wastewater. However, these experiences are not directly applicable to industrial wastewater, due to its specific composition. High salt levels in many industrial wastewaters affect nitrification negatively and improved

  1. Phytoextraction of chromium from electroplating effluent by Tagetes erecta (L.

    Directory of Open Access Journals (Sweden)

    Karuppiah Chitraprabha

    2018-05-01

    Full Text Available Industrialization has made developing countries ‘hot-spots’ of metal pollution. Being non-biodegradable, they persist in the environment and result in bioaugmentation. To remediate this persistent pollutant, the green technology, phytoremediation has been attempted in the present study. Analysis of variance showed the probability (P of significant chromium (Cr uptake by shoot (P ≤ 0.03 and highly significant Cr accumulation in root (P ≤ 0.0001. Cr-induced physiological changes were observed in the form of significant decrease in chlorophyll content (P ≤ 0.004 and significant increase in biomass (P ≤ 0.002, from day 7 to day 35 when exposed to 2, 4 and 6 mg kg−1 of chrome effluent. Tagetes erecta in association with rhizobacteria (Bacillus cereus-CK 505 and Enterobacter cloacae-CK 555 was found to accumulate high levels (94% of Cr within a short period of 35 days. Keywords: Phytoremediation, Tagetes erecta, African marigold, Electroplating, Chromium, Rhizobacteria

  2. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil.

    Science.gov (United States)

    Zhao, Ling; Ding, Zhenliang; Sima, Jingke; Xu, Xiaoyun; Cao, Xinde

    2017-09-01

    This study aims to develop an amendment for simultaneous immobilization of Zn and Cr(VI) in an abandoned electroplating contaminated soil. Nature phosphate rock was first activated with oxalic acid (O-PR) and then combined with FeSO 4 or zero-valent iron (ZVI) for immobilization of Zn and Cr(VI) from aqueous solutions. Finally, the optimized approach showing the highest immobilization ability in solution was applied in an electroplating contaminated soil. The O-PR combined with FeSO 4 was more effective in simultaneously removing Zn and Cr(VI) than the O-PR integrated with ZVI within the tested solution pH range of 5.5-8.5. Both O-PR with FeSO 4 and with ZVI removed over 95% of Zn from the solution; however, only 42-46% of Cr(VI) was immobilized by O-PR with ZVI, while O-PR with FeSO 4 almost precipitated all Cr(VI). Moreover, there were 75-95% Zn and 95-100% Cr(VI) remaining in the exhausted O-PR with FeSO 4 solid after toxicity characteristic leaching test (TCLP) while the exhausted O-PR with ZVI solid only retained 44-83% Zn and 32-72% Cr(VI). Zinc was immobilized mainly via formation of insoluble Fe-Zn phosphate co-precipitates, while iron-induced reduction of Cr(VI) into stable Cr(OH) 3 or Cr x Fe (1-x) (OH) 3 was responsible for Cr(VI) immobilization. Application of the O-PR integrated with FeSO 4 in the electroplating contaminated soil rapidly reduced the TCLP extractable Zn and Cr(VI) to below the standard limits, with decrease by 50% and 94%, respectively. This study revealed that combination of oxalic acid activated phosphate rock with FeSO 4 could be an effective amendment for remediation of Zn and Cr(VI) contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  4. [Distribution Characteristics of Heavy Metals in Environmental Samples Around Electroplating Factories and the Health Risk Assessment].

    Science.gov (United States)

    Guo, Peng-ran; Lei, Yong-qian; Zhou, Qiao-li; Wang, Chang; Pan, Jia-chuan

    2015-09-01

    This study aimed to investigate the pollution degree and human health risk of heavy metals in soil and air samples around electroplating factories. Soil, air and waste gas samples were collected to measure 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in two electroplating factories, located in Baiyun district of Guangzhou city. Geoaccumulation index and USEPA Risk Assessment Guidance for Superfund (RAGS) were respectively carried out. Results showed that concentrations of Hg and Pb in waste gas and Cr in air samples were higher than limits of the corresponding quality standards, and concentrations of Cd, Hg and Zn in soil samples reached the moderate pollution level. The HQ and HI of exposure by heavy metals in air and soil samples were both lower than 1, indicating that there was no non-carcinogen risk. CRAs and CRCr in soil samples were beyond the maximum acceptable level of carcinogen risk (10(-4)), and the contribution rate of CRCr to TCR was over 81%. CRCr, CRNi and TCR in air samples were in range of 10(-6) - 10(-4), indicating there was possibly carcinogen risk but was acceptable risk. CR values for children were higher than adults in soils, but were higher for adults in air samples. Correlation analysis revealed that concentrations of heavy metals in soils were significantly correlated with these in waste gas samples, and PCA data showed pollution sources of Cd, Hg and Zn in soils were different from other metals.

  5. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    Science.gov (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  6. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  7. Wastewater heat recovery apparatus

    Science.gov (United States)

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  8. A method for determination of X-ray elastic constants of materials showing non-linear sin2ψ diagrams and its application to Zn-Ni-alloy electroplate

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Kuramoto, Makoto; Yoshioka, Yasuo.

    1990-01-01

    This paper describes the method and the experiment for the determination of the x-ray elastic constants of Zn-Ni-alloy electroplate. For this material, the sin 2 ψ method is not adequate to use because this material shows severely curved sin 2 ψ diagrams. Therefore, a new method developed by the authors was explained first. This new method is effective for materials showing nonlinear sin 2 ψ diagrams. Secondly, the experiment was made on the application of this method to the Zn-Ni-alloy electroplate. And it was found out that the experimental data agreed well to the theory of this method. As a result, the following values were obtained as the x-ray elastic constants of the sample measured: (1+ν)/E=8.44 TPa -1 ν/E=2.02 TPa -1 (author)

  9. Wastewater reuse

    OpenAIRE

    Milan R. Radosavljević; Vanja M. Šušteršič

    2013-01-01

    Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food s...

  10. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  11. PENGAMBILAN LOGAM CR6+ DAN CR TOTAL DARI LIMBAH INDUSTRI ELEKTROPLATING SECARA ELEKTROKOGULASI

    Directory of Open Access Journals (Sweden)

    Muhammad Nizar Pahlevi

    2012-10-01

    Full Text Available Electroplating industry is a metal coating industry by way of metal precipitate coatings on metal or plastic which is done so that the electrolytic waste containing heavy metals. Electrocoagulation is a process of merging clumps resulting from the flux of electrical current (DC for the extraction of metal compounds contained in wastewater. In this process of reduction and oxidation reactions occur. Where the metal is reduced and the positive electrode (Al will be oxidized to (Al (OH 3 which serves as a coagulant. The purpose of this research to study methods of electrocoagulation using aluminum electrodes and the influence of the length of time stirring and stirring speed of decision-CR6+ levels and total Cr. This electrocoagulation electroplating wastewater with electricity so that the ions are absorbed by the coagulant in waste binder in the release of the electrode and causes the bond between the metal ions with coagulant. Variation of stirrer speed of 200, 400 and 600 rpm, whereas the long stirring time 25, 50 and 75 minutes. Based on test results, after an analysis showed a significant reduction of the levels of total CR6 + and Cr in the electroplating wastes. CR6+ to obtain a decrease of 95.1% at minute 50 and the stirrer speed of 200 rpm, whereas the total Cr obtained a decrease of 82.69% at minute 75 and a stirrer speed of 600 rpm.

  12. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    International Nuclear Information System (INIS)

    Zhang, Yan-hong; Liu, Fu-qiang; Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng; Wang, Feng-he; Ling, Chen; Li, Ai-min

    2017-01-01

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H_2PO_4"− could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H_2PO_4"− from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H_2PO_4"− were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H_2PO_4"− accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H_2PO_4"−. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  13. RESEARCH OF PROCESS OF AN ALLOYING OF THE FUSED COATINGS RECEIVED FROM THE SUPERFICIAL ALLOYED WIRE BY BORON WITH IN ADDITIONALLY APPLIED ELECTROPLATED COATING OF CHROME AND COPPER

    Directory of Open Access Journals (Sweden)

    V. A. Stefanovich

    2015-01-01

    Full Text Available Researches on distribution of chrome and copper in the fused coating received from the superficial alloyed wire by boron with in additionally applied electroplated coating of chrome and copper were executed. The structure of the fused coating consists of dendrites on which borders the boride eutectic is located. It is established that the content of chrome in dendrites is 1,5– 1,6 times less than in the borid; distribution of copper on structure is uniformed. Coefficients of digestion of chrome and copper at an argon-arc welding from a wire electrode with electroplated coating are established. The assimilation coefficient for chrome is equal to 0,9–1,0; for copper – 0,6–0,75.

  14. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.

    Science.gov (United States)

    Wang, Hong-Yan; Gao, Hong-Wen

    2009-05-01

    efficiently than the activated carbon. The adsorption of EV on the CaC(2)O(4)/BPR inclusion sorbent was complete in only 5 min and the sedimentation complete in 1 h. However, those of EV onto activated carbon took more than 1.5 and 5 h, respectively. The treatment of methylene blue and malachite green dye wastewaters indicated that only 0.4% of the sorbent adsorbed over 80% of color substances. Besides, the material can also adsorb heavy metals by complexation with BPR. Over 90% of Pb(2+), and approximately 50% of Cd(2+) and Cu(2+), were removed in a high Zn(2+)-electroplating wastewater when 3% of the material was added. Eighty-six percent of Cu(2+), and 60% of Ni(2+) and Cd(2+), were removed in a high Cd(2+)-electroplating wastewater. The embedment of BPR into CaC(2)O(4) particles responded to the Langmuir isothermal adsorption. As the affinity ligand of Ca(2+), BPR with sulfonic groups may be adsorbed into the temporary electric double layer during the growing of CaC(2)O(4) particles. Immediately, C(2)O(4) (2-) captured the Ca(2+) to form the CaC(2)O(4) outer enclosed sphere. Thus, BPR may be released and embedded as a sandwich between CaC(2)O(4) layers. The adsorption of EV on the sorbent obeyed the Langmuir isothermal equation and adsorption is mainly due to the ion-pair attraction between EV and BPR. Different from the inclusion sorbent, the activated carbon depended on the specific surface area to adsorb organic substances. Therefore, the adsorption capacity, equilibrium, and sedimentation time of the sorbent are much better than activated carbon. The interaction of heavy metals with the inclusion sorbent responded to their coordination. By characterizing the C(2)O(4) (2-)-BPR-Ca(2+) inclusion material using various modern instruments, the ternary in situ embedment particle, [(CaC(2)O(4))(95)(BPR)]( n ) (2n-), an electronegative, micron-sized adsorbent was synthesized. It is selective, rapid, and highly effective for adsorbing cationic dyes and heavy metals. Moreover

  15. Problems with textile wastewater discharge

    International Nuclear Information System (INIS)

    Rantala, Pentti

    1987-01-01

    The general character of textile industry wastewaters is briefly discussed. General guidelines and practice in Finland when discharging textile industry wastewaters to municipal sewer systems is described. A survey revealed that most municipalities experience some problems due to textile industry wastewaters. Pretreatment is not always practiced and in some cases pretreatment is not operated efficiently. (author)

  16. A California Winery Wastewater Survey: Assessing the Salinity Challenge for Wastewater Reuse

    Science.gov (United States)

    The increasing scarcity of water and tighter regulations for discharge make onsite wastewater reuse an attractive prospect for the California wine industry. This study reports winery wastewater (WW) data from eighteen Northern California (Northern CA) wineries. The current study provides a baseline ...

  17. Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications

    Science.gov (United States)

    Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.

    2018-04-01

    Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.

  18. Investigation on the evolution of microstructure and texture of electroplated Ni–Ti composite coating by Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuantao, E-mail: zhaoyuantao@sjtu.edu.cn; Cai, Fei, E-mail: caifei32@126.com; Wang, Chengxi, E-mail: sjtucxw@sjtu.edu.cn; Chai, Ze, E-mail: zechaisjtu@163.com; Zhu, Kaiyuan, E-mail: xrd125@163.com; Xu, Zhou, E-mail: xuzhou@sjtu.edu.cn; Jiang, Chuanhai, E-mail: chjiang-sjtu@hotmail.com

    2015-10-30

    Highlights: • Ni–Ti composite coatings were prepared by electroplating. • Morphology and Ti content of Ni–Ti coatings were studied upon SEM and EDXS. • Microstructures of Ni–Ti coatings were studied upon the Rietveld method. • The texture of Ni–Ti coatings was studied upon the pole figure. - Abstract: Rietveld refinement was utilized to investigate the evolution of microstructure and texture of the Ni–Ti composite coatings electroplated at different applied current densities. Scanning Electron Microscope and Energy Dispersive Spectroscopy were utilized to investigate the morphology and chemical composition of the coatings. Relative texture coefficients (RTC) and measured pole figures were utilized to investigate the texture evolution of the coatings. The results showed that the surface morphology of the coatings changed from a colonial structure to a polyhedral one. And the incorporated Ti content decreased with increasing applied current density. As the applied current density increased, the crystallite sizes increased and their distribution got less uniform, and the microstrain and dislocation density decreased. The results of simulated pole figures obtained from Rietveld refinement illustrated that the texture of the coatings changed from no obvious texture to a strong [2 0 0] fiber texture with increasing applied current density. The texture evolution obtained from simulated pole figures was confirmed by the result of RTC and the measured pole figures. The evolutions of the microstructure and texture were derived from the change of the applied current density and incorporated Ti content in the Ni–Ti composite coatings.

  19. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Zhang Ziping; Yu Gang; Ouyang Yuejun; He Xiaomei; Hu Bonian; Zhang Jun; Wu Zhenjun

    2009-01-01

    The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH) 2 and MgF 2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF 2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm -3 of F - is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.

  20. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    International Nuclear Information System (INIS)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S.

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %

  1. Double side electroplating for applying beta voltaic with sandwich structure

    International Nuclear Information System (INIS)

    Choi, Sang Moo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Kim, Jin Joo; Park, Jong Han

    2015-01-01

    As a result, a variety of nuclear-based small-scale power sources have been developed with varying degrees of success and maturity. A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amperes, is generated in devices. The difference of the short circuit current between the pre-deposition and post deposition of Ni-63 was found to be 5 nA. This value is very low to apply device junction. To fabricate betavoltaic, Ni-63 should be coated on the double side of substrate. The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni metal particles in HCl. The prototype for electroplating radioactive Ni-63 on double side has been established

  2. Double side electroplating for applying beta voltaic with sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Moo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Kim, Jin Joo; Park, Jong Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As a result, a variety of nuclear-based small-scale power sources have been developed with varying degrees of success and maturity. A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amperes, is generated in devices. The difference of the short circuit current between the pre-deposition and post deposition of Ni-63 was found to be 5 nA. This value is very low to apply device junction. To fabricate betavoltaic, Ni-63 should be coated on the double side of substrate. The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni metal particles in HCl. The prototype for electroplating radioactive Ni-63 on double side has been established.

