WorldWideScience

Sample records for electroplating sludge waste

  1. Cement stabilization of hazardous and radioactive electroplating sludge

    International Nuclear Information System (INIS)

    Langton, C.A.; Pickett, J.B.; Martin, M.L.

    1991-01-01

    Cement stabilization was evaluated for treatment of nickel and uranium in electroplating sludge at the Savannah River Site. Waste forms were prepared by pretreating the sludge and the solidifying it in a variety of cement, cement plus flyash, and cement-flyash-slag mixes. The sludge was also treated by one-step filtration-solidification. Leaching results and processing data indicate the cement solidification is an effective method of treating hazardous-low-level electroplating waste

  2. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.

    2004-02-01

    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  3. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)

    Science.gov (United States)

    AbstractWastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...

  5. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2013-06-18

    This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.

  6. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    Science.gov (United States)

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  7. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  8. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials.

    Science.gov (United States)

    Tang, Yuanyuan; Chan, Siu-Wai; Shih, Kaimin

    2014-06-01

    A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.

    Science.gov (United States)

    Li, Chuncheng; Xie, Fengchun; Ma, Yang; Cai, Tingting; Li, Haiying; Huang, Zhiyuan; Yuan, Gaoqing

    2010-06-15

    An ultrasonically enhanced two-stage acid leaching process on extracting and recovering multiple heavy metals from actual electroplating sludge was studied in lab tests. It provided an effective technique for separation of valuable metals (Cu, Ni and Zn) from less valuable metals (Fe and Cr) in electroplating sludge. The efficiency of the process had been measured with the leaching efficiencies and recovery rates of the metals. Enhanced by ultrasonic power, the first-stage acid leaching demonstrated leaching rates of 96.72%, 97.77%, 98.00%, 53.03%, and 0.44% for Cu, Ni, Zn, Cr, and Fe respectively, effectively separated half of Cr and almost all of Fe from mixed metals. The subsequent second-stage leaching achieved leaching rates of 75.03%, 81.05%, 81.39%, 1.02%, and 0% for Cu, Ni, Zn, Cr, and Fe that further separated Cu, Ni, and Zn from mixed metals. With the stabilized two-stage ultrasonically enhanced leaching, the resulting over all recovery rates of Cu, Ni, Zn, Cr and Fe from electroplating sludge could be achieved at 97.42%, 98.46%, 98.63%, 98.32% and 100% respectively, with Cr and Fe in solids and the rest of the metals in an aqueous solution discharged from the leaching system. The process performance parameters studied were pH, ultrasonic power, and contact time. The results were also confirmed in an industrial pilot-scale test, and same high metal recoveries were performed. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay.

    Science.gov (United States)

    Orescanin, Visnja; Durgo, Ksenija; Mikelic, Ivanka Lovrencic; Halkijevic, Ivan; Kuspilic, Marin

    2018-04-30

    The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.

  11. Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

    Science.gov (United States)

    Luo, Keqin

    1999-11-01

    The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained. This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner. The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and

  12. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  13. Ternary blends containing demercurated lighting phosphor and MSWI fly ash as high-performance binders for stabilizing and recycling electroplating sludge.

    Science.gov (United States)

    Huang, Wu-Jang; Wu, Chia-Teng; Wu, Chang-En; Hsieh, Lin-Huey; Li, Chang-Chien; Lain, Chi-Yuan; Chu, Wei

    2008-08-15

    This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio.

  14. Electroplating and Cyanide Waste.

    Science.gov (United States)

    Torpy, Michael F.; Runke, Henry M.

    1978-01-01

    Presents a literature review of wastes from electroplating industry, covering publications of 1977. This review covers studies such as: (1) ion exchange treatment process; (2) use of reverse osmosis; and (3) cyanide removal and detection. A list of 75 references is also presented. (HM)

  15. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Shih, Pai-Haung; Chiang, Li-Choung; Chang, Yi-Kuo; Lu, Hsing-Cheng; Chang, Juu-En

    2009-10-15

    The purpose of this study is to utilize an electroplating sludge for belite-rich clinker production and to observe the influence of heavy metals on the polymorphs of dicalcium silicate (C(2)S). Belite-rich clinkers prepared with 0.5-2% of NiO, ZnO, CuO, and Cr(2)O(3) were used to investigate the individual effects of the heavy metals in question. The Reference Intensity Ratio (RIR) method was employed to determine the weight fractions of gamma-C(2)S and beta-C(2)S in the clinkers, and their microstructures were examined by the transmission electron microscopy (TEM). The results showed that nickel, zinc, and chromium have positive effects on beta-C(2)S stabilization (Cr(3+)>Ni(2+)>Zn(2+)), whereas copper has a negative effect. The addition of up to 10% electroplating sludge did not have any negative influence on the formation of C(2)S. It was observed that gamma-C(2)S decreased while beta-C(2)S increased with a rise in the addition of the electroplating sludge. Moreover, nickel and chromium mainly contributed to stabilizing beta-C(2)S in the belite-rich clinkers produced from the electroplating sludge.

  16. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.

    Science.gov (United States)

    Huang, Ruth; Huang, Kuo-Lin; Lin, Zih-Yi; Wang, Jian-Wen; Lin, Chitsan; Kuo, Yi-Ming

    2013-11-15

    In this study, vitrification was applied to treat Ni-Cu electroplating sludge. The sludge was mixed with additives (limestone:cullet = 4:6) and then heated to 1450 °C. The cooled product could be separated into slag and ingot. An atomic absorption spectrometer was used to determine the metal levels of specimens and toxicity characteristic leaching procedure (TCLP) tests, whereas the crystalline and surface characteristics were examined using quantitative X-ray diffraction (XRD) analysis and scanning electron microscopy, respectively. With a glassy structure, the slag was mainly composed of Ca, Si, and Mg. The TCLP results of slags met the Taiwan regulated standards, suggesting that slag can be used for recycling purposes. With the aid of additives, the crystalline phase of slag was transformed form CaMgSiO4 into CsSiO3. The ingots were mainly composed of Ni (563,000-693,800 mg/kg), Cu (79,900-87,400 mg/kg), and Fe (35,000-43,600 mg/kg) (target metals) due the gravity separation during vitrification. At appropriate additives/sludge ratios (>0.2), >95% of target metals gathered in the ingot as a recoverable form (Ni-Fe alloy). The high Ni level of slag suggests that the ingot can be used as the raw materials for smelters or the additives for steel making. Therefore, the vitrification approach of this study is a promising technology to recover valuable metals from Ni-Cu electroplating sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Treatment of nanowaste via fast crystal growth: with recycling of nano-SnO2 from electroplating sludge as a study case.

    Science.gov (United States)

    Zhuang, Zanyong; Xu, Xinjiang; Wang, Yongjing; Wang, Yandi; Huang, Feng; Lin, Zhang

    2012-04-15

    The treatment of industrial sludge containing amorphous/nanophase metal oxides or hydroxides is one of the vital issues in hazardous waste disposal. In this work, we developed a strategy to recycle nano-SnO(2) from tinplate electroplating sludge. It revealed that the major components of this sludge were acid soluble Sn and Fe amorphous phases. By introducing NaOH as a mineralizer, a fast growth of amorphous Sn compound into acid-insoluble SnO(2) nanowires was achieved selectively. Thus, the as-formed nano-SnO(2) could be recycled via dissolving other solid compositions in the sludge by using acid. The role of NaOH on accelerating both the Oriented Attachment (OA) and Ostwald Ripening (OR) growth of SnO(2) was discussed, which was regarded as a critical factor for treating the sludge. A pilot-scale experiment was conducted to treat 2.3 kg original sludge and the recycling of about 90 g nano-SnO(2) was achieved. We anticipate this work can provide a good example for the recycling of valuable metals from industrial sludge containing fine metal oxides or hydroxides. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The bulk composition and leaching properties of electroplating sludge prior/following the solidification/stabilization by calcium oxide.

    Science.gov (United States)

    Orescanin, Visnja; Mikulic, Nenad; Mikelic, Ivanka Lovrencic; Posedi, Mario; Kampic, Stefica; Medunic, Gordana

    2009-10-01

    Eighteen samples of electroplating sludge were taken from three vertical profiles of waste storage pond of the zinc plating facility. Dry matter and organic matter content, pH value, bulk concentrations and leachate composition were determined. A sludge sample with the highest zinc value in the leachate was treated with calcium oxide (10% to 70%) and the obtained solidificate was repeatedly tested. There were found significant variations of all measured parameters among the profiles of untreated waste. Dry matter content varied from 125 to 455 mgg(-1), organic matter varied from 94.3 to 293.9 mgg(-1), and pH value varied from 3.42 to 5.90 (mean 4.34). Iron content ranged from 38.4 to 191.4 mgg(-1) (mean 136 mgg(-1); RSD 0.25), while zinc ranged from 10.9 to 58.2 mgg(-1) (mean 33.4 mgg(-1); RSD 0.38). According to its DIN38414-S4 leachate composition, this material was not suitable for landfilling of inert waste since zinc and nickel mean values were 10 and 1.5 times higher, respectively, and maximum values 27 and 2.5 times higher, respectively, compared to the upper permissible limit. Maximum values of Cr(VI), Fe, Ni, Cu, and Zn in the DIN38414-S4 leachate were 0.183 mgL(-1), 34.085 mgL(-1), 1.052 mgL(-1), 0.829 mgL(-1) and 107.475 mgL(-1)L, respectively. Following the solidification/stabilization procedure with CaO (sample/CaO = 90/10), concentrations of Cr(VI), Fe, Cu and Zn were reduced 92, 44, 66 and 57 times, respectively, compared to the untreated sample. The addition of 50% of CaO into the sludge reduced zinc and nickel concentrations 79 and 45 times, respectively, in the DIN38414-S4 leachate of the solidified waste compared to the original sludge, thereby converting an hazardous waste into the inert material suitable for landfilling or reuse in the construction processes.

  19. Fate of zinc in an electroplating sludge during electrokinetic treatments.

    Science.gov (United States)

    Liu, Shou-Heng; Wang, H Paul

    2008-08-01

    Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%). Zinc in the sludge possessed a Zn-O bond distance of 2.07 A with a coordination number (CN) of 5. In the second shells, the bond distance of Zn-(O)-Si was 3.05 A (CN=2). An increase of Zn-(O)-Si (0.05 A) with a decrease of its CN (from 5 to <1) was found in the early stage of the electrokinetic treatment. Prolong the electrokinetic treatment time to 180 min, about 34% of Zn(II) was dissolved into the aqueous phase and about 68% of Zn(II) in the sludge (or 23% of total zinc) was migrated to the cathode under the electric field (5 V cm(-1)). The dissolution and electromigration rates of Zn(II) in the sludge were 1.0 and 0.6 mmol h(-1)g(-1) sludge, respectively during the electrokinetic treatment. This work also exemplifies the utilization of in situ EXAFS and XANES for revealing speciation and possible reaction pathways during the course of zinc recycling from the sludge by electrokinetic treatments.

  20. [Effect of simulated inorganic anion leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    Science.gov (United States)

    Chen, Yan; Huang, Fang; Xie, Xin-Yuan

    2014-04-01

    An Acidithiobacillus ferrooxidans strain WZ-1 (GenBank sequence number: JQ968461) was used as the research object. The effects of Cl-, NO3-, F- and 4 kinds of simulated inorganic anions leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Cl-, NO3(-)- didn't have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1), 1.0 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Cl- and NO3- (about 10.0 g x L(-1), 5.0 g x L(-1), respectively), but it had lower tolerance to F- (25 mg x L(-1)). Different kinds of simulated inorganic anions leaching solutions of electroplating sludge had significant differences in terms of their effects on bioactivity of WZ-1 with a sequence of Cl-/NO3(-)/F(-) > or = NO3(-)/F(-) > Cl-/F(-) > Cl(-)/NO3(-).

  1. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.

    Science.gov (United States)

    Cao, Zhenbang; Zhang, Jia; Zhou, Jizhi; Ruan, Xiuxiu; Chen, Dan; Liu, Jianyong; Liu, Qiang; Qian, Guangren

    2017-05-15

    A zinc-dominant ferrite catalyst for efficient degradation of organic dye was prepared by the calcination of electroplating sludge (ES). Characterizations indicated that zinc ferrite (ZnFe 2 O 4 ) coexisted with Fe 2 O 3 structure was the predominant phase in the calcined electroplating sludge (CES). CES displayed a high decolorization ratio (88.3%) of methylene blue (MB) in the presence of H 2 O 2 combined with UV irradiation. The high efficiency could be ascribed to the photocatalytic process induced by ZnFe 2 O 4 and the photo-Fenton dye degradation by ferrous content, and a small amount of Al and Mg in the sludge might also contribute to the catalysis. Moreover, the degradation capability of dye by CES was supported by the synthetic ZnFe 2 O 4 with different Zn to Fe molar ratio (n(Zn): n(Fe)), as 84.81%-86.83% of dye was removed with n(Zn): n(Fe) ranged from 1:0.5 to 1:3. All synthetic ferrite samples in the simulation achieved adjacent equilibrium decolorization ratio, the flexible proportioning of divalent metal ions (M 2+ ) to trivalent metal ions (M 3+ ) applied in the synthesis indicated that the catalyst has a high availability. Therefore, an efficacious catalyst for the degradation of dye can potentially be derived from heavy metal-containing ES, it's a novel approach for the reutilization of ES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  3. [Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    Science.gov (United States)

    Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang

    2013-01-01

    An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.

  4. Translocation of metals in pea plants grown on various amendment of electroplating industrial sludge.

    Science.gov (United States)

    Bose, Sutapa; Chandrayan, Sudarshana; Rai, Vivek; Bhattacharyya, A K; Ramanathan, A L

    2008-07-01

    A pot-culture experiment was conducted to observe the effects of acidic sludge addition to the soils on bioavailability and uptake of heavy metals in different parts of pea plant as well as its influence on the growth of that plant. It is observed from our result the abundances of total and bio-available heavy metals in sludge vary as follows: Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Sludge applications increased both the total metals, DTPA-extractable metals and total N in the soils. On the other hand lime application has decreased the bioavailability of heavy metals with no change in total N in sludge amended soils. Organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R(2)>0.7) with the low translocation efficiency of pea plants. The value of translocation factor from shoot to seed was found to be smaller than root to shoot of pea plants. Our study thus shows that pea plants were found to be well adapted to the soil amended with 10% sludge with 0.5% lime treatment, minimizing most of the all metal uptake in the shoot of that plant. So, on the basis of the present study, possible treatment may be recommended for the secure disposal of acidic electroplating sludge.

  5. Remediation of lead from lead electroplating industrial effluent using sago waste.

    Science.gov (United States)

    Jeyanthi, G P; Shanthi, G

    2007-01-01

    Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.

  6. SUBSTITUTION OF CADMIUM CYANIDE ELECTROPLATING WITH ZINC CHLORIDE ELECTROPLATING

    Science.gov (United States)

    The study evaluated the zinc chloride electroplating process as a substitute for cadmium cyanide electroplating in the manufacture of industrial connectors and fittings at Aeroquip Corporation. The process substitution eliminates certain wastes, specifically cadmium and cyanide, ...

  7. Estimation of Pb from metal and electroplating industrial waste by ...

    African Journals Online (AJOL)

    The concentration of lead in sediment and liquid waste samples of selected metal electroplating industries was measured by atomic absorption spectrophotometer. The data obtained revealed that lead content in liquid wastes varies in the range of 0.582-14.97 mg L-1 and 1.300-757.8 mg Kg-1 in sediments. Removal of ...

  8. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  9. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peizhe [Chinese Research Academy of Environmental Sciences, Beijing (China)

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  10. Wasting Away: To Sludge or Not to Sludge?

    Directory of Open Access Journals (Sweden)

    L Nicolle

    2001-01-01

    Full Text Available Following a century of high standards of sanitation, food and water safety in North America are often taken for granted. Recent outbreaks of illness attributed to food and water contamination, however, have challenged this complacency. Now, sludge is added to the list of concerns. Sewage sludge is the muddy substance that remains after the treatment of municipal sewage. This material includes not only human waste, but also household and industrial toxic wastes disposed of in local sewers. Federal and provincial Canadian regulations support the use of this material as fertilizer, within acceptable guidelines, as does the Environmental Protection Agency in the United States. The safety of sludge, however, is questioned by some individuals and groups. Specifically, the risk of infectious agents and toxins to workers or other exposed individuals, and the potential for heavy metals and organic chemicals to be transferred from sludge-treated fields into crops are concerns.

  11. Method of treating radioactive sludge waste

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Matsuura, Hiroyuki; Ichihashi, Toshio

    1989-01-01

    For removing water content from sludge wastes, filtration or steam condensation may be considered, but none of them can sufficiently reduce the water content since filtration may cause clogging and steam treatment has a limit in the condensation. In view of the above, radioactive sludge wastes are dehydrated by an electroosmotic process in a vessel and then dehydrated solid contents are solidified in the vessel. Since the sludge wastes are mainly composed o fion exchange resins and iron oxides deposited to the resins, when a DC voltage is applied to the sludges containing such solid contents, a force tending to premeate them through the fine pores in the filter is exerted to water. As a result, only water is removed while the solids are being held on the filters. Since the moving direction of water is different depending on the property of the sludges, the polarity of the electrodes may be changed depending on the nature of the sludges. Thus, volume reduction can be improved and treating conditions can be controlled easily by a simple device. (N.H.)

  12. Application of three tailing-based composites in treating comprehensive electroplating wastewater.

    Science.gov (United States)

    Liu, Hongbo; Zhu, Mengling; Gao, Saisai

    2014-01-01

    Heavy metals and chemical oxygen demand (COD) are major challenging pollutants for most electroplating wastewater treatment plants. A novel composite material, prepared with a mixture of calcium and sodium compounds and tailings, was simply mixed by ratios and used to treat a comprehensive electroplating wastewater with influent COD, total copper (T-Cu), and total nickel (T-Ni) respectively as 690, 4.01, and 20.60 mg/L on average. Operational parameters, i.e. the contact time, pH, mass ratio of calcium and sodium compounds and tailings, were optimized as 30 min, 10.0, and 4:2:1. Removal rates for COD, T-Cu, and T-Ni could reach 71.8, 90.5, and 98.1%, respectively. No significant effect of initial concentrations on removal of T-Cu and T-Ni was observed for the composite material. The adsorption of Cu(II) and Ni(II) on the material fitted Langmuir and Freundlich isotherms respectively. Weight of waste sludge from the calcium/sodium-tailing system after reaction was 10% less than that from the calcium-tailing system. The tailing-based composite is cost-effective in combating comprehensive electroplating pollution, which shows a possibility of applying the tailings in treating electroplating wastewater.

  13. Harvesting biogas from wastewater sludge and food waste

    International Nuclear Information System (INIS)

    Chua, K H; Cheah, W L; Leong, Y P; Tan, C F

    2013-01-01

    Wastewater sludge and food waste are good source of biogas. Anaerobic treatment of slude and food waste able to produce biogas which is a potential renewable energy source. This study looks into the potential biogas generation and the effects of temperature on biogas generation. A lab scale reactor was used to simulate the biogas generation. The results show that wastewater sludge able to produced upto 44.82 ml biogas/kg of sludge. When mixed with food waste at a ratio of 30:70 (food waste), the biogas generated were 219.07 ml/kg of waste. Anaerobic of food waste alone produced biogas amount to 59.75 ml/kg of food waste. Anaerobic treatment also reduces the volume of waste. The effect of temperature shows that higher temperature produces more biogas than lower temperature.

  14. Sampling and analyses of SRP high-level waste sludges

    International Nuclear Information System (INIS)

    Stone, J.A.; Kelley, J.A.; McMillan, T.S.

    1976-08-01

    Twelve 3-liter samples of high-heat waste sludges were collected from four Savannah River Plant waste tanks with a hydraulically operated sample collector of unique design. Ten of these samples were processed in Savannah River Laboratory shielded cell facilities, yielding 5.3 kg of washed, dried sludge products for waste solidification studies. After initial drying, each batch was washed by settling and decantation to remove the bulk of soluble salts and then was redried. Additional washes were by filtration, followed by final drying. Conclusions from analyses of samples taken during the processing steps were: (a) the raw sludges contained approximately 80 wt percent soluble salts, most of which were removed by the washes; (b) 90 Sr and 238 , 239 Pu remained in the sludges, but most of the 137 Cs was removed by washing; (c) small amounts of sodium, sulfate, and 137 Cs remained in the sludges after thorough washing; (d) no significant differences were found in sludge samples taken from different risers of one waste tank. Chemical and radiometric compositions of the sludge product from each tank were determined. The sludges had diverse compositions, but iron, manganese, aluminum, and uranium were principal elements in each sludge. 90 Sr was the predominant radionuclide in each sludge product

  15. Gravitational sedimentation of flocculated waste activated sludge.

    Science.gov (United States)

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  16. Photovoltaic's silica-rich waste sludge as supplementary cementitious material

    NARCIS (Netherlands)

    Quercia, G.; Van der Putten, J.J.G.; Brouwers, H.J.H.

    2013-01-01

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO2 and CaCO3. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1000 nm. Thus, this sludge is potentially hazardous waste when is improperly

  17. Chemical modeling of waste sludges

    International Nuclear Information System (INIS)

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety

  18. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate

    Energy Technology Data Exchange (ETDEWEB)

    Aydın, Ahmet Alper, E-mail: ahmetalperaydin@gmail.com [Chair of Urban Water Systems Engineering, Technische Universität München, Am Coulombwall, 85748 Garching (Germany); Aydın, Adnan [Istanbul Bilim University, School of Health, Esentepe, Istanbul, Sisli, 34394 (Turkey)

    2014-04-01

    Highlights: • A new physico-chemical process below 1000 °C for immobilization of galvanic sludges. • Sodium tetraborate and sodium silicate have been used as additives. • A strategy for adjustment of solid waste/additive mixture composition is presented. • Strategy is valid for wastes of hydrometallurgical and electro-plating processes. • Lower energy consumption and treated waste volume, shorter process time are provided. - Abstract: Heavy metal containing sludges from wastewater treatment plants of electroplating industries are designated as hazardous waste since their improper disposal pose high risks to environment. In this research, heavy metal containing sludges of electroplating industries in an organized industrial zone of Istanbul/Turkey were used as real-sample model for development of an immobilization process with sodium tetraborate and sodium silicate as additives. The washed sludges have been precalcined in a rotary furnace at 900 °C and fritted at three different temperatures of 850 °C, 900 °C and 950 °C. The amounts of additives were adjusted to provide different acidic and basic oxide ratios in the precalcined sludge-additive mixtures. Leaching tests were conducted according to the toxicity characteristic leaching procedure Method 1311 of US-EPA. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and flame atomic absorption spectroscopy (FAAS) have been used to determine the physical and chemical changes in the products. Calculated oxide molar ratios in the precalcined sludge-additive mixtures and their leaching results have been used to optimize the stabilization process and to determine the intervals of the required oxide ratios which provide end-products resistant to leaching procedure of US-EPA. The developed immobilization-process provides lower energy consumption than sintering-vitrification processes of glass–ceramics.

  19. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Gilliam, T.M.; Harrington, E.S.; Youngblood, E.L.; Baer, M.B.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now know as the Oak Ridge K-25 Site) prepared two mixed-waste surface impoundments for closure by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage of the stabilized waste was planned until final disposition. The strategy for disposal included delisting the stabilized pond sludge from hazardous to nonhazardous and disposing of the delisted monoliths as radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 drums of unprocessed sludge are presently being stored. In addition, the abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such conditions do not comply with the requirements set forth by the Resource Conservation and Recovery Act (RCRA) for the storage of listed waste. Various steps are being taken to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. This paper (1) reviews the current situation, (2) discusses the plan for remediation of regulatory noncompliances, including decanting liquid from stabilized waste and dewatering untreated waste, and (3) provides an assessment of alternative raw-waste treatment processes. 1 ref., 6 figs., 2 tabs

  20. Co-digestion of pig slaughterhouse waste with sewage sludge.

    Science.gov (United States)

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Co-disposal of sewage sludge and solid wastes-it works

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, D B

    1977-10-01

    The problem of sludge disposal is one of more sludge than ever before, few suitable land disposal or land application sites, the ocean dumping option being phased out, and energy cost so high or supplies so few as to make incineration a questionable endeavor. The energy required to run a wastewater treatment plant and the heat needed to incinerate the sludge may be available in the same community in the form of municipal solid waste. Municipal sludge has a heat value of about 10,000 Btu/lb of dry solids; it is autogenous at>30% solids. Codisposal techniques are discussed which use the energy produced by the combustion of solid waste to dewater the sludge to its autogenous point. One approach is to use sewage sludge incinerators, in many cases already installed at the wastewater treatment plant, and to use the organic portion of solid waste as a fuel to dry, burn, and reduce the volume of the sludge that must ultimately be disposed. A second approach would use a solid waste incinerator, solid waste-fired steam generator, or waterwall combustion unit to burn dewatered sludge. Both approaches are being demonstrated or used. Thermal sludge disposal at wastewater treatment plants normally is carried out in multiple-hearth or fluidized-bed incinerators. The experiences of such plants in the US and Europe are summarized.

  2. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Meulepas, Roel J.W.; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E.; Lens, Piet N.L.

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g −1 of copper, 487 μg g −1 of lead, 793 μg g −1 of zinc, 27 μg g −1 of nickel and 2.3 μg g −1 of cadmium. During the anaerobic acidification of 3 g dry weight L −1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  3. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  4. Facile synthesis of porous TiO_2 photocatalysts using waste sludge as the template

    International Nuclear Information System (INIS)

    Wang, Xiaopeng; Huang, Shouqiang; Zhu, Nanwen; Lou, Ziyang; Yuan, Haiping

    2015-01-01

    Graphical abstract: Waste sludge is introduced to synthesize the waste sludge templated TiO_2 photocatalyst with porous structure, which possesses better photocatalytic activity compared to pure TiO_2. - Highlights: • Waste sludge is introduced to synthesize the TiO_2 photocatalyst. • Waste sludge templated TiO_2 sample possesses porous structure. • Waste sludge templated TiO_2 sample exhibits high photocatalytic activity. - Abstract: A resource utilization method of waste sludge is present by the synthesis of waste sludge templated TiO_2 photocatalysts. The organic materials in waste sludge are used as the pore-forming agents, and the transition metals included in the remaining waste sludge through calcination (WSC) can serve as the dopants for the WSC-TiO_2 (WSCT) photocatalyst. The visible and UV–visible light driven photocatalytic activities of WSCT are much better compared to those of pure TiO_2 and WSC, and it is originated from the higher light absorption property and the efficient electron–hole pair separation provided by waste sludge.

  5. Photovoltaic's silica-rich waste sludge as supplementary cementitious materials (SCM)

    NARCIS (Netherlands)

    Quercia Bianchi, G.; van der Putten, J.J.G.; Brouwers, H.J.H.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO2 and CaCO3. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1000 nm. Thus, this sludge is potentially hazardous waste when is improperly

  6. Photovoltaic's silica-rich waste sludge as supplementary cementitious materials (SCM)

    NARCIS (Netherlands)

    Quercia Bianchi, G.; van der Putten, J.J.G.; Husken, G.; Brouwers, H.J.H.

    2013-01-01

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO2 and CaCO3. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 µm. Thus, this sludge constitutes a potentially hazardous waste when it is

  7. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  8. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs

  9. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  10. Separation of SRP waste sludge and supernate

    International Nuclear Information System (INIS)

    Stone, J.A.

    1976-01-01

    Sludges and supernates were separated from Savannah River Plant waste slurries by centrifugation and sand filtration. This separation, a portion of a conceptual process for solidification and long-term storage of high-level radioactive wastes, was tested in shielded cells with small-scale process equipment. Procedures for the separation were developed in tests with nonradioactive materials. Then, in 13 tests with actual sludges and supernates, solids removal ranged from 90 to 99.2 vol percent and averaged 96.4 vol percent after two passes through a basket-type centrifuge. Concentrates from the tests, containing 0.05 to 0.2 vol percent solids, were clarified by sand filter columns to produce solutions of the soluble salts with less than 0.01 vol percent solids. About 700 liters of salt solution and 8 kilograms of washed, dried sludges were separated in the tests. Effects of sludge type, flocculant, flow rates, and batch size were evaluated. Washing and drying of centrifuged sludges were studied, and two types of dryers were tested. Ruthenium volatility during drying was negligible. Washing efficiency was determined by analyses of wash solutions and sludge products

  11. Rapid determination of chromium(VI) in electroplating waste water by use of a spectrophotometric flow injection system.

    Science.gov (United States)

    Yuan, Dong; Fu, Dayou; Wang, Rong; Yuan, Jigang

    2008-11-01

    A new rapid and sensitive FI method is reported for spectrophotometric determination of trace chromium(VI) in electroplating waste water. The method is based on the reaction of Cr(VI) with sodium diphenylamine sulfonate (DPH) in acidic medium to form a purple complex (lambda(max) = 550 nm). Under the optimized conditions, the calibration curve is linear in the range 0.04-3.8 microg ml(-1) at a sampling rate of 30 h(-1). The detection limit of the method is 0.0217 microg ml(-1), and the relative standard deviation is 1.1% for eight determinations of 2 microg ml(-1) Cr(VI). The proposed method was applied to the determination of chromium in electroplating waste water with satisfactory results.

  12. Method for the treatment of waste water with sludge granules

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an

  13. Waste sludge resuspension and transfer: development program

    International Nuclear Information System (INIS)

    Weeren, H.O.; Mackey, T.S.

    1980-02-01

    The six Gunite waste tanks at Oak Ridge National Laboratory (ORNL) contain about 400,000 gal of sludge that has precipitated from solution and settled during the 35 years these tanks have been in service. Eventual decommissioning of the tanks has been proposed. The first part of this program is to resuspend the accumulated sludge, to transfer it to new storage tanks in Melton Valley, and to dispose of it by the shale-fracturing process. On the basis of preliminary information, a tentative operational concept was adopted. The sludge in each tank would be resuspended by hydraulic sluicing and pumped from the tank. This resuspended sludge would be treated as necessary to keep the particles in suspension and would be pumped to the new waste-storage tanks. Subsequently the sludge would be pumped from the tanks, combined with a cement-base mix, and disposed of by the shale-fracturing facility. Verification of the feasibility of this concept required development effort on characterization of the sludge and development of techniques for resuspending the sludge and for keeping it in suspension. These development efforts are described in this report. Sections of the report describe both the known properties of the sludge and the tests of grinding methods investigated, discuss tests of various suspenders, describe tests with cement-base mixes, summarize hot-cell tests on actual sludge samples, and describe tests that were made at a mockup of a Gunite tank installation. On the basis of the tests made, it was concluded that reslurrying and resuspension of the sludge is quite feasible and that the suspensions can be made compatible with cement mixes

  14. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electrical resistivities of glass melts containing simulated SRP waste sludges

    International Nuclear Information System (INIS)

    Wiley, J.R.

    1978-08-01

    One option for the long-term management of radioactive waste at the Savannah River Plant is to solidify the waste in borosilicate glass by using a continuous, joule-heated, ceramic melter. Electrical resistivities that are needed for melter design were measured for melts of two borosilicate, glass-forming mixtures, each of which was combined with various amounts of several simulated-waste sludges. The simulated sludge spanned the composition range of actual sludges sampled from SRP waste tanks. Resistivities ranged from 6 to 10 ohm-cm at 500 0 C. Melt composition and temperature were correlated with resistivity. Resistivity was not a simple function of viscosity. 15 figures, 4 tables

  16. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2015-01-01

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  17. Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.

    Science.gov (United States)

    El-Sebaie, O; Ahmed, M; Ramadan, M

    2000-01-01

    The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.

  18. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  19. The effect of operating conditions on aquatic worms eating waste sludge

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, H.; Elissen, H.J.H.; Buisman, C.J.N.

    2009-01-01

    Several techniques are available for dealing with the waste sludge produced in biological waste water treatment. A biological approach uses aquatic worms to consume and partially digest the waste sludge. In our concept for a worm reactor, the worms (Lumbriculus variegatus) are immobilised in a

  20. Effects of waste glass additions on quality of textile sludge-based bricks.

    Science.gov (United States)

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  1. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-01-01

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations (±10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample

  2. The Fundamentals of Waste Water Sludge Characterization and Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Scales, Peter J.; Dixon, David R.; Harbour, Peter J.; Stickland, Anthony D.

    2003-07-01

    The move to greater emphasis on the disposal of waste water sludges through routes such as incineration and the added cost of landfill emplacement puts high demands on dewatering technology for these sludges. A dear problem in this area is that waste water sludges are slow and difficult to dewater and traditional methods of laboratory measurement for prediction of filtration performance are inadequate. This is highly problematic for the design and operational optimisation of centrifuges, filters and settling devices in the waste water industry. The behaviour is assessed as being due to non-linear behaviour of these sludges which negates the use of classical approaches. These approaches utilise the linear portion of a t versus V{sup 2} plot (where t is the time to filtration and V is the specific filtrate volume) to extract a simple Darcian permeability. Without this parameter, a predictive capacity for dewatering using current theory is negated. (author)

  3. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE.

    Energy Technology Data Exchange (ETDEWEB)

    ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

    2002-10-01

    The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

  4. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J. W.; Bowerman, B. S.; Kalb, P. D.

    2002-02-25

    The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

  5. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    International Nuclear Information System (INIS)

    ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

    2002-01-01

    The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes

  6. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    International Nuclear Information System (INIS)

    Adams, J. W.; Bowerman, B. S.; Kalb, P. D.

    2002-01-01

    The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes

  7. Multi-step process for concentrating magnetic particles in waste sludges

    Science.gov (United States)

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  8. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    International Nuclear Information System (INIS)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J.V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-01-01

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing

  10. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  11. Leachability of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Sewage sludge is sewerage from wastewater treatment plants that generates millions tons of sludge ever year. Regarding this activity, it causes lack management of waste which is harmful to the surrounding conditions. Therefore, this study is focuses on the incorporation of sewage sludge waste into fired clay brick to provide an option of disposal method, producing adequate quality of brick as well as limiting the heavy metal leachability to the environment. Sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, 20% and 30% of sewage sludge waste (SSW). Heavy metals of crushed SSB were determined by using Toxicity Characteristic Leaching Procedure (TCLP) according to Method 1311 of United State Environment Protection Agency (USEPA) standard. From the results obtained, up to 20% of SSW could be incorporated into fired clay brick and comply with the USEPA standard. Therefore, this study revealed that by incorporating SSW into fired clay brick it could be an alternative method to dispose the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  12. Colloidal agglomerates in tank sludge: Impact on waste processing

    International Nuclear Information System (INIS)

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    'Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control of agglomeration phenomena. Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control

  13. Proceedings of the workshop on radioactive, hazardous, and/or mixed waste sludge management

    International Nuclear Information System (INIS)

    Lomenick, T.F.

    1992-01-01

    A workshop sponsored by the US Department of Energy (DOE) Field Office, Oak Ridge, was held on December 4--6, 1990, in Knoxville, Tennessee. The primary objective of the workshop was the exchange of information, experiences, solutions, and future plans of DOE and its prime contractors who are engaged in work on the packaging, grouting, storage, and transport of waste sludges. In addition, the group met with industrial participants in an open forum to discuss problems and needs in the management of these wastes and to learn of possible industrial experiences, approaches, and solutions, including demonstrations of potential tools and techniques. Topics discussed include the following: mixed waste sludge issue at the K-25 site; processing saltstone from waste streams at the Savannah River Plant; the Hanford Grout Treatment Facility; treatment of pond sludge at the Rocky Flats Plant; cement solidification of low-level radioactive sludge at the West Valley Demonstration Project; studies on the solidification of low-level radioactive wastes in cement at INEL; cement solidification systems at Los Alamos National Laboratory; emergency avoidance solidification campaign at ORNL; diffusion plant sludge storage problems at the Portsmouth Gaseous Diffusion Plant; the proposed fixation of sludge in cement at the feed materials production center; regulatory aspects of sludge management; and delisting efforts for K-1407-C pond sludges. Individual projects are processed separately for the data bases

  14. Immobilization of radioactive waste sludge from spent fuel storage pool

    International Nuclear Information System (INIS)

    Pavlovic, R.; Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as result of the research reactors' operation and radionuclides application in medicine, industry and agriculture, radioactive waste materials of the different categories and various levels of specific activities were generated. As a temporary solution, these radioactive waste materials are stored in the two hanger type interim storages for solid waste and some type of liquid waste packed in plastic barrels, and one of three stainless steal underground containers for other types of liquid waste. Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some aspects of immobilisation, conditioning and storage of this sludge are presented in this paper. (author

  15. Remediation and production of low-sludge high-level waste glasses

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Brown, K.G.; Beam, D.C.

