WorldWideScience

Sample records for electrophoretic partiele deposition

  1. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  2. Applications of graphene electrophoretic deposition. A review.

    Science.gov (United States)

    Chavez-Valdez, A; Shaffer, M S P; Boccaccini, A R

    2013-02-14

    This Review summarizes research progress employing electrophoretic deposition (EPD) to fabricate graphene and graphene-based nanostructures for a wide range of applications, including energy storage materials, field emission devices, supports for fuel cells, dye-sensitized solar cells, supercapacitors and sensors, among others. These carbonaceous nanomaterials can be dispersed in organic solvents, or more commonly in water, using a variety of techniques compatible with EPD. Most deposits are produced under constant voltage conditions with deposition time also playing an important role in determining the morphology of the resulting graphene structures. In addition to simple planar substrates, it has been shown that uniform graphene-based layers can be deposited on three-dimensional, porous, and even flexible substrates. In general, electrophoretically deposited graphene layers show excellent properties, e.g., high electrical conductivity, large surface area, good thermal stability, high optical transparency, and robust mechanical strength. EPD also enables the fabrication of functional composite materials, e.g., graphene combined with metallic nanoparticles, with other carbonaceous materials (e.g., carbon nanotubes) or polymers, leading to novel nanomaterials with enhanced optical and electrical properties. In summary, the analysis of the available literature reveals that EPD is a simple and convenient processing method for graphene and graphene-based materials, which is easy to apply and versatile. EPD has, therefore, a promising future for applications in the field of advanced nanomaterials, which depend on the reliable manipulation of graphene and graphene-containing systems.

  3. Electrophoretic Deposition of Gallium with High Deposition Rate

    Directory of Open Access Journals (Sweden)

    Hanfei Zhang

    2014-12-01

    Full Text Available In this work, electrophoretic deposition (EPD is reported to form gallium thin film with high deposition rate and low cost while avoiding the highly toxic chemicals typically used in electroplating. A maximum deposition rate of ~0.6 μm/min, almost one order of magnitude higher than the typical value reported for electroplating, is obtained when employing a set of proper deposition parameters. The thickness of the film is shown to increase with deposition time when sequential deposition is employed. The concentration of Mg(NO32, the charging salt, is also found to be a critical factor to control the deposition rate. Various gallium micropatterns are obtained by masking the substrate during the process, demonstrating process compatibility with microfabrication. The reported novel approach can potentially be employed in a broad range of applications with Ga as a raw material, including microelectronics, photovoltaic cells, and flexible liquid metal microelectrodes.

  4. Application of design of experiment on electrophoretic deposition of ...

    Indian Academy of Sciences (India)

    Unknown

    ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH ...

  5. Electrophoretic deposition of titania nanoparticles: Wet density of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Electrophoretic deposition (EPD) of titania nanoparticles was performed at different voltages and times. The wet density of deposits was calculated according to the Archimedes' principle. The wet density as well as the electric field over the deposits increased with time and attained the plateau at longer times. The.

  6. Electrophoretic deposition of titania nanoparticles: Wet density of ...

    Indian Academy of Sciences (India)

    Electrophoretic deposition (EPD) of titania nanoparticles was performed at different voltages and times. The wet density of deposits was calculated according to the Archimedes' principle. The wet density as well as the electric field over the deposits increased with time and attained the plateau at longer times. The velocity at ...

  7. Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended non-colloidal titanium during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kok-Tee [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia); Sorrell, C.C., E-mail: C.Sorrell@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2011-03-25

    Coarse ({<=}20 {mu}m) titanium particles were deposited on low-carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(diallyldimethylammonium chloride) (PDADMAC) as polymeric charging agent. Preliminary data on the electrophoretic mobilities and electrical conductivities on the suspensions of these soft particles as well as the solutions themselves as a function of PDADMAC level were used as the basis for the investigation of the EPD parameters in terms of the deposition yield as a function of five experimental parameters: (a) PDADMAC addition level, (b) solids loading, (c) deposition time, (d) applied voltage, and (e) electrode separation. These data were supported by particle sizing by laser diffraction and deposit surface morphology by scanning electron microscopy (SEM). The preceding data demonstrated that Ti particles of {approx}1-12 {mu}m size, electrosterically modified by the PDADMAC charging agent, acted effectively as colloidal particles during EPD. Owing to the non-colloidal nature of the particles and the stabilization of the Ti particles by electrosteric forces, the relevance of the zeta potential is questionable, so the more fundamental parameter of electrophoretic mobility was used. A key finding from the present work is the importance of assessing the electrophoretic mobilities of both the suspensions and solutions since the latter, which normally is overlooked, plays a critical role in the ability to interpret the results meaningfully. Further, algebraic uncoupling of these data plus determination of the deposit yield as a function of charging agent addition allow discrimination between the three main mechanistic stages of the electrokinetics of the process, which are: (1) surface saturation; (2) compression of the diffuse layer, growth of polymer-rich layer, and/or competition between the mobility of Ti and PDADMAC; and (3) little or no decrease in electrophoretic mobility of Ti

  8. Effect of acids and bases on electrophoretic deposition of

    Czech Academy of Sciences Publication Activity Database

    Cihlář, J.; Drdlík, D.; Cihlářová, Z.; Hadraba, Hynek

    2013-01-01

    Roč. 33, č. 10 (2013), s. 1885-1892 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GD106/09/H035 Institutional support: RVO:68081723 Keywords : Electrophoretic deposition * Zirconia * Alumina * 2-Propanol * Electrosteric stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  9. Mesoscale Particle-Based Model of Electrophoretic Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; Weisgraber, Todd H.

    2017-01-17

    We present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increases and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. We find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.

  10. Behaviors and mechanism of electrolyte electrophoresis during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ciou, Sian-Jie; Fung, Kuan-Zong [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101 (China); Chiang, Kai-Wei [Department of Geomatics, National Cheng Kung University, Tainan 70101 (China)

    2008-01-03

    Electrochemical experiments, including cyclic voltammetry (CV) experiments, galvanostatic experiments, potentiostatic experiments, and kinetic experiments of the LSM electrode, were used to investigate the influence of a deposit on the electrode surface on the electrophoresis of protons in a porous media during electrophoretic deposition (EPD). In the kinetic experiments, the deposit reduced the electrochemical reaction rate of the LSM electrode according to the Tafel plots for the cathode where the YSZ was deposited. It was also observed that hydrogen was reduced at the cathode from the cyclic voltammogram. In the galvanostatic experiments, the proton concentration increased near the cathode because the deposit obstructed the electrode reaction. In the potentiostatic experiments, similar phenomena were observed. The deposit from the EPD became an obstacle to the electrochemical reaction, resulting in unusual kinetic behaviors of proton electrophoresis during electrolysis. (author)

  11. Electrophoretic deposition of zinc oxide on graphite drawn on paper

    Science.gov (United States)

    Sebastian, C. S.; Herrera, M. U.; Tapia, A. K. G.

    2017-04-01

    Flexible substrates have many promising applications in sensing, electronics, and electromagnetic shielding and energy storage among many others. Paper can serve as substrate for these kinds of technologies offering a cheaper alternative. In this study, Zinc oxide (ZnO) was successfully deposited on graphite drawn on paper using electrophoretic deposition (EPD). Graphite from commercially-available pencil was drawn on paper. Graphite drawn on paper was used as electrodes for the EPD process. High-voltage power supply was used as source while ground ZnO in acetone was used as suspension in the deposition process. Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDX) results reveal the deposition of ZnO on Graphite. In addition, the electrical contact of the ZnO-graphite interface showed Ohmic behaviour by two-point probe method.

  12. Local electrophoretic deposition using a nanopipette for micropillar fabrication

    Science.gov (United States)

    Iwata, Futoshi; Metoki, Junya

    2017-12-01

    A novel and simple technique was developed for the fabrication of micropillars using a nanopipette that is a tapered glass capillary with a micrometer-sized aperture at the tip. The nanopipette was filled with a colloidal solution that included metal nanoparticles. Its tip was put in contact with a substrate, and the substrate was moved downward for continuous deposition of the metal colloidal solution to form micropillars. To improve fabrication reproducibility, the amount of Au colloidal solution deposited was controlled by a feedback loop that maintained a predefined constant current during electrophoretic deposition. The stiffness of the fabricated micropillars was evaluated by applying a loading force using a microcantilever under scanning electron microscopy. The Young’s modulus of the fabricated pillars was measured to be in the range of 7.7–14.8 GPa, depending on the fabrication parameters of the predefined current and fabrication speed.

  13. Electrophoretic deposition: a quantitative model for particle deposition and binder formation from alcohol-based suspensions

    NARCIS (Netherlands)

    Beer, De E.; Duval, J.F.L.; Meulenkamp, E.A.

    2000-01-01

    We investigated electrophoretic deposition from a suspension containing positively charged particles, isopropanol, water, and Mg(NO3)2, with the aim of describing the deposition rates of the particles and Mg(OH)2, which is formed due to chemical reactions at the electrode, in terms of quantitative

  14. Electrophoretic deposition of semiconducting polymer metal oxide nanocomposites and characterization of the resulting films

    OpenAIRE

    Vu, Quoc Trung

    2005-01-01

    Conducting polymer nanocomposites composed of metal oxides and polythiophene was synthesized by chemical polymerization in colloidal suspensions. The electrochemical and photoelectrochemical properties of such nanocomposites have been studied. For these investigations films of nanocomposites were prepared by an electrophoretic deposition process. The deposition process was studied in greater detail and kinetic details were determined. The high voltage electrophoretic deposition process was co...

  15. AC electrophoretic deposition of organic-inorganic composite coatings.

    Science.gov (United States)

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Electrophoretic deposition of unstable colloidal suspensions for superhydrophobic surfaces.

    Science.gov (United States)

    Joung, Young Soo; Buie, Cullen R

    2011-04-05

    A novel method to fabricate superhydrophobic surfaces using electrophoretic deposition (EPD) is presented. EPD presents a readily scalable, customizable, and potentially low cost surface manufacturing process. Low surface energy materials with high surface roughness are achieved using EPD of unstable hydrophobic SiO(2) particle suspensions. The effect of suspension stability on surface roughness is quantitatively explored with optical absorbance measurements (to determine suspension stability) and atomic force microscopy (to measure surface roughness). Varying suspension pH modulates suspension stability. Contrary to most applications of EPD, we show that superhydrophobic surfaces favor mildly unstable suspensions since they result in high surface roughness. Particle agglomerates formed in unstable suspensions lead to highly irregular films after EPD. After only 1 min of EPD, we obtain surfaces with low contact angle hysteresis and static contact angles exceeding 160°. We also present a technique to enhance the mechanical durability of the superhydrophobic surfaces by adding a polymeric binder to the suspension prior to EPD.

  17. Electrophoretic deposition of ultrasonicated and functionalized nanomaterials for multifunctional composites

    Science.gov (United States)

    An, Qi

    Recent advances in the synthesis and characterization of nanostructured composite materials have enabled a broad range of opportunities for engineering the properties of polymer-matrix materials. Carbon nanotubes (CNTs) are known to have exceptional mechanical, electrical and thermal properties. Because of their small size, CNTs can occupy regions between traditional micro-scale reinforcements and create a hierarchical micro/nano structure spanning several orders of magnitude. Since CNTs possess critical reinforcement dimensions below 100 nm, new opportunities exist for tailoring the fiber/matrix interphase regions and ultimately the mechanical and electrical performance of advanced fiber-composites with minimal impact on the fiber-dominated properties. This growing interest in nanoscale hybridization with conventional fiber reinforcement has highlighted the need to develop new processing techniques for successful CNT integration. In this work, a novel and industrially scalable approach for producing multi-scale hybrid carbon nanotube/fiber composites using an electrophoretic deposition (EPD) technique has been studied as an alternative to in situ chemical vapor deposition growth (CVD). EPD is a widely used industrial coating process employed in areas ranging from automotive to electronics production. The method has a number of benefits which include low energy use and the ability to homogenously coat complex shapes with well adhered films of controlled thickness and density. A stable aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) was produced using a novel ozonolysis and ultrasonication (USO) technique that results in dispersion and functionalization in a single step. Networks of CNTs span between adjacent fibers and the resulting composites exhibit significant increases in electrical conductivity and considerable improvements in the interlaminar shear strength and fracture toughness. In order to better understand the underlying mechanisms behind the

  18. Electrophoretic deposition of silica on the anodized stainless steel

    Science.gov (United States)

    Suari, Ni Made Intan Putri; Setyawan, Heru

    2017-05-01

    The aim of this work is to evaluate the corrosion behavior of anodized stainless steel substrates coated by electrophoretic deposition (EPD) from stabilized aqueous SiO2 sol-acetic acid-isopropyl alcohol. An oxalic acid solution was used as the electrolyte in anodization processes. The effect of oxalic acid concentration and voltage of anodization on the corrosion protective properties of deposited films were evaluated. The sols for EPD were prepared by mixing of given volumes of acetic acid, isopropanol and SiO2 with the composition in molar ratio CH3COOH/isopropanol/SiO2 is 0.1938/0.5048/0.0028. The corrosion behavior of the coated substrates were studied by linear polarization and electrochemical impedance spectroscopy (EIS). Potentiodynamic studies of coating showed that the corrosions protection behavior of silica coating increase by the increase of oxalic acid concentration and voltage of anodization. This behavior was confirmed by EIS showing that the pore resistance increase by the increase of oxalic acid concentration and voltage of anodization. EPD with anodization is thus proposed as a good alternative method to obtain coating with good protective properties.

  19. Graphene Coating on Copper by Electrophoretic Deposition for Corrosion Prevention

    Directory of Open Access Journals (Sweden)

    N. Usha Kiran

    2017-11-01

    Full Text Available In this paper, we report the use of a simple and inexpensive electrophoretic deposition (EPD technique to develop thin, uniform, and transparent graphene oxide (GO coating on copper (Cu substrate on application of 10 V for 1 s from an aqueous suspension containing 0.03 wt % graphene oxide. GO was partially reduced during the EPD process itself. The GO coated on Cu was completely reduced chemically by using sodium borohydride (NaBH4 solution. The coatings were characterized by field emission scanning electron microscope (FESEM, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR, XRD, and UV/VIS spectrophotometry. Corrosion resistance of the coatings was evaluated by electrochemical measurements under accelerated corrosion condition in 3.5 wt % NaCl solution. The GO coated on Cu and chemically reduced by NaBH4 showed more positive corrosion potential (Ecorr (−145.4 mV compared to GO coated on Cu (−182.2 mV and bare Cu (−235.3 mV, and much lower corrosion current (Icorr (7.01 µA/cm2 when compared to 15.375 µA/cm2 for bare Cu indicating that reduced GO film on copper exhibit enhanced corrosion resistance. The corrosion inhibition efficiency of chemically reduced GO coated Cu was 54.40%, and its corrosion rate was 0.08 mm/year as compared to 0.18 mm/year for bare copper.

  20. Advancement in Preparation of Hydroxyapatite/bioglass Graded Coatings by Electrophoretic Deposition

    Science.gov (United States)

    Yao, Liang; Chen, Chuanzhong; Wang, Diangang; Bao, Quanhe; Ma, Jie

    Electrophoretic deposition is a good method in the preparation of hydroxyapatite/bioglass graded coatings. Its processing parameters are easy to be operated. As it is nonbeeline process, it can be used in the deposition of complex shape and porous surface. This paper reviewed the advancement of the graded coatings in recent years, concluded the principles, characters, steps of electrophoretic deposition of bioceramic coatings and analyzed influencing factors in detail, such as granularity of suspension, aging of suspension, dispersion media, PH of suspension, electricity, voltage, deposition time, pretreatment of substrate and sintering. The foreground of hydroxyapatite/bioglass graded coatings is expected.

  1. Influence of Deposition Condition on Y2O3 Coatings Produced by Pulsed Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2016-01-01

    Full Text Available Y2O3 nanoparticle suspension aqueous solution was prepared using citric acid. Then, Y2O3 film was deposited using this solution with pulsed electrophoretic deposition (EPD. A dense Y2O3 film of 25.7 μm thickness was obtained with deposition conditions of 0.5 wt% Y2O3 concentration, bias voltage of 0.5 V, and bias frequency of 1 kHz. The respective resistivities of the as-deposited film and films heat-treated at 200°C and 400°C were 2.84 × 103 Ω·cm, 5.36 × 104 Ω·cm, and 2.05 × 106 Ω·cm. A 59.8 μm thick dense Y2O3 film was obtained using two-step deposition with change of the bias voltage: a first step of 0.5 V and a second step of 2.0 V.

  2. Kinetics of monolayer and bilayer nanoparticle film formation during electrophoretic deposition

    Science.gov (United States)

    2014-01-01

    deposition of ceramics: fundamentals and applications Introduction Electrophoretic deposition ( EPD ), a versatile, scalable, and rapid process used to... EPD could be dramatically enhanced if a more complete model that describes EPD was to exist. Some models exist that attempt to predict the amount of...deposition using a constant voltage.11 The vast majority of these models involve the EPD of materials suspended in polar solvents, which have notably

  3. Effect of molecular weight on the electrophoretic deposition of carbon black nanoparticles in moderately viscous systems.

    Science.gov (United States)

    Modi, Satyam; Panwar, Artee; Mead, Joey L; Barry, Carol M F

    2013-08-06

    Electrophoretic deposition from viscous media has the potential to produce in-mold assembly of nanoparticles onto three-dimensional parts in high-rate, polymer melt-based processes like injection molding. The effects of the media's molecular weight on deposition behavior were investigated using a model system of carbon black and polystyrene in tetrahydrofuran. Increases in molecular weight reduced the electrophoretic deposition of the carbon black particles due to increases in suspension viscosity and preferential adsorption of the longer polystyrene chains on the carbon black particles. At low deposition times (≤5 s), only carbon black deposited onto the electrodes, but the deposition decreased with increasing molecular weight and the resultant increases in suspension viscosity. For longer deposition times, polystyrene codeposited with the carbon black, with the amount of polystyrene increasing with molecular weight and decreasing with greater charge on the polystyrene molecules. This deposition behavior suggests that use of lower molecular polymers and control of electrical properties will permit electrophoretic deposition of nanoparticles from polymer melts for high-rate, one-step fabrication of nano-optical devices, biochemical sensors, and nanoelectronics.

  4. Application of design of experiment on electrophoretic deposition of ...

    Indian Academy of Sciences (India)

    The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent ...

  5. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    Science.gov (United States)

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  6. An analysis of current transients during electrophoretic deposition (EPD) from colloidal TiO2 suspensions.

    Science.gov (United States)

    Baldisserri, C; Gardini, D; Galassi, C

    2010-07-01

    This is a simple quantitative analysis of the electrical current transients recorded during the electrophoretic deposition (EPD) of TiO(2) particles from ethanol-based suspensions in which the linear correlation between the mass deposited and the charge passed was verified experimentally. Using this experimental knowledge as our starting point, we were able to test a simple electrical model of a deposition cell for its consistency with electrical current density data measured during EPD. Assuming that the background electrochemistry was controlled resistively rather than diffusively, we then tentatively exploited the electrochemical data to gain information on the structure of the deposit during its growth. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Green synthesis and electrophoretic deposition of Ag nanoparticles on SiO₂/Si(100).

    Science.gov (United States)

    Giallongo, G; Rizzi, G A; Weber, V; Ennas, G; Signorini, R; Granozzi, G

    2013-08-30

    Plasmonic substrates were prepared by electrophoretic deposition of Ag nanoparticles on SiO2/Si(100). The Ag nanoparticles were obtained using [Ag(NH3)2](+) as the Ag precursor and d-glucose as the reducing agent. Under optimized conditions, this simple and green synthesis method furnished a suspension of Ag nanoparticles with a narrow dimensional dispersion (centered around 27 nm) and a negative z-potential, suitable for electrophoretic deposition. Samples were chemically, optically and morphologically characterized by photoemission and UV-vis spectroscopy and electron microscopy, and tested as substrates for surface enhanced Raman spectroscopy. Despite being a very simple procedure, good enhancement factors were measured thanks to the formation of hot spots, formed by sandwiching the analyte (benzenethiol) between sequentially deposited Ag nanoparticles.

  8. Electrophoretic deposition of silica-hyaluronic acid and titania-hyaluronic acid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7 (Canada)

    2011-06-15

    Research highlights: > The kinetics of electrodeposition of hyaluronic acid has been studied using quartz crystal microbalance. > Composite films containing silica and titania were prepared by electrophoretic deposition. > The deposition yield and deposit composition can be varied by variation of deposition time, voltage and bath composition. > We concluded that the method offers the advantages of room temperature processing for the fabrication of composite materials for biomedical applications. - Abstract: Thin films of hyaluronic acid were prepared by anodic electrophoretic deposition (EPD) and the deposition kinetics was studied using quartz crystal microbalance. EPD method has been developed for the fabrication of new ceramic-biopolymer nanocomposites containing silica and titania nanoparticles in the matrix of hyaluronic acid. The deposit thickness was varied in the range of 0-10 {mu}m. The composition of the deposits can be varied by the variation of silica and titania concentration in the suspensions. The deposits were studied by thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The method offers the advantages of room temperature processing of nanocomposite materials for biomedical applications.

  9. Electrophoretic deposited TiO(2) pigment-based back reflectors for thin film solar cells.

    Science.gov (United States)

    Bills, Braden; Morris, Nathan; Dubey, Mukul; Wang, Qi; Fan, Qi Hua

    2015-02-09

    Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This work reports titanium dioxide (TiO(2)) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectric breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.

  10. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates.

    Science.gov (United States)

    Sarkar, Anirban; Daniels-Race, Theda

    2013-05-13

    Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs) by electrophoretic deposition (EPD) on semiconductor (silicon) substrates with 3-aminopropyl-triethoxysilane (APTES) surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs) is greatly assisted by the Coulombic force of attraction existing between the positively charged -NH₂ surface groups of APTES and the acid treated, negatively charged nanotubes migrating towards the deposition surfaces. The remarkable deposition characteristics of the CNT coatings by EPD in comparison to the dip coating method and the influence of isopropyl (IPA)-based CNT suspension in the fabricated film quality has also been revealed in this study. The effect of varying APTES concentration (5%-100%) on the Raman spectroscopy and thickness of the deposited CNT film has been discussed in details, as well. The deposition approach has eliminated the need of metal deposition in the electrophoretic deposition approach and, therefore, establishes a cost-effective, fast and entirely room temperature-based fabrication strategy of CNT thin films for a wide range of next generation electronic applications.

  11. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES Surface Functionalized Silicon Substrates

    Directory of Open Access Journals (Sweden)

    Theda Daniels-Race

    2013-05-01

    Full Text Available Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs by electrophoretic deposition (EPD on semiconductor (silicon substrates with 3-aminopropyl-triethoxysilane (APTES surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs is greatly assisted by the Coulombic force of attraction existing between the positively charged –NH2 surface groups of APTES and the acid treated, negatively charged nanotubes migrating towards the deposition surfaces. The remarkable deposition characteristics of the CNT coatings by EPD in comparison to the dip coating method and the influence of isopropyl (IPA-based CNT suspension in the fabricated film quality has also been revealed in this study. The effect of varying APTES concentration (5%–100% on the Raman spectroscopy and thickness of the deposited CNT film has been discussed in details, as well. The deposition approach has eliminated the need of metal deposition in the electrophoretic deposition approach and, therefore, establishes a cost-effective, fast and entirely room temperature-based fabrication strategy of CNT thin films for a wide range of next generation electronic applications.

  12. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  13. Electrophoretic Deposition for Cholesteric Liquid-Crystalline Devices with Memory and Modulation of Reflection Colors.

    Science.gov (United States)

    Tokunaga, Shoichi; Itoh, Yoshimitsu; Yaguchi, Yuya; Tanaka, Hiroyuki; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo

    2016-06-01

    The first design strategy that allows both memorization and modulation of the liquid-crystalline reflection color is reported. Electrophoretic deposition of a tailored ionic chiral dopant is key to realizing this unprecedented function, which may pave the way for the development of full-color e-paper that can operate without the need of color filters. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Deen, I. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-02-15

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties.

  15. Electrophoretic deposition of a bioactive Si, Ca-rich glass coating on 316L stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    H. H. Rodríguez

    2011-12-01

    Full Text Available This work consisted in the development and characterization of a vitroceramic coating on 316L stainless steel bymeans of electrophoretic deposition (EPD. This vitroceramic coating was obtained through a Si-, Ca-rich glas coating crystallization. The electrophoretic deposition tests were performed on 316L stainless steel mechanically polished substrates. The results suggest that the electrophoretic coatings adhered well to the metallic surfaces. Theresults demonstrate that the crystallized coatings are potentially bioactive, because a dense and homogeneous apatite layer, similar to a bone, makes up.

  16. The mathematical expression for kinetics of electrophoretic deposition and the effects of applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    Ciou, Sian-Jie; Fung, Kuan-Zong [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101 (China); Chiang, Kai-Wei [Department of Geomatics, National Cheng Kung University, Tainan 70101 (China)

    2007-10-11

    Electrophretic deposition (EPD) is a ceramic process. Although the kinetics for EPD have been established. However, there are still some ambiguities. In present study, a modified kinetic model was applied to describe the completely different behavior of EPD at -10 and -40 V respectively. The variation of the concentration profile during electrophoretical deposition at -10 and -40 V was simulated to explain what affected the EPD process. Based on the simulation, the depletion of colloidal particles near the electrode may be responsible for the EPD kinetic behaviors. (author)

  17. Alternating current electrophoretic deposition of HA and hBN nanoparticles on Ti substrate

    OpenAIRE

    Geçgin, Merve; AY, Nuran; Göncü, Yapıncak

    2017-01-01

    Hydroxyapatite (HA) and hexagonal boron nitride(hBN) are biocompatible materials. In this study, nano HA and nano hBN were usedfor coatings of titanium (Ti) substrate. The nanoparticles were deposited on Ti substrates by alternating current electrophoretic deposition (AC-EPD). Suspensions were consist of nano HA and also comprised of the various amount of nano hBN (0.0-2.0-5.0-10.0 and 25.0 wt. % by the percentage of hydroxyapatite). The coated samples were heat treated at 800C in Aratmospher...

  18. Protonation of the polyethyleneimine and titanium particles and their effect on the electrophoretic mobility and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kok-Tee, E-mail: ktlau@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia); Anand, T. Joseph Sahaya [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia); Sorrell, Charles C. [School of Materials Science and Engineering, UNSW Australia, Sydney, NSW 2052 (Australia)

    2016-10-01

    Proton activities of suspensions of Ti particles with added cationic polyelectrolyte as a function of acid additions have been investigated and compared in terms of the electrophoretic mobility and deposition yield. The proton activity in ethanol medium decreased with the addition of PEI polyelectrolyte and reduced further in the presence of Ti particles. The decrease in proton activity in the suspension indicates that protonation occurred on both the PEI molecules and Ti particles. It is proposed that the protonation of the amine groups of PEI and hydroxyl sites of Ti particle led to the formation of hydrogen bonding between the Ti particle and PEI molecules. Increase in the PEI and Ti with increasing acid addition translated to higher electrophoretic mobilities and deposition yield at low ranges of acetic acid addition (<0.75 vol%). - Highlights: • Protonation characteristics of polyelectrolytes and suspension particles are reported. • The protonation characteristics explained the electrophoretic mobility and yield results. • Adsorption mechanisms of protonated polyelectrolytes on the titanium particle is proposed. • Hydroxyl sites on the particles link the oxide particle and the polyelectrolyte molecules.

  19. Synthesis and Application of Ferroelectric Poly(Vinylidene Fluoride-co-Trifluoroethylene) Films using Electrophoretic Deposition

    Science.gov (United States)

    Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; Park, Eugene; Hong, Seungbum

    2016-11-01

    In this study, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of β-phase was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (Pr) of around 4 μC/cm2. To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates.

  20. Physical investigation of electrophoretically deposited graphene oxide and reduced graphene oxide thin films

    Science.gov (United States)

    Politano, Grazia Giuseppina; Versace, Carlo; Vena, Carlo; Castriota, Marco; Ciuchi, Federica; Fasanella, Angela; Desiderio, Giovanni; Cazzanelli, Enzo

    2016-11-01

    Graphene oxide and reduced graphene oxide thin films are very promising materials because they can be used in optoelectronic devices and in a growing range of applications such as touch screens and flexible displays. In this work, graphene oxide (GO) and thermally reduced graphene oxide (rGO) thin films, deposited on Ti/glass substrates, have been obtained by electrophoretic deposition. The morphological and the structural properties of the samples have been investigated by micro-Raman technique, X-ray reflectometry, and SEM analysis. In order to study the optical and electrical properties, variable angle spectroscopic ellipsometry and impedance analysis have been performed. The thermal annealing changes strongly the structural, electrical, and optical properties, because during the thermal processes some amount of sp3 bonds originally present in GO were removed. In particular, the annealing enhances the Ohmic behavior of the rGO film increasing its conductivity and the estimated optical density. Moreover, using electrophoretic deposition, we have found a higher value of optical density for GO thin films, not observed in GO films obtained with other deposition methods.

  1. Preparation of platinum-free tubular dye-sensitized solar cells by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Khwanchit Wongcharee

    2016-10-01

    Full Text Available Tubular dye-sensitized solar cells (DSSCs were developed by replacing expensive materials with lower cost materials as follows: (1 replacing conductive glass electrodes with titanium (Ti wires and (2 replacing platinum (Pt catalyst with the mixture of multi-walled carbon nanotubes, MWCNTs and Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate, PEDOT-PSS. Platinized counter electrodes were used as the standard counter electrodes for comparison. The effects of the chemical treatment of titanium wire substrate and electrophoretic deposition condition on the efficiency of DSSCs were also investigated. The chemical treatment of titanium wires was carried out by soaking the wires in HF-HNO3 solutions at three different concentrations of 0.8, 1.6 and 2.4 M and three different soaking durations of 5, 10 and 15 min. The optimum condition was found at HF-HNO3 concentration of 0.8 M and soaking duration of 10 min. Film coating on working electrodes was performed using electrophoretic technique at three different voltages of 5, 8 and 10 V and four different coating durations of 1, 3, 5 and 7 min. Then, the optimum condition at deposition voltage of 5 V and deposition duration of 5 min was applied for film deposition on counter electrodes. The efficiency of DSSC with CNTs/TiO2 counter electrode was 0.03%. The addition of PEDOT-PSS improved the efficiency of DSSC to 0.08%.

  2. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces

    Science.gov (United States)

    Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili

    2014-06-01

    Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.

  3. Electrophoretic Deposition and Characterisation of Chitosan Coatings on Near-Β Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Jugowiec D.

    2016-06-01

    Full Text Available In this study, chitosan coatings were electrophoretically deposited (EPD on near-β Ti-13Nb-13Zr alloy. The influence of colloidal solution composition and EPD parameters on the quality of chitosan coatings was investigated. It was established that the uniformity of as-deposited chitosan coatings is highly dependent on the chemical composition of the solution used for EPD, the pH, electrophoretic mobility and zeta potential of chitosan colloidal molecules, as well as EPD parameters, such as potential difference value and deposition time. The microstructure of the coatings was investigated using electron microscopy and X-ray diffractometry. The coatings 350 nm thick were homogeneous and exhibited an amorphous structure. The coatings had low hardness and Young’s modulus. The effect of surface of the substrate preparation prior to coating deposition on the adhesion of chitosan coatings to the Ti-13Nb-13Zr alloy was also investigated. The coatings exhibited good adhesion to the non-acid-etched surface of the titanium alloy.

  4. INFLUENCE OF ELECTROPHORETIC DEPOSITION PARAMETERS ON PORE SIZE DISTRIBUTION OF DOPED NANO ALUMINA PLATES

    Directory of Open Access Journals (Sweden)

    Mostafa Milani

    2016-10-01

    Full Text Available Doped nano alumina powders were successfully deposited as a thick film by electrophoretic deposition (EPD. A mixture of ethanol, cation salts of alumina dopants and iodine was used for dispersion system. Mg- Y- La- and Ce- salts add to ethanol and deposited with alumina powders on to substrate. The effects of suspension power loading, deposition time, electrode distance and applied potential simultaneously on density, pore size distribution and cell current density of alumina nanoparticles were examined. The weight of deposition increased with time and voltage increased and electrode distance decreased. In all applied voltages in higher suspension concentration, weight of deposition are sufficiently high but the density of the film are clearly better in low and high voltages than medium voltage. In constant suspension concentration with increasing in applied voltage, deposition rate increased and current decreased faster than medium voltage, which limits the homogeneous deposition forming and decreased density. Low applied voltages provided better pore size distribution and narrow and steep slope in middle of pore size distribution plot. High density samples with best pore size distribution achieved in lower rate deposition and assisted to better densification at sintering step in doped alumina plates.

  5. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  6. Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maleki-Ghaleh, H., E-mail: H_Maleki@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Rekabeslami, M. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shakeri, M.S. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Siadati, M.H. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Javidi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Talebian, S.H. [Faculty of Petroleum Engineering, Universiti Technologi Petronas, Perak (Malaysia); Aghajani, H. [Department of Materials Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-09-01

    The most important role of thermal barrier coatings is to reduce the temperature of the substrate in high temperature applications. Nanoparticle zirconia might be a suitable choice for improving the efficiency of thermal barrier coatings. Nanostructured coatings have lower thermal conduction, higher thermal expansion and lower dimensional variations at higher temperatures in comparison with the microstructured coatings. Electrophoretic deposition has been preferred for thermal barrier coatings due to its simplicity, controllability and low cost. In the present study, three different suspensions of ZrO{sub 2}–8 wt%Y{sub 2}O{sub 3} (40 nm) made with ethanol, acetone and acetyl acetone were used. Electrophoretic deposition was conducted at a fixed voltage of 60 V for 120 s on aluminized Inconel 738-LC, and then heat treated at 1100{sup o}C for 4 h in air atmosphere. The coating morphology and elemental distribution were studied using scanning electron microscopy. It was observed that suspension media have an important effect on the quality of the final product. Acetyl acetone showed better dispersion of particles than the other two media. Consequently, deposition from acetyl acetone resulted in uniform and crack-free layers while those from ethanol and acetone were completely non-uniform due to agglomeration and low viscosity, respectively.

  7. Roll-to-roll light directed electrophoretic deposition system and method

    Energy Technology Data Exchange (ETDEWEB)

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  8. Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD).

    Science.gov (United States)

    Wang, Mei; Duong, Le Dai; Oh, Joon-Suk; Mai, Nguyen Thi; Kim, Sanghoon; Hong, Seungchul; Hwang, Taeseon; Lee, Youngkwan; Nam, Jae-Do

    2014-02-12

    A large-area, conductive, and flexible membrane made from the stabilized aqueous solution of reduced graphene oxide (RGO) is successfully fabricated using an electrophoretic deposition (EPD) method. A low-voltage operation of EPD (∼3 volts) allows a robust consolidation of RGO layers desirably aligned in the in-plane direction through the cohesive electrophoretic squeezing force near the current collector. Transferring the deposited RGO layers to arbitrary substrates or achieving as a free-standing form, two methods of "chemical etching" and "electrochemical etching" are developed to detach the RGO layers from the EPD current collector without damaging the deposited RGO. Further reducing the free-standing RGO membrane by thermal annealing up to 1000 °C, a graphite-like architecture is restored (d-spacing at 3.42 Å with C/O ratio at 16.66) and the electrical conductivity increases as high as 5.51 × 10(5) S/m. The tightly-consolidated and securely-detached RGO membrane allows the free-standing and flexible features and highly conductive characteristics, which are further developed during thermal treatment. Because of the facile scale-up nature of the EPD process and RGO solution, the developed methodology has a considerable potential to be applied to various energy storage devices, flexible conductive coatings, and other electrochemical systems.

  9. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Yan, E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Yufeng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Xi, Tingfei [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, Shicheng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing 100081 (China)

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  10. Methods and systems for electrophoretic deposition of energetic materials and compositions thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kyle T.; Gash, Alexander E.; Kuntz, Joshua D.; Worsley, Marcus A.

    2015-06-23

    A product includes: a part including at least one component characterized as an energetic material, where the at least one component is at least partially characterized by physical characteristics of being deposited by an electrophoretic deposition process. A method includes: providing a plurality of particles of an energetic material suspended in a dispersion liquid to an EPD chamber or configuration; applying a voltage difference across a first pair of electrodes to generate a first electric field in the EPD chamber; and depositing at least some of the particles of the energetic material on at least one surface of a substrate, the substrate being one of the electrodes or being coupled to one of the electrodes.

  11. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)

    2011-11-01

    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  12. Diode behavior of electrophoretically deposited polyaniline on TiO2 nanoparticulate thin film electrode.

    Science.gov (United States)

    Ameen, Sadia; Akhtar, M Shaheer; Kim, Young Soon; Yang, O-Bong; Shin, Hyung-Shik

    2011-02-01

    An inorganic/organic hetrostructure diode was constructed by the electrophoretic deposition of the p-type polyaniline (PANI) on an n-type titanium oxide (TiO2) nanoparticulate thin film. The bonding and internalization of PANI to TiO2 nanoparticulate thin film were confirmed by the morphological, structural and optical studies of electrophoretically deposited PANI/TIO2 nanoparticulate thin film. The increased size of TiO2 nanoparticles indicated the well penetration of PANI molecules into the pores of mesoporous TiO2 nanoparticulate thin film. The XPS studies of PANI/TiO2 heterostructure exhibited the surface bonding and interaction between PANI molecules and TiO2 nanoparticles. The current-voltage (I-V) characterization of PANI/TiO2 heterostructure was carried out in the forward and the reverse bias at the applied voltage ranges from -1 V to +1 V with a scan rate of 2 mV/s. The constructed Pt/PANI/TiO2 heterostructure device established diodic behavior with non-linear nature of I-V curves.

  13. Deposition patterns of porcelain coatings obtained by electrophoretic deposition in acetone. Part 1. Voltage and time effect.

    Science.gov (United States)

    García, Georgina; Vargas, Gregorio; Varela, F J Rodríguez

    2013-02-14

    Homogeneous surface morphologies are of interest to form different functional coatings. In order to verify if these morphologies could be observed and controlled in an electrophoretic cell, voltage and time effect have been studied on the deposition patterns of porcelain particle on a stainless steel substrate. The suspensions were prepared at 1 wt % of porcelain submicronic particles using acetone as dispersing media. The EPD experiments were carried out at 400, 600, and 800 V at deposition times of 1, 15, 30, 45, and 60 s. The morphology of the particle deposit patterns were characterized by scanning electron microscopy. At 1 s, submicronic particles without any pattern formation were observed on the stainless steel substrate. At subsequent deposition times, the patterns evolved from worm like forms to ring like forms and finally to labyrinth-type agglomerates of particles depending on voltage and deposition times. At deposition times longer than 60 s, the particle deposit patterns were difficult to observe. The coatings obtained at deposition times below this value were subjected to thermal treatments at 900 °C for 2 h. The patterns were maintained after the sintering process, exhibiting dense, homogeneous, and crack-free surface coatings.

  14. The Influence of Electrophoretic Deposition for Fabricating Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Jung-Chuan Chou

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 film was deposited on fluorine-doped tin oxide (FTO glass substrate by electrophoretic deposition method (EPD. TiO2 films were prepared with different I2 dosages, electric field intensities and deposition time (D.T., electrophotic deposition times. By different I2 dosages, electric field intensities, deposition time, electrophotic deposition times fabricated TiO2 films and compared photoelectric characteristics of TiO2 films to find optimal parameters which were the highest photovoltaic conversion efficiency. And use electrochemical impedance spectroscopy (EIS to measure the Nyquist plots under different conditions and analyze the impendence of dye-sensitized solar cells at the internal heterojunction. According to the experimental results, the I2 dosage was 0.025 g which obtained the optimal characteristic parameters. Thickness of TiO2 film was 10.6 μm, the open-circuit voltage (Voc was 0.77 V, the short-circuit current density (Jsc was 7.20 mA/cm2, the fill factor (F.F. was 53.41%, and photovoltaic conversion efficiency (η was 2.96%.

  15. Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A

    2015-03-03

    In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.

  16. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes.