  3. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  4. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  5. Properties of Concrete Mixes with Carwash Wastewater

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0 while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentages of wastewater replaced in the concrete mix ranged from 0% up to 40%. In addition, the results also suggest that the concrete with 20% car wash wastewater achieved the highest compressive strength and modulus of elasticity compared to other compositions of wastewater. Moreover, the results also recommended that concrete mixed with car wash wastewater has better compressive strength compared to conventional concrete.

  6. Vacuum brazing of OFE Copper-316L stainless steel transition joints without electroplating stainless steel part for application in particle accelerators

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kumar, Abhay; Ganesh, P.

    2015-01-01

    Brazed transition Joints between OFE copper and type 316L austenitic stainless steel (SS) find extensive applications in particle accelerators all over the world. In contrast to excellent wettability of OFE copper, austenitic SS is well known for its poor wettability for BVAg-8 ( 72 Ag/ 28 Cu; melting point: 1052 K) braze filler metal (BFM). High surface wettability is believed to be necessary to drag molten BFM into the capillary gap between mating metallic surfaces. Therefore, the widely accepted practice for vacuum brazing of such transition joints involves electroplating of SS parts with nickel or copper to enhance its wettability. A recently concluded in-house study, involving Nb to Ni-plated 316L SS brazing, has demonstrated that satisfactory ingress of BFM into a capillary joint between two dissimilar metals is possible if the poor wettability of one of the mating surfaces is compensated by good wettability of its counterpart. In the light of these observations, the present study was undertaken to explicitly evaluate the requirement of electroplating the SS part for establishment of sound OFE copper-316L SS brazed joints suitable for service in ultra-high vacuum (UHV) of particle accelerators

  7. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Jaehoon; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Energy and Environment Research Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Youn-Woo, E-mail: ywlee@snu.ac.kr [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 deg. C and a pressure of 25 MPa. The residence time was fixed at 2 s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O{sub 2} concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 deg. C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 deg. C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  8. Simulation of CHF Condition using an Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Park, Hae-Kyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    Heat transfer is enhanced when the bubbles are generated on the heated surface at the nucleate boiling regime since vigorous mixing of the liquid occurs near the heated surface due to the buoyancy force of the bubbles. As this phenomenon intensified, vapor film can be formed on the heated surface and it impairs heat transfer disturbing the heat exchange between the surface and the bulk liquid. And thus, the heat flux has the certain maximum value. This maximum value, Critical Heat Flux (CHF) is generally exhibits in the pool boiling condition in non-film boiling mode. Actually, the higher heat flux could be generated at the film boiling mode with extremely high surface temperature, which may unendurable for the system structure. CHF phenomena is simulated by hydrogen gas using electroplating system in mass transfer experiment. Vapor behavior on mass transfer experiment was visualized, and it was similar to that of on the heat transfer. CHF value was simulated by hydrogen gas with isovolumetric concept. Thus, virtual heat flux was estimated by mass flux, which is a non-heating process. Difference of gas density from heat transfer and mass transfer systems were considered and revised for the simulated heat flux. Despite of the simple parametric analysis, estimated CHF value of this study was 6.6 times smaller than Zuber's.

  9. Characteristics of grey wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Auffarth, Karina Pipaluk Solvejg; Henze, Mogens

    2002-01-01

    The composition of grey wastewater depends on sources and installations from where the water is drawn, e.g. kitchen, bathroom or laundry. The chemical compounds present originate from household chemicals, cooking, washing and the piping. In general grey wastewater contains lower levels of organic...

  10. Recycling phosphorus from wastewater

    DEFF Research Database (Denmark)

    Lemming, Camilla Kjærulff

    wastewater-derived products, and to relate this to the availability from other P-containing waste products and mineral P fertiliser. This included aspects of development over time and soil accumulation, as well as effects of soil pH and the spatial distribution in soil. The P sources applied in this PhD work...... reserves. Wastewater represents the largest urban flow of P in waste. Hence, knowledge about plant P availability of products from the wastewater treatment system, and also comparison to other waste P sources and mineral P is essential to obtain an efficient recycling and to prioritise between different P...... recycling options. The work of this PhD focused on the plant P availability of sewage sludge, a P-rich residue from wastewater treatment which is commonly applied to agricultural soil in Denmark. The overall objective of the PhD work was to evaluate the plant availability of P in sewage sludge and other...

  11. Corrosion behaviour and galvanic coupling with steel of Al-based coating alternatives to electroplated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fasuba, O.A.; Yerokhin, A., E-mail: A.Yerokhin@sheffield.ac.uk; Matthews, A.; Leyland, A.

    2013-08-15

    The galvanic corrosion behaviour of bare steel coupled to steel with an Al–Zn flake inorganic spin coating, an Al-based slurry sprayed coating, an arc sprayed Al coating and electroplated cadmium has been investigated. The sacrificial and galvanic behaviour of the coatings was studied in 3.5 wt. % NaCl solution using open-circuit potential, potentiodynamic polarisation and electrochemical noise measurements. The coatings were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Experimental results showed that the Al-based slurry sprayed coating exhibited an open-circuit potential closer to the steel substrate than other coatings, as well as a low corrosion current density and a more positive corrosion potential. In terms of the galvanic suitability of the investigated coatings for the steel substrate, both the Al–Zn flake inorganic spin coating and the Al-based slurry sprayed coating show low galvanic current, in comparison with the arc sprayed Al coating and electroplated cadmium. This behaviour confirms their superior cathodic protection capability and galvanic compatibility over other coatings tested. Electrochemical noise measurements provide accurate information on the coatings' galvanic behaviour, which can be complimented by the data obtained from superposition of potentiodynamic corrosion scans of the coating and bare steel, provided that the corrosion potential difference between the two materials does not exceed 300 mV. - Highlights: • Al-based slurry coating has best galvanic compatibility with steel. • Mg, Cr, P in Al-based slurry coating reinforce its corrosion resistance. • Ennoblement of Al–Zn flake coating compromises its cathodic protection. • Poor corrosion behaviour of arc sprayed Al coating caused by rough morphology. • Electrochemical noise provides adequate estimates of galvanic behaviour.

  12. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  13. Removal of cobalt, chromium, copper, iron and nickel cations from electroplating waste water by apatite ore

    Energy Technology Data Exchange (ETDEWEB)

    Kargar-Razi, M.; Yahyaabadi, S. [Azad Univ. Tehran (Iran, Islamic Republic of)

    2012-07-01

    In this investigation, the adsorption behavior of natural phosphate rock and it's concentrate with respect to Fe{sup 3+}, Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+} and Cr{sup 3+} has been studied, in order to consider its application to purity of electroplating waste water pollution. The batch mehtod has been employed, using metal concentrations in solution ranging from 2 ppm to 40 ppm with mixing process. The effect of pH, concentration of heavy metals and times (10-20 min) is considered. The results of their removal performance in 40 ppm concentration, pH = 8 and 10 minutes are obtained as Cr{sup 3+} > Cu{sup 2+} > Fe{sup 3+} > Co{sup 2+} > Ni{sup 2+} for phosphate rock and the sequence can be given as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. The same results show that maximum adsorption in PH = 4.5 and 7 for concentrate. The Langmuir adsorption isotherm constants corresponding to adsorption capacity were found to be as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+} for phosphate soil and Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. Sorption of metallic cations are considered in pH 4.5, 7 and 8. The results show that phosphate rock and its concentrate have great potential to remove cations of heavy metal species from electroplating waste water. (orig.)

  14. Parasitological Contamination of Wastewater Irrigated and Raw ...

    African Journals Online (AJOL)

    Tadesse

    Occurrence of infective stages of intestinal parasites on wastewater- irrigated vegetables ..... reported the health hazards of agricultural reuse of untreated wastewater through detection of .... State of knowledge in land treatment of wastewater.

  15. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-hong [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Liu, Fu-qiang, E-mail: jogia@163.com [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Wang, Feng-he [School of Environment, Nanjing Normal University, Nanjing, 210023 (China); Ling, Chen; Li, Ai-min [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China)

    2017-05-05

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H{sub 2}PO{sub 4}{sup −} were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H{sub 2}PO{sub 4}{sup −} accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H{sub 2}PO{sub 4}{sup −}. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  16. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  17. Understanding farmers' preferences for wastewater reuse ...

    African Journals Online (AJOL)

    Wastewater has emerged as an alternative source of water. Since the agricultural sector remains the largest water user world-wide, it is the main potential user of treated wastewater. However, while there are trade-offs in using wastewater, it may be the only option in water scarce regions. South Africa has included water ...

  18. Ultraviolet disinfection of treated municipal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Vander Laan, H; Cairns, B

    1993-12-31

    A wastewater disinfection system developed by a Canadian company, Trojan Technologies Inc., was discussed. Disinfection for pathogen reduction prior to discharge of treated municipal wastewater back into rivers and lakes has been either ignored or treated by the use of chemicals. In 1979 the first pilot ultraviolet (UV) wastewater disinfection system was established. Since then, over 500 municipal UV installations have been commissioned. The largest installation can process 212 million gallons of water per day. The advantages of UV as a disinfectant are: (1) It is more effective than chlorine. (2) There are no mutagenic/carcinogenic byproducts formed with UV. (3) No toxic chemical residuals are discharged. (4) UV is safe to both the operators and the public. (5) It is cost effective. Europe has not been as active in wastewater disinfection as has North America. One result of the absence of wastewater disinfection in Europe is that the Rhine River, for example, carries 50 million salmonella per second. Disinfection of wastewater effluents is, of course, indispensable in protecting our drinking water supply. 2 figs.

  19. Electroplating of polyaniline on carbon fiber cloth in a simple two electrode system: Application for the electrochemical filter in wastewater treatment

    Science.gov (United States)

    Tran, Thien Khanh; Tran, Hoai Nam; Nguyen, Thuy Linh; Leu, Hoang Jyn

    2018-04-01

    Nowadays, the pollution of water environment has become a significant problem that really requires a long term solution to deal with. In this study, we provide a simple method to create a capable electrode for electrochemical treatment of wastewater or even can be used as a filter by a physical method. Carbon fiber clothes 300×700 mm were chosen to carry on experiments of Polyaniline (PANI) electrodeposition. Generally, PANI was used to be deposited by three electrodes electrochemical system, however, our samples we obtained here are created by a simple two-electrode electrochemical system. Nevertheless, the product fiber cloth is controlled with a thickness of 0.19 mm and the mass density of 0.44g/cm3, the whole process was carried out under simple lab scale condition at Ton Duc Thang University. To clarify the properties of our products, there was some measurement applied, such as SEM for surface monographic investigation, thermal conductivity by DSC, electrical conductivity by CV and material properties by XRD and EDS measurement. In that manner, we believe that there is still more room for this method to improve in the near future and a bright chance to apply to industrial processes.

  20. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    Science.gov (United States)

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  2. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    Science.gov (United States)

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Water brief-WDM & wastewater reuse

    International Development Research Centre (IDRC) Digital Library (Canada)

    aalfouns

    Wastewater Reuse for Water Demand Management in the Middle East and ... Among the substantial WDM tools in MENA is the use of wastewater to reduce the pressure on scarce freshwater .... recycled water to irrigate crops with associated ...

  4. Water and Wastewater Rate Hikes Outpace CPI

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fuchs, Heidi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Water and wastewater treatment and delivery is the most capital-intensive of all utility services. Historically underpriced, water and wastewater rates have exhibited unprecedented growth in the past fifteen years. Steep annual increases in water and wastewater rates that outpace the Consumer Price Index (CPI) have increasingly become the norm across the United States. In this paper, we analyze water and wastewater rates across U.S. census regions between 2000 and 2014. We also examine some of the driving factors behind these rate increases, including drought, water source, required infrastructure investment, population patterns, and conservation effects. Our results demonstrate that water and wastewater prices have consistently increased and have outstripped CPI throughout the study period nationwide, as well as within each census region. Further, evaluation of the current and upcoming challenges facing water and wastewater utilities suggests that sharp rate increases are likely to continue in the foreseeable future.

  5. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  6. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  7. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Processing of semiconductors and thin film solar cells using electroplating

    Science.gov (United States)

    Madugu, Mohammad Lamido

    The global need for a clean, sustainable and affordable source of energy has triggered extensive research especially in renewable energy sources. In this sector, photovoltaic has been identified as a cheapest, clean and reliable source of energy. It would be of interest to obtain photovoltaic material in thin film form by using simple and inexpensive semiconductor growth technique such as electroplating. Using this growth technique, four semiconductor materials were electroplated on glass/fluorine-doped tin oxide (FTO) substrate from aqueous electrolytes. These semiconductors are indium selenide (In[x]Sey), zinc sulphide (ZnS), cadmium sulphide (CdS) and cadmium telluride (CdTe). In[x]Se[y] and ZnS were incorporated as buffer layers while CdS and CdTe layers were utilised as window and absorber layers respectively. All materials were grown using two-electrode (2E) system except for CdTe which was grown using 3E and 2E systems for comparison. To fully optimise the growth conditions, the as-deposited and annealed layers from all the materials were characterised for their structural, morphological, optical, electrical and defects structures using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption (UV-Vis spectroscopy), photoelectrochemical (PEC) cell measurements, current-voltage (I-V), capacitance-voltage (C-V), DC electrical measurements, ultraviolet photoelectron spectroscopy (UPS) and photoluminescence (PL) techniques. Results show that InxSey and ZnS layers were amorphous in nature and exhibit both n-type and p-type in electrical conduction. CdS layers are n-type in electrical conduction and show hexagonal and cubic phases in both the as-deposited and after annealing process. CdTe layers show cubic phase structure with both n-type and p-type in electrical conduction. CdTe-based solar cell structures with a n-n heterojunction plus large Schottky barrier, as well as multi-layer graded

  9. Application of reverse osmosis in radioactive wastewater treatment

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2012-01-01

    Considering the disadvantages of the conventional evaporation and ion exchange process for radioactive wastewater treatment, the reverse osmosis is used to treat the low level radioactive wastewater. The paper summarizes the research and application progress of the reverse osmosis in the radioactive wastewater treatment and indicates that the reverse osmosis in the radioactive wastewater treatment is very important. (authors)

  10. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  11. Sequential micro and ultrafiltration of distillery wastewater

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2015-01-01

    Full Text Available Water reuse and recycling, wastewater treatment, drinking water production and environmental protection are the key challenges for the future of our planet. Membrane separation technologies for the removal of all suspended solids and a fraction of dissolved solids from wastewaters, are becoming more and more promising. Also, these processes are playing a major role in wastewater purification systems because of their high potential for recovery of water from many industrial wastewaters. The aim of this work was to evaluate the application of micro and ultrafiltration for distillery wastewater purification in order to produce water suitable for reuse in the bioethanol industry. The results of the analyses of the permeate obtained after micro and ultrafiltration showed that the content of pollutants in distillery wastewater was significantly reduced. The removal efficiency for chemical oxygen demand, dry matter and total nitrogen was 90%, 99.2% and 99.9%, respectively. Suspended solids were completely removed from the stillage.

  12. In vitro study on porous silver scaffolds prepared by electroplating method using cellular carbon skeleton as the substrate

    International Nuclear Information System (INIS)

    Guo, M.; Wang, X.; Zhou, H.M.; Li, L.; Nie, F.L.; Cheng, Y.; Zheng, Y.F.