    1994-01-01

    High-level radioactive sludge will constitute 24-28 oxide weight percent of the high-level waste glass produced at the Savannah River Site. A recent melter campaign using non-radioactive, simulated feed was performed with a sludge content considerably lower than 24 percent. The resulting glass was processed and shown to have acceptable durability. However, the durability was lower than predicted by the durability algorithm. Additional melter runs were performed to demonstrate that low sludge feed could be remediated by simply adding sludge oxides. The Product Composition Control System, a computer code developed to predict the proper feed composition for production of high-level waste glass, was utilized to determine the necessary chemical additions. The methodology used to calculate the needed feed additives, the effects of sludge oxides on glass production, and the resulting glass durability are discussed

  16. Disinfection and physical and chemical changes in waste waters, sludge and agricultural wastes

    International Nuclear Information System (INIS)

    Groneman, A.F.; Oosterheert, W.F.

    1980-01-01

    It is of interest for agriculture to consider recycling scenarios that use undigested sludges as they contain higher concentrations of nitrogen, phosphorus and organic matter than digested sludges. Also from the point of view of waste water management, this approach is of interest because it reduces the time and number of treatments of sludges, thus resulting in technological and economic advantages. However, the utilization of this type of sludge in agriculture is restricted by the presence of human pathogens. Therefore studies concerning the disinfection efficiency of gamma irradiation in undigested sludge at pilot plant level were performed and results compared with the disinfection efficiency of this radiation treatment in digested sludge. (Auth.)

  17. Production of sludge-incorporated paver blocks for efficient waste management.

    Science.gov (United States)

    Velumani, P; Senthilkumar, S

    2018-06-01

    Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.

  18. Results of Sludge Mobilization Testing at Hanford High Level Waste (HLW) Tank

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2001-01-01

    Waste stored in the Tank 241-AZ-101 at the US DOE Hanford is scheduled as the initial feed for high-level waste vitrification. Tank 241-AZ-101 currently holds over 3,000,000 liters of waste made up of a settled sludge layer covered by a layer of liquid supernant. To retrieve the waste from the tank, it is necessary to mobilize and suspend the settled sludge so that the resulting slurry can be pumped from the tank for treatment and vitrification. Two 223.8-kilowatt mixer pumps have been installed in Tank 241-AZ-101 to mobilize the settled sludge layer of waste for retrieval. In May of 2000, the mixer pumps were subjected to a series of tests to determine (1) the extent to which the mixer pumps could mobilize the settle sludge layer of waste, (2) if the mixer pumps could function within operating parameters, and (3) if state-of-the-art monitoring equipment could effectively monitor and quantify the degree of sludge mobilization and suspension. This paper presents the major findings and results of the Tank 241-AZ-101 mixer pump tests, based on analysis of data and waste samples that were collected during the testing. Discussion of the results focuses on the effective cleaning radius achieved and the volume and concentration of sludge mobilized, with both one and two pumps operating in various configurations and speeds. The Tank 241-AZ-101 mixer pump tests were unique in that sludge mobilization parameters were measured using actual waste in an underground storage tank at the hanford Site. The methods and instruments that were used to measure waste mobilization parameters in Tank 241-AZ-101 can be used in other tanks. It can be concluded from the testing that the use of mixer pumps is an effective retrieval method for the mobilization of settled solids in Tank 241-AZ-101

  19. Audible monitor for electroplating

    Science.gov (United States)

    Burowick, E. A.

    1979-01-01

    "No buzzer" indicates early problem in electroplating when parts are properly immersed into electropolating bath. Buzzer sounds when current flows through part; however, if current is cut, buzzer stops warning that parts must be removed and refinished thus preventing unnecessary waste of electrical energy and labor.

  20. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Construction materials as a waste management solution for cellulose sludge

    International Nuclear Information System (INIS)

    Modolo, R.; Ferreira, V.M.; Machado, L.M.; Rodrigues, M.; Coelho, I.

    2011-01-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  2. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    International Nuclear Information System (INIS)

    Arbon, R.E.

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream

  3. Vitrification Studies with DOE Low-Level Mixed Waste Wastewater Treatment Sludges

    International Nuclear Information System (INIS)

    Cicero, C.A.; Andrews, M.K.; Bickford, D.F.; Hewlett, K.J.; Bennert, D.M.; Overcamp, T.J.

    1995-01-01

    Vitrification studies with simulated Low Level Mixed Waste (LLMW) sludges were performed at the Savannah River Technology Center (SRTC). These studies focused on finding the optimum glass compositions for four simulated LLMW wastewater treatment sludges and were based on both crucible-scale and pilot-scale studies. Optimum compositions were determined based on the maximum waste loading achievable without sacrificing glass integrity

  4. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    The effect of ultrasonic specific energy on waste activated sludge (WAS) solubilization and enzyme activity was investigated in this study. Experimental results showed that the increase of ultrasonic specific energy in the range of 0 - 90000 kJ/kg dried sludge (DS) benefited WAS particle size reduction and the solubilization ...

  5. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    Science.gov (United States)

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  7. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    International Nuclear Information System (INIS)

    Quercia, G.; Putten, J.J.G. van der; Hüsken, G.; Brouwers, H.J.H.

    2013-01-01

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO 2 and CaCO 3 . This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 μm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO 2 , this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO 2 footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO 2 and CaCO 3 . •Dispersability studies demonstrated that nSS agglomerates are broken to nano-size. •nSS can be classified

  8. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  9. Chemical dissolving of sludge from a high level waste tank at the Savannah River Plant

    International Nuclear Information System (INIS)

    Bradley, R.F.; Hill, A.J. Jr.

    1977-11-01

    The concept for decontamination and retirement of radioactive liquid waste tanks at the Savannah River Plant (SRP) involves hydraulic slurrying to remove most of the settled sludges followed by chemical dissolving of residual sludges. Dissolving tests were carried out with small samples of sludge from SRP Tank 16H. Over 95 percent of the sludge was dissolved by 8 wt percent oxalic acid at 85 0 C with agitation in a two-step dissolving process (50 hours per step) and an initial reagent-to-sludge volume of 20. Oxalic acid does not attack the waste tank material of construction, appears to be compatible with the existing waste farm processes and equipment after neutralization, and with future processes planned for fixation of the waste into a high-integrity solid for packaging and shipping

  10. Construction materials as a waste management solution for cellulose sludge.

    Science.gov (United States)

    Modolo, R; Ferreira, V M; Machado, L M; Rodrigues, M; Coelho, I

    2011-02-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Physical Properties of Hanford Transuranic Waste Sludge

    International Nuclear Information System (INIS)

    Poloski, A. P.

    2004-01-01

    This project has two primary objectives. The first is to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at WIPP. The second primary objective is to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of this research effort will enhance the existing understanding of agglomeration phenomena and the properties of complex colloidal suspensions. In addition, the knowledge gained and capabilities developed during this effort will aid in the development and optimization of techniques to process the wastes at various DOE sites. These objectives will be accomplished by: (1) characterizing the TRU sludges contained in the Hanford tanks that are intended for shipment to WIPP; (2) determining the physical behavior of the Hanford TRU tank sludges under conditions that might exist during treatment and packaging; (3) and modeling the retrieval, treatment, and packaging operations that will be performed at Hanford to dispose of TRU tank sludges

  12. Treatment of complex electroplating waste by 'zero discharge' technique

    International Nuclear Information System (INIS)

    Khattak, B.Q.; Ram Sankar, P.; Jain, A.K.

    2009-01-01

    Surface treatment processes generate lot of liquid waste, which contains toxic substances and are potentially harmful to the living beings. It is extremely difficult to treat the pollutants where processes and frequencies are not fixed. In Chemical Treatment Facility of RRCAT, surface treatment processes are user dependent and makes the electroplating waste very complicated. Initially the waste was treated by simple chemical transformation technique in which heavy metal ions are converted to hydroxide precipitates. Non metallic ions that contribute much to the plating waste could not be treated by this process. To remove maximum possible pollutants, many experiments were conducted on the laboratory scale. Based on those results, a pilot ion exchange plant of various resins was introduced in the process to achieve disposal quality effluent. Anionic load of Phosphate, Nitrate and fluoride caused frequent anionic bed exhaustions and polymeric network damaging. To avoid this phenomenon a new setup was designed. This pre treatment has the capacity to treat 500 litres per hour connected to a platter with clarifier followed by high pressure carbon and pebbles filters. Analysis of these ions was carried out on the advanced ion chromatography system and is found free of toxic metals, phosphate and fluoride. This effluent can be reused by adding a reverse osmosis system followed by ion exchange system to produce good quality de mineralized water needed for surface treatment activities. In this paper we describe the existing status of effluent treatment facility and future plans for achieving 'zero discharge'. (author)

  13. Bacteriological studies on dairy waste activated sludge

    NARCIS (Netherlands)

    Adamse, A.D.

    1966-01-01

    Dairy-waste activated sludge was examined for bacterial composition and response to different conditions. Strains isolated were classified mainly into three groups: predominantly coryneform bacteria (largely Arthrobacter), some Achromobacteraceae and a small groups of Pseudomonadaceae.

  14. Prediction of centrifugal pump-cleaning ability in waste sludge

    International Nuclear Information System (INIS)

    Churnetski, B.V.

    1981-01-01

    Radioactive waste at the Savannah River Plant (SRP) is being transferred from older waste tanks to new, stress-relieved tanks for more effective waste management. The technology developed for waste removal involves the use of long-shaft, recirculating, centrifugal pumps (slurry pumps). Testing completed at the Savannah River Laboratory's 30-meter-diameter mock-up waste tank related the effective cleaning radius (ECR) of a slurry pump to critical pump and materials characteristics. Presently, this theory is being applied to radioactive waste at SRP. However, the technology can be applied to other remote handling situations where the slurry rheology can be determined. For SRP waste, an equation of the form: ECR α DV 0 (rho/tau 0 )/sup 1/2/ was determined where D is the nozzle diameter, V 0 is the average initial velocity, rho is the density of the slurry, and tau 0 is the yield stress of the slurry. Using this relationship, the cleaning performance of a pump operating in any SRP sludge environment can be predicted. Specifically, yield stress and density measurements on sludge samples can be used to predict the required number and effective location for slurry pumps in actual SRP waste tanks

  15. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    Science.gov (United States)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  16. Predicting the degradability of waste activated sludge.

    Science.gov (United States)

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  17. Correlation models for waste tank sludges and slurries

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Trent, D.S.

    1995-07-01

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate

  18. Aquatic worms eating waste sludge in a continuous system

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2009-01-01

    Aquatic worms are a biological approach to decrease the amount of biological waste sludge produced at waste water treatment plants. A new reactor concept was recently introduced in which the aquatic oligochaete Lumbriculus variegatus is immobilised in a carrier material. The current paper describes

  19. Management of metal-bearing industrial solid waste by stabilization/solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Sunitha, C.; Palanivelu, K. [Anna University, Chennai (India). Centre for Environmental Studies

    2005-07-01

    Metal-bearing sludge from an electroplating industry was immobilised by the solidification stabilisation treatment method. Reduction of the leachability of metals from the waste was studied in different combinations of waste and additives - cement, lime and fly ash. The study revealed that the optimum proportion for cement: metal hydroxide sludge: fly ash as 1:2:2 is the best. The encapsulation efficiency calculated for the metals such as Cu, Cr, Ni, Pb, and Zn was above 92%. The unconfined compressive strength (UCS) for the developed block was found to be 11.5 kg/cm{sup 2} after curing. The toxicity characteristic leach test (TCLP) test reveals that the heavy metal content in the leachate was well below the maximum permissible limit of WHO drinking water standard. 10 refs., 6 tabs.

  20. Enhanced methane yield by co-digestion of sewage sludge with micro-algae and catering waste leachate.

    Science.gov (United States)

    2018-04-04

    The co-digestion of different wastes is a promising concept to improve methane generation during anaerobic process. However, the anaerobic co-digestion of catering waste leachate with algal biomass and sewage sludge has not been studied to date. This work investigated the methane generation by the anaerobic co-digestion of different mixtures of catering waste leachate, micro-algal biomass, and sewage sludge. Co-digestion of waste mixture containing equal ratios of three substrates had 39.31% higher methane yield than anaerobic digestion of raw sludge. This was possibly due to a proliferation of methanogens during the co-digestion period induced by multi-phase digestion of different wastes with different degrees of digestibility. Therefore, co-digestion of catering waste leachate, micro-algal biomass, and sewage sludge appears to be an efficient technology for energy conversion from waste resources. The scientific application of this co-digestion technology with these three substrates may play a role in solving important environmental issues of waste management.

  1. Method of processing cellulose filter sludge containing radioactive waste

    International Nuclear Information System (INIS)

    Shibata, Setsuo; Shibuya, Hidetoshi; Kusakabe, Takao; Kawakami, Hiroshi.

    1991-01-01

    To cellulose filter sludges deposited with radioactive wastes, 1 to 15% of cellulase based on the solid content of the filter sludges is caused to act in an aqueous medium with 4 to 8 pH at 10 to 50degC. If the pH value exceeds 8, hydrolyzing effect of cellulase is decreased, whereas a tank is corroded if the pH value is 4 or lower. If temperature is lower than 10degC, the rate of the hydrolysis reaction is too low to be practical. It is appropriate that the temperature is at the order of 40degC. If it exceeds 50degC, the cellulase itself becomes unstable. It is most effective that the amount of cellulase is about 8% and its addition by more than 15% is not effective. In this way, liquids in which most of filter sludges are hydrolyzed are processed as low level radioactive wastes. (T.M.)

  2. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  3. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-01-01

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate's beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ∼60 C, 80 C, and 95 C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  4. Ferrocyanide Safety Program: Waste tank sludge rheology within a hot spot or during draining

    International Nuclear Information System (INIS)

    Fauske, H.K.; Cash, R.J.

    1993-11-01

    The conditions under which ferrocyanide waste sludge flows as a homogeneous non-Newtonian two-phase (solid precipitate-liquid) mixture rather than as a liquid through a porous medium (of stationary precipitate) are examined theoretically, based on the notion that the preferred rheological behavior of the sludge is the one which imposes the least resistance to the sludge flow. The homogeneous two-phase mixture is modeled as a power-law fluid and simple criteria are derived that show that the homogeneous power-law sludge-flow is a much more likely flow situation than the porous medium model of sludge flow. The implication of this finding is that the formation of a hot spot or the drainage of sludge from a waste tank are not likely to result in the uncovering (drying) and subsequent potential overheating of the reactive-solid component of the sludge

  5. Solidifications/stabilization treatability study of a mixed waste sludge

    International Nuclear Information System (INIS)

    Spence, R.D.; Stine, E.F.

    1996-01-01

    The Department of Energy Oak Ridge Operations Office signed a Federal Facility Compliance Agreement with the US Environmental Protection Agency Region IV regarding mixed wastes from the Oak Ridge Reservation (ORR) subject to the land disposal restriction provisions of the Resource Conservation and Recovery Act (RCRA). This agreement required treatability studies of solidification/stabilization (S/S) on mixed wastes from the ORR. This paper reports the results of the cementitious S/S studies conducted on a waste water treatment sludge generated from biodenitrification and heavy metals precipitation. For the cementitious waste forms, the additives tested were Portland cement, ground granulated blast furnace slag, Class F fly ash, and perlite. The properties measured on the treated waste were density, free-standing liquid, unconfined compressive strength, and TCLP performance. Spiking up to 10,000, 10,000, and 4,400 mg/kg of nickel, lead, and cadmium, respectively, was conducted to test waste composition variability and the stabilization limitations of the binding agents. The results indicated that nickel, lead and cadmium were stabilized fairly well in the high pH hydroxide-carbonate- ''bug bones'' sludge, but also clearly confirmed the established stabilization potential of cementitious S/S for these RCRA metals

  6. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal; Lens, Piet Nl L

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether

  7. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of addition of sewage sludge and coal sludge on bioavailability of selected metals in the waste from the zinc and lead industry.

    Science.gov (United States)

    Sobik-Szołtysek, Jolanta; Wystalska, Katarzyna; Grobelak, Anna

    2017-07-01

    This study evaluated the content of bioavailable forms of selected heavy metals present in the waste from Zn and Pb processing that can potentially have an effect on the observed difficulties in reclamation of landfills with this waste. The particular focus of the study was on iron because its potential excess or deficiency may be one of the causes of the failure in biological reclamation. The study confirmed that despite high content of total iron in waste (mean value of 200.975gkg -1 ), this metal is present in the forms not available to plants (mean: 0.00009gkg -1 ). The study attempted to increase its potential bioavailability through preparation of the mixtures of this waste with additions in the form of sewage sludge and coal sludge in different proportions. Combination of waste with 10% of coal sludge and sewage sludge using the contents of 10%, 20% and 30% increased the amounts of bioavailable iron forms to the level defined as sufficient for adequate plant growth. The Lepidum sativum test was used to evaluate phytotoxicity of waste and the mixtures prepared based on this waste. The results did not show unambiguously that the presence of heavy metals in the waste had a negative effect on the growth of test plant roots. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    International Nuclear Information System (INIS)

    Al Yaqout, Anwar F.

    2003-01-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14±1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85±0.19 million t representing 37.22±6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait

  10. A study on the dewatering of industrial waste sludge by fry-drying technology

    International Nuclear Information System (INIS)

    Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-kyum; Moon, Seung-Hyun

    2009-01-01

    In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m 2 deg. C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 deg. C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 deg. C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 deg. C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were aluminum

  11. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential.

    Science.gov (United States)

    Zhang, Zengshuai; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-07-01

    With the increasing of high saline waste sludge production, the treatment and utilization of saline waste sludge attracted more and more attention. In this study, the biological hydrogen production from saline waste sludge after heating pretreatment was studied. The substrate metabolism process at different salinity condition was analyzed by the changes of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS), and dissolved organic matters (DOM). The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate the effect of salinity on EPS and DOM composition during hydrogen fermentation. The highest hydrogen yield of 23.6 mL H 2 /g VSS and hydrogen content of 77.6% were obtained at 0.0% salinity condition. The salinity could influence the hydrogen production and substrate metabolism of waste sludge.

  12. Thermoradiation treatment of sewage sludge using reactor waste fission products

    International Nuclear Information System (INIS)

    Reynolds, M.C.; Hagengruber, R.L.; Zuppero, A.C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined

  13. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  14. Sewage Sludge Treatment for Energy Purpose in China : Waste Treatment in China

    OpenAIRE

    Nyyssönen, Ville

    2015-01-01

    This thesis is made for ANDRITZ China Technology to find out sludge incineration potential in China. ANDRITZ is looking for markets and customers for ANDRITZ sewage sludge incineration technology in China. In addition ANDRITZ China manufactures centrifuges, skeleton model filter presses, belt presses and rotatory drums to treat the sludge. Sludge in China has become a major problem. It is considered to be toxic waste, because it contains pathogens, which are dangerous for human health. Th...

  15. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes.

    Science.gov (United States)

    Amouei, A I; Yousefi, Z; Khosravi, T

    2017-01-01

    The aim of this study was to determine the potential of produced compost from the sludge of wastewater treatment plant using earthworms and compare it with the vermicompost produced from household solid waste. In the current study, three treatments with the same conditions in terms of organic wastes type were prepared to produce vermicompost from household solid waste and sewage sludges using earthworms. The standard methods were used to determine the physical and chemical parameters in the different produced vermicomposts. The mean of C/N in the household solid waste, raw biological and chemical sludges was 32, 22.5, and 26.5, respectively. These levels were 16.5, 14.5, and 15 in the vermicomposts. The mean of nitrogen and phosphorus percentages in the vermicompost of solid waste, biological and chemical sludges was 2.2%, 2.6%, 2.3% and 0.72%, 0.54%, and 0.56%, respectively. The mean percentages of organic matters in the initial substrates and vermicomposts of solid waste, biological and chemical sludges were 97.2%, 90%, 80.5% and 65.8%, 67.8% and 63% respectively. The concentrations of heavy metals decreased in all vermicomposts. The EC levels in solid waste, biological and chemical sludges were 1459, 1041, and 1487 μs/cm, respectively. These levels were 544, 385 and 635 μs/cm in the produced compost. Eisenia fetida can convert household solid waste, and biological and chemical sludges produced from wastewater treatment plant into a high-quality and acceptable compost.

  16. Biotechnology of intensive aerobic conversion of sewage sludge and food waste into fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.-Y.; Stabnikova, O.; Show, K.-Y.; Ding, H.-B.; Tay, S.T.-L.; Ivanov, V.; Tay, J.-H.

    2003-07-01

    Biotechnology for intensive aerobic bioconversion of sewage sludge and food waste into fertilizer was developed. The wastes were treated in a closed reactor under controlled aeration, stirring, pH, and temperature at 60{sup o}C, after addition of starter bacterial culture Bacillus thermoamylovorans. The biodegradation of sewage sludge was studied by decrease of volatile solids (VS), content of organic carbon and autofluorescence of coenzyme F{sub 420}. The degradation of anaerobic biomass was faster than biodegradation of total organic matter. The best fertilizer was obtained when sewage sludge was thermally pre-treated, mixed with food waste, chalk, and artificial bulking agent. The content of volatile solid and the content of organic carbon decreased at 24.8% and 13.5% of total solids, respectively, during ten days of bioconversion. The fertilizer was a powder with moisture content of 5%. It was stable, and not toxic for the germination of plant seeds. Addition of 1.0 to 1.5% of this fertilizer to the subsoil increased the growth of different plants tested by 113 to 164 %. The biotechnology can be applied in larger scale for the recycling of sewage sludge and food wastes in Singapore. (author)

  17. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  18. Research results of sewage sludge and waste oil disposal by entrained bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schingnitz, M.; Goehler, P.; Wenzel, W.; Seidel, W. (Noell-DBI Energie- und Entsorgungstechnik GmbH, Freiberg (Germany))

    1992-01-01

    Presents results of gasifying sewage sludge and waste oil with the GSP technology, developed by the Freiberg Fuel Institute (FRG). The GSP reactor was developed in 1976 for gasification of pulverized brown coal. An industrial reactor of this design operated for over 5 years with a total coal throughput of more than 300,000 t. The design of the gasification generator and the flowsheet of a 3 MW experimental pilot plant for waste gasification are presented. The PCB content in the gasification sludge is 6.14 mg/kg, in waste oil - 160 mg/kg. Gasification takes place at high temperatures of more than 1,400 C for complete destruction of toxic pollutants. Gasification results compare composition of raw gas produced by gasification of brown coal, sewage sludge and waste oil. A detailed list of content of pollutants (PCDD, PCDF, PAH, dioxin and furan) in the gasification gas, in process waters and in solid residue of the process water is provided. It is concluded that the GSP gasification process is suitable for safe disposal of waste with toxic content. 3 refs.

  19. Reduction of Fecal Streptococcus and Salmonella by selected treatment methods for sludge and organic waste

    DEFF Research Database (Denmark)

    Jepsen, Svend Erik; Krause, Michael; Grüttner, Henrik

    1997-01-01

    The increasing utilization of waste water sludge and source-separated organic household waste in agriculture has brought the quality aspects into focus, among others the hygienic aspects. In this study, the reducting effect on Fecal Streptococcus (FS) and Salmonella of different methods...... for stabilization and methods for further treatment of sludge and organic waste has been investigated. The most common methods for stabilization, i.e. aerobic and anaerobic stabilization, only reduce the indicator organisms by approximately 1 logarithmic decade. Methods for further treatment of sludge and organic......) significant reductions of Salmonella were found, while the die out at low temperatures (below 10°C) was limited. FS was not reduced systematically during storage, and therefore, FS is not usable as indicator organism for the hygienic properties of sludge during storage....

  20. The Application of Active Sewage Sludge on the Vermicomposting of Agricultural Waste

    Directory of Open Access Journals (Sweden)

    seyyedeh maryam kharrazi

    2015-11-01

    Full Text Available In this experiment, active sewage sludge was inoculated in organic waste. The objective was to study its effect on nutrient dynamics during vermicomposting. Active sewage sludge, as a source of nitrogen fixing and phosphorous solubilizing bacteria, was added in four combinations to the vermicomposting substrate. Prior to inoculation with active sludge, the treatments were precomposted for 30 days and finally vermicomposted for 40 days. Results showed that inoculation of microorganisms in the substrate accompanied by earthworms’ activity enhances the organic waste biodegradation rate. Increasing sludge concentration from 0 to 6000 mg/l led to reduced Total Organic Carbon from 32.76 to 29.91%, Total Volatile Solids from 49.85 to 48/02%, and C/N ratio from 19.59 to 16.06 but increased Total Kjeldahl Nitrogen from 1.68 to 1.87%, nitrate from 1476.75 to 1699.60 mg/kg, Total Phosphorous from 1.66 to 1.77 g/kg, and Electrical Conductivity from 3.10 to 3.48 mS/cm. By increasing the concentration of sewage sludge, heavy metals content also increased significantly due to the enhanced organic matter biodegradation. Finally, the results showed that, among the treatments, the one with an active sewage sludge concentration of 6000 mg/l had more desirable effects on the final vermicompost quality. Based on the reproducibility of the process and the quality of the final products, this experimental procedure may be proposed for studies requiring a mass reduction in the initial composted waste mixtures.

  1. CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.

    Science.gov (United States)

    Alvarado, Andres; Sanchez, Esteban; Durazno, Galo; Vesvikar, Mehul; Nopens, Ingmar

    2012-01-01

    Sludge management in waste stabilization ponds (WSPs) is essential for safeguarding the system performance. Sludge accumulation patterns in WSPs are strongly influenced by the pond hydrodynamics. CFD modeling was applied to study the relation between velocity profiles and sludge deposition during 10 years of operation of the Ucubamba WSP in Cuenca (Ecuador). One tracer experiment was performed and three sludge accumulation scenarios based on bathymetric surveys were simulated. A residence time distribution (RTD) analysis illustrated the decrease of residence times due to sludge deposition. Sludge accumulation rates were calculated. The influence of flow pattern on the sludge deposition was studied, enabling better planning of future pond operation and desludging.

  2. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    International Nuclear Information System (INIS)

    Yamada, Y.; Kawase, Y.

    2006-01-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%

  3. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    Science.gov (United States)

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Unravelling the protein preference of aquatic worms during waste activated sludge degradation

    NARCIS (Netherlands)

    de Valk, S.L.; Khadem, A.F.; van Lier, J.B.; de Kreuk, M.K.

    2017-01-01

    Worm predation (WP) by Tubifex tubifex was investigated using waste activated sludge (WAS) as the substrate. In order to better understand the sludge degradation mechanisms during WP, the activity of five common hydrolytic enzymes was determined and compared among the initial feed activated

  5. Descriptive models for single-jet sluicing of sludge waste

    International Nuclear Information System (INIS)

    Erian, F.F.; Mahoney, L.A.; Terrones, G.

    1997-12-01

    Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better

  6. Colloidal agglomerates in tank sludge and their impact on waste processing

    International Nuclear Information System (INIS)

    Tingey, J.M.; Bunker, B.C.; Graff, G.L.; Keefer, K.D.; Lea, A.S.; Rector, D.R.

    1999-01-01

    Disposal of millions of gallons of existing radioactive wastes in underground storage tanks is a major remediation activity for the US Department of Energy. These wastes include a substantial volume of insoluble sludges consisting of submicron colloidal particles. Processing these sludges under the proposed processing conditions presents unique challenges in retrieval transport, separation, and solidification of these waste streams. Depending on processing conditions, these colloidal particles can form agglomerated networks having high viscosities that could clog transfer lines or produce high volumes of low-density sediments that interfere with solid-liquid separations. Under different conditions, these particles can be dispersed to form very fine suspended particles that do not settle. Given the wide range of waste chemistries present at Department of Energy sites, it is impractical to measure the properties of all treatment procedures. Under the current research activities, the underlying principles of colloid chemistry and physics are being studied to predict and eventually control the physical properties of sludge suspensions and sediment layers in tank wastes and other waste processing streams. Proposed tank processing strategies include retrieval transport, and solid-liquid separations in basic (pH 10 to 14), high ionic strength (0.1 to 1.0 M) salt solutions. The effect of salt concentration, ionic strength, and salt composition on the physical properties such as viscosity, agglomerate size, and sedimentation of model suspensions containing mixtures of one or two of the major components found in actual wastes have been measured to understand how agglomeration influences processing. Property models developed from theory and experiment on these simple suspensions are then applied to explain the results obtained on actual wastes

  7. Low-pressure hydraulic technique for slurrying radioactive sludges in waste tanks

    International Nuclear Information System (INIS)

    Bradley, R.F.; Parsons, F.A.; Goodlett, C.B.; Mobley, R.M.

    1977-11-01

    Present technology for the removal of sludges from radioactive liquid waste storage tanks at the Savannah River Plant (SRP) requires large volumes of fresh water added through high-pressure (approx.3000 psig) nozzles positioned to resuspend and slurry the sludge. To eliminate the cost of storing and evaporating these large volumes of water (several hundred thousand gallons per tank cleaned), a technique was developed at the Savannah River Laboratory (SRL) to use recirculating, radioactive, supernate solution to resuspend the sludge. The system consists in part of a single-stage centrifugal pump operating in the sludge at approx.100 psia. Recirculating supernate is drawn into the bottom of the pump and forced out through two oppositely directed nozzles to give liquid jets with a sludge-slurrying capability equal to that obtained with the present high-pressure system. In addition to eliminating the addition of large quantities of water to the tanks, the low-pressure recirculating technique requires only approximately one-sixth of the power required by the high-pressure system. Test results with clay (as a simulant for sludge) in a waste tank mockup confirmed theoretical predictions that jets with the same momentum gave essentially the same sludge-slurrying patterns. The effective cleaning radius of the recirculating jet was directly proportional to the product of the nozzle velocity and the nozzle diameter (U 0 D). At the maximum U 0 D developed by the pump (approx.14 ft 2 /s), the effective cleaning radius in the tank mockup was approx.20 feet

  8. Vitrification of F006 plating waste sludge by Reactive Additive Stabilization Process (RASP)

    International Nuclear Information System (INIS)

    Martin, H.L.; Jantzen, C.M.; Pickett, J.B.

    1994-01-01

    Solidification into glass of nickel-on-uranium plating wastewater treatment plant sludge (F006 Mixed Waste) has been demonstrated at the Savannah River She (SRS). Vitrification using high surface area additives, the Reactive Additive Stabilization Process (RASP), greatly enhanced the solubility and retention of heavy metals In glass. The bench-scale tests using RASP achieved 76 wt% waste loading In both soda-lime-silica and borosilicate glasses. The RASP has been Independently verified by a commercial waste management company, and a contract awarded to vitrify the approximately 500,000 gallons of stored waste sludge. The waste volume reduction of 89% will greatly reduce the disposal costs, and delisting of the glass waste is anticipated. This will be the world's first commercial-scale vitrification system used for environmental cleanup of Mixed Waste. Its stabilization and volume reduction abilities are expected to set standards for the future of the waste management Industry

  9. Fuel optimization in a multi chamber incinerator by the moisture control of oily sludge and medical wastes

    International Nuclear Information System (INIS)

    Haider, I.; Hussain, S.; Khan, S.; Mehran, T.

    2011-01-01

    Experiments have been performed to study the effects of %age moisture content on fuel optimization during the waste feed combustion of oily sludge, medical waste and mix blend waste in a 50 kg/hr multi chamber incinerator installed at NCPC- ARL RWP. Intention is to find out the optimum and in compliance with NEQs incinerator performance at various moisture contents in the different waste feeds. Optimum performances of the incinerator, so that optimum operating moisture conditions, which has been used for multi purpose waste, feeds, may be defined. Three waste feeds of 10 kg batch size were used for the experimentation namely; Oily Sludge, Medical waste and Mix blend waste (oily sludge and medical), with the primary chamber preheating temperature 655 deg. C for 15 mins. interval monitoring. The secondary chamber temperature was set to 850 deg. C. By the data obtained it is apparent that rising the waste moisture content tend to increase fuel consumption specifically in case of medical waste and hence lowering the overall combustion efficiency. In the emissions the CO/sub 2/ concentration is showing the incineration efficiency. Higher efficiency of the system could have been achieved by increasing the CO/sub 2/ in the gases leaving the incinerator, lower fuel usage per kg waste feed and maintain proper operating conditions. Fuel consumption for the oily sludge with 10% moisture content, was found to be least as compared with the same %age of medical waste and mix blend waste. However environmental compliance of the operation is shown by the flue gas analysis. The results shows that using mix blend(oily sludge and medical) waste having 12-13% moisture content would be suitable for incineration in multi-chamber incinerator .Other makes it possible to determine the optimum incinerator temperature control settings and operating conditions, as well as to assure continuous, efficient, environmentally satisfactory operation. The optimum fuel consumption for 10 kg each waste

  10. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    Energy Technology Data Exchange (ETDEWEB)

    Quercia, G., E-mail: g.quercia@tue.nl [Materials innovation institute (M2i), Mekelweg 2, P.O. Box 5008, 2600 GA Delft (Netherlands); Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Putten, J.J.G. van der [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Hüsken, G. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Brouwers, H.J.H. [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-12-15

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 μm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO{sub 2}, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO{sub 2} footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. •Dispersability studies demonstrated that nSS agglomerates are broken to nano

  11. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  12. Treatment aerobic conjugate of sludges of septic tanks and household organic solid wastes

    Directory of Open Access Journals (Sweden)

    Wanderson Barbosa da Silva Feitosa

    2009-12-01

    Full Text Available It was aimed at to evaluate the co-composting as technological alternative to the treatment of sludges of septic tanks with household organic solid wastes originating from cities of small and medium loads. The sludges and the domiciliary organic solid waste were collected in Cabaceiras, Caraúbas and Queimadas, state of Paraíba. The experiment consisted of four treatments with three repetitions, totaling 12 reactors, of cylindrical configuration in polyethylene of 100 L of capacity. Each reactor was fed with 50 kg substratum with variable composition in function of the sludge fraction: 0%, 10%, 20% and 30%. The manual turning was accomplished three times a week and the temperature was monitored daily. The total destruction of helminth eggs in period differentiated in function of the sludges fraction (14, 28, 35 and 63 days and the medium transformation of 54.1% of sludges in biosolids class A and class B, with favorable characteristics to the use in agricultural cultures in 91 days, expressed the viability of the treatment for co-composting of sludges of tanks septic multichamber of collective use for the cities of small and medium load.

  13. Thermal treatment of sewage sludge from waste water. Tratamiento termico de lodos procedentes de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G. (Universidad de Trento (Italy)); Canziani, R.; Ragazzi, M. (Politicnico de Milan (Italy))

    1994-01-01

    Thermal Treatment of sewage sludge can be beneficial as a pre-treatment step of many treatment/disposal options, but above all, it allows the recovery of the energetic content sludge. Energy recovery from sewage sludge can be performed in many ways; direct incineration thermal drying followed by incineration and co-combustion with municipal solid wastes or other non conventional fuels. Another option is the recovery of waste energy (e.g. from an endo thermal engine using biogas as fuel) to dry sludge wich, in turn can be used as a fuel. The paper will evaluate several options of thermal treatment of sewage sludge, with particular emphasis on the energetic yield from different processes. (Author)

  14. Restoration of pyritic colliery waste with sewage sludge in the Midlands coalfield, England, United Kingdom

    International Nuclear Information System (INIS)

    Humphries, R.N.; McQuire, G.E.; Sly, M.

    1994-01-01

    A trial was set up in 1990 in the Midlands coalfield in the United Kingdom (UK) to evaluate the use of sewage sludge to revegetate colliery waste tips containing 1--2% sulfur as iron pyrites. The rate of sewage sludge application is currently restricted by legislation and codes of practice to maximum concentrations of potentially toxic elements (copper, nickel, zinc, etc.) in the soil or waste after application. Following this guidance, an application rate of 250 mt/ha dry solids was applied at the trial site. At this rate, the colliery waste became extremely acidic pH <4.0. From experience elsewhere, much higher levels have been found to be necessary to control acidification in the absence of other measures or treatments. In view of the restriction on the amount of sewage sludge that can be applied, it is recommended that the current practice of covering fresh colliery wastes with soil or low sulfur spoil to a minimum depth of 0.45m is continued in the UK. Where this is not possible, the sludge must always be applied with sufficient neutralizing agent to control the potential acidity. If the acidity cannot be maintained above pH 5.0, the guidelines do not permit the application of sewage sludge

  15. Nitrogen in the Process of Waste Activated Sludge Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2014-07-01

    Full Text Available Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.