    Science.gov (United States)

    Chen, Qiang; de Larraya, Uxua Pérez; Garmendia, Nere; Lasheras-Zubiate, María; Cordero-Arias, Luis; Virtanen, Sannakaisa; Boccaccini, Aldo R

    2014-06-01

    This study presents the electrophoretic deposition (EPD) of cellulose nanocrystals (CNs) and CNs-based alginate composite coatings for biomedical applications. The mechanism of anodic deposition of CNs and co-deposition of CNs/alginate composites was analyzed based on the results of zeta-potential, Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analyses. The capability of the EPD technique for manipulating the orientation of CNs and for the preparation of multilayer CNs coatings was demonstrated. The nanotopographic surface roughness and hydrophilicity of the deposited coatings were measured and discussed. Electrochemical testing demonstrated that a significant degree of corrosion protection of stainless steel could be achieved when CNs-containing coatings were present. Additionally, the one-step EPD-based processing of free-standing CNs/alginate membranes was demonstrated confirming the versatility of EPD to fabricate free-standing membrane structures compared to a layer-by-layer deposition technique. CNs and CNs/alginate nanocomposite coatings produced by EPD are potential candidates for biomedical, cell technology and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Electrophoretic Deposition of SnO2 Nanoparticles and Its LPG Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Göktuğ Günkaya

    2015-01-01

    Full Text Available Homogenized SnO2 nanoparticles (60 nm in acetylacetone mediums, both with and without iodine, were deposited onto platinum coated alumina substrate and interdigital electrodes using the electrophoretic deposition (EPD method for gas sensor applications. Homogeneous and porous film layers were processed and analyzed at various coating times and voltages. The structure of the deposited films was characterized by a scanning electron microscopy (SEM. The gas sensing properties of the SnO2 films were investigated using liquid petroleum gas (LPG for various lower explosive limits (LEL. The results showed that porous, crack-free, and homogeneous SnO2 films were achieved for 5 and 15 sec at 100 and 150 V EPD parameters using an iodine-free acetylacetone based SnO2 suspension. The optimum sintering for the deposited SnO2 nanoparticles was observed at 500°C for 5 min. The results showed that the sensitivity of the films was increased with the operating temperature. The coated films with EPD demonstrated a better sensitivity for the 20 LEL LPG concentrations at a 450°C operating temperature. The maximum sensitivity of the SnO2 sensors at 450°C to 20 LEL LPG was 30.

  18. Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Mohajer, M. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yaghoubi, A., E-mail: yaghoubi@siswa.um.edu.my [Center for High Impact Research, University of Malaya, Kuala Lumpur 50603 (Malaysia); Ramesh, S., E-mail: ramesh79@um.edu.my [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R.; Chin, K.M.C.; Tin, C.C. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chiu, W.S. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-07-01

    Magnesium silicates (Mg{sub x}SiO{sub y}) and in particular forsterite (Mg{sub 2}SiO{sub 4}) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 °C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti{sub 5}Si{sub 3} layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use.

  19. On the role of the indifferent electrolyte LiCl in electrophoretic deposition of hydroxyapatite from 2-propanol dispersions

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Sláma, M.; Hadraba, Hynek; Drdlíková, K.; Cihlář, J.

    2016-01-01

    Roč. 42, č. 15 (2016), s. 16529-16534 ISSN 0272-8842 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Electrophoretic deposition * Electrical conductivity * Thick layer * Surface roughness * Hydroxyapatite Subject RIV: JH - Ceramics , Fire-Resistant Materials and Glass Impact factor: 2.986, year: 2016

  20. Porous SiO2/HAp Coatings on Cp-Titanium Grade 1 Surfaces Produced by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Moskalewicz T.

    2016-12-01

    Full Text Available Porous hydroxyapatite doped SiO2 coatings were electrophoretically deposited (EPD on commercially pure titanium. The influence of EPD parameters on coatings quality was investigated. Microstructural observation was done using transmission and scanning electron microscopy as well as X-ray diffractometry.

  1. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    Science.gov (United States)

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

  2. Electrophoretic deposition of thermites onto micro-engineered electrodes prepared by direct-ink writing.

    Science.gov (United States)

    Sullivan, K T; Zhu, C; Tanaka, D J; Kuntz, J D; Duoss, E B; Gash, A E

    2013-02-14

    This work combines electrophoretic deposition (EPD) with direct-ink writing (DIW) to prepare thin films of Al/CuO thermites onto patterned two- and three-dimensional silver electrodes. DIW was used to write the electrodes using a silver nanoparticle ink, and EPD was performed in a subsequent step to deposit the thermite onto the conductive electrodes. Unlike conventional lithographic techniques, DIW is a low-cost and versatile alternative to print fine-featured electrodes, and adds the benefit of printing self-supported three-dimensional structures. EPD provides a method for depositing the composite thermite only onto the conductive electrodes, and with controlled thicknesses, which provides fine spatial and mass control, respectively. EPD has previously been shown to produce well-mixed thermite composites which can pack to reasonably high densities without the need for any postprocessing. Homogeneous mixing is particularly important in reactive composities, where good mixing can enhance the reaction kinetics by decreasing the transport distance between the components. Several two- and three-dimensional designs were investigated to highlight the versatility of using DIW and EPD together. In addition to energetic applications, we anticipate that this combination of techniques will have a variety of other applications, which would benefit from the controlled placement of a thin film of one material onto a conductive architecture of a second material.

  3. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß, Sigrid

    2012-03-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO 2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO 2 in ethanol with a 3:1 ratio of PEEK to TiO 2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO 2 composite coatings was erformed at 335°C for 30 minutes with a heating rate of 10°Cmin -1 to densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO 2 coatings on stainless steel which are interesting for biomedical applications. © (2012) Trans Tech Publications, Switzerland.

  4. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    Science.gov (United States)

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions.

    Science.gov (United States)

    Chávez-Valdez, A; Herrmann, M; Boccaccini, A R

    2012-06-01

    TiO(2)-nanostructured coatings from aqueous suspensions have been successfully prepared by the application of alternating current (AC) instead of direct current (DC) during electrophoretic deposition (EPD). No organic additives in suspension were required for successful EPD. The quality of the AC-EPD TiO(2) coatings in terms of homogeneity and extent of microcracking, upon drying, observed by SEM, was superior to that of DC-EPD coatings made from the same type of suspensions. The main difference between AC- and DC-EPD was the suppression of bubble formation. The absence of water electrolysis at the electrodes can be explained by the particular distribution of the electric field during AC mode, which prevents the nucleation of bubbles. The preparation of TiO(2) coatings from aqueous suspension and without the aid of organic stabilizers opens the possibility for co-deposition of sensitive materials such as biomolecules and even cells for biomedical applications, given the high biocompatibility of TiO(2). The deposition of TiO(2) coatings from aqueous suspensions is also attractive from environmental and economical points of view. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A current opinion on electrophoretic deposition in pulsed and alternating fields.

    Science.gov (United States)

    Neirinck, Bram; Van der Biest, Omer; Vleugels, Jef

    2013-02-14

    Electrophoretic deposition (EPD) is a colloidal production process developed in the early 20th century. Industrial scale EPD for the production of electronic components and phosphorescent screens and in the form of cataphoretic painting has known some success. Despite its limited practical applications, the inherent versatility of EPD has never ceased to fuel research into this technique. One of the major drives of this research was to render the method more environmentally friendly by enabling deposition from aqueous suspensions. One particular route, suggested to circumvent the problems caused by the use of water in EPD, is the use of alternating or pulsed fields. Recently, the use of alternating fields in EPD has been investigated for the deposition of biological matter in the form of cells and molecules. With this new avenue of research opening up and coinciding with a rise in biotechnological processes, one can expect a renewed interest in traditional EPD and fundamental research on the use of pulsed and alternating fields in this technique. Hence, this review attempts to summarize a century's worth of both fundamental and applied research for scientists venturing into the field of EPD.

  7. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongya; Dong, Guangneng, E-mail: donggn@mail.xjtu.edu.cn; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-30

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm{sup 2} for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  8. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance.

    Science.gov (United States)

    Sun, Jiadi; Zhu, Ye; Meng, Long; Chen, Peng; Shi, Tiantian; Liu, Xiaoya; Zheng, Yufeng

    2016-11-01

    Magnesium (Mg) has recently received increasing attention due to its unique biological performance, including cytocompatibility, antibacterial and biodegradable properties. However, rapid corrosion in physiological environment and potential toxicity limits its clinical applications. To improve the corrosion resistance meanwhile not compromise other excellent performance, self-assembled colloidal particles were deposited onto magnesium surfaces in ethanol by a simple and effective electrophoretic deposition (EPD) method. The fabricated functional nanostructured coatings were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM). The electrochemical test, pH value, and Mg ion concentration data show that the corrosion resistance of Mg samples is enhanced appreciably after surface treatment. In vitro cellular response and antibacterial capability of the modified Mg substrates are performed. Significantly increased cell adhesion and viability are observed from the coated Mg samples, and the amounts of adherent bacteria on the treated Mg surfaces diminish remarkably compared to the bare Mg. Furthermore, the bare and coated Mg samples were implanted in New Zealand white rabbits for 12 weeks to examine the in vivo long-term corrosion performance and in situ inflammation behavior. The experiment results confirmed that compared with bare Mg substrate the corrosion and foreign-body reactions of the coated Mg samples were suppressed. The above results suggested that our coatings, which effectively enhance the biocompatibility, antimicrobial properties, and corrosion resistance of Mg substrate, provide a simple and practical strategy to expedite clinical acceptance of biodegradableMg and its alloys. Biomedical Mg metals have been considered as promising biodegradable implants because of their intended functions, such as cytocompatibility, antibacterial, and biodegradable properties. However

  9. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants.

    Science.gov (United States)

    Pishbin, Fatemehsadat; Mouriño, Viviana; Flor, Sabrina; Kreppel, Stefan; Salih, Vehid; Ryan, Mary P; Boccaccini, Aldo R

    2014-06-11

    Despite their widespread application, metallic orthopaedic prosthesis failure still occurs because of lack of adequate bone-bonding and the incidence of post-surgery infections. The goal of this research was to develop multifunctional composite chitosan/Bioglass coatings loaded with gentamicin antibiotic as a suitable strategy to improve the surface properties of metallic implants. Electrophoretic deposition (EPD) was applied as a single-step technology to simultaneously deposit the biopolymer, bioactive glass particles, and the antibiotic on stainless steel substrate. The microstructure and composition of the coatings were characterized using SEM/EDX, XRD, FTIR, and TGA/DSC, respectively. The in vitro bioactivity of the coatings was demonstrated by formation of hydroxyapatite after immersion in simulated body fluid (SBF) in a short period of 2 days. High-performance liquid chromatography (HPLC) measurements indicated the release of 40% of the loaded gentamicin in phosphate buffered saline (PBS) within the first 5 days. The developed composite coating supported attachment and proliferation of MG-63 cells up to 10 days. Moreover, disc diffusion test showed improved bactericidal effect of gentamicin-loaded composite coatings against S. aureus compared to control non-gentamicin-loaded coatings.

  10. Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition.

    Science.gov (United States)

    Kim, Sanghoon; Oh, Joon-Suk; Kim, Myeong-Gi; Jang, Woojin; Wang, Mei; Kim, Youngjun; Seo, Hee Won; Kim, Ye Chan; Lee, Jun-Ho; Lee, Youngkwan; Nam, Jae-Do

    2014-10-22

    Here we introduce the electromagnetic shielding effectiveness (SE) of reduced graphene oxide (RGO) sheets interleaved between polyetherimide (PEI) films fabricated by electrophoretic deposition (EPD). Incorporating only 0.66 vol % of RGO, the developed PEI/RGO composite films exhibited an electromagnetic interference shielding effectiveness (EMI SE) at 6.37 dB corresponding to ∼50% shielding of incident waves. Excellent flexibility and optical transparency up to 62% of visible light was demonstrated. It was achieved by placing the RGO sheets in the localized area as a thin film (ca. 20 nm in thickness) between the PEI films (ca. 2 μm) to be an interleaved and alternating structure. This unique interleaved structure without any delamination areas was fabricated by a successive application of cathodic and anodic EPD of both RGO and PEI layers. The EPD fabrication process was ensured by an alternating deposition of the quarternized-PEI drops and RGO, each taking positive and negative charges, respectively, in the water medium. We believe that the developed facile fabrication method of RGO interleaved structure with such low volume fraction has great potential to be used as a transparent EMI shielding material.

  11. Diluent changes the physicochemical and electrochemical properties of the electrophoretically-deposited layers of carbon nanotubes

    Science.gov (United States)

    Benko, Aleksandra; Nocuń, Marek; Berent, Katarzyna; Gajewska, Marta; Klita, Łukasz; Wyrwa, Jan; Błażewicz, Marta

    2017-05-01

    Coating the material of choice with a layer of well-adhered carbon nanotubes is a subject of interest in many fields of materials science and industry. Electrophoretic deposition is one of the methods to handle this challenging task. In this process, careful designing of the deposition parameters is crucial in obtaining the product of strictly desired properties. This study was aimed to identify the influence of the diluent on the physicochemical ad electrochemical qualities of the final product. By analyzing the properties of the suspensions being used, we were able to hypothesize on the mechanisms of carbon nanotubes-liquid interactions and their outcome on the thickness, homogeneity, chemical and structural composition and electrical conductivity of the metal substrate covered with a layer of carbon nanotubes. We obtained a materials, composed of metal and a layer of CNTs, with conductivity that is superior to an unmodified metal. This types of materials may find numerous applications in fabrication of novel electronic devices, including the implantable electrodes for biomedicine-as reported in our previous studies, these types of coating are biocompatible.

  12. Diluent changes the physicochemical and electrochemical properties of the electrophoretically-deposited layers of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Benko, Aleksandra, E-mail: akbenko@gmail.com [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, A. Mickiewicza 30 Ave., 30-059, Krakow (Poland); Nocuń, Marek [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, A. Mickiewicza 30 Ave., 30-059, Krakow (Poland); Berent, Katarzyna; Gajewska, Marta [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, A. Mickiewicza 30 Ave, 30-059, Krakow (Poland); Klita, Łukasz; Wyrwa, Jan; Błażewicz, Marta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, A. Mickiewicza 30 Ave., 30-059, Krakow (Poland)

    2017-05-01

    Highlights: • Different properties of the EPD-deposited CNTs layers may be altered by changing the applied solvent. • More conductive solvents guarantee higher values of the recorded current densities, increasing kinetics of the deposition and yielding layers of higher thicknesses. • In a less conductive, organic medium, mobility of the particles is reduced, allowing for optimal packing and densification of the CNTs layer. • Proper solvent selection in the EPD of CNTs may lead to obtainment of CNTs—substrate materials with conductivity that is superior to an unmodified substrate. - Abstract: Coating the material of choice with a layer of well-adhered carbon nanotubes is a subject of interest in many fields of materials science and industry. Electrophoretic deposition is one of the methods to handle this challenging task. In this process, careful designing of the deposition parameters is crucial in obtaining the product of strictly desired properties. This study was aimed to identify the influence of the diluent on the physicochemical ad electrochemical qualities of the final product. By analyzing the properties of the suspensions being used, we were able to hypothesize on the mechanisms of carbon nanotubes—liquid interactions and their outcome on the thickness, homogeneity, chemical and structural composition and electrical conductivity of the metal substrate covered with a layer of carbon nanotubes. We obtained a materials, composed of metal and a layer of CNTs, with conductivity that is superior to an unmodified metal. This types of materials may find numerous applications in fabrication of novel electronic devices, including the implantable electrodes for biomedicine—as reported in our previous studies, these types of coating are biocompatible.

  13. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Pharmaceutical Research Institute in Heilongjiang Province, Jiamusi University, Jiamusi 154007 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhao, Meng [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Guozhong, E-mail: hydlgz1962@163.com [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. - Highlights: • CaP/chitosan/CNTs coating on AZ91D was prepared. • The addition of CNTs could improve the performance of CaP/chitosan coating. • A new method of loading gentamicin by EPD was proposed.

  14. Enhanced field electron emission of graphene sheets by CsI coating after electrophoretic deposition.

    Science.gov (United States)

    Liu, Jianlong; Zeng, Baoqing; Wu, Zhe; Sun, Hao

    2012-03-01

    Because of the large quantities of edges, graphene can serve as an efficient edge emitter for field emission (FE). Cesium iodide (CsI) coating was promising to enhance the electron emission and utilized in FE applications. In this work, FE of graphene sheets after electrophoretic deposition (ED) was studied. Electron emission property of GS was obviously improved by coating with CsI. The turn-on field of GS decreased from 4.4 to 2.5 V/ μm; and threshold field decreased from 9 to 5.8 V/μm, respectively. This FE improvement must due to a higher effective density of emission site generated around the GS surface after coating. Scanning electron microscopy (SEM) and computation were taken to reveal the influence after coating. Investigations of CsI coated MWCNTs were also compared in order to better understand the origin of the low turn-on electric field obtained by GS. © 2012 American Chemical Society

  15. Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Kyotaro Kawaguchi

    2017-11-01

    Full Text Available This study investigated the surface modification of orthodontic stainless steel using electrophoretic deposition (EPD of bioactive glass (BG. The BG coatings were characterized by spectrophotometry, scanning electron microscopy with energy dispersive X-ray spectrometry, and X-ray diffraction. The frictional properties were investigated using a progressive load scratch test. The remineralization ability of the etched dental enamel was studied according to the time-dependent mechanical properties of the enamel using a nano-indentation test. The EPD process using alternating current produced higher values in both reflectance and lightness. Additionally, the BG coating was thinner than that prepared using direct current, and was completely amorphous. All of the BG coatings displayed good interfacial adhesion, and Si and O were the major components. Most BG-coated specimens produced slightly higher frictional forces compared with non-coated specimens. The hardness and elastic modulus of etched enamel specimens immersed with most BG-coated specimens recovered significantly with increasing immersion time compared with the non-coated specimen, and significant acid-neutralization was observed for the BG-coated specimens. The surface modification technique using EPD and BG coating on orthodontic stainless steel may assist the development of new non-cytotoxic orthodontic metallic appliances having satisfactory appearance and remineralization ability.

  16. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  17. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  18. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    Directory of Open Access Journals (Sweden)

    Sigrid Seuss

    2014-07-01

    Full Text Available Alternating current (AC electrophoretic deposition (EPD was used to produce multifunctional composite coatings combining bioactive glass (BG particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA forming ability in simulated body fluid (SBF for up to 21 days. Fourier transform infrared (FTIR spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings.

  19. Multi-Length Scale Tribology of Electrophoretically Deposited Nickel-Diamond Coatings

    Science.gov (United States)

    Awasthi, Shikha; Goel, Sneha; Pandey, Chandra Prabha; Balani, Kantesh

    2017-02-01

    Electrophoretically deposited (EPD) nickel and its composite coatings are widely used to enhance the life span of continuous ingot casting molds in the steel, aerospace and automotive industries. This article reports the effect of different concentrations of diamond particles (2.5-10 g/L) on the wear mechanism of EPD Ni. The distribution of diamond particles in the Ni matrix was observed using Voronoi tessellation. Variation in COF was observed by a fretting wear test to be 0.51 ± 0.07 for Ni, which decreases to 0.35 ± 0.03 for the Ni-diamond coatings. The wear volume of the coatings with 7.5 g/L concentration of diamond was observed to be a minimum (0.051 ± 0.02 × 10-3 mm3) compared with other composite coatings. Further, the micro-scratch testing of the coatings also exhibited a reduced COF (0.03-0.12) for 7.5 g/L diamond concentration compared with Ni (0.08-0.13). Higher wear resistance of the diamond-added coatings (optimum 7.5 g/L concentration) is due to the balance between the dispersion strengthening mechanism and the enhancement of the load-bearing capacity due to the incorporation of diamond particles. Thus, these composites can be used for applications in automotive and aerospace industries.

  20. Electrophoretic Deposition for the Fabrication of High-Performance Metal-Ceramic Hybrid Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junghwan; Jung, Yangil; Park, Dongjun; Kim, Hyungil; Park, Jeongyong; Koo, Yanghyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Metal-ceramic hybrid cladding consisting of a Zr liner and SiC{sub f}/SiC composite is one of the candidate systems. To achieve a high-performance metal-ceramic hybrid cladding, it is important to synthesize the SiC{sub f}/SiC composites with high flexural strength. The most common interphases, such as pyrolytic carbon (PyC) and boron nitride (BN) coating, have been applied on the surface of SiC fibers by chemical vapor deposition (CVD) or chemical vapor infiltration (CVI). In addition, the SiC matrix phase for SiC{sub f}/SiC composites has been commonly formed by CVI and polymer infiltration and pyrolysis (PIP), which are very costly and complicated processes. For this reason, the fabrication process of SiC{sub f}/SiC composites that is low-cost and simple has been strongly needed. In this study, weak phase coating using a commercial colloidal carbon black suspension was performed on SiC fibers through electrophoretic deposition (EPD), and carbon-coated SiC{sub f}/SiC composites were fabricated by EPD. The mechanical properties at room temperature were evaluated to investigate the effect of the carbon interfacial layer on the mechanical properties of carbon-coated SiC{sub f}/SiC composites. In this study, it was concluded that the EPD method is effective for homogeneous carbon black coating on SiC fibers, and that the carbon coating layer on SiC fibers plays an important role in optimizing the interface between fibers and the matrix, and enhances the toughness of carbon-coated SiC{sub f}/SiC composites during fracture.

  1. Effect of polyaniline on MWCNTs supercapacitor properties prepared by electrophoretic deposition

    Science.gov (United States)

    Razak, Rozelia Azila Abd; Eleas, Nor Hamizah; Mohammad, Nurul Nazwa; Yusof, Azmi Mohamed; Zaine, Intan Syaffinazzilla

    2017-08-01

    Multi-walled carbon nanotubes (MWCNTs) is widely used as supercapacitor electrode material. However, the specific capacitance of MWCNTs cannot achieve optimum value to facilitate required demand. Conducting polymers have been introduced to achieve optimum energy density and power density of supercapacitor electrode material. Previous work had demonstrated the effects of adding conducting polymer into carbon base material to get pseudocapacitance effect. Nevertheless the effects specifically of polyaniline (PANi) to MWCNTs were significantly low. This work describes the effect of PANi adding on MWCNTs film prepared by electrophoretic deposition (EPD) technique in order to increase the specific capacitance of MWCNTs. The commercial MWCNTs is dispersed in deionized water by using crystal violet. The admixtures without PANi (sample A), 5wt.% of PANi (sample B) and 10wt.% of PANi (sample C) have been prepared by ex-situ polymerization. The voltage supplied for film deposition is 8 V for 5 minutes. The morphology, functional group and electrochemical properties of MWCNTs due to the presence of PANi had been studied. From FESEM analysis, the presence of PANi can be clearly observed for sample B and sample C while FTIR analysis, proves PANi structure on MWCNTs with its functional group presence in sample B and sample C through the absorbtion band which obviously shifted to higher value compare to sample A. Cyclic voltammogram (CV) analysis shown redox activity occurred in sample B and sample C with identical anodic and cathodic peaks. Sample B hold the higher specific capacitance and higher energy density compared than sample A and sample B. From galvanostatic charge-discharge (CD) measurement, the charge and discharge process for sample B is longer than sample A and sample C which consequently lower its power density. The presence of PANi at 5wt.% is able to increase specific capacitance as well as energy density to optimum value.

  2. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  3. Electrophoretic deposition of ZnO nanostructures: Au nanoclusters on Si substrates induce self-assembled nanowire growth

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Claudia [Laboratorio de Nanomateriales y Propiedades Dieléctricas, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán (Argentina); Marin, Oscar [CONICET – LAFISO, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán (Argentina); Real, Silvina [Laboratorio de Nanomateriales y Propiedades Dieléctricas, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán (Argentina); Comedi, David [CONICET – LAFISO, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán (Argentina); Tirado, Mónica, E-mail: mtirado@herrera.unt.edu.ar [Laboratorio de Nanomateriales y Propiedades Dieléctricas, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán (Argentina)

    2014-09-15

    Highlights: • ZnO nanowires were grown on silicon substrate by electrophoretic deposition technique without use a porous template. • The growth was induced by Au nanoclusters and was performed at room temperature. • The photoluminescence spectrum for the nanowires obtained shows a broad UV-blue excitonic emission peak and a low emission in the green region. - Abstract: The present work reports the self-assembled growth of ZnO nanowires on silicon substrate with nanometer sized Au clusters using electrophoretic deposition technique at room temperature without a sacrificial template. A colloidal suspension of ≈5 nm sized ZnO nanoparticles dispersed in 2-propanol was used (nanoparticle bandgap of 3.47 eV as determined from absorbance measurements). The results show that the Au nanoclusters on the silicon substrate induce the self-assembly of the ZnO nanoparticles into vertically aligned ZnO nanowires. This effect is tentatively explained as being due to increased electric field intensities near the Au nanoclusters during the electrophoretic deposition. Photoluminescence measurements reveal the presence of quantum confined excitons and a relatively low concentration of deep defects in the nanowires. The electric field guided growth of semiconductor nanostructures at room temperature has great industrial potential as it minimizes production costs and enables the use of substrate materials not withstanding high temperatures.

  4. A novel chitosan hydrogel membrane by an improved electrophoretic deposition and its characteristics in vitro and in vivo.

    Science.gov (United States)

    Li, Wen-Wen; Wang, Hai-Yan; Zhang, Yu-Qing

    2017-05-01

    Here, we report a novel chitosan hydrogel membrane (CHM) created by an improved electrophoretic deposition. Unlike a traditional CHM by electrophoretic deposition, the CHM was formed on a nanoporous film as a barrier using a homemade device at a high DC voltage (60 VDC). The CHM maximum recovery of 81.7% could be achieved after 1h of electrophoretic deposition. The transparent CHM with an elongation of 42.46% and swelling index of 538.86% was a mixture of type I and type II crystal structures. SEM revealed that the CHM had an irregular net structure. The CHM was sufficient for L-929 mouse fibroblast cell adhesion and growth. To demonstrate immunocompatibility with host tissues, H&E and TGF-β1 were observed and the expressions of TNF-α and NF-κB were measured up to 3weeks post-implantation. Although these scaffolds demonstrated an initial pro-inflammatory response, the amount of inflammatory cells and the expressions of TGF-β1 returned to baseline control values at 3weeks. The expressions of TNF-α and NF-κB had no significant difference between the experimental and control groups. Animal experiments showed that the CHM did not incite serious inflammatory reactions. Thus, the CHM is a promising medical biomaterial candidate for loading appropriate cells for use as artificial skin or in transplantation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals.

    Science.gov (United States)

    Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J

    2014-01-01

    Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.

  6. Enhancement of the Electrical Conductivity and Interlaminar Shear Strength of CNT/GFRP Hierarchical Composite Using an Electrophoretic Deposition Technique.

    Science.gov (United States)

    Haghbin, Amin; Liaghat, Gholamhossein; Hadavinia, Homayoun; Arabi, Amir Masoud; Pol, Mohammad Hossein

    2017-09-22

    In this work, an electrophoretic deposition (EPD) technique has been used for deposition of carbon nanotubes (CNTs) on the surface of glass fiber textures (GTs) to increase the volume conductivity and the interlaminar shear strength (ILSS) of CNT/glass fiber-reinforced polymers (GFRPs) composites. Comprehensive experimental studies have been conducted to establish the influence of electric field strength, CNT concentration in EPD suspension, surface quality of GTs, and process duration on the quality of deposited CNT layers. CNT deposition increased remarkably when the surface of glass fibers was treated with coupling agents. Deposition of CNTs was optimized by measuring CNT's deposition mass and process current density diagrams. The effect of optimum field strength on CNT deposition mass is around 8.5 times, and the effect of optimum suspension concentration on deposition rate is around 5.5 times. In the optimum experimental setting, the current density values of EPD were bounded between 0.5 and 1 mA/cm². Based on the cumulative deposition diagram, it was found that the first three minutes of EPD is the effective deposition time. Applying optimized EPD in composite fabrication of treated GTs caused a drastic improvement on the order of 10⁸ times in the volume conductivity of the nanocomposite laminate in comparison with simple GTs specimens. Optimized CNT deposition also enhanced the ILSS of hierarchical nanocomposites by 42%.

  7. Enhancement of the Electrical Conductivity and Interlaminar Shear Strength of CNT/GFRP Hierarchical Composite Using an Electrophoretic Deposition Technique

    Directory of Open Access Journals (Sweden)

    Amin Haghbin

    2017-09-01

    Full Text Available In this work, an electrophoretic deposition (EPD technique has been used for deposition of carbon nanotubes (CNTs on the surface of glass fiber textures (GTs to increase the volume conductivity and the interlaminar shear strength (ILSS of CNT/glass fiber-reinforced polymers (GFRPs composites. Comprehensive experimental studies have been conducted to establish the influence of electric field strength, CNT concentration in EPD suspension, surface quality of GTs, and process duration on the quality of deposited CNT layers. CNT deposition increased remarkably when the surface of glass fibers was treated with coupling agents. Deposition of CNTs was optimized by measuring CNT’s deposition mass and process current density diagrams. The effect of optimum field strength on CNT deposition mass is around 8.5 times, and the effect of optimum suspension concentration on deposition rate is around 5.5 times. In the optimum experimental setting, the current density values of EPD were bounded between 0.5 and 1 mA/cm2. Based on the cumulative deposition diagram, it was found that the first three minutes of EPD is the effective deposition time. Applying optimized EPD in composite fabrication of treated GTs caused a drastic improvement on the order of 108 times in the volume conductivity of the nanocomposite laminate in comparison with simple GTs specimens. Optimized CNT deposition also enhanced the ILSS of hierarchical nanocomposites by 42%.

  8. Cathodic electrophoretic deposition of bismuth oxide (Bi{sub 2}O{sub 3}) coatings and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaogang [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Li, Xueming, E-mail: xueminglicqu@126.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Lai, Chuan [School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000 (China); Li, Wulin [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Optoelectronic Technology and Systems (Education Ministry of China), Chongqing University, 400044 (China); Zhang, Daixiong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Xiong, Zhongshu [School of Foreign Languages and Literature, Chongqing Normal University, Chongqing 401331 (China)

    2015-03-15

    Graphical abstract: Bismuth oxide (Bi{sub 2}O{sub 3}) coating has been prepared by cathodic electrophoretic deposition method and exhibits high photocatalytic activities for the degradation of Rhodamine B. - Highlights: • The nano-Bi{sub 2}O{sub 3} coatings have been firstly successfully fabricated by EPD method. • The EPD deposition mechanism of Bi{sub 2}O{sub 3} coatings is firstly given. • Deposition dynamics are investigated by regulating different deposition times and applied field strengths in detail. • Obtained coating show great photocatalytic activities for the degradation of Rhodamine B. - Abstract: In this study, cathodic electrophoretic deposition (EPD), a low cost, one-step and flexible method, has been successfully developed to prepare bismuth oxide (Bi{sub 2}O{sub 3}) coatings. Stable suspensions consisted of isopropyl alcohol and trace additive-polyethyleneimine. Deposition was achieved on the cathode at applied field strengths of 5–25 V mm{sup −1} using a total solids loading of 0.5–2 g L{sup −1} at ambient temperature and pressure. The deposition mechanism of Bi{sub 2}O{sub 3} coatings was firstly given, and deposition kinetics were investigated in detail. The deposits were characterized qualitatively by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) observation, atomic force microscope (AFM), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis, respectively. Moreover, the photocatalytic activities of obtained coatings were evaluated through degradation of Rhodamine B under ultraviolet and visible light irradiation.

  9. Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic

    Energy Technology Data Exchange (ETDEWEB)

    Vázquez, A., E-mail: alejandro.lqi@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Hernández-Uresti, D.B., E-mail: ing.dianahdz@gmail.com [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Obregón, S. [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico)

    2016-11-15

    Highlights: • CdS photocatalyst was prepared by electrophoretic deposition. • The CdS coating was used in the photodegradation of antibiotics. • O{sub 2}{sup −} and ·OH radicals were responsible for the degradation of tetracycline. - Abstract: The photocatalytic activities of CdS coatings formed by electrophoretic deposition (EPD) were evaluated through the photodegradation of an antibiotic, tetracycline. First, CdS nanoparticles were synthesized under microwave irradiation of aqueous solutions containing the cadmium and sulfur precursors at stoichiometric amounts and by using trisodium citrate as stabilizer. Microwave irradiation was carried out in a conventional microwave oven at 2.45 GHz and 1650 W of nominal power, for 60 s. The CdS nanoparticles were characterized by UV–vis spectrophotometry, photoluminescence and X-ray diffraction. Electrophoretic deposition parameters were 300 mV, 600 mV and 900 mV of applied voltage between aluminum plates separated by 1 cm. The fractal dimensions of the surfaces were evaluated by atomic force microscopy and correlated to the morphological and topographic characteristics of the coatings. The photocatalytic activity of the CdS coatings was investigated by means the photodegradation of the tetracycline antibiotic under simulated sunlight irradiation. According to the results, the photoactivity of the coatings directly depends on the concentration of the precursors and the applied voltage during the deposition. The material obtained at 600 mV showed the best photocatalytic behavior, probably due to its physical properties, such as optimum load and suitable aggregate size.

  10. Thickness control in electrophoretic deposition of WO{sub 3} nanofiber thin films for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanxing; Lee, Wei Cheat; Canciani, Giacomo E.; Draper, Thomas C.; Al-Bawi, Zainab F. [Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ (United Kingdom); Bedi, Jasbir S. [School of Public Health & Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004 Punjab (India); Perry, Christopher C. [Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350 (United States); Chen, Qiao, E-mail: qiao.chen@sussex.ac.uk [Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ (United Kingdom)

    2015-12-15

    Graphical abstract: - Highlights: • A novel method combining electrospinning and electrophoretic deposition was established for the creation of nanostructured semiconductor thin films. • The created thin films displayed a high chemical stability with a controllable thickness. • The PEC water splitting performance of the thin films was optimized by fine-tuning the thickness of the films. • A maximum photoconversion efficiency was achieved by 18 μm nanofibrous thin films. - Abstract: Electrophoretic deposition (EPD) of ground electrospun WO{sub 3} nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO{sub 3} nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 μm.

  11. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L) Substrates

    OpenAIRE

    Raddaha, Namir S.; Luis Cordero-Arias; Sandra Cabanas-Polo; Sannakaisa Virtanen; Roether, Judith A; Boccaccini, Aldo R.

    2014-01-01

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO2) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were inv...

  12. Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic

    Science.gov (United States)

    Vázquez, A.; Hernández-Uresti, D. B.; Obregón, S.

    2016-11-01

    The photocatalytic activities of CdS coatings formed by electrophoretic deposition (EPD) were evaluated through the photodegradation of an antibiotic, tetracycline. First, CdS nanoparticles were synthesized under microwave irradiation of aqueous solutions containing the cadmium and sulfur precursors at stoichiometric amounts and by using trisodium citrate as stabilizer. Microwave irradiation was carried out in a conventional microwave oven at 2.45 GHz and 1650 W of nominal power, for 60 s. The CdS nanoparticles were characterized by UV-vis spectrophotometry, photoluminescence and X-ray diffraction. Electrophoretic deposition parameters were 300 mV, 600 mV and 900 mV of applied voltage between aluminum plates separated by 1 cm. The fractal dimensions of the surfaces were evaluated by atomic force microscopy and correlated to the morphological and topographic characteristics of the coatings. The photocatalytic activity of the CdS coatings was investigated by means the photodegradation of the tetracycline antibiotic under simulated sunlight irradiation. According to the results, the photoactivity of the coatings directly depends on the concentration of the precursors and the applied voltage during the deposition. The material obtained at 600 mV showed the best photocatalytic behavior, probably due to its physical properties, such as optimum load and suitable aggregate size.

  13. Characterization of CNT-MnO{sub 2} nanocomposite by electrophoretic deposition as potential electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Darari, Alfin, E-mail: alfindarari@st.fisika.undip.ac.id [Physics Department, Science and Mathematics Faculty, Diponegoro University (Indonesia); Rismaningsih, Nurmanita [Chemistry Department, Science and Mathematics Faculty, Diponegoro University (Indonesia); Ardiansah, Hafidh Rahman; Arifin,; Ningrum, Andini Novia; Subagio, Agus, E-mail: agus-fadhil@yahoo.com

    2016-04-19

    Energy crisis that occured in Indonesia suggests that energy supply could not offset the high rate request and needs an electric energy saving device which can save high voltage, safety, and unlimited lifetime. The weakness of batteries is durable but has a low power density while the capacitor has a high power density but it doesn’t durable. The renewal of this study is CNT-MnO{sub 2} thin film fabrication method using electrophoretic deposition. Electrophoretic deposition is a newest method to deposited CNT using power supply with cheap, and make a good result. The result of FTIR analysis showed that the best CNT-MnO{sub 2} composition is 75:25 and C-C bond is detected in fingerprint area. The result is electrode thin film homogen and characterized by X-ray diffraction (XRD) peaks 2θ=26,63° is characterization of graphite, and 2θ=43,97° is characterization of diamond Carbon type and measured by Scherrer formula results 52,3 nm material average size .EIS test results its capacitance about 7,86 F. from the data it can be concluded that CNT-MnO{sub 2} potential electrode very promising for further study and has a potential to be a high capacitance, and fast charge supercapacitor which can be applied for electronic devices, energy converter, even electric car.

  14. Studying and controlling order within nanoparticle monolayers fabricated through electrophoretic deposition

    Science.gov (United States)

    Krejci, Alexander J.

    Langmuir Blodgett films can be used to create very thin NP films. Templated substrates in combination with spin coating have been used to order blockcopolymers; this could be adapted for NP arrays as well. Some of these techniques can be applied for forming ordered arrays of NPs in two-dimensions, creating nanoparticle monolayers (NPMs), the focus of this work. NPMs are attractive for many applications in devices such as magnetic storage, solar cells, and biosensors. One particularly attractive feature of NPMs is the high surface area to volume ratio of the films. For example, through collaboration, we are investigating PL properties of two monolayers, composed of two different types of NPs, stacked on top of one another. Although challenging, there now are a variety of techniques for the fabrication of NPMs. This dissertation introduces a new process by which one can fabricate monolayers, electrophoretic deposition (EPD). Literature exists on using EPD to fabricate NPMs, but this literature is very limited. One such study deposited films of Au NPs on carbon films and another Pt NPs on carbon films. To the best of our knowledge, only NPMs of metallic NPs on carbon have been fabricated. Of the EPD studies in which NPMs have been fabricated, the technique has not been investigated in depth or has not been generalized for deposition of many types of materials. If NPM formation via EPD could be generalized, the NPMs could be industrially attractive as EPD has many industrially advantageous properties. For instance, EPD is highly versatile in multiple ways: many types of particles can be deposited, the size of the electrodes can be varied over many orders of magnitude, and a large variety of solvents can be used to suspend NPs. For example, our group has deposited materials of different shapes including tubes, sheets, and spheres; different materials such as polymers, metals, semiconductors, and magnetic materials; and on a variety of substrates including steel, silicon

  15. Formation of TiO2 photoanodes by simultaneous electrophoretic deposition of anatase and rutile particles for photoassisted electrolytic copper ions removal

    Directory of Open Access Journals (Sweden)

    Yeimmy Y. Peralta-Ruiz

    2012-01-01

    Full Text Available The influence of Anatasa/Rutile ratio on TiO2 films, grown by electrophoretic deposition was studied in the photoassisted electrolytic copper ions removal from cyanide solutions. The proper dispersant dosage allowing the simultaneous electrophoretic deposition of Anatase and Rutile was chosen based on electrokinetic measurements; evidenced by the XRD spectra of the formed films. The evaluation of films photoassisted electrolytic copper ion removal showeds that it is possible to enhance the activity of Anatase films by adding some Rutile exploiting the synergetic interaction between these two materials, achieve by its proper deposition.

  16. Facile Preparation and Photoinduced Superhydrophilicity of Highly Ordered Sodium-Free Titanate Nanotube Films by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Minghua Zhou

    2012-01-01

    Full Text Available Highly ordered sodium-free titanate nanotube films were one-step prepared on F-doped SnO2-coated (FTO glass via an electrophoretic deposition method by using sodium titanate nanotubes as the precursor. It was found that the self-assembled formation of highly ordered sodium titanate nanotube films was accompanied with the effective removal of sodium ions in the nanotubes during the electrophoretic deposition process, resulting in the final formation of protonated titanate nanotube film. With increasing calcination temperature, the amorphous TiO2 phase is formed by a dehydration process of the protonated titanate nanotubes at 300°C and further transforms into anatase TiO2 when the calcination temperature is higher than 400°C. Compared with the as-prepared titanate nanotube film, the calcined titanate nanotube film (300–600°C exhibits attractive photoinduced superhydrophilicity under UV-light irradiation. In particular, 500°C-calcined films show the best photoinduced superhydrophilicity, probably due to synergetic effects of enhanced crystallization, surface roughness, and ordered structures of the films.