    2012-01-01

    Porous silver scaffolds, with the porosity ranging from 68% to 81% and the apparent density ranging from 0.4 to 1 g⋅cm −3 were prepared by electroplating method using cellular carbon skeleton as the substrate. The microstructure, mechanical property, cytotoxicity and antibacterial activity of the prepared porous silver scaffold were studied. The present porous silver scaffolds had a highly three-dimensional trabecular porous structure with the porosity and the apparent density close to that of the cancellous bone. Furthermore, the mechanical property such as elastic modulus and yield strength of the porous silver scaffolds were lower than that of commercial available porous Ti and porous Ti alloys but much closer to that of the cancellous bone and porous Ta. In addition, study of in vitro behavior showed that the porous silver scaffold possessed significant antibacterial capability of inhibition of bacterial proliferation and adherence against Staphylococcus aureus and Staphylococcus epidermidis, and little cytotoxicity to Mg-63 cell line and NIH-3T3 cell line. Consequently, the porous silver scaffolds prepared by electrodeposition possess a promising application for bone implants. - Highlights: ► Porous Ag scaffolds were produced by electroplating Ag on cellular carbon skeleton. ► Porous Ag scaffolds have the porosity 68–81% and the apparent density 0.4–1 g⋅cm −3 . ► The mechanical property of porous Ag is close to cancellous bone and porous Ta. ► Porous Ag inhibits the proliferation and adherence of S. aureus and S. epidermidis.

  13. Study of a betavoltaic battery using electroplated nickel-63 on nickel foil as a power source

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jong Bum; Son, Kwang Jae; Choi, Byoung Gun; Jeong, Dong Hyuk

    2016-01-01

    A betavoltaic battery was prepared using radioactive 63 Ni attached to a three-dimensional single trenched P-N absorber. The optimum thickness of a 63Ni layer was determined to be approximately 2 μm, considering the minimum self-shielding effect of beta particles. Electroplating of radioactive 63 Ni on a nickel (Ni) foil was carried out at a current density of 20 mA/cm 2 . The difference of the short-circuit currents (I sc ) between the pre- and postdeposition of 63 Ni (16.65 MBq) on the P#-N junction was 5.03 nA, as obtained from the I-V characteristics. An improved design with a sandwich structure was provided for enhancing performance

  14. Wastewater heat recovery method and apparatus

    Science.gov (United States)

    Kronberg, J.W.

    1991-01-01

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  15. Factors affecting reuse of wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Haraszti, L

    1981-01-01

    Changing the quality of circulating water, raising the effectiveness of sedimentation, examples of biological treatment of wastewater are presented. The necessity of continuing the studies on biological treatment of wastewater is demonstrated. It is considered useful to define the importance of KhPK and BP5 in each case. During biological treatment in ponds, to define the relation BPK5:N:P, research on conditions for nutrient removal must be done. To do this, as well as decrease the significance of KhPK, a mathematical model for defining the effectiveness of biological treatment of wastewater and consequently their reuse must be developed.

  16. Enhancing the wettability of high aspect-ratio through-silicon vias lined with LPCVD silicon nitride or PE-ALD titanium nitride for void-free bottom-up copper electroplating

    NARCIS (Netherlands)

    Saadaoui, M.; Zeijl, H. van; Wien, W.H.A.; Pham, H.T.M.; Kwakernaak, C.; Knoops, H.C.M.; Erwin Kessels, W.M.M.; Sanden, R.M.C.M. van de; Voogt, F.C.; Roozeboom, F.; Sarro, P.M.

    2011-01-01

    One of the critical steps toward producing void-free and uniform bottom-up copper electroplating in high aspect-ratio (AR) through-silicon vias (TSVs) is the ability of the copper electrolyte to spontaneously flow through the entire depth of the via. This can be accomplished by reducing the

  17. Enhancing the Wettability of High Aspect-Ratio Through-Silicon Vias Lined with LPCVD Silicon Nitride or PE-ALD Titanium Nitride for Void-Free Bottom-Up Copper Electroplating

    NARCIS (Netherlands)

    Saadaoui, M.; van Zeijl, H.; Wien, W. H. A.; Pham, H. T. M.; Kwakernaak, C.; Knoops, H. C. M.; Kessels, W. M. M.; R. van de Sanden,; Voogt, F. C.; Roozeboom, F.; Sarro, P. M.

    2011-01-01

    One of the critical steps toward producing void-free and uniform bottom-up copper electroplating in high aspect-ratio (AR) through-silicon vias (TSVs) is the ability of the copper electrolyte to spontaneously flow through the entire depth of the via. This can be accomplished by reducing the

  18. Nickel electroplating of steam generator tubes (kiss sleeving process)

    International Nuclear Information System (INIS)

    Michaut, B.

    1988-01-01

    This process, the nickel electroplating of steam generator tubes, has been jointly developed under a Belgatom (Laborelec) and Framatome agreement with shared experience gained by both companies, industrial applications being under the responsibility of Framatome. Application of the coating in zones where residual stresses or cracks are present prevents contact between the primary water and the tube, which stops the stress corrosion process. In the Doel 2 plant, 91 tubes have been plated since 1985, and different sets of parameters have been used for comparison purposes. Among these tubes, 9 have been preventively plugged because of defective plating, 9 have been pulled out for laboratory examinations, 2 just after plating and 7 after 1 or 2 yr of service. There are 73 plated tubes still in service. From the tests that were performed, it was possible to select an optimized set of parameters guaranteeing the following properties: bridging of existing cracks and good behavior of the coating in relevant zones, good adhesion to the Inconel tube, high ductility, low residual stresses, thermal shock resistance, corrosion resistance, erosion resistance, and low cobalt content. The licensability of this process is being completed. It is based first on the leak-before-break concept to determine the characteristics of the nickel plating, thickness in particular, and second on the inspectability of ultrasonic testing methods

  19. Water-soluble chelating polymers for removal of actinides from wastewater

    International Nuclear Information System (INIS)

    Jarvinen, G.D.

    1997-01-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent

  20. Water-soluble chelating polymers for removal of actinides from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  1. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  2. Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thelhawadigedara, Lahiru Niroshan Jayakody [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnson, Christopher W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pleitner, Brenna P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cleveland, Nicholas S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Whitham, Jason M. [Oak Ridge National Laboratory; Giannone, Richard J. [Oak Ridge National Laboratory; Klingeman, Dawn M. [Oak Ridge National Laboratory; Brown, Robert C. [Iowa State University; Brown, Steven D. [Oak Ridge National Laboratory; LanzaTech, Inc.; Hettich, Robert L. [Oak Ridge National Laboratory; Guss, Adam M. [Oak Ridge National Laboratory

    2018-04-17

    Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putida grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.

  3. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water.

    Science.gov (United States)

    He, Ke; Soares, Ana Dulce; Adejumo, Hollie; McDiarmid, Melissa; Squibb, Katherine; Blaney, Lee

    2015-03-15

    As annual sales of antibiotics continue to rise, the mass of these specially-designed compounds entering municipal wastewater treatment systems has also increased. Of primary concern here is that antibiotics can inhibit growth of specific microorganisms in biological processes of wastewater treatment plants (WWTPs) or in downstream ecosystems. Growth inhibition studies with Escherichia coli demonstrated that solutions containing 1-10 μg/L of fluoroquinolones can inhibit microbial growth. Wastewater samples were collected on a monthly basis from various treatment stages of a 30 million gallon per day WWTP in Maryland, USA. Samples were analyzed for the presence of 11 fluoroquinolone antibiotics. At least one fluoroquinolone was detected in every sample. Ofloxacin and ciprofloxacin exhibited detection frequencies of 100% and 98%, respectively, across all sampling sites. Concentrations of fluoroquinolones in raw wastewater were as high as 1900 ng/L for ciprofloxacin and 600 ng/L for ofloxacin. Difloxacin, enrofloxacin, fleroxacin, moxifloxacin, norfloxacin, and orbifloxacin were also detected at appreciable concentrations of 9-170 ng/L. The total mass concentration of fluoroquinolones in raw wastewater was in the range that inhibited E. coli growth, suggesting that concerns over antibiotic presence in wastewater and wastewater-impacted surface water are valid. The average removal efficiency of fluoroquinolones during wastewater treatment was approximately 65%; furthermore, the removal efficiency for fluoroquinolones was found to be negatively correlated to biochemical oxygen demand removal and positively correlated to phosphorus removal. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Feasibility study on recovering hydrogen energy from industrial wastewater

    International Nuclear Information System (INIS)

    Ming Der Bai; Chia-Jung Hsiao

    2006-01-01

    Three wastewater obtained from different industries were evaluated for the feasibility of hydrogen fermentation. Because of the various components of the wastewater, the characteristics of the hydrogen accumulation were different. Several stages with different hydrogen producing rate were observed during the batch hydrogen fermentation of each wastewater. The obvious hydrogen consumption was observed in the last phase of hydrogen fermentation of the wastewater from the winery. It is similar to the reported hydrogen fermentation characteristic of starch. The wastewater coming from the fructose manufactory has the greatest hydrogen potential nearly 150 L-H 2 /kg-COD. The wastewater from food industry has the lower hydrogen potential of 65 L-H 2 /kg-COD. Some of its compounds were not suitable for hydrogen production. The lowest hydrogen potential was observed in the fermentation of the wastewater from the winery, because hydrogen consumption affects the hydrogen recovery from the wastewater from winery. (authors)

  5. About the use and treatment of reclaimed wastewater

    International Nuclear Information System (INIS)

    Marin Galvin, R.

    2009-01-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs

  6. CURRENT TECHNOLOGIES OF AMMONIUM WITHDRAWAL FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    O. M. Shved

    2014-10-01

    Full Text Available The results of analysis of the current technologies, as well as their trends and developments in the field of wastewater treatment in Ukraine and the world are given. The legal documents and the system of state regulation and control in the field of sanitation and wastewater treatment in Ukraine have been analyzed. The information about government programs aimed at protecting the natural water bodies is also included. The global trends concerning development of biotechnology in the field of wastewater from nitrogen compounds have been investigated. The analysis of traditional (nitrification-denitrification and the latest biotechnology wastewater from inorganic nitrogen has been done. Current status of the present key technologies of nitrogen removal from wastewater has been formulated. The main advantages and disadvantages of these biotechnologies are described. It was determined that a major problem in the field of sanitation and wastewater treatment in Ukraine is the usage of outdated technologies and regulatory documentation that is a consequence of the lack of sufficient funding for the sector and the low level of environmental awareness of the government and the population.

  7. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea

    Directory of Open Access Journals (Sweden)

    Hanseok Jeong

    2016-04-01

    Full Text Available Climate change and the subsequent change in agricultural conditions increase the vulnerability of agricultural water use. Wastewater reuse is a common practice around the globe and is considered as an alternative water resource in a changing agricultural environment. Due to rapid urbanization, indirect wastewater reuse, which is the type of agricultural wastewater reuse that is predominantly practiced, will increase, and this can cause issues of unplanned reuse. Therefore, water quality standards are needed for the safe and sustainable practice of indirect wastewater reuse in agriculture. In this study, irrigation water quality criteria for wastewater reuse were discussed, and the standards and guidelines of various countries and organizations were reviewed to suggest preliminary standards for indirect wastewater reuse in South Korea. The proposed standards adopted a probabilistic consideration of practicality and classified the use of irrigation water into two categories: upland and rice paddy. The standards suggest guidelines for E. coli, electric conductivity (EC, turbidity, suspended solids (SS, biochemical oxygen demand (BOD, pH, odor, and trace elements. Through proposing the standards, this study attempts to combine features of both the conservative and liberal approaches, which in turn could suggest a new and sustainable practice of agricultural wastewater reuse.

  8. Wastewater Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Wastewater districts layer is part of a larger dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  9. Effect of cathode vibration and heat treatment on electromagnetic properties of flake-shaped diatomite coated with Ni–Fe alloy by electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mingming, E-mail: lan_mingming@163.com; Li, Huiqin; Huang, Weihua; Xu, Guangyin; Li, Yan

    2015-03-01

    In this paper, flake-shaped diatomite particles were used as forming templates for the fabrication of the ferromagnetic functional fillers by way of electroplating Ni–Fe alloy method. The effects of cathode vibration frequency on the content of Ni–Fe alloy in the coating and the surface morphologies of the coatings were evaluated. The electromagnetic properties of the coated diatomite particles before and after heat treatment were also investigated in detail. The results show that the core-shell flake-shaped diatomite particles with high content of Ni–Fe alloy and good surface qualities of the coatings can be obtained by adjusting cathode vibration frequency. The coated diatomite particles with heat treatment filled paraffin wax composites exhibit a superior microwave absorbing and electromagnetic properties compared to the non-heat treated samples. Additionally, the peaks of reflection loss are found to be able to shift to lower frequency by the heat treatment process, which indicates the heat treatment can adjust microwave absorbing frequency band. - Highlights: • We used the diatomite particles as template to fabricate the flake-shaped ferromagnetic fillers. • The diatomite particles were deposited pure magnetic Ni–Fe alloy by electroplating methods. • The coated diatomite particles were lightweight ferromagnetic fillers. • The composites containing coated diatomite particles with heat treatment exhibited great potential in the field of electromagnetic absorbing.

  10. Effect of cathode vibration and heat treatment on electromagnetic properties of flake-shaped diatomite coated with Ni–Fe alloy by electroplating

    International Nuclear Information System (INIS)

    Lan, Mingming; Li, Huiqin; Huang, Weihua; Xu, Guangyin; Li, Yan

    2015-01-01

    In this paper, flake-shaped diatomite particles were used as forming templates for the fabrication of the ferromagnetic functional fillers by way of electroplating Ni–Fe alloy method. The effects of cathode vibration frequency on the content of Ni–Fe alloy in the coating and the surface morphologies of the coatings were evaluated. The electromagnetic properties of the coated diatomite particles before and after heat treatment were also investigated in detail. The results show that the core-shell flake-shaped diatomite particles with high content of Ni–Fe alloy and good surface qualities of the coatings can be obtained by adjusting cathode vibration frequency. The coated diatomite particles with heat treatment filled paraffin wax composites exhibit a superior microwave absorbing and electromagnetic properties compared to the non-heat treated samples. Additionally, the peaks of reflection loss are found to be able to shift to lower frequency by the heat treatment process, which indicates the heat treatment can adjust microwave absorbing frequency band. - Highlights: • We used the diatomite particles as template to fabricate the flake-shaped ferromagnetic fillers. • The diatomite particles were deposited pure magnetic Ni–Fe alloy by electroplating methods. • The coated diatomite particles were lightweight ferromagnetic fillers. • The composites containing coated diatomite particles with heat treatment exhibited great potential in the field of electromagnetic absorbing

  11. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production.