  16. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  17. Research for waste water treatment technology with low production of excessive active sludge

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2017-01-01

    Full Text Available The article reflects the possibility to create a technological scheme of waste water treatment of domestic and similar type of sewage within minimal amount of excessive active sludge by means of bioreactors with immobilized feed. There are various aspects to be considered: technical, economic, social and ecological. According to the above it is strongly needed to provide a combination of proper waste water treatment, minimal sludge formation and the possibility for a further use of the sludge. One of the ways to achieve the goal above is to use an immobilized feed in the aeration tank. The necessary experiments were carried out in the department of waste water treatment and water ecology. The article includes the scheme of the facility and other parameters of the experiments, which has been carried. The combination of aerobic and anaerobic processes helps to provide proper quality of integrated biological treatment. Chambers of the aeration reactor were also equipped with the polymer feed of various structures. The sludge treatment that was also strongly needed was made by means of aerobic stabilization with the use of ejecting aeration. The results of experiment showed a good effect in both components – sewage and sludge treatment. Afterwards there was also an industrial model launched which confirmed the results of the previous stage.

  18. Obtention of ceramic pigments with residue from electroplating

    International Nuclear Information System (INIS)

    Boss, A.; Kniess, C.T.; Aguiar, B.M. de; Prates, P.B.; Milanez, K.

    2011-01-01

    The incorporation of industrial residues in industrial processes opens up new business opportunities and reduces the volume of extraction of raw materials, preserving natural resources, which are limited. An important residue is the mud from galvanic industry, consisting of alkali and transition metals. According to NBR 10004/2004, this residue can be classified as Class I (hazardous), depending on the concentration of metals present in the mud. This paper proposes a method for reusing the residue from electroplating in ceramic pigments. The characterization of residual plating was obtained by chemical analysis, mineralogical analysis and pH measurements. The electroplating waste was incorporated in different percentages on a standard pigment formula of industrial ceramic, consisting mainly of Zn, Fe and Cr. The obtained pigments were applied in ceramic glazes to colorimetric and visual analysis, which showed good results with the addition of up to 15% of industrial waste. (author)

  19. Exploiting the energy potential of waste activated sludge with MicroSludge[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, R.; Laliberte, S. [Paradigm Environmental Technologies, Vancouver, BC (Canada); Nemeth, L. [Earth Tech Canada Inc., Burnaby, BC (Canada)

    2007-07-01

    When waste activated sludge (WAS) is efficiently converted to biogas through anaerobic digestion, the energy potential and economic value of WAS can be exploited. This paper discussed the chemical and pressure pre-treatment process using MicroSludge. MicroSludge uses alkaline pre-treatment to weaken cell membranes and a high-pressure homogenizer to liquefy the cells, enabling the anaerobic digester to work at a higher rate and more efficiently, destroying pathogens and generating less biosolids for disposal, with corresponding higher volumes of methane from which to generate added electrical power and/or produce added heat. MicroSludge was demonstrated at the Chilliwack waste water treatment plant (WWTP), located 115 km east of Vancouver. The paper provided a description of the Chilliwack WWTP and discussed the application of MicroSludge at a full-scale prototype plant. The MicroSludge plant was capable of pre-treating all of the waste secondary sludge generated at the Chilliwack WWTP prior to anaerobic digestion. The paper also discussed digester hydraulic retention time; scanning electron microscope images; temperature; pH; mass loading of primary sludge and waste activated sludge; total volatile solids concentrations; and digester gas composition. Operating and maintenance costs were also outlined along with electrical power costs, maintenance costs and chemical costs. Last, the paper presented the energy benefits for WWTPs when using MicroSludge. It was concluded that the economic benefits of MicroSludge are greater for plants with higher biosolids disposal costs and higher electrical utility costs. 6 refs., 8 tabs., 10 figs.

  20. Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ahring, B.K.

    1997-01-01

    Combined anaerobic digestion of oil mill effluent (OME) together with manure, household waste (HHW) or sewage sludge was investigated. In batch experiments it was shown that OME could be degraded into biogas when codigested with manure. In codigestion with HHW or sewage sludge, OME dilution...

  1. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  2. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production.

    Science.gov (United States)

    Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen

    2016-11-01

    Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.

  3. Reduction of heavy metals in refinery waste sludge using em treatment

    International Nuclear Information System (INIS)

    Ahmad, J.; Ahmad, F.; Saleemi, A.R.; Ahmad, I.

    2005-01-01

    This paper presents the efforts of National Cleaner Production Center (NCPC) and Attock Refinery Limited (ARL) Rawalpindi, to address the problem of refinery solid waste. A trial project was designed to treat and convert 1.7 m ton to oil sludge into environmental friendly residue (compost) under anaerobic conditions. The residue can be treated as bio fertilizer for agricultural purpose. The trial on bio remediation (anaerobic) of oily sludge of ARL, Rawalpindi within its premises using EM technology was successfully completed with the collaboration of effective microorganism research organization (EMRO), NCPC and ARL between 29th October to 10th December, 2002. The effective microorganisms transformed the undiluted oily sludge from ARL into bioactive sludge; which may be called as bio sludge. For heavy metal breakdown the trial data shows that Ba has been reduced by 85% in the EM. Treated oily sludge as compared to original ARL sludge, and Pb, Fe, Zn and Ni have been reduced by about 50% in the treated bio sludge. The contents of As, Cr, Cu and Mn showed no change. The residue obtained can be used as a bio fertilizer. (author)

  4. Recycling of radioactive oil sludge waste into pavement brick

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Hishamuddin Hussein; Choo Thye Foo; Nurul Wahida Ahmad Khairuddin; MAsliana MUslimin; Wilfred Sylvester Paulus

    2010-01-01

    Malaysia produces about 1450 tons of radioactive oil sludge waste per year and there is an urgent need to find a permanent solution to the storage and disposal of this radioactive waste problem. Several treatment methods such bacteria farming, ultracentrifuge, steam reforming and incineration are currently being used but the core issue of the radioactive material in the oil sludge had not been solved. The paper relates a study on utilizing the radioactive component of the oil sludge and turning them into pavement brick. Characteristic study of this radioactive component by XRD and XRF show that it mainly comprised of quartz and anorthite minerals. While the radioactivity analysis by gamma technique shows that more than 90 % of this radioactivity comes from this soil component with Ra-226 and Ra-228 as the main radionuclides. A vitrified brick was then produced from this sediment by mixing it with low radioactive local red clay. The result also shows that the formation of the vitrified layer may be due high content of K in the red clay. Tensile test on the brick shows that it has more than four times the strength of commercial clay brick. Long duration leaching test on the brick also shows that there is no dissolution of radionuclide from the brick. (author)

  5. Development of small-scale electroplating system for Ni-63 electroplating onto Ni foil

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Choi, Sang Mu; Son, Kwang Jae; Hong, Jintae

    2016-01-01

    Betavoltaic battery is a device that converts the decay energy of beta-emitting radioisotopes into electric energy. Ni-63 is pure betaemitter with a low energy spectrum and significantly long half-life of 100.1 years and thus is widely used as the power source of betavoltaic battery. There are several methods for the formation of a Ni deposit onto a semiconductor such as electroplating, electroless plating, and chemical vapor deposition. In this study, small-scale radioisotope electroplating system was designed and fabricated to perform electroplating with a small amount of plating buffer and minimum exposure of radioactive materials. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery. In this study, an electroplating system for small-scale Ni electroplating was designed and manufactured. The process for the fabrication of a Ni-63 foil as the energy source of a betavoltaic battery was developed using the minimum concentration of Ni. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery

  6. Development of small-scale electroplating system for Ni-63 electroplating onto Ni foil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Choi, Sang Mu; Son, Kwang Jae; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Betavoltaic battery is a device that converts the decay energy of beta-emitting radioisotopes into electric energy. Ni-63 is pure betaemitter with a low energy spectrum and significantly long half-life of 100.1 years and thus is widely used as the power source of betavoltaic battery. There are several methods for the formation of a Ni deposit onto a semiconductor such as electroplating, electroless plating, and chemical vapor deposition. In this study, small-scale radioisotope electroplating system was designed and fabricated to perform electroplating with a small amount of plating buffer and minimum exposure of radioactive materials. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery. In this study, an electroplating system for small-scale Ni electroplating was designed and manufactured. The process for the fabrication of a Ni-63 foil as the energy source of a betavoltaic battery was developed using the minimum concentration of Ni. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery.

  7. Legislation concerning the energy reuse of sludge from waste water treatment plant in the region of Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Mislej, V. (Vodovod-Kanalizacija, Ljubljana (Slovenia)), Email: vmislej@vo-ka.si; Grilc, V. (National Inst. of Chemistry, Ljubljana (Slovenia)), Email: viktor.grilc@ki.si

    2009-07-01

    The legislation on waste management in Slovenia was markedly renovated in the year 2008. The main changes were related to the treatment of biologically degradable wastes, which was extended to the energy-from-waste option. New regulations in Slovenia have set criteria on which wastes can be processed and transformed into a solid recovered fuel and the conditions concerning its quality and use. The legislation also outlines other process conditions for placing sewage sludge on the market as a secondary solid fuel and its application in various thermal processes. Sewage sludge represents the largest share of wastes. generated at biological wastewater treatment plants (BWWTP). In fresh form it is formed as excess active sludge formed during biological treatment of municipal wastewater and may be consecutive stabilized by an aerobic or anaerobic process. Anaerobic stabilization (digestion)of the raw gravity thickened sludge, followed by mechanical and thermal dehydration transform the fresh sludge into stable dry granules. In this form it is suitable for marketing and utilization in thermal processes. The main problems may be low calorific value and relative high metals content (especially mercury) and sulphur. Sulphur and cadmium are not among the limiting parameters of the noted technical specification for alternative fuels, so the new regulation in Slovenia will be appealed. (orig.)

  8. Properties of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    The production of sludge in wastewater treatment plant is about to increase every year and most of the sludge was directly disposed to landfill. In addition, the constraint to treat sludge is very high in cost and time- consuming could be disadvantages to the responsible parties. Therefore, this research was conducted to utilize sludge produced from the wastewater treatment plant into fired clay brick as one of the alternatives of disposal method. In this study, the research attempt to incorporate sewage sludge waste (SSW) into fired clay brick. The sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, and 20% of SSW. The manufactured bricks were fired at 1050°C with heating rate of 1°C/min. Physical and mechanical properties test were conducted such as shrinkage, density, water absorption and compressive strength. As the conclusion, brick with utilization 5% of SSW is acceptable to produce good quality of brick. This study shows by using SSW in fired clay brick could be an alternative method to dispose of the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  9. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge

    Czech Academy of Sciences Publication Activity Database

    Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, Marie

    2015-01-01

    Roč. 111, Jan (2015), s. 176-184 ISSN 0141-3910 Institutional support: RVO:61388963 Keywords : poly(ethylene terephthalate) * copolymers * sludge * biodegradation * hydrolysis * waste Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.120, year: 2015

  10. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: Batch versus CSTR experiments to investigate optimal design

    OpenAIRE

    Girault , R.; Bridoux , G.; Nauleau , F.; Poullain , C.; Buffet , J.; Peu , P.; Sadowski , A.G.; Béline , F.

    2012-01-01

    In this study, the maximum ratio of greasy sluvdge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determi...

  11. Fall from grace

    International Nuclear Information System (INIS)

    Kelley, K.P.

    1988-01-01

    This paper reports that EPA issued the final rule for land disposal restrictions this summer, banning about one-third of all regulated hazardous wastes from landfills. Among the 861 million gallons of banned industrial wastes is 129 million gallons of electroplating sludges. fortunately, a group of researchers from industry and Northwestern University (Evanston, Ill.) has revived a metals recovery technology that could save some electroplating shops from both supply and disposal costs. Electroplating is one of the least expensive ways of protect an object from corrosion and wear resistance. Finishes are electroplated onto items ranging from jewelry to electronic equipment. It is also a $10 billion business with a value-added market that is an incredibly large number, says Varjian. The mostly small businesses that drive this industry have annual sales ranging around $1 million to $2 million, he adds. Now the managers of electroplating shops must figure out the most cost effective method of dealing with the hazardous sludges they produce that now are banned from landfills

  12. Monitoring of toxic elements present in sludge of industrial waste using CF-LIBS.

    Science.gov (United States)

    Kumar, Rohit; Rai, Awadhesh K; Alamelu, Devanathan; Aggarwal, Suresh K

    2013-01-01

    Industrial waste is one of the main causes of environmental pollution. Laser-induced breakdown spectroscopy (LIBS) was applied to detect the toxic metals in the sludge of industrial waste water. Sludge on filter paper was obtained after filtering the collected waste water samples from different sections of a water treatment plant situated in an industrial area of Kanpur City. The LIBS spectra of the sludge samples were recorded in the spectral range of 200 to 500 nm by focusing the laser light on sludge. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique was used for the quantitative measurement of toxic elements such as Cr and Pb present in the sample. We also used the traditional calibration curve approach to quantify these elements. The results obtained from CF-LIBS are in good agreement with the results from the calibration curve approach. Thus, our results demonstrate that CF-LIBS is an appropriate technique for quantitative analysis where reference/standard samples are not available to make the calibration curve. The results of the present experiment are alarming to the people living nearby areas of industrial activities, as the concentrations of toxic elements are quite high compared to the admissible limits of these substances.

  13. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Fang, Shiwen; Yu, Zhaosheng; Lin, Yousheng; Hu, Shanchao; Liao, Yanfen; Ma, Xiaoqian

    2015-01-01

    Highlights: • The co-pyrolysis of municipal solid waste, paper sludge and the blends was studied. • The reactivity of paper sludge could be improved by blending municipal solid waste. • The FWO and KAS methods were used to calculate activation energy. • The average activation energy was the minimum by blending 50% paper sludge. - Abstract: The pyrolysis characteristics of municipal solid waste (MSW), paper sludge (PS) and their blends were studied through a thermogravimetric simultaneous thermal analyzer from room temperature to 1000 °C. Meanwhile their kinetics were studied by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The mass proportions of PS in the blends were 10%, 30%, 50%, 70%, 90%, respectively and the experiments were carried out at different heating rates (30, 40 and 50 °C/min). The initial temperature of MSW was lower than that of PS and the terminated temperature was higher than PS. The comprehensive characteristic index decreased progressively along with the decrease of the MSW proportion. The values of average activation energies calculated by FWO and KAS methods were highly consistent. The average activation energy reached the minimum number, 96.7 kJ/mol by KAS and 11.56 kJ/mol by FWO, with the proportion of PS was 50%

  14. Co-fermentation of sewage sludge and organic waste; CO-Vergaerung von Klaerschlamm und Bioabfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, K.G. [Emschergenossenschaft und Lippeverband, Essen (Germany)

    1999-07-01

    The processes taking place in sewage sludge digestion and organic waste fermentation are identical. It therefore seems obvious to treat organic waste and sewage sludge jointly. In contrast to organic waste fermentation plants to be newly erected, co-fermentation permits making use of anaerobic treatment systems that are already installed at sewage treatment plants. At these plants, in principle only the sections responsible for acceptance and conditioning of organic waste need to be retrofitted. Apart from the possibility to treat organic waste very inexpensively, the co-fermentation process offers a number of other advantages. For this reason, the Emschergenossenschaft and Lippeverband carried out extensive semi-technical scale tests in co-fermentation of organic waste and sewage sludge. (orig.) [German] Die ablaufenden biologischen Prozesse sind bei der Klaerschlammfaulung und der Bioabfallvergaerung gleich. Es liegt daher nahe, Bioabfaelle und Klaerschlaemme gemeinsam zu behandeln. Gegenueber neu zu errichtenden Bioabfall-Vergaerungsanlagen kann bei der Co-Vergaerung auf die bereits installierte Anaerobtechnik auf den Klaeranlagen zurueckgegriffen werden. Dort muss im wesentlichen nur der Annahme- und Aufbereitungsbereich fuer die Bioabfaelle nachgeruestet werden. Das Verfahren der Co-Vergaerung bietet ausser einer sehr kostenguenstigen Behandlungsmoeglichkeit fuer Bioabfaelle eine Reihe weiterer Vorteile. Aus diesem Grund wurden bei Emschergenossenschaft und Lippeverband umfangreiche halbtechnische Versuche zur Co-Vergaerung von Bioabfaellen und Klaerschlamm durchgefuehrt. (orig.)

  15. Characterization Of Actinides In Simulated Alkaline Tank Waste Sludges And Leachates

    International Nuclear Information System (INIS)

    Nash, Kenneth L.

    2008-01-01

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  16. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  17. Engineering properties of sintered waste sludge as lightweight aggregate in a densified concrete mixture

    Institute of Scientific and Technical Information of China (English)

    彭予柱

    2009-01-01

    The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce high-strength sintered lightweight aggregate,and then used the densified mixture design algorithm to create high-performance concrete from the sintered aggregate with only small amounts of mixing water and cement.Ultrasonic,electrical resistance and concrete strength efficiency tests were perfo...

  18. Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing

    Science.gov (United States)

    Nusheng Chen; Junyong Zhu; Zhaohui Tong

    2016-01-01

    This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...

  19. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    Science.gov (United States)

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  20. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.

    Science.gov (United States)

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-10-01

    This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge.

    Science.gov (United States)

    Tezcan Un, Umran; Onpeker, Suzan Eroglu; Ozel, Emel

    2017-09-15

    This research experimentally investigates the treatment of authentic electroplating wastewater with high Cr(VI) content by electrocoagulation with the obtained sludge being reused as a raw material to produce inorganic pigments. A zero waste process is introduced to help conserve resources and to minimize environmental effects. The effects of operational parameters on electrocoagulation are determined in a batch stirred reactor using an iron electrode. The best performance was observed when a current density 20 mA/cm 2 , pH 2.4 and 0.05 M NaCl electrolyte were maintained. The initial Cr(VI) concentration of 1000 mg/L was almost completely abated (∼100%) at an energy cost of 2.68 kWh/m 3 , fulfilling the EPA guideline of 2.77 mg/L within a single step process. The sludge was characterized using XRD and XRF showing that the sludge is a rich source of iron and chromium and can be reused to produce value added ceramic pigments. Pigments prepared in this way appeared to be reddish brown and black color in transparent glaze and were also characterized using XRD and XRF. In this study, a zero waste process is successfully introduced with ∼100% Cr(VI) removal, with subsequent reuse of the resulting sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. SWEPP PAN assay system uncertainty analysis: Active mode measurements of solidified aqueous sludge waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.

    1997-12-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the US Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers active mode measurements of weapons grade plutonium-contaminated aqueous sludge waste contained in 208 liter drums (item description codes 1, 2, 7, 800, 803, and 807). Results of the uncertainty analysis for PAN active mode measurements of aqueous sludge indicate that a bias correction multiplier of 1.55 should be applied to the PAN aqueous sludge measurements. With the bias correction, the uncertainty bounds on the expected bias are 0 ± 27%. These bounds meet the Quality Assurance Program Plan requirements for radioassay systems

  3. Chemical characterization of SRP waste tank sludges and supernates

    International Nuclear Information System (INIS)

    Gray, L.W.; Donnan, M.Y.; Okamoto, B.Y.

    1979-08-01

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  4. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-01-01

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC's Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ''proof-of-principle'' demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings

  5. Effects of Sludge Particle Size and Density on Hanford Waste Processing

    International Nuclear Information System (INIS)

    Poloski, Adam P.; Wells, Beric E.; Mahoney, Lenna A.; Daniel, Richard C.; Tingey, Joel M.; Cooley, Scott K.

    2008-01-01

    The U.S. Department of Energy Office of River Protection's Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site in southeastern Washington State. Piping and pumps have been selected to transport the high-level waste (HLW) slurries in the WTP. Pipeline critical-velocity calculations for these systems require the input of a bounding particle size and density. Various approaches based on statistical analyses have been used in the past to provide an estimate of this bounding size and density. In this paper, representative particle size and density distributions (PSDDs) of Hanford waste insoluble solids have been developed based on a new approach that relates measured particle-size distributions (PSDs) to solid-phase compounds. This work was achieved through extensive review of available Hanford waste PSDs and solid-phase compound data. Composite PSDs representing the waste in up to 19 Hanford waste tanks were developed, and the insoluble solid-phase compounds for the 177 Hanford waste tanks, their relative fractions, crystal densities, and particle size and shape were developed. With such a large combination of particle sizes and particle densities, a Monte Carlo simulation approach was used to model the PSDDs. Further detail was added by including an agglomeration of these compounds where the agglomerate density was modeled with a fractal dimension relation. The Monte Carlo simulations were constrained to hold the following relationships: (1) the composite PSDs are reproduced, (2) the solid-phase compound mass fractions are reproduced, (3) the expected in situ bulk-solids density is qualitatively reproduced, and (4) a representative fraction of the sludge volume comprising agglomerates is qualitatively reproduced to typical Hanford waste values. Four PSDDs were developed and evaluated. These four PSDD scenarios correspond to permutations where the master PSD was sonicated or not

  6. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    Science.gov (United States)

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    International Nuclear Information System (INIS)

    Jolly, R; Bruce Martin, B

    2008-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  8. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple

  9. [From waste to treasure: turning activated sludge into bioplastic poly-3-hydroxybutyrate].

    Science.gov (United States)

    Chen, Jia'ni

    2017-12-25

    Large quantity of activated sludge is generated from wastewater treatment but without yet an appropriate deposition. High temperature can lyse the activate sludge so that nitrogen and phosphorus containing nutrients are released. Halomonas CJN was found to grow on the heat lysed activated sludge and glucose for production of bioplastic poly-3-hydroxybutyrate (PHB) in the absence of yeast extract, nitrogen and phosphorus sources as well as trace elements. This reduces the PHB production cost significantly. Furthermore, acetic acid formed from anaerobic fermentation of heat lysed activated sludge can be used to replace glucose for cell growth but not much for PHB production. After construction of an additional PHB synthesis pathway in Halomonas CJN, we can produce PHB entirely from heat lysed activated sludge, reducing production cost of PHB roughly from ¥ 30 000 Yuan/ton to ¥ 20 000 Yuan/ton, thus turning waste activated sludge to valuable raw material resource.

  10. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    Science.gov (United States)

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. STABILIZATION OF A MIXED WASTE SLUDGE SURROGATE CONTAINING MORE THAN 260 PPM MERCURY

    International Nuclear Information System (INIS)

    Smith, W. J.; Feizollahi, F.; Brimley, R.

    2002-01-01

    In an earlier demonstration of an innovative mercury stabilization technology for the Department of Energy, ATG's full-scale process stabilized mercury in soils that initially contained more than 260 ppm of mercury of unknown speciation. The treated waste satisfied the leaching standards for mercury that qualify wastes containing less than 260 ppm for land disposal. This paper describes the extension of that work to demonstrate a full-scale process for the stabilization of a representative sludge that contained more than 260 ppm of Hg of several mercury species. RCRA (Resource Conservation and Recovery Act) regulations now require the recovery of mercury from any waste containing more than 260 ppm of mercury, usually with thermal retorts. The results of this work with a surrogate sludge, and of the previous work with an actual soil, support a proposal now before the U.S. EPA (Environmental Protection Agency) to allow such wastes to be stabilized without retorting. The full-scale demonstration with a sulfide reagent reduced the mercury concentrations in extracts of treated sludge below the relevant leaching standard, a Universal Treatment Standard (UTS) limit of 0.025 mg mercury per liter of leachate generated by the Toxicity Characteristic Leaching Procedure (TCLP). The sulfide formulation reduced the concentration to about onehalf the UTS limit

  12. Volume reducing and modifying of neutralized sludge from acid waste water treatment of uranium ore heap leaching

    International Nuclear Information System (INIS)

    Zhong Pingru; Ding Tongsen; Gu Jianghan

    1997-01-01

    A process is worked out on the basis of traditional lime neutralization, viz. acid waste water from uranium ore heap leaching is treated by limestone and lime double neutralizing-sludge recycling. First, the waste water is reacted with cheaper limestone to precipitate some metal ions, such as Fe and Al, which form hydroxides at lower pH, and neutralize strong acid, then neutralized with lime to required pH value. The formed precipitate as sludge is steadily recycled in the process. The principal advantage of the process over lime neutralization process is that reagent cost saved by 1/3 and formed sludge volume decreased by 2/3. Besides, the performances of sludge filtrating and settling are improved. The mechanism of sludge volume reducing and modification is also investigated

  13. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  14. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  15. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  16. Utilization of molasses spentwash for production of bioplastics by waste activated sludge

    International Nuclear Information System (INIS)

    Khardenavis, Anshuman A.; Vaidya, Atul N.; Kumar, M. Suresh; Chakrabarti, Tapan

    2009-01-01

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and 13 C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio = 28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio = 29). PHB production yield (Y p/s ) was highest (0.184 g g -1 COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  17. Utilization of molasses spentwash for production of bioplastics by waste activated sludge.

    Science.gov (United States)

    Khardenavis, Anshuman A; Vaidya, Atul N; Kumar, M Suresh; Chakrabarti, Tapan

    2009-09-01

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and (13)C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio=28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio=29). PHB production yield (Y(p/s)) was highest (0.184 g g(-1) COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  18. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    Science.gov (United States)

    Guo, Qia; Dai, Xiaohu

    2017-11-01

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Removal of cobalt, chromium, copper, iron and nickel cations from electroplating waste water by apatite ore

    Energy Technology Data Exchange (ETDEWEB)

    Kargar-Razi, M.; Yahyaabadi, S. [Azad Univ. Tehran (Iran, Islamic Republic of)

    2012-07-01

    In this investigation, the adsorption behavior of natural phosphate rock and it's concentrate with respect to Fe{sup 3+}, Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+} and Cr{sup 3+} has been studied, in order to consider its application to purity of electroplating waste water pollution. The batch mehtod has been employed, using metal concentrations in solution ranging from 2 ppm to 40 ppm with mixing process. The effect of pH, concentration of heavy metals and times (10-20 min) is considered. The results of their removal performance in 40 ppm concentration, pH = 8 and 10 minutes are obtained as Cr{sup 3+} > Cu{sup 2+} > Fe{sup 3+} > Co{sup 2+} > Ni{sup 2+} for phosphate rock and the sequence can be given as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. The same results show that maximum adsorption in PH = 4.5 and 7 for concentrate. The Langmuir adsorption isotherm constants corresponding to adsorption capacity were found to be as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+} for phosphate soil and Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. Sorption of metallic cations are considered in pH 4.5, 7 and 8. The results show that phosphate rock and its concentrate have great potential to remove cations of heavy metal species from electroplating waste water. (orig.)

  20. Colloidal agglomerates in tank sludge: Impact on waste processing. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Virden, J.W.

    1997-06-01

    'Disposal of millions of gallons of existing radioactive wastes is a major remediation problem for the Department of Energy (DOE). Although radionuclides are the most hazardous waste con- stituents. the components of greatest concern from a waste processing standpoint are insoluble sludges consisting of submicron colloidal particles. Depending on processing conditions, these colloidal particles can form agglomerate networks that could clog transfer lines or interfere with solid-liquid separations such as settle-decant operations. Under different conditions, the particles can be dispersed to form very fine suspended particles that will not create sediment in settle- decant steps and that can foul and contaminate downstream treatment components including ion exchangers or filtrations systems. Given the wide range of tank chemistries present at Hanford and other DOE sites, it is impractical to measure the properties of all potential processing conditions to design effective treatment procedures. Instead. a framework needs to be established to allow sludge property trends to be predicted on a sound scientific basis. The scientific principles of greatest utility in characterizing, understanding, and controlling the physical properties of sludge fall in the realm of colloid chemistry. The objectives of this work are to accomplish the following: understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation. and filtration develop strategies for optimizing processing conditions via control of agglomeration phenomena.'

  1. Colloidal agglomerates in tank sludge: Impact on waste processing. 1997 annual progress report

    International Nuclear Information System (INIS)

    Virden, J.W.

    1997-01-01

    'Disposal of millions of gallons of existing radioactive wastes is a major remediation problem for the Department of Energy (DOE). Although radionuclides are the most hazardous waste constituents. the components of greatest concern from a waste processing standpoint are insoluble sludges consisting of submicron colloidal particles. Depending on processing conditions, these colloidal particles can form agglomerate networks that could clog transfer lines or interfere with solid-liquid separations such as settle-decant operations. Under different conditions, the particles can be dispersed to form very fine suspended particles that will not create sediment in settle- decant steps and that can foul and contaminate downstream treatment components including ion exchangers or filtrations systems. Given the wide range of tank chemistries present at Hanford and other DOE sites, it is impractical to measure the properties of all potential processing conditions to design effective treatment procedures. Instead. a framework needs to be established to allow sludge property trends to be predicted on a sound scientific basis. The scientific principles of greatest utility in characterizing, understanding, and controlling the physical properties of sludge fall in the realm of colloid chemistry. The objectives of this work are to accomplish the following: understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation. and filtration develop strategies for optimizing processing conditions via control of agglomeration phenomena.'

  2. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  3. Aged refuse enhances anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    Science.gov (United States)

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Production and remediation of low sludge simulated Purex waste glasses, 2: Effects of sludge oxide additions on glass durability

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated DWPF Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but was less durable than most other simulated SRS high-level waste glasses. Further, the measured durability of Purex 4 glass was not as well correlated with the durability predicted from the DWPF process control algorithm, probably because the algorithm was developed to predict the durability of SRS high-level waste glasses with higher sludge content than Purex 4. A melter run, designated Purex 4 Remediation, was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by the DWPF glass durability algorithm. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the glass durability was determined by the Product Consistency Test method. This document details the durability data and subsequent analysis

  6. Irradiated Palm Oil Waste (Sludge) As Feed Supplement For Nila Gift Fish (Oreochromis niloticus)

    International Nuclear Information System (INIS)

    MU, Jenny; PM, Adria

    2002-01-01

    The objective of the experiment was to study the fish weight development after being fed with irradiated palm oil waste pellet. Irradiated Palm oil waste pellet was produced from palm oil waste (sludge) with some additional materials, i.e. rice bran, fish powder, soybean powder, tapioca powder. The mixture was then irradiated with a dose of 4 kGy to decontaminate pathogen microbe and other contaminant microbes, the experiment have been carried out in 4 treatments. Treatment A was male fish which was being fed with irradiated sludge palm oil waste pellet and commercial pelletized feed (2:1), treatment C was female with the same feed as A, treatment B was male fish feed with commercial pelletized, treatment D was female fish with the same feed as B. Each treatment was placed in a pond. The feed with the amount of 3% of total body weight was given to the fishes 2 times per day. The result of this experiment showed that the male fish weight receiving treatment A and B were 195.37 g and 175.12 g. The female fish weight at treatments C and D were 170.28 g and 160.15 g, respectively. Data obtained from this experiment showed that the treatment of irradiated sludge palm oil waste pellet and commercial pelletized (2:1) were more efficient as fish feeding compared to commercial pellets

  7. The effect of mixing ratio variation of sludge and organic solid waste on biodrying process

    Science.gov (United States)

    Nasution, A. C.; Kristanto, G. A.

    2018-01-01

    In this study, organic waste was co-biodried with sludge cake to determine which mixing ratio gave the best result. The organic waste was consisted of dried leaves and green leaves, while the sludge cake was obtained from a waste water treatment plant in Bekasi. The experiment was performed on 3 lab-scale reactors with same specifications. After 21 days of experiment, it was found that the reactor with the lowest mixing fraction of sludge (5:1) has the best temperature profile and highest moisture content depletion compared with others. Initial moisture content and initial volatile solid content of this reactor’s feedstock was 52.25% and 82.4% respectively. The airflow rate was 10 lpm. After biodrying was done, the final moisture content of the feedstock from Reactor C was 22.0% and the final volatile solid content was 75.9%.The final calorific value after biodrying process was 3179,28kcal/kg.

  8. Ultrasonic techniques for the in situ characterisation of 'legacy' Waste sludges and dispersions - 59111

    International Nuclear Information System (INIS)

    Hunter, Timothy; Biggs, Simon; Young, James; Fairweather, Michael; Peakall, Jeff

    2012-01-01

    Research being undertaken at the University of Leeds, as part of the DIAMOND university consortium, is exploring the effectiveness of various ultrasonic technologies as in situ probes to characterize and monitor nuclear waste slurries, such as the 'Legacy' Magnesium hydroxide sludges found in Sellafield, U.K. Through use of a commercial Acoustic Backscatter Sensor (ABS) with 1 - 5 MHz transducers, various properties of free-settling oxide simulant sludges were determined. Work was focused upon characterizing essentially 'static' sludges (to give prospective use as tools for the wastes in current deposits); although, the sensors also have potential as dispersion monitors during any future processing and storage of the Legacy wastes, as well as many other storage, clarifier or thickener systems across a wide range of industrial processing operations. ABS data of mixed glass powder dispersions was analysed and compared to scattering theory, to understand the correlations between acoustic attenuation and particulate concentration. The ABS was also calibrated to measure changes in average particulate concentration within a settling suspension over time, and showed the depth-wise segregation of the dispersion through the settling column at different particular time intervals. It was found that observed hindered settling also led to an increase in particulate concentration over the sludge zone and significant segregation occurred at moderate time intervals, due to the broad size distribution of the aggregates measured. It is hoped in future that these sensors may be able to be fitted to robotic handlers that have been installed onsite (and previously used for sampling), allowing fully automatic in situ sludge analysis. (authors)

  9. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  10. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    International Nuclear Information System (INIS)

    STALLINGS, MARY

    2004-01-01

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  11. Effects of ozonation on disinfection and microbial activity in waste activated sludge for land application

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyu-Hong; Maeng, Sung Kyu; Hong, Jun-Seok; Lim, Byung-Ran

    2003-07-01

    Effects of ozonation on microbial biomass activity and community structure in waste activated sludges from various treatment plants were investigated. The densities of viable cells and microbial community structure in the sludges treated with ozone at 0.1, 0.2 and 0.4 gO{sub 3}/gDS were measured on the basis of the respiratory quinone profile and LIVE/DEAD Backlight(TM). The results from the bacterial concentration and quinone profiles of the waste activated sludge showed that respiratory activities of microorganisms were detected at the ozone dose of 0.4 gO{sub 3}/gDS. However, fecal coliform, fecal streptococcus and Salmonella sp. in the ozonized sludge were not detected. This result implies that some microorganisms might be more tolerant to ozonation than the pathogenic indicators. The pathogens reduction requirements for Class A biosolids were still met by the ozonation at 0.4 gO{sub 3}/gDS.

  12. Production of bacterial cellulose and enzyme from waste fiber sludge

    Science.gov (United States)

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  13. Ash and sludge covering of mine waste. Benefits and/or risks using ash and sludge for covering of mine waste; Askor och roetslam som taeckskikt foer gruvavfall. Foerdelar och/eller risker med att anvaenda aska och slam som taeckskikt foer gruvavfall

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias; Johansson, Inger [Oerebro Univ. (Sweden). Man-Technology-Environment Research Centre

    2004-01-01

    One of the main sources for metal pollution in Sweden is mine waste. One way to decrease the leaching of metals from mine waste areas is covering which decreases the formation of acid drainage. There is a shortage of appropriate materials to use for covering, and excavation of till and clay from the environment might cause damages on the landscape. Previous studies have demonstrated that sludge and ashes are suitable materials for covering of waste deposits. When covering mine waste with ash and sludge various positive effects would arise, since the production of drainage water decreases as well as the pH increases due to the high buffer-capacity of the ash. In Ervalla outside Oerebro an area with mine waste has been covered with ash and sludge. This area gives a unique possibility to study benefits and/or risks with the covering of mine waste with ash and sludge. This report is a summary of the first phase of the project and the focus has been on characterisation of the material that has been used for covering. Also a monitoring program for the area has started. Preliminary findings indicate that that the covering decreases the leaching of some metals whereas the leaching of some metals increases. A decrease in the concentration of iron, nickel, cobalt and lead was observed and an increase was observed for arsenic, barium, chromium and copper.

  14. Slurry-phase biodegradation of weathered oily sludge waste.

    Science.gov (United States)

    Machín-Ramírez, C; Okoh, A I; Morales, D; Mayolo-Deloisa, K; Quintero, R; Trejo-Hernández, M R

    2008-01-01

    We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.

  15. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  16. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    Science.gov (United States)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  17. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    Energy Technology Data Exchange (ETDEWEB)

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  18. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    International Nuclear Information System (INIS)

    Aponte, C.I.

    2000-01-01

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events

  19. Demonstration of the Defense Waste Processing Facility vitrification process for Tank 42 radioactive sludge -- Glass preparation and characterization

    International Nuclear Information System (INIS)

    Bibler, N.E.; Fellinger, T.L.; Marshall, K.M.; Crawford, C.L.; Cozzi, A.D.; Edwards, T.B.