  17. Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Arias, L.; Cabanas-Polo, S.; Goudouri, O.M. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany); Misra, S.K. [Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Ahmedabad 382424 (India); Gilabert, J. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Valsami-Jones, E. [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanchez, E. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Virtanen, S. [Institute for Surface Science and Corrosion (LKO, WW4), Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen (Germany); Boccaccini, A.R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany)

    2015-10-01

    Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1–10 g/L) and BG (1–1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces thereby imparting bioactivity, making the coating suitable for bone replacement applications. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings. Polarization curves of the coated substrates made in cell culture media at 37 °C confirmed the corrosion protection function of the novel organic/inorganic composite coatings. - Highlights: • Organic–inorganic nanocomposite coatings fabricated by electrophoretic deposition • nZnO and bioactive glass containing alginate coatings exhibit antibacterial effect. • Bioactive character and anticorrosion function of coatings demonstrated.

  18. Electrochemical and electrophoretic deposition of enzymes: principles, differences and application in miniaturized biosensor and biofuel cell electrodes.

    Science.gov (United States)

    Ammam, Malika

    2014-08-15

    Recent advances in nano-biotechnology have made it possible to realize a great variety of enzyme electrodes suitable for sensing and energy applications. In coating miniaturized electrodes with enzymes, there is no doubt that most of the available deposition processes suffer from the difficulty in depositing uniform and reproducible coatings of the active enzyme on the miniature transducer element. This mini-review highlights the promising prospects of two techniques, electrochemical deposition (ECD) and electrophoretic deposition (EPD), in enzyme immobilization onto miniaturized electrodes and their use as biosensors and biofuel cells. The main differences between ECD and EPD are described and highlighted in the sense to make it clear to the reader that both techniques employ electric fields to deposit enzyme but the conditions from which each process is achieved and hence the mechanisms are quite different. Many aspects dealing with deposition of enzyme under ECD and EPD are considered including surface charge of enzyme, its migration under the applied electric field and its precipitation on the electrode. Still all issues discussed in this mini-review are generic and need to be followed in the future by extensive theoretical and experimental research analysis. Finally, the advantages of ECD and EPD in fabrication of miniature biosensor and biofuel cell electrodes are described and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Building energetic material from novel salix leaf-like CuO and nano-Al through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yan Jun; Li, Xueming [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2016-11-15

    In this study, an energetic material was prepared by depositing nano-Al on CuO arrays via electrophoretic deposition (EPD), which offers a feasible route for nano-Al integration. The morphology and structure of the CuO arrays and Al/CuO composites were characterized by scanning electron microscopy and X-ray diffraction. The CuO arrays were homogenously salix leaf-like structure with a width of ⁓150 to 200 nm. The energy density of Al/CuO composites was approximate to 1454.5 J/g by integrating the differential scanning calorimetry (DSC) plot and the combustion performance was recorded by a high-speed camera. Moreover, the combustion flames were violent and the whole reaction process only lasted 72.2 ms, indicating that the energy of the Al/CuO nanothermite can be released effectively.

  20. Porous Graphene Oxide Prepared on Nickel Foam by Electrophoretic Deposition and Thermal Reduction as High-Performance Supercapacitor Electrodes.

    Science.gov (United States)

    Xu, Yunhe; Li, Jun; Huang, Wenxin

    2017-08-11

    A simple electrophoretic deposition method was developed to prepare graphene oxide (GO) films on the frameworks of nickel foam without any conductive agents and polymer binders. Then, GO was transformed into thermally-reduced graphene oxide (RGO) at an appropriate temperature. The effects of deposition voltage and thermal reduction temperature on the electrochemical properties of RGO were investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge. The appropriate combination of deposition voltage and thermal reduction temperature was established. Moreover, scanning electron microscopy, thermal gravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray diffractometry were applied to validate the results, which showed that the highest specific capacitance of RGO was obtained when the deposition voltage was 60 V and the thermal reduction temperature was 300 °C. The specific capacitance values calculated by CV and galvanostatic charge/discharge were 139 F·g-1 (0.005 V·s-1) and 151 F·g-1 (1 A·g-1), respectively. The specific capacitance of RGO maintained 55% and 66% of the initial value when the scan rate and the current density were increased up to 0.3 V·s-1 and 10 A·g-1, respectively. RGO also displayed an excellent cycling stability by maintaining 98% of the initial specific capacitance after 500 cycles.

  1. Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs

    Science.gov (United States)

    Choi, Jae Ik

    Electrophoretic deposition (EPD) is a method to deposit particles dispersed in a liquid onto a substrate under the force of an applied electric field, and has been applied for depositing phosphors for application in solid state lighting. The objective is to deposit phosphors in a "remote phosphor" configuration for a UV-LED-based light source for improved white light extraction efficiency. It is demonstrated that EPD can be used to deposit red-, green-, blue-, yellow- and orange-emitting phosphors to generate white light using a near UV-emitting LED by either depositing a phosphor blend or sequentially individual phosphor compositions. The phosphor coverage was excellent, demonstrating that EPD is a viable method to produce phosphor layers for the "remote phosphor" white light design. The deposition rates of the individual phosphor films were ˜1-5 mum/min. The blend depositions composed of both three and four phosphor compositions emit white light located on or near the black body locus on the CIE chromaticity diagram. Phosphor films were also prepared by sequential deposition of red/orange and green/blue compositions, to generate white light. The layered films were flipped over and illuminated in this orientation, which showed approximately the same luminescence characteristics. No change in the reabsorption ratio of green/blue emission by the red/orange phosphor was found regardless of the deposited order of the layered films. These applications of EPD of phosphor for white solid state lighting are promising and effective due to easy tuning of emissive color by varying the phosphor blend compositions. Although nanoparticles of a variety of materials have been coated by EPD, there have been few direct comparisons of EPD of nano- and micron-sized particles of the same material. Another field of the study was to compare EPD of nano-, nano core/SiO2 shell and micron-sized (Ba0.97 Eu0.03)2SiO4 phosphor particles for application in a near-UV LED-based light source

  2. The influence of nanoparticle aggregation on formation of ZrO{sub 2} electrolyte thin films by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalinina, E.G., E-mail: kalinina@iep.uran.ru [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 106 Amundsen Street, 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Street, 620002 Ekaterinburg (Russian Federation); Efimov, A.A. [Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudny, Moscow Region (Russian Federation); Safronov, A.P. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 106 Amundsen Street, 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Street, 620002 Ekaterinburg (Russian Federation)

    2016-08-01

    The paper presents the results of the studies of electrically stabilized nonaqueous suspensions of ZrO{sub 2} stabilized by Y{sub 2}O{sub 3} (YSZ) nanoparticles with an average diameter of 11 nm for the formation of green films of electrolyte for solid oxide fuel cells. Nanoparticles were de-aggregated to different degrees, which were provided by the ultrasonic treatment and the centrifugation, and monitored by the dynamic light scattering. YSZ green thin films were obtained by the electrophoretic deposition (EPD) on dense lanthanum strontium manganite cathodes using suspensions with the average diameter of aggregates: 107; 66; 53 nm. To investigate the possibilities of EPD we used the model drying of the same suspensions cast upon the same substrates. It was shown that the structure and the morphology of the green films obtained by EPD was different compared to the films prepared by the model drying of the suspension. The drying of the stable suspension resulted in the formation of loose aggregates on the surface. The efficient packing of electrically stabilized particles was prevented by the forces of electrostatic repulsion between them. In the case of EPD the electrocoagulation of particles near the cathode takes place with the formation of dense aggregates. As a result, uncharged spherical aggregates with an average size of about 100–200 nm settle on the surface of the cathode and pack into a uniform dense coating suitable for the subsequent sintering of a gas-tight coating for the solid YSZ electrolyte. - Highlights: • Impact of nanoparticle aggregation on the electrophoretic deposition is studied. • Sedimentation of stabilized particles results in formation of loose aggregates. • The formation of dense layer is facilitated by electrocoagulation of particles.

  3. Nanostructured MgTiO{sub 3} thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, Irina [S.C. IPEE Amiral Trading Impex S.A., 115300 Curtea de Arges (Romania); Mahajan, Amit [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Monty, Claude J.A. [CNRS-PROMES Laboratory, 66120 Font Romeu Odeillo (France); Venkata Saravanan, K., E-mail: venketvs@cutn.ac.in [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Department of Physics, School of Basic and Applied Science, Central University of Tamil Nadu, Thiruvarur 61010 (India)

    2015-12-15

    Highlights: • Obtaining nano-crystalline magnesium titanium oxide powders by solar physical vapor deposition (SPVD) process. And using these nano-powders to obtain thick films on conducting substrates by electrophoretic deposition (EPD). • SPVD is a core innovative, original and environmentally friendly process to prepare nano-materials in a powder form. • Sintered thick films exhibited dielectric constant, ε{sub r} ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz, which is comparable to the values reported earlier. • New contributions to the pool of information on the preparation of nano-structured MgTiO{sub 3} thick films at low temperatures. • A considerable decrease in synthesis temperature of pure MgTiO{sub 3} thick film was observed by the combination of SPVD and EPD. - Abstract: A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO{sub 3} nanostructured thick films is presented. Obtaining nanostructured MgTiO{sub 3} thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro – DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22–25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The

  4. Phosphor Deposits of β-Sialon:Eu2+ Mixed with SnO2 Nanoparticles Fabricated by the Electrophoretic Deposition (EPD) Process

    Science.gov (United States)

    Zhang, Chenning; Uchikoshi, Tetsuo; Liu, Lihong; Sakka, Yoshio; Hirosaki, Naoto

    2014-01-01

    The phosphor deposits of the β-sialon:Eu2+ mixed with various amounts (0–1 g) of the SnO2 nanoparticles were fabricated by the electrophoretic deposition (EPD) process. The mixed SnO2 nanoparticles was observed to cover onto the particle surfaces of the β-sialon:Eu2+ as well as fill in the voids among the phosphor particles. The external and internal quantum efficiencies (QEs) of the prepared deposits were found to be dependent on the mixing amount of the SnO2: by comparing with the deposit without any mixing (48% internal and 38% external QEs), after mixing the SnO2 nanoparticles, the both QEs were improved to 55% internal and 43% external QEs at small mixing amount (0.05 g); whereas, with increasing the mixing amount to 0.1 and 1 g, they were reduced to 36% and 29% for the 0.1 g addition and 15% and 12% l QEs for the 1 g addition. More interestingly, tunable color appearances of the deposits prepared by the EPD process were achieved, from yellow green to blue, by varying the addition amount of the SnO2, enabling it as an alternative technique instead of altering the voltage and depositing time for the color appearance controllability. PMID:28788639

  5. Phosphor Deposits of β-Sialon:Eu2+ Mixed with SnO₂ Nanoparticles Fabricated by the Electrophoretic Deposition (EPD) Process.

    Science.gov (United States)

    Zhang, Chenning; Uchikoshi, Tetsuo; Liu, Lihong; Sakka, Yoshio; Hirosaki, Naoto

    2014-05-06

    The phosphor deposits of the β-sialon:Eu2+ mixed with various amounts (0-1 g) of the SnO₂ nanoparticles were fabricated by the electrophoretic deposition (EPD) process. The mixed SnO₂ nanoparticles was observed to cover onto the particle surfaces of the β-sialon:Eu2+ as well as fill in the voids among the phosphor particles. The external and internal quantum efficiencies (QEs) of the prepared deposits were found to be dependent on the mixing amount of the SnO₂: by comparing with the deposit without any mixing (48% internal and 38% external QEs), after mixing the SnO₂ nanoparticles, the both QEs were improved to 55% internal and 43% external QEs at small mixing amount (0.05 g); whereas, with increasing the mixing amount to 0.1 and 1 g, they were reduced to 36% and 29% for the 0.1 g addition and 15% and 12% l QEs for the 1 g addition. More interestingly, tunable color appearances of the deposits prepared by the EPD process were achieved, from yellow green to blue, by varying the addition amount of the SnO₂, enabling it as an alternative technique instead of altering the voltage and depositing time for the color appearance controllability.

  6. Electrophoretic deposition and characterization of HA/chitosan nanocomposite coatings on Ti6Al7Nb alloy

    Science.gov (United States)

    Moskalewicz, Tomasz; Kot, Marcin; Seuss, Sigrid; Kędzierska, Aleksandra; Czyrska-Filemonowicz, Aleksandra; Boccaccini, Aldo R.

    2015-01-01

    Nano-hydroxyapatite/chitosan (nc-HA/chitosan) composite coatings were produced on two phase (α+β) Ti6Al7Nb titanium alloy substrates by electrophoretic deposition (EPD). The microstructure of the coatings was examined by scanning- and transmission electron microscopy methods as well as by X-ray diffractometry. The coatings, 770 nm-800 nm thick, were uniform, without any cracks or presence of large voids and they exhibited good adhesion to the titanium alloy substrate. The microstructure of the coatings consisted of nc-HA needle-like particles homogeneously embedded in a chitosan matrix. The deposited coatings exhibited good adhesion to the substrate. The best adhesion to the titanium alloy was determined for the coating deposited from suspensions containing 4 g/L of HA at 10 V during 240 s. The results confirm EPD as a convenient method to develop uniform and crack-free nanoscale organic-inorganic composite coatings on two phase titanium alloy substrates with potential application in orthopedic and dental implants.

  7. Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing.

    Science.gov (United States)

    Feng, Ji-Fei; Gao, Shui-Ying; Liu, Tian-Fu; Shi, Jianlin; Cao, Rong

    2018-02-14

    Engineering novel dual-emitting metal-organic frameworks (MOFs) with wide emission ranges for application as ratiometric temperature sensors is still a challenge. In this paper, two novel dual-emitting MOFs with intergrated lanthanide metals and luminescent ligand in a UiO-66-type structure, named Ln@UiO-66-Hybrid, were prepared via the combination of postsynthetic modification and postsynthetic exchange methods. Subsequently, the as-synthesized MOFs were deposited onto fluorine tin oxide substrates through electrophoretic deposition by taking advantage of the charges from the unmodified carboxylic groups of the MOFs. The as-prepared Tb@UiO-66-Hybrid and Eu@UiO-66-Hybrid films were applied to detect temperature changes. The resulting Tb@UiO-66-Hybrid film exhibited good temperature-sensing properties with a relative sensitivity of up to 2.76% K -1 in the temperature range of 303-353 K. In addition, the Eu@UiO-66-Hybrid film showed excellent temperature-sensing performance based on the energy transfer between the luminescent ligand (H 2 NDC) and europium ions with a relative sensitivity of up to 4.26% K -1 in the temperature range of 303-403 K.

  8. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  9. Synthesis and electrophoretic deposition of hollow-TiO{sub 2} nanoparticles for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Chava, Rama Krishna; Raj, Sudarsan; Yu, Yeon-Tae, E-mail: yeontae@jbnu.ac.kr

    2016-07-05

    Hollow TiO{sub 2} nanoparticles having ∼200 nm size are successfully prepared via selective etching of Au@TiO{sub 2} core shell nanoparticles which were synthesized by microwave hydrothermal growth. Electrophoretic deposition was successfully applied to make hollow TiO{sub 2} nanoparticles scattering layer for dye-sensitized solar cells (DSSCs) applications. The surface morphology and roughness features of deposited hollow TiO{sub 2} nanoparticles films are studied by field emission scanning electron microscope and atomic force microscope techniques respectively. The light scattering property of H–TiO{sub 2} makes it a promising candidate for use as the scattering layer in dye sensitized solar cells. Enhanced J{sub SC} values for the H–TiO{sub 2} based DSSCs were attributed to larger dye adsorption and stronger light scattering compared to the commercial TiO{sub 2} nanoparticle with a crystalline size of 20 nm. - Highlights: • Hollow TiO{sub 2} are produced by KCN etching of Au@TiO{sub 2} core–shell NPs. • EPD was successfully applied to make hollow TiO{sub 2} NPs film. • Compact, crack free and uniform hollow TiO{sub 2} NPs film was obtained by EPD. • Scattering layer of hollow TiO{sub 2} NPs was successfully introduced in DSS Cell.

  10. Influence of Carbon Nanotube Coatings on Carbon Fiber by Ultrasonically Assisted Electrophoretic Deposition on Its Composite Interfacial Property

    Directory of Open Access Journals (Sweden)

    Jianjun Jiang

    2016-08-01

    Full Text Available Carbon nanotube (CNT coatings were utilized to enhance the interfacial properties of carbon fiber (CF/epoxy(EP composites by ultrasonically assisted electrophoretic deposition (EPD. A characterization of the CF surface properties was done before and after coating (surface chemistry, surface morphologies, and surface energy. The result shows that oxygenated groups concentrations of the CF surfaces experienced significant increases from 12.11% to 24.78%. Moreover, the uniform and homogeneous CNT films were tightly attached on the surface of CF, and the surface wettability of CF is significant improved by enhanced surface free energy when introduced ultrasonic during the EPD process. In addition, the interlaminar shear strength (ILSS and water absorption of CF/EP composite were measured. Scanning electron microscopy (SEM revealed that the fracture mechanisms of the new interface layer formed by depositing CNTs on the CF surface contributed to the enhancement of the mechanical performance of the epoxy. This means that the efficient method to improve interfacial performance of composites has shown great commercial application potential.

  11. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr

    2016-01-01

    silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic...

  12. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications.

    Science.gov (United States)

    Hickey, Daniel J; Muthusamy, Divya; Webster, Thomas J

    2017-11-01

    Bacterial infection of implanted biomaterials is a serious problem that increases health care costs and negatively affects a considerable fraction of orthopedic procedures. In this field, magnesium oxide nanoparticles (MgO NPs) have emerged as a promising material to combat bacterial infection while maintaining or improving bone cell functions. Here, MgO NPs were electrophoretically deposited onto poly-L-lactic acid (PLLA) sheets to achieve a coating of highly exposed MgO NPs that directly influenced cell-substrate interactions at short time scales. Samples were characterized for their surface chemistry, crystal structure, roughness, wettability, degradation characteristics, and their ability to support the growth of human fibroblasts and osteoblasts, as well as their resistance to colonization by Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. In general, increasing the applied voltage during deposition increased the surface coverage of the coating and significantly decreased the colonization of all three bacterial strains (up to a 90% reduction). Furthermore, S. aureus cells that did attach onto substrates prepared at high voltages exhibited trademark signs of membrane damage and cell death. Importantly, MTS cell viability assays indicated that osteoblast adhesion increased with increasing deposition voltage, while fibroblast adhesion exhibited the opposite trend. Thus, although requiring more studies, this research provides the first evidence that MgO NP coatings prepared at relatively high voltages (120-150 V) may have the ability to resist bacterial colonization, promote bone cell attachment, and curb fibrous capsule formation. Therefore, it is recommended that this technology be further investigated and developed for numerous orthopedic applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3136-3147, 2017. © 2017 Wiley Periodicals, Inc.

  13. Cobalt ferrite dispersion in organic solvents for electrophoretic deposition: Influence of suspension parameters on the film microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Gang [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Lu, Sheng, E-mail: lusheng119@yahoo.com.cn [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Zhou, Dongxiang [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang, Junyou [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Fu, Qiuyun [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-01-15

    An electrophoretic deposition (EPD) method was applied for the preparation of CoFe{sub 2}O{sub 4} (CFO) films on Al{sub 2}O{sub 3}/Pt substrates. A coprecipitation process was used to synthesize fine CFO powders with an average particle size of ∼40 nm. Influences of suspension parameters such as solvents, iodine additive, and charged polymer on the suspension stability and film microstructure were investigated in detail. Three suspensions including CFO–acetylacetone, CFO–acetylacetone–0.08 wt% I{sub 2} and CFO–acetylacetone–0.2 wt% polyethylenimine (PEI) were optimized, respectively. It was found that CFO was deposited uniformly and the potential required for the deposition was small for the three optimized suspensions. After sintering at 1250 °C for 2 h, the film from CFO–acetylacetone–0.08 wt% I{sub 2} showed many cracks, which indicates this suspension is not suitable for preparing high quality CFO ceramic films. While the sintered films fabricated from the other two optimized suspensions exhibited dense structures. Based on the electric and magnetic properties of CFO ceramic films, it can be concluded that CFO–acetylacetone–0.2 wt% PEI is the proper suspension to prepare films with better microstructures and properties. - Highlights: • Suspension parameters were investigated in the EPD of CoFe{sub 2}O{sub 4} film. • Among organic solvents acetylacetone is proper to prepare CoFe{sub 2}O{sub 4} suspension. • I{sub 2} addition improved suspension stability but deteriorated the film structure. • PEI addition improved both the suspension stability and the film structure.

  14. Fabrication of supported Ca-doped lanthanum niobate electrolyte layer and NiO containing anode functional layer by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bozza, Francesco; Bonanos, Nikolaos

    2012-01-01

    The technique of electrophoretic deposition (EPD) has been applied for the preparation of a dense calcium-doped lanthanum niobate electrolyte film. La0.995Ca0.005NbO4 (LCN) powder was suspended in a solution of acetylacetone, iodine and water. The effects of suspension composition and deposition...... conditions were analyzed in order to identify a suitable set of EPD process parameters. The powders were deposited on a composite substrate of LCN, NiO, binder and graphite. A dense 8 μm film of lanthanum niobate supported on a porous substrate was obtained after sintering at 1200 °C. The technique was found...

  15. In Situ Synthesis and Electrophoretic Deposition of NiO/Ni Core-Shell Nanoparticles and Its Application as Pseudocapacitor

    Directory of Open Access Journals (Sweden)

    Joaquin Yus

    2017-11-01

    Full Text Available A simple, low cost and transferable colloidal processing method and the subsequent heat treatment has been optimized to prepare binder-free electrodes for their application in supercapacitors. NiO/Ni core–shell hybrid nanostructures have been synthetized by heterogeneous precipitation of metallic Ni nanospheres onto NiO nanoplatelets as seed surfaces. The electrophoretic deposition (EPD has been used to shape the electroactive material onto 3D substrates such as Ni foams. The method has allowed us to control the growth and the homogeneity of the NiO/Ni coatings. The presence of metallic Nickel in the microstructure and the optimization of the thermal treatment have brought several improvements in the electrochemical response due to the connectivity of the final microstructure. The highest specific capacitance value has been obtained using a thermal treatment of 325 °C during 1 h in Argon. At this temperature, necks formed among ceramic-metallic nanoparticles preserve the structural integrity of the microstructure avoiding the employment of binders to enhance their connectivity. Thus, a compromise between porosity and connectivity should be established to improve electrochemical performance.

  16. Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell

    Science.gov (United States)

    Fei, Kangqing; Song, Tian-shun; Wang, Haoqi; Zhang, Dalu; Tao, Ran; Xie, Jingjing

    2017-10-01

    For Cr(VI)-removal microbial fuel cell (MFC), a more efficient biocathode in MFCs is required to improve the Cr(VI) removal and electricity generation. RVC-CNT electrode was prepared through the electrophoretic deposition of carbon nanotube (CNT) on reticulated vitreous carbon (RVC). The power density of MFC with an RVC-CNT electrode increased to 132.1 ± 2.8 mW m-2, and 80.9% removal of Cr(VI) was achieved within 48 h; compared to only 44.5% removal of Cr(VI) in unmodified RVC. Cyclic voltammetry, energy-dispersive spectrometry and X-ray photoelectron spectrometry showed that the RVC-CNT electrode enhanced the electrical conductivity and the electron transfer rate; and provided more reaction sites for Cr(VI) reduction. This approach provides process simplicity and a thickness control method for fabricating three-dimensional biocathodes to improve the performance of MFCs for Cr(VI) removal.

  17. Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation

    Science.gov (United States)

    Xu, Zhe; Jiang, Deyi; Wei, Zhibo; Chen, Jie; Jing, Jianfeng

    2018-01-01

    Stainless steel meshes with superhydrophobic surfaces were successfully fabricated via a facile electrophoretic deposition process. The surface morphology and chemical compositions were characterized by a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and fourier-transform infrared spectrophotometer (FTIR). After stearic acid modification, the obtained nano-aluminum films on stainless steel meshes showed an excellent superhydrophobic properties with a water contact angle of 160° ± 1.2° and a water sliding angle of less than 5°. In addition, on the basis of the superhydrophobic meshes, a simple, continuous oil-water separation apparatus was designed, and the oil-water separation efficiency was up to 95.8% ± 0.9%. Meanwhile, after 20 oil-water separation cycles, the separation efficiency without significant reduction suggested the stable performance of superhydrophobic stainless steel meshes on the oil-water separation. Moreover, the flow rate of oil-water mixture and effective separation length were investigated to determine their effects on the oil-water separation efficiency, respectively. Our work provides a cost-efficient method to prepare stable superhydrophobic nano-Al films on stainless steel meshes, and it has promising practical applications on oil-water separation.

  18. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method.

    Science.gov (United States)

    Wang, Mei; Duong, Le Dai; Mai, Nguyen Thi; Kim, Sanghoon; Kim, Youngjun; Seo, Heewon; Kim, Ye Chan; Jang, Woojin; Lee, Youngkwan; Suhr, Jonghwan; Nam, Jae-Do

    2015-01-21

    Portable energy storage devices have gained special attention due to the growing demand for portable electronics. Herein, an all-solid-state supercapacitor is successfully fabricated based on a poly(vinyl alcohol)-H3PO4 (PVA-H3PO4) polymer electrolyte and a reduced graphene oxide (RGO) membrane electrode prepared by electrophoretic deposition (EPD). The RGO electrode fabricated by EPD contains an in-plane layer-by-layer alignment and a moderate porosity that accommodate the electrolyte ions. The all-solid-state RGO supercapacitor is thoroughly tested to give high specific volumetric capacitance (108 F cm(-3)) and excellent energy and power densities (7.5 Wh cm(-3) and 2.9 W cm(-3), respectively). In addition, the all-solid-state RGO supercapacitor exhibits an ultralong lifetime for as long as 180 days (335 000 cycles), which is an ultrahigh cycling capability for a solid-state supercapacitor. The RGO is also tested for being used as a transparent supercapacitor electrode demonstrating its possible use in various transparent optoelectronic devices. Due to the facile scale-up capability of the EPD process and RGO dispersion, the developed all-solid-state supercapacitor is highly applicable to large-area portable energy storage devices.

  19. Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides

    OpenAIRE

    Cordero Arias, Luis Eduardo

    2015-01-01

    Regarding the need to improve the usually encountered osteointegration of metallic implants with the surrounding body tissue in bone replacement applications, bioactive organic/inorganic composite coatings on metallic substrates were developed in this work using electrophoretic deposition (EPD) as coating technology. In the present work three polysaccharides, namely alginate, chondroitin sulfate and chitosan were used as the organic part, acting as the matrix of the coating and enabling the c...

  20. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO₂ Composite Coatings on Stainless Steel (316L) Substrates.

    Science.gov (United States)

    Raddaha, Namir S; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A; Boccaccini, Aldo R

    2014-03-04

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO₂) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO₂ in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO₂ particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO₂ and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO₂ and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  1. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L Substrates

    Directory of Open Access Journals (Sweden)

    Namir S. Raddaha

    2014-03-01

    Full Text Available This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN and chitosan/h-BN/titania (TiO2 composites on SS316L substrates using electrophoretic deposition (EPD for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  2. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L) Substrates

    Science.gov (United States)

    Raddaha, Namir S.; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A.; Boccaccini, Aldo R.

    2014-01-01

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO2) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings. PMID:28788541

  3. Electrophoretic deposition of bioactive silica-calcium phosphate nanocomposite on Ti-6Al-4V orthopedic implant.

    Science.gov (United States)

    Aniket; El-Ghannam, Ahmed

    2011-11-01

    Bioactive silica-calcium phosphate nanocomposite (SCPC) has been coated on Ti-6Al-4V implant employing an electrophoretic deposition (EPD) technique. The effects of composition and pH of the suspending medium on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however, the difference was not statistically significant. Discs of Ti-6Al-4V were passivated, coated with SCPC50 (200 nm-10 μm) and thermally treated at 600-800°C to produce a coating thickness in the range of 43.1 ± 5.7 to 30.1 ± 4.6 μm. After treatment at 600, 700, and 800°C, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 ± 3.6, 44.7 ± 8.7, and 47.2 ± 4.3 MPa, respectively. SEM-EDX analyses of SCPC50-coated Ti-6Al-4V preimmersed in PBS for 7 days showed the formation of a Ca-deficient hydroxyapatite surface layer. ICP-OES analyses of the immersing solution (n = 6) showed an increase in the ionic concentration of Si from 3.3 ± 0.9 to 5.0 ± 1.2 ppm between days 1 and 4; after which no significant change in the Si concentration was measured. Bone marrow mesenchymal stem cells attached to the SCPC50-coated implants expressed significantly higher (p SCPC50 can efficiently be coated on Ti-6Al-4V using EPD. The SCPC50 coating has the potential to enhance bone integration with the orthopedic implant. 2011 Wiley Periodicals, Inc.

  4. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chao; Jiang, Jianjun, E-mail: jianjun@nwpu.edu.cn; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-12-01

    Graphical abstract: Carbon nanotube/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. - Highlights: • Carbon nanotube coated carbon fiber was prepared by two methods. • Uniform and dense CNTs network formed by oxidative treatments combined with EPD. • Pretreatment of the CF is beneficial to EPD of CNTs on carbon fiber surface. • CNTs enhanced the surface activity and wettability of carbon fibers. • CNTs have contributed to the interfacial properties of composite. - Abstract: To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed

  5. Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells

    Science.gov (United States)

    Wei, Xing; Sugri Nbelayim, Pascal; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2017-03-01

    A layer of TiO2 nanotube (TNT) arrays with a thickness of 13 μm is synthesized by a two-step anodic oxidation from Ti metal foil. Surface charged Ag nanoparticles (NPs) are prepared by chemical reduction. After a pretreatment of the TNT arrays by acetone vapor, Ag NP filled TNT arrays can be achieved by electrophoretic deposition (EPD). Effects of the applied voltage during EPD such as DC-AC difference, frequency and waveform are investigated by quantitative analysis using atomic absorption spectroscopy. The results show that the best EPD condition is using DC 2 V + AC 4 V and a square wave of 1 Hz as the applied voltage. Back illuminated dye-sensitized solar cells are fabricated from TNT arrays with and without Ag NPs. The efficiency increased from 3.70% to 5.01% by the deposition of Ag NPs.

  6. Electrophoretic deposition of 9-YSZ solid electrolyte on Ni- YSZ composite; Estudos de deposicao eletroforetica de ceramicas de 9-YSZ sobre Ni-YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.S.; Yoshito, W.K.; Lazar, D.R.R.; Ussui, V., E-mail: vussui@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2010-07-01

    9-YSZ ceramic and Ni-YSZ metal/ceramic composite are the more commonly used materials for the fabrication of solid oxide fuel cell electrolyte and anode, respectively. The main challenges for these applications are the forming of both materials as superposed double thin layers. In the present work ceramic powder of 9- YSZ was synthesized by a coprecipitation technique and the Ni O-YSZ composite by a combustion technique. The later was formed by uniaxial pressing as cylindrical pellets of 15 mm diameter. Thin ceramic layers of 9-YSZ were deposited on composite pellets from a suspension with 10% solid content by an Electrophoretic Deposition technique. Applied voltage varied in the range of 30 to 200 V and deposition time from 15 to 90 seconds, evaluating the deposited mass, porosity on the interface and adhesion of layers. Resulted ceramics were characterized by X-ray diffraction and were observed in a scanning electron microscope. Results showed that deposited layers are thin ({approx}20{mu}m), dense and have good adhesion on the surface of composite substrate. (author)

  7. Electrophoretic deposition of hybrid coatings on aluminum alloy by combining 3-aminopropyltrimethoxysilan to silicon–zirconium sol solutions for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mei; Xue, Bing; Liu, Jianhua, E-mail: yumei@buaa.edu.cn; Li, Songmei; Zhang, You

    2015-09-01

    Electrophoretic deposition (EPD) silicon–zirconium organic–inorganic hybrid coatings were applied on LC4 aluminum alloy for corrosion protection. 3-Glycidoxypropyl-trimethoxysilane (GTMS) and Zirconium (IV) n-propoxide (TPOZ) were used as precursors. 3-Aminopropyl-trimethoxysilane (APS) was added to enhance the corrosion protective performance of the coatings. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize morphology, microstructure and component. The results show that the addition of APS leads to the enhanced migration and deposition of positively charged colloidal particles on the surface of metal substrate, which results in the thickness increasing of coatings. However, loading an excessive amount of APS gives a heterogeneous coating surface. The corrosion protective performance of coatings were measured by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results indicate that the addition of APS improves corrosion protective performance of coatings. The optimal addition content of APS is about 15%. The 15% APS coating is uniform and dense, as well as has good corrosion protective performance. The impedance value (1.58 × 10{sup 5} Ω·cm{sup 2}, at the lowest frequency) of 15% APS coating is half order of magnitude higher than that of coating without APS, and 15% APS coating always keeps the best corrosion protective performance with prolonged immersion time. This kind of coating is identified with “double-structure” properties based on the analysis of EIS and potentiodynamic polarization. Furthermore, the equivalent circuit results indicate that the intermediate oxide layer plays a main role in corrosion protection. - Highlights: • Electrophoretic deposition hybrid coatings are prepared on LC4 aluminum alloy. • 3-Aminopropyl-trimethoxysilane (APS) enhances the corrosion protective performance. • The

  8. Characteristics enhancement of a GaAs based heterostructure field-effect transistor with an electrophoretic deposition (EPD) surface treated gate structure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Chia [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China); Chen, Huey-Ing; Liu, I-Ping [Department of Chemical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China); Chou, Po-Cheng; Liou, Jian-Kai; Tsai, Yu-Ting [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China); Liu, Wen-Chau, E-mail: wcliu@mail.ncku.edu.tw [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2015-06-30

    Highlights: • Platinum (Pt) was formed on the gate region of a heterostructure field-effect transistor (HFET) by an electrophoretic deposition (EPD) approach. • EPD-based Pt morphologies were examined by SEM, AFM, XRD, and EDS analyses. • EPD approach shows advantages of low cost, simple apparatus, and adjustable alloy grain size. • EPD-based Pt-gate structure contributes to device's superior temperature-dependent I–V characteristics. - Abstract: A Pt/AlGaAs/InGaAs/GaAs heterostructure field-effect transistor (HFET), prepared by an electrophoretic deposition (EPD) approach on gate Schottky contact region, is fabricated and studied. The EPD-based Pt-gates with three different molar ratios (ω{sub 0}) are examined by scanning electron microscopy (SEM) image. Good Pt-gate coverage with effective reduction of thermal-induced defects at Pt/AlGaAs interface is achieved through a low temperature EPD approach. Experimentally, for a gate dimension of 1 μm × 100 μm, a lower gate current of 1.9 × 10{sup −2} mA/mm, a higher turn-on voltage of 0.85 V, a higher maximum drain saturation current of 319.3 mA/mm, and a higher maximum extrinsic transconductance of 146.8 mS/mm are obtained for an EPD-based HFET at 300 K. Moreover, comparable microwave characteristics of an EPD-based HFET are demonstrated at different temperature ambiences. Therefore, based on the improved DC performance and inherent benefits of low cost, simple apparatus, flexible deposition on varied substrates, and adjustable alloy grain size, the proposed EPD approach shows the promise to fabricate high-performance electronic devices.

  9. HP-SPME of volatile polycyclic aromatic hydrocarbons from water using multiwalled carbon nanotubes coated on a steel fiber through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoudi, S.; Noroozian, E. [Shahid Bahonar Univ., Kerman (Iran, Islamic Republic of). Dept. of Chemistry

    2012-08-15

    A headspace solid-phase microextraction (SPME) method using a stainless steel wire electrophoretically coated with dodecylsulfate modified multiwalled carbon nanotubes was used for the gas chromatographic (GC) determination of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Electrophoretic deposition was easily carried out from an aqueous sodium dodecylsulfate medium. The effects of various parameters on the efficiency of SPME process, such as extraction time, extraction temperature, ionic strength, desorption time, and desorption temperature were studied. Under optimized conditions, the detection limits for the various PAHs studied varied from 0.03 to 0.07 ng mL{sup -1}. The inter-day and intra-day relative standard deviations at a 10 ng mL{sup -1} concentration level (n = 7) using a single-fiber were from 5.5 to 9.7 and 4.1 to 8.5 %, respectively. The fiber-to-fiber RSD% (n = 3) was between 7.3 and 11.1 %. The linear ranges were between 0.1 and 100 ng mL{sup -1}. The method was successfully applied to the analysis of a real sample with the recoveries from 88 to 105 % for 5 ng mL{sup -1} and 89 to 101 % for 0.5 ng mL{sup -1} samples. (orig.)

  10. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  11. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples.

    Science.gov (United States)

    Kahlouche, Karima; Jijie, Roxana; Hosu, Ioana; Barras, Alexandre; Gharbi, Tijani; Yahiaoui, Reda; Herlem, Guillaume; Ferhat, Marhoun; Szunerits, Sabine; Boukherroub, Rabah

    2018-02-01

    Microsystems play an important role in many biological and environmental applications. The integration of electrical interfaces into such miniaturized systems provides new opportunities for electrochemical sensing where high sensitivity and selectivity towards the analyte are requested. This can be only achieved upon controlled functionalization of the working electrode, a challenge for compact microsystems. In this work, we demonstrate the benefit of electrophoretic deposition (EPD) of reduced graphene oxide/polyethylenimine (rGO/PEI) for the selective modification of a gold (Au) microelectrode in a microsystem comprising a Pt counter and a Ag/AgCl reference electrode. The functionalized microsystem was successfully applied for the sensing of dopamine with a detection limit of 50nM. Additionally, the microsystem exhibited good performance for the detection of dopamine levels in meat samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Pt/AlGaN/GaN heterostructure field-effect transistor (HFET) prepared by an electrophoretic deposition (EPD)-gate approach

    Science.gov (United States)

    Hung, Ching-Wen; Chang, Ching-Hong; Chen, Wei-Cheng; Chen, Chun-Chia; Chen, Huey-Ing; Tsai, Yu-Ting; Tsai, Jung-Hui; Liu, Wen-Chau

    2016-10-01

    Based on an electrophoretic deposition (EPD)-gate approach, a Pt/AlGaN/GaN heterostructure field-effect transistor (HFET) is fabricated and investigated at higher temperatures. The Pt/AlGaN interface with nearly oxide-free is verified by an Auger Electron Spectroscopy (AES) depth profile for the studied EPD-HFET. This result substantially enhances device performance at room temperature (300 K). Experimentally, the studied EPD-HFET exhibits a high turn-on voltage, a well suppression on gate leakage, a superior maximum drain saturation current, and an excellent extrinsic transconductance. Moreover, the microwave performance of an EPD-HFET is demonstrated at room temperature. Consequentially, this EPD-gate approach gives a promise for high-performance electronic applications.

  13. Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: an in vitro investigation.

    Science.gov (United States)

    Ananth, K Prem; Suganya, S; Mangalaraj, D; Ferreira, J M F; Balamurugan, A

    2013-10-01

    The physical, chemical and biological properties of the bioglass reinforced yttria-stabilized composite layer on Ti6Al4V titanium substrates were investigated. The Ti6Al4V substrate was deposited with yttria stabilized zirconia - YSZ as the base layer of thickness ≈4-5 μm, to inhibit metal ion leach out from the substrate and bioglass zirconia reinforced composite as the second layer of thickness ≈15 μm, which would react with surrounding bone tissue to enhance bone formation and implant fixation. The deposition of these two layers on the substrate was carried out using the most viable electrophoretic deposition (EPD) technique. Biocompatible yttria-stabilized zirconia (YSZ) in the form of nano-particles and sol gel derived bioglass in the form of micro-particles were chosen as precursors for coating. The coatings were vacuum sintered at 900 °C for 3h. The biocompatibility and corrosion resistance property were studied in osteoblast cell culture and in simulated body fluid (SBF) respectively. Analysis showed that the zirconia reinforced bioglass bilayer system promoted significant bioactivity, and it exhibited a better corrosion resistance property and elevated mechanical strength under load bearing conditions in comparison with the monolayer YSZ coating on Ti6Al4V implant surface. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd nanoparticles (NPs in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  15. Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition.

    Science.gov (United States)

    Farnoush, Hamidreza; Aghazadeh Mohandesi, Jamshid; Çimenoğlu, Hüseyin

    2015-06-01

    In the present study, functionally graded coatings of HA/TiO2 nanoparticles and HA-TiO2 nanocomposite coatings with 0, 10 and 20 wt% of TiO2 were fabricated by electrophoretic deposition on Ti-6Al-4V substrate. The functionally graded structure of HA/TiO2 coatings was formed by gradual addition of HA suspension into the deposition cell containing TiO2 nanoparticles. Micro-scratch test results showed the highest critical distances of crack initiation and delamination, normal load before failure and critical contact pressures for functionally graded coating. It was observed that the improvement of adhesion strength and fracture toughness of functionally graded coatings would be due to the reduction of thermal expansion coefficient mismatch between Ti-6Al-4V substrate and HA. The results of potentiodynamic polarization measurements showed that the graded structure of the coating could efficiently increase the corrosion resistance of substrate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Electrophoretic Approach for the Simultaneous Deposition and Functionalization of Reduced Graphene Oxide Nanosheets with Diazonium Compounds: Application for Lysozyme Sensing in Serum.