    Science.gov (United States)

    Ji, Min-Kyu; Yun, Hyun-Shik; Park, Young-Tae; Kabra, Akhil N; Oh, In-Hwan; Choi, Jaeyoung

    2015-08-15

    The biomass and lipid/carbohydrate production by a green microalga Scenedesmus obliquus under mixotrophic condition using food wastewater and flue gas CO2 with municipal wastewater was investigated. Different dilution ratios (0.5-2%) of municipal wastewater with food wastewater were evaluated in the presence of 5, 10 and 14.1% CO2. The food wastewater (0.5-1%) with 10-14.1% CO2 supported the highest growth (0.42-0.44 g L(-1)), nutrient removal (21-22 mg TN L(-1)), lipid productivity (10-11 mg L(-1)day(-1)) and carbohydrate productivity (13-16 mg L(-1)day(-1)) by S. obliquus after 6 days of cultivation. Food wastewater increased the palmitic and oleic acid contents up to 8 and 6%, respectively. Thus, application of food wastewater and flue gas CO2 can be employed for enhancement of growth, lipid/carbohydrate productivity and wastewater treatment efficiency of S. obliquus under mixotrophic condition, which can lead to development of a cost effective strategy for microalgal biomass production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Feasibility study on recovering hydrogen energy from industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ming Der Bai; Chia-Jung Hsiao [Energy and Resource Laboratories, Industrial Technology Research Institute, 195, sec. 4 Chung Hsing Rd., Chutung, Hsinchu, Taiwan, 301 R.O.C. (China)

    2006-07-01

    Three wastewater obtained from different industries were evaluated for the feasibility of hydrogen fermentation. Because of the various components of the wastewater, the characteristics of the hydrogen accumulation were different. Several stages with different hydrogen producing rate were observed during the batch hydrogen fermentation of each wastewater. The obvious hydrogen consumption was observed in the last phase of hydrogen fermentation of the wastewater from the winery. It is similar to the reported hydrogen fermentation characteristic of starch. The wastewater coming from the fructose manufactory has the greatest hydrogen potential nearly 150 L-H{sub 2}/kg-COD. The wastewater from food industry has the lower hydrogen potential of 65 L-H{sub 2}/kg-COD. Some of its compounds were not suitable for hydrogen production. The lowest hydrogen potential was observed in the fermentation of the wastewater from the winery, because hydrogen consumption affects the hydrogen recovery from the wastewater from winery. (authors)

  13. Application of radiation for wastewater treatment

    International Nuclear Information System (INIS)

    Han Bumsoo; Kim Jinkyu; Kim Yuri

    2006-01-01

    Electron beam processing of wastewater is non-chemical, and uses fast formation of short-lived reactive radicals that can interact with a wide range of pollutants. Such reactive radicals are strong oxidizing or reducing agents that can transform the pollutants in the liquids wastes. The first studies on the radiation treatment of wastes were carried out in the 1950s principally for disinfection. In the 1960s, these studies were extended to the purification of water and wastewater. After some laboratory research on industrial wastewaters and polluted groundwater in 1970s and 1980s, several pilot plants were built for extended research in the 1990s. The first full-scale application was reported for the purification of wastewater at the Voronezh synthetic rubber plant in Russia. Two accelerators (50 kW each) were used to convert the non-biodegradable emulsifier, 'nekal', present in the wastewater to a biodegradable form . The installation treats up to 2000 m3 of effluent per day. A pilot plant of 1000 m 3 /d for treating textile-dyeing wastewater has been constructed in Daegu, Korea with 1 MeV, 40 kW electron accelerator. High-energy irradiation produces instantaneous radiolytical transformations by energy transfer from accelerated electrons to orbital electrons of water molecules. Absorbed energy disturbs the electron system of the molecule and results in breakage of inter-atomic bonds. Hydrated electron eaq, H atom, . OH and HO 2 . radicals and hydrogen peroxide H 2 O 2 and H 2 are the most important products of the primary interactions (radiolysis products). Generally, radiation processing of wastewater has maximum efficiency at pollutant concentration less than 10 -3 mol/L (∼100 ppm). The treatment of such wastewater is simple, requires low dose (about 1 kGy or less) and gives almost complete elimination of odor, color, taste and turbidity. The radiation processing of polluted water containing specific contaminants may require creation of special conditions to

  14. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  15. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  16. Micro-electrolysis technology for industrial wastewater treatment.

    Science.gov (United States)

    Jin, Yi-Zhong; Zhang, Yue-Feng; Li, Wei

    2003-05-01

    Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical, dye-printing and papermaking plants. Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis. For the use of micro-electrolysis in treatment of dye-printing wastewater, the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater; more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater.

  17. Quantum leap for treating wastewaters

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: For many Australian food manufacturers there is increasing pressure from government agencies to reach higher standards of wastewater treatment for environmental discharge. In fact, throughout the western wolrd industrual water users are facing a similar challenge. One of the big problems is ageing pipe networks, particularly sewage pipes. Also, industrial wastewaters with high sugar-nutrient loads can cause serious damage to pipelines. This is because fermentation occurs within the wastewater, eroding and degrading the pipes, causing numerous cracks and fractures. This in turn leads to water ingress, which puts a strain on treatment plants because of the higher volume of water, especially in wet weather. Food manufacturing produces large volumes of mostly biodegradable liquid and solid waste. Wastewaters released from food manufacturing can be 'muddy', with high concentrations of suspended solids, fats, oils and grease (FOGs), and, usually, nutrients such as nitrogen. The issue for many food manufacturers is that existing wastewater treatment systems are unable to reduce the nutrient load in the biological treatment stage to a level allowing acceptable discharge. In addition, most rely on large tanks housing bacteria that are submerged in water and aerated. Aeration is energy-hungry and can create a 'sludge-cake' on top of the water, which is difficult to treat. Most existing technologies also use filters, but they foul easily and require ongoing maintenance. According to BioGill chief executive John West, the BioGill technology is groundbreaking and radically different from conventional bioreactors because the 'gills' are not submerged. Instead, the gills, composed of Nano-Ceramic Membrane sheets arranged vertically in pairs, are suspended in the air, above ground, with wastewater travelling down between them. “Fungi and bacteria, known as biomass, grow on the membranes in direct contact with the air, eating nutrients much faster than other systems

  18. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  19. Role of diagnostic testing in identifying and resolving dimensional-stability problems in electroplated laser mirrors

    International Nuclear Information System (INIS)

    Cutler, R.L.; Hogan, B.

    1982-01-01

    The metal mirrors which are the subject of this discussion are to be used in the Antares inertial fusion laser system. Antares is a high-power (40 TW), high-energy (35 to 40 kJ), pulsed CO 2 laser system for the investigation of inertial confinement fusion. The system contains more than four hundred small and large diamond-turned and conventionally polished mirrors. The largest mirrors are trapezoidal in shape with the longest dimension being 16 to 18 inches. The substrates are type 2124 aluminum for most large mirrors, and aluminum bronze, oxygen-free copper or a copper-zirconium alloy for most of the smaller mirrors. The optical surface is electro-deposited copper 20 to 40 mils thick. After nondestructive testing and rough machining, the electroplated surface is single-point diamond machined or conventionally polished

  20. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  1. Compatibility of copper-electroplated cells with Metal Wrap Through module materials

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Geerligs, L.J.; Olson, C.L.; Goris, M.J.A.A. [ECN Solar Energy, Petten (Netherlands)

    2013-10-16

    As part of the European FP7 RandD project 'Cu-PV', the compatibility of copper-electroplated metal wrapthrough (MWT) cells with conductive adhesives has been investigated. The objectives of this project include to reduce, by the use of copper plating, the amount of silver utilized in cell manufacturing, and to demonstrate the compatibility of high-power n-type back-contact module technology with copper-plated cells. The overall goal is to reduce the impact on the environment of cell and module manufacture. MWT module technology as developed by ECN uses conductive adhesive to make the interconnection between cells and a conductive backsheet foil. These adhesives have been proved to result in very reliable modules in the case of cells with fired silver metallization. To determine the compatibility of conductive adhesive with copper-plated cells, component tests were performed, followed by the manufacture of modules with copperplated cells and conductive adhesive interconnections. Climate chamber testing of these modules showed that the adhesive is compatible with the copper-plated cells. The next steps include further optimization of the plating process and additional testing at the module level.

  2. Influences of the main anodic electroplating parameters on cerium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O{sub 2} and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce{sup 3+} goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce{sup 3+}, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N{sub 2} or O{sub 2} purged into the bath will result in film porosities and O{sub 2} favors cerium oxide particles and film generation.

  3. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    Science.gov (United States)

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  4. Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets

    Energy Technology Data Exchange (ETDEWEB)

    Bhandarkar, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Horwood, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stadermann, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percent gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.

  5. Stabilized copper plating method by programmed electroplated current: Accumulation of densely packed copper grains in the interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Chi; Hsu, Li-Hsuan; Brahma, Sanjaya; Huang, Bo-Chia; Liu, Chun-Chu; Lo, Kuang-Yao, E-mail: kuanglo@mail.ncku.edu.tw

    2016-12-01

    Highlights: • Actual Cu interconnect experiences many times of annealing and then cause the stress. • Stack Cu grains with varying grain size successively to enhance packed density. • XRD and PBR analyze the residual stress of local and average area of plated Cu film. • High packed Cu grain with stable stress proved by texture of Cu(1 1 1) and Cu(2 0 0). - Abstract: In this work, we programmed the plating current to stack the different size of copper (Cu) grain and analyzed the relation between the sequence of different Cu grain size and the stability of the residual stress. The residual stress was measured with varying times of annealing process in order to reach the purpose of simulating the actual Cu interconnect process. We found that varied plating strategy will make different stabilization condition of residual stress through the proof of X-ray diffraction (XRD) and optical parallel beams reflection (PBR) method. The accumulation of Cu grains, formed by Cu grain with successive variation in grain size, would enhance the packing density better than only single grain size in the finite space. The high density of the grain boundary in the electroplated Cu film will be eliminated through annealing process and it will help to suppress the void formation in further interconnect process. The electroplated Cu film with the plating current of saw tooth wave can soon reach a stable tensile stress through annealing since the Cu grains with high packing density will be quickly eliminated to approach the minimum of the strain energy which reflects to variation in the texture of Cu (2 0 0). The result of this work illustrates the importance of how to stack different size of Cu grain, for achieving a densely packed Cu film which close to the Cu bulk.

  6. Biodiesel production from algae grown on food industry wastewater.

    Science.gov (United States)

    Mureed, Khadija; Kanwal, Shamsa; Hussain, Azhar; Noureen, Shamaila; Hussain, Sabir; Ahmad, Shakeel; Ahmad, Maqshoof; Waqas, Rashid

    2018-04-10

    Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater. This study was conducted to optimize the growth of microalgal strains and to assess biodiesel production potential of algae using untreated food industry wastewater as a source of nutrients. The food industry wastewater was collected and analyzed for its physicochemical characteristics. Different dilutions (10, 20, 40, 80, and 100%) of this wastewater were made with distilled water, and growth of two microalgal strains (Cladophora sp. and Spyrogyra sp.) was recorded. Each type of wastewater was inoculated with microalgae, and biomass was harvested after 7 days. The growth of both strains was also evaluated at varying temperatures, pH and light periods to optimize the algal growth for enhanced biodiesel production. After optimization, biodiesel production by Spyrogyra sp. was recorded in real food industry wastewater. The algal biomass increased with increasing level of food industry wastewater and was at maximum with 100% wastewater. Moreover, statistically similar results were found with algal growth on 100% wastewater and also on Bristol's media. The Cladophora sp. produced higher biomass than Spyrogyra sp. while growing on food industry wastewater. The optimal growth of both microalgal strains was observed at temperature 30 °C, pH: 8, light 24 h. Cladophora sp. was further evaluated for biodiesel production while growing on 100% wastewater and found that this strain produced high level of oil and biodiesel. Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater.

  7. Bioremediation of wastewater using microalgae

    Science.gov (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  8. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Science.gov (United States)

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  9. Defects in electroplated Cu and their impact on stress migration reliability studied using monoenergetic positron beams

    International Nuclear Information System (INIS)

    Uedono, Akira; Suzuki, Takashi; Nakamura, Tomoji; Ohdaira, Toshiyuki; Suzuki, Ryoichi

    2007-01-01

    Positron annihilation was used to probe vacancy-type defects in electroplated Cu fabricated using different electrolytes. Isochronal annealing experiments revealed that the agglomeration of vacancy-type defects in grains was observed below 200degC and that their concentration started to decrease above 300degC. The observed annealing stages of the defects agree with those for pure Cu irradiated with light particles such as electrons. The size and concentration of vacancies decreased with decreasing concentrations of residual impurities in Cu films. A decrease in the impurity concentration, however, increased the failure rate of Cu interconnects in a stress-induced voiding test. Thus, void formation related to stress-induced failure can be reduced through the introduction of vacancy clusters into grains. (author)

  10. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Directory of Open Access Journals (Sweden)

    Gunter Hagen

    2011-08-01

    Full Text Available Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers.

  11. Study of a betavoltaic battery using electroplated nickel-63 on nickel foil as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Kim, Jong Bum; Son, Kwang Jae [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Byoung Gun [Human Interface SoC Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon (Korea, Republic of); Jeong, Dong Hyuk [Dongnam Institute of Radiological and Medical Science, Busan(Korea, Republic of)

    2016-06-15

    A betavoltaic battery was prepared using radioactive {sup 63}Ni attached to a three-dimensional single trenched P-N absorber. The optimum thickness of a 63Ni layer was determined to be approximately 2 μm, considering the minimum self-shielding effect of beta particles. Electroplating of radioactive {sup 63}Ni on a nickel (Ni) foil was carried out at a current density of 20 mA/cm{sup 2}. The difference of the short-circuit currents (I{sub sc}) between the pre- and postdeposition of {sup 63}Ni (16.65 MBq) on the P#-N junction was 5.03 nA, as obtained from the I-V characteristics. An improved design with a sandwich structure was provided for enhancing performance.

  12. Study of a Betavoltaic Battery Using Electroplated Nickel-63 on Nickel Foil as a Power Source

    Directory of Open Access Journals (Sweden)

    Young Rang Uhm

    2016-06-01

    Full Text Available A betavoltaic battery was prepared using radioactive 63Ni attached to a three-dimensional single trenched P–N absorber. The optimum thickness of a 63Ni layer was determined to be approximately 2 μm, considering the minimum self-shielding effect of beta particles. Electroplating of radioactive 63Ni on a nickel (Ni foil was carried out at a current density of 20 mA/cm2. The difference of the short-circuit currents (Isc between the pre- and postdeposition of 63Ni (16.65 MBq on the P–N junction was 5.03 nA, as obtained from the I–V characteristics. An improved design with a sandwich structure was provided for enhancing performance.

  13. Anaerobic biodegradability and toxicity of complex or toxicant wastewater

    International Nuclear Information System (INIS)

    Wills Betancur, B.A.