    1999-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is currently processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF has recently finished processing the first radioactive sludge batch, and is ready for the second batch of radioactive sludge. The second batch is primarily sludge from Tank 42. Before processing this batch in the DWPF, the DWPF process flowsheet has to be demonstrated with a sample of Tank 42 sludge to ensure that an acceptable melter feed and glass can be made. This demonstration was recently completed in the Shielded Cells Facility at SRS. An earlier paper in these proceedings described the sludge composition and processes necessary for producing an acceptable melter fee. This paper describes the preparation and characterization of the glass from that demonstration. Results substantiate that Tank 42 sludge after mixing with the proper amount of glass forming frit (Frit 200) can be processed to make an acceptable glass

  20. Modern disposal techniques for sewage sludge and municipal waste; Moderne Entsorgungsverfahren fuer Klaerschlamm und Hausmuell

    Energy Technology Data Exchange (ETDEWEB)

    Garlipp, G. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany); Maczek, K. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany); Steinkamp, H. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany)

    1996-05-01

    Since the passing of the technical code on municipal waste, the issue of the disposal of sewage sludge and municipal waste has become more and more important in Germany. Increasingly, the possibility is made use of to burn industrial and municipal sewage sludge and municipal waste. For such thermal disposal, a great number of techniques are nowadays available. (orig.) [Deutsch] Seit der Verabschiedung der TA Siedlungsabfall gewinnt die Problematik der Entsorgung von Klaerschlamm und Hausmuell in Deutschland zunehmend an Bedeutung. Von der Moeglichkeit, industrielle und kommunale Klaerschlaemme und Hausmuell zu verbrennen, wird in zunehmendem Masse Gebrauch gemacht. Zur thermischen Entsorgung von Klaerschlaemmen und Hausmuell stehen heute eine Vielzahl von Verfahren zur Verfuegung. (orig.)

  1. Design and evaluation of in situ biorestoration methods for the treatment of sludges and soils at waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Berry-Spark, K L; Barker, J F; Mayfield, C I

    1990-12-31

    In-situ methods for treatment of waste sludges hold great promise for efficient remediation of sludge at waste disposal sites, such as the diverse and complex sludges from the O.E. MacDougall site near Brockville, Ontario. This report presents results of laboratory testing of natural bioremediation techniques using six representative soils and sludges obtained from the MacDougall site. Four of six samples contained concentrations of hydrocarbons typical of petroleum products and solvents. The report includes descriptions of the characterisation of the organic chemistry and microbial populations of the soils, as well as of the experiments conducted under aerobic, methane oxidising, anaerobic-denitrifying, sulphate reducing, and methanogenic conditions.

  2. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lucero, Randy P. [Pajarito Scientific Corporation, Santa Fe, New Mexico 87507 (United States)

    2012-07-01

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard

  3. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance

    International Nuclear Information System (INIS)

    Cheng, Jun; Ding, Lingkan; Lin, Richen; Yue, Liangchen; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-01-01

    Highlights: • Microanalyses revealed food waste had more gelatinized organics and less mineral ash. • Mixed food waste and sewage sludge at 5 ratios were used for H_2 and CH_4 co-production. • Highest H_2 yield of 174.6 mL/gVS was achieved when food waste:sewage sludge was 3:1. • Co-fermentation enhanced carbon conversion by strengthening hydrolysis of substrates. • Energy yield rose from 1.9 kJ/gVS in H_2 to 11.3 kJ/gVS in H_2 and CH_4 co-production. - Abstract: The accumulation of increasingly generated food waste and sewage sludge is currently a heavy burden on environment in China. In this study, the physiochemical properties of food waste and sewage sludge were identified using scanning electron microscopy and Fourier transform infrared spectroscopy to investigate the effects on the fermentation performance in the co-fermentation of food waste and sewage sludge for biohydrogen production. The high gelatinized organic components in food waste, the enhanced bioaccessibility due to the dilution of mineral compounds in sewage sludge, and the balanced C/N ratio synergistically improved the fermentative biohydrogen production through the co-fermentation of food waste and sewage sludge at a volatile solids (VS) mix ratio of 3:1. The biohydrogen yield of 174.6 mL/gVS was 49.9% higher than the weighted average calculated from mono-fermentation of food waste and sewage sludge. Co-fermentation also strengthened the hydrolysis and acidogenesis of the mixture, resulting in a total carbon conversion efficiency of 63.3% and an energy conversion efficiency of 56.6% during biohydrogen production. After the second-stage anaerobic digestion of hydrogenogenic effluent, the energy yield from the mixed food waste and sewage sludge significantly increased from 1.9 kJ/gVS in the first-stage biohydrogen production to 11.3 kJ/gVS in the two-stage fermentative biohydrogen and biomethane co-production.

  4. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    Science.gov (United States)

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Effect of Addition of High Strength Food Wastes on Anaerobic Digestion of Sewage Sludge

    OpenAIRE

    Vaidya, Ramola Vinay

    2015-01-01

    Anaerobic co-digestion of municipal sludge and food wastes high in chemical oxygen demand (COD) has been an area of interest for waste water treatment facilities looking to increase methane production, and at the same time, dispose of the wastes and increase the revenue. However, addition of food wastes containing fats, oils and grease (FOG) to the conventional anaerobic digestion process can be difficult and pose challenges to utilities. Incorporating these wastes into the treatment plants c...

  6. EFFECTIVENESS OF RECLAMATION OF SODA WASTE DISPOSAL SITE AT JANIKOWO USING SEWAGE SLUDGE

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2014-10-01

    Full Text Available There are numerous reclamation technologies based on sewage sludge treatment, however, one that is most purposeful consists in applying the sludge in order to achieve green cover (bioremediation with plants on fine grained waste disposal sites which have a high potential for soil formation on the one hand, but on the other, are highly vulnerable to erosive action of wind and atmospheric precipitation. The technological waste at the Janikowo Soda Plant has liquid consistence, contains fine-grained (dust-like and water soluble calcium compounds, and is highly alkaline and saline. The waste was disposed and dehydrated in the large-area earthen ponds elevated beyond the ground level. The combined surface of all the exploited settling ponds (with roads and escarpments jointly exceeds 105 ha. Dehydration by infiltration and evaporation was a source of unrestricted dust emissions from the drying and dry surfaces of the waste site. Urgent action was then deemed necessary to manage the high risk of nuisance dust to the local population, technical infrastructure, engines and cars. Consequently, it was decided that the best way to manage nuisance dust would be to create a thick and permanent vegetal cover on the waste site. The vegetal cover would also limit salt infiltration from the disposal site to groundwater and to adjacent agricultural land, and contribute to improving the local landscape values. Treatment with adequately high (appropriate for reclamation purposes doses of sewage sludge and sowing of plants which have a high growth potential and nutrient demand resulted in the quick establishment of green cover on the waste disposal site. The contents of mineral elements in plants and in the top layer of the ground reclaimed were analyzed starting from the year 2000 onwards until the year 2013. The chemical composition of sewage sludge was systematically analyzed as well. No excessive contents were found of main elements neither of heavy metals in

  7. Enhanced sludge washing evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices.

  8. Enhanced sludge washing evaluation plan

    International Nuclear Information System (INIS)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices

  9. Synergistic and alkaline stability studies of mixtures of simulated high level waste sludge with selected energetic compounds

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    2000-01-01

    This study examined the stability of mercury oxalate and mercury fulminate in alkaline sludge simulating Savannah River Site waste. These compounds represent two classes of energetic compounds previously speculated as potential components in sludge stored without a supernatant liquid

  10. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    Science.gov (United States)

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.

    Science.gov (United States)

    Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao

    2017-05-01

    The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.

    Science.gov (United States)

    Coggins, Liah X; Ghisalberti, Marco; Ghadouani, Anas

    2017-03-01

    Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies

  13. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    Science.gov (United States)

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Production and remediation of low-sludge, simulated Purex waste glasses, 1: Effects of sludge oxide additions on melter operation

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but less durable than most simulated SRS high-level waste glasses. Also, Purex 4 glass was considerably less durable than predicted by the algorithm which will be used to control production of DWPF glass. A melter run was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by Hydration Thermodynamics. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the composition, crystallinity, and durability was determined. This document details the melter operation and composition and crystallinity analyses

  15. Fabrication of a Sludge-Conditioning System for processing legacy wastes from the Gunite and Associated Tanks

    International Nuclear Information System (INIS)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-01-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS

  16. Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production.

    Science.gov (United States)

    Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A

    2018-06-15

    Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Inertization of galvanic sludges by its incorporation in ceramic products

    Directory of Open Access Journals (Sweden)

    Ferreira, J. M. F.

    1999-04-01

    Full Text Available Sludges produced by the physico-chemical treatments of waste waters generated by electroplating plants were physically and chemically characterised and incorporated in ceramic pastes. The influence of the amount of sludges added to a typical brick composition on the various processing steps and on the green and fired properties was studied. The environmental risks of the incorporation of these sludges rich in heavy metals such as Cr, Pb, Zn, Cu, Ni, etc. were evaluated by performing leaching tests on the fired products. The results showed that sludge contents up to 15 % could be incorporated without affecting significantly the physical characteristics of the ceramic products. Furthermore, a successful inertization of the pollutants was achieved.

    Se han caracterizado desde el punto de vista químico y físico lodos procedentes de las aguas residuales de procesos de galvanizado. Posteriormente se han incorporado a pastas cerámicas, convencionales de la industria ladrillera, estudiándose la influencia de las cantidades añadidas sobre las propiedades de los materiales tanto en verde como en el producto final y durante las distintas etapas de fabricación. Se evaluaron los riesgos medioambientales derivados de la incorporación de los metales pesados, tales como Cr, Pb, Zn, Cu, Ni etc, presentes en los lodos, mediante la realización de ensayos de lixiviado. Los resultados indican que puede incorporarse hasta un 15% en peso de dichos lodos, sin que se produzcan cambios significativos en las propiedades físicas de los materiales cerámicos obtenidos. Se ha obtenido, asimismo, un procedimiento viable de inertización de los agentes contaminantes.

  18. Beneficial use of waste nuclear isotopes - 137Cs radiation treatment of municipal sludge and compost

    International Nuclear Information System (INIS)

    Remini, W.C.; Wahlquist, B.J.; Sivinsky, H.D.

    1977-01-01

    For the past several years, the Nuclear Research and Applications Division has been sponsoring, in cooperation with EPA, a program to develop the technology and investigate the potential of using gamma radiation to reduce pathogen levels in sewage sludge. The irradiation source would be cesium-137 which has been extracted from the reactor wastes and diverted to this use. It would be used in this irradiation process until its source strength had decayed to the point that it was no longer effective. At that point, it would be transferred for disposal. This sludge irradiation program is a part of a larger effort to develop beneficial uses of individual isotopes or combinations of isotopes contained in the reactor wastes. Such potential applications include strontium-90 for power generation in remote applications, extraction of platinum family metals to help alleviate demands on foreign supplies, and use of krypton-85 in self-luminous light sources. Sludge irradiation offers what appears to be near-term benefits and has received the major focus in this program. This summary report reviews the progress and current status in the sludge irradiation program. It reviews the background of the national sludge problem and describes how the irradiation process may be applied to this problem. The two major approaches, wet and dry irradiation, are described and their technical and economic potential is discussed. Finally, the status of on-going efforts to experimentally apply irradiation to sludges are summarized and a projected development plan is outlined. (Auth.)

  19. Aquatic worm reactor for improved sludge processing and resource recovery

    OpenAIRE

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste sludge would be both environmentally and economically attractive. Aquatic worms can be used to reduce the amount of waste sludge. After predation by the worms, the amount of final sludge is lower....

  20. Drying of residue and separation of nitrate salts in the sludge waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Lee, K. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the dissolution process by water and the drying property of residue after separating nitrates in a series of the processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97% at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse uranyl nitrate of six value into the stable U 3 O 8 of four value. As a result of removing the nitrates at the water adding ratio of 2.5 and drying the residue over 900 .deg. C, volume of the sludge waste decreased over 80%

  1. Applying waste heat recovery system in a sewage sludge dryer – A technical and economic optimization

    International Nuclear Information System (INIS)

    Tańczuk, Mariusz; Kostowski, Wojciech; Karaś, Marcin

    2016-01-01

    Highlights: • A modernization of waste heat recovery system in a sludge drying plant is proposed. • Energy performance analysis rejected the downsize case of modernization. • Optimal system sizes regarding Net Present Value and Net Present Value Ratio do not coincide. • Up to 683 MW h/y of chemical energy savings for optimal heat exchanger size. • Higher profitability for the larger heat exchanger cases: paybacks below 3.65 years. - Abstract: Drying of digested sewage sludge, as an important alternative to sludge disposal at dumping sites, should comply with the requirements of high energy efficiency as well as economic feasibility. The technical and economic optimization analysis of installing a waste process heat recovery unit in a medium-temperature belt dryer operated in a municipal waste water treatment plant was carried out. Inlet capacity of the plant is 1.83 Mg of wet sludge per hour. The post-process air was indicated as a source of waste heat and the configuration of a heat recovery system was proposed. The main objective of the research was to find the optimal size of a chosen type of waste heat recovery heat exchanger for preheating ambient air to the process. The maximization of Net Present Value, and, alternatively, also Net Present Value Ratio were selected for the objective function of the optimization procedure. Simulation of yearly operation of waste heat exchanger was made for a range of different heat exchanging areas (101–270 m"2) regarding given parameters of a post-process air and different temperatures of ambient air. Energy performance of the modernization was evaluated and economic indices were calculated for each of the analyzed cases. The location of the maximum of optimization function was found and the calculations show higher profitability of the cases with larger waste heat exchanger. It can be concluded that the location of optimum of the objective function is very sensitive to the price of natural gas supplied to the

  2. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Boe, Kanokwan

    2016-01-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co...... days. However, the methane yield dropped significantly to 356 (R1) and 315 (R2) NmL CH4/g VS when reducing the HRT to 10 days, indicating that the process was stressed. Since the methane production rate improved significantly with decreasing HRT, the trade-off between yield and productivity...

  3. Treatment of Lagoon sludge waste generated from Uranium Conversion Plant

    International Nuclear Information System (INIS)

    Hwang, D.S.; Oh, J.H.; Lee, K.I.; Choi, Y.D.; Hwang, S.T.; Park, J.H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the desalination process by water and the drying property of residual solid after separating nitrates in a series of processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97 % at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue. These were decomposed over 600 deg. C while calcium carbonate, which was a main compound of residual solid, was decomposed into calcium oxide over 750 deg. C. The residual solid has to be decomposed over 800 deg. C to converse uranyl nitrate of six values into the stable U 3 O 8 of four values. As a result of removing the nitrates at the adding ratio of 2.5 and drying the residue over 900 deg. C, volume of the sludge waste decreased over 80 %. (authors)

  4. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    Science.gov (United States)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  5. Effect of ultrasonic and ozone pre-treatments on pharmaceutical waste activated sludge's solubilisation, reduction, anaerobic biodegradability and acute biological toxicity.

    Science.gov (United States)

    Pei, Jin; Yao, Hong; Wang, Hui; Shan, Dan; Jiang, Yichen; Ma, Lanqianya; Yu, Xiaohua

    2015-09-01

    Ultrasonic and ozone pre-treatment technologies were employed in this study to improve the anaerobic digestion efficiency of pharmaceutical waste activated sludge. The sludge solubilisation achieved 30.01% (150,000 kJ/kg TS) and 28.10% (0.1g O3/g TS) after ultrasonic treatment and ozone treatment. The anaerobic biodegradability after ultrasonic treatment was higher compared to ozonation due to the higher cumulative methane volume observed after 6 days (249 ml vs 190 ml). The ozonated sludge released the highest concentration of Cu(2+) into the liquid phase (6.640 mg L(-1)) compared to 0.530 mg/L for untreated sludge and 0.991 mg/L for sonicated sludge. The acute toxicity test measured by luminescent bacteria showed that anaerobic digestion could degrade toxic compounds and result in a reduction in toxicity. The main mechanism of action led to some differences in the treated sludge exhibiting higher potential for methane production from pharmaceutical waste sludge with ultrasonic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Precious Metals Recovery from Electroplating Wastewater: A Review

    Science.gov (United States)

    Azmi, A. A.; Jai, J.; Zamanhuri, N. A.; Yahya, A.

    2018-05-01

    Metal bearing electroplating wastewater posts great health and environmental concerns, but could also provide opportunities for precious and valuable metal recovery, which can make the treatment process more cost-effective and sustainable. Current conventional electroplating wastewater treatment and metal recovery methods include chemical precipitation, coagulation and flocculation, ion exchange, membrane filtration, adsorption, electrochemical treatment and photocatalysis. However, these physico-chemical methods have several disadvantages such as high initial capital cost, high operational cost due to expensive chemical reagents and electricity supply, generation of metal complexes sludge which requires further treatment, ineffective in diluted and/or concentrated wastewater, low precious metal selectivity, and slow recovery process. On the other hand, metal bio-reduction assisted by bioactive phytochemical compounds extracted from plants and plant parts is a new found technology explored by several researchers in recent years aiming to recover precious and valuable metals from secondary sources mainly industrial wastewater by utilizing low-cost and eco-friendly biomaterials as reagents. Extract of plants contains polyphenolic compounds which have great antioxidant properties and reducing capacities, able to reduce metal ions into zerovalent metal atoms and stabilize the metal particles formed. This green bio-recovery method has a value added in their end products since the metals are recovered in nano-sized particles which are more valuable and have high commercial demand in other fields ranging from electrochemistry to medicine.

  7. Assessment of nutritional value of single-cell protein from waste-activated sludge as a protein supplement in poultry feed.

    Science.gov (United States)

    Nkhalambayausi-Chirwa, Evans M; Lebitso, Moses T

    2012-12-01

    The amount of protein wasted through sludge in Gauteng, South Africa, amounts to 95 000 metric tonne/yr, with the order of magnitude of the national protein requirement of approximately 145 000 metric tonne/yr. Waste-activated sludge (WAS) from wastewater treatment plants (WWTPs) that treat domestic wastewater contains protein in a ratio of 2:1 against fishmeal. This protein source has not been utilized because of the high content of toxic heavy metals and other potential carcinogenic pollutants in the sludge. In this study, a pretreatment method of modified aqua regia dilute acid wash was used to lower the metal content by approximately 60%. However, this resulted in a 33% loss of amino acids in the acid-washed WAS. A feed substitution test in poultry with different fishmeal-sludge ratios (0%, 25%, 50%, 75%, and 100% WAS as percent substitution of fishmeal) showed no impact of sludge single-cell protein (SCP) on mortality rate. However, sludge substitution in the feed yielded weight gains and cost savings up to 46%.

  8. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    Directory of Open Access Journals (Sweden)

    Luca Zuliani

    2016-10-01

    Full Text Available Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates.

  9. Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.

    Science.gov (United States)

    Maeng, Min Ho; Cha, Daniel K

    2018-02-01

      Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.

  10. Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility.

    Science.gov (United States)

    Da Ros, C; Cavinato, C; Cecchi, F; Bolzonella, D

    2014-01-01

    In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m(3)d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm(3)biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.

  11. Mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge

    DEFF Research Database (Denmark)

    Aghdam, Ehsan Fathi; Kinnunen, V.; Rintala, Jukka A.

    2015-01-01

    This paper presents mesophilic anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW), biowaste (BW), sewage sludge (SS), and co-digestion of BW and SS. Average methane yields of 386 ± 54, 385 ± 82, 198 ± 14, and 318 ± 59 L CH4/kg volatile solids (VS) were obtained for OFMSW...

  12. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    Science.gov (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  13. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste.

    Science.gov (United States)

    Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can

    2016-11-01

    Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    Science.gov (United States)

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. Copyright © 2015. Published by Elsevier B.V.

  15. Pilot tests of microbe-soil combined treatment of waste drilling sludge

    OpenAIRE

    Lirong Chen; Min Huang; Xuebin Jiang; Hui Li; Qiang Chen; Min Zhang; Shenglin Li

    2015-01-01

    Microbe-soil combined treatment is a newly developed technology in view of the defects of the curing process and waste drilling mud slag properties. In particular, 0.3%–0.5% bioremediation reagents were fully mixed with the waste drilling sludge according to its wet and dry degree, and 1.5 folds to twice weight of more finely ground soil was added in the mix, which was covered by soil of 5–15 cm thick and thereby grasses or greeneries were planted on the soil. The process was successfully app...

  16. Strength Assessment of Controlled Low Strength Materials (CLSM) Utilizing Recycled Concrete Aggregate and Waste Paper Sludge Ash

    OpenAIRE

    Ridzuan, Ahmad Ruslan Mohd; Fauzi, Mohd Azrizal; Ghazali, Ezliana; Arshad, Mohd Fadzil; Fauzi, Mohd Afiq; Mohd Fauzi, Mohd Afiq

    2013-01-01

    This paper studies the strength development of low-strength material (CLSM) is controlled by using waste paper sludge ash (WPSA) in CLSM mixtures without adding Portland cement. Series of four (4) compounds which is the CLSM containing 5%, 10%, 20% and 30% of waste paper sludge ash (WPSA) as a substitute for Portland cement. CLSM cubes the sizes of 100mm x 100mm x 100mm compressive strength were tested at age 7, 14 and 28days. It was found that this activity contributes to strength developmen...

  17. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1998-01-01

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results for solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges

  18. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    Science.gov (United States)

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-04-25

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  19. Reuse of sludge from galvanotechnik industrial activity in the manufacture of concrete blocks for paving (PAVERS)

    International Nuclear Information System (INIS)

    Franco, J.M; Almeida, P.H.S.; Tavares, C.R.G.

    2014-01-01

    This study was to evaluate the interface replacing the cement by galvanic sludge (5-25%) in the production of concrete block paving analyzing the mechanical and microstructural effects of substitution. The results of the blocks produced with 5% of slude had values of compressive strength greater than 35 MPa and lower compared to the reference blocks with 28 days, the interface in cement paste by scanning electron microscopy (SEM) and x-ray diffraction (XRD) showed the presence of empty capillary arrays of crystalline ettringite (C6AS3H32) and calcium silicate (Ca2SiO4) responsible for the compressive strength and decrease the intensity of the peaks of quartz with respect to the reference blocks, revealing the promising applicability and feasibility of using waste electroplating in the construction industry. (author)

  20. Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste

    International Nuclear Information System (INIS)

    DeMuth, S.

    1998-01-01

    Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author's previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B ± $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author's engineering judgment

  1. Hydrogen Evolution and Sludge Suspension During the Preparation of the First Batch of Sludge at the Savannah River Site

    International Nuclear Information System (INIS)

    Hay, M.S.; Lee, E.D.

    1995-01-01

    The first batch of High Level Radioactive Sludge for the Defense Waste Processing Facility is being prepared in two 4.9 million liter waste tanks. The preparation involves removing water soluble salts by washing (water addition, sludge suspension, settling and decantation). Sludge suspension is accomplished using long shafted slurry pumps that are mounted on rotating turntables. During the sludge suspension runs in 1993 and 1994, the slurry pumps' cleaning radius was determined to be less than that expected from previous determinations using synthetic sludge in a full size waste tank mockup. Hydrogen concentrations in the tanks' vapor space were monitored during the sludge suspension activities. As expected, the initial agitation of the sludge increased the hydrogen concentration, however, with the controls in place the hydrogen concentration was maintained below seven percent of the lower flammability limit

  2. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    Science.gov (United States)

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  4. A new reactor concept for sludge reduction using aquatic worms

    NARCIS (Netherlands)

    Elissen, H.J.H.; Hendrickx, T.L.G.; Temmink, B.G.; Buisman, C.J.N.

    2006-01-01

    Biological waste water treatment results in the production of waste sludge. The final treatment option in The Netherlands for this waste sludge is usually incineration. A biological approach to reduce the amount of waste sludge is through predation by aquatic worms. In this paper we test the

  5. Composting plant of vegetables wastes and sewage sludges in Castesdefells. Plant de compostaje de restos de poda y lodos de depuradora en Castelldefells

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Castelldefells Municipality (Catalonia, Spain) has set up a recycling plant for vegetable wastes mixed with sewage sludge to obtain compost. The plant treats 48.000 m''3/y. of vegetable wastes, and receive 8.000 m''3/y. of sewage sludge. (Author)

  6. Phase chemistry and radionuclide retention of high level radioactive waste tank sludges

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Brady, Patrick V.; Zhang, Pengchu; Arthur, Sara E.; Hutcherson, Sheila K.; Liu, J.; Qian, M.; Anderson, Howard L.

    2000-01-01

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate groundwaters with radionuclides and RCRA metals. Experimentation on such sludges is both dangerous and prohibitively expensive so there is a great advantage to developing artificial sludges. The US DOE Environmental Management Science Program (EMSP) has funded a program to investigate the feasibility of developing such materials. The following text reports on the success of this program, and suggests that much of the radioisotope inventory left in a tank will not move out into the surrounding environment. Ultimately, such studies may play a significant role in developing safe and cost effective tank closure strategies

  7. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    Science.gov (United States)

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  9. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    Science.gov (United States)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  10. Possibility of forming artificial soil based on drilling waste and sewage sludge

    Science.gov (United States)

    Kujawska, J.; Pawłowska, M.; Wasag, H.

    2018-05-01

    Land redevelopment is necessary due to the amount of a degraded area. Depositing waste on the small area of landfills is harmful for the environment. New methods of managing and utilizing waste are being sought in order to minimize the deposition of waste. In small amounts, many types of waste can be treated as a substrate or material improving physicochemical properties of soils, and hence can be used in reclamation of degraded lands. The study analysed the effect of different doses of sewage sludge (35%, 17.5%) with addition (2.5% and 5%) of drilling waste on the properties of degraded soils. The results show that created mixtures improve the sorption properties of soil. The mixtures contain the optimal the ratio of nutrient elements for growth of plants is N:P:K.

  11. Design characteristics of the Sludge Mobilization System

    International Nuclear Information System (INIS)

    McMahon, C.L.

    1990-01-01

    Radioactive waste stored in underground tanks at the West Valley Demonstration Project is being processed into low-level waste and solidified in cement. High-level waste also stored underground will be vitrified and solidified into canistered glass logs. To move the waste from where it resides at the Waste Tank Farm to the Vitrification Facility requires equipment to prepare the storage tanks for low-level and high-level waste processing, equipment to mobilize and mix the radioactive sludge into a homogeneous slurry, and equipment to transfer the slurry for vitrification. The design of the Sludge Mobilization System has incorporated the necessary components to effect the preparation and transfer of waste in five operational phases. The first phase of the Sludge Mobilization System, which began in 1987, prepared the waste tanks to process radioactive liquid for delivery to the Cement Solidification System and to support the mobilization equipment. The second phase, beginning in 1991, will wash the sludge that remains after the liquid supernatant is decanted to prepare it for mobilization operations. The third phase will combine the contents of various waste tanks into one tank. The fourth phase will resuspend and mix the contents of the high-level waste tank. The fifth and final phase of the Sludge Mobilization System will entail transferring the waste mixture to the Vitrification Facility for processing into glass logs. Provisions for recycling the waste streams or slurries within the tank farm or for returning process streams to the Waste Tank Farm from the Vitrification Facility are also included in the final phase. This document addresses the Sludge Mobilization System equipment design characteristics in terms of its use in each of the five operational phases listed above

  12. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  13. Pentachlorophenol (PCP) sludge recycling unit

    International Nuclear Information System (INIS)

    1994-08-01

    The Guelph Utility Pole Company treats utility poles by immersion in pentachlorophenol (PCP) or by pressure treatment with chromated copper arsenate (CCA). The PCP treatment process involves a number of steps, each producing a certain amount of sludge and other wastes. In a plant upgrading program to improve processing and treatment of poles and to reduce and recycle waste, a PCP recovery unit was developed, first as an experimental pilot-scale unit and then as a full-scale unit. The PCP recovery unit is modular in design and can be modified to suit different requirements. In a recycling operation, the sludge is pumped through a preheat system (preheated by waste heat) and suspended solids are removed by a strainer. The sludge is then heated in a tank and at a predetermined temperature it begins to separate into its component parts: oil, steam, and solids. The steam condenses to water containing low amounts of light oil, and this water is pumped through an oil/water separator. The recovered oil is reused in the wood treatment process and the water is used in the CCA plant. The oil remaining in the tank is reused in PCP treatment and the solid waste, which includes small stones and wood particles, is removed and stored. By the third quarter of operation, the recovery unit was operating as designed, processing ca 10,000 gal of sludge. This sludge yielded 6,500 gal of water, 3,500 gal of oil, and ca 30 gal of solids. Introduction of the PCP sludge recycling system has eliminated long-term storage of PCP sludge and minimized costs of hazardous waste disposal. 4 figs

  14. Modeling water retention of sludge simulants and actual saltcake tank wastes

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1996-07-01

    The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity

  15. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  16. EXPECTED IMPACT OF HANFORD PROCESSING ORGANICS OF PLUTONIUM DURING TANK WASTE SLUDGE RETRIEVAL

    International Nuclear Information System (INIS)

    TROYER, G.L.; WINTERS, W.I.

    2004-01-01

    This document evaluates the potential for extracting plutonium from Hanford waste tanks into residual organic solvents and how this process may have an impact on criticality specifications during the retrieval of wastes. The two controlling factors for concentrating plutonium are the solubility of the plutonium in the wastes and the extraction efficiency of the potential organic extractants that may be found in these wastes. Residual Hanford tank sludges contain plutonium in solid forms that are expected to be primarily insoluble Pu(IV) hydroxides. Evaluation of thermodynamic Pourbaix diagrams, documentation on solubility studies of various components in waste tank matrices, and actual analysis of plutonium in tank supernates all indicate that the solubility of Pu in the alkaline waste is on the order of 10 -6 M. Based on an upper limit plutonium solubility of 10 -5 M in high pH and a conservative distribution coefficient for organic extractants of a 0 for plutonium in 30% TBP at 0.07 M HNO 3 ), the estimated concentration for plutonium in the organic phase would be -7 M. This is well below the process control criteria. A significant increase in plutonium solubility or the E a o would have to occur to raise this concentration to the 0.01 M concern level for organics. Measured tank chemical component values, expected operating conditions, and the characteristics of the expected chemistry and extraction mechanisms indicate that concentration of plutonium from Hanford tank residual sludges to associated process organic extractants is significantly below levels of concern

  17. Deep Sludge Gas Release Event Analytical Evaluation

    International Nuclear Information System (INIS)

    Sams, Terry L.

    2013-01-01

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, 'Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge'). The purpose of this technical

  18. Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. [Upflow Anaerobic Sludge Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; de Zeeuw, W.; Lettinga, G.

    1984-01-01

    This study was carried out to assess the feasibility of using the upflow anaerobic sludge blanket (UASB) process for the one-step anaerobic treatment of slaughterhouse waste, which contains approximately 50% insoluble suspended COD. Batch experiments, as well as continuous experiments, were conducted. The continuous experiments were carried out in a 30 cubic m UASB pilot-plant with digested sewage sludge from the municipal sewage treatment plant of Ede, The Netherlands (Ede-2 sludge), used as seed. Initially the UASB pilot-plant was operated at a temperature of 30 degrees C, but, 20 weeks after the start-up, the temperature was reduced to 20 degrees C, because application of the process at this lower temperature might be quite attractive for economic reasons. The process can be started up at an organic space load of 1 kg COD/m/sup 3/ day (sludge load, 0.11 kg/COD kg VSSday) and at a liquid detention time of 35 h at a process temperature of 30 degrees C. Once started up, the system can satisfactorily handle organic space loads up to 3.5 kg COD/m/sup 3/ day at a liquid detention time of 8 hours at temperatures as low as 20 degrees C. A treatment efficiency up to 70% on a COD tot basis, 90% on a COD sol basis and 95% on a BOD5 sol basis was smoothly approached. Temporary shock loads up to 7 kg COD/m/sup 3/ day during the daytime at a liquid detention time of 5 h can well be accommodated provided such a shock load is followed by a period of underloading, e.g. at night. The methane yield amounted to 0.28 NM/sup 3/ per kilogram of COD removed: the methane content of the biogas from the wastewater varied between 65 and 75%. 19 references.

  19. Reuse of industrial sludge as construction aggregates.

    Science.gov (United States)

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  20. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    Science.gov (United States)

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe 0 ) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P  0.05) were found for all gene targets between digesters with Fe 0 dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe 0 . Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe 0 could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe 0 can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Operational experience at the Sludge Treatment Facility

    International Nuclear Information System (INIS)

    Sy, D.J.

    1987-01-01

    The Sludge Treatment Facility (STF) at the Oak Ridge Gaseous Diffusion Plant has been in operation since April 1987. The facility was designed to encapsulate hazardous sludge wastes in a cement matrix. Fixation will allow the waste to meet or exceed applicable compressive strength and leachability requirements. Thus, the grout mixture complies with the Resource Conservation and Recovery Act (RCRA) guidelines as a nonhazardous waste. The grout mixture is based upon a recipe formulation developed after several years of waste stream characterization and formulation studies. The wastes to be treated at the STF are wastes impounded in two ponds. The ponds have a combined capacity of 4.5 million gallons of sludge. The sludge is transferred from the ponds to a 15,000-gallon capacity storage tank by the use of a dredge. The grout mixture recipe dictates the amount of sludge, cement, fly ash, and admixture required for weighing per batch. All ingredients are weighed and then transferred to a tilt or high energy mixer for mixing. The grout mixture is then transferred to 89- or 96-gallon steel drums. The drums are placed in a storage yard designed for a point source discharge from the yard

  2. Thermal behaviour of chrome shavings and of sludges recovered after digestion of tanned solid wastes with calcium hydroxide

    International Nuclear Information System (INIS)

    Tahiri, S.; Albizane, A.; Messaoudi, A.; Azzi, M.; Bennazha, J.; Younssi, S. Alami; Bouhria, M.

    2007-01-01

    The thermal behaviour of chrome shavings and of sludges recovered after digestion of tanned wastes with Ca(OH) 2 was studied. Ashes obtained after incineration of wastes at various temperatures were analysed by X-ray diffraction and EDX method. The main crystallized phases present in the ash obtained at 600 deg. C are Cr 2 O 3 and NaCl. The diffractograms revealed an increase in the intensities of the chromium oxide peaks and a very notable decrease of the amount of sodium chloride at 1100 deg. C. EDX analysis revealed a total disappearance of the chlorine peak at this temperature. Scanning electron micrographs show that the waste lost its fibrous aspect when the temperature increases. Formation of aggregates was noted after 550 deg. C. Combustion of organic matters and decarbonation phenomenon are the main stages observed on GTA and DTA curves of sludges. These phenomena are, respectively, exothermic and endothermic. The diffractogram of sludges recorded at 550 deg. C, in the presence of a constant oxygen surplus, revealed the presence of CaCrO 4 and CaCO 3

  3. Hydrogen production during processing of radioactive sludge containing noble metals

    International Nuclear Information System (INIS)

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 x10 -7 g H 2 /hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 x10 -4 g H 2 /hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges

  4. Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities.

    Science.gov (United States)

    Li, Xiaoling; Peng, Yongzhen; Li, Baikun; Wu, Changyong; Zhang, Liang; Zhao, Yaqian

    2017-11-01

    The effects of two alkali agents, NaOH and Ca(OH) 2 , on enhancing waste activated sludge (WAS) fermentation and short chain fatty acids (SCFAs) accumulation were studied in semi-continuous stirred tank reactors (semi-CSTR) at different sludge retention time (SRT) (2-10 d). The optimum SRT for SCFAs accumulation of NaOH and Ca(OH) 2 adding system was 8 d and 10 d, respectively. Results showed that the average organics yields including soluble chemical oxygen demand (SCOD), protein, and carbohydrate in the NaOH system were as almost twice as that in the Ca(OH) 2 system. For Ca(OH) 2 system, sludge hydrolysis and protein acidification efficiencies were negatively affected by Ca 2+ precipitation, which was revealed by the decrease of Ca 2+ concentration, the rise of zeta potential and better sludge dewaterability in Ca(OH) 2 system. In addition, Firmicutes, Proteobacteria and Actinobacteria were the main microbial functional groups in both types of alkali systems. NaOH system obtained higher microbial quantities which led to better acidification. For application, however, Ca(OH) 2 was more economically feasible owning to its lower price and better dewaterability of residual sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-23

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  6. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  7. Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water

    International Nuclear Information System (INIS)

    Zhang, Linghong; Champagne, Pascale; Xu, Chunbao

    2011-01-01

    Co-liquefaction of secondary pulp/paper-mill sludge (solids concentration: 1.6 wt%) and waste newspaper with a total solids concentration of 11.3 wt% was investigated with and without the addition of catalysts in a 75 ml Parr High-Pressure reactor at temperatures of 250-380 o C for 20 min. The yield of heavy oil (HO) without catalyst was between 16.7 and 28.0 wt% within this temperature range, and peaked at 350 o C. The addition of HCO 2 H, FeS, or KOH at 5 wt% of the total solids (on a dry basis) was found to enhance the HO yield at 300 o C, particularly HCO 2 H, which increased the yield of HO from 24.9 to 34.4 wt%. More interestingly, synergistic effects between secondary pulp/paper-mill sludge and waste newspaper were observed in the co-liquefaction operations. For example, the HO yield attained was 26.9 wt% at 300 o C in the co-liquefaction of the mixture of 33 wt% sludge and 67 wt% waste newspaper, and was noted to be 9 wt% and 6 wt% higher than the yields obtained from liquefaction of sludge and waste newspaper alone, respectively. The HOs from liquefaction or co-liquefaction at 300 o C for 20 min exhibited significantly higher energy contents (HHV ≥ 30 MJ/kg), almost doubled those (-tilde 16 MJ/kg) of the original feedstocks.