    Science.gov (United States)

    Wang, Qian; Vasilescu, Alina; Wang, Qi; Coffinier, Yannick; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2017-04-12

    Electrophoretic deposition (EPD) of reduced graphene oxide nanosheets (rGO) offers several advantages over other surface coating approaches, including process simplicity, uniformity of the deposited films, and good control of the film thickness. The EPD conditions might also be of interest for the reduction of diazonium salts, which upon the release of N2 molecules and generation of radicals, can form covalent bonds with the sp2 hybridized carbon lattice atoms of rGO films. In this work, we report on the coating of gold electrodes in one step with rGO/polyethylenimine (PEI) thin films and their simultaneous modification using different phenyl (Ph) diazonium salt precursors bearing various functionalities such as -B(OH)2, -COOH, and -C≡CH. We show further the interest of such interfaces for designing highly sensitive sensing platforms. Azide-terminated lysozyme aptamers were clicked onto the rGO/PEI/Ph-alkynyl matrix and used for the sensing of lysozyme levels in patients suffering from inflammatory bowel disease (IBD), where lysozyme levels are up-regulated. The approach attained the required demand for the determination of lysozyme level in patients suffering from IBD with a 200 fM detection limit and a linear range up to 20 pM without signal amplification.

  17. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Science.gov (United States)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2014-12-01

    A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO2 and ZrO2 nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO2 and ZrO2 peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  18. Critical role of suspension media in electrophoretic deposition: the example of low loss dielectric BaNd2Ti5O14 thick films.

    Science.gov (United States)

    Vilarinho, Paula M; Fu, Zhi; Wu, Aiying; Kingon, Angus I

    2013-02-14

    The importance of electrophoretic deposition (EPD) is well recognized for thick film technology, but unfortunately there is no universal suspension medium for the EPD of oxides. Thus, the selection of the medium, the stability of the suspensions, and the control of the particle potentials, critical for a good deposition, need to be established for each new material being processed by EPD. In this article, we investigate the key parameters, studying the electrochemistry of BaNd(2)Ti(5)O(14) (BNT) suspensions, and establish relationships between suspension media, EPD process conditions, microstructure of the deposits, and resulting electrical properties of the BNT films. Suspension stability of water, ethanol, acetic acid, and acetone-based media was analyzed in terms of zeta potential, particle size distribution, UV transmittance, and inductively coupled plasma spectrometry. The highest absolute zeta potential values determined for acetone with I(2) and acetic acid media are in good agreement with the high stability, small and narrow particle size distribution, and low UV light transmittance measured for these suspensions. Very high quality thick deposits were consequently achieved. However, it was demonstrated that aging of the acetic acid-based suspension have serious negative effects on the EPD process for BNT materials, including leaching of the metallic elements with a consequent modification of the material stoichiometry, change of the conductivity of the suspension, and degradation of the films microstructure. These facts severely restrict the use of acetic acid. Our results clearly indicate that, besides the stability of the suspension, the electrochemistry and aging behavior are key aspects for the EPD of functional oxides. Our systematic approach could be viewed as providing a set of guidelines for the development of EPD of other oxides.

  19. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R., E-mail: aldo.boccaccini@ww.uni-erlangen.de

    2014-07-01

    PVA reinforced alginate–bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate–Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications. - Highlights: • PVA reinforced alginate–bioactive glass composite coating on stainless steel produced by EPD • The co-deposition mechanism was experimentally confirmed. • Homogeneous and compact coating microstructure obtained by the addition of PVA • Improved adhesion strength of PVA reinforced coatings confirmed qualitatively and quantitatively • Controlled degradation rate and rapid HA forming ability of PVA-containing coatings in SBF.

  20. Electrochemical and electrophoretic deposition of enzymes : Principles, differences and application in miniaturized biosensor and biofuel cell electrodes

    NARCIS (Netherlands)

    Ammam, Malika

    2014-01-01

    Recent advances in nano-biotechnology have made it possible to realize a great variety of enzyme electrodes suitable for sensing and energy applications. In coating miniaturized electrodes with enzymes, there is no doubt that most of the available deposition processes suffer from the difficulty in

  1. Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition.

    Science.gov (United States)

    Otelaja, Obafemi O; Ha, Don-Hyung; Ly, Tiffany; Zhang, Haitao; Robinson, Richard D

    2014-11-12

    A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼ 10(19) cm(-3), Hall mobilities of ∼ 3 to 4 cm(2) V(-1) s(-1), and electrical conductivities of ∼ 5 to 6 S · cm(-1). Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼ 75 S · cm(-1)) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu(1.94)S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.

  2. Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition

    KAUST Repository

    Otelaja, Obafemi O.

    2014-11-12

    © 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼1019 cm-3, Hall mobilities of ∼3 to 4 cm2 V-1 s-1, and electrical conductivities of ∼5 to 6 S·cm-1. Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼75 S·cm-1) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu1.94S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.

  3. Fabrication of electrophoretically deposited, self-assembled three-dimensional porous Al/CuO nanothermite films for highly enhanced energy output

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanjun [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Li, Xueming, E-mail: xuemingli@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Shu, Yuanjie [Xi’an Modern Chemistry Research Institute, Xi’an 71000 (China); Guo, Xiaogang; Bao, Hebin; Li, Wulin; Zhu, Yuhua; Li, Yu; Huang, Xinyue [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-06-15

    A novel porous Al/CuO nanothermite was successfully synthetized by utilizing the controllable electrophoretic deposition (EPD) method. The morphology and phase composition of the CuO and Al/CuO films were investigated in detail by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). When the pH of the solution was 2.0, the surface area of the Al/CuO film was able to reach 495.6 m{sup 2}/g, which was much higher than that of films grown at pH 1.0, 3.0 or 4.0. Meanwhile, the combustion performance and energy outputs were coincident with the results mentioned above. At pH 2.0, bright flames were observed after ignition, and the released heat of the nanothermite reaction reached 3.49 kJ/g, exhibiting excellent combustion performance and enhanced energy output. - Highlights: • Porous CuO films were synthesized without using templates. • The self-assembled porous Al/CuO nanothermite had a specific surface area of 495.6 m{sup 2}/g. • The energy output and combustion performance of Al/CuO nanothermite were significantly enhanced.

  4. A Facile Electrophoretic Deposition Route to the Fe3O4/CNTs/rGO Composite Electrode as a Binder-Free Anode for Lithium Ion Battery.

    Science.gov (United States)

    Yang, Yang; Li, Jiaqi; Chen, Dingqiong; Zhao, Jinbao

    2016-10-12

    Fe3O4 is regarded as an attractive anode material for lithium ion batteries (LIBs) due to its high theoretical capacity, natural abundance, and low cost. However, the poor cyclic performance resulting from the low conductivity and huge volume change during cycling impedes its application. Here we have developed a facile electrophoretic deposition route to fabricate the Fe3O4/CNTs (carbon nanotubes)/rGO (reduced graphene oxide) composite electrode, simultaneously achieving material synthesis and electrode assembling. Even without binders, the adhesion and mechanical firmness of the electrode are strong enough to be used for LIB anode. In this specific structure, Fe3O4 nanoparticles (NPs) interconnected by CNTs are sandwiched by rGO layers to form a robust network with good conductivity. The resulting Fe3O4/CNTs/rGO composite electrode exhibits much improved electrochemical performance (high reversible capacity of 540 mAh g-1 at a very high current density of 10 A g-1, and a remarkable capacity of 1080 mAh g-1 can be maintained after 450 cycles at 1 A g-1) compared with that of commercial Fe3O4 NPs electrode.

  5. One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes.

    Science.gov (United States)

    Zhang, Haitao; Zhang, Xiong; Zhang, Dacheng; Sun, Xianzhong; Lin, He; Wang, Changhui; Ma, Yanwei

    2013-02-14

    A facile, rapid, scalable, and environmentally friendly electrophoretic deposition (EPD) approach has been developed for the fabrication of reduced graphene oxide (RGO) and Ni(OH)(2) syntheses based on EPD of graphene oxide (GO) and Ni(NO(3))(2) colloidal suspension. Nickel ion decoration made GO positively charged and further made cathodic EPD feasible. Direct assembly by one-step EPD facilitated transformation from GO to RGO and resulted in multilayer or flower-like RGO/Ni(OH)(2) hybrid films on different substrates. X-ray diffraction analysis suggested that the crystal structures of Ni(OH)(2) depended on the colloidal suspension and the substrate. Further transmission electron microscopy characterization indicated that Ni(OH)(2) nanoclusters composed of 5-10 nm nanoparticles in grain size were homogeneously dispersed and anchored on the RGO. The resulting 100% binder-free RGO/Ni(OH)(2) electrodes exhibited excellent pseudocapacitive behavior with high specific capacitance of 1404 F g(-1) at 2 A g(-1), high rate capability, and good electrochemical cyclic stability. These results paved the way for EPD to produce RGO-based nanocomposite films for high-performance energy storage devices.

  6. Preparation of IrO2-Ta2O5|Ti electrodes by immersion, painting and electrophoretic deposition for the electrochemical removal of hydrocarbons from water.

    Science.gov (United States)

    Herrada, Rosa Alhelí; Medel, Alejandro; Manríquez, Federico; Sirés, Ignasi; Bustos, Erika

    2016-12-05

    After intense years of great development, the electrochemical technologies have become very suitable alternatives in niche markets like industrial wastewater reclamation and soil remediation. A key role to achieve a high efficiency in such treatments is played by the characteristics of the coating of the electrodes employed. This paper compares three techniques, namely immersion, painting and electrophoresis, for the preparation of IrO2-Ta2O5ǀTi, so-called dimensionally stable anodes (DSA(®)). The quality of the coatings has been investigated by means of surface and electrochemical analysis. Their ability to generate hydroxyl radicals and degrade aqueous solutions of hydrocarbons like phenanthrene, naphthalene and fluoranthene has been thoroughly assessed. Among the synthesis techniques, electrophoretic deposition yielded the best results, with DSA(®) electrodes exhibiting a homogeneous surface coverage that led to a good distribution of active sites, thus producing hydroxyl radicals that were able to accelerate the degradation of hydrocarbons. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy

    Science.gov (United States)

    Höhlinger, Michael; Heise, Svenja; Wagener, Victoria; Boccaccini, Aldo R.; Virtanen, Sannakaisa

    2017-05-01

    The use of Mg alloys as biodegradable implants requires optimizing the surface performance. A high number of surface modification and coating approaches have been previously explored, for instance to make magnesium and its alloys more corrosion resistant. The current study focuses on developing surface pre-treatments as a corrosion protection and primer for further surface modifications by electrophoretic deposition (EPD) of bioadaptive chitosan-bioactive glass coatings. For this, different surface treatments were tested on a WE43 Mg alloy. These treatments include immersion in Dulbecco's Modified Eagle's Medium (DMEM), a calcium phosphate treatment, immersion in hydrofluoric acid, and a hydrothermal procedure in NaOH. The resulting coatings were analyzed in view of the surface morphology and composition by SEM/EDX, as well as in view of their short-term corrosion protection ability by electrochemistry. Finally, the suitability of the different pre-treatments as an interfacial protection layer for subsequent EPD of a chitosan/bioactive glass-coating was explored.

  8. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  9. Electrophoretic deposition of silica and its composite coatings on Ti-6Al-4V, and its in vitro corrosion behaviour for biomedical applications.

    Science.gov (United States)

    Chellappa, M; Vijayalakshmi, U

    2017-02-01

    Novel bioceramics have an intriguing role in implants and prostheses as surface protecting agents. These bioceramics have promising features such as biocompatible, bioactive, and corrosion-resistant natures. Among bioceramics, silica glass and its composite unravel its better desirability against corrosion and wear with interfacial bone bonding capability in physiological systems by nucleating calcium phosphates over the surface, thereby enhancing the osteoinductive property. In the current study, SiO2 and ZnO were obtained by processing silica and zinc oxide precursors at low temperature using low thermal volatilization sol-gel method. SiO2, ZnO, and its composite powders were characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDAX). Electrophoretic deposition (EPD) was used for coating on Ti-6Al-4V for improved coating characteristics. In addition, the effect of additives such as iodine and Polyvinylpyrrolidone (PVP) on coating limits was also optimized. Thin-film XRD, Optical Microscopy, SEM-EDAX, Raman spectroscopy, and the scratch resistance test characterized the coating. Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were also carried out to assess corrosion resistance behaviour of the coating. The results showed that the composite coating has greater corrosion resistance than uncoated Ti-6Al-4V. Furthermore, improved mechanical property with better scratch resistance was also observed. These observations showed that composite coating could be useful in biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characterization of La0.995Ca0.005NbO4/Ni anode functional layer by electrophoretic deposition in a La0.995Ca0.005NbO4 electrolyte based PCFC

    DEFF Research Database (Denmark)

    Bozza, Francesco; Schafbauer, W.; Meulenberg, W.A.

    2012-01-01

    The Electrophoretic Deposition (EPD) technique has been applied to the preparation of a porous La0.995Ca0.005NbO4/Ni composite anode layer, deposited on a porous pre-sintered La0.995Ca0.005NbO4/Ni support. Powders of La0.995Ca0.005NbO4 and NiO were suspended in a solution of acetylacetone, iodine...... and water. Selectivity in the composition of the deposited layer was analyzed as a function of the suspension compositions and deposition conditions. A quasi-symmetrical cell was produced by depositing La0.995Ca0.005NbO4 electrolyte layer on the anode layer by EPD, and by applying a porous La0.995Ca0.005Nb...

  11. Application of the electrophoretic deposition technique for obtaining Yttria-stabilized zirconia tubes; Aplicacao da tecnica de deposicao eletroforetica para a obtencao de tubos ceramicos de zirconia-itria

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, E.; Muccillo, R., E-mail: ecaproni@gmail.com, E-mail: muccillo@usp.br [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-01-15

    The electrophoretic deposition (EPD) is recognized as the most versatile technique for processing particulate materials, due to low cost, deposition in minutes and forming of pieces with complex geometry shapes. In this work an experimental setup for the simultaneous conformation of 16 ceramic tubes by EPD was built. Bimodal submicron Yttria-stabilized zirconia particles were deposited into graphite electrodes, after suitably adjusting the rheological characteristics of the suspension in isopropanol. After graphite burning and YSZ sintering at 1500 deg C, the ceramic tubes were characterized by X-ray diffraction, scanning probe microscope, impedance spectroscopy and electrical response as a function of oxygen content. Small dense one end-closed ceramic tubes, fully stabilized in the cubic phase, were successfully obtained by the EPD technique, showing the ability of that technique for processing large quantities of tubular solid electrolytes with electrical response to different amounts of oxygen according to the Nernst law (author)

  12. Fabrication of a Microtubular La0.6Sr0.4Ti0.2Fe0.8O3−δ Membrane by Electrophoretic Deposition for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Kyoung-Jin Lee

    2015-01-01

    Full Text Available Microtubular type La0.6Sr0.4Ti0.2Fe0.8O3−δ (LSTF membranes were prepared by electrophoretic deposition (EPD. The oxygen permeation and hydrogen production behavior of the membranes were investigated under various conditions. LSTF green layer was successfully coated onto a carbon rod and, after heat treatment at 1400°C in air, a dense LSTF tubular membrane with a thickness of 250 mm can be obtained. The oxygen permeation and hydrogen production rate were enhanced by CH4 in the permeate side, and the hydrogen production rate by water splitting was 0.22 mL/min·cm2 at 1000°C. It is believed that hydrogen production via water splitting using these tubular LSTF membranes is possible.

  13. Manufacturing, Microstructure and Corrosion Resistance of Electrophoretically Deposited SiO2 and Ni/SiO2 Coatings On X2CrNiMo17–12–2 Steel

    Directory of Open Access Journals (Sweden)

    Ratajski T.

    2016-06-01

    Full Text Available The SiO2 and Ni/SiO2 coatings were electrophoretically deposited on X2CrNiMo17-12-2 steel using ethanol-based suspensions of the SiO2 and Ni powders. The influence of the zeta potential and concentration of the suspensions, the applied voltage and deposition time on the quality of the coatings was studied. Microstructure of the plan-view and cross sections of the coatings was investigated using scanning electron microscopy. The plan-view images revealed the uniform microstructure of the coatings with sporadically observed cracks, pores as well SiO2 and Ni agglomerates. On the cross-sections, the Cr2O3 layer, resulted from oxidation of the substrate during sintering of the coatings was observed. The polarization tests have shown that SiO2 and Ni/SiO2 coatings improve the corrosion resistance of the X2CrNiMo17-12-2 steel in 3.5% NaCl aqueous solution.

  14. Algae and Partiele Removal in Direct Filtration of Biesbosch Water: Influence of Algal Characteristics, Oxidation and other Pre-treatment Conditions

    NARCIS (Netherlands)

    Petrusvenski, B.

    1996-01-01

    Direct flitration is an economicaily and environmentally attractive altemative to conventional treatment of impounded surface watei, provided that the waler bource is of appropriate quality, However, direct filtration has limited partiele and algae removal capacity. Problems related to algae and

  15. Electrophoretic Karyotypes of Sclerotinia sclerotiorum

    OpenAIRE

    Errampalli, D.; Kohn, L. M.

    1996-01-01

    Electrophoretic karyotypes (EKs) of 83 isolates were variable within agricultural and natural populations of Sclerotinia sclerotiorum, as well as among S. sclerotiorum, Sclerotinia minor, and Sclerotinia trifoliorum. Variation in EKs was not observed within six mitotic or three meiotic lineages of isolates. EKs of 8 to 10 chromosome-sized DNAs were observed. Homologous and heterologous probes hybridized to four linkage groups.

  16. Preparation of electrophoretic nanoparticles for electronic paper.

    Science.gov (United States)

    Meng, Xianwei; Qiang, Li; Wei, Jianfei; Shi, Haitang

    2014-02-01

    As an electronic alternative for printed media, the E-paper has ultralow power consumption, reduced eyestrain, high contrast ratio. Electrophoretic displays are one of the most promising E-paper technologies, which are now widely used in consumer products. The properties of the electrophoretic display are mainly determined by the composition, size, light scattering properties, and density of the electrophoretic nanoparticles. First, we introduce the preparation of white and black electrophoretic nanoparticles, because the monochrome E-paper has achieved commercial success. Then the structure and properties of color electrophoretic nanoparticles for color E-paper products are discussed. In addition, the enhanced and novel electrophoretic nanoparticles are now propelling the development of next-generation E-paper with new applications. Finally, the active area of the preparation of electrophoretic nanoparticles is highlighted in terms of the development of future E-paper.

  17. Algae and Partiele Removal in Direct Filtration of Biesbosch Water: Influence of Algal Characteristics, Oxidation and other Pre-treatment Conditions

    OpenAIRE

    Petrusvenski, B.

    1996-01-01

    Direct flitration is an economicaily and environmentally attractive altemative to conventional treatment of impounded surface watei, provided that the waler bource is of appropriate quality, However, direct filtration has limited partiele and algae removal capacity. Problems related to algae and other particles passing treatment bring the feasibiüly of direct filtration into question, The Biesbosch water storage reservoirs account for more than half of total amount cf surface water used for d...

  18. Selective Photo-Initiated Electrophoretic Separator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Optics Corporation (POC) proposes to develop a Selective Photoinitiated Electrophoretic Separator (SPIES) System to address NASA's volatile gas separation...

  19. Electrophoretic affinity chromatography: method validation.

    Science.gov (United States)

    Liu, Z; Feng, S; Guo, S; Shen, Z; Ding, F; Yuan, N

    1998-01-01

    A new method for preparative-scale separation of biomolecules, electrophoretic affinity chromatography (EAC), is proposed in this paper. Separation by EAC is carried out in a long and ribbon-like multicompartment electrolyser separated by membranes, in which the two central compartments are used for packing the gel matrix and for sample loading respectively. Next to the central compartments are the elution compartments and electrode compartments. The electric field is applied perpendicular to the fluid flow in the compartments. Adsorption and desorption steps may both be carried out in the presence of an electric field, which transports the target components into the gel compartment for adsorption and the impurities into the elution compartments for washing. After the adsorption step an elution solution is introduced and the product is released from the gel matrix and washed out. Separation of human serum albumin (HSA) from human serum gives HSA product of high purity, as demonstrated by isoelectric focusing analysis. The characteristics of electrophoretic binding of HSA on Blue Sepharose Fast Flow are examined. The preliminary results show that this new method has advantages in terms of high rate of mass transfer and ease of scaling up, which are of particular interest when large-scale separation of biomolecules is considered.

  20. Simulation numérique, par éléments finis, des ballotements d’un réservoir partiellement rempli de liquide

    OpenAIRE

    Rassim Belakroum; Ton Hoang Mai; Mahford Kadja; Valentin Pavel

    2008-01-01

    Le but de cette étude est de prévoir numériquement les ballottements ? la surface libre de réservoirs partiellement remplis de liquide. Le comportement non linéaire de la surface libre et l’effet de la viscosité sont pris en considération. Nous employons une formulation Arbitrairement Lagrangienne Eulérienne (ALE) des équations de Navier Stokes largement utilisée pour le traitement des probl?mes présentant des surfaces libres, des fronti?res mobiles, des grandes déformations ainsi que des int...

  1. Atomic-force-controlled capillary electrophoretic nanoprinting of proteins.

    Science.gov (United States)

    Lovsky, Yulia; Lewis, Aaron; Sukenik, Chaim; Grushka, Eli

    2010-01-01

    The general nanoprinting and nanoinjection of proteins on non-conducting or conducting substrates with a high degree of control both in terms of positional and timing accuracy is an important goal that could impact diverse fields from biotechnology (protein chips) to molecular electronics and from fundamental studies in cell biology to nanophotonics. In this paper, we combine capillary electrophoresis (CE), a separation method with considerable control of protein movement, with the unparalleled positional accuracy of an atomic force microscope (AFM). This combination provides the ability to electrophoretically or electroosmotically correlate the timing of protein migration with AFM control of the protein deposition at a high concentration in defined locations and highly confined volumes estimated to be 2 al. Electrical control of bovine serum albumin printing on standard protein-spotting glass substrates is demonstrated. For this advance, fountain pen nanolithography (FPN) that uses cantilevered glass-tapered capillaries is amended with the placement of electrodes on the nanopipette itself. This results in imposed voltages that are three orders of magnitude less than what is normally used in capillary electrophoresis. The development of atomic-force-controlled capillary electrophoretic printing (ACCEP) has the potential for electrophoretic separation, with high resolution, both in time and in space. The large voltage drop at the tip of the tapered nanopipettes allows for significant increases in concentration of protein in the small printed volumes. All of these attributes combine to suggest that this methodology should have a significant impact in science and technology.

  2. Electrophoretic mobilities of erythrocytes in various buffers

    Science.gov (United States)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  3. Aplicação da técnica de deposição eletroforética para a obtenção de tubos cerâmicos de zircônia-ítria Application of the electrophoretic deposition technique for obtaining yttria-stabilized zirconia tubes

    Directory of Open Access Journals (Sweden)

    E. Caproni

    2012-03-01

    Full Text Available A técnica de deposição eletroforética (EPD é reconhecida como a mais versátil para o processamento de materiais particulados devido ao seu baixo custo, à deposição em minutos e à conformação de corpos cerâmicos com geometria complexa. Neste trabalho foi feita uma montagem experimental que permite a conformação simultânea de 16 tubos cerâmicos por EPD. Partículas micrométricas de zircônia:ítria foram depositadas, após ajustes nas características reológicas da suspensão em isopropanol, em eletrodo de grafita na forma de tubo. Os tubos cerâmicos, após sinterização a 1500 °C, foram caracterizados por difração de raios X, microscopia de varredura por sonda, espectroscopia de impedância e resposta elétrica em função do teor de oxigênio. A técnica de EPD mostrou-se adequada para obtenção de tubos cerâmicos densos totalmente estabilizados na fase cúbica e resposta elétrica a diferentes quantidades de oxigênio de acordo com a lei de Nernst.The electrophoretic deposition (EPD is recognized as the most versatile technique for processing particulate materials, due to low cost, deposition in minutes and forming of pieces with complex geometry shapes. In this work an experimental setup for the simultaneous conformation of 16 ceramic tubes by EPD was built. Bimodal submicron yttria-stabilized zirconia particles were deposited into graphite electrodes, after suitably adjusting the rheological characteristics of the suspension in isopropanol. After graphite burning and YSZ sintering at 1500 °C, the ceramic tubes were characterized by X-ray diffraction, scanning probe microscope, impedance spectroscopy and electrical response as a function of oxygen content. Small dense one end-closed ceramic tubes, fully stabilized in the cubic phase, were successfully obtained by the EPD technique, showing the ability of that technique for processing large quantities of tubular solid electrolytes with electrical response to different

  4. A lateral electrophoretic flow diagnostic assay

    OpenAIRE

    Lin, R; Skandarajah, A; Gerver, RE; Neira, HD; Fletcher, DA; Herr, AE

    2015-01-01

    © 2015 The Royal Society of Chemistry. Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a "lateral e-flow assay" and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to ...

  5. Electrophoretic identification of poritid species ( Anthozoa: Scleractinia)

    Science.gov (United States)

    Garthwaite, R. L.; Potts, D. C.; Veron, J. E. N.; Done, T. J.

    1994-01-01

    Electrophoretic surveys of 13 enzyme-coding loci distinguished unambiguously five morphologically defined species of Porites and two species of Goniopora. Each species was identifiable solely by unique, qualitative banding patterns at 1 6 loci. Genetic distances give preliminary estimates that these Porites species diverged from common ancestors 8 22 Ma during the Miocene, and that the two Goniopora species diverged about 3.5 Ma in the Pliocene, assuming Porites evolved from Goniopora 55 million years ago (Ma).

  6. Simulation numérique, par éléments finis, des ballotements d’un réservoir partiellement rempli de liquide

    Directory of Open Access Journals (Sweden)

    Rassim Belakroum

    2008-01-01

    Full Text Available Le but de cette étude est de prévoir numériquement les ballottements ? la surface libre de réservoirs partiellement remplis de liquide. Le comportement non linéaire de la surface libre et l’effet de la viscosité sont pris en considération. Nous employons une formulation Arbitrairement Lagrangienne Eulérienne (ALE des équations de Navier Stokes largement utilisée pour le traitement des probl?mes présentant des surfaces libres, des fronti?res mobiles, des grandes déformations ainsi que des interfaces de contact. La méthode numérique utilisée est la méthode des éléments finis stabilisée, dite de Galerkin moindre carré (GLS. Afin de résoudre le probl?me non linéaire en sa globalité, nous utilisons une procédure partitionnée totalement implicite. Les résultats de la présente approche sont validés par rapport ? des résultats numériques et analytiques disponibles. Les effets de variation de la fréquence d’excitation extérieure harmonique horizontale, de la hauteur relative de la colonne du liquide et de l’inclinaison des parois solides latérales du réservoir ont été étudiés en détail.

  7. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tan Tingfeng, E-mail: tantingfeng@sina.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Department of Materials Science and Engineering, Tianjin Institute of Urban Construction, Tianjin 300384 (China); Qi Peng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang Shirong, E-mail: wangshirong@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Bian Shuguang [High Technology Research and Development Center, Ministry of Science and Technology, Beijing 100044 (China); Li Xianggao; An Yong; Liu Zhaojun [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2011-02-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu){sub 4} as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  8. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    Science.gov (United States)

    Zhao, Qian; Tan, Tingfeng; Qi, Peng; Wang, Shirong; Bian, Shuguang; Li, Xianggao; An, Yong; Liu, Zhaojun

    2011-02-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu)4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  9. Electrophoretic Porosimetry of Sol-Gels

    Science.gov (United States)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  10. Surface modification of inorganic black particles for electrophoretic display

    Science.gov (United States)

    Kim, Sang Deuk; Ahn, Woo Jin; Choi, Hyoung Jin

    2014-11-01

    Inorganic black particles (Black 444) were modified with poly(methyl methacrylate) as a shell material by using dispersion polymerization to improve their dispersion stability in a medium oil for electrophoretic display applications. They were also positively charged with vinylimidazole to enhance their electrophoretic mobility. The morphology and the shape of the composite particles were characterized by using scanning electron microscopy. The thermal properties and the chemical structure of the samples were examined by using thermogravimetric analysis and Fourier-transform infrared spectroscopy, respectively. In addition, the electrophoretic mobility and the zeta-potential of the black444/PMMA/vinylimidazole particles in a dielectric fluid were measured by using optical microscopy and electrophoretic light scattering. With increasing positive charge, the black444/PMMA/vinylimidazole particles showed improved electrophoretic characteristics compared to pristine Black 444.

  11. Chromatographic and electrophoretic approaches in ink analysis.

    Science.gov (United States)

    Zlotnick, J A; Smith, F P

    1999-10-15

    Inks are manufactured from a wide variety of substances that exhibit very different chemical behaviors. Inks designed for use in different writing instruments or printing methods have quite dissimilar components. Since the 1950s chromatographic and electrophoretic methods have played important roles in the analysis of inks, where compositional information may have bearing on the investigation of counterfeiting, fraud, forgery, and other crimes. Techniques such as paper chromatography and electrophoresis, thin-layer chromatography, high-performance liquid chromatography, gas chromatography, gel electrophoresis, and the relatively new technique of capillary electrophoresis have all been explored as possible avenues for the separation of components of inks. This paper reviews the components of different types of inks and applications of the above separation methods are reviewed.

  12. Electrophoretic Focusing: An Alternative to Capillary Electrophoresis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrophoretic focusing is a new separation method intended to achieve high resolution within very short sample residence times because one fraction is separated at...

  13. Chromatographic and electrophoretic methods for nanodisc purification and analysis

    DEFF Research Database (Denmark)

    Justesen, Bo Højen; Günther-Pomorski, Thomas

    2014-01-01

    of proper reconstitution are still major challenges during the sample preparation. This review gives an overview of the methods used for purifying and analyzing nanodiscs and nanodisc-reconstituted membrane proteins, with an emphasis on the chromatographic and electrophoretic approaches....

  14. A lateral electrophoretic flow diagnostic assay.

    Science.gov (United States)

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E; Neira, Hector D; Fletcher, Daniel A; Herr, Amy E

    2015-03-21

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a "lateral e-flow assay" and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings.

  15. Microencapsulated Electrophoretic Films for Electronic Paper Displays

    Science.gov (United States)

    Amundson, Karl

    2003-03-01

    Despite the dominance of liquid crystal displays, they do not perform some functions very well. While backlit liquid crystal displays can offer excellent color performance, they wash out in bright lighting and suffer from high power consumption. Reflective liquid crystal displays have limited brightness, making these devices challenging to read for long periods of time. Flexible liquid crystal displays are difficult to manufacture and keep stable. All of these attributes (long battery lifetime, bright reflective appearance, compatibility with flexible substrates) are traits that would be found in an ideal electronic paper display - an updateable substitute for paper that could be employed in electronic books, newspapers, and other applications. I will discuss technologies that are being developed for electronic-paper-like displays, and especially on particle-based technologies. A microencapsulated electrophoretic display technology is being developed at the E Ink corporation. This display film offers offer high brightness and an ink-on-paper appearance, compatibility with flexible substrates, and image stability that can lead to very low power consumption. I will present some of the physical and chemical challenges associated with making display films with high performance.

  16. Predicting tensorial electrophoretic effects in asymmetric colloids

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  17. Electrophoretic ``Equilibrium'' Profile of Charged Colloids

    Science.gov (United States)

    Planques, Romain; Chaikin, Paul

    2008-03-01

    We perform an electrophoresis experiment of a concentrated colloid against a semipermeable membrane. The electric field forces the charged particles against the membrane and sets up a concentration profile similar to that of a colloid in gravitational sedimentation equilibrium where gravitational forces compete against the osmotic pressure gradient. In the present case there is a current which flows through the electrolyte so the system reaches a steady state profile rather than equilibrium. The electric field, colloid and ionic concentrations adjust self consistently to produce the profile. We use 91 nm polystyrene spheres with sufficient charge that they crystallize and observe their Bragg scattering as a function of height to determine the lattice spacing and particle concentration. We also use 700nm spheres and obtain their concentration profile with X-ray absorption. The fluid flow is zero for a capped system. Connecting a return tube from the supernatant side above the electrophoretic sediment to below the filter yields an electroosmotic flow and circulation. The profile changes substantially and allows us to study the hydrodynamic interactions as a function of concentration for the electrophoresing particles.

  18. Comparative spectral, electrophoretic and isoelectric properties of trematode haemoglobins.

    Science.gov (United States)

    Rashid, K A; Haque, M; Siddiqi, A H

    1993-09-01

    A comparative study of the spectral, electrophoretic and isoelectric properties of the haemoglobins of three trematodes, Paramphistomum epiclitum, Gigantocotyle explanatum and Gastrothylax crumenifer was carried out. A high absorption in the beta band region indicates that trematode haemoglobins have high oxygen affinities. Electrophoretic mobilities of all trematode and their host haemoglobins were different. The isoelectric points of trematode haemoglobins were found to focus in the acidic range except that of G. crumenifer haemoglobin I, which focused at an alkaline pH.

  19. Non-vanishing ponderomotive AC electrophoretic effect for particle trapping

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Weihau [Yale University; Park, Jae Hyun nmn [ORNL; Krstic, Predrag S [ORNL; Reed, Mark A [Yale University

    2011-01-01

    We present here a study on overlooked aspects of alternating current (AC) electrokinetics AC electrophoretic (ACEP) phenomena. The dynamics of a particle with both polarizability and net charges in a non-uniform AC electric trapping field is investigated. It is found that either electrophoretic (EP) or dielectrophoretic (DEP) effects can dominate the trapping dynamics, depending on experimental conditions. A dimensionless parameter gamma is developed to predict the relative strength of EP and DEP effects in a quadrupole AC field. An ACEP trap is feasible for charged particles in salt-free or low salt concentration solutions. In contrast to DEP traps, an ACEP trap favors the downscaling of the particle size.

  20. Processing and Deposition of Nanocrystalline Oxide Composites for Thermal Barrier Coatings

    National Research Council Canada - National Science Library

    Ying, Jackie

    2000-01-01

    .... Electrophoretic deposition was used to coat the nanocomposite powders onto nickel substrates. The effect of alumina content, powder calcination temperature, and film thickness on the thermal stability of zirconia-based coatings was examined...

  1. Sensitive and robust electrophoretic NMR: Instrumentation and experiments

    Science.gov (United States)

    Hallberg, Fredrik; Furó, István; Yushmanov, Pavel V.; Stilbs, Peter

    2008-05-01

    Although simple as a concept, electrophoretic NMR (eNMR) has so far failed to find wider application. Problems encountered are mainly due to disturbing and partly irreproducible convection-like bulk flow effects from both electro-osmosis and thermal convection. Additionally, bubble formation at the electrodes and rf noise pickup has constrained the typical sample geometry to U-tube-like arrangements with a small filling factor and a low resulting NMR sensitivity. Furthermore, the sign of the electrophoretic mobility cancels out in U-tube geometries. We present here a new electrophoretic sample cell based on a vertically placed conventional NMR sample tube with bubble-suppressing palladium metal as electrode material. A suitable radiofrequency filter design prevents noise pickup by the NMR sample coil from the high-voltage leads which extend into the sensitive sample volume. Hence, the obtained signal-to-noise ratio of this cell is one order of magnitude higher than that of our previous U-tube cells. Permitted by the retention of the sign of the displacement-related signal phase in the new cell design, an experimental approach is described where bulk flow effects by electro-osmosis and/or thermal convection are compensated through parallel monitoring of a reference signal from a non-charged species in the sample. This approach, together with a CPMG-like pulse train scheme provides a superior first-order cancellation of non-electrophoretic bulk flow effects.

  2. Variations in virulence between different electrophoretic types of Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nørrung, Birgit; Andersen, Jens Kirk

    2000-01-01

    A total of 245 strains of Listeria monocytogenes, representing 33 different electrophoretic types (ETs), were examined quantitatively for haemolytic activity. No significant difference was observed in the mean haemolytic activity between different ETs. Eighty four out of 91 strains examined were...

  3. Calculation of the electrophoretic mobility of a spherical colloid particle

    NARCIS (Netherlands)

    Wiersema, P.H.; Loeb, A.L.; Overbeek, J.Th.G.

    A new calculation of the relation between the electrophoretic mobility and the ζ-potential of a spherical colloid particle is presented. The model consists of a rigid, electrically insulating sphere surrounded by a Gouy-Chapman double layer. The appropriate differential equations (which account for

  4. Non-vanishing ponderomotive AC electrophoretic effect for particle trapping

    Energy Technology Data Exchange (ETDEWEB)

    Guan Weihua; Reed, Mark A [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Park, Jae Hyun; Krstic, Predrag S, E-mail: mark.reed@yale.edu [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2011-06-17

    We present here a study on overlooked aspects of alternating current (AC) electrokinetics-AC electrophoretic (ACEP) phenomena. The dynamics of a particle with both polarizability and net charges in a non-uniform AC electric trapping field is investigated. It is found that either electrophoretic (EP) or dielectrophoretic (DEP) effects can dominate the trapping dynamics, depending on experimental conditions. A dimensionless parameter {gamma} is developed to predict the relative strength of EP and DEP effects in a quadrupole AC field. An ACEP trap is feasible for charged particles in 'salt-free' or low salt concentration solutions. In contrast to DEP traps, an ACEP trap favors the downscaling of the particle size.

  5. Mathematical representation of electrophoretic mobility in ternary solvent electrolyte systems

    Directory of Open Access Journals (Sweden)

    "Jouyban A

    2002-09-01

    Full Text Available Electrophoretic mobilities of salmeterol and phenylpropanolamine in capillary zone electrophoresis were determined using acetate buffer in mixed solvents containing different concentrations of water, methanol and acetonitrile. Maximum electrophoretic mobilities for salmeterol and phenylpropanolamine were observed with water-methanol-acetonitrile ratios of 5:50:45 v/v and 3:60:37 v/v, respectively, and minimum mobilities of both compounds occurred in methanol-acetonitrile ratio of 30:70 v/v. The generated experimental data have been used to evaluate a mathematical model to compute the electrophoretic mobility of the analytes in a ternary solvent electrolyte system. The proposed model is: ln μm =ƒ1 ln μ1+ƒ2 ln μ2+k ƒ3+M1ƒ1 ƒ2+M2 ƒ1ƒ3+M3 ƒ2ƒ3+M4 ƒ1ƒ²1+M5 ƒ²2ƒ3+M6ƒ²2ƒ3+M7ƒ1ƒ2ƒ3. Where μ is the electrophoretic mobility, subscripts m,1, 2 and 3 refer to mixed solvent and solvents 1-3, respectively, f is the volume fraction of the solvent in the mixed solvent system and M1-M7 and K are the model constants calculated by a least squares analysis. The generated experimental data fitted to the model and the back-calculated mobilities were employed to compute the average percentage deviation (APD as an accuracy criterion. The obtained APD for salmeterol and phenylpropanolamine are 3.10 and 2.21%, respectively and the low APD values indicate that the model is able to calculate the mobilities within an acceptable error range.

  6. An electrophoretic study of urinary protein in the rat.

    Science.gov (United States)

    SELLERS, A L; ROBERTS, S; RASK, I; SMITH, S; MARMORSTON, J; GOODMAN, H C

    1952-05-01

    The nature of the proteins present in the urine of the normal rat has been investigated by electrophoretic analysis and by fractional precipitation of these proteins by ammonium sulfate. Components similar to serum alpha- and beta-globulin constitute the major portion of the urinary protein in both male and female rats. Following the intraperitoneal injection of renin, a massive proteinuria occurs. The proteins excreted are similar in proportion and electric mobility to those of normal rat serum.

  7. A novel method for the preparation of electrophoretic display microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao-Meng; He, Jing; Liu, Sheng-Yun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Le, Yuan, E-mail: leyuan@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-07-01

    Highlights: • The electrophoretic display microcapsules were prepared by coaxial jet method aided by gas spray. • The positions of inner tube, liquid and gas flow rate of the process were investigated. • The size and shell thickness of the prepared microcapsules were controllable. • The prepared microcapsules had high coating ratio and exhibit reversible response to DC field. - Abstract: The narrow distributed electrophoretic display microcapsules containing electrophoretic ink were prepared using coaxial jet method aided by gas spray. Experimental results showed the size and shell thickness of the microcapsules could be controlled by adjusting flow rates of core and shell fluids as well as gas. The as-prepared white and red microcapsules, with average size of 100 and 200 μm respectively, had high coating ratio (above 90%) and exhibited reversible response to DC electric field. Compared with the approach of other microencapsulation methods, the new technique not only has a simple procedure but also provides a more effective way of size control. This novel method is expected to prepare microcapsules with potential application in the fields of electronic paper and other material science.