    1995-01-01

    As a first approximation to wastewater classification in susceptibility terms to treatment by anaerobic biological system, anaerobic biodegradability trials are accomplished to leached of sanitary landfill, to wastewater of coffee grain wet treatment plant and to wastewater of fumaric acid recuperation plant. In the last Plant, anaerobic toxicity trials and lethal toxicity on the Daphnia pulex micro-crustacean are made too. Anaerobic biological trials are made continuing the Wageningen University (Holland) Methodology (1.987). Lethal toxicity biological trials are made following the Standard Methods for the Examination of Water and Wastewater(18th edition, 1992). In development of this investigation project is found that fumaric acid recuperation plant leached it has a low anaerobic biodegradability, a high anaerobic toxicity and a high lethal toxicity over Daphnia pulex, for such reasons this leached is cataloged as complex and toxic wastewater. The other hand, wastewater of coffee grain wet treatment plant and wastewater of sanitary landfill they are both highly biodegradability and not-toxic, for such reasons these wastewaters are cataloged as susceptible to treatment by anaerobic biological system

  14. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  15. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  16. Imprinted Polymers in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  17. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  18. Sustainable Approach to Wastewater Management in the Federal ...

    African Journals Online (AJOL)

    As population grows and urbanization increases, more wastewater is generated and there is great awareness on the health and environmental implication of poorly disposed wastewater. This research work develops a sustainable approach to wastewater disposal in the Federal University of Technology, Akure. The existing ...

  19. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  20. Study of the Barada river environment pollution with poisonous trace elements resulting from tanning and electroplating industry

    International Nuclear Information System (INIS)

    Khamis, I.; Sarheel, A.; Al-Somel, N.; Al-Masri, M. S.

    2001-01-01

    Investigation of leather industry impact on Barada river environment, specifically in the eastern part of Damascus was made. Differential samples such as sediments, soil, and plantations from various locations were collected. results show high increase of chromium in river's sediment and soil adjacent to the river banks. However, such increase was not noticed in plantations or tree leaves. Copper and nickel concentrations were also high in sediments due to waste coming out of the electroplating industry. Concentration of titanium, one of the polishing and coloring industry's wastes, was noticed to be rather high too. Concentration of all previous pollutants was noticed to decrease as the distance become farther from the industrial complex. (Author)

  1. Reduction of energy consumption of selected subprocesses in electroplating. Reduktion af energiforbrug ved delprocesser i galvanisk overfladebehandling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, I.K.

    1989-07-01

    The process of electroplating involves a relatively high niveau of energy consumption. Potentials for reduction of energy consumption are investigated and measurements taken from existing processes are taken and commented upon. It is recommended that the temperature should be lowered in relation to as many processes as possible, processes such as degreasing, nickel and chrome baths. Cold sealing of anodized components could be utilized. Baths that have to be heated should be insulated, but more significant reduction can be achieved by covering the fluid surfaces. It is important that ventilation systems run at the lowest possible volume and should be kept clean and turned down when the workers have gone home. Integrated heating systems are also recommended. (AB).

  2. Fluidized bed anaerobic biodegration of food industry wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Toldra, F.; Flors, A.; Lequerica, J.L.; Valles, S.

    1987-01-01

    Anaerobic fluidized bed reactors were used to reduce the COD of low-strength food industry wastewaters. Soluble organic removal efficiencies of 75%, 80% and 50% were obtained for hog slaughterhouse, dairy and brewery wastewaters, respectively, at 35 degrees C and 8 hours hydraulic retention time. Removal efficiencies decreased with decreasing temperature (35 degrees C to 20 degrees C); no detrimental effect of temperature was observed when treating the slaughterhouse wastewater. Methane production rate was only relevant on brewery wastewater treatment. (Refs. 17).

  3. Comparative behavior of americium and plutonium in wastewater

    International Nuclear Information System (INIS)

    Tsvetaeva, N.E.; Filin, V.M.; Ragimov, T.K.; Rudaya, L.Y.; Shapiro, K.Y.; Shcherbakov, B.Y.

    1986-01-01

    This paper studies the behavior of trace americium and plutoniumin wastewater fed into purification systems. Activities of the elements were determined on a semiconductive alpha-ray spectrometer. the distributio nonuniformity, or heterogeneity, of americium and plutonium per unit volume of wastewater was determined quantitatively before and after passage through filter papers. The two elements were found to be in a colloidal or pseudocolloidal state in the original wastewater sample at pH 6. On acidifying the wastewater from pH 4 to 1 M nitric acid the americium passed quantitatively into the water phase but the most plutonium remained in the colloidal or pseudocolloidal state. the plutonium also passed quantitatively into the water phase in wastewater at a 1 M nitric acid acidity but only after a prolonged (12-day) hold. A knowledge of the heterogeneity of plutonium and americium in wastewaters made it possible to quickly distinguish their state, i.e., colloidal, pseudocolloidal, or in true solution

  4. Utilization of portable effluent wastewater in brick manufacturing

    International Nuclear Information System (INIS)

    EI-Mahllawy, M.S.; El-Sokkary, T.M.

    2005-01-01

    Portable wastewater is produced from sedimentation and filtration tanks in portable water treatment plants. Usually, this useless wastewater is drained into River Nile Canal and not to the sewer system causing a potential pollution. Wastewater has been taken from Portable Treatment Plant located at Qalubia Province, Delta, Egypt. Evaluation of raw materials was carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analyses (DTA and TGA) as well as plasticity and drying sensitivity coefficient (DSC) measurements. Technological properties of fired bricks were investigated according to Egyptian and American Specifications. The obtained experimental results encourage substitution of the drained portable wastewater for the tap water in bricks manufacturing. Thus, utilization of the studied portable effluent wastewater in such industry is possible and fulfills the double target of saving drinking water used in clay bricks manufacturing, rather than its environmental pollution prevention. Keywords: Portable wastewater, tap water, clay building bricks, physicomechanical properties

  5. Removal Efficiency of Microbial Contaminants from Hospital Wastewaters

    KAUST Repository

    Timraz, Kenda

    2016-02-01

    This study aims to evaluate the removal efficiency of microbial contaminants from two hospitals on-site Wastewater Treatment Plants (WWTPs) in Saudi Arabia. Hospital wastewaters often go untreated in Saudi Arabia as in many devolving countries, where no specific regulations are imposed regarding hospital wastewater treatment. The current guidelines are placed to ensure a safe treated wastewater quality, however, they do not regulate for pathogenic bacteria and emerging contaminants. Results from this study have detected pathogenic bacterial genera and antibiotic resistant bacteria in the sampled hospitals wastewater. And although the treatment process of one of the hospitals was able to meet current quality guidelines, the other hospital treatment process failed to meet these guidelines and disgorge of its wastewater might be cause for concern. In order to estimate the risk to the public health and the impact of discharging the treated effluent to the public sewage, a comprehensive investigation is needed that will facilitate and guide suggestions for more detailed guidelines and monitoring.

  6. Thermal stability and electrical characteristics of NiSi films with electroplated Ni(W) alloy

    International Nuclear Information System (INIS)

    Xin Yuhang; Hu Anmin; Li Ming; Mao Dali

    2011-01-01

    In this study, an electroplating method to deposited Ni, crystalline NiW(c-NiW), amorphous NiW (a-NiW) films on P-type Si(1 0 0) were used to form Ni-silicide (NiSi) films. After annealed at various temperatures, sheet resistance of Ni/Cu, c-NiW/Cu and a-NiW/Cu was measured to observe the performance of those diffusion barrier layers. With W added in the barrier layer, the barrier performance was improved. The results of XRD and resistance measurement of the stacked Si/Ni(W)/Cu films reveal that Cu atom could diffuse through Ni barrier layer at 450 deg. C, could diffuse through c-NiW at 550 deg. C, but could hardly diffuse through a-NiW barrier layer. c-NiW layer has a better barrier performance than Ni layer, meanwhile the resistance is lower than a-NiW layer.

  7. Effect of pulse current parameters on microstructure of tungsten coating electroplated from Na{sub 2}WO{sub 4}–WO{sub 3}–NaPO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Fan; Zhang, Yingchun, E-mail: zycustb@163.com; Sun, Ningbo; Len, Jiaxun

    2015-03-15

    Highlights: • Tungsten coatings were electroplated on cooper alloy by pulse plating. • Increasing current density resulted in an increase in grain size of tungsten coating. • With the increase in duty cycle, the grain size of tungsten coating increased. • The pulse period had an insignificant effect on the tungsten grain size. - Abstract: The tungsten coatings with low oxygen content were prepared on copper alloy substrate by pulse electroplating in Na{sub 2}WO{sub 4}–WO{sub 3}–NaPO{sub 3} molten salt. A series of tungsten coatings with compact morphologies were successfully obtained under various conditions. The influences of current density, duty cycle and period on tungsten grain size and coatings thickness were investigated. The results demonstrated that current density was the most important factor influencing tungsten grain size, which had a positive correlation with current density. The thickness of coating decreased when the current density was up to 80 mA cm{sup −2}. However, the tungsten grain size, tungsten coating thickness and current efficiency changed a little with the increase in pulse periods.

  8. Fluxless Sn-Ag bonding in vacuum using electroplated layers

    International Nuclear Information System (INIS)

    Kim, Jongsung; Lee, Chin C.

    2007-01-01

    A fluxless bonding process in vacuum environment using newly developed electroplated Sn-Ag multilayer structure at eutectic composition is presented. The new bonding process is entirely fluxless, or flux-free. It is performed in vacuum (100 mTorr), in which the oxygen content is reduced by a factor of 7600 comparing to air, to inhibit solder oxidation. In the design, Cr/Au dual layer is employed as the UBM as well as the plating seed layer. This UBM design, seldom used in the electronic industry, is explained in some details. To realize the fluxless possibility, a proper layer design of the solder structure is needed. In this connection, we wish to point out that it is hard to achieve fluxless bonding using Sn-rich alloys because these alloys have numerous Sn atoms on the surface that are easily oxidized. To prevent Sn oxidation, a thin Ag layer is plated immediately over Sn layer. XRD results confirm that this thin Ag layer does act as a barrier to prevent oxidation of the inner Sn layer. The resulting solder joints are void free as examined by a scanning acoustic microscope (SAM). SEM and EDX studies on the cross section of the joint indicate a homogeneous Sn-rich phase. The melting temperature is measured to be between 219 and 226 deg. C. This new fluxless bonding process is valuable in many applications where the use of flux is prohibited

  9. New Combined Electron-Beam Methods of Wastewater Purification

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.; Kartasheva, L.I.; Podzorova, E.A.; Chulkov, V.N.; Han, B.; Kim, D.K.

    1999-01-01

    The paper is a brief review of the results obtained with the participation of the authors from the study on combined electron-beam methods for purification of some wastewaters. The data on purification of wastewaters containing dyes or hydrogen peroxide and municipal wastewater in the aerosol flow are considered

  10. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  11. Toxicity identification evaluation of cosmetics industry wastewater.

    Science.gov (United States)

    de Melo, Elisa Dias; Mounteer, Ann H; Leão, Lucas Henrique de Souza; Bahia, Renata Cibele Barros; Campos, Izabella Maria Ferreira

    2013-01-15

    The cosmetics industry has shown steady growth in many developing countries over the past several years, yet little research exists on toxicity of wastewaters it generates. This study describes a toxicity identification evaluation conducted on wastewater from a small Brazilian hair care products manufacturing plant. Physicochemical and ecotoxicological analyses of three wastewater treatment plant inlet and outlet samples collected over a six month period revealed inefficient operation of the treatment system and thus treated wastewater organic matter, suspended solids and surfactants contents consistently exceeded discharge limits. Treated wastewater also presented high acute toxicity to Daphnia similis and chronic toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata. This toxicity was associated with suspended solids, volatile or sublatable and non-polar to moderately polar organic compounds that could be recovered in filtration and aeration residues. Seven surfactants used in the largest quantities in the production process were highly toxic to P. subcapitata and D. similis. These results indicated that surfactants, important production raw materials, are a probable source of toxicity, although other possible sources, such as fragrances, should not be discarded. Improved treatment plant operational control may reduce toxicity and lower impact of wastewater discharge to receiving waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  13. Disinfection of septic tank and cesspool wastewater with peracetic acid.

    Science.gov (United States)

    Heinonen-Tanski, Helvi; Savolainen, Ritva

    2003-08-01

    Wastewaters of private household septic tanks and cesspools have been treated with peracetic acid (1-2 g L(-1)). Adding 1 g L(-1) peracetic acid to wastewaters was easy and has been found to be effective in destroying enteric indicator microorganisms. The careful mixing of peracetic acid and wastewater was found to be important. Winter periods with frozen soil, ice and snow did not constitute extra problems. The bad smell of these wastewaters almost totally disappeared during the treatment. When wastewaters treated with peracetic acid were emptied into animal slurry tanks, hygienization still continued in the mixture of animal slurry and the wastewaters. These wastewaters could thus be released into agricultural soil without risk of microbiological pollution to groundwaters.

  14. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  15. Segregation of metals-containing wastewater by pH

    International Nuclear Information System (INIS)

    Taylor, P.A.; McTaggart, D.R.

    1990-10-01

    A pH-based sampling system has shown that there is a high correlation between low pH and metals contamination for the wastewater from the 4500 area (manhole 190) and the 2000 area (pump station). Wastewater from the Radiochemical Engineering Development Center (REDC) and the High Flux Isotope Reactor (HFIR) has not shown any metals concentrations above the National Pollutant Discharge Elimination System (NPDES) permit limits for the Nonradiological Wastewater Treatment Plant (NRWTP). It is recommended that pH be used as the diversion criteria for wastewater from manhole 190 and the pump station to be sent to the metals tank of the NRWTP. Any wastewater with a pH less than 6.0 or greater than 10.0 should be sent to the metals tank. Based on the results of 29 weeks of sampling, it is expected that on the order of 36m 3 /wk (9500 gal/wk) of wastewater will be diverted to the metals tank of the NRWTP. Wastewater from REDC and HFIR can be sent to the nonmetals tank, but it should be sampled periodically and analyzed by Inductively Coupled Plasma (ICP) spectrophotometer to confirm that the metals concentration is not increasing. 1 ref., 2 figs., 9 tabs

  16. The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge.

    Science.gov (United States)

    Tezcan Un, Umran; Onpeker, Suzan Eroglu; Ozel, Emel

    2017-09-15

    This research experimentally investigates the treatment of authentic electroplating wastewater with high Cr(VI) content by electrocoagulation with the obtained sludge being reused as a raw material to produce inorganic pigments. A zero waste process is introduced to help conserve resources and to minimize environmental effects. The effects of operational parameters on electrocoagulation are determined in a batch stirred reactor using an iron electrode. The best performance was observed when a current density 20 mA/cm 2 , pH 2.4 and 0.05 M NaCl electrolyte were maintained. The initial Cr(VI) concentration of 1000 mg/L was almost completely abated (∼100%) at an energy cost of 2.68 kWh/m 3 , fulfilling the EPA guideline of 2.77 mg/L within a single step process. The sludge was characterized using XRD and XRF showing that the sludge is a rich source of iron and chromium and can be reused to produce value added ceramic pigments. Pigments prepared in this way appeared to be reddish brown and black color in transparent glaze and were also characterized using XRD and XRF. In this study, a zero waste process is successfully introduced with ∼100% Cr(VI) removal, with subsequent reuse of the resulting sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in China.