  8. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Hu, Shanchao; Ma, Xiaoqian; Lin, Yousheng; Yu, Zhaosheng; Fang, Shiwen

    2015-01-01

    Highlights: • Thermogravimetric analysis of paper mill sludge and municipal solid waste were studied. • The combustion of paper mill sludge could be improved by blending municipal solid waste. • There existed significant interaction during co-combustion of the blends. • The OFW and Starink methods were used to obtain the activation energy. • The average activation energy was the lowest by blending 20% municipal solid waste. - Abstract: The thermal characteristics and kinetics of paper mill sludge (PMS), municipal solid waste (MSW) and their blends in the combustion process were investigated in this study. The mass percentages of PMS in the blends were 10%, 30%, 50%, 70% and 90%, respectively. The experiments were carried out at different heating rates (10 °C/min, 20 °C/min and 30 °C/min) and the temperature ranged from room temperature to 1000 °C in a thermogravimetric simultaneous thermal analyzer. The results suggested that the ignition temperature and burnout temperature of MSW were lower than that of PMS, and the mass loss rate of MSW was larger especially at low temperatures. There were only two mass loss peaks in the differential thermogravimetry (DTG) curve, while three mass loss peaks were observed when the blending ratios of PMS were 30%, 50%, 70%. The value of the comprehensive combustion characteristic index of the blends indicated a good combustibility when the percentage of PMS (PPMS) in the blends was less than 30%. There existed certain interaction between the combustion process of PMS and MSW, especially at high temperature stage. Activation energy (E) value obtained by the Ozawa–Flynn–Wall (OFW) method and the Starink method were very consistent. When the mass percentage of PMS in the blends was 80%, the E average value attained the minimum

  9. Treatment of hexavalent chromium Cr (VI) in tanning effluent

    International Nuclear Information System (INIS)

    Ahmed, I.; Ali, S.

    1999-01-01

    Most common chemical used in chrome tanning is basic chromium sulphate (BCS). Manufacturing of BCS involves many steps producing liquid waste. Waste generated at every stage contains Cr (VI), which must be reduced to Cr (III) before being disposed to the environment. Different methods were studied for the reduction of toxic Cr (III). Pickle liquor (waste of electroplating industry) can also be used for the reduction of hexavalent chromium Cr (vi) along with other reducing materials / chemicals. In an electroplating process metal is treated with HCl or H/sub 2/SO/sub 4/ to remove scales and rust, the pickled items are then washed with water, washing contains FeCl/sub 2/ or fees/sub 4/ respectively called pickle liquor. During waste treatment pH adjustment to 6.0 - 9.0 and settling the sludge, is discharged to the lagoon. The sludge obtained is dried and disposed off in landfills. Other reducing agents like sodium bisulphite and sulfur dioxide were also studied, but pickle liquor was found to be more effective and economical. (author)

  10. Ensured waste disposal without thermal treatment of sewage sludge?; Entsorgungssicherheit ohne thermische Klaerschlammbehandlung?

    Energy Technology Data Exchange (ETDEWEB)

    Melsa, A.K. [Niersverband, Viersen (Germany)

    1998-07-01

    The Technical Rule on Domestic Waste Management (TASi) specifies that from 2005, sewage sludge containing more than 5% of organic dry matter must no longer be dumped. This means that sewage sludge combustion will be the only means of disposal, apart from using sewage sludge as a fertilizer. The author's employer ('Niersverband' utility) was among the first to develop a future-oriented sewage sludge disposal strategy, and a drying plant was construct which is to reduce the weight and volume of sewage sludge in order to obtain a fuel of high calorific value. Further, a contract was closed for combustion of sewage sludge as fuel in a combustion system. [German] Unter Beruecksichtigung der TASi, die verlangt, dass spaetestens ab dem Jahr 2005 Klaerschlaemme mit einem hoeheren organischen Feststoffgehalt als 5% nicht mehr abgelagert werden duerfen, verbleibt uns neben der stofflichen Verwertung in der Landwirtschaft als massgeblicher Entsorgungsweg die Verbrennung, und zwar nicht - und das ist zu unterstreichen - um die Schadstoffe im Klaerschlamm zu beseitigen, sondern um den Klaerschlamm zu entsorgen. Eine betriebssichere Klaerschlammverbrennung stellt dabei die hoechste erreichbare Stufe der Entsorgungssicherheit dar. Der Niersverband hat sich fruehzeitig mit der Aufstellung einer zukunftsfaehigen Klaerschlammentsorgungsstrategie befasst und eine Trocknungsanlage geplant, die eine weitgehende Gewichts- und Volumenreduktion des Klaerschlamms sowie die Erzeugung eines heizwertreichen Brennstoffs gewaehrleistet und damit die Entsorgungsmoeglichkeiten deutlich verbessert. Des weiteren wurde ein erster Vertrag zur energetischen Klaerschlammverwertung in einer Verbrennungsanlage abgeschlossen. (orig.)

  11. Bio gasification of industrial bio waste and sewage sludge-management of biogas quality

    Energy Technology Data Exchange (ETDEWEB)

    Kymalainen, M.; Lahde, K.; Kaarnakoski, M.; Pirttijarvi, T.; Arnold, M.; Kurola, J.; Kautola, H.

    2009-07-01

    Bio gasification, i. e. anaerobic digestion, is a well known sustainable option for the management of organic solid wastes and sludges. the produced biogas is a valuable bio fuel to replace fossil fuels in different technical applications (like heating, electricity, transport fuel generation) which in turn determine its quality requirements. (Author)

  12. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... anaerobic digestion (thermal hydrolysis and ultrasound disintegration) and inertisation processes performed at high temperatures (incineration, pyrolysis, gasification, wet oxidation) but they all aim at volume reduction and removal of biodegradable compounds before safe sludge disposal or reuse of its...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  13. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    Science.gov (United States)

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Direct electroplating of plastic for advanced electrical applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2017-01-01

    Electrodeposition or electroplating is predominantly applied to metallic components. Electroplating of plastics is possible in some cases where an initial electroless plating layer of nickel or copper is made to provide a conductive surface on the plastic part. This paper proposes a method...... for direct electroplating of plastic eliminating the need for slow and expensive processes like electroless metal deposition, PVD coating, painting with conductive inks etc. The results obtained from the test demonstrate the potential of direct electroplating of plastic to enhance the electrical conductivity...... and the use of electroplated plastics for advanced applications like Moulded Interconnect Devices (MIDs)....

  15. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure.

    Science.gov (United States)

    Kim, Jaai; Yu, Youngseob; Lee, Changsoo

    2013-09-01

    Low-temperature thermo-alkaline pretreatment of waste activated sludge (WAS) was studied, within the region of 0-0.2 M NaOH and 60-90°C, for the effects of NaOH concentration and temperature on sludge degradability in anaerobic digestion (AD). Significant disintegration of sludge solids (up to 75.6%) and an increase in methane production (up to 70.6%) were observed in the pretreatment trials. Two quadratic models were successfully generated by response surface analysis (R(2)>0.9, pdisintegration (SD) and methane production (MP) respond to changes in the pretreatment conditions. The maximum responses of SD (77.8%) and MP (73.9% increase over the control) were shown at [0.16 M NaOH, 90°C] and [0.10 M NaOH, 73.7°C], respectively. NaOH addition showed a significant influence on the evolution of methanogen community structure during AD, whereas temperature did not. Aceticlastic Methanosaeta and Methanosarcina speceies were likely the major methanogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Treatment of the oily waste sludges through thermal plasma in absence of oxygen

    International Nuclear Information System (INIS)

    Castaneda J, G.; Pacheco S, J.

    2001-01-01

    The thermal plasma process in absence of oxygen for the degradation of oily waste sludges was evaluated. These residues are commonly generated in the petrochemical industry and are considered hazardous wastes according to the present environmental regulations. The process was operated using difference residence times and the characteristics of the gaseous by products and residual soils were determined. The efficiency of organic matter degradation was 99.99%. The attained volume reduction, under the best conditions was 95.5%. The residual soils were composed of carbon and clays. The residual gases have low molecular weight. The resulting final wastes were non-hazardous and could be disposed of in landfills. (Author)

  17. Determination of arsenic content in the waste sludge from a fertilizer factory of Bangladesh by XRF and EPMA

    International Nuclear Information System (INIS)

    Mondal, N.N.; Debnath, T.K.; Roy, T.K.; Saha, K.D.; Alam, B.; Sarkar, M.; Lui, A.

    1994-01-01

    The waste sludge from a fertilizer factory of Bangladesh has been analysed by x-ray fluorescence analysis and electron probe micro-analysis in Bangladesh, Germany and Italy. All these tests confirm that the waste contains approx. 50% by wt of arsenic which is a highly toxic element. The authority has taken proper steps in disposing the waste. (author)

  18. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  19. Effect of sludge solids to mono-sodium titanate (MST) ratio on MST-treated sludge

    International Nuclear Information System (INIS)

    Saito, H.H.

    1999-01-01

    The Salt Disposition Systems Engineering Team has selected two cesium removal technologies for further development to replace the In-Tank Precipitation process: small tank tetraphenylborate (TPB) precipitation and crystalline silicotitanate (CST) ion exchange. In the CST ion exchange process, incoming salt solution from storage tanks containing entrained sludge solids is pretreated with monosodium titanate (MST) to adsorb strontium and plutonium. The resulting slurry is filtered using a cross-flow filter, with the permeate sent forward to CST ion exchange columns for cesium removal prior to conversion into Class A grout at the Saltstone Facility. The MST and sludge solids are to be sent for vitrification at the Defense Waste Processing Facility (DWPF). The High Level Waste Division (HLWD) requested that the Waste Processing Technology Section (WPTS) study varying the insoluble sludge solids to MST ratio to determine the relative impact of sludge and MST on filter performance. The purpose of this study was not for an exhaustive comprehensive search for an optimized insoluble sludge solids to monosodium titanate (MST) ratio, but as a scoping study to identify any effects of having an excess of either material. This document reports the results obtained

  20. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    Science.gov (United States)

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Wastewater sludge - the challenges. What are the potentials of utilising the resources in sludge?

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Helmut

    2003-07-01

    The actual best practice of urban water management has developed during the last 200 years and consists of: safe and reliable drinking water supply, sewerage to prevent hygienic problems and flooding in the settlements, mechanical -biological waste water treatment for receiving water protection. The hygienic and environmental goals of the urban water system have to be attained with a minimum of costs. Most of the drinking water supplied is used for the transport of pollution originating from human metabolism, washing and cleaning. Waste water contains all the substances which enter human metabolism as food, beverages, pharmaceuticals, a great variety of household chemicals and the substances discharged from trade and industry to the sewer system. Rain water is already contaminated by air pollution when it reaches the soil or other surfaces. Whatever material the rainwater gets into contact can be found in the waste water. As a consequence the composition of the waste water is a mirror of our civilisation and of human and urban metabolism. Waste water treatment results in two products which are closely related in their chemical composition: (1) treated waste water to be discharged to the receiving water, (2) wastewater sludge to be treated and disposed or (re)used without creating new (environmental) problems. All the compounds entering the waste water which are not completely degraded can be found in both products. The transfer coefficients between water and sludge differ widely and depend on physical and chemical equilibriums. The potentially hazardous compounds in the effluent and in the sludge belong to these compounds. Source control therefore is necessary for water protection and at the same time for low concentrations of potentially hazardous compounds in the sludge. It is also clear that improved biological treatment efficiency (longer sludge age) also results in lower loads of organic pollutants in the sludge, while physical-chemical treatment steps result

  2. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  3. Stabilization/solidification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Panagiota; Katsioti, Margarita; Tsakiridis, Petros; Katsiri, Alexandra

    2003-07-01

    The main objective of this work is to investigate a viable alternative for the final disposal of sewage sludge from urban wastewater treatment plants by its use as an additive in developing new construction materials. For this purpose, several mixtures of sludge- cement and sludge-cement and jarosite/alunite precipitate were prepared. Jarosite/alunite precipitate is a waste product of a new hydrometallurgical process. Two kinds of sludge were used: primary sludge from Psyttalia Wastewater Treatment Plant, which receives a considerable amount of industrial waste, and biological sludge from Metamorphosi Wastewater Treatment Plant. Various percentages of these sludges were stabilized/solidified with Portland cement and Portland cement with jarosite/alunite. The specimens were tested by determination of compressive strength according to the methods described by European Standard EN 196. X-Ray Diffraction (XRD) analysis as well as Thermogravimetry-Differential Thermal Analysis (TG-DTA) were used to determine the hydration products in 28 days. Furthermore, Toxicity Characteristic Leaching Procedure test for heavy metals (TCLP), were carried out in order to investigate the environmental compatibility of these new materials. (author)

  4. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation.

    Science.gov (United States)

    Xie, Fengchun; Li, Haiying; Ma, Yang; Li, Chuncheng; Cai, Tingting; Huang, Zhiyuan; Yuan, Gaoqing

    2009-10-15

    This paper provides a practical technique that realized industrial scale copper and iron separation from printed circuit board (PCB) waste sludge by ultrasonically assisted acid leaching in a low cost, low energy consumption and zero discharge of wastes manner. The separation efficiencies of copper and iron from acid leaching with assistance of ultrasound were compared with the one without assistance of ultrasound and the effects of the leaching procedure, pH value, and ultrasonic strength have been investigated in the paper. With the appropriate leaching procedure, a final pH of 3.0, an ultrasonic generator power of 160 W (in 1l tank), leaching time of 60 min, leaching efficiencies of copper and iron had reached 97.83% and 1.23%, respectively. Therefore the separation of copper and iron in PCB waste sludge was virtually achieved. The lab results had been successfully applied to the industrial scaled applications in a heavy metal recovery plant in city of Huizhou, China for more than two years. It has great potentials to be used in even the broad metal recovery practices.

  5. Reuse of waste beer yeast sludge for biosorptive decolorization of reactive blue 49 from aqueous solution.

    Science.gov (United States)

    Wang, Baoe; Guo, Xiu

    2011-06-01

    Reactive blue 49 was removed from aqueous solution by biosorption using powder waste sludge composed of Saccharomyces cerevisiae from the beer-brewing industry. The effect of initial pH, temperature and the biosorption thermodynamics, equilibrium, kinetics was investigated in this study. It was found that the biosorption capacity was at maximum at initial pH 3, that the effect of temperature on biosorption of reactive blue 49 was only slight in relation to the large biosorption capacity (25°C, 361 mg g(-1)) according as the biosorption capacity decreased only 43 mg g(-1) at the temperature increased from 25 to 50°C. The biosorption was spontaneous, exothermic in nature and the dye molecules movements decreased slightly in random at the solid/liquid interface during the biosorption of dye on biosorbents. The biosorption equilibrium data could be described by Freundich isotherm model. The biosorption rates were found to be consistent with a pseudo-second-order kinetics model. The functional group interaction analysis between waste beer yeast sludge and reactive blue 49 by the aid of Fourier transform infrared (abbr. FTIR) spectroscopy indicated that amino components involved in protein participated in the biosorption process, which may be achieved by the mutual electrostatic adsorption process between the positively charged amino groups in waste beer yeast sludge with negatively charged sulfonic groups in reactive blue 49.

  6. Hazardous waste management in pipeline terminal: a multi-pronged approach for safe disposal of tank bottom sludge

    Energy Technology Data Exchange (ETDEWEB)

    Ammanna, John [Indian Oil Corporation Limited (IOCL), Mumbai (India)

    2009-12-19

    Indian Oil Corporation Ltd., Pipeline Division owns and operates the 1850 Km long Salaya-Mathura Crude Oil Pipeline (SMPL) with installed capacity of 21 MMTPA. Almost 25 types of crude [90% imported and 10% indigenous] are received into 13 on-shore tanks at Vadinar (the Mother Station of SMPL) through 2 Nos. SPM's anchored in the Arabian Sea and located on the west coast of India in the Gulf of Kutch. Larger quantities of tank bottom sludge that gets generated in the terminal during tank M and I pose serious environmental hazards, as procedures for handling, treatment and disposal of hazardous waste are not well established. With increasingly stringent Environmental norms being enforced by Statutory / Regulatory Authorities, storage of hazardous solid waste in lagoons and its disposal through designated approved agencies within the specified time frame, becomes extremely difficult. This paper seeks to address this issue by putting forth an innovative approach to hazardous waste management in pipeline terminals having large crude oil tank farms that has been adopted at Indian Oil Corporation's Vadinar terminal of SMPL where a multi-pronged approach for safe disposal of tank bottom sludge has been successfully implemented. The terminal has since become a 'Zero sludge location'. (author)

  7. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  8. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  9. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology.

    Science.gov (United States)

    Hong, Chen; Haiyun, Wu

    2010-07-01

    Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Preparation of protactinium measurement source by electroplating method

    International Nuclear Information System (INIS)

    Li Zongwei; Yang Weifan; Fang Keming; Yuan Shuanggui; Guo Junsheng; Pan Qiangyan

    1998-01-01

    An electroplating method for the preparation of Pa sources is described, and the main factors (such as pH value of solution, electroplating time and current density) influencing the electroplating of Pa are tested and discussed with 233 Pa as a tracer. A thin and uniform electroplating Pa-Layer of 1 mg/cm 2 thick on thin stainless steel disk was obtained. The Pa source was measured by a HPGe detector to determine the chemical efficiency

  11. A new approach to control a deflection of an electroplated microstructure: dual current electroplating methods

    International Nuclear Information System (INIS)

    Yang, Hyun-Ho; Seo, Min-Ho; Han, Chang-Hoon; Yoon, Jun-Bo

    2013-01-01

    We propose and demonstrate a simple and novel method to control the deflection in a suspended microstructure by using a dual current electroplating (DuCE) method. The key concept of this method is to divide the structure into two layers—a bottom layer and a top layer—and then apply respective current densities in electroplating to those two layers while all other conditions are kept the same. In addition to a flat structure, the direction of structure bending is freely controlled by virtue of the DuCE method. Cantilever Ni beams with a length of 400 µm, which were electroplated by the conventional single current electroplating method, bent downward with a deflection of 3.4 µm. On the contrary, by the DuCE method, cantilever beams with a length of 400 µm showed an almost flat structure as desired. (The current densities of the bottom layer, the top layer, and the ratio of the two current densities, are 0.15, 1.24 A dm −2 , and 8.3, respectively.) Consequently, a nickel electroplated spiral structure with a length of 8600 µm was suspended flat with an end deflection of less than 0.7 µm (the ratio between the deflection and length is 0.007%). This work therefore represents the unprecedented ultra-long suspended microstructure with submicrometer deflection. (paper)

  12. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    Science.gov (United States)

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    Science.gov (United States)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  14. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  15. Impact of urban waste water treatment on sludge utilization and disposal with special emphasis on thermal treatment

    International Nuclear Information System (INIS)

    Gammeltoft, P.

    1993-01-01

    The acceptance of the European Communities Directive 9/271/CEE concerning urban waste water treatment by all the EC Member States will result in a sewage sludge production increase of 2 to 3 times the actual amounts (for the year 2000 the forecast is about 30 million tonnes per year). All the traditional sewage sludge treatment methods (agricultural, disposal, compost, thermal treatment) entail costs which are always increasing because of the stricter requirements; in addition EC policy is oriented towards the reduction of the quantity of sludge production. In some situations, drying and subseque incineration may thus be the only practicable method of disposal, particularly, in very large urban agglomerations

  16. In-plant testing of membranes to treat electroplating wastewater

    Science.gov (United States)

    Shah, D. B.; Talu, Orhan

    1995-01-01

    This is the final report submitted for the work performed under the NASA Cooperative Agreement NCC3-301 for the project entitled 'In-Plant Testing of Membranes To Treat Electroplating Waste water'. The main objective of the research project was to determine if the crosslinked polyacrylic acid salt films developed by NASA scientists could be used for heavy metal removal from the wastewater generated by the metals-finishing or electroplating industry. A variety of tasks identified in the original proposal were completed. These included: (1) analysis of our industrial partner Aetna Plating's zinc electroplating process and its wastewater treatment needs for zinc removal; (2) design and construction of a laboratory-scale unit to continuously supply and remove the ion exchange films from the zinc wastewater; (3) performance of a series of runs on such a unit to determine its operating characteristics; and (4) design of a prototype unit for use at the industrial site. In addition, there were a number of tasks that had not been identified in the original proposal but were later judged to be necessary for the successful completion of the project. These were: (1) batch equilibrium and kinetic experiments with analysis of the experimental results to accurately determine the equilibrium and kinetic parameters for the ion exchange films; (2 ) simulation studies for proper design of the prototype unit; and (3) preliminary runs to exchange the films from H form to Calcium form.

  17. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  18. The Treatment of Low Level Radioactive Liquid Waste Containing Detergent by Biological Activated Sludge Process

    International Nuclear Information System (INIS)

    Zainus Salimin

    2002-01-01

    The treatment of low level radioactive liquid waste containing persil detergent from laundry operation of contaminated clothes by activated sludge process has been done, for alternative process replacing the existing treatment by evaporation. The detergent concentration in water solution from laundry operation is 14.96 g/l. After rinsing operation of clothes and mixing of laundry water solution with another liquid waste, the waste water solution contains about ≤ 1.496 g/l of detergent and 10 -3 Ci/m 3 of Cs-137 activity. The simulation waste having equivalent activity of Cs-137 10 -3 Ci/m 3 , detergent content (X) 1.496, 0.748, 0.374, 0.187, 0.1496 and 0.094 g/l on BOD value respectively 186, 115, 71, 48, 19, and 16 ppm was processed by activated sludge in reactor of 18.6 l capacity on ambient temperature. It is used Super Growth Bacteria (SGB) 102 and SGB 104, nitrogen and phosphor nutrition, and aeration. The result show that bacteria of SGB 102 and SGB 104 were able to degrade the persil detergent for attaining standard quality of water release category B in which BOD values 6 ppm. It was need 30 hours for X ≤ 0.187 g/l, 50 hours for 0.187 < X ≤ 0.374 g/l, 75 hours for 0.374 < X ≤ 0.748, and 100 hours for 0.748 < X ≤ 1.496 g/l. On the initial period the bacteria of SGB 104 interact most quickly to degrade the detergent comparing SGB 102. Biochemical oxidation process decontaminate the solution on the decontamination factor of 350, Cs-137 be concentrate in sludge by complexing with the bacteria wall until the activity of solution be become very low. (author)

  19. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    Directory of Open Access Journals (Sweden)

    Zubayeda Zahan

    2016-01-01

    Full Text Available The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW with sewage sludge (SS, that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284±9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS.

  20. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  1. Revegetation of flue gas desulfurization sludge pond disposal sites

    International Nuclear Information System (INIS)

    Artiola, J.F.

    1994-12-01

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO 4 ) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques

  2. Washing and caustic leaching of Hanford tank sludges

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Rapko, B.M.; Colton, N.G.

    1994-01-01

    Methods are being developed to treat and dispose of large volumes of radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site. The wastes will be partitioned into high-level waste (HLW) and low-level waste (LLW) fractions. The HLW will be vitrified into borosilicate glass and disposed of in a geologic repository, while the LLW will be immobilized in a glass matrix and will likely be disposed of by shallow burial at the Hanford Site. The wastes must be pretreated to reduce the volume of the HLW fraction, so that vitrification and disposal costs can be minimized. The current baseline process for pretreating Hanford tank sludges is to leach the sludge under caustic conditions, then remove the solubilized components of the sludge by water washing. Tests of this method have been performed with samples taken from several different tanks at Hanford. The results of these tests are presented in terms of the composition of the sludge before and after leaching. X-ray diffraction and scanning electron microscopy coupled with electron dispersive x-ray techniques have been used to identify the phases in the untreated and treated sludges

  3. Aquatic worm reactor for improved sludge processing and resource recovery

    NARCIS (Netherlands)

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste

  4. Assessment of the effectiveness of orange (Citrus reticulata) peel in the recovery of nickel from electroplating wastewater.

    Science.gov (United States)

    Hussein, Rim A

    2014-12-01

    Wastewater discharged from electroplating industry contains different concentrations of heavy metals, which when released into the environment pose a health hazard to human beings. The aim of this study was to assess the effectiveness of orange peel as an adsorbent in the recovery of Nickel (Ni) from electroplating wastewater. The effectiveness of orange peel as an adsorbent was assessed by determining the optimum conditions of adsorption (adsorbent dose, pH, and contact time), calculating the recovery percentage, and characterizing the orange peel sludge resulting from adsorption/desorption process as being hazardous or not. Under optimum conditions for adsorption, orange peel was found to be an effective adsorbent of Ni from electroplating wastewater. It achieved 59.28% removal of the metal from a solution containing 528 mg/l, at a dose of 60 g/l, at pH 7, and for 1-h contact time. The nickel uptake capacity of orange peel was calculated to be 5.2 mg/g. Using HCl for desorption of adsorbed Ni, a recovery of 44.46% of Ni discharged in the wastewater could be reached. Orange peel resulting from the adsorption/desorption process was characterized as being nonhazardous. Orange peel was found to be effective in the recovery of nearly half of the amount of Ni discharged in electroplating wastewater. Further studies are required to determine (a) the impact of the recovered NiCl2 solution on the quality of the plated product, (b) the effect of activation of orange peel on the adsorption process, and (c) the number of cycles during which orange peel can be reused as an effective adsorbent.

  5. PENGARUH JENIS ANODA PADA PROSES PEMULIHAN LOGAM NIKEL DARI TIRUAN AIR LIMBAH ELECTROPLATING MENGGUNAKAN SEL ELEKTRODEPOSISI

    Directory of Open Access Journals (Sweden)

    Djaenudin Dhaenudin

    2013-11-01

    Full Text Available EFFECT OF ANODES TYPES ON NICKEL RECOVERY FROM SYNTHETIC ELECTROPLATING WASTE ELECTRODEPOSITION CELLS. A study concerning the recovery of nickel from electroplating wastewater artificial solution. The study was conducted with a batch system using electrodeposition cell consisting of two spaces separated by water hyacinth leaf, copper cathode plate, H2SO4 solution anolyte, catholyte solution of NiSO4 plus NaCl supporting electrolyte and anode varied. Electrodeposition performed at the direct current of 5V power for 4 hours each run. The research objective was to obtain the best anode in nickel electrodeposition process of electroplating waste artificial solution. Graphite, stainless steel type AISI 316 and the lead were used as a variation of the anode. Concentration of nickel in the catholyte at baseline 2200 mg/L. The results showed that the anode was a graphite anode with best value decreased by 72.44% nickel concentration, deposition of nickel on the cathode of 0.188 grams and specific energy values ​​of 6.1625 kWh/kg.nickel.   Telah dilakukan penelitian tentang pemulihan logam nikel dari larutan tiruan air limbah electroplating. Penelitian dilakukan dengan sistem batch menggunakan sel elektrodeposisi yang terdiri dari dua ruang yang dipisahkan dengan daun eceng gondok, katoda pelat tembaga, anolit larutan H2SO4, katolit larutan NiSO4 ditambah elektrolit pendukung larutan NaCl dan anoda divariasikan. Elektrodeposisi dilakukan pada listrik searah sebesar 5V selama 4 jam setiap tempuhan. Tujuan penelitian adalah memperoleh anoda terbaik pada proses elektrodeposisi nikel dari larutan tiruan limbah electroplating. Grafit, Stainless Steel  tipe AISI 316 dan timbal digunakan sebagai variasi jenis anoda. Konsentrasi nikel dalam katolit pada awal penelitian 2200 mg/L. Hasil penelitian menunjukkan bahwa anoda grafit merupakan anoda yang paling baik dengan nilai penurunan konsentrasi nikel sebesar 72,44%, deposisi nikel di katoda sebesar 0

  6. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  7. Revegetation of mined land using waste water sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sopper, W E; Kerr, N

    1980-01-01

    The benefits of using sludge to reclaim land that has been used for strip mining is explained. Pennsylvania State University developed demonstration plots and used various types of sludges to illustrate this. One application of sludge is sufficient to supply plant nutrients for 3-5 years. After sludge application and incorporation, the site was broadcast seeded with grasses and legumes. Other trials and their results are noted. All show no detrimental effects on vegetation, the soil or groundwater quality due to sludge application.

  8. Waste acceptance and waste loading for vitrified Oak Ridge tank waste

    International Nuclear Information System (INIS)

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC''s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC

  9. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis

    DEFF Research Database (Denmark)

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng

    2016-01-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased...

  10. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production

    DEFF Research Database (Denmark)

    Liu, Wenzong; Cai, Weiwei; Guo, Zechong

    2016-01-01

    Methane production rate (MPR) in waste activated sludge (WAS) digestion processes is typically limitedby the initial steps of complex organic matter degradation, leading to a limited MPR due to sludgefermentation speed of solid particles. In this study, a novel microbial electrolysis AD reactor (ME...

  11. Treatment and disposal of refinery sludges: Indian scenario.

    Science.gov (United States)

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented.

  12. Fermentative Hydrogen Production from Combination of Tofu processing and anaerobic digester sludge wastes using a microbial consortium

    International Nuclear Information System (INIS)

    You-Kwan, O.; Mi-Sun, K.

    2009-01-01

    The combination of Tofu manufacturing waste and anaerobic digester sludge was studied for fermentative H 2 production in batch and continuous modes using a mixed culture originated from sewage. In order to increase the solubilization of organic substrates from Tofu waste, various pretreatments including heat-treatment, acid/alkali treatment, and sonication were examined alone or in combination with others. (Author)

  13. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie

    2014-05-01

    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  15. Electroplating of Uranium -Foil Target With Ni And Zn

    International Nuclear Information System (INIS)

    Husna AI Hasa, Muhammad; Suripto, Asmedi

    2001-01-01

    The uranium foil target, which was produced by rolling, was subjected to preparation treatment prior to the electroplating. The electroplating produced certain plate thickness on the foil surface. The electroplating was applied to the uranium foil of 71 mm long and 46 mm wide using plating materials of Ni and Zn. The plating is intended to serve as barrier for fission fragment recoils, which are produced during irradiation. The plate thickness produced by the electroplating was measured by a micrometer and an analytical balance. The electroplating with Ni produced plate-thickness of 8,9 mm when measured by the micrometer, or 11.4 mm when measured by the analytical balance, while the Zn electroplating produced greater plate-thickness, i.e. 16.2 mm by the micrometer measurement or 13.7 mm by the analytical balance measurement. The current efficiency of the electroplating was 62 % for Ni and 80 % for Zn. It was observed that the optimum condition for the electroplating depended on the plating materials, plating time, and current density. The plate-thickness produced under the optimum condition was 7-15 mm at 15 mA/cm 2 for Ni and ]0 mA/cm 2 for Zn with plating time of 60 minutes

  16. [Hexavalent chromium pollution and exposure level in electroplating workplace].

    Science.gov (United States)

    Zhang, Xu-hui; Zhang, Xuan; Yang, Zhang-ping; Jiang, Cai-xia; Ren, Xiao-bin; Wang, Qiang; Zhu, Yi-min

    2012-08-01

    To investigate the pollution of hexavalent chromium in the electroplating workplace and screen the biomarkers of chromium exposure. Field occupational health investigation was conducted in 25 electroplating workplaces. 157 electroplating workers and 93 healthy unexposed controls were recruited. The epidemiological information was collected with face to face interview. Chromium in erythrocytes was determined by graphite furnace atomic absorption spectrophotometer. The median of short-term exposure concentration of chromium in the air at electroplating workplace was 0.06 mg/m(3) (median) and ranging from 0.01 (detect limit) to 0.53 mg/m(3)). The median concentration of Cr (VI) in erythrocytes in electroplating workers was 4.41 (2.50 ∼ 5.29) µg/L, which was significantly higher than that in control subjects [1.54 (0.61 ∼ 2.98) µg/L, P electroplating workers and control subjects, except for the subjects of age less than 30 years old (P = 0.11). There was hexavalent chromium pollution in electroplating workplace. Occupational hazards prevention measures should be taken to control the chromium pollution hazards.

  17. Fiscal year 1994 1/25-scale sludge mobilization testing

    International Nuclear Information System (INIS)

    Powell, M.R.; Gates, C.M.; Hymas, C.R.; Sprecher, M.A.; Morter, N.J.

    1995-07-01

    There are 28 one-million-gallon double-shell radioactive waste tanks on the Hanford Reservation in southeastern Washington State. The waste in these tanks was generated during processing of nuclear materials. Solids-laden slurries were placed into many of the tanks. Over time, the waste solids have settled to form a layer of sludge in the bottom of these tanks. The sludge layer thickness varies from tank to tank with some having only a few centimeters or no sludge up to some tanks which have about 4.5 m (15 ft) of sludge. It is planned that the waste will be removed from these tanks as part of the overall Hanford site cleanup efforts. Jet mixer pumps are to be placed into the tanks to stir up (mobilize) the sludge and form a uniform slurry suitable for pumping to downstream processing facilities. These mixer pumps use powerful jets of tank fluid directed horizontally out of two, diametrically opposed nozzles near the tank bottom. These fluid jets impinge upon the sludge and stir it up. The amount of sludge mobilized by the mixer pump jets depends not only on the jet properties, but also on the ability of the sludge to resist the jets. It is the goal of the work described in this document to develop the ability to predict how much sludge will be mobilized by the mixer pumps based on the size and velocity of the mixer pump jets and the physical and chemical properties of the tank sludge

  18. Safety evaluation of the ESP sludge washing baselines runs. Revision 2

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1993-01-01

    Purpose is to provide the technical basis for evaluation of unreviewed safety question for the Extended Sludge Processing (ESP) Sludge Washing Baseline Runs, which are necessary to resolve technical questions associated with process control (sludge suspension, sludge settling, heat transfer, temperature control). The sludge is currently stored in below-ground tanks and will be prepared for processing at the Defense Waste Processing Facility as part of the Integrated Waste Removal Program for Savannah River Site

  19. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment.

    Science.gov (United States)

    Aylin Alagöz, B; Yenigün, Orhan; Erdinçler, Ayşen

    2018-01-01

    This study investigates the effect of ultrasonication and microwave sludge disintegration/pre-treatment techniques on the anaerobic co-digestion efficiency of wastewater sludges with olive and grape pomaces. The effects of both co-digestion and sludge pre-treatment techniques were evaluated in terms of the organic removal efficiency and the biogas production. The "co-digestion" of wastewater sludge with both types of pomaces was revealed to be a much more efficient way for the biogas production compared to the single (mono) sludge digestion. The ultrasonication and microwave pre-treatments applied to the sludge samples caused to a further increase in biogas and methane yields. Based on applied specific energies, ultrasonication pre-treatment was found much more effective than microwave irradiation. The specific energy applied in microwave pre-treatment (87,000kj/kgTS) was almost 9 times higher than that of used in ultrasonication (10,000kj/kgTS), resulting only 10-15% increases in biogas/methane yield. Co-digestion of winery and olive industry residues with pre-treated wastewater sludges appears to be a suitable technique for waste management and energy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Impurity Effects in Electroplated-Copper Solder Joints

    Directory of Open Access Journals (Sweden)

    Hsuan Lee

    2018-05-01

    Full Text Available Copper (Cu electroplating is a mature technology, and has been extensively applied in microelectronic industry. With the development of advanced microelectronic packaging, Cu electroplating encounters new challenges for atomic deposition on a non-planar substrate and to deliver good throwing power and uniform deposit properties in a high-aspect-ratio trench. The use of organic additives plays an important role in modulating the atomic deposition to achieve successful metallic coverage and filling, which strongly relies on the adsorptive and chemical interactions among additives on the surface of growing film. However, the adsorptive characteristic of organic additives inevitably results in an incorporation of additive-derived impurities in the electroplated Cu film. The incorporation of high-level impurities originating from the use of polyethylene glycol (PEG and chlorine ions significantly affects the microstructural evolution of the electroplated Cu film, and the electroplated-Cu solder joints, leading to the formation of undesired voids at the joint interface. However, the addition of bis(3-sulfopropyl disulfide (SPS with a critical concentration suppresses the impurity incorporation and the void formation. In this article, relevant studies were reviewed, and the focus was placed on the effects of additive formula and plating parameters on the impurity incorporation in the electroplated Cu film, and the void formation in the solder joints.