  8. Electrophoretic Retardation of Colloidal Particles in Nonpolar Liquids

    Directory of Open Access Journals (Sweden)

    Filip Strubbe

    2013-04-01

    Full Text Available We have measured the electrophoretic mobility of single, optically trapped colloidal particles, while gradually depleting the co-ions and counterions in the liquid around the particle by applying a dc voltage. This is achieved in a nonpolar liquid, where charged reverse micelles act as co-ions and counterions. By increasing the dc voltage, the mobility first increases when the concentrations of co-ions and counterions near the particle start to decrease. At sufficiently high dc voltage (around 2 V, the mobility reaches a saturation value when the co-ions and counterions are fully separated. The increase in mobility is larger when the equilibrium ionic strength is higher. The dependence of the experimental data on the equilibrium ionic strength and on the applied voltage is in good agreement with the standard theory of electrophoretic retardation, assuming that the bare particle charge remains constant. This method is useful for studying the electrophoretic retardation effect and charging mechanisms for nonpolar colloids, and it sheds light on previously unexplained particle acceleration in electronic ink devices.

  9. Electrophoretic mobility of biological cells in asymmetric electrolyte solutions.

    Science.gov (United States)

    Hsu, J P; Lin, S H; Tseng, S

    1996-09-21

    The electrophoretic mobility of a particle covered by a membrane in an a:b electrolyte solution is modeled theoretically. The membrane, which simulates the surface of a biological cell, is ion-penetrable, and carries homogeneously distributed negative fixed charges. An approximate expression for the electrophoretic mobility is derived. Based on the results of numerical simulation, we conclude the following: (1) The absolute Donnan potential increases with the concentration of the fixed charges C0, but decreases with the ionic strength I. (2) The greater the valence of cation alpha, the lower the absolute potential distribution. (3) The greater the C0, the greater the absolute mobility of a particle, magnitude of mu, and the greater the friction coefficient of the membrane phase gamma, the smaller the magnitude of mu. (4) A large I or a large a leads to a small magnitude of mu. (5) The greater the ratio (permittivity of solution/permittivity of membrane phase), the smaller the magnitude of mu. (6) For a large gamma, magnitude of mu decreases with the thickness of membrane d under the condition of constant amount of fixed charges. However, if gamma is sufficiently small, the variation of magnitude of mu as a function of d exhibits a maximum. The classic result of Smoluchowski for the electrophoretic mobility of a rigid particle can be recovered as a limiting case of the present model.

  10. Electrophoretic analysis of gene-enzyme systems in Chabertia ovina.

    Science.gov (United States)

    Ortega, J E; Sanchez-Moreno, M; Fatou, A; Valero, A

    1990-01-01

    In Chaberia ovina species an electrophoretic study of 15 loci of the following enzymes has been conducted: glucose phosphate isomerase, mannose phosphate isomerase, glucose-6-phosphate dehydrogenase, glutamate-oxaloacetate transaminase, superoxide dismutase, isocitrate dehydrogenase, hexokinase, adenylate kinase, malate dehydrogenase, malic enzyme, carbonic anhydrase and 6-phosphogluconate dehydrogenase. The genetic variability has been relatively high, with 40% polymorphism values noted, an 0.10 mean heterozygosity observed and an 0.17 mean heterozygosity expected. The greater part of the allele frequencies were not in Hardy-Weinberg equilibrium.

  11. Protein electrophoretic migration data from custom and commercial gradient gels

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2016-12-01

    Full Text Available This paper presents data related to the article “A method for easily customizable gradient gel electrophoresis” (A.J. Miller, B. Roman, E.M. Norstrom, 2016 [1]. Data is presented on the rate of electrophoretic migration of proteins in both hand-poured and commercially acquired acrylamide gradient gels. For each gel, migration of 9 polypeptides of various masses was measured upon completion of gel electrophoresis. Data are presented on the migration of proteins within separate lanes of the same gel as well as migration rates from multiple gels.

  12. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  13. Electrophoretic approaches to the analysis of complex polysaccharides.

    Science.gov (United States)

    Volpi, Nicola; Maccari, Francesca

    2006-04-13

    Complex polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules exhibiting a wide range of biological functions. They are widely distributed as sidechains of proteoglycans (PGs) in the extracellular matrix and at cellular level. The recent emergence of enhanced analytical tools for their study has triggered a virtual explosion in the field of glycomics. Analytical electrophoretic separation techniques, including agarose-gel, capillary electrophoresis (HPCE) and fluorophore-assisted carbohydrate electrophoresis (FACE), of GAGs and GAG-derived oligosaccharides have been employed for the structural analysis and quantification of hyaluronic acid (HA), chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS), heparan sulfate (HS), heparin (Hep) and acidic bacterial polysaccharides. Furthermore, recent developments in the electrophoretic separation and detection of unsaturated disaccharides and oligosaccharides derived from GAGs by enzymatic or chemical degradation have made it possible to examine alterations of GAGs with respect to their amounts and fine structural features in various pathological conditions, thus becoming applicable for diagnosis. In this paper, the electromigration procedures developed to analyze and characterize complex polysaccharides are reviewed. Moreover, a critical evaluation of the biological relevance of the results obtained by these electrophoresis approaches is presented.

  14. Perspectives on the Use of “Anonymous” Discussion Forums in Undergraduate Education Courses / Perspectives sur l’usage des forums de discussion « partiellement anonymes » dans le cadre de cours universitaires de premier cycle en éducation

    Directory of Open Access Journals (Sweden)

    G. Michael Bowen

    2012-07-01

    Full Text Available This paper theorizes issues involved with conflicts between participation in on-line settings and real-world social commitments, such as has recently happened in schools with students using public discussion forums. We problematize how real-world social commitments negatively affect participation in online learning environments frequently used in classrooms. Drawing on interviews with, observations by, and written submissions from our students who participated in “hybrid” courses using an approach where identity was concealed in online discussions from other class participants, we discuss implications of this issue for evaluating forum submissions by students. Our analysis uses a cultural-historical activity theory framework to conceptualize implications from this anonymous forum approach and the resultant changes in participation in the learning environment. Cet article élabore une théorie des enjeux associés aux conflits entre la participation dans un environnement en ligne et les engagements sociaux réels, comme ce qui se produit actuellement dans les écoles, les étudiants se servant de forums publics de discussion pour leurs cours. Nous schématisons la façon dont les engagements sociaux réels ont des effets négatifs sur la participation aux environnements d’apprentissage en ligne fréquemment utilisés dans les salles de classe. À partir d’entrevues, d’observations et de communications écrites par les étudiants qui ont participé à nos cours « hybrides » en adoptant une approche par laquelle l’identité était gardée cachée des autres étudiants (mais non des instructeurs dans les discussions en ligne, nous discutons des implications de cet enjeu dans l’évaluation des soumissions des étudiants dans les forums. Notre analyse se sert d’un cadre théorique de l’activité historico-culturelle pour conceptualiser les implications de cette approche de forum « partiellement anonyme » et les changements de

  15. AN ELECTROPHORETIC EXAMINATION OF A URINARY MUCOPROTEIN WHICH REACTS WITH VARIOUS VIRUSES

    Science.gov (United States)

    Perlmann, Gertrude E.; Tamm, Igor; Horsfall, Frank L.

    1952-01-01

    A mucoprotein isolated from human urine and possessing the capacity to react with a number of viruses is electrophoretically homogeneous at pH 6.8 and 8.6. After treatment with influenza virus and elimination of its biological activity, the substance remains homogeneous and its electrophoretic mobility is decreased by approximately 20 per cent. PMID:14907963

  16. Combined electrophoretic-separation and electrospray method and system

    Science.gov (United States)

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  17. Electrophoretic molecular karyotype of the dermatophyte Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    Cervelatti Eliane P.

    2004-01-01

    Full Text Available The electrophoretic karyotype of the dermatophyte Trichophyton rubrum was established using contour-clamped homogeneous electric field (CHEF gel electrophoresis. Five chromosomal bands of approximately 3.0 to 5.8 megabase pairs (Mbp each were observed and together indicated that 22.05 Mbp of the total genome are organized as chromosomal macromolecules. In addition to establishing the number and size of T. rubrum chromosomes, these results open perspectives for the construction of chromosome-specific libraries and for the physical mapping of genes of interest, thus permitting future gene linkage studies in this pathogen. A detailed understanding of the karyotype and genomic organization of T. rubrum should contribute to further genetic, taxonomic and epidemiological studies of this dermatophyte.

  18. Electrophoretic deposition and reaction-bond sintering of Al2O3/Ti ...

    Indian Academy of Sciences (India)

    ... studied in comparison with uncoated sample. The results demonstrate that the density of Al2O3/Ti composite coating increased considerably after heat treatment process. Moreover, wearing resistance of TiAl6V4 alloy escalated considerably, increasing its potential for application in orthopedic implants and artificial joints.

  19. Electrophoretic deposition and reaction-bond sintering of Al2O3/Ti ...

    Indian Academy of Sciences (India)

    the density of Al2O3/Ti composite coating increased considerably after heat treatment process. Moreover, wearing resistance of TiAl6V4 alloy ... heat treatment process.8 However, there are some limitations in choosing high temperatures of heat ... the dry condition in air atmosphere. Wear test was carried out with a constant ...

  20. Resistance to anticancer drugs permanently alters electrophoretic mobility of cancer cell lines.

    Science.gov (United States)

    Kazan, Hasan Hüseyin; Urfali-Mamatoglu, Cagri; Gündüz, Ufuk

    2017-04-01

    Electrophoretic mobility is a physical phenomenon defining the mobility of charged particles in a solution under applied electric field. As charged biological systems, living cells including both prokaryotes and eukaryotes have been assessed in terms of electrophoretic mobility to decipher their electrochemical structure. Moreover, determination of electrophoretic mobility of living cancer cells have promoted the advance exploration of the nature of the cancer cells and separation of cancer cells from normal ones under applied electric field. However, electrophoretic mobility of drug-resistant cells has not yet been examined. In the present study, we determined the electrophoretic mobility of drug-resistant cancer cell lines for both suspension and adherent cells and compared with those of drug-sensitive counterparts. We showed that resistance to anticancer drugs alters the electrophoretic mobility in a permanent manner, even lasting without any exposure to anticancer agents for a long time period. We also studied the cellular morphologies of adherent cells where the cellular invaginations and protrusions were increased in drug-resistant adherent cells, which could be direct cause of altered surface charge and electrophoretic mobility as a result. These findings could be helpful in terms of understanding the electrophysiological and physicochemical background of drug resistance in cancer cells and developing systems to separate drug-sensitive cells from drug-resistant ones. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrophoretic dynamics of self-assembling branched DNA structures

    Science.gov (United States)

    Heuer, Daniel Milton

    This study advances our understanding of the electrophoretic dynamics of branched biopolymers and explores technologies designed to exploit their unique properties. New self-assembly techniques were developed to create branched DNA for visualization via fluorescence microscopy. Experiments in fixed gel networks reveal a distinct trapping behavior, in contrast with linear topologies. The finding that detection can be achieved by introducing a branch point contributes significantly to the field of separation science and can be exploited to develop new applications. Results obtained in polymer solutions point to identical mobilities for branched and linear topologies, despite large differences in their dynamics. This finding led to a new description of electrophoresis based on non-Newtonian viscoelastic effects in the electric double layer surrounding a charged object. This new theoretical framework presents a new outlook important not only to the electrophoretic physics of nucleic acids, but all charged objects including proteins, colloids, and nanoparticles. To study the behavior of smaller biopolymers, such as restriction fragments and recombination intermediates, a library of symmetrically branched DNA was synthesized followed by characterization in gels. The experimental results contribute a large body of information relating molecular architecture and the dynamics of rigid structures in an electric field. The findings allow us to create new separation technologies based on topology. These contributions can also be utilized in a number of different applications including the study of recombination intermediates and the separation of proteins according to structure. To demonstrate the importance of these findings, a sequence and mutation detection technique was envisioned and applied for genetic analysis. Restriction fragments from mutation "hotspots" in the p53 tumor suppressor gene, known to play a role in cancer development, were analyzed with this technique

  2. Electrophoretic and antigenic characterisation of Dermatophilus congolensis extracellular products.

    Science.gov (United States)

    Ambrose, N C; el Jack, M A; McOrist, S; Boid, R

    1997-12-01

    Dermatophilus congolensis is the causative agent of bovine dermatophilosis and lumpy wool in sheep. Two field isolates of D. congolensis, one each from a cow in Ghana and a sheep in Scotland, were cultured for 24-72 h in a synthetic medium based on RPMI-1640. Culture filtrates were examined by SDS-PAGE and considered to contain extracellular products released by growing hyphae and filaments. Electrophoretic profiles of culture filtrates of the two isolates contained common bands and bands that were unique to each isolate. The composition of extracellular products altered with increasing culture periods indicating that specific products were released at different stages of growth. Culture filtrate prepared in the presence of serine protease and metalloprotease inhibitors contained more and better defined bands than that prepared without protease inhibitors indicating the presence of proteases in culture filtrates. Western blot analysis of extracellular products using a panel of sera showed that the two isolates from different host species and distant geographical locations contained cross-reactive antigens. Natural and experimental infections stimulated antibody responses to antigens in culture filtrates, sera from animals that were disease free but in-contact with dermatophilosis-infected animals also contained antibodies to extracellular antigens. The antigens recognised by most sera had molecular weights of 200 kDa in the bovine isolate, 170 kDa in the ovine isolate and 67, 27 and 52-55 kDa in both isolates. The number of antigenic bands of both isolates was positively correlated with the intensity of challenge and the severity of infection: antibodies in sera from disease-free cattle in Ghana recognised more antigens than sera from disease-free sheep in Scotland and more antigens were recognised by sera from chronically-infected Ghanaian cattle than by sera from experimentally-infected calves and sheep. The latter developed antibodies to antigens of 27 and 24 k

  3. Improved design of electrophoretic equipment for rapid sickle-cell-anemia screening

    Science.gov (United States)

    Reddick, J. M.; Hirsch, I.

    1974-01-01

    Effective mass screening may be accomplished by modifying existing electrophoretic equipment in conjunction with multisample applicator used with cellulose-acetate-matrix test paper. Using this method, approximately 20 to 25 samples can undergo electrophoresis in 5 to 6 minutes.

  4. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    Science.gov (United States)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  5. Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe

    Science.gov (United States)

    Iwata, F.; Nagami, S.; Sumiya, Y.; Sasaki, A.

    2007-03-01

    We describe a novel technique of local electrophoretic deposition of colloidal particles using a scanning probe microscope with a nanopipette probe filled with a colloidal solution. The colloidal solution including nanometre-scale particles was put into the nanopipette probe. A thin metal wire was inserted into the nanopipette probe as an electrode for the electrophoretic deposition. With the probe edge nearly in contact with the conductive surface and with an electric potential applied between the electrode and the surface, the colloidal particles migrated toward the edge of the probe, causing them to be deposited on the surface. It was possible for nanometre-scale Au colloidal particles in an aqueous solution to be deposited on Si surfaces. The size of the Au dots could be modified by adjusting the deposition time and voltage. Dot array and line patterns were successfully plotted on the surface. This technique of local deposition should provide the possibility for fabricating nanostructures such as nanomachines and nanoelectronics.

  6. Validation of an electrophoretic method to detect albuminuria in cats.

    Science.gov (United States)

    Ferlizza, Enea; Dondi, Francesco; Andreani, Giulia; Bucci, Diego; Archer, Joy; Isani, Gloria

    2017-08-01

    Objectives The aims of this study were to validate a semi-automated high-resolution electrophoretic technique to quantify urinary albumin in healthy and diseased cats, and to evaluate its diagnostic performance in cases of proteinuria and renal diseases. Methods Urine samples were collected from 88 cats (healthy; chronic kidney disease [CKD]; lower urinary tract disease [LUTD]; non-urinary tract diseases [OTHER]). Urine samples were routinely analysed and high-resolution electrophoresis (HRE) was performed. Within-assay and between-assay variability, linearity, accuracy, recovery and the lowest detectable and quantifiable bands were calculated. Receiver operating curve (ROC) analysis was also performed. Results All coefficients of variation were cats, while profiles from diseased cats were variable. Albumin (mg/dl) and urine albumin:creatinine ratio (UAC) were significantly ( P cats. After ROC analysis, UAC values of 0.035 and 0.074 had a high sensitivity and high specificity, respectively, to classify proteinuria and identify borderline proteinuric cats. Moreover, a UAC of 0.017 had a high sensitivity in distinguishing between healthy and diseased cats. However, UAC was not able to distinguish between renal (CKD) and non-renal diseases (LUTD/OTHER), probably owing to the pathophysiology of CKD in cats, which is characterised by low-grade proteinuria and less glomerular involvement than in dogs. Conclusions and relevance HRE is an accurate and precise method that could be used to measure albuminuria in cats. UAC was useful to correctly classify proteinuria and to discriminate between healthy and diseased cats. HRE might also provide additional information on urine proteins with a profile of all proteins (albumin and globulins) to aid clinicians in the diagnosis of diseases characterised by proteinuria.

  7. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, Vida [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Department of Mechanical Engineering, University of Bonab, P.O.Box: 5551761167, Bonab (Iran, Islamic Republic of); Khalil-Allafi, Jafar, E-mail: allafi@sut.ac.ir [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Xia, Wei [Institute for Industrial Chemistry, Ruhr-University Bochum, Bochum, 44780 Germany (Germany); Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther [Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum Bochum, 44801 (Germany)

    2016-03-15

    Graphical abstract: - Highlights: • The stable composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes was prepared using functionalization of and multi-walled carbon nano-tubes in HNO{sub 3} vapor and triethanolamine as dispersing agent. • The zeta potential of composite suspensions is less than that of hydroxyapatite suspension. • The silicon particles presence in suspension causes to decrease the charge carrier in suspension and current density during electrophoretic deposition. • The orientation of multi-walled carbon nano-tubes to parallel direction of the applied electric field during electrophoretic deposition can facilitate their moving towards the cathode and increase current density. • The more zeta potential of suspension, the lower roughness of coatings during electrophoretic deposition. - Abstract: Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the

  8. Enhancing Electrophoretic Display Lifetime: Thiol-Polybutadiene Evaporation Barrier Property Response to Network Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Caitlyn Christian [California State Polytechnic State Univ., San Luis Obispo, CA (United States)

    2017-02-27

    An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elastic response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and

  9. The influence of the deposition parameters on the porosity of thin alumina films on steel

    Directory of Open Access Journals (Sweden)

    DUSAN KICEVIC

    2004-03-01

    Full Text Available The influence of the deposition parameters on the porosity of thin alumina films electrophoretically deposited on steel from aqueous suspensions was investigated. The effects of the applied voltage, deposition time, suspension temperature and the solid content of the aqueous suspension on the porosity of the obtained alumina films have been determined using optical microscopy coupled with image analysis. It was shown that the lowest film porosity was obtained from a suspension containing 20 wt.% alumina powder at the lowest applied voltage (30 V, for a longer deposition time (10 min using a suspension temperature of 30 ºC. This behavior can be explained by the smaller amount of hydrogen evolved on the cathode during the electrophoretic deposition process.

  10. Electrophoretic characterization of Aspergillus nidulans strains with chromosomal duplications

    Directory of Open Access Journals (Sweden)

    Marisa V. de Queiroz

    2000-06-01

    Full Text Available Pulsed-field gel electrophoresis was used to characterize strains of Aspergillus nidulans with a chromosomal duplication Dp(I-II. Morphologically deteriorated and improved variants of these strains were also analyzed. The electrophoretic karyotype demonstrated that in two duplicated strains (A and B the 4.2 Mb band, which corresponds to chromosome II, was absent and a new band was observed. Hybridization studies using the uapA (chromosome I and wA (chromosome II genes demonstrated that the new band corresponded to chromosome II plus the duplicated segment of chromosome I. The size of the chromosomal duplication was approximately 1.0 Mb. Analysis of the chromosomal bands of a morphologically improved strain showed that the duplicated segment of chromosome I was completely lost. The morphologically deteriorated variants V9 and V17 had the same karyotype as the duplicated strains. However, the deteriorated variant V5 lost part of chromosome I and had a rearrangement involving chromosome V. This rearrangement may have resulted from the mutagenic treatment used to obtain the genetic markers. Pulsed-field gel electrophoresis was found to be an excellent tool for locating chromosomal rearrangements.Linhagens de Aspergillus nidulans que apresentam duplicação cromossômica Dp(I-II foram caracterizadas por eletroforese em campo pulsado. Foram analisados variantes morfologicamente deteriorados e melhorados. O cariótipo eletroforético demonstrou que em ambas as linhagens duplicadas (A e B a banda de 4,2 Mb, que corresponde ao cromossomo II, não estava presente e foi encontrada uma nova banda. Foram feitas hibridizações usando os genes uapA (cromossomo I e wA (cromossomo II, que demonstraram que a nova banda corresponde ao cromossomo II mais o segmento duplicado do cromossomo I. O tamanho da duplicação foi determinado como aproximadamente 1,0 Mb. A análise das bandas cromossômicas da linhagem morfologicamente melhorada mostrou que o segmento

  11. Immunonephelometric quantification of specific urinary proteins versus a simple electrophoretic method for characterizing proteinuria.

    Science.gov (United States)

    Wolff, Fleur; Willems, Dominique

    2008-04-01

    The quantification of urinary proteins presenting different molecular sizes is useful in characterizing a proteinuria. We assessed the performance of an electrophoretic system, the Hydragel Urine Profile, which allows firstly the identification of proteinuria and secondly a qualitative detection of monoclonal free light chains (FLC). Initially, the proteinuria was characterized on 127 pathological urines by quantifying albumin, a1microglobulin, immunoglobulins G by immunonephelometric quantification technique and the results were compared with the protein pattern obtained by the electrophoretic method. Secondly, we assessed the sensitivity and specificity of this electrophoretic test for the detection and characterization of Bence Jones proteins. FLC were analyzed quantitatively by an immunonephelometric assay and qualitatively by the electrophoretic test in 150 urines. The agreement between the two methods was good with a percentage of homology for characterizing the proteinuria of 89%. For detecting a monoclonal FLC, the electrophoretic method demonstrated a lesser sensitivity but a higher specificity compared to the immunoassay. The Urine Profile kit is a reliable assay that can be used as a screening test to differentiate the type of proteinuria.

  12. A DC electrophoresis method for determining electrophoretic mobility through the pressure driven negation of electro osmosis

    Science.gov (United States)

    Karam, Pascal; Pennathur, Sumita

    2016-11-01

    Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.

  13. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    Science.gov (United States)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  14. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    Science.gov (United States)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  15. Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application

    Science.gov (United States)

    Noel, Amélie; Mirbel, Déborah; Cloutet, Eric; Fleury, Guillaume; Schatz, Christophe; Navarro, Christophe; Hadziioannou, Georges; CyrilBrochon

    2018-01-01

    In order to obtain efficient electrophoretic inks, Tridodecylamine (Dod3N), has been studied as charge control agent (CCA) in a non-polar paraffin solvent (Isopar G) for various inorganic pigments (TiO2 and Fe2O3). All hydrophobic mineral oxides, i.e. treated with octyltrimethoxysilane (C8) or dodecyltrimethoxysilane (C12), were found to be negatively charged in presence of Dod3N. The electrophoretic mobilities of inorganic pigments seemed to be strongly dependent of their isoelectric point (IEP) and also of the concentration of dod3N with an optimum range between 10 and 20 mM depending on the pigments. Finally, an electrophoretic ink constituted of hydrophobic mineral oxides in presence of Dod3N was tested in a device. Its efficiency as charge control agent to negatively charge hydrophobic particles was confirmed through good optical properties and fast response time (220 ms at 200 kV m-1).

  16. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent

    Science.gov (United States)

    Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2018-01-01

    We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.

  18. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons.

    Science.gov (United States)

    Li, Chen-Xu; Ma, Guo-Ying; Guo, Min-Fang; Liu, Ying

    2015-06-01

    Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present study established rat models of neuropathic pain via chronic constriction injury. Results of the cell electrophoresis test revealed that the electrophoretic velocity of injured neuronal cells was faster than that of non-injured (control) cells. We then treated cells with divalent cations of Ca(2+) and organic compounds with positive charges, polylysine to counteract the negatively charged sialic acids, or neuraminidase to specifically remove sialic acids from the membrane surface of injured neurons. All three treatments significantly reduced the electrophoretic velocity of injured neuronal cells. These findings suggest that enhanced sialic acids on injured neurons may accelerate the electrophoretic velocity of injured neurons.

  19. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen-xu Li

    2015-01-01

    Full Text Available Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present study established rat models of neuropathic pain via chronic constriction injury. Results of the cell electrophoresis test revealed that the electrophoretic velocity of injured neuronal cells was faster than that of non-injured (control cells. We then treated cells with divalent cations of Ca 2+ and organic compounds with positive charges, polylysine to counteract the negatively charged sialic acids, or neuraminidase to specifically remove sialic acids from the membrane surface of injured neurons. All three treatments significantly reduced the electrophoretic velocity of injured neuronal cells. These findings suggest that enhanced sialic acids on injured neurons may accelerate the electrophoretic velocity of injured neurons.

  20. A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture

    NARCIS (Netherlands)

    Gelinck, G.H.; Huitema, H.E.A.; Mil, M. van; Veenendaal, E. van; Lieshout, P.J.G. van; Touwslager, F.; Patry, S.F.; Sohn, S.; Whitesides, T.; McCreary, M.D.

    2006-01-01

    A 100-um thin QVGA display was made by combining a 25-um thin organic transistor active-matrix backplane with an electrophoretic display film. High contrast and low crosstalk was achieved by the addition of a field shield to the backplane. The display can be bent repeatedly to a radius of 2 mm

  1. Reagent-Free Electrophoretic Synthesis of Few-Atom-Thick Metal Oxide Nanosheets

    DEFF Research Database (Denmark)

    Hou, Chengyi; Zhang, Minwei; Zhang, Lili

    2017-01-01

    reagents. The focus is on free-standing polycrystalline ZnO nanosheets that can be produced with a lateral dimension as large as 10 mu m and a thickness of 1 nm (the thinnest free-standing metal oxide nanosheet ever reported). A new electrophoretic assembly mechanism dominated by intrinsic surface polarity...

  2. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO2-Au Janus Micromotors

    Science.gov (United States)

    Wu, Yefei; Dong, Renfeng; Zhang, Qilu; Ren, Biye

    2017-07-01

    Light-driven synthetic micro-/nanomotors have attracted considerable attention in recent years due to their unique performances and potential applications. We herein demonstrate the dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au Janus micromotors in aqueous dye solutions. Compared to the velocities of these micromotors in pure water, 1.7, 1.5, and 1.4 times accelerated motions were observed for them in aqueous solutions of methyl blue (10-5 g L-1), cresol red (10-4 g L-1), and methyl orange (10-4 g L-1), respectively. We determined that the micromotor speed changes depending on the type of dyes, due to variations in their photodegradation rates. In addition, following the deposition of a paramagnetic Ni layer between the Au and TiO2 layers, the micromotor can be precisely navigated under an external magnetic field. Such magnetic micromotors not only facilitate the recycling of micromotors, but also allow reusability in the context of dye detection and degradation. In general, such photocatalytic micro-/nanomotors provide considerable potential for the rapid detection and "on-the-fly" degradation of dye pollutants in aqueous environments.

  3. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Tajabadi, M.T. [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M., E-mail: m.sokhakian@gmail.com [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Yoon, G.H. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, 2713, Doha (Qatar); Azarang, Majid [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y., E-mail: yatimah70@um.edu.my [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-11-15

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The behaviors of the hybrid electrodes towards H{sub 2}O{sub 2} reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml{sup −1} N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H{sub 2}O{sub 2} detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  4. The Effects of Postprocessing on Physical and Solution Deposition of Complex Oxide Thin Films for Tunable Applications

    Science.gov (United States)

    2016-02-01

    and thick films has been reported using many techniques, such as sol-gel, hydrothermal , electrophoretic, reactive partially ionized beam deposition...paint and melted indium probing, particularly for grounding side. The final step is a calibration of a full spectrum using Picoprobe GGB Industries

  5. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    Science.gov (United States)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  6. Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling.

    Science.gov (United States)

    Qiao, Yi; Chen, Jie; Guo, Xiaoli; Cantrell, Donald; Ruoff, Rodney; Troy, John

    2005-09-01

    The fabrication and characterization of tungsten nanoelectrodes insulated with cathodic electrophoretic paint is described together with their application within the field of neurophysiology. The tip of a 127 mum diameter tungsten wire was etched down to less than 100 nm and then insulated with cathodic electrophoretic paint. Focused ion beam (FIB) polishing was employed to remove the insulation at the electrode's apex, leaving a nanoscale sized conductive tip of 100-1000 nm. The nanoelectrodes were examined by scanning electron microscopy (SEM) and their electrochemical properties characterized by steady state linear sweep voltammetry. Electrode impedance at 1 kHz was measured too. The ability of a 700 nm tipped electrode to record well-isolated action potentials extracellularly from single visual neurons in vivo was demonstrated. Such electrodes have the potential to open new populations of neurons to study.

  7. Measuring Protein Concentration on Nitrocellulose and After the Electrophoretic Transfer of Protein to Nitrocellulose.

    Science.gov (United States)

    Goldring, J P Dean

    2015-01-01

    Proteins bind to nitrocellulose membranes when applied directly or after electrophoretic transfer from polyacrylamide electrophoresis gels. Proteins can be stained for visualization with organic dyes Ponceau S, amido black, Coomassie Blue, and colloidal silver/gold and the intensity of the stain is directly proportional to the amount of protein present. Chemicals that interfere with dye/protein interactions in solution can be removed by washing the nitrocellulose after protein application. A method is described whereby protein-dye complexes attached to the nitrocellulose can be solubilized, dissolving the nitrocellulose and releasing dye into solution for detection by a spectrophotometer. The concentration of the dyes Ponceau S, amido black, and colloidal silver is proportional to the concentration of protein. Proteins transferred electrophoretically from SDS-PAGE, isoelectric focusing, or 2D gels to nitrocellulose can be stained with amido black, protein bands excised, and the bound dye detected in a spectrophotometer to quantify proteins in the individual protein bands.

  8. Amino acids content and electrophoretic profile of camel milk casein from different camel breeds in Saudi Arabia

    OpenAIRE

    Salmen, Saleh H.; Abu-Tarboush, Hamza M.; Al-Saleh, Abdulrahman A.; Metwalli, Ali A.

    2011-01-01

    This study aimed to evaluate amino acids content and the electrophoretic profile of camel milk casein from different camel breeds. Milk from three different camel breeds (Majaheim, Wadah and Safrah) as well as cow milk were used in this study.

  9. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons

    OpenAIRE

    Chen-xu Li; Guo-ying Ma; Min-fang Guo; Ying Liu

    2015-01-01

    Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present stud...

  10. Synthesis and Application of Carbon–Iron Oxide Microspheres’ Black Pigments in Electrophoretic Displays

    Directory of Open Access Journals (Sweden)

    Meng Xianwei

    2010-01-01

    Full Text Available Abstract Carbon–iron oxide microspheres’ black pigments (CIOMBs had been prepared via ultrasonic spray pyrolysis of aqueous solutions containing ferrous chloride and glucose. Due to the presence of carbon, CIOMBs not only exhibited remarkably acid resistance, but also could be well dispersed in both polar solvents and nonpolar solvent. Finally, dispersions of hollow CIOMBs in tetrachloroethylene had successfully been applied in electrophoretic displays.

  11. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    Science.gov (United States)

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of the Median Lethal Dose and Electrophoretic Pattern of Hottentotta saulcyi (Scorpiones, Buthidae Scorpion Venom

    Directory of Open Access Journals (Sweden)

    ErsenAydın Yağmur

    2015-10-01

    Full Text Available Background: In this study, we investigated the lethal potency, electrophoretic protein pattern and in vivo effects of Hottentotta saulcyi scorpion venom in mice.Methods: Scorpions were collected at night, by using a UV lamp from Mardin Province, Turkey. Venom was obtained from mature H. saulcyi scorpions by electrical stimulation of the telson. The lethality of the venom was determined by i.v. injections using Swiss mice. In vivo effects of the venom were assessed by using the intraperitoneal route (ip injections into mice (20±1g and monitored for 24 h. The protein profiles of the scorpion venom were analyzed by NuPAGE® Novex® 4–12 % gradient Bis-Tris gel followed by Coomassie blue staining.Results: The lethal assay of the venom was 0.73 mg/kg in mice. We determined the electrophoretic protein pattern of this scorpion venom to be 4, 6, 9, 31, 35, 40, 46 and 69 kDa by SDS-PAGE. Analysis of electrophoresis indicated that H. saulcyi scorpion intoxicated mice exhibited autonomic nervous system symptoms (tachypnea, restlessness, hyperexcitability, convulsions, salivation, lacrimation, weakness.Conclusions: Hottentotta saulcyi scorpion venom includes short-chain neurotoxins and long-chain neurotoxins according to the electrophoretic protein patterns. The stings of H. saulcyi scorpion must be considered of risk for humans in the southeastern region, Turkey.

  13. Improvement in color properties of copper mesh electrodes via electrophoretic coating with nano-structured carbon materials

    Science.gov (United States)

    Hwang, Young-Jin; Kim, Bu-Jong; Park, Jin-Seok

    2017-03-01

    In this study, the effects of coating with nano-structured carbon materials, such as carbon nanotube (CNT) and graphene, on the characteristics of transparent conductive electrodes based on copper (Cu) meshes, particularly on the visibility related to their color properties, were examined. The electrical sheet resistance of the Cu meshes remained almost unchanged regardless of the coating with CNT and graphene. Through the electrophoretic deposition method, the CNT and graphene layers were selectively used to coat only the regions where Cu mesh patterns had been formed, which helped minimize the transmittance loss caused by the coating with CNT and graphene. The reflectance of the Cu mesh was substantially reduced by the coating with CNT and graphene, meaning that the CNT or graphene coating layer played the role of suppressing the visible light reflected from the Cu mesh. In addition, the reflectance reduction effect was greater when the Cu mesh was coated with CNT rather than with graphene, which was attributed to the difference in particle size between the CNT suspension and the graphene suspension. Furthermore, the chromatic parameters (e.g., redness, yellowness) of the Cu meshes approached almost zero as the thickness of the CNT or graphene coating layer increased, meaning that the Cu meshes became nearly colorless, while the primitive Cu mesh was tinged with a red-orange color. The experiment results presented in this study verified that the combined technology with CNT and graphene coating contributed to the amelioration of the poor visibility caused by the high reflectance and color-tinted nature of the conventional Cu mesh.

  14. A comprehensive investigation on electrophoretic self-assembled nano-Co{sub 3}O{sub 4} films in aqueous solution as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaogang; Li, Xueming, E-mail: lixuemingcqu@126.com [Chongqing University, College of Chemistry and Chemical Engineering (China); Xiong, Zhongshu [Chongqing Normal University, School of Foreign Languages and Literature (China); Lai, Chuan [Sichuan University of Arts and Science, School of Chemistry and Chemical Engineering (China); Li, Yu; Huang, Xinyue; Bao, Hebin; Yin, Yanjun; Zhu, Yuhua [Chongqing University, College of Chemistry and Chemical Engineering (China); Zhang, Daixiong [Tsinghua University, School of Science (China)

    2016-06-15

    In this study, the nano-Co{sub 3}O{sub 4} films (NCOFs) have been prepared by a one-step cathodic electrophoretic deposition (C-EPD) in aqueous solutions with micro-additive polyethylenimine at ambient temperature and pressure for oxide film-based supercapacitors. The phase composition and morphology of the NCOFs were studied by X-ray diffraction (XRD) and focused ion beam scanning electron microscope (FIB-SEM), respectively. In addition, the deposition kinetics of nano-Co{sub 3}O{sub 4} particles using C-EPD process were investigated in detail. The electrochemical capacitance behaviors of the NCOFs electrode were analyzed by cyclic voltammetry, galvanostatic charge–discharge studies, and electrochemical impedance spectroscopy in 2 M KOH solution. The electrochemical experiments revealed that the highest capacitance of 233.6 F g{sup −1} at 0.5 A g{sup −1}, 93.5 % of which still be maintained after 2000 charge–discharge cycles. These findings suggested the potential application of the NCOFs prepared by C-EPD in the electrochemical supercapacitors.

  15. Molecular analysis and physicochemical properties of electrophoretic variants of wild soybean Glycine soja storage proteins.

    Science.gov (United States)

    Fukuda, Takako; Maruyama, Nobuyuki; Kanazawa, Akira; Abe, Jun; Shimamoto, Yoshiya; Hiemori, Miki; Tsuji, Hideaki; Tanisaka, Takatoshi; Utsumi, Shigeru

    2005-05-04

    Cultivated soybeans (Glycine max) are derived from wild soybeans (Glycine soja) and can be crossed with them to produce fertile offspring. The latter exhibit greater genetic variation than the former, suggesting a possibility that wild soybeans contain storage proteins with properties different from and better than those of cultivated soybeans. To identify a wild soybean suitable for breeding a new soybean cultivar, we analyzed seed proteins from 390 lines of wild soybeans by electrophoresis. We found some lines containing electrophoretic variants of glycinin and beta-conglycinin subunits: one line containing a small alpha' subunit of beta-conglycinin and two and five lines containing small A3 and large A4 polypeptides of glycinin, respectively. Beta-Conglycinin and glycinin containing such variant subunits exhibited solubility and emulsifying ability similar to those of the predominant types of wild and cultivated soybeans. Glycinins containing small A3 and large A4 gave a shoulder derived from the start of denaturation at a temperature 4 degrees C lower than that of glycinin from the predominant types of wild and cultivated soybeans, although their thermal denaturation midpoint temperatures were very similar to each other. Cloning and sequencing of the predominant and variant subunit cDNAs revealed that the small alpha' and the small A3 lacked 24 amino acid residues in the extension region and four amino acid residues in the hypervariable region, respectively, and that the large A4 did not have an insert corresponding to the difference in the electrophoretic mobility but Arg279 and Gln305 were replaced by glutamine and histidine, respectively, in the hypervariable region. These suggest that small differences even in the hypervariable region can affect the thermal stability, as well as the electrophoretic mobilities, of the proteins.

  16. Effect of alteration of translation error rate on enzyme microheterogeneity as assessed by variation in single molecule electrophoretic mobility and catalytic activity

    National Research Council Canada - National Science Library

    Nichols, Ellert R; Shadabi, Elnaz; Craig, Douglas B

    2009-01-01

    .... An E.coli rpsL mutant with a hyperaccurate translation phenotype produced enzyme molecules that exhibited significantly less catalytic heterogeneity but no reduction of electrophoretic heterogeneity...

  17. Gel electrophoretic mobility of single-stranded DNA: the two reptation field-dependent factors.

    Science.gov (United States)

    Rousseau, J; Drouin, G; Slater, G W

    2000-05-01

    The reptation model is the dominant theory in understanding the electrophoretic separation of single-stranded DNA molecules in gels or entangled polymer solutions. Recently, we showed that the Ogston and reptation regimes are separated by an entropic trapping regime at low field intensities. Here, we report the first comparison of the field-dependent part of the DNA mobility for both small and long reptating molecules. We show that both mobilities increase linearly with field intensity, with the mobility of the longer (comigrating) fragments increasing faster than that of the smaller ones. We compare our results to the predictions of the biased reptation model.

  18. All solution processed organic thin film transistor-backplane with printing technology for electrophoretic display

    Science.gov (United States)

    Lee, Myung W.; Song, C.K.

    2012-01-01

    In this study, solution processes were developed for backplane using an organic thin film transistor (OTFT) as a driving device for an electrophoretic display (EPD) panel. The processes covered not only the key device of OTFTs but also interlayer and pixel electrodes. The various materials and printing processes were adopted to achieve the requirements of devices and functioning layers. The performance of OTFT of the backplane was sufficient to drive EPD sheet by producing a mobility of 0.12 cm2/v x sec and on/off current ratio of 10(5).

  19. A substrate-optimized electrophoretic mobility shift assay for ADAM12

    DEFF Research Database (Denmark)

    Kotzsch, Alexander; Skovgaard, Tine; Buus, Uwe

    2014-01-01

    ADAM12 belongs to the A disintegrin and metalloprotease (ADAM) family of secreted sheddases activating extracellular growth factors such as epidermal growth factor receptor (EGFR) ligands and tumor necrosis factor-alpha (TNF-α). ADAM proteases, most notably ADAM17 (TNF-α-converting enzyme), have ...... to validate molecular probes from large-scale screening efforts. Here we describe an electrophoretic mobility shift assay for ADAM12 based on the identification of an optimized peptide substrate that is characterized by excellent performance and reproducibility....