    Science.gov (United States)

    Chen, Kunlun; Liu, Xiaoqiong; Ding, Lei; Huang, Gengzhi; Li, Zhigang

    2016-12-09

    Based on the increasing pressure on the water environment, this study aims to clarify the overall status of wastewater discharge in China, including the spatio-temporal distribution characteristics of wastewater discharge and its driving factors, so as to provide reference for developing "emission reduction" strategies in China and discuss regional sustainable development and resources environment policies. We utilized the Exploratory Spatial Data Analysis (ESDA) method to analyze the characteristics of the spatio-temporal distribution of the total wastewater discharge among 31 provinces in China from 2002 to 2013. Then, we discussed about the driving factors, affected the wastewater discharge through the Logarithmic Mean Divisia Index (LMDI) method and classified those driving factors. Results indicate that: (1) the total wastewater discharge steadily increased, based on the social economic development, with an average growth rate of 5.3% per year; the domestic wastewater discharge is the main source of total wastewater discharge, and the amount of domestic wastewater discharge is larger than the industrial wastewater discharge. There are many spatial differences of wastewater discharge among provinces via the ESDA method. For example, provinces with high wastewater discharge are mainly the developed coastal provinces such as Jiangsu Province and Guangdong Province. Provinces and their surrounding areas with low wastewater discharge are mainly the undeveloped ones in Northwest China; (2) The dominant factors affecting wastewater discharge are the economy and technological advance; The secondary one is the efficiency of resource utilization, which brings about the unstable effect; population plays a less important role in wastewater discharge. The dominant driving factors affecting wastewater discharge among 31 provinces are divided into three types, including two-factor dominant type, three-factor leading type and four-factor antagonistic type. In addition, the

  18. The application of ionising radiation in industrial wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kos, L. [Inst. of Knitting Technology and Techniques, Lodz (Poland); Perkowski, J. [Inst. of Applied Radiation Chemistry, Technical Univ. of Lodz, Lodz (Poland); Ledakowicz, S. [Dept. of Bioprocess Engineering, Technical Univ. of Lodz, Lodz (Poland)

    2003-07-01

    An attempt was made to apply radiation techniques in the treatment of industrial wastewater from a dairy, brewery and sugar factory. For degradation of pollutants present in the wastewater, the following methods were used: irradiation, irradiation combined with aeration, ozonation, and combined irradiation and ozonation. For all three types of wastewater, the best method among these listed above appeared to be the method of irradiation combined with ozonation. Most degradable was the wastewater produced in sugar factories, and the least biodegradable appeared to be dairy wastewater. Depending on the dose of ozone and radiation, a maximum 60% reduction of COD was obtained. No effect of the wastewater aeration on its degradation by radiation was found. Changes in the content of mineral compounds were observed in none of the cases. The process of biological treatment of wastewater was carried out in a low-loaded, wetted bed. Pretreatment of the wastewater had no significant effect on the improvement of the biological step operation. Some effect was observed only in the case of the wastewater coming from a sugar factory. For medium concentrated wastewater from food industry, it is not economically justified to apply the pretreatment with the use of ionising radiation. (orig.)

  19. Heat recovery from wastewater systems; Waermerueckgewinnung aus Abwassersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, O.

    2004-07-01

    Wastewater contains large amounts of heat energy which can be recovered by means of a heat pump and a heat exchanger installed in the sewer system. Practical problems, which may arise and have been investigated in this research project, are the reduction of the heat transfer efficiency due to heat exchanger fouling and the reduction of the nitrification capacity of downstream wastewater treatment plants due to lower wastewater temperatures. A mathematical model was developed by which the decrease of the wastewater temperature in the treatment plant influent can be determined as a function of the amount of heat energy gathered from the wastewater in the sewer system. By this model the variation in time and space of the wastewater temperature in a sewer pipe is calculated for given hydraulics, geometry and environmental conditions. By analysis of data from a large wastewater treatment plant and simulations with a calibrated model, the effect of lowered influent temperatures on nitrification safety, total nitrogen removal efficiency and ammonium effluent concentrations could be quantified. A procedure is suggested by which the reserve nitrification capacity of an existing treatment plant and the increase of the ammonium effluent concentration resulting from a permanent decrease of the wastewater influent temperature can be estimated. By experiments with a pilot scale heat exchanger in a small wastewater channel, the significance of parameters known to have an effect on fouling was investigated and measures to reduce fouling were tested. The measures tested included controlled variation of the wastewater flow velocity (flushing), coatings and finish of the heat exchanger surface and obstacles mounted on the surface. The best results were obtained by regular short term increases of the flow velocity. By this measure, the efficiency of the fouled heat exchanger, which on the average was 60% of the efficiency of the clean heat exchanger, could repeatedly be raised to an

  20. Estimated discharge of treated wastewater in Florida, 1990

    Science.gov (United States)

    Marella, R.L.

    1994-01-01

    According to the Florida Department of Environ- mental Protection, 5,100 wastewater treatment systems were in operation during 1990. Of this total, 72 percent were domestic wastewater facilities and 28 percent were industrial waste- water facilities. The number of wastewater systems inventoried for 1990 was 1,062 (systems that treated and discharged more than 0.01 Mgal/d or had a plant capacity of greater than 0.04 Mgal/d. Based on this inventory, the estimated discharge of treated wastewater in Florida during 1990 totaled 1,638 million gallons per day. Approxi- mately 65 percent of this water was discharged to surface water during 1990 and the remaining 35 percent was discharged to ground water. Discharge to surface water includes effluent outfalls into the Atlantic Ocean (32 percent), while the re- maining (68 percent) is discharged into the Gulf of Mexico, bays, rivers, wetlands, and other surface water bodies throughout Florida. Discharge to ground-water includes treated effluent outfalls to land application systems (reuse systems and spray fields), drain fields, percolation ponds (51 percent), and to injection wells (49 percent). An estimated 322 million gallons per day of the treated domestic and industrial wastewater was reused during 1990. Discharge of treated domestic wastewater from the 994 systems inventoried in Florida during 1990 totaled 1,353 million gallons per day and served an estimated 8.58 million people (66 percent of the population of Florida in 1990). The remaining 34 percent of the popu- lation (4.36 million) are served by the 2,700 smaller domestic wastewater systems or have individual septic tanks. In 1990, there were 1.56 million septic tanks in Florida. Discharge of industrial wastewater was inventoried for 68 systems in 1990 and totaled 285 million gallons per day. Discharge of domestic wastewater in- creased more than 20 percent and industrial wastewater discharge increased 5 percent from 1985 to 1990. (USGS)

  1. Structural modeling and analysis of an effluent treatment process for electroplating--a graph theoretic approach.

    Science.gov (United States)

    Kumar, Abhishek; Clement, Shibu; Agrawal, V P

    2010-07-15

    An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.

  2. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  3. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    International Nuclear Information System (INIS)

    Kocabas, Mustafa; Uelker, Suekrue

    2015-01-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  4. The Frequency and Antibiotic Resistance of Chromate Tolerating Microorganisms in Qom Industrial wastewater

    Directory of Open Access Journals (Sweden)

    MR Zolfaghary

    2012-07-01

    Full Text Available

    Background and Objectives: Chromium is one of the major sources of environmental pollution and a potent occupational carcinogen. The hexavalent chromium compounds are more toxic than those of trivalent. Recent studies have suggested that reduction of Cr(VI to its lower oxidation states and related free radical reactions play an important role in carcinogenic, genotoxic and immunotoxic effects in human and animals.

     This paper reports occurrence of chromium tolerant and antibiotic resistant organism of four industrial wastewaters including electroplating, textile, galvanization, and dye manufacturing in Qom.

     

    Methods: In this study 241 isolates including 23 gram positive coccus, 3 gram negative bacilli and 215 gram positive bacilli were obtained by using of LB Agar plus determined concentration of potassium chromate.

     

    Results: A gram positive coccus, chromate reducing bacteria strain isolated from effluent of chromo plaiting could tolerate up to 760mM concentration in 34°c and pH=7 within 24h and showed resistance to some antibiotics. Biochemical, physiological, morphological and 16SrRNA tests showed this bacteria belongs to staphylococcus arlettae strain R1-7A.

     

    Conclusion: the result indicates that the indigenous microbial isolates can be useful for hexavalent chromium detoxification of chromium contamination environment and reduction of its pathogenicity and carcinogenicity, on the other hand the control of these bacteria is important from the medical view.

     

  5. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... and NH4; therefore it is classified as a strong waste. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ..... MSc. thesis, university of Jordan. Bataineh F, Najjar ...

  6. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact......The main purpose of wastewater treatment is to protect humans against waterborne diseases and to safeguard aquatic bio-resources like fish. The dominating environmental concerns within this domain are indeed still potential aquatic eutrophication/oxygen depletion due to nutrient/organic matter...

  7. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  8. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  9. Winery wastewater treatment using the land filter technique.

    Science.gov (United States)

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  10. [Source identification of toxic wastewaters in a petrochemical industrial park].

    Science.gov (United States)

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park.

  11. Wastewater Industrial Contributors

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Industrial contributors to municipal wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  12. Current Status of On-Site Wastewater Management

    Science.gov (United States)

    Senn, Charles L.

    1978-01-01

    Wastewater management is becoming an important environmental issue nationally. This article reports the history and current status of wastewater management. Regulatory programs are discussed with specific state examples. Needs assessment is also included. (MA)

  13. A review of producing hard coatings by means of duplex treatments using an electroplated coating–thermochemical treatment combination

    Directory of Open Access Journals (Sweden)

    Héctor Cifuentes Aya

    2011-09-01

    Direct deposition by physical vapour deposition (PVD, used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

  14. Treatment and recycling of textile wastewaters

    International Nuclear Information System (INIS)

    Ciardelli, G.; Brighetti, G.

    1999-01-01

    The results of an experimental campaign involving the treatment of textile wastewaters for recycle by mean of an absorption resins pilot plant are briefly described. The case study concerned the treatment and reuse of yarns dyeing wastewaters. Results obtained indicate the possibility of an industrial scale implementation of the technique [it

  15. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  16. Wilsonville wastewater sampling program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-10-01

    As part of its contrast to design, build and operate the SRC-1 Demonstration Plant in cooperation with the US Department of Energy (DOE), International Coal Refining Company (ICRC) was required to collect and evaluate data related to wastewater streams and wastewater treatment procedures at the SRC-1 Pilot Plant facility. The pilot plant is located at Wilsonville, Alabama and is operated by Catalytic, Inc. under the direction of Southern Company Services. The plant is funded in part by the Electric Power Research Institute and the DOE. ICRC contracted with Catalytic, Inc. to conduct wastewater sampling. Tasks 1 through 5 included sampling and analysis of various wastewater sources and points of different steps in the biological treatment facility at the plant. The sampling program ran from May 1 to July 31, 1982. Also included in the sampling program was the generation and analysis of leachate from SRC product using standard laboratory leaching procedures. For Task 6, available plant wastewater data covering the period from February 1978 to December 1981 was analyzed to gain information that might be useful for a demonstration plant design basis. This report contains a tabulation of the analytical data, a summary tabulation of the historical operating data that was evaluated and comments concerning the data. The procedures used during the sampling program are also documented.

  17. Effect of nickel introduced by electroplating on pyrocarbon deposition of carbon-fiber preforms

    Directory of Open Access Journals (Sweden)

    Ren Yancai

    2014-08-01

    Full Text Available In order to improve the deposition rate and microstructure of pyrocarbon, nickel was introduced by electroplating on carbon fibers and used as a catalyst during the deposition of pyrocarbon at 1000 °C using methane as a precursor gas. The distribution of nickel catalyst and the microstructure of pyrocarbon were characterized by scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and Raman micro-spectrometry. Results show that nano-sized nickel particles could be well distributed on carbon fibers and the pyrocarbon deposited catalytically had a smaller d002 value and a higher graphitization degree compared with that without catalyst. In addition, the deposition rate of pyrocarbon in each hour was measured. The deposition rate of pyrocarbon in the first hour was more than 10 times when carbon cloth substrates were doped with nickel catalysts as compared to the pure carbon cloths. The pyrocarbon gained by rapid deposition may include two parts, which are generation directly on the nickel catalyst and formation with the carbon nanofibers as crystal nucleus.

  18. Electroplated Fe-Co-Ni films prepared from deep-eutectic-solvent-based plating baths

    Directory of Open Access Journals (Sweden)

    Takeshi Yanai

    2016-05-01

    Full Text Available We fabricated soft magnetic films from DES-based plating baths, and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2 ⋅ 4H2O, NiCl2 ⋅ 6H2O and CoCl2 ⋅ 6H2O. The composition of the electroplated film depended on the amount of the reagent in the plating bath, and we consequently obtained the films with various composition. The current efficiency of the plating process shows high values (> 88 % in the wide composition range. The soft magnetic films with low coercivity were obtained at the Fe compositions of ≈ 30 at.% and > 80 at.%, and we found that low coercivity could be realized by the control of the film composition. We also found that the Fe-rich films prepared from DES-based plating bath have some advantages as a soft magnetic phase for a nanocomposite magnet due to their high saturation magnetization and very fine crystal structure.

  19. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  20. Phycoremediation of Heavy Metals in Wet Market Wastewater

    Science.gov (United States)

    Apandi, Najeeha; Saphira Radin Mohamed, Radin Maya; Al-Gheethi, Adel; Latiffi, Atikah; Nor Hidayah Arifin, Siti; Gani, Paran

    2018-04-01

    The efficiency of phycoremediation using microalgae for removing nutrients and heavy metals from wastewaters has been proved. However, the differences in the composition of wastewaters as well as microalgae species play an important role in the efficient of this process. Therefore, the present study aimed to investigate the effectiveness of Scenedesmus sp. to removal of heavy metals from wet market wastewater. Scenedesmus sp. was inoculated with 106 cells/mL into each wet market wastewater concentration included 10, 25, 50, 75 and 100% and incubated for 18 days. The highest growth rate was recorded in 50% WM with a maximum dry weight of 2006 mg L-1 which subsequently removed 93.06% of Cd, 91.5% of Cr, 92.47% of Fe, 92.40% of Zn. These findings reflected the high potential of Scenedesmus sp. in the treatment of wet market wastewater and production microalgae biomass.

  1. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    Science.gov (United States)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.

  2. Tofu wastewater treatment by sediment microbial fuel cells

    Science.gov (United States)

    Rinaldi, W.; Abubakar; Rahmi, R. F.; Silmina

    2018-03-01

    This research aimed to measure power density generated by sediment microbial fuel cells (SMFCs) by varying anode position and wastewater concentration. Anode position was varied at 2 cm and 4 cm under the surface of sediment, while wastewater concentration varied into 25%, 50%, 75% and 100%. The electrodes employed was stainless steel mesh, while the organic subtrate source was taken from wastewater of soybean washing and boiling process. The sediment was taken from the Lamnyong River around the outlet of tofu industry wastewater. SMFCs was run until the power density was relatively small. The produced electricity represented in power density. The results of this research showed that power density was decreased over time. Generated power density by varying 2 cm and 4 cm position of anode under the sediment surface was not significantly different, while the lowest wastewater concentration, 25%, gave the highest power density.