  1. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria.

    Science.gov (United States)

    Guo, Liang; Lu, Mingmin; Li, Qianqian; Zhang, Jiawen; Zong, Yan; She, Zonglian

    2014-11-01

    The hydrolysis effect of waste sludge after multi-enzyme and thermophilic bacteria pretreatments is investigated using excitation-emission matrix (EEM) with fluorescence regional integration (FRI) in this study. The compositional characteristics of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed to evaluate the sludge disintegration. The EPS and cell wall in sludge were disrupted after hydrolysis which led to carbohydrate, protein and soluble chemical oxygen demand (SCOD) of DOM increasing in sludge supernatant. The bio-degradability level in the extracted fractions of EPS and DOM depending on the fluorescence zones was found after hydrolysis. The highest proportion of percent fluorescence response (Pi,n) in EPS and DOM was soluble microbial by-product and humic acid-like organics. A significant increase of humic acid-like organics in DOM after thermophilic bacteria hydrolysis was obtained. The assessment of hydrolysis using EEM coupled with FRI provided a new insight toward the bio-utilization process of waste sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    Science.gov (United States)

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Assessment of sludges and tank bottoms treatment processes

    International Nuclear Information System (INIS)

    Bhutto, A.W.; Bazmi, A.A.

    2005-01-01

    The petroleum refining industries generate considerable amounts of sludge and tank bottoms as waste. Petroleum refinery receives crude oil containing emulsified water and solids. As the crude oil storage tanks are repeatedly filled and emptied, the water and solids settle towards the bottom as sludge. For tanks that have been in service for several years, the sludge accumulation becomes several feet deep, results in a loss of ullage in refinery crude storage tanks. The accumulation of crude storage tank bottoms is a serious problem experienced by local refineries. The refinery sludge waste is categorized as hazardous waste, which is at present buried in the tankform ground. Since the no hazardous material land filling option available, the disposal of these hazardous materials has become a major problem because of the ISO-14000 certification requirements and expectation of stakeholder. To maximize the waste oil recovery from sludge and tank bottoms and to minimize the volume of the hazardous waste, a number of waste recovery and treatment processes are available. The process designs and unit operations of each process are different and each has its own merits, in terms of the technical complexity, operation friendliness, and costs and economics. A study on each of these technologies and the subsequent tide-up to the existing unit operations is conducted, and the associated technical comparisons are made. (author)

  4. Vitrification as an alternative to landfilling of tannery sewage sludge

    International Nuclear Information System (INIS)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-01-01

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  5. Vitrification as an alternative to landfilling of tannery sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Celary, Piotr, E-mail: pcelary@is.pcz.czest.pl; Sobik-Szołtysek, Jolanta, E-mail: jszoltysek@is.pcz.czest.pl

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  6. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi

    2018-03-01

    Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synergistic pretreatment of waste activated sludge using CaO_2 in combination with microwave irradiation to enhance methane production during anaerobic digestion

    International Nuclear Information System (INIS)

    Wang, Jie; Li, Yongmei

    2016-01-01

    Highlights: • CaO_2/MW pretreatment synergistically enhanced WAS solubilization and CH_4 production. • MW irradiation facilitated more "·OH generation from CaO_2. • The optimal pretreatment condition for methane production was determined. • The growths of both hydrogenotrophic and acetate-utilizing methanogens were promoted. • The dewaterability of WAS was improved considerably by CaO_2/MW treatment. - Abstract: To investigate the effects of combined calcium peroxide (CaO_2) and microwave pretreatment on anaerobic digestion of waste activated sludge, lab-scale experiments were conducted to measure the solubilization, biodegradation, and dewaterability of the waste activated sludge. Additionally, the synergistic effects between CaO_2 and microwave were studied, and the microbial activity and methanogenic archaea community structure were analyzed. Combined pretreatment considerably facilitated the solubilization and subsequent anaerobic digestion of the waste activated sludge. The optimal pretreatment condition was CaO_2 (0.1 g/gVSS)/microwave (480 W, 2 min) for methane production during the subsequent anaerobic digestion process. Under this condition, 80.2% higher CH_4 accumulation yield was achieved after 16 d of anaerobic digestion when compared with the control. The synergistic effects of CaO_2/microwave pretreatment resulted from the different mechanisms of CaO_2 and microwave treatments. Further, microwave irradiation increased "·OH generation from CaO_2 and significantly alleviated the inhibitory effect of CaO_2 on methanogens. The activities of hydrolytic enzymes and acid-forming enzymes in the waste activated sludge were improved after CaO_2 (0.1 g/gVSS)/microwave (480 W, 2 min) pretreatment. Methanogenesis enzyme activity was also higher after CaO_2 treatment (0.1 g/gVSS)/microwave (480 W, 2 min) following a lag period. Illumina MiSeq sequencing analysis indicated that acetate-utilizing methanogen (Methanosaeta sp.) and H_2/CO_2-utilizing

  8. The determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection. Part 2

    International Nuclear Information System (INIS)

    Parish, K.J.; Applegate, D.V.; Postlethwait, P.D.; Boparai, A.S.; Reedy, G.T.

    1994-12-01

    Before disposal, radioactive sludge (Type IV) from Rocky Flats Plant (RFP) must be evaluated for polychlorinated biphenyl (PCB) content. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E reg-sign and Oil Dri reg-sign to form a grease or paste-like material. For laboratory testing, a nonradioactive simulated Type 17V RFP sludge was prepared at Argonne National Laboratory-East (ANL-E). This sludge has a composition similar to that expected from field samples. In an earlier effort, a simplified method was developed for extraction, cleanup of extract, and determination of PCBs in samples of simulated sludge spiked with Aroclors 1254 and 1260. The simplified method has now been used to determine the presence and quantities of other Aroclors in the simulated sludge, namely, Aroclors 10 1 6, 1221, 1232, 1242, and 1248. The accuracy and precision of the data for these Aroclors were found to be similar to the data for sludges spiked with Aroclors 1254 and 1260. Since actual sludges may vary in composition, the method was also verified by analyzing another source of Type IV simulated sludge, prepared by Argonne National Laboratory-West (ANL-W)

  9. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  10. IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES

    International Nuclear Information System (INIS)

    Eibling, R; Michael Stone, M

    2006-01-01

    The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress (∼10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report focuses

  11. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  12. Spectroscopic characterization of digestates obtained from sludge mixed to increasing amounts of fruit and vegetable wastes

    Science.gov (United States)

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Ricci, Anna; Gigliotti, Giovanni

    2015-04-01

    Anaerobic digestion (AD) represents an efficient waste-treatment technology during which microorganisms break down biodegradable material in absence of oxygen yielding a biogas containing methane. The aim of this work was to investigate the transformations occurring in the organic matter during the co-digestion of waste mixed sludge (WMS) with an increasing amount of fruit and vegetable wastes (FVW) in a pilot scale apparatus reproducing a full-scale digester in an existing wastewater treatment plant. Samples comprised: sludge, FVW, sludge mixed with 10-20-30-40% FVW. Ingestates and digestates were analyzed by means of emission fluorescence spectroscopy and FTIR associated to Fourier self deconvolution (FSD) of spectra. With increasing the amount of FVW from 10% to 20% at which percentage biogas production reached the maximum value, FTIR spectra and FSD traces of digestates exhibited a decrease of intensity of peaks assigned to polysaccharides and aliphatics and an increase of peak assigned to aromatics as a result of the biodegradation of rapidly degradable materials and concentration of aromatic recalcitrant compounds. Digestates with 30 and 40% FVW exhibited a relative increase of intensity of peaks assigned to aliphatics likely as a result of the increasing amount of rapidly degradable materials and the consequent reduction of the hydraulic retention time. This may cause inhibition of methanogenesis and accumulation of volatile fatty acids. The highest emission fluorescence intensity was observed for the digestate with 20% FVW confirming the concentration of aromatic recalcitrant compounds in the substrate obtained at the highest biogas production.

  13. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    lysis. ECP contents of 41 to 92 mg · g−1 volatile suspended solids of granules were found depending on the type of granular sludge examined. The content of polysaccharides, protein and lipids in the extracted ECP was quantified. Furthermore, the different methyl esters of the lipids were determined...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  14. Ash and sludge covering of mine waste - Final report. Benefits and/or risks using ash and sludge for covering of weathered mine waste; Aska och roetslam som taet- och taeckskikt foer vittrat gruvavfall - Slutrapport. Foerdelar och/eller risker med att anvaenda aska och slam som taet- och taeckskikt foer vittrat gruvavfall

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias; Karlsson, Ulrika [Oerebro Univ. (Sweden). Man-Technology-Environment Research Centre

    2006-02-15

    One of the main sources for metal pollution in Sweden is mine waste. One way to decrease the leaching of metals from mine waste areas are covering which decreases the volume of acid drainage. There is a shortage of appropriate materials to use for covering and excavation of till and clay from the environment might cause damages on the landscape. Previous studies have demonstrated that sludge and ashes are suitable materials for covering of waste deposits. When covering mine waste with ash and sludge various positive effects would arise, since the production of drainage water decreases as well as the pH increases due to the high buffer capacity of the ash. In Ervalla outside Oerebro an area with mine waste (tailings) has been covered with ash and sludge. This area gives a unique possibility to study benefits and/or risks with the covering of mine waste with ash and sludge. Unfortunately, the covering was not, from the start, carried out in a way that made it possible to evaluate the data. For instance, data about the surface and groundwater quality prior to the covering is lacking. Sulphidic minerals are also very common in the area, giving rise to acidic groundwater from other parts of the area, which haven't been remediated. This report is a final report where all phases are presented (phase 1 and 2). Focus in phase 1 has been on characterization of the material that has been used for covering and initiation of a monitoring program. In phase 2 focus has been on evaluation of monitoring data and the pros and cons of the deposit regarding the environment. Preliminary findings indicate that that the covering increases the leaching of some metals whereas the leaching of some metals decreases. An increase was observed for pH, calcium, potassium, sodium, arsenic, barium, chromium and copper. A decrease in the concentration of iron, nickel, cobalt, lead and zinc was observed. Other benefits with the remediation is also discussed (increased plant growth and an area

  15. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA

    Science.gov (United States)

    Szabo, Z.; Jacobsen, E.; Kraemer, T.F.; Parsa, B.

    2008-01-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra (226Ra plus 228Ra) concentrations commonly exceed 0.185 Bq L-1) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg-1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg-1), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.

  16. Obtention of ceramic pigments with residue from electroplating; Obtencao de pigmentos ceramicos a partir de residuo de galvanoplastia

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A. [Servico Nacional de Aprendizagem Industrial (SENAI), Tijucas, SC (Brazil); Kniess, C.T. [Universidade Nove de Julho (UNINOVE), SP (Brazil); Aguiar, B.M. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Prates, P.B.; Milanez, K., E-mail: kniesscl@gmail.com [Universidade Federal de Santa Catarina (EMC/UFSC), SC (Brazil). Depto de Engenharia Mecanica

    2011-07-01

    The incorporation of industrial residues in industrial processes opens up new business opportunities and reduces the volume of extraction of raw materials, preserving natural resources, which are limited. An important residue is the mud from galvanic industry, consisting of alkali and transition metals. According to NBR 10004/2004, this residue can be classified as Class I (hazardous), depending on the concentration of metals present in the mud. This paper proposes a method for reusing the residue from electroplating in ceramic pigments. The characterization of residual plating was obtained by chemical analysis, mineralogical analysis and pH measurements. The electroplating waste was incorporated in different percentages on a standard pigment formula of industrial ceramic, consisting mainly of Zn, Fe and Cr. The obtained pigments were applied in ceramic glazes to colorimetric and visual analysis, which showed good results with the addition of up to 15% of industrial waste. (author)

  17. Electroplating eliminates gas leakage in brazed areas

    Science.gov (United States)

    Leigh, J. D.

    1966-01-01

    Electroplating method seals brazed or welded joints against gas leakage under high pressure. Any conventional electroplating process with many different metal anodes can be used, as well as the build up of layers of different metals to any required thickness.

  18. Review on innovative techniques in oil sludge bioremediation

    Science.gov (United States)

    Mahdi, Abdullah M. El; Aziz, Hamidi Abdul; Eqab, Eqab Sanoosi

    2017-10-01

    Petroleum hydrocarbon waste is produced in worldwide refineries in significant amount. In Libya, approximately 10,000 tons of oil sludge is generated in oil refineries (hydrocarbon waste mixtures) annually. Insufficient treatment of those wastes can threaten the human health and safety as well as our environment. One of the major challenges faced by petroleum refineries is the safe disposal of oil sludge generated during the cleaning and refining process stages of crude storage facilities. This paper reviews the hydrocarbon sludge characteristics and conventional methods for remediation of oil hydrocarbon from sludge. This study intensively focuses on earlier literature to describe the recently selected innovation technology in oily hydrocarbon sludge bioremediation process. Conventional characterization parameters or measurable factors can be gathered in chemical, physical, and biological parameters: (1) Chemical parameters are consequently necessary in the case of utilization of topsoil environment when they become relevant to the presence of nutrients and toxic compounds; (2) Physical parameters provide general data on sludge process and hand ability; (3) Biological parameters provide data on microbial activity and organic matter presence, which will be used to evaluate the safety of the facilities. The objective of this research is to promote the bioremediating oil sludge feasibility from Marsa El Hariga Terminal and Refinery (Tobruk).

  19. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1996-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively

  20. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, S.

    2009-01-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  1. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    Directory of Open Access Journals (Sweden)

    Neamat Jaafarzadeh Haghighi Fard

    2015-09-01

    Full Text Available Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio (C/N, moisture content and pH. The C/N ratio was maintained at 30 with weight:weight ratio of 1:1, 1:2, 1:3 (digested and dewatered sludge to green waste. Results: It was observed that vessel R3 produced higher quality of compost with final total nitrogen (1.28%, final total phosphorus (0.71%, final total organic carbon (TOC (25.78% and C/N (20.65% within the 23 days of composting. While vessel R1 produced higher final total nitrogen and total phosphorus with lower amount of total coliform indicating suitable quality of composting. Therefore, the results showed that the characteristics of dewatered sludge mixed with green waste proportion of green waste significantly influenced the compost quality and process dynamics. The results also showed that the quality of final products in all the conditions was in agreement with Global Organic Textile Standard (GOTS and World Health Organization (WHO guidelines. However, the moisture content ratios were lower than the mentioned guidelines. With regards to microbial quality, all three ratios were in agreement with US Environmental Protection Agency (EPA and Iranian guidelines. Conclusion: It is suggested that the final product of composting can be safely used in farmland and green space.

  2. Research of ceramic matrix for a safe immobilization of radioactive sludge waste

    Science.gov (United States)

    Dorofeeva, Ludmila; Orekhov, Dmitry

    2018-03-01

    The research and improvement of the existing method for radioactive waste hardening by fixation in a ceramic matrix was carried out. For the samples covered with the sodium silicate and tested after the storage on the air the speed of a radionuclides leaching was determined. The properties of a clay ceramics and the optimum conditions of sintering were defined. The experimental data about the influence of a temperature mode sintering, water quantities, sludge and additives in the samples on their mechanical durability and a water resistance were obtained. The comparative analysis of the conducted research is aimed at improvement of the existing method of the hardening radioactive waste by inclusion in a ceramic matrix and reveals the advantages of the received results over analogs.

  3. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    Science.gov (United States)

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  4. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction.

    Science.gov (United States)

    Svensson, Kine; Kjørlaug, Oda; Higgins, Matthew J; Linjordet, Roar; Horn, Svein J

    2018-04-01

    Post-anaerobic digestion (PAD) treatment technologies have been suggested for anaerobic digestion (AD) to improve process efficiency and assure hygenization of organic waste. Because AD reduces the amount of organic waste, PAD can be applied to a much smaller volume of waste compared to pre-digestion treatment, thereby improving efficiency. In this study, dewatered digestate cakes from two different AD plants were thermally hydrolyzed and dewatered, and the liquid fraction was recirculated to a semi-continuous AD reactor. The thermal hydrolysis was more efficient in relation to methane yields and extent of dewaterability for the cake from a plant treating waste activated sludge, than the cake from a plant treating source separated food waste (SSFW). Temperatures above 165 °C yielded the best results. Post-treatment improved volumetric methane yields by 7% and the COD-reduction increased from 68% to 74% in a mesophilic (37 °C) semi-continuous system despite lowering the solid retention time (from 17 to 14 days) compared to a conventional system with pre-treatment of feed substrates at 70 °C. Results from thermogravimetric analysis showed an expected increase in maximum TS content of dewatered digestate cake from 34% up to 46% for the SSFW digestate cake, and from 17% up to 43% in the sludge digestate cake, after the PAD thermal hydrolysis process (PAD-THP). The increased dewatering alone accounts for a reduction in wet mass of cake leaving the plant of 60% in the case of sludge digestate cake. Additionaly, the increased VS-reduction will contribute to further reduce the mass of wet cake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Aquatic worms eat sludge: Mass balances and processing of worm faeces

    International Nuclear Information System (INIS)

    Hendrickx, T.L.G.; Temmink, H.; Elissen, H.J.H.; Buisman, C.J.N.

    2010-01-01

    Reduction of the amount of waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus in a new reactor concept. In addition to reducing the amount of waste sludge, further processing of produced worm faeces and released nutrients should also be considered. This study gives the mass balances for sludge consumed by L. variegatus, showing the fate of the consumed organic material, nutrients and heavy metals associated with the sludge. A distinction is made between conversion into worm biomass, release as dissolved metabolites and what remains in the worm faeces. The results showed that 39% of the nitrogen and 12% of the phosphorus in the sludge digested by the worms are used in the formation of new worm biomass, which has potential for reuse. Experiments showed that settling of the worm faeces leads to a factor 2.5 higher solids concentration, compared to settling of waste sludge. This could lead to a 67% reduction of the volumetric load on thickening equipment. The worm reactor is expected to be most interesting for smaller WWTPs where a decrease on the volumetric load on sludge handling operations will have most impact.

  6. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  7. The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries

    Science.gov (United States)

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.

  8. Value-Added Products Derived from Waste Activated Sludge: A Biorefinery Perspective

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-04-01

    Full Text Available Substantial research has been carried out on sustainable waste activated sludge (WAS management in the last decade. In addition to the traditional approach to reduce its production volume, considering WAS as a feedstock to produce bio-products such as amino acids, proteins, short chain fatty acids, enzymes, bio-pesticides, bio-plastics, bio-flocculants and bio-surfactants represents a key component in the transformation of wastewater treatment plants into biorefineries. The quality of these bio-products is a key factor with respect to the feasibility of non-conventional WAS-based production processes. This review provides a critical assessment of the production process routes of a wide range of value-added products from WAS, their current limitations, and recommendations for future research to help promote more sustainable management of this under-utilised and ever-growing waste stream.

  9. Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery.

    Science.gov (United States)

    Guilayn, Felipe; Braak, Etienne; Piveteau, Simon; Daumer, Marie-Line

    2017-06-01

    Phosphorus (P) recovery in wastewater treatment plants (WWTP) as pure crystals such as struvite (MgNH 4 PO 4 .6H 2 O), potassium struvite (KMgPO 4 .6H 2 O) and calcium phosphates (e.g. Ca 3 (PO 4 ) 2 ) is an already feasible technique that permits the production of green and marketable fertilizers and the reduction of operational costs. Commercial crystallizers can recovery more than 90% of soluble P. However, most of the P in WWTP sludge is unavailable for the processes (not dissolved). P solubilization and separation are thus the limiting steps in P-crystallization. With an innovative two-step sequencing acidification strategy, the current study has aimed to improve biological P solubilization on waste-activated sludge (WAS) from a full-scale plant. In the first step (P-release), low charges of organic waste were used as co-substrates of WAS pre-fermentation, seeking to produce volatile fatty acids to feed the P-release by Polyphosphate-accumulating organisms, while keeping its optimal metabolic pH (6-7). In this phase, milk serum, WWTP grease, urban organic waste and collective restaurant waste were individually applied as co-substrates. In the second step (P-dissolution), pH 4 was aimed at as it allows the dissolution of the most common precipitated species of P. Biological acidification was performed by white sugar addition, as a carbohydrate-rich organic waste model, which was compared to chemical acidification by HCl (12M) addition. With short retention times (48-96 h) and without inoculum application, all experiences succeeded on P solubilization (37-55% of soluble P), principally when carbohydrate-rich co-substrates were applied. Concentrations from 270 to 450 mg [Formula: see text] were achieved. [Formula: see text].

  10. Sewage water-free electroplating: Block heating power plant as part of a waste disposal plant. Abwasserfreie Galvanik: Blockheizkraftwerk als Teil einer Entsorgungsanlage

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, R.

    1992-04-01

    The way leading to sewage water-free electroplating requires a lot of measures which have to be attuned to each other. At the end of every planning there comes the energy balance which, specifically for sewage water-free electroplating, is far from satisfactory. (orig.).

  11. Aquatic worms eat sludge: mass balances and processing of worm faeces

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2010-01-01

    Reduction of the amount of waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus in a new reactor concept. In addition to reducing the amount of waste sludge, further processing of produced worm faeces and released nutrients should also

  12. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

    1999-01-01

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites

  13. Use to titanium-treated zeolite for plutonium, strontium, and cesium removal from West Valley alkaline wastes and sludge wash wastes

    International Nuclear Information System (INIS)

    Bray, L.A.; Hara, F.T.

    1993-01-01

    Zeolite (IONSIV IE-96) treated with a titanium (Ti) solution will extract traces of plutonium (Pu), strontium (Sr), and cesium (Cs) found in the West Valley Nuclear Services Co., Inc. (WVNS) alkaline supernatant and alkaline sludge water washes. Small ion exchange columns containing Ti-treated zeolite have been successfully tested at WVNS and Pacific Northwest Laboratory (PNL) for the removal of Pu. Full-scale ion exchange processing of sludge wash solution is now being developed at WVNS for use in FY 1992. Commercial manufacturing options for the production of the Ti-treated zeolite were investigated. The Ti-treated zeolite may have application at Hanford and at other U.S. Department of Energy (DOE) sites for the removal of low-level concentrations of Cs, Sr, and Pu from alkaline waste streams

  14. Drilling of optical glass with electroplated diamond tools

    Science.gov (United States)

    Wang, A. J.; Luan, C. G.; Yu, A. B.

    2010-10-01

    K9 optical glass drilling experiments were carried out. Bright nickel electroplated diamond tools with small slots and under heat treatment in different temperature were fabricated. Scan electro microscope was applied to analyze the wear of electroplated diamond tool. The material removal rate and grinding ratio were calculated. Machining quality was observed. Bond coating hardness was measured. The experimental results show that coolant is needed for the drilling processes of optical glasses. Heat treatment temperature of diamond tool has influence on wearability of diamond tool and grinding ratio. There were two wear types of electroplated diamond tool, diamond grit wear and bond wear. With the machining processes, wear of diamond grits included fracture, blunt and pull-out, and electroplated bond was gradually worn out. High material removal rates could be obtained by using diamond tool with suitable slot numbers. Bright nickel coating bond presents smallest grains and has better mechanical properties. Bright nickel electroplated diamond tool with slot structure and heat treatment under 200°C was suitable for optical glass drilling.

  15. Counter current decantation washing of HLW sludge

    International Nuclear Information System (INIS)

    Brooke, J.N.; Peterson, R.A.

    1997-01-01

    The Savannah River Site (SRS) has 51 High Level Waste (HLW) tanks with typical dimensions 25.9 meters (85 feet) diameter and 10 meters (33 feet) high. Nearly 114 million liters (30 M gallons) of HLW waste is stored in these tanks in the form of insoluble solids called sludge, crystallized salt called salt cake, and salt solutions. This waste is being converted to waste forms stable for long term storage. In one of the processes, soluble salts are washed from HLW sludge in preparation for vitrification. At present, sludge is batch washed in a waste tank with one or no reuse of the wash water. Sodium hydroxide and sodium nitrite are added to the wash water for tank corrosion protection; the large volumes of spent wash water are recycled to the evaporator system; additional salt cake is produced; and sodium carbonate is formed in the washed sludge during storage by reaction with CO 2 from the air. High costs and operational concerns with the current washing process prompts DOE and WSRC to seek an improved washing method. A new method should take full advantage of the physical/chemical properties of sludge, experience from other technical disciplines, processing rate requirements, inherent process safety, and use of proven processes and equipment. Counter current solids washing is a common process in the minerals processing and chemical industries. Washing circuits can be designed using thickeners, filters or centrifuges. Realizing the special needs of nuclear work and the low processing rates required, a Counter Current Decantation (CCD) circuit is proposed using small thickeners and fluidic pumps

  16. Thermal decomposition of nitrate salts liquid waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Kim, Y. K.; Lee, K. Y.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2004-01-01

    This study investigated the thermal decomposition property of nitrate salts liquid waste which is produced in a series of the processes for the sludge treatment. Thermal decomposition property was analyzed by TG/DTA and XRD. Most ammonium nitrate in the nitrate salts liquid waste was decomposed at 250 .deg. C and calcium nitrate was decomposed and converted into calcium oxide at 550 .deg. C. Sodium nitrate was decomposed at 700 .deg. C and converted into sodium oxide which reacts with water easily. But sodium oxide was able to convert into a stable compound by adding alumina. Therefore, nitrate salts liquid waste can be treated by two steps as follows. First, ammonium nitrate is decomposed at 250 .deg. C. Second, alumina is added in residual solid sodium nitrate and calcium nitrate and these are decomposed at 900 .deg. C. Final residue consists of calcium oxide and Na 2 O.Al 2 O 3 and can be stored stably

  17. Electron ray facilities for the pasteurization of sewage sludges

    International Nuclear Information System (INIS)

    Heuer, D.; Hofmann, E.G.

    1978-01-01

    Growing industrialization and the simultaneous increase in population density demand broad preventive measures in the area of waste water and sewage sludges. Electron irradiation is becoming an important tool for disinfection in this field. The AEG-Telefunken sludge pasteurization process works in continuous operation with homogenized sludge at electron energies between 1,0 to 1,5 MeV and a radiation dosage of 4 kJ/kg. The system offers the capabilities for an effective and costadvantageous disinfection of waste sludges of differing consistencies and origins and their harmless reuse as fertilizer in agriculture. (orig.) [de

  18. Pathogens\\' Reduction in Vermicompost Process Resulted from the Mixed Sludge Treatments-Household Wastes

    OpenAIRE

    Hossien Karimi; Mohammad Rezvani; Morteza Mohammadzadeh; Yaser Eshaghi; Mehdi Mokhtari

    2016-01-01

    Introduction: The presence of pathogenic microbial agents and pathogens in organic fertilizers causes health problems and disease transmission. The aim of this study was to evaluate the efficiency of vermicomposting process in improve the microbial quality of the compost produced. Materials and Methods: This experimental study was conducted as a pilot-scale one, in the laboratory of school of Health. In order to produce vermicompost, some perishable domestic waste were mixed whit sludge o...

  19. Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges.

    Science.gov (United States)

    Barrena, Raquel; Pagans, Estel la; Artola, Adriana; Vázquez, Felícitas; Sánchez, Antoni

    2007-06-01

    Production of waste hair in the leather manufacturing industry is increasing every year due to the adoption of hair-save unhairing techniques, leaving the tanners with the problem of coping with yet another solid by-product. Numerous potential strategies for hair utilisation have been proposed. However, the use of hair waste as agricultural fertiliser is one of its most promising applications due to the high nitrogen content of hair. Agricultural value of hair can be increased by composting. This paper deals with the composting of hair from the unhairing of bovine hide. Results indicated that hair cannot be either composted on its own or co-composted with de-inking sludge, a chemical complementary co-substrate. However, good results were obtained when co-composted with raw sludge from a municipal wastewater treatment plant at hair:raw sludge weight ratios 1:1, 1:2 and, 1:4 in lab scale and pilot plant scale composters. In all cases, a more stable product was achieved at the end of the process. Composting in the pilot plant composter was effectively monitored using Static Respiration Indices determined at process temperature at sampling (SRI(T)) and at 37 degrees C (SRI(37)). Notably, SRI(T) values were more sensitive to changes in the biological activity. In contrast, Respiratory Quotient (RQ) values were not adequate to follow the development of the process.

  20. Improved waste-activated sludge dewatering using sludge/oil ...

    African Journals Online (AJOL)

    2014-10-07

    Oct 7, 2014 ... 2Dept. of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, ... conventional heating methods in chemical reactions is becom- ... the dewaterability of sludge and reduces the organic matter ..... It is unlikely that this technique will be applied in.

  1. DETERMINATION OF ACTIVATED SLUDGE MODEL ASDM PARAMETERS FOR WASTE WATER TREATMENT PLANT OPERATING IN THE SEQUENTIAL–FLOW TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Dariusz Zdebik

    2015-01-01

    Full Text Available This paper presents a method for calibration of activated sludge model with the use of computer program BioWin. Computer scheme has been developed on the basis of waste water treatment plant operating in the sequential – flow technology. For calibration of the activated sludge model data of influent and treated effluent from the existing object were used. As a result of conducted analysis was a change in biokinetic model and kinetic parameters parameters of wastewater treatment facilities. The presented method of study of the selected parameters impact on the activated sludge biokinetic model (including autotrophs maximum growth rate, the share of organic slurry in suspension general operational, efficiency secondary settling tanks can be used for conducting simulation studies of other treatment plants.

  2. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  3. Creating low-impedance tetrodes by electroplating with additives

    Science.gov (United States)

    Ferguson, John E.; Boldt, Chris; Redish, A. David

    2011-01-01

    A tetrode is a bundle of four microwires that can record from multiple neurons simultaneously in the brain of a freely moving animal. Tetrodes are usually electroplated to reduce impedances from 2-3 MΩ to 200-500 kΩ (measured at 1 kHz), which increases the signal-to-noise ratio and allows for the recording of small amplitude signals. Tetrodes with even lower impedances could improve neural recordings but cannot be made using standard electroplating methods without shorting. We were able to electroplate tetrodes to 30-70 kΩ by adding polyethylene glycol (PEG) or multi-walled carbon nanotube (MWCNT) solutions to a commercial gold-plating solution. The MWCNTs and PEG acted as inhibitors in the electroplating process and created large-surface-area, low-impedance coatings on the tetrode tips. PMID:21379404

  4. The dissolution of metal decontamination sludges stored in tanks and their management

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, R.A.; Phillips, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The decontamination of stainless steel components is accomplished by the use of alkaline permanganate solutions, followed by an application of solutions of complexing agents such as citric acid or oxalic acid. Spent decontamination solutions comprising residues from both steps were combined in several waste storage tanks, where they have been in storage for several years. In those tanks, a reaction between residual permanganate and unreacted complexing agents produced sludges, consisting mainly of manganese dioxide, that reside in the tanks along with supernatant liquid. In a campaign that was conducted a few years ago, the accumulated waste solution was partially treated and disposed. This treatment consisted of decanting only the supernatant liquid and transporting it to a liquid waste treatment facility that employed a Thin Film Evaporator (TFE) to concentrate the liquid and ultimately produce a bitumen-encapsulated solidified waste form for storage. A study of treatment options for the remaining sludge is reported here. The requirement was to determine a simple means of treating the sludge using existing routine processes and equipment. This will be a significant step toward the decommissioning of the decontamination waste storage tanks. The available equipment at the liquid waste treatment facility was not designed to process sludge or slurries containing a large volume fraction of solids. Laboratory testing was carried out to find a means of dissolving the decontamination waste sludges, preferably in situ, and filtering undissolved solids to meet the feed requirements of the TFE in the liquid waste treatment facility. A concentrated citric acid solution was applied to sludge samples, without the use of externally applied mixing of the reagent and sludge. In all of the samples of actual decontamination waste sludge that were tested, a quantity of undissolved material remained after treatment with citric acid. The quantities were relatively small in volume, and

  5. The dissolution of metal decontamination sludges stored in tanks and their management

    International Nuclear Information System (INIS)

    Prokopowicz, R.A.; Phillips, B.

    2011-01-01

    The decontamination of stainless steel components is accomplished by the use of alkaline permanganate solutions, followed by an application of solutions of complexing agents such as citric acid or oxalic acid. Spent decontamination solutions comprising residues from both steps were combined in several waste storage tanks, where they have been in storage for several years. In those tanks, a reaction between residual permanganate and unreacted complexing agents produced sludges, consisting mainly of manganese dioxide, that reside in the tanks along with supernatant liquid. In a campaign that was conducted a few years ago, the accumulated waste solution was partially treated and disposed. This treatment consisted of decanting only the supernatant liquid and transporting it to a liquid waste treatment facility that employed a Thin Film Evaporator (TFE) to concentrate the liquid and ultimately produce a bitumen-encapsulated solidified waste form for storage. A study of treatment options for the remaining sludge is reported here. The requirement was to determine a simple means of treating the sludge using existing routine processes and equipment. This will be a significant step toward the decommissioning of the decontamination waste storage tanks. The available equipment at the liquid waste treatment facility was not designed to process sludge or slurries containing a large volume fraction of solids. Laboratory testing was carried out to find a means of dissolving the decontamination waste sludges, preferably in situ, and filtering undissolved solids to meet the feed requirements of the TFE in the liquid waste treatment facility. A concentrated citric acid solution was applied to sludge samples, without the use of externally applied mixing of the reagent and sludge. In all of the samples of actual decontamination waste sludge that were tested, a quantity of undissolved material remained after treatment with citric acid. The quantities were relatively small in volume, and

  6. Rheology of Savannah River site tank 42 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1997-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer

  7. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    Science.gov (United States)

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  8. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation

    International Nuclear Information System (INIS)

    Tian Yongqiang; Chen Liming; Gao Lihong; Michel, Frederick C.; Wan Caixia; Li Yebo; Dick, Warren A.

    2012-01-01

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55–74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible. - Highlights: ► Melamine resin in waste paint sludges could be efficiently composted at bench scale. ► Melamine resin degradation after 147 days of composting was 73–95% complete. ► Nutrients, gypsum and melamine-degrading microorganisms increased composting rate. ► Melamine degradation products first increased and then decreased in the compost. ► Final compost was enriched in nitrogen and other essential plant nutrients. - Melamine resin in waste paint sludges was efficiently composted at bench scale, with finished composts having low levels of heavy metals and enriched in plant nutrients.

  9. Vitrification as an alternative to landfilling of tannery sewage sludge.

    Science.gov (United States)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  10. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    International Nuclear Information System (INIS)

    Ragsdale, R.G., Jr.

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented

  11. Bio-processing of solid wastes and secondary resources for metal extraction – A review

    International Nuclear Information System (INIS)

    Lee, Jae-chun; Pandey, Banshi Dhar

    2012-01-01

    Highlights: ► Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. ► Bio-processing of certain effluents/wastewaters with metals is also included in brief. ► Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. ► Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. ► Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.

  12. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Tae-In, E-mail: tiohm1@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Chae, Jong-Seong; Lim, Kwang-Soo [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Moon, Seung-Hyun [Waste Energy Research Center, Korea Institute of Energy Research, Jang-dong Yusung-gu, Daejeon 305-343 (Korea, Republic of)

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  14. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    International Nuclear Information System (INIS)

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-01-01

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  15. Analysis of the cement clinker produced with incorporation of petroleum sludge

    Science.gov (United States)

    Benlamoudi, A.; Kadir, A. Abdul; Khodja, M.; Nuruddin, M. F.

    2018-04-01

    Very limited researches have been conducted on the incorporation of petroleum sludge waste into cement clinker production even though this waste may contain similar components to those of clinker raw materials. In this research, petroleum sludge was integrated into cement plant as raw material to produce the cement clinker. As results, incorporation of 5% of this waste was able to produce an acceptable quality of cement. Despite the use of petroleum sludge has decreased the properties of the produced clinker, but it still fit the requirements.

  16. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.