  20. Multiplex mRNA assay using electrophoretic tags for high-throughput gene expression analysis

    OpenAIRE

    Tian, Huan; Cao, Liching; Tan, Yuping; Williams, Stephen; Chen, Lili; Matray, Tracy; Chenna, Ahmed; Moore, Sean; Hernandez, Vincent; Xiao, Vivian; Tang, Mengxiang; Singh, Sharat

    2004-01-01

    We describe a novel multiplexing technology using a library of small fluorescent molecules, termed eTag molecules, to code and quantify mRNA targets. eTag molecules, which have the same fluorometric property, but distinct charge-to-mass ratios possess pre-defined electrophoretic characteristics and can be resolved using capillary electrophoresis. Coupled with primary Invader® mRNA assay, eTag molecules were applied to simultaneously quantify up to 44 mRNA targets. This multiplexing approach w...

  1. Comparison of the Electrophoretic Method with the Sedimentation Method for the Analysis of DNA Strand Breaks

    OpenAIRE

    OSAMU, YAMAMOTO; MASAAKI, OGAWA; Masaharu, Hoshi; Research Institute for Nuclear Medicine and Biology, Hiroshima University

    1982-01-01

    Application of electrophoresis to the analysis of DNA strand breaks was studied comparing with the sedimentation analysis. A BRL gel electrophoresis system (Type V16) was used for this study. Calf thymus DNA (1 mg/ml) irradiated with ^Co gamma-rays in SSC solution was applied to both the electrophoretic analysis and the sedimentation analysis. Lamda phage DNA and its fragments were employed as the standard size molecules. In a range from 1 k base pairs to 6 k base pairs in length for double s...

  2. Genetic heterogeneity within an electrophoretic phenotype of phosphoglucose isomerase in a Japanese population

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, C.; Mohrenweiser, H.W.

    1979-01-01

    Human erythrocyte phosphoglucose isomerase (GPI), D-glucose-6-phosphate ketol isomerase (E.C. 5.3.1.9), also referred to as phosphohexose isomerase or glucose phosphate isomerase, is a dimeric enzyme with a molecular weight of 132000. In a study of Japanese residing in Hiroshima and Nagasaki, 5 electrophoretic variant phenotypes were observed in 35 unrelated individuals in a sample of 4029 observations. In the present paper, the thermostability of erythrocyte GPI from 27 individuals representing the five variant phenotypes will be described.

  3. Dichotomous electrophoretic taxonomic key for identification of sibling species A, B, and C of the Anopheles quadrimaculatus complex (Diptera: Culicidae).

    Science.gov (United States)

    Narang, S K; Kaiser, P E; Seawright, J A

    1989-03-01

    Samples of 17 populations of Anopheles quadrimaculatus Say from Florida, Alabama, Arkansas, Louisiana, Mississippi, Tennessee, New York, and New Jersey were analyzed for genetic variability at 33 enzyme loci. Statistical analysis of electromorph frequency distributions indicated that sympatric sibling (morphologically indistinguishable) species occurred in about 59% of the populations tested. The association of polytene chromosome and electrophoretic patterns of individual field-collected females confirmed species-specific diagnostic allozymes, which were useful in identifying sibling species A, B, and C and in estimating the proportions of each species at the 17 collection sites. A dichotomous electrophoretic key is presented for the identification of sibling species of the An. quadrimaculatus complex. The electrophoretic method is better than the ovarian polytene chromosome method, because mosquitoes of both sexes and females irrespective of their gonotrophic condition can be identified.

  4. Influence of optical probing with YOYO on the electrophoretic behavior of the DNA molecule.

    Science.gov (United States)

    Carlsson, C; Larsson, A; Jonsson, M

    1996-04-01

    The influence of the fluorescent dye YOYO (1,1'-(4,4,8,8,-tetramethyl- 4,8-diazaundecamethylene)bis[4-[[3-methyl-benzo-1,3-oxazol-2 -yl] methylidene]-1,4-dihydroquinolinium] tetraiodide) on the electrophoretic behavior of the DNA molecule was investigated. This is important when using YOYO as a probe in capillary electrophoresis or in fluorescence microscopy studies of DNA with the purpose of studying the migration mechanism of DNA on the molecular level. We have measured the mobility and orientation dynamics (using the linear dichroism technique) for both pure DNA and the YOYO-DNA complex in agarose gel in order to compare their electrophoretic properties. Mobility decreases, the degree of orientation becomes lower, and the orientational dynamics slower, when YOYO binds to DNA. However, the dependence on field strength of the mobility, orientation and orientational dynamics, are similar for DNA and YOYO-DNA, indicating that the mode of migration does not change significantly upon binding YOYO to DNA. Furthermore, since our results show that the effect of YOYO on both the degree of orientation and orientational dynamics of the DNA can be measured and therefore be compensated for, it can be concluded that YOYO is an excellent optical probe for the study of the migrational behavior of DNA.

  5. The electrophoretic mobility of alpha 1-proteinase inhibitor: effects of proteolysis and cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Stockley, R.A.; Afford, S.C.; Brunett, D.

    1982-04-01

    The electrophoretic mobility of purified alpha 1-proteinase inhibitor was compared with that of carbamoylated transferrin. The results ranged from 64.0 to 68.9% of the distance moved by the transferrin and was increased by cigarette smoke solution (range 70.4% to 75.0% of carbamoylated transferrin). The addition of leucocyte elastase produced a change in electrophoretic mobility only in the presence of excess enzyme when mobility fell (58.0 to 62.0%) and was associated with complete and not partial loss of inhibitory activity. No further change was seen over 24 h. Studies on sputum showed a wide range of mobility from 68.0 to 45.0% but only those with a mobility greater than 64.0% retained any inhibitory capacity against porcine pancreatic elastase. However, several samples had a mobility lower than that produced by proteolysis with leucocyte elastase and some showed continuing reduction with time. It is suggested that this is due to proteolysis by more than one enzyme.

  6. Electrophoretic Ink Display Prepared by Jelly Fig Pectin/Gelatin Microspheres

    Directory of Open Access Journals (Sweden)

    Wing-Ming Chou

    2015-05-01

    Full Text Available A brand new Bio-Electronic ink (Bio-E ink display device was prepared and characterized in this study. Semiconductor material, copper phthalocyanine (CuPc was modified by cationic surfactants, cetylpyridinium chloride (CPC, as the core material, and the shell of capsule was prepared by jelly fig pectin, gelatin and sodium dodecyl sulphate (SDS. Here, jelly fig pectin was provided as the shell material for the first time. Chemical structure of the modified CuPc was characterized by Fourier Transform Infrared Spectrometer (FTIR. The core-shell microcapsules were achieved by coacervation method in an oil/water (O/W emulsion system. The particle size and morphology of microcapsules were affected by the concentrations of SDS and pH values of the O/W emulsion system. A new microcapsule-based electrophoretic display device was presented. Its image display ability of the microcapsules electrophoretic device was presented as appropriated electric power was applied, and the response time was 0.06 sec under 0.1 V/mm of electric field. Moreover, we found that its image contrast ratio of display device was influenced by the particle sizes of the microcapsules.

  7. Numerical simulation of stress-strain state of electrophoretic shell molds

    Science.gov (United States)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  8. A pressure-driven capillary electrophoretic system with injection valve sampling.

    Science.gov (United States)

    Han, Chao; Sun, Jiannan; Liu, Jinhua; Cheng, Heyong; Wang, Yuanchao

    2015-01-07

    To improve repeatability and efficiency and to simplify the operation procedure of capillary electrophoresis (CE), a pressurized CE system (p-CE) with injection valve sampling was developed. It consisted of one high-pressure pump, a six-port injection valve, a PEEK cross, a separation and back pressure capillary, an ultraviolet-visible detector and a high voltage power supply. The pressure-driven flow ranging from 4.5 nL min(-1) to 0.81 μL min(-1) in the separation capillary was produced by splitting to the flow from the high-pressure pumps (0.005-0.4 mL min(-1)). Nano-volume sample injection (system, the new commercial capillary could be directly used without any wash, and the capillary-flush process between runs was also eliminated. In this case, the analytes were driven toward the outlet of the separation capillary by the pressurized flow, the electric field force and minute electroosmotic flow, and they were separated owing to the electrophoretic mobility. The p-CE system allows for the independent variation of the pressurized flow rate and electrical field and electrophoretic separation of good repeatability (below 3%) under high electrical fields (500-1000 V cm(-1)) and flow rate gradient modes. The feasibility of the p-CE system in real analysis was demonstrated by iodate quantification in iodized table salts. The separation of iodide and iodate was realized within 0.3 min, proving its high analytical speed.

  9. Electrophoretic study of nitrofurantoin in aqueous suspensions. Effect of the addition of a polymeric thickener.

    Science.gov (United States)

    Gallardo, V; Delgado, A; Parera, A; Salcedo, J

    1990-04-01

    The electrophoretic mobility of nitrofurantoin (based on the microelectrophoresis method) has been studied in dilute dispersions of the drug. Specifically, the effect of NaCl, CaCl2 and AlCl3, pH, and a thickener, Carbopol 934, was determined. The electrophoretic mobility (mu) increases in absolute terms when the pH is raised between 3 and 9, although mu remains negative in this pH range. The variation of absolute mobility ([mu[) with NaCl concentration shows a pronounced maximum for a concentration of about 10(-4) M. However, when the concentration of CaCl2 in the medium is increased, [mu[ decreases steadily. The effect of AlCl3 concentration on the mobility is markedly influenced by the pH of the dispersing medium although a general trend is observed for mu to become more positive with increasing concentration of the salt. Finally, Carbopol 934 appears to impart an extra negative charge to the nitrofurantoin surface, since higher negative mobilities were measured in the presence of the polymer.

  10. Comparative study of cylindrical and parallel-plate electrophoretic separations for the removal of ions and sub-23 nm particles.

    Science.gov (United States)

    Yu, Tongzhu; Yang, Yixin; Liu, Jianguo; Gui, Huaqiao; Zhang, Jiaoshi; Cheng, Yin; Wang, Wenyu; Du, Peng; Wang, Jie; Wang, Huanqin

    2017-12-01

    Cylindrical and parallel-plate electrophoretic separations for the removal of ions and sub-23 nm particles were compared in this study. First, COMSOL Multiphysics® software was utilized to simulate the ion and particle trajectories inside both electrophoretic separations. The results show that ions and sub-23 nm particles are removed simultaneously and that all particles can pass through both electrophoretic separations smoothly at a trap voltage of 25 V. The experimental results show that ion losses become smaller with increasing ion flow rates, and ion losses of the cylindrical and parallel-plate electrophoretic separations range from 56.2 to 71.6% and from 43.8 to 59.6%, respectively, at ion flow rates ranging from 1-3 L/min. For the removal of ions and sub-23 nm particles, the collection efficiency of both electrophoretic separations can reach 100%, but the parallel-plate electrophoretic separation requires a lower trap voltage. The particle loss of the parallel-plate electrophoretic separation is under approximately 10%, which is lower than that of the cylindrical electrophoretic separation. In particular, for large particles (800-2500 nm), the particle losses inside the cylindrical electrophoretic separation are approximately two times higher than those inside the parallel-plate electrophoretic separation. The parallel-plate electrophoretic separation is beneficial for the removal of ions and sub-23 nm particles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Les femmes et le travail à temps partiel en Europe

    OpenAIRE

    Salladarré, Frédéric; Hlaimi, Boubaker

    2011-01-01

    This study provides an analysis of the determinants of female part-time employment in 18 European countries. The distinction between short and long part-time allowed us to highlight some differences. Female part-timers are often married mothers and hold less secure jobs within the public sector. In addition, long part-time seems to stand out by economic conditions more favorable in terms of security. Our decomposition of the working time suggests that the differences between long part-tim...

  12. Les femmes et le travail à temps partiel en Europe

    OpenAIRE

    Salladarré, Frédéric; Hlaimi, Boubaker

    2011-01-01

    This study provides an analysis of the determinants of female part-time employment in 18 European countries. The distinction between short and long part-time allowed us to highlight some differences. Female part-timers are often married mothers and hold less secure jobs within the public sector. In addition, long part-time seems to stand out by economic conditions more favorable in terms of security. Our decomposition of the working time suggests that the differences between long part-time an...

  13. The electrophoretic softness of the surface of Staphylococcus epidermidis cells grown in a liquid medium and on a solid agar

    NARCIS (Netherlands)

    Kiers, PJM; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    Many Staphylococcus epidermidis strains possess capsule or slime layers and consequently the staphylococcal cell surface should be regarded as a soft, polyelectrolyte layer allowing electrophoretic fluid flow through a layer of fixed charges. The presence of such a soft layer decreases the energy

  14. Using Electrophoretic Mobility Shift Assays to Measure Equilibrium Dissociation Constants: GAL4-p53 Binding DNA as a Model System

    Science.gov (United States)

    Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.

    2012-01-01

    An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…

  15. Microchannel gel electrophoretic separation systems and methods for preparing and using

    Science.gov (United States)

    Herr, Amy; Singh, Anup K; Throckmorton, Daniel J

    2013-09-03

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  16. Comparison of chemical, electrophoretic and in vitro digestion methods for predicting fish meal nutritive quality

    DEFF Research Database (Denmark)

    Bassompierre, M.; Larsen, K.L.; Zimmermann, W.

    1998-01-01

    different quantities of water-soluble protein (wsp). A low-temperature-dried FM was employed as a reference. Acquired chemical data for each of the FMs included amino acid analysis and proximal composition (protein, fat, ash, ammonia, titration, salt, moisture). Biological methods in rat (net protein...... correlation (R = 0.98; P fish-based in vitro system provided correlations with wsp content with respect to predigestion (R = 0.97; P amino groups as post digestion minus predigestion (R = 0.97; P......Chemical, electrophoretic and in vitro digestion methods were compared with respect to predictions given regarding fish meal (FM) quality. FMs were manufactured by mixing a press-cake, with spray dried stickwater concentrate from the identical raw material, thereby providing samples containing...

  17. Electrophoretic studies of polygalacturonate oligomers and their interactions with metal ions.

    Science.gov (United States)

    Wiedmer, S K; Cassely, A; Hong, M; Novotny, M V; Riekkola, M L

    2000-09-01

    Polygalacturonic acid, a linear homopolysaccharide, was investigated by capillary electrophoresis (CE) using linear polyacrylamide-coated capillaries and laser-induced fluorescence (LIF) detection. A successful separation of its fluorescently labeled oligomers was achieved through sieving in polyacrylamide entangled matrices. The reaction conditions for the derivatization of polygalacturonic acid were optimized. In studying the interactions between polygalacturonic acid and various metal ions, the end-label, free-solution electrophoretic (ELFSE) technique, developed earlier in our laboratory (Sudor, J., Novotny, M. V., Anal. Chem. 1995, 67, 4205-4209) was found preferable to the sieving method. ELFSE is fast and convenient in that no polymer solutions are needed for the separation. The investigation showed that for the moderately large oligomers, the strongest binding occurred with calcium and cadmium ions, while the smallest interaction was observed with magnesium ions.

  18. Investigation of the free flow electrophoretic process. Volume 2: Technical analysis

    Science.gov (United States)

    Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.

    1979-01-01

    The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.

  19. Microchannel gel electrophoretic separation systems and methods for preparing and using

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Amy E; Singh, Anup K; Throckmorton, Daniel J

    2015-02-24

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  20. Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores.

    Science.gov (United States)

    Langecker, Martin; Pedone, Daniel; Simmel, Friedrich C; Rant, Ulrich

    2011-11-09

    Electrophoretic transport through a solid-state nanodevice comprised of two stacked nanopore sensors is used to determine the free-solution mobility of DNA molecules based on their "time-of-flight" between the two pores. Mobility measurements are possible at very low (100 pM) DNA concentration and for low as well as high salt concentrations (here 30 mM and 1 M KCl). The mechanism of DNA transport through the device is elucidated by statistical analysis, showing the free-draining nature of the translocating DNA polymers and a barrier-dominated escape through the second pore. Furthermore, consecutive threading of single molecules through the two pores can be used to gain more detailed information on the dynamics of the molecules by correlation analysis, which also provides a direct electrical proof for translocation.

  1. Assessment of an expert system for the automated validation of electrophoretic profiles.

    Science.gov (United States)

    Dorizzi, Romolo M; Zanardi, Valerio; Agnoletti, Riziero; Alberelli, Anna; Babini, Alessandra; De Vita, Paolo

    2015-01-01

    The Core-lab of the Greater Romagna Area Hub Laboratory carries out about 250,000 capillary electrophoresis assays/year. The huge workload demands the assessing of an Experimental Expert System (EES) capable to sort out the negative samples. Capillarys 2 analyzer has been employed coupled with an EES (based on five simple rules) integrated with the electrophoretic test management software PhoresisCore for assessing the entire workload of a week (5,683 samples). The classification was compared with that of two expert laboratorians. The expert system automatically classified 2974 profiles as negative and no positive samples were erroneously classified as negative (negative predictive value: 100%). The EES sensitivity was 100% and the FTE required for the validation was reduced from 1.26 to 0.63. The EES could be easily implemented in routine activity embedded in a middleware or directly running in the analyzer improving the workflow.

  2. Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: the importance of hydrodynamic interactions.

    Science.gov (United States)

    Hickey, Owen A; Holm, Christian; Smiatek, Jens

    2014-04-28

    In this article we examine the electrophoretic stretching of polyelectrolytes between parallel uncharged plates using molecular dynamics simulations. We compare simulations where the fluid is modeled implicitly using a Langevin thermostat, which ignore hydrodynamic interactions, to simulations with an explicit lattice-Boltzmann fluid that take hydrodynamic interactions into account. The difference between simulations with and without hydrodynamic interactions is larger for longer polyelectrolytes, as one would expect. Furthermore, we present simulation results which show that the effects of hydrodynamic interactions are reduced as the distance between the confining plates is diminished. The main result of our study is that hydrodynamic interactions play a larger role in systems with a shorter Debye length, in contrast to conventional wisdom.

  3. Electrophoretic protein profiles of mid-sized copepod Calanoides patagoniensis steadily fed bloom-forming diatoms

    Directory of Open Access Journals (Sweden)

    Victor M Aguilera

    2015-09-01

    Full Text Available Recent field and experimental evidence collected in the southern upwelling region off Concepción (36°5'S, 73°3'W showed an abrupt reduction (<72 h in the egg production rates (EPR of copepods when they were fed steadily and solely with the local bloom-forming diatom Thalassiosira rotula. Because diatoms were biochemically similar to dinoflagellate Prorocentrum minimum, a diet which supported higher reproductive outcomes, the fecundity reduction observed in copepod females fed with the diatom may have obeyed to post-ingestive processes, giving rise to resources reallocation. This hypothesis was tested by comparing feeding (clearance and ingestion rates, reproduction (EPR and hatching success and the structure of protein profiles (i.e., number and intensity of electrophoretic bands of copepods (adults and eggs incubated during 96 h with the two food conditions. The structure of protein profiles included molecular sizes that were calculated from the relative mobility of protein standards against the logarithm of their molecular sizes. After assessing the experimental conditions, feeding decreased over time for those females fed with T. rotula, while reproduction was higher in females fed with P. minimum. Electrophoretic profiles resulted similar mostly at a banding region of 100 to 89-kDa, while they showed partial differences around the region of 56-kDa band, especially in those females fed and eggs produced with T. rotula. Due to reproductive volume was impacted while larvae viability, a physiological processes with specific and high nutritional requirements, was independent on food type; post-ingestive processes, such as expression of stress-related proteins deviating resources to metabolic processes others than reproduction, are discussed under framework of nutritional-toxic mechanisms mediating copepod-diatoms relationships in productive upwelling areas.

  4. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques

    Science.gov (United States)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav

    2011-01-01

    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  5. Relating chromatographic retention and electrophoretic mobility to the ion distribution within electrosprayed droplets.

    Science.gov (United States)

    Bökman, C Fredrik; Bylund, Dan; Markides, Karin E; Sjöberg, Per J R

    2006-03-01

    Ions that are observed in a mass spectrum obtained with electrospray mass spectrometry can be assumed to originate preferentially from ions that have a high distribution to the surface of the charged droplets. In this study, a relation between chromatographic retention and electrophoretic mobility to the ion distribution (derived from measured signal intensities in mass spectra and electrospray current) within electrosprayed droplets for a series of tetraalkylammonium ions, ranging from tetramethyl to tetrapentyl, is presented. Chromatographic retention in a reversed-phase system was taken as a measure of the analyte's surface activity, which was found to have a large influence on the ion distribution within electrosprayed droplets. In addition, different transport mechanisms such as electrophoretic migration and diffusion can influence the surface partitioning coefficient. The viscosity of the solvent system is affected by the methanol content and will influence both diffusion and ion mobility. However, as diffusion and ion mobility are proportional to each other, we have, in this study, chosen to focus on the ion mobility parameter. It was found that the influence of ion mobility relative to surface activity on the droplet surface partitioning of analyte ions decreases with increasing methanol content. This effect is most probably coupled to the decrease in droplet size caused by the decreased surface tension at increasing methanol content. The same observation was made upon increasing the ionic strength of the solvent system, which is also known to give rise to a decreased initial droplet size. The observed effect of ionic strength on the droplet surface partitioning of analyte ions could also be explained by the fact that at higher ionic strength, a larger number of ions are initially closer to the droplet surface and, thus, the contribution of ionic transport from the bulk liquid to the liquid/air surface interface (jet and droplet surface), attributable to

  6. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations.

    Science.gov (United States)

    Moreno-Gordaliza, Estefanía; Stigter, Edwin C A; Lindenburg, Petrus W; Hankemeier, Thomas

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10(-9) m(2) V(-1) s(-1)) when compared with unmodified fused silica (5.9 ± 0.1 10(-8) m(2) V(-1) s(-1)). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1-1.8% coefficient-of-variation (CV) within a day) and 2-3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Determination of acidity constants and prediction of electrophoretic separation of amyloid beta peptides.

    Science.gov (United States)

    Peró-Gascón, Roger; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria

    2017-07-28

    In this paper we describe a strategy to estimate by CE the acidity constants (pKa) of complex polyprotic peptides from their building peptide fragments. CE has been used for the determination of the pKas of five short polyprotic peptides that cover all the sequence of amyloid beta (Aβ) peptides 1-40 and 1-42 (Aβ fragments 1-15, 10-20, 20-29, 25-35 and 33-42). First, the electrophoretic mobility (me) was measured as a function of pH of the background electrolyte (BGE) in the pH range 2-12 (bare fused silica capillary, I=25mM and T=25°C). Second, the mes were fitted to equations modelling the ionisable behaviour of the different fragments as a function of pH to determine their pKas. The accuracy of the pKas was demonstrated predicting the electrophoretic behaviour of the studied fragments using the classical semiempirical relationships between me and peptide charge-to-mass ratio (me vs. q/Mr1/2, classical polymer model, q=charge and Mr=relative molecular mass). Separation selectivity in a mixture of the fragments as a function of pH was evaluated, taking into account the influence of the electroosmotic flow (EOF) at each pH value, and a method for the simple and rapid simulation of the electropherograms at the optimum separation pH was described. Finally, the pKas of the fragments were used to estimate the pKas of the Aβ peptides 1-40 and 1-42 (tC and D 3.1, E 4.6 and Y 10.8 for acidic amino acids and tN-D 8.6, H 6.0, K 10.6 and R 12.5 for basic amino acids), which were used to predict their behaviour and simulate their electropherograms with excellent results. However, as expected due to the very small differences on q/Mr1/2 values, separation resolution of their mixtures was poor over the whole pH range. The use of poly(vinyl alcohol) (PVA) coated capillaries allowed reducing the EOF and a slight improvement of resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  9. Biologically driven neural platform invoking parallel electrophoretic separation and urinary metabolite screening.

    Science.gov (United States)

    Page, Tessa; Nguyen, Huong Thi Huynh; Hilts, Lindsey; Ramos, Lorena; Hanrahan, Grady

    2012-06-01

    This work reveals a computational framework for parallel electrophoretic separation of complex biological macromolecules and model urinary metabolites. More specifically, the implementation of a particle swarm optimization (PSO) algorithm on a neural network platform for multiparameter optimization of multiplexed 24-capillary electrophoresis technology with UV detection is highlighted. Two experimental systems were examined: (1) separation of purified rabbit metallothioneins and (2) separation of model toluene urinary metabolites and selected organic acids. Results proved superior to the use of neural networks employing standard back propagation when examining training error, fitting response, and predictive abilities. Simulation runs were obtained as a result of metaheuristic examination of the global search space with experimental responses in good agreement with predicted values. Full separation of selected analytes was realized after employing optimal model conditions. This framework provides guidance for the application of metaheuristic computational tools to aid in future studies involving parallel chemical separation and screening. Adaptable pseudo-code is provided to enable users of varied software packages and modeling framework to implement the PSO algorithm for their desired use.

  10. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of clinical, laboratory, and electrophoretic profiles for diagnosis of malnutrition in hospitalized dogs

    Directory of Open Access Journals (Sweden)

    Andrei Kelliton Fabretti

    2015-02-01

    Full Text Available Malnutrition is a major factor associated with increased rates of mortality and readmission, longer hospital stays, and greater health care spending. Recognizing malnourished or at-risk animals allows for nutritional intervention and improved prognosis. This study evaluated the association between clinical, laboratory, and electrophoretic variables and the nutritional status (NS of hospitalized dogs in order to generate a profile of the sick dog and to facilitate the diagnosis of malnutrition. We divided 215 dogs into groups according to the severity of the underlying disease and we determined the clinical NS based on the assessment of the body condition score and the muscle mass score. The NS was classified as clinically well nourished, clinical moderate malnutrition, or clinical severe malnutrition. Statistical analyses were conducted by using the chi-square test or Fisher’s exact test; the Kruskal-Wallis test was used for continuous variables. A strong association was found between malnutrition and the severity of the underlying disease. In hospitalized dogs, low body mass index values, anemia, low hemoglobin concentrations, high fibrinogen concentrations, decreased albumin fraction, and increased gamma-globulin fraction (in electrophoresis were associated with malnutrition, reinforcing the classification of poor NS. However, the skin and coat characteristics, the total number of lymphocytes, blood glucose, cholesterol, and total protein concentration were not found to be good predictors of NS.

  12. Electrophoretic Concentration and Electrical Lysis of Bacteria in a Microfluidic Device Using a Nanoporous Membrane

    Directory of Open Access Journals (Sweden)

    Md. Shehadul Islam

    2017-02-01

    Full Text Available Pathogenic bacteria such as Escherichia coli O157, Salmonella and Campylobacter are the main causes for food and waterborne illnesses. Lysis of these bacteria is an important component of the sample preparation for molecular identification of these pathogens. The pathogenicity of these bacteria is so high that they cause illness at very low concentrations (1–10 CFU/100 mL. Hence, there is a need to develop methods to collect a small number of such bacterial cells from a large sample volume and process them in an automated reagent-free manner. An electrical method to concentrate the bacteria and lyse them has been chosen here as it is reagent free and hence more conducive for online and automated sample preparation. We use commercially available nanoporous membranes sandwiched between two microfluidic channels to create thousands of parallel nanopore traps for bacteria, electrophoretically accumulate and then lyse them. The nanopores produce a high local electric field for lysis at moderate applied voltages, which could simplify instrumentation and enables lysis of the bacteria as it approaches them under an appropriate range of electric field (>1000 V/cm. Accumulation and lysis of bacteria on the nanoporous membrane is demonstrated by using the LIVE/DEAD BacLight Bacterial Viability Kit and quantified by fluorescence intensity measurements. The efficiency of the device was determined through bacterial culture of the lysate and was found to be 90% when a potential of 300 V was applied for 3 min.

  13. Electrophoretic NMR studies of electrical transport in fluid-filled porous systems.

    Science.gov (United States)

    Holz, M; Heil, S R; Schwab, I A

    2001-01-01

    An NMR technique is described which allows the observation of ionic charge carriers moving in the electric field within a porous system saturated with electrolyte solution. This method, which was recently developed in our laboratory, gives experimental access to the study of electric transport in disordered media on a microscopic level and offers new potential for morphology studies. We performed 1H NMR PFG self-diffusion measurements on ions combined with ionic drift velocity measurements by electrophoretic NMR (ENMR), each as a function of observation time Delta. In this way we obtained time-dependent self-diffusion coefficients D(+/-) (Delta) and time-dependent electric mobilities mu(+/-) (Delta) of polyatomic cations and anions in porous media. The porous media used were gels and glass bead packs. From the behaviour of D(+/-) (Delta) and mu(+/-) (Delta) at long observation times the tortuosities T(p) (D(+/-)) and T(p) (mu(+/-)) are derived, allowing a direct experimental check of the validity of the Einstein relation (D(+/-) is proportional to mu(+/-)) in a disordered medium. The tortuosities obtained via the diffusivity of ions are compared with those obtained via the diffusivity of water molecules. We also make a first attempt to derive the specific surface S/V(p) from the time-dependence of the ionic mobility at short observation times and discuss possible advantages of those measurements in morphology studies of porous media.

  14. The 2DWG meta-database of two-dimensional electrophoretic gel images on the Internet.

    Science.gov (United States)

    Lemkin, P F

    1997-12-01

    The 2DWG meta-database is a searchable database of two-dimensional (2-D) electrophoretic gel images found on the Internet. A meta-database contains information about locating data in other databases - but not that data itself. This database was constructed because of a need for an enriched set of World Wide Web (WWW) locations (URLs) of 2-D gel images on the Internet. These gel images are used in conjunction with the National Cancer Institute (NCI) Flicker Server to manipulate and visually compare 2-D gel images across the Internet. User's gels may also be compared with those in the database. The 2DWG is organized as a spreadsheet table with each gel image being represented by a row sorted by tissue type. Data for each gel includes tissue type, species, cell-line, image URL, database URL, gel protocol, organization URL, image properties, map URL if it exists, etc. The 2DWG may be searched to find relevant subsets of gels. Searching is done using the dbEngine - a WWW database search engine which accesses selected rows of gels from the full 2DWG table. The 2DWG meta-database is accessible on the WWW at http://www-lecb.ncifcrf.gov/2dwgDB/ and the NCI Flicker server at http://www-lecb.ncifcrf.gov/flicker/

  15. Synthesis of black magnetic electrophoretic particles for magnetic-electric dual-driven electronic paper.

    Science.gov (United States)

    Meng, Xianwei; Qiang, Li; Su, Xiaofang; Ren, Jun; Tang, Fangqiong

    2013-02-01

    The application of electronic paper (e-paper) is now propelling the development of the multifunctional e-paper products. There is an extraordinary diversity of basic and applied research in pursuit of the novel e-paper. Here, we report the first achievement of a magnetic-electric dual-driven e-paper, using black magnetic electrophoretic particles (BMEPs). BMEPs are synthesized via a facile, green, low-cost, one-step method. By adjusting the reaction conditions, the density, surface, and magnetic properties of the BMEPs are optimized for e-paper display. Finally, the e-paper display is successfully assembled using dispersion of the BMEPs in a mixed dielectric solvent with white particles as contrast. Thanks to the magnetic properties and a positively charged surface, the BMEPs can be driven by both electric and magnetic fields. The prototype display is fabricated whose switch is achieved by the application of either a bias voltage of 10 V or a magnetic bias. The as-prepared magnetic-electric dual-driven device could have many promising applications in the field of anticounterfeiting labels for secure identification documents.

  16. Dynamic electrophoretic mobility and electric permittivity of concentrated suspensions of plate-like gibbsite particles.

    Science.gov (United States)

    Ahualli, S; González, M A; Delgado, A V; Jiménez, M L

    2017-09-15

    In this paper we present experimental results on the electrokinetic behavior of planar gibbsite particles in concentrated suspensions. The dc electrophoretic mobility measurements are in this case of little significance, as they are scarcely informative. In the present investigation, we show that the dielectric dispersion and dynamic electrophoresis can in contrast provide such information. The complicating factors are of course the non-spherical shape and the finite particle concentration, as no complete theory of these phenomena exists for such systems. We propose to use first of all a model of dynamic electrophoresis of spheroids in which the effect of volume fraction is considered by means of an approximate theory previously obtained for spheres, based on the evaluation of electrical and hydrodynamic interactions between particles. In addition, the role of volume fraction on the high frequency inertial relaxation is also ascertained and used to obtain a volume fraction-independent radius of the gibbsite spheroids. A similar approach is used for the evaluation of dielectric dispersion data. Both the dynamic mobility and dielectric constant dependencies on frequency were obtained for gibbsite suspensions of different volume fractions in 0.5mMKCl. The theoretical treatments elaborated were applied to these data, and a coherent picture of the geometrical and electrical characteristics of the particles was obtained. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Multiplex mRNA assay using electrophoretic tags for high-throughput gene expression analysis.

    Science.gov (United States)

    Tian, Huan; Cao, Liching; Tan, Yuping; Williams, Stephen; Chen, Lili; Matray, Tracy; Chenna, Ahmed; Moore, Sean; Hernandez, Vincent; Xiao, Vivian; Tang, Mengxiang; Singh, Sharat

    2004-09-08

    We describe a novel multiplexing technology using a library of small fluorescent molecules, termed eTag molecules, to code and quantify mRNA targets. eTag molecules, which have the same fluorometric property, but distinct charge-to-mass ratios possess pre-defined electrophoretic characteristics and can be resolved using capillary electrophoresis. Coupled with primary Invader mRNA assay, eTag molecules were applied to simultaneously quantify up to 44 mRNA targets. This multiplexing approach was validated by examining a panel of inflammation responsive genes in human umbilical vein endothelial cells stimulated with inflammatory cytokine interleukin 1beta. The laser-induced fluorescence detection and electrokinetic sample injection process in capillary electrophoresis allows sensitive quantification of thousands of copies of mRNA molecules in a reaction. The assay is precise, as evaluated by measuring qualified Z' factor, a dimensionless and simple characteristic for applications in high-throughput screening using mRNA assays. Our data demonstrate the synergy between the multiplexing capability of eTag molecules by sensitive capillary electrophoresis detection and the isothermal linear amplification characteristics of the Invader assay. eTag multiplex mRNA assay presents a unique platform for sensitive, high sample throughput and multiplex gene expression analysis.

  18. Detection of Macromolecular Fractions in HCN Polymers Using Electrophoretic and Ultrafiltration Techniques.

    Science.gov (United States)

    Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta

    2017-02-01

    Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  19. Efficient recovery of electrophoretic profiles of nucleoside metabolites from urine samples by multivariate curve resolution.

    Science.gov (United States)

    Szymańska, Ewa; Markuszewski, Michał J; Vander Heyden, Yvan; Kaliszan, Roman

    2009-10-01

    Chemometric techniques usually employed in purity assessment and resolution of multicomponent peaks have been applied to analytical data from complex biological samples obtained with CE-DAD. In the assessment of the purity of the electrophoretic peaks, the orthogonal projection approach, the orthogonal projection approach with Durbin-Watson criterion, and the simple-to-use interactive self-modeling mixture analysis method have been employed. Multivariate curve resolution with alternating least squares has been successfully implemented to resolve co-migrating peaks of metabolites in CE-DAD and to recover qualitative and quantitative information about co-migrating components of urine extract. The main challenge consisted of developing high-quality multivariate curve resolution with alternating least squares models of multicomponent peaks acquired during the CE analysis of nucleoside patterns in 18 urine samples. The recovered ultraviolet visible (UV-Vis) spectra have been employed to identify additional nucleosides, such as 1-methylinosine, 2-methylguanosine, and 1-methylguanosine, whose presence in the metabolic profile produced by the applied CE-DAD method has not yet been recognized. Concentration profiles of these compounds can be used in metabonomic studies.

  20. Salivary gland of Toxorhynchites splendens Wiedemann (Diptera: Culicidae): ultrastructural morphology and electrophoretic protein profiles.

    Science.gov (United States)

    Jariyapan, Narissara; Choochote, Wej; Jitpakdi, Atchariya; Bates, Paul A

    2004-07-01

    The salivary glands of male and female Toxorhynchites splendens have the same morphology, and they are paired organs lying on either side of the esophagus. Each gland is composed of two identical tubular lobes, joined together at the end of the proximal region. In the gland, a salivary duct extends through the length of each lobe. The general cellular architecture of the salivary gland of this mosquito is unique. No secretory cavity was found in any cell, and the salivary materials are secreted from long microvilli and collect in a periductal space surrounding the duct. In addition, a number of mitochondria, rough endoplasmic reticulum, and a very large nucleus were observed, suggesting a high energy requirement for producing the salivary proteins involved in sugar feeding. The size of the gland is approximately 50 microm in diameter and 1.5 mm in length. These dimensions correlate with high protein content of these salivary glands (2.88+/-0.14 microg/gland pair). Sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic protein profiles of the male and female salivary glands were identical. No dominant major proteins were found. Compared with Aedes and Anopheles mosquitoes, the protein profile of T. splendens was similar to that observed in the males of these other species but different to that shown by the females, thus making T. splendens an excellent organism for studying the biochemistry of sugar feeding in mosquitoes.

  1. A laser scanner for imaging fluorophore labeled molecules in electrophoretic gels

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, D.J.; Sutherland, J.C. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.

    1995-08-01

    A laser scanner for imaging electrophoretic gels was constructed and tested. The scanner incorporates a green helium-neon (HeNe) laser (543.5nm wavelength) and can achieve a spatial resolution of 19{micro}m. The instrument can function in two modes : snap-shot and finish-line. In snapshot mode, all samples are electrophoresed for the same time and the gel is scanned after completion of electrophoresis, while in finish-line mode, fluorophore labeled samples are electrophoresed for a constant distance and the image is formed as the samples pass under the detector. The resolving power of the finish-line mode of imaging is found to be greater than that of the snapshot mode of imaging. This laser scanner is also compared with a Charge Coupled Device (CCD) camera and in terms of resolving power is found to be superior. Sensitivity of the instrument is presented in terms of the minimum amount of DNA that can be detected verses its molecular length.

  2. Band spreading in two-dimensional microchannel turns for electrophoretic or electroosmotic species transport

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Griffiths; R. H. Nilson

    2000-03-01

    Analytical and numerical methods are employed to investigate species transport by electrophoretic or electroosmotic motion in the curved geometry of a two-dimensional turn. Closed-form analytical solutions describing the turn-induced diffusive and dispersive spreading of a species band are presented for both the low and high Peclet number limits. The authors find that the spreading due to dispersion is proportional to the product of the turn included angle and the Peclet number at low Peclet numbers. It is proportional to the square of the included angle and independent of the Peclet number when the Peclet number is large. A composite solution applicable to all Peclet numbers is constructed from these limiting behaviors. Numerical solutions for species transport in a turn are also presented over a wide range of the included angle and the mean turn radius. Based on comparisons between the analytical and numerical results, the authors find that the analytical solutions provide very good estimates of both dispersive and diffusive spreading provided that the mean turn radius exceeds the channel width. These new solutions also agree well with data from a previous study. Optimum conditions minimizing total spreading in a turn are presented and discussed.

  3. Deposit model for volcanogenic uranium deposits

    Science.gov (United States)

    Breit, George N.; Hall, Susan M.

    2011-01-01

    Volcanism is a major contributor to the formation of important uranium deposits both close to centers of eruption and more distal as a result of deposition of ash with leachable uranium. Hydrothermal fluids that are driven by magmatic heat proximal to some volcanic centers directly form some deposits. These fluids leach uranium from U-bearing silicic volcanic rocks and concentrate it at sites of deposition within veins, stockworks, breccias, volcaniclastic rocks, and lacustrine caldera sediments. The volcanogenic uranium deposit model presented here summarizes attributes of those deposits and follows the focus of the International Atomic Energy Agency caldera-hosted uranium deposit model. Although inferred by some to have a volcanic component to their origin, iron oxide-copper-gold deposits with economically recoverable uranium contents are not considered in this model.

  4. Annealing of electrophoretic YBa2Cu3O7 coatings on polycristaline substrates by zonal laser fusion

    Directory of Open Access Journals (Sweden)

    de la Fuente, G.