  3. Practical application of wastewater reuse in tourist resorts.

    Science.gov (United States)

    Antakyali, D; Krampe, J; Steinmetz, H

    2008-01-01

    A medium-scale membrane bioreactor was tested in a large tourist resort on the south-western coast of Turkey with the treated wastewater subsequently being used for irrigational purposes. The wastewater treatment system was designed to eliminate carbonaceous and nitrogenous substances. Treatment efficiency was monitored by means of regular chemical and microbiological analyses. Information was collected on water use at different locations of the hotel. Specific values based on the number of guests were determined. Wastewater streams from kitchen, laundry and rooms were analysed to investigate the various contribution from these points. The social acceptance of the guests concerning the on-site wastewater treatment and reuse in the hotel was analysed using a questionnaire. The investigations indicated that the treated wastewater provides the required chemical and hygienic conditions to satisfy requirement for its reuse in irrigation. The acceptance by guests was encouraging for such applications. IWA Publishing 2008.

  4. Treatment of complex electroplating waste by 'zero discharge' technique

    International Nuclear Information System (INIS)

    Khattak, B.Q.; Ram Sankar, P.; Jain, A.K.

    2009-01-01

    Surface treatment processes generate lot of liquid waste, which contains toxic substances and are potentially harmful to the living beings. It is extremely difficult to treat the pollutants where processes and frequencies are not fixed. In Chemical Treatment Facility of RRCAT, surface treatment processes are user dependent and makes the electroplating waste very complicated. Initially the waste was treated by simple chemical transformation technique in which heavy metal ions are converted to hydroxide precipitates. Non metallic ions that contribute much to the plating waste could not be treated by this process. To remove maximum possible pollutants, many experiments were conducted on the laboratory scale. Based on those results, a pilot ion exchange plant of various resins was introduced in the process to achieve disposal quality effluent. Anionic load of Phosphate, Nitrate and fluoride caused frequent anionic bed exhaustions and polymeric network damaging. To avoid this phenomenon a new setup was designed. This pre treatment has the capacity to treat 500 litres per hour connected to a platter with clarifier followed by high pressure carbon and pebbles filters. Analysis of these ions was carried out on the advanced ion chromatography system and is found free of toxic metals, phosphate and fluoride. This effluent can be reused by adding a reverse osmosis system followed by ion exchange system to produce good quality de mineralized water needed for surface treatment activities. In this paper we describe the existing status of effluent treatment facility and future plans for achieving 'zero discharge'. (author)

  5. A summary of studies on mine wastewater treatment

    International Nuclear Information System (INIS)

    Ma Yao; Hu Baoqun; Sun Zhanxue

    2006-01-01

    The composition of mine wastewater is complicated and is harmful to the environment. The mine wastewater treatment methods include mainly neutralization, constructed wetland and microorganism methods. The three methods are summarized, with focus on the microorganism method. The mechanisms, characteristics and influencing factors of the sulfate reducing bacteria and the iron oxidizing bacteria are described in detail. The treatment methods of uranium mine wastewater are presented. (authors)

  6. Textile wastewater biocoagulation by Caesalpinia spinosa extracts

    Directory of Open Access Journals (Sweden)

    Andrés Revelo

    2015-03-01

    Full Text Available (Received: 2014/12/06 - Accepted: 2015/03/24The textile industry in Ecuador is still a matter of concern because of the inappropriate disposal of their effluents into the local water supply. The present research was carried out in Pelileo (Tungurahua-Ecuador where textile wastewaters are discharged into waterways. An environmentally friendly solution to treat highly contaminated organic textile wastewaters is herein evaluated: a remediation process of biocoagulation was performed using extracts from the Caesalpinia spinosa plant also known as guarango or tara. It was determined that using C. spinosa extracts to treat wastewater has the same statistical effect as when applying a chemical coagulant (polyaluminum chloride 15%. Activated zeolite adsorbed color residuals from treated water to obtain turbidity removal more than 90%. A mathematical model showed that turbidity removal between 50-90% can be obtained by applying 25-45 g/L of guarango extracts and zeolite per 700 mL of textile wastewater. The natural coagulation using C. spinosa extracts produced 85% less sludge than polyaluminum chloride, and removed high organic matter content in the wastewater (1050 mg/L by 52%.

  7. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  8. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  9. Effect of activated sludge culture conditions on Waxberry wastewater

    Science.gov (United States)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.

  10. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  11. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  12. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  13. Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data

    Directory of Open Access Journals (Sweden)

    Nasim Habibi

    2017-08-01

    Full Text Available This data article describes a facile method for production of an adsorbent from Tamarix hispida wasted wood and modified by lanthanum metal for fluoride ions removal from wastewater. The main characteristics of the adsorbent consist of BET surface area, functional groups, and elemental analysis is presented. The data for attenuating the pollutants from a real wastewater treatment which was provided from a glass factory is also represented. More than 90% of fluoride content of the real wastewater was treated by the adsorbent. Generally, these data would be informative for extend research aim to industrial wastewater treatment and those who work in the wastewater treatment plants.

  14. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  15. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Science.gov (United States)

    2010-07-01

    ... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater... exothermic reaction or the contents of the tank is sparged, the owner or operator shall comply with the... barometric pressure, or (B) An engineering evaluation that the Administrator determines is an accurate method...

  16. Dairy wastewater treatment

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... treatment processes to treat dairy wastewater such as activated sludge system .... Gas chromatograph. (Perkin Elmer, Auto system XL), equipped with thermal conductivity ..... Enzymatic hydrolysis of molasses. Bioresour. Tech.

  17. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  18. Management and Planning for Small Community Wastewater

    Science.gov (United States)

    Operators Small Systems Management and Planning for Small Community Wastewater The NESC has provided of Clean Water Agencies (NACWA) Achieving Environmental Excellence: An Environmental Management Agencies, The Office of Wastewater Management at EPA, in cooperation with the Global Environment and

  19. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  20. Environmental systems analysis of wastewater management

    International Nuclear Information System (INIS)

    Kaerrman, Erik

    2000-01-01

    The history of wastewater management tells us that efforts have been made at solving only one problem at the time; sanitation during the first half of the 20th Century followed by eutrophication of lakes and sea and, for the past ten years, recycling of nutrients. After the 'Brundtland Report', 1987, a reversal of the debate occurred where water management was discussed in a more holistic manner than before. The concept sustainable development became widely accepted and was put into practice. This thesis suggests a framework for evaluating the sustainability of wastewater systems, which contains the use of criteria and system analytical evaluation methods matching each criterion. The main categories of criteria are identified as: Health and Hygiene, Social and Cultural, Environmental, Economic and Functional and Technical. The usability of different concepts of Environmental Systems Analysis for evaluating environmental criteria of wastewater systems is also investigated. These studies show that a substance-flow model combined with evaluation methods from Life Cycle Assessment (LCA), sometimes complemented with Exergy Analysis or Analysis of Primary Energy, is a beneficial approach for evaluating environmental impacts and the usage of resources. The substance-flow model ORWARE (ORganic WAste REsearch) combined with LCA was used to compare four systems structures for the management of household wastewater and solid organic waste, namely Conventional System, Irrigation of Energy Forests, Liquid Composting and Urine Separation. This study shows a potential for further development of the three alternative systems. The comparative study also included some development of system analytical methods. This thesis shows how the contribution from oxidation of ammonia should be included in the eutrophication impact category. Furthermore, a method is given for prioritization of the most relevant impacts from wastewater management by using normalisation of these impacts in

  1. Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica

    NARCIS (Netherlands)

    Causanilles, A.; Ruepert, C.; Ibáñez, M.; Emke, E.; Hernández, F.; de Voogt, P.

    2017-01-01

    Chemical analysis of raw wastewater in order to assess the presence of biological markers entering a wastewater treatment plant can provide objective information about the health and lifestyle of the population connected to the sewer system. This work was performed in a tropical country of Central

  2. Operating household wastewater treatment plants in the light of binding quality standards for wastewater discharged to water bodies or to soil

    Directory of Open Access Journals (Sweden)

    Jawecki Bartosz

    2017-03-01

    Full Text Available The study presents the legal requirements concerning the quality of wastewater discharged to waterbodies and to soil after treatment in household wastewater treatment plants located in agglomerations or outside them. The procedure of stopping the operation of a household treatment plant that doesn’t meet the statutory wastewater treatment efficiency was presented. The decision ordering to stop the use of a household wastewater treatment plant has to be preceded by a decision ordering to take measures to limit its adverse impact on the environment. The clarification procedure has to determine the adverse impact on the environment in a doubtless manner and it has to be reflected in the documentation. The assessment of adverse impact should take into account the binding standards of use of the environment. Stopping the operation of a household wastewater treatment plant may result in issuing a decision ordering the user to connect to the sanitary sewage system.

  3. Proteomic Characterization of Cr(VI) resistent Bacteria In Wastewater Effluents

    DEFF Research Database (Denmark)

    Koçberber Kılıç, nur; Kjeldal, Henrik; Lolas, Ihab Bishara Yousef

    The emergence of micropollutants or heavy metals in natural matrices such as soil, sediments and water has been an issue of increasing concern in recent years. Cr(VI) is widely used by industries such as leather tanning, electroplating, wood preservation, manufacture of alloys and corrosion...... inhibitor in conventional and nuclear power plants. Bioremediation, i.e. microbiological decontamination can eliminate these compounds and this study illuminate several mechanisms of the degradation pathways or resistence mechanisms. Bacterial strains able to degrade or tolerate extreme concentrations...

  4. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.; Makaov, I.E.; Ponomarev, A.V.

    2006-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  5. [Ecological security of wastewater treatment processes: a review].

    Science.gov (United States)

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  6. Effect of Phosphate levels on vegetables irrigated with wastewater

    Science.gov (United States)

    Oladeji, S. O.; Saeed, M. D.

    2018-04-01

    This study examined accumulation of phosphate ions in wastewater and vegetables through man-made activities. Phosphate level was determined in wastewater and vegetables collected on seasonal basis along Kubanni stream in Zaria using UV/Visible and Smart Spectro Spectrophotometers for their analyses. Results obtained show that phosphate concentrations ranged from 3.85 – 42.33 mg/L in the first year and 15.60 – 72.80 mg/L in the second year for wastewater whereas the vegetable had levels of 3.80 – 23.65 mg/kg in the year I and 7.48 – 27.15 mg/kg in the year II. Further statistical tests indicated no significant difference in phosphate levels across the locations and seasons for wastewater and vegetables evaluated. Correlation results for these two years indicated negative (r = -0.062) relationship for wastewater while low (r = 0.339) relationship noticed for vegetables planted in year I to that of year II. Phosphate concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as WHO and FAO for wastewater whereas vegetables of the sampling sites were not contaminated with phosphate ions. Irrigating farmland with untreated wastewater has negative consequence on the crops grown with it.

  7. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  8. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    In both these wastewaters nutrients were not added. A simple formula is introduced to calculate nutrient requirements based on removal efficiency and observed biomass yield coefficient. Key Words: Olive mill wastewater; anaerobic treatment; aerobic treatment; sequencing batch reactor; biomass yield; nutrient requirement.

  9. Options for wastewater management in Harare, Zimbabwe

    NARCIS (Netherlands)

    Nhapi, I.

    2004-01-01

    The sustainable management of wastewater should aim at pollution prevention and reduction first, followed by resource recovery and reuse. This thesis shows that substantial water quality improvements could be achieved through a so-called 3-Step Strategic Approach to wastewater management. This

  10. Sediment microbial fuel cells for wastewater treatment: challenges and opportunities

    OpenAIRE

    Xu, Bojun; Ge, Zheng; He, Zhen

    2015-01-01

    Sediment microbial fuel cells (SMFCs) have been intensively investigated for the harvest of energy from natural sediment, but studies of their application for wastewater treatment mainly occurred in the past 2-3 years. SMFCs with simple structures can generate electrical energy while decontaminating wastewater. Most SMFCs used for wastewater treatment contain plants to mimic constructed wetlands. Both synthetic and real wastewaters have been used as substrates in SMFCs that achieved satisfact...

  11. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  12. Application of a membrane bioreactor for winery wastewater treatment.

    Science.gov (United States)

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  13. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  14. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  15. Treatability study of pesticide-based industrial wastewater.

    Science.gov (United States)

    Shah, Kinnari; Chauhan, L I; Galgale, A D

    2012-10-01

    This paper finds out appropriate treatment methods for wastewater of an Organophosphorus viz, chloropyrifos pesticide manufacturing industry. The characterization of wastewater generated during trial production of chloropyrifos was carried out. Based on the characterization of wastewater, various treatability studies were conducted. The most desirable results were obtained with treatment scheme employing acidification, chlorination with NaOCl, suspended growth biological treatment, chemical precipitation for phosphorous removal and activated carbon treatment. Acidification of wastewater helps in by-product recovery as well as reduction in COD upto 36.26%. Chlorination followed by biological treatment was found to be effective to reduce the COD level by 62.06%. To comply with permissible limits prescribed by Effluent Channel Project Ltd.(ECPL)* and Gujarat Pollution Control Board (GPCB) for discharge of industrial effluent into channel, further treatment in the form of chemical precipitation (for phosphorous removal) and granular activated carbon is suggested.

  16. Quality of concrete plant wastewater for reuse

    Directory of Open Access Journals (Sweden)

    H. M. Paula

    Full Text Available Efficient water use is one of the most important requirements of cleaner production, and the use of the wastewater from concrete production can be an important means to this end. However, there are no Brazilian studies on the quality of concrete plant wastewater and the activities in which such water can be used. This paper aims to evaluate the quality of concrete plant wastewater and to propose guidelines for its treatment for non-potable applications. Wastewater samples were collected from three points in the studied treatment system, and tests were later performed in the laboratory to evaluate the water quality. The results obtained were compared with the limit values for the quality parameters that have been used for the analysis of the non-potable water supply in Brazil. The results indicate a need to at least add coagulation and pH correction processes to the treatment system.

  17. Fate of zinc in an electroplating sludge during electrokinetic treatments.

    Science.gov (United States)

    Liu, Shou-Heng; Wang, H Paul

    2008-08-01

    Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%). Zinc in the sludge possessed a Zn-O bond distance of 2.07 A with a coordination number (CN) of 5. In the second shells, the bond distance of Zn-(O)-Si was 3.05 A (CN=2). An increase of Zn-(O)-Si (0.05 A) with a decrease of its CN (from 5 to <1) was found in the early stage of the electrokinetic treatment. Prolong the electrokinetic treatment time to 180 min, about 34% of Zn(II) was dissolved into the aqueous phase and about 68% of Zn(II) in the sludge (or 23% of total zinc) was migrated to the cathode under the electric field (5 V cm(-1)). The dissolution and electromigration rates of Zn(II) in the sludge were 1.0 and 0.6 mmol h(-1)g(-1) sludge, respectively during the electrokinetic treatment. This work also exemplifies the utilization of in situ EXAFS and XANES for revealing speciation and possible reaction pathways during the course of zinc recycling from the sludge by electrokinetic treatments.