    Science.gov (United States)

    Samolada, M C; Zabaniotou, A A

    2014-02-01

    For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  18. Cost and effectiveness comparisons of various types of sludge irradiation and sludge pasteurization treatments

    International Nuclear Information System (INIS)

    Morris, M.E.

    1976-01-01

    The radiation from 137 Cs, a major constituent of nuclear fuel reprocessing waste, can be used to sterilize sewage sludge. This paper compares the effectiveness and cost of heat pasteurization, irradiation, and thermoradiation (simultaneous heating/irradiation), three competing methods of sludge disinfection. The cost of irradiation and thermoradiation is slightly higher than heat pasteurization costs for liquid sludges, although minor changes in oil availability or prices could change this. If the viral destruction could be done easily by other means, a 500-kilorad irradiation dose would be effective and less costly. For dry sewage sludges, irradiation is as effective and much less costly than any of the liquid sludge disinfection processes. Irradiation of compost appears to be cheaper and more practical than any heat pasteurization process for the dry sludge (the insulating property of the compost makes heating difficult). 6 tables, 2 fig

  19. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  20. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    International Nuclear Information System (INIS)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0

  1. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge - a full scale study.

    Science.gov (United States)

    Park, Nathan D; Thring, Ronald W; Garton, Randy P; Rutherford, Michael P; Helle, Steve S

    2011-01-01

    Anaerobic digestion is a well established technology for the reduction of organic matter and stabilization of wastewater. Biogas, a mixture of methane and carbon dioxide, is produced as a useful by-product of the process. Current solid waste management at the city of Prince George is focused on disposal of waste and not on energy recovery. Co-digestion of fresh fruit and vegetable waste with sewer sludge can improve biogas yield by increasing the load of biodegradable material. A six week full-scale project co-digesting almost 15,000 kg of supermarket waste was completed. Average daily biogas production was found to be significantly higher than in previous years. Digester operation remained stable over the course of the study as indicated by the consistently low volatile acids-to-alkalinity ratio. Undigested organic material was visible in centrifuged sludge suggesting that the waste should have been added to the primary digester to prevent short circuiting and to increase the hydraulic retention time of the freshly added waste.

  2. EFFECTS OF SOIL TREATMENT BY COAL MINING CARBONIFEROUS WASTE SLUDGE IN MAIZE GROWING

    Directory of Open Access Journals (Sweden)

    Robin Mujačić

    2011-11-01

    Full Text Available The multifuncional role and importance of organic matter in soil is widely known. It is also known that the organic matter in soil is subjected to microbiological-biochemical processes of transformation, which includes synthesis of humus as well as it’s decomposition -mineralization. Mineralization means transformation-decomposition of organic matter by microbiological processes to mineral products; plant nutrients and water + CO2 as starting and ending component of photosyntesis. Nutrients are partly plant available with fertilizing effect, partly lost from the soil - leaching in ground water, causing it’s eutrophication, but CO2 in atmosphere participates in greenhouse effect. Practically, mineralization means decreasing of organic matter content in soil and soil degradation [1,4]. In natural ecosystems (phytocenoses natural forests and meadows, it is almost a balanced between inflow and consumption of organic matter, while the cultural and anthropogenic soils agrobiocenosis in general, this relationship is disturbed that there is a disproportion between the inflow and loss [1,4]. Therefore, various materials that contains organic material (waste, various flotation, sludge, etc. are often used with more or less success. One of such materials, as well as the potential fertilizer, is carboniferous lake sludge like waste of coal mining sedimented at the bottom of the lake in huge quantities, which is the subject of our reasearch. The research were conducted to determine its fertilizing efects and value for repairing of physical and chemical properties of soil. The research refered to: -- Laboratory analysis of physical and chemical characteristics of the carboniferous sludge samples, -- Analysis of soil of the experimental field -- Research on heavy metals concentration in soil of the experimental farm and in carboniferous sludge, and Research of fertilizing effects of sludge, comparative mineral fertilizer and farmyard manure treatment by

  3. Conversion of agricultural waste, sludges and pulp residues into nanofibers for innovative polymer composites

    OpenAIRE

    Samyn, Pieter; Carleer, Robert

    2017-01-01

    Agricultural waste fractions from seasonal crops (corn stover, bagasse, flax), sludges and paper pulp residues contain an important source of lignocellulosic materials that can be recovered and used as material fractions instead of being burnt for energy recovery. Due to the heterogeneity of named products, however, novel processing routes should be developed for the recovery of the lignocellulosic materials at nanoscale. Therefore, we will use nanotechnological routes to transform the res...

  4. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  5. Problematic issues of air protection during thermal processes related to the energetic uses of sewage sludge and other waste. Case study: Co-combustion in peaking power plant.

    Science.gov (United States)

    Hroncová, Emília; Ladomerský, Juraj; Musil, Juraj

    2018-03-01

    Currently, it is necessary to deal with issues related to the emissions as there is a constantly increasing interest in combusting sludge from sewage treatment plants in the boilers for wood. An analysis of the energetic importance of the combustion of sewage sludge has already been carried out, but the effects of various treatments of the sludge are not always clear, e.g. composting and subsequent combustion to the air pollution. Investments in other thermal processes of energetic utilisation of sewage sludge and organic waste are not always successfully implemented. The objective of this paper is to point out some problematic cases for acceptance of thermal processes related to energetic use of waste in terms of the air protection. The other aim is to mention the experience with solutions of such issues in Slovakia. There are mentioned first results of the operational validation experiments during the energy generation in circulating fluidized bed boiler in peaking power plant (Power 110MW) with the addition of the so-called alternative fuel based on wood and sewage sludge to the main fuel - black coal (anthracite). And there has already been achieved the highest share of 12.4%w. (dry matter) of sewage sludge in form of compost in blend with black coal, which is technologically viable. Moreover analyzed the problems of the authorization and operation of the co-combustion of sewage sludge and of combustion of products of various kinds of pyrolysis waste - pyrolysis gas and pyrolysis oil are analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  8. The manufacture and use of sludge test materials for R and D purposes in the treatment and processing of magnox based sludge

    International Nuclear Information System (INIS)

    Blackburn, D.R.; Thompson, E.J.

    2013-01-01

    Among the Intermediate Level Waste materials in store and awaiting treatment and processing in the UK are quantities of magnesium hydroxide sludge. This sludge is a product of radioactive Magnox Swarf which arose from the de-canning of used magnox fuel element rods. As the Swarf was stored underwater, a corrosion reaction occurred over the course of time between the magnox and the water resulting in a magnesium hydroxide based sludge. The differing conditions and materials present in the various storage areas means that the sludge can range in consistency from that of a slurry through to a thick clay. Sludge test materials are required to underpin and validate the research and development equipment and processes that are to be used to treat the waste material. Necessary restrictions imposed on the sampling and testing of the radioactive waste means that the available data on the properties and behaviour of the sludge is limited. The raw materials used to create the sludge test materials are based upon magnesium hydroxide so that as far as possible the chemical behaviour will be similar to that of the waste material. The most representative sludge test material is manufactured by the corrosion of non-radioactive magnox or magnesium. However, time constraints make it impractical to supply this material in sufficient quantities for full scale validation trials. An alternative is to use sludge manufactured from commercially available magnesium hydroxide. The particle shape of commercially available materials differs from corrosion product magnesium hydroxide which means that properties such as the rheological behaviour cannot be replicated. Nevertheless, valuable trial data can be obtained, giving a greater degree of confidence in the waste treatment process than would be possible if only the more representative but less available corrosion product materials were to be used. Key test material parameters used in the trials have been identified as the particle size

  9. The manufacture and use of sludge test materials for R and D purposes in the treatment and processing of magnox based sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, D.R.; Thompson, E.J. [NSG Environmental Ltd, Chorley, Lancashire (United Kingdom)

    2013-07-01

    Among the Intermediate Level Waste materials in store and awaiting treatment and processing in the UK are quantities of magnesium hydroxide sludge. This sludge is a product of radioactive Magnox Swarf which arose from the de-canning of used magnox fuel element rods. As the Swarf was stored underwater, a corrosion reaction occurred over the course of time between the magnox and the water resulting in a magnesium hydroxide based sludge. The differing conditions and materials present in the various storage areas means that the sludge can range in consistency from that of a slurry through to a thick clay. Sludge test materials are required to underpin and validate the research and development equipment and processes that are to be used to treat the waste material. Necessary restrictions imposed on the sampling and testing of the radioactive waste means that the available data on the properties and behaviour of the sludge is limited. The raw materials used to create the sludge test materials are based upon magnesium hydroxide so that as far as possible the chemical behaviour will be similar to that of the waste material. The most representative sludge test material is manufactured by the corrosion of non-radioactive magnox or magnesium. However, time constraints make it impractical to supply this material in sufficient quantities for full scale validation trials. An alternative is to use sludge manufactured from commercially available magnesium hydroxide. The particle shape of commercially available materials differs from corrosion product magnesium hydroxide which means that properties such as the rheological behaviour cannot be replicated. Nevertheless, valuable trial data can be obtained, giving a greater degree of confidence in the waste treatment process than would be possible if only the more representative but less available corrosion product materials were to be used. Key test material parameters used in the trials have been identified as the particle size

  10. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  11. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  12. Research on Treatment Technology and Device of Oily Sludge

    Science.gov (United States)

    Wang, J. Q.; Shui, F. S.; Li, Q. F.

    2017-12-01

    Oily sludge is a solid oily waste, which is produced during the process of oil exploitation, transportation, refining and treatment of oily sewage. It contains a great number of hazardous substance, and is difficult to handle with. To solve the problem of waste resources of oil sludge with high oil content and usually not easy to aggregate during the preparation of profile control agent, a new oily sludge treatment device was developed. This device consists of heat supply unit, flush and filter unit, oil removal unit and dehydration unit. It can effectively clean and filter out the waste from oily sludge, recycle the oil resources and reduce the water content of the residue. In the process of operation, the water and chemical agent are recycled in the device, eventually producing little sewage. The device is small, easy to move and has high degree of automation control. The experimental application shows that the oil removal rate of the oily sludge is up to 70%, and the higher the oil content rate the better the treatment.

  13. Electroplating on titanium alloy

    Science.gov (United States)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  14. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    International Nuclear Information System (INIS)

    Wan Caixia; Zhou Quancheng; Fu Guiming; Li Yebo

    2011-01-01

    Highlights: → Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). → Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. → FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. → Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS added when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH 4 and CO 2 content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  15. Presence of helminth eggs in sewage sludge from waste water plants; Presencia de huevos de helmintos en lodos procedentes de la depuracion de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Muro, J. L.; Garcia Orenes, F.; Nieto Asensio, N.; Bonora, I. B.; Morenilla Martinez, J. J.

    2003-07-01

    Land application of sewage sludge is a usual practice in wide areas of the Comunidad Valencia, due the low organic contents and nutrients of the soils, and the sewage sludge is a suitable material to use os organic amendment of soils. However the use of sewage sludge involves a very detailed characterization of sewage, to avoid sanitary hazards as the presence of helminth eggs and its high resistant to most of the treatment used to stabilize sewage sludge. The aim of this work was determine the parasitic contamination of helminths found in sewage sludge, stabilized by anaerobic digestion, from two waste water plants of Alicante (Alcoy y Benidorm) destined to agricultural land. Also it was studies the evolution of helminth eggs content of a sewage sludge subjected to composting process. (Author) 12 refs.

  16. 40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.

    Science.gov (United States)

    2010-07-01

    ... electroplating of precious metals subcategory. 413.20 Section 413.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroplating of Precious Metals Subcategory § 413.20 Applicability: Description of the electroplating of...

  17. ESTERIFICATION OF FATTY ACID FROM PALM OIL WASTE (SLUDGE OIL BY USING ALUM CATALYST

    Directory of Open Access Journals (Sweden)

    Thamrin Usman

    2010-06-01

    Full Text Available Esterification of fatty acids from palm oil waste (sludge oil as biodiesel liquid base has been done by using alum [Al2(SO43.14H2O] catalyst. Some reaction variables like reaction time, catalyst quantity, and molar ratio of sample-reactant was applied for optimal reaction. Yield of 94.66% was obtained at reaction condition 65 °C, 5 h, sample-reactant ratio 1:20, and catalyst quantity 3% (w/w. GC-MS analysis request showed that composition of methyl esters biodiesel are methyl caproic (0.67%, methyl lauric (0.21%, methyl miristic (1.96%, methyl palmitic (49.52%, methyl oleic (41.51%, and methyl stearic (6.13%. Physical properties of synthesized product (viscosity, refraction index and density are similar with those of commercial product.   Keywords: alum, biodiesel, esterification, sludge oil

  18. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    International Nuclear Information System (INIS)

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-01-01

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe 2+ /ΣFe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit

  19. 40 CFR 413.10 - Applicability: Description of the electroplating of common metals subcategory.

    Science.gov (United States)

    2010-07-01

    ... electroplating of common metals subcategory. 413.10 Section 413.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroplating of Common Metals Subcategory § 413.10 Applicability: Description of the electroplating of common...

  20. Electroplating of gold using a sulfite-based electrolyte

    NARCIS (Netherlands)

    Smalbrugge, E.; Jacobs, B.; Falcone, S.; Geluk, E.J.; Karouta, F.; Leijtens, X.J.M.; Besten, den J.H.

    2000-01-01

    Electroplating of gold is often used in optoelectronic and microelectronic devices for air-bridges, heat-sinks or gold-bumps for flip-chip techniques. The gold-cyanide electrolytes, which are commonly used in gold-electroplating, are toxic and attack resist patterns causing cracks during the plating

  1. The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production.

    Science.gov (United States)

    Lee, Ilgyu; Han, Jong-In

    2013-11-01

    Disintegration of waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion (AD) process to reduce sludge volume and increase methane yield. Hydrodynamic cavitation (HC), which shares a similar underlying principle with ultrasonication but is energy-efficient, was employed as a physical means to break up WAS. Compared with ultrasonic (180-3600 kJ/kg TS) and thermal methods (72,000 kJ/kg TS), HC (60-1200 kJ/kg TS) found to consume significantly low power. A synergetic effect was observed when HC was combined with alkaline treatment in which NaOH, KOH, and Ca(OH)2 were used as alkaline catalysts at pH ranging from 8 to 13. As expected, the production yield of CH4 gas increased proportionally as WAS disintegration proceeded. HC, when combined with alkaline pretreatment, was found to be a cost-effective substitute to conventional methods for WAS pretreatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Optimization of organic contaminant and toxicity testing analytical procedures for estimating the characteristics and environmental significance of natural gas processing plant waste sludges

    International Nuclear Information System (INIS)

    Novak, N.

    1990-10-01

    The Gas Plant Sludge Characterization Phase IIB program is a continuation of the Canadian Petroleum Association's (CPA) initiatives to characterize sludge generated at gas processing plants. The objectives of the Phase IIB project were to develop an effective procedure for screening waste sludges or centrifuge/leachate generated from sludge samples for volatile, solvent-soluble and water-soluble organics; verify the reproducibility of the three aquatic toxicity tests recommended as the battery of tests for determining the environmental significance of sludge centrifugates or leachates; assess the performance of two terrestrial toxicity tests in determining the environmental significance of whole sludge samples applied to soil; and to assess and discuss the reproducibility and cost-effectiveness of the sampling and analytical techniques proposed for the overall sludge characterization procedure. Conclusions and recommendations are provided for sludge collection, preparation and distribution, organic analyses, toxicity testing, project management, and procedure standardization. The three aquatic and two terrestrial toxicity tests proved effective in indicating the toxicity of complex mixtures. 27 refs., 3 figs., 59 tabs

  3. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    Science.gov (United States)

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  4. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates

  5. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Zhen, Guangyin; Lu, Xueqin; Li, Yu-You; Zhao, Youcai

    2014-01-01

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DD SCOD ), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (k hyd ), but had no, or very slight enhancement on WAS ultimate

  6. A review of modeling approaches in activated sludge systems

    African Journals Online (AJOL)

    use

    Key words: Mathematical modeling, water, wastewater, wastewater treatment plants, activated sludge systems. INTRODUCTION ... sedimentation processes which take place in the aeration ...... activated sludge waste water treatment systems.

  7. Biogas recovery from tanning sludges. Anaerobic digestion of lime fleshings, tanning sludge, and unhairing baths, laboratory and pilot scale results

    Energy Technology Data Exchange (ETDEWEB)

    Fendrup, W.; Hansen, S.; Petersen, G.

    1983-11-01

    Mesophilic anaerobic digestion of various types of tannery and other wastes, separately or in mixtures, has been investigated. The following materials were used: Lime fleshings, Tannery sludge, Beamhouse sludge, Municipal sludge, Chrome leather shavings, Liquid manure. The investigations have shown anaerobic digestion to be possible with untanned tannery wastes as well as tannery effluent sludge as a substrate. Specially high gas yields were found by digestion of mixtures of tannery wastes and manure. This may be applicable to mixtures of tannery wastes and municipal sludge, too. The gas contains 0.5 - 1.0% H2S. About 25% of the gross energy (methane) output is used for sustaining the temperature necessary for the digestion together with the mixing and conveying of the material to be digested. If electricity is produced, 25% of the gross output is obtained as useful electric energy and 35% as useful thermic energy. If the gas is burned, 60% of the gross output is obtained as useful thermic energy. With the price relations found in most countries (e.g. Denmark, Finland and Sweden) it will be most profitable to produce electricity, whereas in some cases (e.g. Norway) the opposite may be true. The energy requirement of a typic Scandinavian tannery is 14.200 MJ/t rawhide as thermic energy and 2.300 MJ/t rawhide as electric energy, which means that maximum 14% of the thermic energy requirement or maximum 35% of the electricity requirement could be covered by the wastes digestion. Profitability calculations are made for each Scandinavian country. The calculations show that too small digestion plants are not profitable.

  8. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  9. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    Science.gov (United States)

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  10. Enhancing the functional and economical efficiency of a novel combined thermo chemical disperser disintegration of waste activated sludge for biogas production.

    Science.gov (United States)

    Kavitha, S; Jayashree, C; Adish Kumar, S; Kaliappan, S; Rajesh Banu, J

    2014-12-01

    In this investigation, an effort was made to pretreat surplus waste activated sludge (WAS) inexpensively by a novel combined process involving thermo chemical disperser pretreatment. This pretreatment was found to be efficient at a specific energy (SE) consumption of 3360.94 kJ/kg TS, with the chemical oxygen demand (COD) solubilization of 20%. This was comparatively higher than thermo chemically treated sludge where the solubilization was found to be 15.5% at a specific energy consumption of 10,330 kJ/kg TS respectively. Higher production of volatile fatty acids (VFA) (675 mg/L) in anaerobic fermentation of pretreated WAS indicates better hydrolysis performance. The biogas production potential of sludge pretreated through this combined technique was found to be 0.455 (L/gVS) and comparatively higher than thermo chemically pretreated sludge. Economic investigation provides 90% net energy savings in this combined pretreatment. Therefore, this combined process was considered to be potentially effective and economical in sludge disintegration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Behaviour of pathogenic microorganisms and parasites in biogas production from sewage sludge and municipal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Walter-Matsui, R.; Seipp, M.

    With a grant from VW-Stiftung a project was investigated by the 'Medizinisches Zentrum fuer Hygiene, Philipps-Universitaet, Marburg' and the 'Faculty of Agriculture, Fayum, University Cairo'. The aim was to modify the biogas process to get an optimal amount of biogas and to kill the pathogen bacteria at the same time. The effect of different materials, for example, plant wastes, sewage sludge, cow dung and town refuse and their various amounts of dry matters (2% - 16%) were tested. Also the bactericidal effects of pH, Lactobacilli and higher temperatures were checked. It was found that only a pasteurisation before the fermentation decontaminate the sludge without declining amounts of biogas. It was also proved that the development of Schistosoma eggs was interrupted by the fermentation process.

  12. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    Science.gov (United States)

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  13. Operation of an aquatic worm reactor suitable for sludge reduction at large scale

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Elissen, H.J.H.; Temmink, B.G.; Buisman, C.J.N.

    2011-01-01

    Treatment of domestic waste water results in the production of waste sludge, which requires costly further processing. A biological method to reduce the amount of waste sludge and its volume is treatment in an aquatic worm reactor. The potential of such a worm reactor with the oligochaete

  14. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    Science.gov (United States)

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A review on paint sludge from automotive industries: Generation, characteristics and management.

    Science.gov (United States)

    Salihoglu, Guray; Salihoglu, Nezih Kamil

    2016-03-15

    The automotive manufacturing process results in the consumption of several natural sources and the generation of various types of wastes. The primary source of hazardous wastes at an automotive manufacturing plant is the painting process, and the major waste fraction is paint sludge, which is classified with EU waste code of 080113* implying hazardous characteristics. The amount of the paint sludge generated increases every year with the worldwide increase in the car production. The characteristics of the paint sludge, which mainly designate the management route, are mainly determined by the type of the paint used, application technique employed, and the chemicals applied such as flocculants, detackifiers, pH boosters, antifoam agents, and biocides as well as the dewatering techniques preferred. Major routes for the disposal of the paint sludges are incineration as hazardous waste or combustion at cement kilns. Because of high dissolved organic carbon content of the paint, the paint sludge cannot be accepted by landfills according to European Union Legislations. More investigations are needed in the field of paint sludge recycling such as recycling it as a new paint or as other formulations, or making use of the sludge for the production of construction materials. Research on the applicability of the paint sludge in composting and biogasification can also be useful. Ongoing research is currently being conducted on new application techniques to increase the effectiveness of paint transfer, which helps to prevent the generation of paint sludge. Advancements in paint and coating chemistry such as the reduction in the coating layers with its thickness also help to decrease the level of paint sludge generation. Investigations on the effects of the chemicals on the recycling potential of paint sludges and consideration of these effects by the chemical manufacturer companies would be extremely important. This review presents the formation of paint sludge, the factors

  16. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    Science.gov (United States)

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  17. Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Spence, R.D.

    1998-11-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

  18. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    Science.gov (United States)

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  19. Rheology of sludge-slurry grouts

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1980-10-01

    A series of rheograms was developed that relates the critical velocity (velocity where flow changes from laminar to turbulent) of a cementitious grout that incorporates a suspended sludge-slurry to the critical velocity of a reference grout made with a simulated waste solution. The sludge that is now in the Gunite waste tanks at the Oak Ridge National Laboratory (ORNL) will be suspended and pumped to the new waste storage tanks in Melton Valley. The sludge will then be blended with a cement mix base to form a grout which will be injected underground by the shale fracturing process. This report describes the materials, equipment, and techniques used in the laboratory studies to suspend sludges and mix sludge-slurry grouts that have flow properties similar to those of current shale fracturing grouts. Bentonite clay is an effective suspender in dilute NaNO 3 solutions; 15 wt % solids can be suspended with 2.0 wt % bentonite in a 0.1 M NaNO 3 solution. Other suspending materials were evaluated, but bentonite gave the best results. If a slurry grout becomes too viscous to pump, methods must be available to thin the mixture. A number of thinners, friction reducers, and plasticizers were examined. Q-Broxin, a thinner supplied by Baroid, reduced the velocity of a grout required for turbulent flow in a 5.0-cm (2-in.)-diam tube from 1.76 to 1.20 m/s (5.79 to 3.95 ft/s); FX-32C, a plasticizer supplied by Fox Industries, Inc., reduced the velocity from 1.76 to 0.75 m/s

  20. Keynote address: Federal overview of municipal sludge management

    International Nuclear Information System (INIS)

    Hathaway, W.B.

    1979-01-01

    The proper disposal of sewage sludge is becoming an increasing problem on solid waste management systems throughout the country. Currently 18,000 municipal wastewater treatment plants are generating about 5 million tons of sludge a year. This is expected to double in the next 8 to 10 years. The environmental aspects of sludge disposal are discussed

  1. Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors.

    Science.gov (United States)

    Huang, Haining; Zheng, Xiong; Chen, Yinguang; Liu, Hui; Wan, Rui; Su, Yinglong

    2017-02-15

    Alkaline fermentation has been reported to be an effective method to recover valuable products from waste sludge. However, to date, the potential effect of alkaline pH on the fate of antibiotic resistance genes (ARGs) during anaerobic fermentation of sludge has never been documented. In this study, the target ARGs in sludge was observed to be removed effectively and stably when sludge was anaerobically fermented at pH10. Compared with the control (without pH adjustment), the abundances of target ARGs at pH10 were reduced by 0.87 (sulI), 1.36 (sulII), 0.42 (tet(O)), 1.11 (tet(Q)), 0.79 (tet(C)) and 1.04 (tet(X)) log units. Further investigations revealed that alkaline fermentation shifted the community structures of potential ARGs hosts. Moreover, alkaline fermentation remarkably decreased the quantities and the ARGs-possessing ability of genetic vectors (plasmid DNA, extracellular DNA and phage DNA), which might limit the transfer of ARGs via conjugation, transformation and transduction. These results suggest that the shifted compositions of gene hosts and restricted gene transfer potential might be the critical reasons for the attenuation of ARGs at pH10. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  3. Radioactivity partitioning of oil sludge undergoing incineration process

    International Nuclear Information System (INIS)

    Muhamat Omar; Suhaimi Hamzah; Muhd Noor Muhd Yunus

    1997-01-01

    Oil sludge waste is a controlled item under the Atomic Energy Act (Act 304) 1984 of which the radioactivity content shall be subjected to analysis. Apart from that the treatment method also shall be approved by Atomic Energy Licensing Board (AELB). Thus, an analysis of the oil sludge for MSE fluidized incinerator was conducted to comply with above requirements using various techniques. Further screening analysis of fly ash as well as bed material were done to study the effect of incinerating the sludge. This paper highlights the analysis techniques and discusses the results with respect to the radioactivity level and the fate of radionuclides subjected to the processing of the waste

  4. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker

    Directory of Open Access Journals (Sweden)

    Kae-Long Lin

    2017-09-01

    Full Text Available This study investigated the feasibility of using waste limestone sludge, waste stone sludge, iron oxide sludge, and spent catalyst as raw materials in the production of eco-cement. The compressive strength development of the Eco Cement-A (ECO-A paste was similar to that of ordinary Portland cement (OPC pastes. The compressive strength development of the ECO-B paste was higher than that of OPC pastes. In addition, the C2S (Ca2SiO4, C2S and C3S (Ca3SiO5 minerals in the eco-cement paste were continuously utilized to hydrate the Ca(OH2 and calcium silicate hydrates gel (Ca6Si3O12·H2O, C–S–H throughout the curing time. When ECO-C clinker contained 8% spent catalyst, the C3S mineral content decreased and C3A (3 CaO·Al2O3 content increased, thereby causing the structure to weaken and compressive strength to decrease. The results showed that the developed eco-cement with 4% spent catalyst possessed compressive strength properties similar to those of OPC pastes.

  5. Evaluation of the influence of mechanical activation on physical and chemical properties of municipal solid waste incineration sludge.

    Science.gov (United States)

    Caprai, V; Florea, M V A; Brouwers, H J H

    2018-06-15

    Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thermoradiation treatment of sewage sludge using reactor waste to obtain acceptable fertilizer or animal supplement feed

    International Nuclear Information System (INIS)

    Sivinski, H.D.

    1976-01-01

    This document is a report of the Beneficial Uses Program. This program consists of a number of activities at Sandia Laboratories to develop the necessary technology for cost-beneficial use of a maximum amount of radioactive waste. Major activity is currently concentrated in the Waste Resources Utilization Program which has as its objective the use of cesium-134/137 as a gamma radiation source, coupled with modest heating, to treat sewage sludge to rid it of pathogenic organisms so that it may safely be used as a fertilizer or a feed supplement for ruminant animals. (author)

  7. Status Report on Phase Identification in Hanford Tank Sludges

    International Nuclear Information System (INIS)

    Rapko, B.M.; Lumetta, G.J.

    2000-01-01

    The US Department of Energy plans to vitrify Hanford's tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges

  8. Rheology of Savannah River Site Tank 42 radioactive sludges. Revision 1

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1995-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site (SRS), Tank 42 sludge represents one of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility (DWPF). The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer. Rheological properties of Tank 42 radioactive sludge were measured as a function of weight percent total solids to ensure that the first DWPF radioactive sludge batch can be pumped and processed in the DWPF with the current design bases. The yield stress and consistency of the sludge slurries were determined by assuming a Bingham plastic fluid model

  9. Electroplating lithium transition metal oxides

    Science.gov (United States)

    Zhang, Huigang; Ning, Hailong; Busbee, John; Shen, Zihan; Kiggins, Chadd; Hua, Yuyan; Eaves, Janna; Davis, Jerome; Shi, Tan; Shao, Yu-Tsun; Zuo, Jian-Min; Hong, Xuhao; Chan, Yanbin; Wang, Shuangbao; Wang, Peng; Sun, Pengcheng; Xu, Sheng; Liu, Jinyun; Braun, Paul V.

    2017-01-01

    Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700° to 1000°C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility. PMID:28508061

  10. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  11. Sumi-sludge system; Sumisurajji system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    The subject facilities, delivered to Kakegawa City, Shizuoka Prefecture, in December, 1999, are the first machine by the heavy load denitrification processing system adaptive to purifying tank sludge 'Sumi-sludge system'. It enhanced the capacity of 84 kl/day by about 30% to 109 kl/day through the remodeling of the existing facilities. Its major specifications are capacity: 109 kl/day (human wastes 18 kl/day, purifying tank sludge 91 kl/day) and final effluent quality: pH 5.8-8.6, BOD 10 mg/l or less, COD 20 mg/l or less, SS 10 mg/l or less, T-N 10 mg/l or less, T-P 1 mg/l or less, chromaticity 30 degrees or less, coliform group quantity 3,000 pieces/ml or less. It has the following features. (1) Bio-treatment load is reduced by dehydrating human wastes and purifying tank sludge in the prestage of the bio-treatment. (2) Bio-treatment and flocculation separating treatment are integrated. (3) A high-speed flocculation sedimentation tank 'Sumi-thickner' is employed in the solid-liquid separator, enabling stable solid-liquid separation. (translated by NEDO)

  12. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    Science.gov (United States)

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  13. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations

  14. Energy conversion assessment of vacuum, slow and fast pyrolysis processes for low and high ash paper waste sludge

    International Nuclear Information System (INIS)

    Ridout, Angelo J.; Carrier, Marion; Collard, François-Xavier; Görgens, Johann

    2016-01-01

    Highlights: • Vacuum, slow and fast pyrolysis of low and high ash paper waste sludge (PWS) is compared. • Reactor temperature and pellet size optimised to maximise liquid and solid product yields. • Gross energy recovery from solid and liquid was assessed. • Fast pyrolysis of low and high ash PWS offers higher energy conversions. - Abstract: The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (EC_s_u_m), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18–23 MJ kg"−"1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4–7 MJ kg"−"1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

  15. Speciation of mercury in sludge solids: washed sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lourie, A. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-24

    The objective of this applied research task was to study the type and concentration of mercury compounds found within the contaminated Savannah River Site Liquid Waste System (SRS LWS). A method of selective sequential extraction (SSE), developed by Eurofins Frontier Global Sciences1,2 and adapted by SRNL, utilizes an extraction procedure divided into seven separate tests for different species of mercury. In the SRNL’s modified procedure four of these tests were applied to a washed sample of high level radioactive waste sludge.

  16. Chemical analysis of zinc electroplating solutions by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jung, Sung-Mo; Cho, Young-Mo; Na, Han-Gil

    2007-01-01

    A quantitative analysis method used to analyze chlorine, iron and zinc in electroplating solutions, using X-ray spectrometry in atmospheric He mode, is proposed. The present research concerns the replacement of the conventional analyses of electroplating solutions with rapid and reproducible quantification using X-ray fluorescence spectrometer. An in-depth investigation conducted in the present study identifies the species present in the real electroplating solutions. XRD patterns and semi-quantitative results for the electroplating solutions show synthetic standards based on the compositional range of solutions by analyzing the electroplating solutions obtained in real processes. 28 calibration standard solutions are prepared by diluting liquid standard solutions certified by titration and ICP-OES analyses used to construct the XRF calibration curves for Cl, Fe and Zn. The suggested method showed satisfactory precision and accuracy in the analysis of electroplating solutions. The present study provides evidences that the proposed XRF spectrometry could be an alternative analytical method to replace the conventional techniques by comparing the uncertainties estimated for each method. (author)

  17. Modeling of Seepage Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...

  18. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  19. KEY ELEMENTS OF CHARACTERIZING SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE INSOLUBLES THROUGH SAMPLING AND ANALYSIS

    International Nuclear Information System (INIS)

    Reboul, S; Barbara Hamm, B

    2007-01-01

    Characterization of HLW is a prerequisite for effective planning of HLW disposition and site closure performance assessment activities. Adequate characterization typically requires application of a combination of data sources, including process knowledge, theoretical relationships, and real-waste analytical data. Consistently obtaining high quality real-waste analytical data is a challenge, particularly for HLW sludge insolubles, due to the inherent complexities associated with matrix heterogeneities, sampling access limitations, radiological constraints, analyte loss mechanisms, and analyte measurement interferences. Understanding how each of these complexities affects the analytical results is the first step to developing a sampling and analysis program that provides characterization data that are both meaningful and adequate. A summary of the key elements impacting SRS HLW sludge analytical data uncertainties is presented in this paper, along with guidelines for managing each of the impacts. The particular elements addressed include: (a) sample representativeness; (b) solid/liquid phase quantification effectiveness; (c) solids dissolution effectiveness; (d) analyte cross contamination, loss, and tracking; (e) dilution requirements; (f) interference removal; (g) analyte measurement technique; and (h) analytical detection limit constraints. A primary goal of understanding these elements is to provide a basis for quantifying total propagated data uncertainty

  20. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  1. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds

    NARCIS (Netherlands)

    Seghezzo, L.; Trupiano, A.P.; Liberal, V.; Todd, P.G.; Figueroa, M.E.; Gutierrez, M.A.; Silva Wilches, Da A.C.; Iribarnegaray, M.; Guerra, R.G.; Arena, A.; Cuevas, C.M.; Zeeman, G.; Lettinga, G.

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand

  2. Phase chemistry of tank sludge residual components. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brady, P.V.; Krumhansl, J.L.; Liu, J.; Nagy, K.L.

    1998-01-01

    'The proposed research will provide a scientific basis for predicting the long-term fate of radionuclides remaining with the sludge in decommissioned waste tanks. Nuclear activities in the United States and elsewhere produce substantial volumes of highly radioactive semi-liquid slurries that traditionally are stored in large underground tanks while final waste disposal strategies are established. Although most of this waste will eventually be reprocessed a contaminated structure will remain which must either be removed or decommissioned in place. To accrue the substantial savings associated with in-place disposal will require a performance assessment which, in turn, means predicting the leach behavior of the radionuclides associated with the residual sludges. The phase chemistry of these materials is poorly known so a credible source term cannot presently be formulated. Further, handling of actual radioactive sludges is exceedingly cumbersome and expensive. This proposal is directed at: (1) developing synthetic nonradioactive sludges that match wastes produced by the various fuel processing steps, (2) monitoring the changes in phase chemistry of these sludges as they age, and (3) relating the mobility of trace amounts of radionuclides (or surrogates) in the sludge to the phase changes in the aging wastes. This report summarizes work carried out during the first year of a three year project. A prerequisite to performing a meaningful study was to learn in considerable detail about the chemistry of waste streams produced by fuel reprocessing. At Hanford this is not a simple task since over the last five decades four different reprocessing schemes were used: the early BiPO 4 separation for just Pu, the U recovery activity to further treat wastes left by the BiPO 4 activities, the REDOX process and most recently, the PUREX processes. Savannah River fuel reprocessing started later and only PUREX wastes were generated. It is the working premise of this proposal that most

  3. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    International Nuclear Information System (INIS)

    Marañón, E.; Castrillón, L.; Quiroga, G.; Fernández-Nava, Y.; Gómez, L.; García, M.M.

    2012-01-01

    Highlights: ► Small increase in methane production was observed applying sonication pretreatment. ► Biogas productions between 720 and 1100 mL/Lreactor day were achieved. ► Volatile solids removal efficiencies ranged between 53% and 60%. ► Lower methane yields were obtained when operating under thermophilic conditions. ► Optimum OLR in lab-scale CSTR was 1.2–1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH 4 /kg VS feed for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 °C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20–28% in SMP. Lower methane yields were obtained when operating at 55 °C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  4. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  5. Environmentally safe management of radioactive and toxic sludges

    International Nuclear Information System (INIS)

    Shingarev, N.E.; Mukhin, I.V.; Polyakov, A.S.; Raginsky, L.S.; Semenov, B.A.