    2002-02-01

    Full Text Available Obtaining coatings on metallic substrates of irregular geometries is not easy by traditional methods. In those cases electrochemical methods show important advantages and have been used successfully. To date only silver has shown to be inert with respect to superconducting cuprates, although progress has been made in the development of intermediate buffer layers. However, in the particular case of YBa2Cu3O7 , annealing above the cuprate superconducting melting point to attempt densification or texturing is hard on silver because of the lower melting point of the metal. . Focalized heating of superconducting oxides over metallic substrates, using LASER techniques on controlled geometries, allows densification of coatings. The Laser processed sample may be amorphous but the crystallinity is easily recovered, as well as the optimal oxygen content for the oxide, but the preferential orientation induced by the electrophoretic deposition is lost upon the recrystallization process occurring over polycrystaline substrates.La realización de depósitos de óxidos superconductores sobre substratos metálicos de geometría compleja y en general policristalinos está prácticamente basada en métodos electroforéticos o electroquímicos que permiten la utilización de un campo eléctrico de geometría definida para inducir el movimiento de partículas de óxido o de precursores de éste, hacia el electrodo elegido. Dichos métodos son fundamentales cuando el substrato es metálico o puede hacerse metálico con facilidad. Hasta el presente tan sólo la plata ha mostrado ser lo suficientemente inerte para permitir recocidos posteriores, aunque se está progresando en el desarrollo de capas “buffer”. Sin embargo, cuando el óxido depositado es YBa2Cu3O7 , el proceso de recocido posterior no permite la obtención de textura sobre Ag mediante métodos térmicos dado el inferior punto de fusión de este metal. El presente trabajo presenta un estudio de fusi

  5. Electrophoretic Extraction and Proteomic Characterization of Proteins Buried in Marine Sediments

    Directory of Open Access Journals (Sweden)

    Eli K. Moore

    2014-10-01

    Full Text Available Proteins are the largest defined molecular component of marine organic nitrogen, and hydrolysable amino acids, the building blocks of proteins, are important components of particulate nitrogen in marine sediments. In oceanic systems, the largest contributors are phytoplankton proteins, which have been tracked from newly produced bloom material through the water column to surface sediments in the Bering Sea, but it is not known if proteins buried deeper in sediment systems can be identified with confidence. Electrophoretic gel protein extraction methods followed by proteomic mass spectrometry and database searching were used as the methodology to identify buried phytoplankton proteins in sediments from the 8–10 cm section of a Bering Sea sediment core. More peptides and proteins were identified using an SDS-PAGE tube gel than a standard 1D flat gel or digesting the sediment directly with trypsin. The majority of proteins identified correlated to the marine diatom, Thalassiosira pseudonana, rather than bacterial protein sequences, indicating an algal source not only dominates the input, but also the preserved protein fraction. Abundant RuBisCO and fucoxanthin chlorophyll a/c binding proteins were identified, supporting algal sources of these proteins and reinforcing the proposed mechanisms that might protect proteins for long time periods. Some preserved peptides were identified in unexpected gel molecular weight ranges, indicating that some structural changes or charge alteration influenced the mobility of these products during electrophoresis isolation. Identifying buried photosystem proteins suggests that algal particulate matter is a significant fraction of the preserved organic carbon and nitrogen pools in marine sediments.

  6. Electrophoretic behavior of charge regulated zwitter ionic buffers in covalently and dynamically coated fused silica capillaries

    Directory of Open Access Journals (Sweden)

    Medhat A. Al-Ghobashy

    2014-06-01

    Full Text Available In this work, the electrophoretic behavior of zwitterionic buffers is investigated in the absence of electroosmotic flow (EOF. Electro mobilization of capillary contents is noted when zwitterionic buffers are employed as the background electrolyte at a pH where the buffering moiety carries a net charge. The bulk flow of capillary contents was demonstrated via monitoring the migration of a neutral marker as well as a free and micellar negatively charged marker and SDS–protein complexes. This electrolyte-driven mobilization (EDM was investigated in detail using 4-(2-hydroxyethylpiprazine-1-ethanesulfonic acid (HEPES buffer over a wide pH range (pH 4.0–8.0. Results confirmed that at a pH where HEPES molecules carry a net negative charge, a bulk flow toward the anode is observed. This was attributed to the migration of HEPES ions toward the anode along with their hydration shells. The relatively large difference in size and solvation number between the ionic buffering moiety and its counter-migrating ions (Na+ or H+ resulted in such a net movement. Results indicated that at constant voltage, plotting the measured current versus buffer pH can be used for determination of the isoelectric point of the zwitterionic buffering moiety. Furthermore, this novel mobilization modality was demonstrated using five different HEPES analogs over pH range 5.0–8.0. More in depth investigations are required in order to explore the applicability of EDM in coated capillaries of different wall chemistries and dimensions.

  7. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    Science.gov (United States)

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  8. Changes in electrophoretic profiles of Ipomoea batatas (sweet potato induced by gamma radiation

    Directory of Open Access Journals (Sweden)

    Celso Luiz Salgueiro Lage

    2002-06-01

    Full Text Available The ability of nodal segments of Ipomoea batatas to differentiate shoots and roots was evaluated after gamma irradiation. Shoot differentiation was less sensitive to irradiation than roots. However, at 90 Gy, no shoot was able to regenerate a new plant; in contrast 76 % of the roots from irradiated nodal segments continued to grow. The gamma radiation also induced changes in electrophoretic profiles of peroxidases of storage roots. Plants originated from irradiated storage roots presented changes in leaf peroxidase profiles very similar to those produced by leaves directly irradiated. The peroxidase profile of absorbent roots from irradiated storage roots was different from that obtained from directly irradiated absorbent roots.A capacidade de Ipomoea batatas diferenciar parte aérea e raízes foi avaliada após irradiação com raios gama. A diferenciação da parte aérea foi menos sensível que a das raízes. Contudo, na dose de 90 Gy nenhum broto diferenciado regenerou planta, enquanto 76 % das raízes diferenciadas dos segmentos nodais irradiados manteve o crescimento. A radiação também induziu mudanças no perfil elotroforético de isoperoxidases. Plantas originadas de raízes tuberosas irradiadas apresentaram alteração no perfil de isoperoxidases foliares semelhantes ao perfil de folhas diretamente irradiadas. O perfil de isoperoxidases de raízes absorventes irradiadas diretamente não apresentou o mesmo padrão do perfil das raízes absorventes desenvolvidas de raízes tuberosas irradiadas.

  9. Lateral ink mobility and fringe field effects across the porous matrix of an electrophoretic display

    Science.gov (United States)

    Li Tsui, Kelly; Ahumada, Manuel; Bryning, Mateusz; Hartono, Michelle; Lee, Sang-Joon J.

    2013-03-01

    This investigation studies fringe field between laterally adjacent electrodes in a reverse-emulsion electrophoretic display (REED). The display consists of a nanodroplet ink and a porous matrix that serves as the "paper" between planar electrodes. One relative advantage of this type of electronic paper display is that it can be produced with lowcost materials and manufacturing processes. A concern for image resolution, however, is the fringe field effect that occurs in the gaps between neighboring electrodes. Ideally the dye-containing nanodroplets in the ink move in a direction that is strictly perpendicular to the opposing pairs of electrodes. However, nanodroplet saturation and potential gradients from neighboring electrodes may result in lateral displacement of the nanodroplets as well. Accordingly, this study examines how fringe field between neighboring electrodes is affected by lateral spacing and applied voltage. Transient and steady-state effects were studied by fabricating and testing devices that were patterned with different lateral spacing between electrodes, and switching under different voltage levels. Relative luminance was extracted from digital microscope images, captured in the vicinity between neighboring electrodes. Measurements were recorded for electrode spacing of 20 μm, 40 μm, 60 μm, and 80 μm with devices switched at ±1.5 V and ±2.5 V. Gradients in luminance overlapped at lateral distances below 60 μm, and became distinct for left and right electrodes spaced by at least 80 μm. Higher applied voltage resulted in steeper transition between light and dark states, but exhibited distortion at electrode edges.

  10. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  11. Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates

    Directory of Open Access Journals (Sweden)

    Geczy Carolyn L

    2003-09-01

    Full Text Available Abstract Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis, rye grass (Lolium perenne and Bermuda grass (Cynodon dactylon were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1.

  12. Electrophoretic and zymographic techniques for production monitoring of two lipase forms from Candida antarctica DSM 70725

    Directory of Open Access Journals (Sweden)

    Dimitrijević Aleksandra S.

    2012-01-01

    Full Text Available Yeast Candida antarctica produces two lipase forms, which are widely used as catalysts in variety of organic reactions, many of which are applied on a large scale. In this work, production of two forms of lipase from C. antarctica DSM 70725 (CAL A and CAL B was monitored during seven days of cultivation in the optimal medium using different electrophoretic and zymographic techniques. According to electrophoresis after silver staining, C. antarctica lipase A (molecular mass 45 kDa was produced starting from the second day of cultivation. C. antarctica lipase B (CAL B was also produced starting from the second day, but protein was present in the fermentation broth predominantly as dimer (molecular weight 66 kDa, while presence of monomeric form of CAL B (molecular weight of 33 kDa was observed starting from the fourth day of cultivation. Both types of zymograms (based on hydrolysis and synthesis reactions were used for detection of lipase activity in the fermentation broth. C. antarctica lipase A showed activity only in hydrolytic zymogram, when α-naphtyl butyrate was used as substrate. In the same zymogram, with α-naphtyl acetate as substrate no CAL A activity was detected. Similarly, CAL A showed no activity in synthesis based zymograms towards oleic acid and octanol as substrates, indicating that CAL A is not active towards very short or long-chain substrates. As opposite of CAL A, both monomeric and dimeric form of CAL B were detected in the all zymograms, suggesting that CAL B is active towards wide range of substrates, regardless to the chain length. Thus, zymogram based on hydrolysis of α-naphtyl butyrate represents a simple method for monitoring the production of two forms of lipase from C. antarctica, that greatly differ in their characteristics.

  13. Use of electrophoretic techniques in determining the composition of seed storage proteins in alfalfa.

    Science.gov (United States)

    Krochko, J E; Bewley, J D

    1988-11-01

    Holoprotein molecular weights and polypeptide composition can be determined for complex mixtures of oligomeric proteins using two-dimensional electrophoretic techniques. The variety of two-dimensional analyses presented here is a reflection of the general usefulness of each method for the identification and characterization of the different classes of seed storage proteins in alfalfa. These techniques can be applied to studies of storage proteins in other seeds as well as non-seed storage proteins. The major seed storage proteins in alfalfa are medicagin (a legumin-like globulin), alfin (a vicilin-like globulin) and a family of lower molecular weight albumins (LMW1-3). These comprise 30%, 10%, and 20%, respectively, of the total extractable protein from cotyledons of mature seeds. Alfin is a heterogeneous oligomeric protein (Mr approximately 150,000) composed of polypeptides ranging in size from Mr 14,000 to 50,000 (alpha 1-alpha 6; 50,000, 38,000, 32,000, 20,000, 16,000 and 14,000, respectively). Medicagin is also a high molecular weight oligomeric protein, but requires high concentrations of salt for solubilisation. It is comprised of a family of individually distinct subunits, each composed of an acidic polypeptide (A1-A9; Mr 49,000 to 39,000) linked via disulphide bond(s) to a basic polypeptide (B1, B2, B3; Mr 24,000, 23,000 and 20,000, respectively). This pairing is highly specific and two families are recognizable on the basis of the B polypeptide (B3 or B1/B2). Subunits (Mr approximately 50,000-65,000) are assembled as trimers (8S) or larger oligomers (12S-15S) in mature seeds. The lower molecular weight albumins (LMW1-3) are acidic (pI less than 6), and consist of sets of disulphide-bonded polypeptides (Mr 15,000 and 11,000).

  14. EPD-deposited ZnO thin films: a review

    Energy Technology Data Exchange (ETDEWEB)

    Verde, M.

    2014-07-01

    ZnO-based materials and specifically ZnO films with tailored morphology have been subjected to extensive research in the past few years due to their high potential for multiple prospective applications, mainly in electronics. Electrophoretic Deposition (EPD) constitutes an economical, eco friendly, low energy consuming and easily scalable alternative to the high energy consuming evaporative techniques which are commonly used for the obtaining of these ZnO films. For its application, however, the use of stable, well dispersed suspensions is a necessary requirement, and thus a thorough study of their colloidal chemistry is essential. In this work the main contributions to the study of colloidal chemistry of ZnO nanoparticle suspensions and their shaping into ZnO films by EPD are summarized. (Author)

  15. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    Science.gov (United States)

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  16. Determination of stability constants of iron(III and chromium(III-nitrilotriacetate-methyl cysteine mixed complexes by electrophoretic technique

    Directory of Open Access Journals (Sweden)

    Brij Bhushan Tewari

    2004-06-01

    Full Text Available The stability constants of Fe(III and Cr(III with methyl cysteine and nitrilotriacetate (NTA were determined by paper electrophoretic technique. Beside binary ternary complexes have also been studied, in which nitrilotriacetate and methyl cysteine acts as primary and secondary ligand, respectively. The stability constants of mixed ligand complexes metal (M-nitrilotriacetate-methyl cysteine have been found to be 5.72 plus or minus 0.09 and 5.54 plus or minus 0.11 (log K values for Fe(III and Cr(III complexes, respectively, at 35 oC and ionic strength 0.1 M.

  17. Protein content and electrophoretic profile of fat body and ovary extracts from workers of Melipona quadrifasciata anthidioides (Hymenoptera, Meliponini

    Directory of Open Access Journals (Sweden)

    Vagner T. Paes de Oliveira

    Full Text Available Workers of Melipona quadrifasciata anthidioides (Lepeletier, 1836 develop their ovaries and lay eggs, therefore the production of vitellogenin is expected. In electrophoretic profiles only fat body extracts from nurse workers and ovary extracts from newly-emerged workers show protein with molecular mass similar to vitellogenin. However, an increase in the protein content was detected in forager fat body. This increase was attributed to storage of vitellogenin or other proteins in the previous phase and not discharged into the hemolymph or to an effect of the increased titre of juvenile hormone in this phase of worker life over the fat body functioning.

  18. Comparison of capillary electrophoretic and liquid chromatographic determination of hypoxanthine and xanthine for the diagnosis of xanthinuria.

    Science.gov (United States)

    Bory, C; Chantin, C; Boulieu, R

    1996-04-12

    A capillary electrophoretic (CE) method for the determination of hypoxanthine and xanthine in urine was developed to diagnose xanthinuria. The linearity was excellent up to 200 mumol l-1 for the two compounds and the limit of quantitation was 2 mumol l-1. A comparison o the results obtained using CE was made with those obtained by the high-performance liquid chromatographic (HPLC) technique described previously. With regard to specificity, sensitivity and reproducibility, the results are similar but CE is more rapid than HPLC.

  19. Surface coating and matrix effect on the electrophoretic mobility of gold nanoparticles: a capillary electrophoresis-inductively coupled plasma mass spectrometry study.

    Science.gov (United States)

    Qu, Haiou; Linder, Sean W; Mudalige, Thilak K

    2017-02-01

    Capillary electrophoresis (CE) is considered as a versatile technique in the size-based separation and speciation of nanomaterials. The electrophoretic mobility is determined by charge and size of an analyte which are affected by the surface composition of nanomaterials. Size-dependent differential electrophoretic mobility is used as a mechanism for size-based separation of nanoparticles. Understanding the effect of surface chemistry on the electrophoretic mobility of nanomaterials in CE is critical in obtaining accurate results in retention-based size calculation. A suite of gold nanoparticles (NPs) varied in sizes with different coatings, including citric acid (CA), lipoic acid (LA), tannic acid (TA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), branched polyethyleneimine (BPEI), and bovine serum albumin (BSA), were selected to evaluate their impact to the migration pattern of gold NPs. Additionally, surface-coated gold NPs dispersed in Suwannee River humic acid (SRHA) solution and fetal bovine serum (FBS) were used to investigate the matrix effect. It was found that the correlation between NP size and relative electrophoretic mobility is highly dependent on the capping agents. The matrix component in the SRHA solution only exhibited limited influence to the migration of NPs while electrophoretic behaviors were drastically altered in the presence of FBS matrix.

  20. Electrophoretic and Immunological Comparisons of Soluble Root Proteins of Medicago sativa L. Genotypes in the Cold Hardened and Non-Hardened Condition 1

    Science.gov (United States)

    Coleman, E. A.; Bula, R. J.; Davis, R. L.

    1966-01-01

    Electrophoretic and immunological properties of the soluble root protein complement of 6 Medicago sativa L. genotypes in the cold hardened and non-hardened physiological condition were compared. These 6 genotypes were chosen to represent a range of abilities to survive exposure to subfreezing temperatures when in the cold hardened condition. A zone of highly charged and/or low molecular weight protein components were found to be more prevalent in the protein complements of the cold-hardened material than the non-hardened material. Immunodiffusion plate tests were not so definitive as the electrophoretic patterns for identifying the genotypes or physiological conditions, but did corroborate the electrophoretic interpretations. Images Fig. 2 PMID:16656458

  1. Electrophoretic nature and evaluation of poly-aluminum-chloride-sulfate (PACS) as a coagulant for water and wastewater treatment.

    Science.gov (United States)

    Gao, Bao-yu; Yue, Qin-yan; Wang, Bing-jian

    2003-05-01

    A series of poly-aluminum-chloride-sulfates (PACS), which have different OH/Al (gamma) and Al(3+)/SO4(2-) mole ratios, has been prepared using AlCl3 x 6H2O, A(SO4)3 x 18H2O and Na2CO3 as raw materials. The electrophoretic nature of PACS was investigated by electrophoresis. Laboratory experiments were undertaken to evaluate the PACS in comparison with polyaluminum chloride (PAC) for the coagulation of simulating water and actual wastewaters. The experimental results show that the gamma value and the Al(3+)/SO4(2-) mole ratio affect the electrophoretic nature of PACS. PACS has a maximum zeta potential at about a gamma value of 1.5 and Al(3+)/SO4(2-) mole ratio of 12-16. The zeta potential of PACS varies with pH. The performance of PACS as coagulant is affected by gamma value and Al(3+)/SO4(2-) mole ratio. PACS of gamma = 2.1 and Al(3+)/SO4(2-) = 15 gives best turbidity removal effectiveness. In comparison with PAC of gamma = 2.0, PACS of gamma = 2.0 and Al(3+)/SO4(2-) = 16 gives higher removal efficiency for turbidity and COD, and shows the following advantages in the clarification of waters and wastewaters: rapid aggregation velocity, larger and heavier flocs, and lower required dosage.

  2. Influence of boundary on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids.

    Science.gov (United States)

    Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn

    2011-12-01

    The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  4. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  5. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  6. Deposit Games with Reinvestment

    NARCIS (Netherlands)

    van Gulick, G.; Borm, P.E.M.; De Waegenaere, A.M.B.; Hendrickx, R.L.P.

    2007-01-01

    In a deposit game coalitions are formed by players combining their capital. The proceeds of their investments then have to be divided among those players. The current model extends earlier work on capital deposits by allowing reinvestment of returns. Two specific subclasses of deposit games are

  7. [The relationship of the acid-base status of the blood to the electrophoretic mobility of the erythrocytes in liver pathology].

    Science.gov (United States)

    Matiushichev, V B; Shamratova, C G; Gutsaeva, D R

    1995-01-01

    With cholestatic hepatite, the relationship between acid-alkaline condition of blood and electrophoretic mobility of erythrocytes was studied. It is shown that changes in parameters of the individual mobility distribution are translated into reality independently, and are directed to maintain the steadiness of the index middle level. Dependence of this sign on the pH value, hemoglobin content and bicarbonate-ion concentrating in blood, an on partial pressure of oxygen and carbonic gas was discovered. The intravenous infusion of patients with hemodese restored the middle level of cell electrophoretic mobility previously reduced due to liver pathology. Membrane mechanisms controlling stability of erythrocyte electrokinetic characteristics are discussed.

  8. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    Science.gov (United States)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  9. Use of conventional taxonomy, electrophoretic karyotyping and DNA-DNA hybridization for the classification of fermentative apiculate yeasts.

    Science.gov (United States)

    Vaughan-Martini, A; Angelini, P; Cardinali, G

    2000-07-01

    A taxonomic study was conducted that considered strains of the genera Hanseniaspora/Kloeckera held in the Industrial Yeasts Collection (DBVPG) of the Dipartimento di Biologia Vegetale of the Università di Perugia, Italy. Standard phenotypic as well as molecular criteria were considered in a effort to revisit the classification of these strains, some of which have been in the collection for about 50 years. Results of salient physiological tests showed that some of the DBVPG and type strains could not be identified by current taxonomic keys. Electrophoretic karyotypes were identical for some species, with the type strains of the seven accepted species showing only five distinct chromosomal patterns. DNA-DNA hybridization analyses, using a non-radioactive dot-blot technique, allowed for the distinction of taxa. The taxonomic implications of these results are discussed.

  10. Electrophoretic mobility of the capsid protein of the Plum pox virus strain PPV-Rec indicates its partial phosphorylation.

    Science.gov (United States)

    Subr, Z; Ryslava, H; Kollerova, E

    2007-01-01

    A double-band SDS-PAGE profile was found reproducible for capsid protein (CP) of Plum pox virus (PPV) isolates belonging to the strain PPV-Rec. The double-band was also present in the virus population multiplied in various plants. A single-lesion passage in a hypersensitive host Chenopodium foetidum showed that its presence was not a result of a mixed infection. We found that the two electrophoretic forms of CP shared identical N-terminus. Therefore, they did not originate from an alternative proteolytic processing, but were different in their posttranslational modification. The slower band of CP could be converted to the faster one by the phosphatase treatment. We assumed that CP protein was present in both phosphorylated and dephosphorylated forms in the infected plants.

  11. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  12. The 'Densitometric Image Analysis Software' and its application to determine stepwise equilibrium constants from electrophoretic mobility shift assays.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Current software applications for densitometric analysis, such as ImageJ, QuantityOne (BioRad and the Intelligent or Advanced Quantifier (Bio Image do not allow to take the non-linearity of autoradiographic films into account during calibration. As a consequence, quantification of autoradiographs is often regarded as problematic, and phosphorimaging is the preferred alternative. However, the non-linear behaviour of autoradiographs can be described mathematically, so it can be accounted for. Therefore, the 'Densitometric Image Analysis Software' has been developed, which allows to quantify electrophoretic bands in autoradiographs, as well as in gels and phosphorimages, while providing optimized band selection support to the user. Moreover, the program can determine protein-DNA binding constants from Electrophoretic Mobility Shift Assays (EMSAs. For this purpose, the software calculates a chosen stepwise equilibrium constant for each migration lane within the EMSA, and estimates the errors due to non-uniformity of the background noise, smear caused by complex dissociation or denaturation of double-stranded DNA, and technical errors such as pipetting inaccuracies. Thereby, the program helps the user to optimize experimental parameters and to choose the best lanes for estimating an average equilibrium constant. This process can reduce the inaccuracy of equilibrium constants from the usual factor of 2 to about 20%, which is particularly useful when determining position weight matrices and cooperative binding constants to predict genomic binding sites. The MATLAB source code, platform-dependent software and installation instructions are available via the website http://micr.vub.ac.be.

  13. Ethidium Bromide Modifies The Agarose Electrophoretic Mobility of CAG•CTG Alternative DNA Structures Generated by PCR

    Directory of Open Access Journals (Sweden)

    Mário Gomes-Pereira

    2017-05-01

    Full Text Available The abnormal expansion of unstable simple sequence DNA repeats can cause human disease through a variety of mechanisms, including gene loss-of-function, toxic gain-of-function of the encoded protein and toxicity of the repeat-containing RNA transcript. Disease-associated unstable DNA repeats display unusual biophysical properties, including the ability to adopt non-B-DNA structures. CAG•CTG trinucleotide sequences, in particular, have been most extensively studied and they can fold into slipped-stranded DNA structures, which have been proposed as mutation intermediates in repeat size expansion. Here, we describe a simple assay to detect unusual DNA structures generated by PCR amplification, based on their slow electrophoretic migration in agarose and on the effects of ethidium bromide on the mobility of structural isoforms through agarose gels. Notably, the inclusion of ethidium bromide in agarose gels and running buffer eliminates the detection of additional slow-migrating DNA species, which are detected in the absence of the intercalating dye and may be incorrectly classified as mutant alleles with larger than actual expansion sizes. Denaturing and re-annealing experiments confirmed the slipped-stranded nature of the additional DNA species observed in agarose gels. Thus, we have shown that genuine non-B-DNA conformations are generated during standard PCR amplification of CAG•CTG sequences and detected by agarose gel electrophoresis. In contrast, ethidium bromide does not change the multi-band electrophoretic profiles of repeat-containing PCR products through native polyacrylamide gels. These data have implications for the analysis of trinucleotide repeat DNA and possibly other types of unstable repetitive DNA sequences by standard agarose gel electrophoresis in diagnostic and research protocols. We suggest that proper sizing of CAG•CTG PCR products in agarose gels should be performed in the presence of ethidium bromide.

  14. Ethidium Bromide Modifies The Agarose Electrophoretic Mobility of CAG•CTG Alternative DNA Structures Generated by PCR.

    Science.gov (United States)

    Gomes-Pereira, Mário; Monckton, Darren G

    2017-01-01

    The abnormal expansion of unstable simple sequence DNA repeats can cause human disease through a variety of mechanisms, including gene loss-of-function, toxic gain-of-function of the encoded protein and toxicity of the repeat-containing RNA transcript. Disease-associated unstable DNA repeats display unusual biophysical properties, including the ability to adopt non-B-DNA structures. CAG•CTG trinucleotide sequences, in particular, have been most extensively studied and they can fold into slipped-stranded DNA structures, which have been proposed as mutation intermediates in repeat size expansion. Here, we describe a simple assay to detect unusual DNA structures generated by PCR amplification, based on their slow electrophoretic migration in agarose and on the effects of ethidium bromide on the mobility of structural isoforms through agarose gels. Notably, the inclusion of ethidium bromide in agarose gels and running buffer eliminates the detection of additional slow-migrating DNA species, which are detected in the absence of the intercalating dye and may be incorrectly classified as mutant alleles with larger than actual expansion sizes. Denaturing and re-annealing experiments confirmed the slipped-stranded nature of the additional DNA species observed in agarose gels. Thus, we have shown that genuine non-B-DNA conformations are generated during standard PCR amplification of CAG•CTG sequences and detected by agarose gel electrophoresis. In contrast, ethidium bromide does not change the multi-band electrophoretic profiles of repeat-containing PCR products through native polyacrylamide gels. These data have implications for the analysis of trinucleotide repeat DNA and possibly other types of unstable repetitive DNA sequences by standard agarose gel electrophoresis in diagnostic and research protocols. We suggest that proper sizing of CAG•CTG PCR products in agarose gels should be performed in the presence of ethidium bromide.

  15. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  16. Stratiform chromite deposit model

    Science.gov (United States)

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R.

    2010-01-01

    Stratiform chromite deposits are of great economic importance, yet their origin and evolution remain highly debated. Layered igneous intrusions such as the Bushveld, Great Dyke, Kemi, and Stillwater Complexes, provide opportunities for studying magmatic differentiation processes and assimilation within the crust, as well as related ore-deposit formation. Chromite-rich seams within layered intrusions host the majority of the world's chromium reserves and may contain significant platinum-group-element (PGE) mineralization. This model of stratiform chromite deposits is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. The model focuses on features that may be common to all stratiform chromite deposits as a way to gain insight into the processes that gave rise to their emplacement and to the significant economic resources contained in them.

  17. Electrowetting on dielectric actuation of droplets with capillary electrophoretic zones for MALDI mass spectrometric analysis.

    Science.gov (United States)

    Gorbatsova, Jelena; Borissova, Maria; Kaljurand, Mihkel

    2012-09-01

    An automated fraction collection interface was developed for coupling CE with MALDI-MS. This fraction collection approach is based on the electrowetting on dielectric (EWOD) phenomenon performed on a digital microfluidic (DMF) board; it does not rely on a MALDI spotter. In this study, a four-peptide mixture was used as a sample test, and the separations were conducted in a portable CE instrument with a 150 μm o.d. × 50 μm i.d. capillary and a contactless conductivity detector. The CE instrument was interfaced with a robust DMF board. The CE fractions were directly deposited onto the DMF board at predetermined locations prior to MALDI analysis. The series of experiments determined the lowest concentration that produces a measurable MALDI signal. The concentrations were 0.25, 0.5, 0.05, and 0.05 nmol for bradykinin, angiotensin, ACTH (18-39), and insulin, respectively. The contactless conductivity detector limit of detection for the same analytes was 2.5 μmol. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Deposition and Resuspension Section

    Energy Technology Data Exchange (ETDEWEB)

    Slinn, W. G.N.; Horst, T. W.; Sehmel, G. A.; Hodgson, W. H.; Lloyd, F. D.; Orgill, M. M.; Bander, T. J.; Thorp, J. M.; Schwendiman, L. C.; Young, J. A.; Tanner, T. M.; Thomas, C. W.; Wogman, N. A.; Petersen, M. R.; Hadlock, R. K.; Droppo, J. G.; Woodruff, R. K.

    1976-03-01

    Nineteen papers are covered in this section. Significant contributions were made in 1975 in both the theoretical and the more practical experimental measurements of particle deposition and resuspension. Solutions of theoretical deposition-resuspension equations were formulated and nondimensionalized air and ground concentrations were predicted as a function of distance. In other theoretical studies assumptions and analyses regarding surface boundary conditions were investigated and methods presented whereby they can be fitted together within a single theoretical framework. Deposition in vegetation canopies was considered; formulations were developed and conclusions drawn regarding canopy filtration efficiency. Dry deposition of gases was shown to be rate-limited by many processes, and experiments and equipment were designed to measure gradients of SO/sub 2/ and deposition fluxes. A computer model was improved and used to predict downwind concentrations for a generalized area source. A dimensional analysis correlation was formulated from experimental particle deposition velocity data, but was found to show insignificant improvement when compared statistically with an earlier derived correlation. Wind tunnel measurements of deposition velocities to gravel beds and scaled trees showed that particles will penetrate very significantly to underlying surfaces. Initial field experiments measured deposition velocity to sagebrush canopies. Other controlled field studies were initiated for measuring resuspension, including resuspension from truck traffic. Suspension of soil and the size distribution of particles airborne under various air regimes were studied. In the large METROMEX study done near St. Louis, several pollutants were sampled and analyzed as a function of distance. These studies gave insight into the relative inportance of dry deposition and atmospheric dispersion as mechanisms for reducing air concentrations. (auth)

  19. Electroless atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  20. Microstructure and properties of composite polyetheretherketone/Bioglass® coatings deposited on Ti-6Al-7Nb alloy for medical applications

    Science.gov (United States)

    Moskalewicz, Tomasz; Seuss, Sigrid; Boccaccini, Aldo R.

    2013-05-01

    Composite polyetheretherketone (PEEK)/Bioglass® coatings were electrophoretically deposited on two phase α + β Ti-6Al-7Nb titanium alloy substrates. A heat treatment was performed to improve the adhesion of the coatings to the substrate. The microstructure of the coatings and substrate was examined by light microscopy, scanning- and transmission electron microscopy methods as well as by X-ray diffractometry. Coatings deposited from suspensions with PEEK/Bioglass® weight ratio of 0.3 showed the best quality. Coatings of 40 μm thickness, exhibiting uniform porosity, without any cracks or presence of large voids were produced. The microstructure of the coatings was observed to be composed of Bioglass® particles fairly homogeneously embedded in a PEEK matrix. STEM-EDX line analysis revealed diffusion of Na from the glass to the PEEK matrix after heat-treatment. The results demonstrate that electrophoretic deposition (EPD) is a very useful method to deposit uniform and reproducible microporous composite PEEK/Bioglass® coatings on titanium alloy substrate for biomedical applications.

  1. Microstructure and properties of composite polyetheretherketone/Bioglass{sup ®} coatings deposited on Ti–6Al–7Nb alloy for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Moskalewicz, Tomasz, E-mail: tmoskale@agh.edu.pl [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland); Seuss, Sigrid; Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen (Germany)

    2013-05-15

    Composite polyetheretherketone (PEEK)/Bioglass{sup ®} coatings were electrophoretically deposited on two phase α + β Ti–6Al–7Nb titanium alloy substrates. A heat treatment was performed to improve the adhesion of the coatings to the substrate. The microstructure of the coatings and substrate was examined by light microscopy, scanning- and transmission electron microscopy methods as well as by X-ray diffractometry. Coatings deposited from suspensions with PEEK/Bioglass{sup ®} weight ratio of 0.3 showed the best quality. Coatings of 40 μm thickness, exhibiting uniform porosity, without any cracks or presence of large voids were produced. The microstructure of the coatings was observed to be composed of Bioglass{sup ®} particles fairly homogeneously embedded in a PEEK matrix. STEM-EDX line analysis revealed diffusion of Na from the glass to the PEEK matrix after heat-treatment. The results demonstrate that electrophoretic deposition (EPD) is a very useful method to deposit uniform and reproducible microporous composite PEEK/Bioglass{sup ®} coatings on titanium alloy substrate for biomedical applications.

  2. Exploratory data analysis groupware for qualitative and quantitative electrophoretic gel analysis over the Internet-WebGel.

    Science.gov (United States)

    Lemkin, P F; Myrick, J M; Lakshmanan, Y; Shue, M J; Patrick, J L; Hornbeck, P V; Thornwal, G C; Partin, A W

    1999-12-01

    Many scientists use quantitative measurements to compare the presence and amount, of various proteins and nucleotides among series of one- and two-dimensional (1-D and 2-D) electrophoretic gels. These gels are often scanned into digital image files. Gel spots are then quantified using stand-alone analysis software. However, as more research collaborations take place over the Internet, it has become useful to share intermediate quantitative data between researchers. This allows research group members to investigate their data and share their work in progress. We developed a World Wide Web group-accessible software system, WebGel, for interactively exploring qualitative and quantitative differences between electrophoretic gels. Such Internet databases are useful for publishing quantitative data and allow other researchers to explore the data with respect to their own research. Because intermediate results of one user may be shared with their collaborators using WebGel, this form of active data-sharing constitutes a groupware method for enhancing collaborative research. Quantitative and image gel data from a stand-alone gel image processing system are copied to a database accessible on the WebGel Web server. These data are then available for analysis by the WebGel database program residing on that server. Visualization is critical for better understanding of the data. WebGel helps organize labeled gel images into montages of corresponding spots as seen in these different gels. Various views of multiple gel images, including sets of spots, normalization spots, labeled spots, segmented gels, etc. may also be displayed. These displays are active and may be used for performing database operations directly on individual protein spots by simply clicking on them. Corresponding regions between sets of gels may be visually analyzed using Flicker-comparison (Electrophoresis 1997, 18, 122-140) as one of the WebGel methods for qualitative analysis. Quantitative exploratory data

  3. Alluvial Deposits in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage maps alluvial deposits throughout Iowa. This generally would include areas of alluvial soils associated with modern streams that are identified on...

  4. Speleothem (Cave Deposit) Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, and other aspects of climate derived from mineral deposits found in caves. Parameter keywords describe what was measured...

  5. Automatic Payroll Deposit System.

    Science.gov (United States)

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  6. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  7. Podiform chromite deposits

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Location and characteristics of 1,124 individual mineral deposits of this type, with grade and tonnage models for chromium as well as several related elements.

  8. Resedimented salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Slaczka, A.; Kolasa, K. (Jagiellonian Univ., Krakow (Poland))

    1988-08-01

    Carparthian foredeep's Wieliczka salt mine, unique gravity deposits were lately distinguished. They are mainly built of salt particles and blocks with a small admixture of fragments of Miocene marls and Carpathian rocks, deposited on precipitated salt. The pattern of sediment distribution is similar to a submarine fan. Gravels are dominant in the upper part and sands in lower levels, creating a series of lobes. Coarse-grained deposits are represented by disorganized, self-supported conglomerates passing into matrix-supported ones, locally with gradation, and pebbly sandstones consisting of salt grains and scattered boulder-size clasts. The latter may show in the upper part of a single bed as indistinct cross-bedding and parallel lamination. These sediments are interpreted as debris-flow and high-density turbidity current deposits. Salt sandstones (saltstones) which build a lower part of the fan often show Bouma sequences and are interpreted as turbidity-current deposits. The fan deposits are covered by a thick series of debrites (olistostromes) which consist of clay matrix with salt grains and boulders. The latter as represented by huge (up to 100,000 m{sup 3}) salt blocks, fragments of Miocene marls and Carpathian rocks. These salt debrites represent slumps and debris-flow deposits. The material for resedimented deposits was derived from the southern part of the salt basin and from the adjacent, advancing Carpathian orogen. The authors believe the distinct coarsening-upward sequence of the series is the result of progressive intensification of tectonic movements with paroxysm during the sedimentation of salt debrites (about 15 Ma).

  9. A simple, time-saving, microwave-assisted periodic acid-Schiff´s staining of glycoproteins on 1D electrophoretic gels.

    Science.gov (United States)

    Moravec, Jiri; Mares, Jan

    2017-12-01

    We introduce an optimized periodic acid-Schiff´s staining of glycoproteins on 1D electrophoretic gels. Thanks to heating in a household microwave oven the protocol of standard periodic acid-Schiff´s staining has been accelerated from 6 h to below 10 min employing standard chemistry. At the same time, we show that the microwave-assisted glycoprotein staining is at least as sensitive as the conventional approach. All glycoproteins stained by the microwave-accelerated procedure were successfully identified using MALDI TOF/TOF mass spectrometry. The ensuing reduction in gel staining time and simplification of the staining protocol should significantly increase laboratory throughput when glycoprotein detection on electrophoretic gels is required in large numbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [Effect of freezing and cooking on the texture and electrophoretic pattern of the proteins of octopus arms (Octopus vulgaris)].

    Science.gov (United States)

    Reyes, Genara; Nirchio, Mauro; Bello, Rafael; Borderías, Javier

    2014-09-01

    Texture is the most valuable feature in cephalopods. Factors that mainly affect the texture of octopus are: freezing, scalding and cooking. The aim of this study was to assess the effect of freezing, scalding and length of cooking time on the texture and electrophoretic pattern of proteins of octopus arms. Octopuses were trapped near Margarita Island and carried with ice to the laboratory where they were packed and subjected to: a) freezing at -27 degrees C or at -20 degrees C b) scalding c) cooking for 25 min, 35 min or 45 min. Shear force was determined by Kramer cell on strips of octopus arms. SDS-PAGE was done according to the Laemmli method with 12% polyacrilamide gels. A sensory evaluation of the preference of texture was carried out using a hedonic scale of 7-points and a non-trained panel. Octopus texture was not affected by freezing temperature or scalding. Frozen octopus was softer after cooking than fresh. The longer the cooking time was, the softer the octopus was. Myosin heavy chain (MHC) was not significantly affected by scalding or cooking; however large aggregates heavier than MHC, new bands and loss of resolution of the bands appeared. Myosin and paramyosin bands were more affected by freezing prior to cooking.

  11. Electrowetting-on-dielectric actuation of droplets with capillary electrophoretic zones for off-line mass spectrometric analysis.

    Science.gov (United States)

    Gorbatsova, Jelena; Borissova, Maria; Kaljurand, Mihkel

    2012-04-20

    Present article describes a novel technique based on digital microfluidics that allows collecting fractions of interest after electrophoretic separation and detection for further ESI-MS investigation. In this technique, a mixture is injected into a capillary electrophoresis (CE) apparatus, and microliter droplets are generated at the CE outlet at a frequency high enough to fraction each compound into several droplets, compartmentalizing the CE zones into a sequence of droplets. The droplets are transported from the CE outlet to a storage tube inlet using electrowetting-on-dielectric (EWOD) for droplet actuation. By applying a vacuum at the other end of the storage tube, the droplets form a sequence of plugs separated by air gaps. The plugs stored in the tubing are later analyzed using a standalone spectrometric device. Off-line electrospray ionization mass spectrometry (ESI-MS) was used to characterize the corresponding vitamin and was performed by pumping the segmented plugs directly into a spray emitter tip. The technique could be of interest to laboratories without access to well-equipped facilities (e.g. clean-rooms or lab robots). Copyright © 2011 Elsevier B.V. All rights reserved.

  12. CAPILLARY ELECTROPHORETIC ANALYSIS OF LOW-MOLECULAR-MASS OF CA SPECIES IN PHLOEM SAP OF Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    Noor Fitri

    2010-06-01

    Full Text Available A capillary electrophoretic (CE analysis with ultra-violet (UV detection was performed for further separation of low-molecular-mass (LMM calcium species in phloem sap of Ricinus communis L. Two different background electrolytes (BGE were used for the separation; these are (1 hydrogen phosphate/dihydrogen phosphate buffer containing cetyltrimethylammonium bromide (CTAB as an electro-osmotic flow (EOF modifier, and (2 boric acid buffer containing CTAB. Various parameters affecting the analysis, including the composition and pH of the BGE were systematically studied. The sensitivity, resolution, baseline noise, migration time of the species peaks, and reproducibility of the method were evaluated under optimised condition. At least 13 UV-active species were optimally separated within about ten minutes. The optimised measurement condition was also achieved using 10 mM hydrogen phosphate/10 mM dihydrogen phosphate containing 0.5 mM CTAB at pH 8.0 as BGE, and by applying voltage of ‑20 kV and temperature of 14°C. Evidently, the analytical method was successfully used for the separation of LMM calcium species in phloem sap of R. communis L.   Keywords: capillary electrophoresis, calcium species, phloem sap, Ricinus communis

  13. Multimerization of restriction fragments by magnesium-mediated stable base pairing between overhangs: a cause of electrophoretic mobility shift.