  18. Visualization of Two Phase Natural Convection Flow in a Vertical Pipe using the Sulfuric Acid - Copper Sulfate Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-10-15

    The passive containment cooling system (PCCS) driven by natural forces convection gain draws research interests after Fukushima NPP accident. The PCCS was classified into three categories: Containment pressure suppression, Containment passive heat removal/pressure suppression systems and Passive containment spray. Among the types of containment passive heat removal/pressure suppression systems, the system composed of an internal heat exchanger and an external coolant tank is considered. In a severe accident condition, the heat from the containment atmosphere is transferred to the outer surface of the heat exchanger by the convection and condensation of the mixture of steam and gases. On the other hand, the heat is transferred to external pool by single phase or two phase natural convection inside of heat exchanger pipes. The study aimed at investigating the influence of the diameter (D) and height (H) of the heat exchanger pipes on the single phase and two phase natural convection heat transfer. As the initial stage of the study, the two phase natural convection flow inside a vertical pipe is visualized. In order to achieve the aim with ample test rig, a sulfuric acid - cooper sulfate electroplating system was employed based on the analogy between heat and mass transfer. The reduction of hydrogen ion at the cathode surface at high potential was used to simulate the boiling phenomena. This study tried to visualize the boiling heat transfer inside a vertical pipe using a cupric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system. This seems to be successful so far. However further study has to be done to compare the result with real two phase flow situation. The surface tension and surface characteristics are to be tuned to simulate the real situation.

  19. Metagenomic data of free cyanide and thiocyanate degrading bacterial communities

    Directory of Open Access Journals (Sweden)

    Lukhanyo Mekuto

    2017-08-01

    Full Text Available The data presented in this article contains the bacterial community structure of the free cyanide (CN- and thiocyanate (SCN- degrading organisms that were isolated from electroplating wastewater and synthetic SCN- containing wastewater. PCR amplification of the 16S rRNA V1-V3 regions was undertaken using the 27F and 518R oligonucleotide primers following the metacommunity DNA extraction procedure. The PCR amplicons were processed using the illumina® reaction kits as per manufacturer׳s instruction and sequenced using the illumina® MiSeq-2000, using the MiSeq V3 kit. The data was processed using bioinformatics tools such as QIIME and the raw sequence files are available via NCBI׳s Sequence Read Archive (SRA database.

  20. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    Science.gov (United States)

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  1. Effects of ionizing radiation on struvite crystallization of livestock wastewater

    International Nuclear Information System (INIS)

    Kim, Tak- Hyun; Nam, Yun-Ku; Joo Lim, Seung

    2014-01-01

    Livestock wastewater is generally very difficult to be treated by conventional wastewater treatment techniques because it contains high-strength organics (COD), ammonium (NH 4 + ), phosphate (PO 4 3− ) and suspended solids. Struvite crystallization has been recently studied for the simultaneous removal of NH 4 + and PO 4 3− . In this study, gamma ray irradiation was carried out prior to struvite crystallization of the anaerobically digested livestock wastewater. The effects of gamma ray irradiation on the struvite crystallization of livestock wastewater were investigated. As a result, gamma ray irradiation can decrease the concentration of COD, NH 4 + and PO 4 3− contained in the livestock wastewater. This results in not only an enhancement of the struvite crystallization efficiency but also a decrease in the chemical demands for the struvite crystallization of livestock wastewater. - Highlights: • Gamma ray was applied prior to struvite crystallization of livestock wastewater. • Gamma ray resulted in an enhancement of struvite crystallization efficiency. • This is due to the decrease of COD concentration by gamma ray irradiation

  2. A comprehensive review on utilization of wastewater from coffee processing.

    Science.gov (United States)

    Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K

    2015-05-01

    The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.

  3. Domestic wastewater treatment using electron accelerator

    International Nuclear Information System (INIS)

    Borrely, Sueli I.

    1995-01-01

    This work aims the application of an industrial electron beam accelerator to disinfect sludge and to remove organic matter existent in the influent and effluent from the Mairipora domestic wastewater treatment plant. The in vitro Co-60 radiosensitivity of the major representative Salmonella species in wastewater from Sao Paulo city was also studied. (author). 66 refs., 19 figs., 12 tabs

  4. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  5. Cytogenotoxicity screening of untreated hospital wastewaters using ...

    African Journals Online (AJOL)

    Physico-chemical parameters of the wastewaters were determined in accordance with standard methods. Onions root growth inhibition test was used to assess the toxic status of the wastewaters, while cytogenotoxicity was measured by microscopic investigation of the chromosomal aberrations. Onion bulbs were exposed ...

  6. The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce.

    Science.gov (United States)

    Makkaew, P; Miller, M; Cromar, N J; Fallowfield, H J

    2017-04-01

    This study investigated the volume of wastewater retained on the surface of three different varieties of lettuce, Iceberg, Cos, and Oak leaf, following submersion in wastewater of different microbial qualities (10, 10 2 , 10 3 , and 10 4 E. coli MPN/100 mL) as a surrogate method for estimation of contamination of spray-irrigated lettuce. Uniquely, Escherichia coli was enumerated, after submersion, on both the outer and inner leaves and in a composite sample of lettuce. E. coli were enumerated using two techniques. Firstly, from samples of leaves - the direct method. Secondly, using an indirect method, where the E. coli concentrations were estimated from the volume of wastewater retained by the lettuce and the E. coli concentration of the wastewater. The results showed that different varieties of lettuce retained significantly different volumes of wastewater (p 0.01) were detected between E. coli counts obtained from different parts of lettuce, nor between the direct and indirect enumeration methods. Statistically significant linear relationships were derived relating the E. coli concentration of the wastewater in which the lettuces were submerged to the subsequent E. coli count on each variety the lettuce.

  7. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    Science.gov (United States)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  8. Pollutant removal in subsurface wastewater infiltration systems with ...

    African Journals Online (AJOL)

    Pollutant removal in subsurface wastewater infiltration systems with/without intermittent ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... wastewater infiltration systems (SWISs) with and without intermittent aeration, ...

  9. PFP Wastewater Sampling Facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  10. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  11. Renewable energy for the aeration of wastewater ponds.

    Science.gov (United States)

    Hobus, I; Hegemann, W

    2003-01-01

    The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.

  12. One-step electroplating porous graphene oxide electrodes of supercapacitors for ultrahigh capacitance and energy density.

    Science.gov (United States)

    Wang, Yongjie; Zhu, Jiaqi

    2015-02-06

    An electroplating method was used for the first time to synthesize 3D porous graphene oxide (PGO) architectures, exhibiting ultrahigh capacitance and energy density as electrodes of supercapacitors. Scanning electron microscopy illustrated the porous structures which promoted the stability and alleviated the stacking of the graphene oxide layers. As investigated in a three-electrode supercapacitor cell, PGO electrodes exhibited the maximum capacitance and energy of 973 F · g(-1) and 98.4 Wh · Kg(-1), which are better than current reports and comparable to batteries. At 4 A · g(-1) for high-power applications, PGO electrodes reached a capacitance, energy, and power density of 493 F · g(-1), 49.9 Wh · Kg(-1), and 1700 W · Kg(-1), and they retained ∼97.83% of capacitance after 10 000 charge/discharge processes. Furthermore, when the PGO was bent exaggeratedly, it still displayed identical properties, which is of important significance for supporting wearable devices.

  13. Automatic Regulation of Wastewater Discharge

    Directory of Open Access Journals (Sweden)

    Bolea Yolanda

    2017-01-01

    Full Text Available Wastewater plants, mainly with secondary treatments, discharge polluted water to environment that cannot be used in any human activity. When those dumps are in the sea it is expected that most of the biological pollutants die or almost disappear before water reaches human range. This natural withdrawal of bacteria, viruses and other pathogens is due to some conditions such as the salt water of the sea and the sun effect, and the dumps areas are calculated taking into account these conditions. However, under certain meteorological phenomena water arrives to the coast without the full disappearance of pollutant elements. In Mediterranean Sea there are some periods of adverse climatic conditions that pollute the coast near the wastewater dumping. In this paper, authors present an automatic control that prevents such pollution episodes using two mathematical models, one for the pollutant transportation and the other for the pollutant removal in wastewater spills.

  14. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  15. Determination of aromatic and PAH content of oily wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Lysyj, I. (Rockwell International, Canoga Park, CA); Russell, E.C.

    1978-08-01

    A method for analysis of oil and grease in water is described. The method is used to provide data on total, dissolved, and suspended organic content of wastewater sample and the concentration of hydrocarbons. Additionally, volatile and water soluble fractions which contain many organic compounds critical to the environment are characterized both qualitatively and quantitatively. A number of real-life treated and untreated bilge waste samples were collected at the U.S. Army Fort Eustis facility and analyzed using this method. It was found that untreated bilge wastewater contained both suspended and dissolved organic matter. The suspended organics ranged between 10 and 300 ppM, while the dissolved organics were in the 10 to 150 ppM range. Treated bilge wastewater usually contained no suspended organics but did contain rather high levels of dissolved organic matter 700 to 200 ppM). Up to 70% of the dissolved organics in untreated bilge wastewater were chloroform extractable, while less than 10% of the dissolved organis in treated bilge wastewater were extractable into chloroform. It is believed that the bulk of organic matter in treated bilge wastewater were extractable into chloroform. It is believed that the bulk of organic matter in treated bilge wastewater is biologically derived from the degradation of petroleum, while smaller portions consist of refractory, petroleum derived, water-soluble organic compounds.

  16. The effect of wastewater pretreatment on nanofiltration membrane performance

    Directory of Open Access Journals (Sweden)

    Ali Hashlamon

    2017-03-01

    Full Text Available Membrane fouling is considered a serious obstacle for operation and cost efficiency in wastewater treatment using nanofiltration (NF. However, pretreatment is the most practical way to reduce this prior to NF. In this research, two types of wastewaters were pretreated with different methods prior to NF to examine the effect of pretreatment on membrane fouling in terms of turbidity, chemical oxygen demand (COD and permeate flux. Turbidity and COD were measured to assess solid foulants and organic species in the wastewater, respectively. The first sample was secondary treated sewage, which was pretreated using coagulation-flocculation-sedimentation (CFS only. Steady flux was increased from 24 L/m2h for wastewater without pretreatment to 32.1 L/m2h with pretreatment. COD was also eliminated after CFS/NF, and turbidity was reduced to 0.6 NTU. The second sample was diluted biodiesel wastewater, which was pretreated using a combination of powdered-activated carbon (PAC adsorption and CFS (PAC/CFS. Steady flux was increased from 22.3 L/m2h for wastewater without pretreatment to 28.7 L/m2h with pretreatment; biodiesel wastewater quality also improved. Turbidity was reduced from 12 to 0.6 NTU, and COD was reduced from 526 to 4 mg/L after NF with PAC/CFS pretreatment, while COD was reduced from 526 to 95 mg/L using NF without pretreatment.

  17. Influence of layer compositions and annealing conditions on complete formation of ternary PdAgCu alloys prepared by sequential electroless and electroplating methods

    Energy Technology Data Exchange (ETDEWEB)

    Sumrunronnasak, Sarocha [Graduate Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Tantayanon, Supawan, E-mail: supawan.t@chula.ac.th [Green Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Kiatgamolchai, Somchai [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-01-01

    PdAgCu ternary alloy membranes were synthesized by the sequential electroless plating of Pd following by electroplating of Ag and Cu onto stainless steel substrate. The composition of the composite was varied by changing the deposition times. The fabricated layers were annealed at the temperatures between 500 and 600 °C for 20–60 h. The Energy Dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were employed to investigate the element distribution in the membrane which provided the insight on membrane alloying process. Complete formation of the alloy could be obtained when the Pd composition was greater than a critical value of 60 wt%, and Ag and Cu contents were in the range of 18–30 wt% and 2–13 wt%, respectively. Deposition times of Ag and Cu were found to affect the completion of alloy formation. Excess amount of the deposited Cu particularly tended to segregate on the surface of the membrane. - Highlights: • Ternary PdAgCu alloy membranes were successfully prepared by the sequential electroless and electroplating methods. • The average Pd composition required to form alloy was found to be approximately at least 60%wt. • The alloy region was achieved for f Pd 60–73 wt%, Cu 18–30 wt% and Ag 2–13 wt%. • Suitable annealing temperature in the range of 500–600 °C for an adequate period of treating time (20–60 h).

  18. Experimental poisoning by cassava wastewater in sheep

    Directory of Open Access Journals (Sweden)

    Valdir C. Silva

    Full Text Available ABSTRACT: The processing of Manihot esculenta (cassava tubers yield different by-products, including cassava wastewater, which is the liquid pressed out of the tuber after it has been mechanically crushed. Cyanide poisoning after ingestion of cassava wastewater has been reported in ruminants and pigs in Northeastern Brazil. With the aim of studying its toxicity, cassava wastewater was administered orally to six sheep at doses of 0.99, 0.75, 0.70, 0.63, and 0.5 mg of hydrocyanic acid kg-1 body weight, which corresponded to 14.2, 10.6, 9.8, 8.89, and 7.1 mL of wastewater kg-1. On the second day, the sheep received a volume of wastewater which corresponded to 0.46, 0.34, 0.31, 0.28, and 0.23 mg of HCN kg-1. A sheep used as control received 9.9 mL of water kg-1 BW. Sheep that received from 0.75 to 0.99 mg kg-1 of HCN on the first day exhibited severe clinical signs of poisoning, and the sheep that received 0.63 and 0.5 mg kg-1 exhibited mild clinical signs. All sheep were successfully treated with sodium thiosulfate. On the second day, only the sheep that received 0.46 mg kg-1 and 0.34 mg kg-1 exhibited mild clinical signs and recovered spontaneously. The concentration of HCN in the wastewater was 71.69±2.19 μg mL-1 immediately after production, 30.56±2.45 μg mL-1 after 24 hours, and 24.25±1.28 μg mL-1 after 48 hours. The picric acid paper test was strongly positive 5 minutes after production; moderately positive 24 hours after production, and negative 48 hours after production. We conclude that cassava wastewater is highly toxic to sheep if ingested immediately after production, but rapidly loses toxicity in 24-48 hours.

  19. Current technologies for biological treatment of textile wastewater--a review.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  20. Efficiency of electrical coagulation process using aluminum electrodes for municipal wastewater treatment: a case study at Karaj wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Samad Gholami Yengejeh

    2017-05-01

    Full Text Available Background: The reuse of treated municipal wastewater is an important source of water for different purposes. This study evaluated the efficiency of the electrocoagulation process in removing turbidity, total suspended solids (TSS, chemical oxygen demand (COD, nitrate, and phosphate from wastewater at the treatment facility in Karaj, Iran. Methods: This experimental study was performed at a pilot scale and in a batch system. A 4-liter tank made from safety glass with 4 plate electrodes made from aluminum was unipolarly connected to a direct current power supply with a parallel arrangement. Wastewater samples were taken from the influent at the Karaj wastewater treatment facility. Rates of turbidity, TSS, COD, nitrate, and phosphate removal under different conditions were determined. Results: The highest efficiency of COD, TSS, nitrate, turbidity, and phosphate elimination was achieved at a voltage of 30 volts and a reaction time of 30 minutes. The rates were 88.43%, 87.39%, 100%, 80.52%, and 82.69%, respectively. Conclusion: Based on the results of this study, electrocoagulation is an appropriate method for use in removing nitrate, phosphate, COD, turbidity, and TSS from wastewater.