    2000-01-01

    Toxic industrial wastes constitute a significant part of Russian natural environment. The most reliable route to provide the long-term ecologic safety involves removal of toxicants or radioactive substances from polluted sites. With a view of processing toxic and radioactive sludges available in reservoirs, a process flowsheet is suggested that comprises the operations of sludge concentration, dehydration and granulation.Flocculation is an operation required to concentrate a solid phase. Polyacrylamide (PAA) and hydrolyzed PAA (HPAA) are standard flocculating agents used in the processing of sludges coming from storage facilities of radioactive wastes. HPAA is less efficient and it is shown that the optimized concentration of PAA is 4 mg/g solid. Flotation agents are used to extract the solid phase of sludges, it is shown that the process of extraction has to be carried out in 2 stages, the first flotation cycle with a Ph value between 7.5 and 9.5 and the second with a Ph adjustment to 3.5-6.0.The cake resulting from the sludge filtration has poor technological properties, it is advisable to produce a granular material. Hydro-granulation using hydrophobic flocculating agents may be implemented immediately after sludge concentration. The other granulation technique involves the sol-gel process used to incorporate sludge into a ceramic (aluminium oxide) matrix

  6. Removal of heavy metals from sewage sludge by extraction with organic acids

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    1999-01-01

    Waste water treatment in activated sludge plants results in the production of large amounts of surplus sludge. After composting the sludge can be reused as fertiliser and soil conditioner in agriculture. Compared to landfilling and incineration, utilisation of sludge-compost is a more sustainable

  7. Vitrified waste form performance modeling applied to the treatment and disposal of mixed-waste sludge at the Savannah River Site

    International Nuclear Information System (INIS)

    Whited, A.R.; Fjeld, R.A.

    1998-01-01

    Vitrification, the conversion of source components into a solid amorphous glass matrix, has emerged as a viable treatment technology for low-level radioactive waste and mixed waste. To dispose of vitrified low-level waste at US Department of Energy facilities, site-specific radiological performance assessments must be conducted to demonstrate that waste glass satisfies performance objectives for environmental protection. More than 2,500 m 3 of F0006-listed low-level mixed-waste sludge stored in the Reactor Materials Department (M-Area) at the Savannah River Site (SRS) is scheduled for vitrification. This study evaluates the feasibility of on-site disposal of vitrified M-Area waste at SRS. Laboratory leaching tests that accelerate the glass corrosion process are currently the best indicators of vitrified waste form durability. A method to incorporate laboratory leaching data into performance assessments is presented. A screening-level performance assessments code is used to model trench disposal of M-Area waste glass. The allowable leach rate for vitrified M-Area waste is determined based on both a maximum radiological dose equivalent of 4 mrem/yr for the drinking water pathway and a maximum uranium concentration of 20 microg/ell in groundwater. The allowable leach rate is compared with published long-term leaching data for a wide range of waste glass compositions and test conditions. This analysis demonstrates that trench disposal of the waste glass is likely to meet applicable performance objectives if the glass is of above average durability compared with the reference set of glasses

  8. Reuse of sludge from galvanotechnik industrial activity in the manufacture of concrete blocks for paving (PAVERS); Reutilizacao de lodo proveniente de atividade galvanotecnica industrial na fabricacao de blocos de concreto para pavimentacao (PAVERS)

    Energy Technology Data Exchange (ETDEWEB)

    Franco, J.M; Almeida, P.H.S.; Tavares, C.R.G., E-mail: phsoal@yahoo.com.br [Universidade Estadual de Maringa (UEM), PR (Brazil). Departamento de Engenharia Quimica; Sgorlon, J.G. [Universidade Tecnologica Federal do Parana (UTFPR), Apucarana, PR (Brazil)

    2014-07-01

    This study was to evaluate the interface replacing the cement by galvanic sludge (5-25%) in the production of concrete block paving analyzing the mechanical and microstructural effects of substitution. The results of the blocks produced with 5% of slude had values of compressive strength greater than 35 MPa and lower compared to the reference blocks with 28 days, the interface in cement paste by scanning electron microscopy (SEM) and x-ray diffraction (XRD) showed the presence of empty capillary arrays of crystalline ettringite (C6AS3H32) and calcium silicate (Ca2SiO4) responsible for the compressive strength and decrease the intensity of the peaks of quartz with respect to the reference blocks, revealing the promising applicability and feasibility of using waste electroplating in the construction industry. (author)

  9. Impact of coagulant and flocculant addition to an anaerobic dynamic membrane bioreactor (AnDMBR) treating waste-activated sludge

    NARCIS (Netherlands)

    Kooijman, G.; Lopes, Wilton; Zhou, Z.; Guo, H.; de Kreuk, M.K.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35°C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1–86), the reactor was operated as a

  10. A direct, single-step plasma arc-vitreous ceramic process for stabilizing spent nuclear fuels, sludges, and associated wastes

    International Nuclear Information System (INIS)

    Feng, X.; Einziger, R.E.; Eschenbach, R.C.

    1997-01-01

    A single-step plasma arc-vitreous ceramic (PAVC) process is described for converting spent nuclear fuel (SNF), SNF sludges, and associated wastes into a vitreous ceramic waste form. This proposed technology is built on extensive experience of nuclear waste form development and nuclear waste treatment using the commercially available plasma arc centrifugal (PAC) system. SNF elements will be loaded directly into a PAC furnace with minimum additives and converted into vitreous ceramics with up to 90 wt% waste loading. The vitreous ceramic waste form should meet the functional requirements for borosilicate glasses for permanent disposal in a geologic repository and for interim storage. Criticality safety would be ensured through the use of batch modes, and controlling the amount of fuel processed in one batch. The minimum requirements on SNF characterization and pretreatment, the one-step process, and minimum secondary waste generation may reduce treatment duration, radiation exposure, and treatment cost

  11. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    International Nuclear Information System (INIS)

    Butcher, B.M.; Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C.

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs

  12. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to

  13. Waste statistics 2001

    International Nuclear Information System (INIS)

    2004-01-01

    Reports to the ISAG (Information System for Waste and Recycling) for 2001 cover 402 Danish waste treatment plants owned by 295 enterprises. The total waste generation in 2001 amounted to 12,768,000 tonnes, which is 2% less than in 2000. Reductions are primarily due to the fact that sludge for mineralization is included with a dry matter content of 20% compared to 1,5% in previous statistics. This means that sludge amounts have been reduced by 808,886 tonnes. The overall rate of recycling amounted to 63%, which is 1% less than the overall recycling target of 64% for 2004. Since sludge has a high recycling rate, the reduction in sludge amounts of 808,886 tonnes has also caused the total recycling rate to fall. Waste amounts incinerated accounted for 25%, which is 1% more than the overall target of 24% for incineration in 2004. Waste going to landfill amounted to 10%, which is better than the overall landfill target for 2004 of a maximum of 12% for landfilling. Targets for treatment of waste from the different sectors, however, are still not complied with, since too little waste from households and the service sector is recycled, and too much waste from industry is led to landfill. (BA)

  14. Waste statistics 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Reports to the ISAG (Information System for Waste and Recycling) for 2001 cover 402 Danish waste treatment plants owned by 295 enterprises. The total waste generation in 2001 amounted to 12,768,000 tonnes, which is 2% less than in 2000. Reductions are primarily due to the fact that sludge for mineralization is included with a dry matter content of 20% compared to 1,5% in previous statistics. This means that sludge amounts have been reduced by 808,886 tonnes. The overall rate of recycling amounted to 63%, which is 1% less than the overall recycling target of 64% for 2004. Since sludge has a high recycling rate, the reduction in sludge amounts of 808,886 tonnes has also caused the total recycling rate to fall. Waste amounts incinerated accounted for 25%, which is 1% more than the overall target of 24% for incineration in 2004. Waste going to landfill amounted to 10%, which is better than the overall landfill target for 2004 of a maximum of 12% for landfilling. Targets for treatment of waste from the different sectors, however, are still not complied with, since too little waste from households and the service sector is recycled, and too much waste from industry is led to landfill. (BA)

  15. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N [Eurotec West A/S (DK); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H [Risoe National Laboratory, DTU (DK); Rasmussen, Soeren [SamRas (DK)

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  16. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N. (Eurotec West A/S (DK)); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H. (Risoe National Laboratory, DTU (DK)); Rasmussen, Soeren (SamRas (DK))

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  17. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    Science.gov (United States)

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  18. Effects of pattern characteristics on the copper electroplating process

    International Nuclear Information System (INIS)

    Ruan Wenbiao; Chen Lan; Li Zhigang; Ye Tianchun; Ma Tianyu; Wang Qiang

    2011-01-01

    The non-planarity of a surface post electroplating process is usually dependent on variations of key layout characteristics including line width, line spacing and metal density. A test chip is designed and manufactured in a semiconductor foundry to test the layout dependency of the electroplating process. By checking test data such as field height, array height, step height and SEM photos, some conclusions are made. Line width is a critical factor of topographical shapes such as the step height and height difference. After the electroplating process, the fine line has a thicker copper thickness, while the wide line has the greatest step height. Three typical topographies, conformal-fill, supper-fill and over-fill, are observed. Moreover, quantified effects are found using the test data and explained by theory, which can be used to develop electroplating process modeling and design for manufacturability (DFM) research. (semiconductor integrated circuits)

  19. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory's (ORNL) West End Treatment Facility's (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid

  20. Strategies for characterizing compositions of industrial pulp and paper sludge

    Science.gov (United States)

    Aslanzadeh, Solmaz; Kemal, Rahmat A.; Pribowo, Amadeus Y.

    2018-01-01

    The large quantities of waste sludge produced by the pulp and paper industry present significant environmental challenges. In order to minimize the amounts of waste, the pulp sludge should be utilized for productive applications. In order to find feasible solutions, the sludge need to be characterized. In this study, the potential of using acid pretreatment and ashing method to determine the chemical compositions of the sludge is investigated. This study shows that acid pretreatment could be used to dissolve and determine the composition of CaCO3 in the pulp sludge. CaCO3 removal also facilitates the measurement of fiber and ash (clay) contents by using the ashing method. The optimum acid concentration used to completely dissolve CaCO3 was determined using a titration method. Using this method, the measurement of the chemical composition of the sludge sample revealed that it consisted primarily of CaCO3 (55% w/w), clay (25%, w/w), and fibers (18%, w/w). Based on these chemical compositions, potential utilization for the sludge could be determined.

  1. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    International Nuclear Information System (INIS)

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-01-01

    Highlights: ► Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. ► System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m 3 d) −1 were analyzed. ► A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and HRT of 15d. ► With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. ► The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2–8.0 kg volatile solid (VS) (m 3 d) −1 , with VS reduction rates of 61.7–69.9%, and volumetric biogas production of 0.89–5.28 m 3 (m 3 d) −1 . A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m 3 d) −1 . This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  2. Phase Chemistry of Tank Sludge Residual Components

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Nagy, Kathryn L.

    2000-01-01

    About four or five distinct reprocessing technologies were used at various times in Hanford's history. After removing U and Pu (or later 137Cs and 90Sr), the strongly acidic HLW was ''neutralized'' to high pH (>13) and stored in steel-lined tanks. High pH was necessary to prevent tank corrosion. While each technology produced chemically distinct waste, all wastes were similar in that they were high pH, concentrated, aqueous solutions. Dominant dissolved metals were Fe and/or Al, usually followed by Ni, Mn, or Cr. In an effort to reduce waste volume, many of the wastes were placed in evaporators or allowed to ''self-boil'' from the heat produced by their own radioactive decay. Consequently, today's HLW has been aging at temperatures ranging from 20 to 160 C. Previous studies of synthetic HLW sludge analogues have varied in their exact synthesis procedures and recipes, although each involved ''neutralization'' of acidic nitrate salt solutions by concentrated NaOH. Some recipes included small amounts of Si, SO4 2-, CO3 2-, and other minor chemical components in the Hanford sludges. The work being conducted at the University of Colorado differs from previous studies and from parallel current investigations at Sandia National Laboratories in the simplicity of the synthetic sludge we are investigating. We are emphasizing the dominant role of Fe and Al, and secondarily, the effects of Ni and Si on the aging kinetics of the solid phases in the sludge

  3. Mineral and chemical composition of mine wastes of Markusovce sludge bed; Mineralne a chemicke zlozenie banskych odpadov odkaliska Markusovce

    Energy Technology Data Exchange (ETDEWEB)

    Radkova, A; Volekova, B [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra mineralogie a petrologie, 84215 Bratislava (Slovakia)

    2012-04-25

    Identification of minerals occurring in sludge bed material allows to assess the extent of migration of elements in the actual body of the sludge bed. It provides important information on the potential environmental pollution as well as on possible contamination of groundwater by potentially toxic elements. In Markusovce sludge bed there is saved about 9.9 million tons of waste material after flotation treatment of barytes - siderite-sulphide ore. Currently, the sludge bed is being extracted again due to the high content of barite. Concentrations of potentially toxic elements can be considered as relatively low. The most commonly occurring minerals in the samples are siderite and quartz, with minor rates are represented muscovite and dolomite. The content of barite increases towards the depth, which may be due to imperfect ore processing technology during the early stages of mining. Hematite is abundantly presented in the heavy fraction of the samples. The sulphide content is generally low, pyrite, chalcopyrite, tetrahedrite and cinnabar are most frequently presented. Monitored potentially toxic elements are mainly bounded to the primary sulfide minerals that are poorly oxidized. (authors)

  4. Co-composting as an oxygen stabilization of an organic fraction of municipal solid waste and industrial sewage sludge.

    Science.gov (United States)

    Milczarek, M; Neczaj, E; Parkitna, K

    2013-01-01

    The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW), sewage sludge, grass and sawdust. Differing proportions of biodegradable waste were investigated through changes of temperature, oxygen consumption, organic matters, moisture content, carbon, nitrogen, C/N ratio as well as heavy metals and pathogen microorganisms content. The present study has shown that addition of MSW above 10% had a negative impact on the composting process. The initial C/N of the mixtures with a higher MSW content was below 18. Lower losses of organic matter occurred during composting for the mixture with the highest addition of MSW. Although studies have shown that composting is a good method for the disposal of organic waste additional research is required in order to optimize the organic and nitrogen compounds degradation during the co-composting process. In conclusion, a 1:4:4:1 mixture of MSW:sewage sludge:grass:sawdust is recommended because it can achieve high temperature as well as the highest organic matter degradation and highest N content in the final composting product. The concentration of heavy and light metals in all composts was within the limits of regulation of the Polish Minister of Agriculture and Rural Development.

  5. Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production.

    Science.gov (United States)

    Kavitha, S; Yukesh Kannah, R; Yeom, Ick Tae; Do, Khac-Uan; Banu, J Rajesh

    2015-12-01

    In the present study, there was an investigation about the impact of a new combined thermo-chemo-sonic disintegration of waste activated sludge (WAS) on biodegradability. The outcome of sludge disintegration reveals that maximum Suspended Solids (SS) reduction and Chemical Oxygen Demand (COD) solubilization effectuated at a specific energy input of 5290.5kJ/kgTS, and was found to be 20%, 16.4%, 15% and 27%, 22%, and 20%, respectively for the three alkalis (NaOH, KOH, and Ca(OH)2). The conversion coefficient of the Volatile Suspended Solids (VSS) to product Soluble COD (SCOD), calculated by nonlinear regression modeling, was found to be 0.5530gSCOD/gVSS, 0.4587gSCOD/gVSS, and 0.4195gSCOD/gVSS for NaOH, KOH, and Ca(OH)2, respectively. In the biodegradability studies, the parameter evaluation provides an estimate of parameter uncertainty and correlation, and elucidates that there is no significant difference in biodegradability (0.413gCOD/gCOD, 0.367gCOD/gCOD, and 0.342gCOD/gCOD) for three alkalis (NaOH, KOH, and Ca(OH)2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling.

    Science.gov (United States)

    Ye, Tingting; Li, Xiang; Zhang, Ting; Su, Yinglong; Zhang, Wenjuan; Li, Jun; Gan, Yanfei; Zhang, Ai; Liu, Yanan; Xue, Gang

    2018-03-20

    Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu 2+ /g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu 2+ /g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  8. Bioconversion of Waste Fiber Sludge to Bacterial Nanocellulose and Use for Reinforcement of CTMP Paper Sheets

    Directory of Open Access Journals (Sweden)

    Genqiang Chen

    2017-09-01

    Full Text Available Utilization of bacterial nanocellulose (BNC for large-scale applications is restricted by low productivity in static cultures and by the high cost of the medium. Fiber sludge, a waste stream from pulp and paper mills, was enzymatically hydrolyzed to sugar, which was used for the production of BNC by the submerged cultivation of Komagataeibacter xylinus. Compared with a synthetic glucose-based medium, the productivity of purified BNC from the fiber sludge hydrolysate using shake-flasks was enhanced from 0.11 to 0.17 g/(L × d, although the average viscometric degree of polymerization (DPv decreased from 6760 to 6050. The cultivation conditions used in stirred-tank reactors (STRs, including the stirring speed, the airflow, and the pH, were also investigated. Using STRs, the BNC productivity in fiber-sludge medium was increased to 0.32 g/(L × d and the DPv was increased to 6650. BNC produced from the fiber sludge hydrolysate was used as an additive in papermaking based on the chemithermomechanical pulp (CTMP of birch. The introduction of BNC resulted in a significant enhancement of the mechanical strength of the paper sheets. With 10% (w/w BNC in the CTMP/BNC mixture, the tear resistance was enhanced by 140%. SEM images showed that the BNC cross-linked and covered the surface of the CTMP fibers, resulting in enhanced mechanical strength.

  9. Quantitative Analysis of Electroplated Nickel Coating on Hard Metal

    Directory of Open Access Journals (Sweden)

    Hassan A. Wahab

    2013-01-01

    Full Text Available Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt’s solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5 constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models.

  10. THE POSSIBILITIES OF NATURAL DEVELOPMENT OF ASH-SLUDGE BLENDS

    Directory of Open Access Journals (Sweden)

    Justyna Kiper

    2017-06-01

    Full Text Available Treatment of sewage results in creation of by-products such as screenings, fats, sand and the primary and secondary sludges – the most disposed elements in the technological process. Disposal of hazardous wastes is one of the most important issues in waste management. Regulation of the Minister of Economy dated 1 January 2016 (Dz.U. 2015 item 1277 – Journal of Laws which disallows the storage of sewage sludges, influenced the search for new solutions of their utilization. Forecasted increase in the amount of produced sludges and regulations in effect resulted in the increased interest in methods of utilization and studies on waste management. The study shows environmental possibilities of utilization of municipal sewage. The physicochemical and environmental properties of studied materials were determined. The studies were performed on sewer sludge obtained from mechanical biological municipal treatment plant “Pomorzany” in Szczecin. By-products of incineration biomass were used to prepare the sludge-ash mixes. Physicochemical properties were determined using reference methods according to current Standards and Instructions. To determine the environmental properties of sludge and mixes phytotoxicity test was used. The influence of soil’s toxicity on the plants was determined based on a method provided by the Regulation of the Minister of Environment dated 13 May 2004 on conditions in which it is assumed that waste is not hazardous (Dz.U. 2004 no. 128, item 1347 – Journal of Laws, “Determination of cytotoxic activity in garden cress”. Performed physicochemical tests and phytotoxicity test proved the applicability of prepared mixes in agriculture, remediation of anthropogenic soils and shutting down and revegetation of old landfills.

  11. Resolving an old environmental burden (landfill site of neutralization sludge Chvatalka)

    International Nuclear Information System (INIS)

    Zahornadska, J.

    2003-01-01

    In this issue the practical procedure of redevelopment works of old ecological load of stockpile of neutralisation sludge Chvatalka in individual phases of redevelopment intervention. It means the preparatory works in the locality of stockpile before initiation of remove, waste mining, manipulation with wastes, separation and transport of wastes to the utilisation to GEAM Dolni Rozinka, o.z., actual transplantation sampling and analytical control of neutralisation sludge and of waste material and of underground water, realisation of compacted cover of originated hole in the ground by inert material and realisation of technical and following biological reclamation of the locality. Redevelopment works were realised by the company Bystricko, a.s. (Bystrice pod Perstejnem). Mined waste were used in uranous technology by GEAM Dolni Rozinka, o.z. Mined contaminated material from contaminated bottom and dams was used in detoxication unit like secondary material in the reclamation process of uranous sludges. (author)

  12. [Distribution Characteristics of Heavy Metals in Environmental Samples Around Electroplating Factories and the Health Risk Assessment].

    Science.gov (United States)

    Guo, Peng-ran; Lei, Yong-qian; Zhou, Qiao-li; Wang, Chang; Pan, Jia-chuan

    2015-09-01

    This study aimed to investigate the pollution degree and human health risk of heavy metals in soil and air samples around electroplating factories. Soil, air and waste gas samples were collected to measure 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in two electroplating factories, located in Baiyun district of Guangzhou city. Geoaccumulation index and USEPA Risk Assessment Guidance for Superfund (RAGS) were respectively carried out. Results showed that concentrations of Hg and Pb in waste gas and Cr in air samples were higher than limits of the corresponding quality standards, and concentrations of Cd, Hg and Zn in soil samples reached the moderate pollution level. The HQ and HI of exposure by heavy metals in air and soil samples were both lower than 1, indicating that there was no non-carcinogen risk. CRAs and CRCr in soil samples were beyond the maximum acceptable level of carcinogen risk (10(-4)), and the contribution rate of CRCr to TCR was over 81%. CRCr, CRNi and TCR in air samples were in range of 10(-6) - 10(-4), indicating there was possibly carcinogen risk but was acceptable risk. CR values for children were higher than adults in soils, but were higher for adults in air samples. Correlation analysis revealed that concentrations of heavy metals in soils were significantly correlated with these in waste gas samples, and PCA data showed pollution sources of Cd, Hg and Zn in soils were different from other metals.

  13. Effect of municipal solid waste compost and sewage sludge on yield and heavy metal accumulation in soil and black cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    F. Akbarnejad

    2016-04-01

    Full Text Available In order to investigate the effect of municipal solid waste (MSw compost and sewage sludge (SS on yield and concentration of heavy metals in soil and black cumin (Nigella sativa L. an experiment with MSW compost at 0, 15, 30 t.ha-1 (C0, C15 and C30 and sewage sludge at 0, 15, 30 t.ha-1 (S0, S15 and S30 in a factorial experiment based on completely randomized design with three replications was conducted in greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. Results showed that MSW compost and SS had significant effects on plant dry matter. Increasing the amounts of SS increased dry matter of plant. But increasing MSW compost from 15 to 30 t.ha-1 was decreased in dry matter. The Effect of MSW compost and SS on concentration of heavy metals (Ni and Pb in plant except Cd was significant. Addition of MSW compost and sewage sludge increased availability of Pb, Ni and Cd in soil. But effect of MSW compost and sewage sludge on Cd availability was not significant. Results showed that the amounts of Ni exceed the standard limits in dry matter. Therefore in use of organic wastes for medicinal plants we should be careful..

  14. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes.

    Science.gov (United States)

    Pei, Jin; Yao, Hong; Wang, Hui; Ren, Jia; Yu, Xiaohua

    2016-08-01

    Biosolids from wastewater treatment plant (WWTP) are environmental reservoirs of antibiotic resistance genes, which attract great concerns on their efficient treatments. Anaerobic digestion (AD) is widely used for sewage sludge treatment but its effectiveness is limited due to the slow hydrolysis. Ozone and thermal hydrolysis pre-treatment were employed to improve AD efficiency and reduce antibiotic-resistant genes in municipal and pharmaceutical waste sludge (MWS and PWS, respectively) in this study. Sludge solubilization achieved 15.75-25.09% and 14.85-33.92% after ozone and thermal hydrolysis, respectively. Both pre-treatments improved cumulative methane production and the enhancements were greater on PWS than MWS. Five tetracycline-resistant genes (tet(A), tet(G), tet(Q), tet(W), tet(X)) and one mobile element (intI1) were qPCR to assess pre-treatments. AD of pre-treated sludge reduced more tet genes than raw sludge for both ozonation and thermal hydrolysis in PWS and MWS. Thermal hydrolysis pre-treatment was more efficient than ozone for reduction after AD. Results of this study help support management options for reducing the spread of antibiotic resistance from biosolids. Copyright © 2016. Published by Elsevier Ltd.

  15. The effects of pelleted sewage sludge on Norway spruce establishment and nitrogen dynamics

    International Nuclear Information System (INIS)

    Johannesson, Anders

    1999-01-01

    In Sweden there is a big resource in unutilised sewage sludge. Studies have shown that application of municipal sewage sludge can improve forest productivity and planting environment. This study is examining the effects of two types of pelleted sewage sludge (pure sludge and a mixture of sludge and domestic wastes compost) on nitrogen turnover. Large differences were found in the fertilisation effect of the different treatments. The pure sewage sludge pellets treatment showed significant increases for NH 4 -accumulation, nitrification and NO 3 -leaching in the top 10 cm of the soil. Uptake of nitrogen was increased in spruce plants and vegetation. The mixed sludge/domestic waste pellets treatment showed indications of a minor initial release of nitrogen. This is seen as a small but significant initial increase in soil nitrification. These results suggest that the pure sewage sludge pellet is an adequate nitrogen fertiliser. The mixed sludge though is inadequate at least in the short run

  16. Development of pathogen risk assessment models for the evaluation of sludge management alternatives

    International Nuclear Information System (INIS)

    Yeager, J.G.; Sheridan, R.E.; Ward, R.L.

    1979-01-01

    The constraints imposed on sewage treatment and disposal by clean air and water legislation make it clear that, in the near future, there will be increasing amounts of sewage sludge and fewer alternatives for its disposal. Additionally, this legislation has encouraged the use of waste management procedures which emphasize the recycling of waste materials. Decisions regarding optimal methods of sludge handling will primarily be controlled by economic considerations including the intrinsic value of the sludge, the cost of transporting sludge and sludge products, and the degree of treatment necessary to make the sludge suitable for particular applications. One principal reason to treat sludge is to inactivate pathogens. However, the actual health risks posed by pathogenic species that result from different methods of sludge utilization and how these risks are affected by different treatment processes are poorly understood. Therefore, computerized models are being developed to describe pathogen transport through environmental pathways and to help predict the risk of certain sludge utilization practices

  17. Electroplating method for producing ultralow-mass fissionable deposits

    International Nuclear Information System (INIS)

    Ruddy, F.H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit

  18. Co-combustion of sewage sludge and energy-rich waste fuels or forest fuels; Sameldning av roetslam och energirika avfallsbraenslen eller skogsbraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Kristina [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-10-01

    In this report literature on incineration of sewage sludge is summarises. In Sweden there is a yearly production of about 0,24 million-ton dry sewage sludge of which 50% is deposited. Recent changes in legislation will restrict and later prohibit the dumping of sewage sludge. Alternative methods for handling the material have not yet been found. In other parts of Europe the problem has been solved by incineration. Sludge incineration can be performed in several ways depending of the pretreatment. The sludge can be raw or digested, dewatered or dried. The sludge can be burnt as single fuel or in mixtures with other fuels. Focus in this work has been on co-combustion with biofuel or waste, as it will make use of existing plants. Digested sludge is also of major interest as 70% of the Swedish sludge is digested. The report describes the situation both in Sweden and in the rest of Europe. Sludge has a varying quality depending on origin and treatment, which affects the combustion properties. Ash and moisture contents differ from other fuels. The heating value of sewage sludge is approximately 20 MJ/kg per dry combustible matter and the amount of organic is around 70%. Compared to forest residue and demolition wood, sludge contains high levels of nitrogen and sulphur, which will cause emissions. The nitrogen level is about 10 times higher and the sulphur level 25 to 50 times higher. Sulphur, in combination with alkali metals, can cause deposit problems in boilers. However, sludge contains low levels of alkali. In the experimental investigation leaching of digested sludge showed low values on water conductivity which indicates a low concentration of sintering ash species in the sludge. A comparison of the aerodynamic properties of dried digested sludge and wood chips from energy coppice showed that sludge has a lower fraction of fines. This indicates that the sewage sludge is not likely to be carried over in the furnace but rather to stay in the fuel and ash bed on the

  19. In situ chemical characterization of waste sludges using FTIR-based fiber optic sensors

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Jeppson, D.W.; Lockrem, L.L.; Blewett, G.R.

    1994-02-01

    The characterization of unknown mixed wastes is a mandatory step in today's climate of strict environmental regulations. Cleaning up the nuclear and chemical wastes that have accumulated for 50 years at the Hanford Site is the largest single cleanup task in the United States today. The wastes are stored temporarily in carbon steel single- and double-shell tanks that are buried in tank farms at the Site. In the 1950s, a process to scavenge radioactive cesium and other soluble radionuclides in the wastes was developed to create additional tank space for waste storage. This scavenging process involved treatment of the wastes with alkali cyanoferrates and nickel sulfate to precipitate 137 Cs in the presence of nitrate oxidant. Recent safety issues have focused on the stability of cyanoferrate-bearing wastes with large quantities of nitrates and nitrites. Nitrate has been partially converted to nitrite as a result of radiolysis during more than 35 years of storage. The major safety issue is the possibility of the presence of local hot spots enriched in 137 Cs and 90 Sr that under optimum conditions can self-heat causing dry out and a potential runaway reaction of the cyanoferrates with the nitrates/nitrites). For waste tank safety, accurate data of the concentration and distribution of cyanoferrates in the tanks are needed. Because of the extensive sampling required and the highly restricted activities allowed in the tank farms, simulated tank wastes are used to provide an initial basis for identifying and quantifying realistic concerns prior to waste remediation. Fiber optics provide a tool for the remote and in situ characterization of hazardous and toxic materials. This study is focused on near-infrared (NIR) and mid-infrared (MIR) fiber optic sensors for in situ chemical characterization of Hanford Site waste sludges

  20. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region.

  1. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  2. Radioactive waste processing method and device

    International Nuclear Information System (INIS)

    Ozaki, Shigeru; Tateyama, Shinji.

    1998-01-01

    A powdery activated carbon is charged to radioactive liquid wastes to form a mixed slurry. The slurry is subjected to solid/liquid separation, and a high-molecular water absorbent is charged to the separated activated carbon sludge wastes to process them while stirring. The high-molecular water absorbent comprises a graft polymer of starch and acrylonitrile or a cross-linked polymer of sodium acrylate and a cross-linking agent. The high-molecular water absorbing agent is previously charged to a vessel for containing the wasted active carbon sludges. The device of the present invention comprises a filtration device for solid/liquid separation of the mixed slurry, a sludge-containing vessel, a device for charging the high-molecular water absorbent and a sludge stirring device. The device of charging the high-molecular water absorbent comprises a plurality of weighing devices for weighing the change of the weight of the charged products and a conveyor for transferring the sludge-containing vessels. With such a constitution, stable sludge can be obtained, and activated carbon sludge wastes can be burnt without crushing them. (T.M.)

  3. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    Science.gov (United States)

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Pathogen reduction in sludges by irradiation

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1979-01-01

    There is international interest in the use of ionizing radiation in waste water and sludge treatment. Results of programs to study effects of radiation on disease-causing microbes commonly found in wastewater sludges will be discussed. Although emphasis will be on the work conducted at Sandia Laboratories, the discussion will include work in progress in West Germany, France, South Africa, and other countries

  5. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  6. Impact of Brewery Waste Sludge on Sorghum (Sorghum bicolor L. Moench Productivity and Soil Fertility in Harari Regional State, Eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Nano Alemu Daba

    2017-04-01

    Full Text Available The study was conducted on farmers' field in sofi district of Harari Regional State during 2013/2014 main cropping season, eastern Ethiopia, to investigate the impact of brewery sludge on sorghum production and soil fertility. The treatments comprised seven levels of brewery sludges (0, 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 t ha-1 and NP inorganic fertilizer at recommended rate, arranged in randomized complete block design with four replications. Application of brewery sludge at 15 t ha-1 significantly increased the yield and biomass yield of sorghum by 79 and 85% over control and by 57 and 67% over NP application, respectively. There was no effect of brewery sludge application on heavy metals concentrations in soil after crop harvest, compared to international standard tolerable level. Co and Se levels were high in the control as well as in the soils treated with brewery sludge indicating the already high concentration of these heavy metals in the soils of the area. Plots, which received higher brewery sludge application, resulted in decreased or less percentage of grain nitrogen content showing the independence of grain protein content on lower brewery sludge level. The nitrogen uptake by sorghum grain, straw and the total was maximum (52.68, 44.25 and 79.03 kg ha-1, respectively with the application of brewery waste sludge at 10 and 15 t ha-1 which were significantly higher than the other brewery sludge and NP mineral fertilizer applications.

  7. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    International Nuclear Information System (INIS)

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both 137 Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report

  8. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    Science.gov (United States)

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  9. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.

    Science.gov (United States)

    Wang, Fen; Wang, Yong; Ji, Min

    2005-08-31

    Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.

  10. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content.

    Science.gov (United States)

    Dewil, Raf; Baeyens, Jan; Appels, Lise

    2007-06-18

    Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.

  11. Selected species and amendments for revegetating saline flue gas desulfurization sludge: greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Salo, L.F.; Artiola, J.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1997-07-01

    Codisposing low-volume wastes from electrical generating stations with flue gas desulfurization (FGD) scrubber sludge simplifies waste disposal but produces a saline waste that presents unique challenges to revegetation. This greenhouse study identified plants and amendments for revegetating a saline FGD sludge disposal pond in eastern Arizona. Survival and growth of 16 sown accessions plus two vegetatively propagated accessions of inland saltgrass were investigated in saline FGD sludge. Amendments used included two soils from the disposal site, Claysprings gravelly clay and Sheppard sand, composted steer manure, and N-P-K fertilizers. Sols and manure were added at 2:1 sludge/amendment (v/v). Plants were irrigated with a 1:1 mixture of disposal pond water and untreated well water. One accession of inland saltgrass, two cultivars of tall wheatgrass, Altai wildrye tall fescue and alkali sacaton show promise for revegetating saline FGD sludge disposal sites. Survival rates were the same in unamended sludge and in sludge amended with the clay soil or with N-P-K fertilizer. Plant dry matter produced was the same in unamended sludge and in sludge amended with either of the soils or with N-P-K. Although survival rates were significantly lower with manure than with any other amendment, growth was significantly greater by all measurements, due to the high fertility of this treatment. 34 refs., 5 tabs.

  12. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Maranon, E., E-mail: emara@uniovi.es [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y. [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Gomez, L.; Garcia, M.M. [Zero Emissions Technology, 41018 Seville (Spain)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  13. Risk assessments of polybrominated diphenyl ethers (PBDEs) during sludge application in China

    Science.gov (United States)

    Qian, Jun

    2018-02-01

    Due to increasingly less space in municipal environment, waste management has become an urgent issue worldwide. As one of common municipal waste, sewage sludge from wastewater treatment plants (WWTPs) contains abundant nutrients, some of which can be quite essential for plant growth. In consideration of nutrient recycling and energy saving, sludge application has been frequently promoted in many countries across the world. However, even after several sludge stabilization procedures, sewage sludge may still contain a large variety of toxic pollutants, especially some emerging organic contaminants (EOCs). Applied in various household products and plastic industries as additives, polybrominated diphenyl ethers (PBDEs) have been constantly detected in sewage sludge samples from several cities in China since 2005, as well as some biosolid samples after sludge stabilization processes, suggesting their strong persistence and wide occurrence. During sludge application onto farmland soils, PBDEs may desorb from sludge particles and get attached by soil organic matter (SOM), followed by plant root uptake and translocation to aboveground tissues. In this study, data about current pollution of PBDEs in sewage sludge samples from China was reviewed, and the potential risks during sludge application was comprehensively assessed.

  14. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludgeSludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  16. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  17. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  18. Enhanced remediation of an oily sludge with saline water ...

    African Journals Online (AJOL)

    Enhanced remediation of an oily sludge with saline water. ... the remediation of an oily sludge, which was part of the waste stream from the improvement ... m3 of fresh water respectively while 'treatment' reactors C and D received ...

  19. Characterization program in the framework of the national sewage sludge plan in Spain

    International Nuclear Information System (INIS)

    Lopez Lopez, M. J.

    2009-01-01

    Sewage Sludge is the waste originated from the process of treatment of waste water. Due to the physical-chemical processes involved in the treatment, the sludge tends to concentrate heavy metals and poorly biodegradable trace organic compounds as well as potentially pathogenic organisms (viruses, bacteria, etc.). However, sludge is rich in nutrients such as nitrogen and phosphorous and contains valuable organic matter that is useful when soils are depleted or subject to erosion. (Author)

  20. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.

    Science.gov (United States)

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu; Chung, Ying-Chien

    2017-10-27

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship ( r ² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.