    Science.gov (United States)

    Tagashira, Hideki; Morita, Mitsunori; Ohyama, Takashi

    2002-10-08

    The electrophoretic mobility shift assay (EMSA) or simply the "gel shift assay" is one of the most sensitive methods for studying the ability of a protein to bind to DNA. EMSAs are also widely used to investigate protein- or sequence-dependent DNA bending. Here we report that electrophoresis using physiological concentrations of Mg(2+) can cause a mobility shift of restriction fragments in nondenaturing polyacrylamide gels as the overhangs form stable base pairs. This phenomenon was observed at even 37 degrees C. The retardation was, however, more pronounced at low temperatures, where a three-nucleotide overhang 5'-GAC also caused a mobility shift. The stability of the pairing was generally high when the overhangs of four nucleotides display high GC content, while the mobility shift caused by 5'-AATT was greater than those caused by 5'-GATC, 5'-TCGA, and 5'-CTAG. This observation should be taken into account to avoid misinterpretation of the data when the EMSA, especially the circular permutation gel mobility shift assay, is performed using a running buffer that contains Mg(2+) ions. The stable adhesion between short overhangs may present an important basis for genome stability and many genetic processes occurring in living cells.

  14. Frequency-tuned contactless conductivity detector for the electrophoretic separation of clinical samples in capillaries with very small internal dimensions.

    Science.gov (United States)

    Tůma, Petr

    2017-02-01

    An axial design of a capacitively coupled contactless conductivity detector was tested in combination with fused-silica capillaries with internal diameters of 10, 15, and 25 μm, which are used for high-efficiency electrophoretic separation. The transmission of the signal in the detection probe dependent on the specific conductivity of the solution in the capillary in the range 0-278 mS.m-1 has a complex character and a minimum appears on the curve at very low conductivities. The position of the minimum of the calibration dependence gradually shifts with decreasing frequency of the exciting signal from 1.0 to 0.25 MHz toward lower specific conductivity values. The presence of a minimum on the calibration curves is a natural property of the axial design of contactless conductivity detector, demonstrated by solution of the equivalent electrical circuit of the detection probe, and is specifically caused by the use of shielding foil. The behavior of contactless conductivity detector in the vicinity of the minimum was documented for practical separations of amino acids in solutions of 3.2 M acetic acid with addition of 0-50% v/v methanol. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. [Highly efficient and rapid capillary electrophoretic analysis of seven organic acid additives in beverages using polymeric ionic liquid as additive].

    Science.gov (United States)

    Han, Haifeng; Wang, Qing; Liu, Xi; Jiang, Shengxiang

    2012-05-01

    A new capillary electrophoretic method for the rapid and direct separation of seven organic acids in beverages was developed, with poly (1-vinyl-3-butylimidazolium bromide) as the reliable background electrolyte modifier to reverse the direction of anode electroosmotic flow (EOF) severely. Several factors that affected the separation efficiency were investigated in detail. The optimal running buffer consisted of 125 mmol/L sodium dihydrogen phosphate (pH 6.5) and 0.01 g/L poly (1-vinyl-3-butylimidazolium bromide). Highly efficient separation (105,000 to 636,000 plates/m) was achieved within 4 min and standard deviations of the migration times (n=3) were lower than 0.0213 min under optimal conditions. The limits of detection (S/N = 3) ranged from 0.001 to 0.05 g/L. The present method was applied to determine a beverage sample (Mirinda) for sodium citrate, benzoic acid and sorbic acid with concentration of 2.64, 0.10 and 0.08 g/L, respectively. The recoveries of the three analytes in the sample were 100.3%, 100.7% and 131.7%, respectively. The method is simple, rapid, inexpensive, and can be applied to determine organic acids as additives in beverages.

  16. Electrophoretic karyotypes of Tilletia caries, T. controversa, and their F1 progeny: further evidence for conspecific status.

    Science.gov (United States)

    Russell, B W; Mills, D

    1993-01-01

    Electrophoretic karyotypes were obtained from intact sporidia and mycelia of Tilletia controversa and T. caries, and hybrid progeny were obtained by crossing these pathogens. The chromosomes typically ranged from approximately 850 to 4,490 kilobases (kb) for all strains, and they were variable in number with 19 or 20 for strains of T. controversa, 14-20 for T. caries, and from 19 to 22 for the hybrid progeny. The estimated genome size varied from 28 to 42 megabases (Mb) for these strains. Radiolabeled probes made of single copy DNA fragments and a heterologous actin gene identified four linkage groups among all strains that exhibited maximum chromosome length polymorphisms of 14% or less. The chromosomes carrying the rDNA genes, representing a fifth linkage group, exhibited length polymorphisms of approximately 40%. The actin gene and a rDNA probe hybridized with one or more bands in these strains, suggesting that some of the variability in chromosome number may result from aneuploidy. The karyotypes of the hybrid progeny revealed chromosome numbers and genome sizes essentially identical to each parental strain, clearly indicating that the reduction division stage of meiosis had occurred. These data and other corroborative genetic data provide substantial evidence that T. controversa and T. caries are not different species, but variants of a single species.

  17. Differentiation of meat according to species by the electrophoretic separation of muscle lactate dehydrogenase and esterase isoenzymes and isoelectric focusing of soluble muscle proteins.

    Science.gov (United States)

    Slattery, W J; Sinclair, A J

    1983-02-01

    Species identification of fresh meat can be readily achieved by serological techniques with the limitation that closely related species, such as sheep/goat, cattle/buffalo and horse/donkey, cannot be differentiated. We have examined electrophoretic techniques with particular reference to the identification of meat from closely related species. The results showed that beef and buffalo meat and meat from red and grey kangaroos could be clearly distinguished by isoelectric focusing on polyacrylamide gel or agarose in the pH range 5.5 to 8.5. Sheep and goat meat, and horse and donkey meat could not be differentiated by this technique, but were clearly distinguished from each other by their esterase isoenzyme profiles obtained after electrophoretic separation on cellulosic membrane strips. Results from this latter technique were available in one hour. We believe that species identification of fresh meat should involve an initial screening test by serological techniques followed by confirmation of the identity of suspect samples by electrophoretic techniques.

  18. The role of the rheological properties of non-newtonian fluids in controlling dispersive mixing in a batch electrophoretic cell with Joule heating

    Directory of Open Access Journals (Sweden)

    M.A. Bosse

    2001-03-01

    Full Text Available The problem of the effect of Joule heating generation on the hydrodynamic profile and the solute transport found in electrophoretic devices is addressed in this article. The research is focused on the following two problems: The first one is centered around the effect of Joule heating on the hydrodynamic velocity profile and it is referred to as "the carrier fluid problem." The other one is related to the effect of Joule heating on the solute transport inside electrophoretic cells and it is referred to as "the solute problem". The hydrodynamic aspects were studied first to yield the velocity profiles required for analysis of the solute transport problem. The velocity profile obtained in this study is analytical and the results are valid for non-Newtonian fluids carriers. To this end, the power-law model was used to study the effect of the rheology of the material in conjunction with the effect of Joule heating generation inside batch electrophoretic devices. This aspect of the research was then effectively used to study the effect of Joule heating generation on the motion of solutes (such as macromolecules under the influence of non-Newtonian carriers. This aspect of the study was performed using an area-averaging approach that yielded analytical results for the effective diffusivity of the device.

  19. Aggregation and deposition of in situ formed colloidal particles in the presence of polyelectrolytes.

    Science.gov (United States)

    Li, Feng; Sun, Dejun; Wu, Tao; Li, Yujiang

    2017-02-22

    In this work, aggregation and deposition of in situ formed magnesium hydroxide (IFM) in the presence of hydrolyzed polyacrylamide (HPAM) were investigated. Relative concentrations of interactants, as well as other experimental conditions, were changed to elucidate the interaction mechanisms from microscopic to macroscopic levels. Light scattering measurements were used to investigate the aggregation kinetics, fractal dimension, and collision efficiency of the aggregates on a microscopic level. Electrophoretic mobility and TEM were utilized to measure the charging properties and morphologies of aggregates, respectively. Adsorption and rheology experiments were performed to determine the deposition mechanism at higher concentrations of interactants on a macroscopic level. The results demonstrate that the initial rapid aggregation of IFM in the presence of HPAM is due to an electrostatic patch mechanism. In addition, the deposition was accelerated by flocculation with different mechanisms. When more IFM is involved, bridging flocculation dominates; when more HPAM is added, depletion flocculation plays a leading role. The results of this work may provide further insight into understanding the aggregation and deposition of in situ formed natural/engineered particles in the presence of oppositely charged polyelectrolytes, as well as provide new possibilities for produced water treatment, biomedical applications, biomineralization, etc.

  20. Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication

    Science.gov (United States)

    Matsuura, Toshiki; Takai, Takanari; Iwata, Futoshi

    2017-10-01

    We describe a novel three-dimensional fabrication technique using local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator (SLM). In a solution containing nanometer-scale colloidal Au particles, multiple laser spots formed on a conductive substrate by the SLM gathered the nanoparticles together, and then the nanoparticles were electrophoretically deposited onto the substrate by an applied electrical field. However, undesirable sub-spots often appeared due to optical interference from the multiple laser spots, which deteriorated the accuracy of the deposition. To avoid the appearance of undesirable sub-spots, we proposed a method using quasi-multiple spots, which we realized by switching the position of a single spot briefly using the SLM. The method allowed us to deposit multiple dots on the substrate without undesirable sub-dot deposition. By moving the substrate downward during deposition, multiple micro-pillar structures could be fabricated. As a fabrication property, the dependence of the pillar diameter on laser intensity was investigated by changing the number of laser spots. The smallest diameter of the four pillars fabricated in this study was 920 nm at the laser intensity of 2.5 mW. To demonstrate the effectiveness of the method, multiple spiral structures were fabricated. Quadruple spirals of 46 µm in height were successfully fabricated with a growth rate of 0.21 µm/s using 2200 frames of the CGH patterns displayed in the SLM at a frame rate of 10 fps.

  1. Zircon coatings deposited by electrophoresis on steel 316L; Recubrimientos de circonia depositados por electroforesis sobre acero 316L

    Energy Technology Data Exchange (ETDEWEB)

    Espitia C, I. [Facultad de Ingenieria Quimica, UMSNH, Edificio D, C.U., 58060 Morelia, Michoacan (Mexico); Contreras G, M.E. [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, C.U., 58060 Morelia , Michoacan (Mexico); Bartolo P, P.; Pena, J.L. [CINVESTAV-IPN, A.P. 73 Cordemex97310 Merida, Yucatan (Mexico); Reyes G, J. [IFUNAM, 01000 Mexico D.F. (Mexico); Martinez, L. [Centro de Ciencias Fisicas, UNAM, Cuernavaca, Morelos (Mexico)

    2005-07-01

    The present research involved zirconia coatings prepared using electrophoretic deposition (EPD) on 316l stainless steel, via hydrolysis of ZrOCI{sub 2} aqueous solution. Initially, a first zirconia thin film was obtained and treated at 400 C for consolidation. Then a second zirconia film was deposited to obtain a homogeneous and fully covered 316l stainless steel plate. The XPS analyses show that on the first zirconia film, the elements Fe, Cr, O and Zr are present. In this first film the compounds Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and ZrO{sub 2} are formed. While in the second film only the Zr and O are observed so that the surface is formed by ZrO{sub 2}. (Author)

  2. Electrophoretic separation of alginic sodium diester and sodium hexametaphosphate in chondroitin sulfate that interfere with the cetylpyridinium chloride titration assay.

    Science.gov (United States)

    Weiguo, Zhang; Giancaspro, Gabriel; Adams, Kristie M; Neal-Kababick, James; Hildreth, Jana; Li, Aishan; Roman, Mark C; Betz, Joseph M

    2014-01-01

    The most commonly used chondroitin sulfate (CS) assay method is cetylpyridinium chloride (CPC) titration. Cellulose acetate membrane electrophoresis (CAME) is the technique used for detection of impurities in the U.S. Pharmacopeia's CS monograph. Because CPC titration is a relatively nonspecific quantitative technique, the apparent amount of CS as determined by CPC titration alone may not reflect the true amount of CS due to possible interference with the CPC assay by impurities that contain CPC titratable functional groups. When CAME is used in conjunction with CPC titration, certain non-CS and adulterants can be visualized and estimated, and a true value for CS can be assigned once the presence of these non-CS impurities has been ruled out. This study examines conjunct application of CPC and CAME in ascertaining CS assay and purity in the presence of certain adulterants. These include propylene glycol alginate sulfate sodium, known in commerce as alginic sodium diester (ASD), and Zero One (Z1), a water-soluble agent newly reported in the CS marketplace and subsequently identified as sodium hexametaphosphate. ASD, Z1, and CS are similar in physical appearance and solubility in water and ethanol. They are also titratable anions and form ionic pairs with CPC, therefore interfering with the CPC titration assay for CS CAME separates these adulterants from each other and from CS by differences in their electrophoretic mobility. CAME is able to detect these impurities in CS at levels as low as 0.66% by weight. Although it is recommended that a method for detecting impurities (e.g., CAME) be used in cormbination with relatively nonspecific assay methods such as CPC titration, this is seldom done in practice. Assay results for CS derived fromn CPC titration may, therefore, be misleading, leaving the CS supply chain vulnerable to adulteration. In this study, the authors investigated ASD and Z1 adulteration of CS and developed an electrophoretic separation of these

  3. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  4. Electrophoretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk.

    Science.gov (United States)

    Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor

    2017-01-01

    Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program.

    Science.gov (United States)

    Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato

    2013-01-01

    To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. β(S) allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. THE FOLLOWING ALPHA CHAIN VARIANTS WERE FOUND: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  6. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program

    Directory of Open Access Journals (Sweden)

    Marcilene Rezende Silva

    2013-01-01

    Full Text Available OBJECTIVE: To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. METHODS: βS allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. RESULTS: The following alpha chain variants were found: seven children with hemoglobin Hasharon [alpha2 47(CE5 Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13 Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2 Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5 Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. CONCLUSION: Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  7. Synthesis, analytical characterization and capillary electrophoretic use of the single-isomer heptakis-(6-O-sulfobutyl)-beta-cyclodextrin.

    Science.gov (United States)

    Malanga, Milo; Fejős, Ida; Varga, Erzsébet; Benkovics, Gábor; Darcsi, András; Szemán, Julianna; Béni, Szabolcs

    2017-09-08

    This contribution reports the synthesis, characterization and capillary electrophoretic application of heptakis-(6-O-sulfobutyl-ether)-β-cyclodextrin sodium salt, (6-(SB)7-β-CD). The compound was obtained through a five-steps synthesis and it represents the first example of single-isomer sulfobutylated cyclodextrin that carries the negatively charged functions exclusively on its primary side and it is unmodified on the lower rim. The purity of each intermediate was determined by appropriate liquid chromatographic methods, while the isomeric purity of the final product was established by an ad-hoc developed HPLC method based on a CD-Screen-IEC column. The structural identification of 6-(SB)7-β-CD was carried out by 1D, 2D NMR spectroscopy and ESI-MS. The chiral separation ability of 6-(SB)7-β-CD was studied by chiral capillary electrophoresis using the single-isomer host as a background electrolyte additive to separate the enantiomers of a representative set of pharmacologically significant model compounds such as verapamil, dapoxetine, ondansetron, propranolol, atenolol, metoprolol, carvedilol, terbutaline, amlodipine and tadalafil. The enantiomer migration order and the effects of the selector concentration on the enantiorecognition properties were investigated. NMR spectroscopy was applied to deepen and further confirm the host-guest interactions and in the case of the model compound dapoxetine a potential representation for the supramolecular assembly was developed based on the dataset collected by the extensive 2D NMR analysis. This single-isomer chiral selector offers a new alternative to the widely applied randomly sulfobutylated- and sulfated-beta-cylodextrins as well as to the single-isomer sulfated and carboxymethylated derivatives in chiral separations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta

    DEFF Research Database (Denmark)

    Holton, J.L; Lashley, T.; Ghiso, J.

    2002-01-01

    Familial Danish dementia (FDD) is pathologically characterized by widespread cerebral amyloid angiopathy (CAA), parenchymal protein deposits, and neurofibrillary degeneration. FDD is associated with a mutation of the BRI2 gene located on chromosome 13. In FDD there is a decamer duplication, which......-fibrillary) lesions was found. A[beta] was also present in a proportion of both vascular and parenchymal lesions. There was severe neurofibrillary pathology, and tau immunoblotting revealed a triplet electrophoretic migration pattern comparable with PHF-tau. FDD is a novel form of CNS amyloidosis with extensive...

  9. Characteristic LDH isozyme electrophoretic patterns in six flatfish species in the Trondheimsfjord, Norway and their utility for the detection of natural species hybrids

    KAUST Repository

    He, Song

    2014-11-19

    Abstract: LDH isozyme electrophoretic patterns among 621 specimens of six different flatfish species collected in the Trondheimsfjord, Norway, were characterized by using the isoelectric focusing in polyacrylamide gel (IFPAG) technique. The LDH locus appears to be a reliable tool for species identification in the Trondheimsfjord flatfishes. Hence, these patterns were used to detect and identify potential hybrids, together with morphological traits. Among all the specimens collected during this study no hybrids were detected. From the actual numbers analysed, the natural hybridization rate between European plaice and European flounder in the Trondheimsfjord can be roughly estimated to be less than 1%. This is substantially lower than corresponding values reported from Baltic and Danish waters.

  10. [Determination of the electrophoretic mobility of peripheral red blood cells from healthy individuals, by using ethylene-2-amine-4-chloroacetic acid as a preservative].

    Science.gov (United States)

    Iastrubinetskaia, O I; Popova, O V; Sarycheva, T G; Tentsova, I A; Kozinets, G I

    2009-01-01

    It is now known that the electric charge of a surface cellular membrane is a rather characteristic value for each type of a cell. Cellular electrophoresis may be used to study the electrokinetic properties of red blood cells in each specific case, thereby obtaining indirect information on the state of a surface membrane as the electrophoretic mobility (EPM) rate is directly proportional to the value of a cellular electric charge. The study was undertaken to compare the EPM rates of peripheral red blood cells from donors, by employing two different preservatives: EDTCHA and sodium citrate. No statistically significant differences were found in the groups under study and these parameters were comparable.

  11. Comparison of IgG concentrations by radial immunodiffusion, electrophoretic gamma globulin concentrations and total globulins in neonatal foals.

    Science.gov (United States)

    Tscheschlok, L; Venner, M; Howard, J

    2017-03-01

    Failure of transfer of passive immunity (FTPI) in foals is associated with a risk of infection and death. The current diagnostic gold standard is quantification of immunoglobulins using radial immunodiffusion (IgG-RID). Routine diagnosis is often performed using semi-quantitative tests. Concentrations of serum electrophoretic gamma globulins (EGG) and total globulins may be useful to assess FTPI, but few studies have investigated their use. To assess agreement between IgG-RID and EGG and evaluate the accuracy of total globulin concentration to diagnose FTPI based on both IgG-RID and EGG. Prospective study. A total of 360 serum samples were harvested at 6-24 h post natum from 60 German Warmblood foals. Concentrations of EGG, IgG-RID and total globulin (calculated from total proteins and albumin) were measured. Agreement between EGG and IgG-RID was assessed using Bland-Altman plots and Passing-Bablok regression. The accuracy of total globulin concentration was assessed using rank correlation and ROC curve analysis. Good agreement was found with slightly lower EGG than IgG-RID concentrations (Bland-Altman systemic bias -1.9 g/l) which was more pronounced at higher concentrations (regression equation: IgG-RID = -0.78 + 1.28 × EGG). Correlations between total globulin concentration and EGG and total globulin concentration and IgG-RID were 0.93 and 0.79, respectively. The area under the curve was 0.982 and 0.952 for EGG IgG-RID 95% with 71.2% (IgG-RID) and 90.5% (EGG) specificity for 90% with 66.0% (IgG-RID) and 87.9% (EGG) specificity for IgG-RID, with slightly more conservative estimates of immunoglobulins obtained using EGG. Total globulins may be a useful and economic quantitative screening test with cut-offs achieving high sensitivities, but analyser-specific cut-offs may be necessary. © 2016 EVJ Ltd.

  12. Aerosol deposition on plant leaves

    Science.gov (United States)

    James B. Wedding; Roger W. Carlson; James J. Stukel; Fakhri A. Bazzaz

    1976-01-01

    An aerosol generator and wind tunnel system designed for use in aerosol deposition is described. Gross deposition on rough pubescent leaves was nearly 7 times greater than on smooth, waxy leaves. Results suggest that aerosol deposition, on a per unit area basis, for single horizontal streamlining leaves is similar to that for arrays of leaves under similar flow...

  13. A Micrometeorological Perspective on Deposition

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1981-01-01

    An expression for the dry deposition velocity is given in terms of constant flux layer scaling. Numerical values of upper bounds on the deposition velocity is given for a typical situation. Some remarks are then offered on the relative merits of various ways in which the combined diffusion-deposition...

  14. Limited Deposit Insurance Coverage and Bank Competition

    OpenAIRE

    SHY, Oz; Stenbacka, Rune; Yankov, Vladimir

    2014-01-01

    Deposit insurance schemes in many countries place a limit on the coverage of deposits in each bank. However, no limits are placed on the number of accounts held with different banks. Therefore, under limited deposit insurance, some consumers open accounts with different banks to achieve higher or full deposit insurance coverage. We compare three regimes of deposit insurance: No deposit insurance, unlimited deposit insurance, and limited deposit insurance. We show that limited deposit insuranc...

  15. Influence of growth phase on bacterial deposition: interaction mechanisms in packed-bed column and radial stagnation point flow systems.

    Science.gov (United States)

    Walker, Sharon L; Redman, Jeremy A; Elimelech, Menachem

    2005-09-01

    The influence of bacterial growth stage on cell deposition kinetics has been examined using a mutant of Escherichia coli K12. Two experimental techniques--a packed-bed column and a radial stagnation point flow (RSPF) system--were employed to determine bacterial deposition rates onto quartz surfaces over a wide range of solution ionic strengths. Stationary-phase cells were found to be more adhesive than mid-exponential phase cells in both experimental systems. The divergence in deposition behavior was notably more pronounced in the RSPF than in the packed-bed system. For instance, in the RSPF system, the deposition rate of the stationary-phase cells at 0.03 M ionic strength was 14 times greater than that of the mid-exponential cells. The divergence in the packed-bed system was most significant at 0.01 M, where the deposition rate for the stationary-phase cells was nearly 4 times greater than for the mid-exponential cells. To explain the observed adhesion behavior, the stationary and mid-exponential bacterial cells were characterized for their size, surface charge density, electrophoretic mobility, viability, and hydrophobicity. On the basis of this analysis, it is suggested that the stationary cells have a more heterogeneous distribution of charged functional groups on the bacterial surface than the mid-exponential cells, which results in higher deposition kinetics. Furthermore, because the RSPF system enumerates only bacterial cells retained in primary minima, whereas the packed column captures mostly cells deposited in secondary minima, the difference in the stationary and mid-exponential cell deposition kinetics is much more pronounced in the RSPF system.

  16. Characterization of the mutations responsible for the electrophoretic mobility differences in the NS proteins of vesicular stomatitis virus New Jersey complementation group E mutants.

    Science.gov (United States)

    Rae, B P; Elliott, R M

    1986-12-01

    Temperature-sensitive (ts) mutants of vesicular stomatitis virus, New Jersey serotype, classified in complementation group E contain lesions in the NS gene, which manifest as marked electrophoretic mobility differences of the mutant NS proteins in SDS-polyacrylamide gels. We have cloned full-length cDNA copies of the mutant NS mRNAs, and have determined their nucleotide sequences. tsE1 and tsE3 had single nucleotide changes, and tsE2 had two nucleotide changes, compared to the wild-type NS gene. Three of the mutations were clustered in a region of 18 nucleotides. All the nucleotide differences resulted in amino acid substitutions, which in each case changed the charge of the amino acid concerned. Analysis of the wild-type and mutant NS protein sequences by the method of Chou & Fasman indicated that single amino acid substitutions can radically alter the predicted secondary structure, and these data are discussed in relation to the observed electrophoretic mobility differences.

  17. The role of cell size in density gradient electrophoretic separation of mouse leukemia cells according to position in the cell cycle

    Science.gov (United States)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.

  18. Switchable pH actuators and 3D integrated salt bridges as new strategies for reconfigurable microfluidic free-flow electrophoretic separation.

    Science.gov (United States)

    Cheng, Li-Jing; Chang, Hsueh-Chia

    2014-03-07

    We present novel strategies for reconfigurable, high-throughput microfluidic free-flow electrophoretic separation using electrically switchable pH actuators and 3D integrated salt bridges to allow rapid formation of stable pH gradients and efficient electrophoresis. The pH actuator is achieved by microfluidic integration of bipolar membranes which change electrolyte pH by injecting excess H(+) or OH(-) ions produced by a field-enhanced water dissociation phenomenon at the membrane junction upon voltage bias. The technique does not require conventional multiple buffer inflows and leaves no gas production as experienced in electrolysis, thus providing stable pH gradients for isoelectric focusing (IEF) separation. With the pH actuator inactivated, the platform can perform zone electrophoretic (ZE) separation in a medium of constant pH. We also describe the use of 3D integrated ion conductive polymers that serve as salt bridges for improving the voltage efficiency of electrophoresis and to allow high throughput. The proof of concept was successfully demonstrated for free-flow IEF and ZE separation of protein mixtures showing the potential and the simplicity of the platform for high-throughput and high-precision sample separation.

  19. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.

    Science.gov (United States)

    Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen

    2012-10-22

    Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A partially ionized plasma modeling; Un modele de plasma partiellement ionise

    Energy Technology Data Exchange (ETDEWEB)

    Le Thanh, K.C.; Raviart, P.A

    2003-07-01

    We propose a model for the partially ionized plasma sheaths near the anode of an anodic spot electric arc where the cathode is considered as an electron emitter. A fluid description takes into account the heating and the ionization of the plasma induced by the electron beam. As physical hypothesis we assume that the condition of charge neutrality is valid. According that the electron mass can be neglected compared to the ion mass, we can assume that ions and atoms have the same velocity and the same temperature. Electrons and heavy particles are then regarded as two separate fluids coexisting in the plasma. Governing equations are then multi-fluid equations with relaxation correction to the local thermodynamic equilibrium (LTE) and heating by Joule effect. Equations are solved by an operator splitting procedure. That is we first discretize the homogeneous conservation laws (i.e. without source terms) by a finite volume method. The second step is to solve the ordinary differential system (i.e, governing equation without transport terms) with an implicit scheme. (authors)

  1. Radioactive deposits in California

    Science.gov (United States)

    Walker, George W.; Lovering, Tom G.

    1954-01-01

    Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins

  2. Serological, electrophoretic and biological properties of Fasciola hepatica antigens Propiedades serologicas, electroforeticas y biologicas de antigenos de Fasciola hepatica

    Directory of Open Access Journals (Sweden)

    Laura A. Cervi

    1992-12-01

    Full Text Available Fasciola hepatica somatic antigen, its partially purified fractions and excretion-secretion products were investigated as to serological, electrophoretic and biological properties. In a Sephadex G-100 column (SG-100, Fasciola hepatica total antigen (FhTA gave 5 fractions, and SDS-PAGE analysis showed they were glycoproteins ranging from 14 to 94 kDa molecular weight (MW. When these fractions were analyzed by enzyme linked immunotransfer blot (EITB and immunodiffusion in gel (ID with serum from immunized rats with FhTA, the presence of different antigenic components was revealed. In the SDS-PAGE of excretor-secretor antigen (ESA, it was possible to observe peptides from 12 to 22 kDa, which were also present in FhTA. When the FhTA, its fractions and the ESA were analyzed by EITB with the immune rat serum (IRS, it was observed that only some fractions of the SG-100 shared antigens with the FhTA and ESA. Moreover, DTH and ITH responses were studied in FhTA immunized rats challenged with these different antigen components, revealing that the protein/carbohydrate ratio is important for inducing DTH response. The ESA was the most active component in the DTH and ITH response.Se realizó la purificación parcial de un antigeno somático de Fasciola hepatica y se obtuveron los productos de excreción-secreción. Por filtración del antigeno total de Fasciola hepatica en Sephadex G-100 (SG-100, se obtuvieron 5 fracciones las que al ser analizadas por electroforesis en geles de poliacrilamida, demostraron estar constituidas por glicoproteínas con un rango de peso molecular (PM entre 14 y 94 kDa. Cuando estas fracciones fueron analizadas por immunoblot e inmunodifusión en geles de agar frente al suero de ratas inmunizadas con el homogenato total se reveló la presencia de diferentes componentes antigénicos. Usando un antígeno excretor-secretor fue posible observar en el perfil electroforético la presencia de péptidos con un PM entre 12 y 22 kDa, los

  3. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  4. FDIC Summary of Deposits (SOD) Download File

    Data.gov (United States)

    Federal Deposit Insurance Corporation — The FDIC's Summary of Deposits (SOD) download file contains deposit data for branches and offices of all FDIC-insured institutions. The Federal Deposit Insurance...

  5. Ballistic Deposition of Nanoclusters.

    Science.gov (United States)

    Ulbrandt, Jeffrey; Li, Yang; Headrick, Randall

    Nanoporous thin-films are an important class of materials, possessing a large surface area to volume ratio, with applications ranging from thermoelectric and photovoltaic materials to supercapacitors. In-Situ X-ray Reflectivity and Grazing Incidence Small Angle X-Ray Scattering (GISAXS) were used to monitor thin-films grown from Tungsten Silicide (WSi2) and Copper (Cu) nanoclusters. The nanoclusters ranged in size from 2 nm to 6 nm diameter and were made by high-pressure magnetron sputtering via plasma gas condensation (PGC). X-Ray Reflectivity (XRR) measurements of the films at various stages of growth reveal that the resulting films exhibit very low density, approaching 15% of bulk density. This is consistent with a simple off-lattice ballistic deposition model where particles stick at the point of first contact without further restructuring. DOE Office of Basic Energy Sciences under contract DE-FG02-07ER46380.

  6. Multiphase flow wax deposition modelling

    Energy Technology Data Exchange (ETDEWEB)

    Matzain, A. [Petronas Research and Scientific Services, Kuala Lumpur (Malaysia); Zhang, H.-Q.; Volk, M.; Redus, C.L.; Brill, J.P. [University of Tulsa (United States); Apte, M.S. [Shell Technology EP (United States); Creek, J.L. [Chevron Petroleum Technology (United States)

    2000-07-01

    Results are presented from two-phase flow wax deposition tests using a state-of-the-art, high pressure, multiphase flow test facility. Wax deposition was found to be flow pattern dependent and occurs only along the pipe wall in contact with the waxy crude oil. The deposition buildup trend at low mixture velocities is similar to that observed in laminar single-phase flow tests. The buildup trend at high mixture velocities is similar to that observed in turbulent single-phase flow tests. Thinner and harder deposits at the bottom than at the top of the pipe were observed in horizontal intermittent flow tests. Thicker and harder deposits were observed at low liquid superficial velocity than at high liquid superficial velocity annular flow tests. No wax deposition was observed along the upper portion of the pipe in stratified flow tests. A semi-empirical kinetic model tailored for the wax deposition tests predicted wax thickness with an acceptable accuracy, especially at high oil superficial velocity. Deposition rate reduction due to shear stripping and rate enhancement due to entrapment of oil and other mechanisms not accounted for by the classical Fick's mass diffusion theory were incorporated through the use of dimensionless variables and empirical constants derived from the wax deposition data. The kinetic model, although semi-empirical, provides an insight for future model development. (author)

  7. Liquefier Dynamics in Fused Deposition

    DEFF Research Database (Denmark)

    Bellini, Anna; Guceri, Selcuk; Bertoldi, Maurizio

    2004-01-01

    Layered manufacturing (LM) is an evolution of rapid prototyping (RP) technology whereby a part is built in layers. Fused deposition modeling (FDM) is a particular LM technique in which each section is fabricated through vector style deposition of building blocks, called roads, which are then stac......Layered manufacturing (LM) is an evolution of rapid prototyping (RP) technology whereby a part is built in layers. Fused deposition modeling (FDM) is a particular LM technique in which each section is fabricated through vector style deposition of building blocks, called roads, which...

  8. (Acidic deposition and the environment)

    Energy Technology Data Exchange (ETDEWEB)

    Garten, C.T.; Lindberg, S.E.; Van Miegroet, H.

    1990-10-24

    The travelers presented several papers at the Fourth International Conference on Acidic Deposition. These covered the following topics: atmospheric chemistry and deposition of airborne nitrogen compounds, soil solution chemistry in high-elevation spruce forests, and forest throughfall measurements for estimating total sulfur deposition to ecosystems. In addition, S. E. Lindberg was invited to organize and chair a conference session on Throughfall and Stemflow Experiments, and to present an invited lecture on Atmospheric Deposition and Canopy Interactions of Metals and Nitrogen in Forest Ecosystems: The Influence of Global Change'' at the 110th Anniversary Celebration of the Free University of Amsterdam.

  9. 78 FR 11604 - Deposit Insurance Regulations; Definition of Insured Deposit

    Science.gov (United States)

    2013-02-19

    ..., (202) 898-3670; F. Angus Tarpley III, Supervisory Counsel, Legal Division, (202) 898-6646; Catherine... required to repay a deposit in a foreign branch if it cannot do so because of ``war, insurrection, or civil... the world. The U.K. FSA currently has proposed that the rules governing deposit-taking by foreign...

  10. Metabolism of excised embryos of Lupinus luteus L. VI. An electrophoretic analysis of some dehydrogenases in cultured embryos as compared with the normal seedling axes

    Directory of Open Access Journals (Sweden)

    J. Czosnowski

    2015-01-01

    Full Text Available The electrophoretic patterns (disc electrophoresis of the studied dehydrogenases: glucose-6-phosphate - (A, malate - (B, glutamate - (C, alcohol - (D and lactate dehydrogenase (E, in the axial organs of isolated Lupinus luteus embryos and seedlings cultivated over 12 days are characterized by great similarities. With time, after the third day of cultivation the patterns begin to become less deyeloped. Analyses performed during the first 10 hours of imbibition of seed parts indicate that the maximal development of isozyme patterns occurs during the third hour after which the patterns become poorer. The most uniform type of pattern. and the lowest number of isozymes was shown by glutamate dehydrogenase, the richest pattern was shown by malate dehydrogenase. No band common for a 11 the 27 experimental elements was found.

  11. Sialidosis type 1: cherry red spot-myoclonus syndrome with sialidase deficiency and altered electrophoretic mobilities of some enzymes known to be glycoproteins. 1. Clinical findings.

    Science.gov (United States)

    Thomas, P K; Abrams, J D; Swallow, D; Stewart, G

    1979-01-01

    A family is described with three affected brothers, two of whom were examined, born to consanguineous parent, who in early adult life began to experience ataxia, intention myoclonus, and progressive visual failure. The brothers examined had cherry red spots at the maculae and cataracts. They were of normal intelligence. The intention myoclonus responded partially to treatment with clonazepam and pheneturide, but not to 5-hydroxytryptophan in combination with carbidopa or to sodium valproate. Studies in one patient showed the excretion of large quantities of sialylated oligosaccharides in the urine. Both patients showed deficient sialidase activity in their cultured fibroblasts. Further studies on cultured skin fibroblasts revealed increased electrophoretic mobility of six glycoprotein enzymes that was returned approximately to normal by treatment with sialidase. The clinical and biochemical findings indicate that these patients are further cases of the newly described condition sialidosis type 1. Images PMID:512662

  12. A single amino acid mutation alters the capsid protein electrophoretic double-band phenotype of the Plum pox virus strain PPV-Rec.

    Science.gov (United States)

    Subr, Z W; Kamencayová, M; Nováková, S; Nagyová, A; Nosek, J; Glasa, M

    2010-07-01

    Plum pox virus (PPV) isolates differ by their capsid protein (CP) mobility in SDS-PAGE. These electrophoretic phenotypes are likely to result from post-translational modifications of the CP. We demonstrated that the CP mobility was solely determined by the CP N-terminal region. Sequence comparison pinpointed a possible role of mutations at position 66 in determining the CP phenotype of PPV-Rec isolates. Site-directed mutagenesis of a chimeric clone demonstrated that Gly(66) in the CP resulted in the double-band phenotype, while Arg(66) led to a single-band CP pattern, possibly by preventing the phosphorylation of a nearby Ser residue by steric hindrance.

  13. Variable temperature semiconductor film deposition

    Science.gov (United States)

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  14. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    A new experimental set-up to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airBorne dust concentration considerably. As a basis for developing methods to eliminate dust related problems in rooms...

  15. Geotechnical Description of Mineral Deposits

    Directory of Open Access Journals (Sweden)

    Sasvári Tibor

    1996-06-01

    Full Text Available Performing various mineral deposits extraction methods requires thorough knowledge of the rock masses` geomechanical parameters. In the geotechnical description of mineral deposits there is proposed a methodical approarch at the collection, registration, and evaluation of rock masses` geological properties for geotechnics being applied within the mining industry.

  16. A remote coal deposit revisited

    DEFF Research Database (Denmark)

    Bojesen-Kofoed, Jørgen A.; Kalkreuth, Wolfgang; Petersen, Henrik I.

    2012-01-01

    In 1908, members of the “Danmark Expedition” discovered a coal deposit in a very remote area in western Germania Land, close to the margin of the inland ice in northeast Greenland. The deposit was, however, neither sampled nor described, and was revisited in 2009 for the first time since its...

  17. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance{sup †}

    Energy Technology Data Exchange (ETDEWEB)

    Govindaraj, Dharman [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Rajan, Mariappan, E-mail: rajanm153@gmail.com [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Munusamy, Murugan A.; Alarfaj, Abdullah A. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh (Saudi Arabia); Higuchi, Akon [Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001 Taiwan (China); Suresh Kumar, S. [Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang (Malaysia)

    2017-06-15

    A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO{sub 2}) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO{sub 2} implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO{sub 2} that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone. - Highlights: • Successful development of CNTs–Pectin reinforced M-HA nanocomposite coating on TiO{sub 2} by electrodeposition. • The success of nanocomposite coatings was evidenced with FTIR, XRD, XPS, SEM-EDX, and TEM. • Nanocomposite coating on TiO{sub 2} is bio-resistive, better candidate for implant applications. • The fabricate nanocomposite coatings showed good biocompatibility and no adverse effect from in vitro and in vivo tests.

  18. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Volk; Cem Sarica

    2003-10-01

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multiphase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines. The following deliverables are scheduled during the first three projects of the program: (1) Single-Phase Studies, with three different black oils, which will yield an enhanced computer code for predicting paraffin deposition in deepwater and surface pipelines. (2) Two

  19. 76 FR 21265 - Interest on Deposits; Deposit Insurance Coverage

    Science.gov (United States)

    2011-04-15

    ..., Federal Deposit Insurance Corporation, 550 17th Street, NW., Washington, DC 20429. Hand Delivery: Guard... Treasury and General Government Appropriations Act, enacted as part of the Omnibus Consolidated and...

  20. 76 FR 41392 - Interest on Deposits; Deposit Insurance Coverage

    Science.gov (United States)

    2011-07-14

    ... volatility as depository institutions competed for an increased share of business deposits by offering... earnings credits. A third commenter urged that the Financial Stability Oversight Council (the FSOC) should...

  1. Atmospheric deposition 2000. NOVA 2003; Atmosfaerisk deposition 2000. NOVA 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Hertel, O.; Hovmand, M.F.; Kemp, K.; Skjoeth, C.A.

    2001-11-01

    This report presents measurements and calculations from the atmospheric part of NOVA 2003 and covers results for 2000. It summarises the main results concerning concentrations and depositions of nitrogen, phosphorus and sulphur compounds related to eutrophication and acidification. Depositions of atmospheric compounds to Danish marine waters as well as land surface are presented. Measurements: In 2000 the monitoring program consisted of eight stations where wet deposition of ammonium, nitrate, phosphate (semi quantitatively) and sulphate were measured using bulk precipitation samplers. Six of the stations had in addition measurements of atmospheric content of A, nitrogen, phosphorus, and sulphur compounds in gas and particulate phase carried out by use of filter pack samplers. Filters were analysed at the National Environmental Research Institute. Furthermore nitrogen dioxide were measured using nitrogen dioxide filter samplers and monitors. Model calculations: The measurements in the monitoring program were supplemented with model calculations of concentrations and depositions of nitrogen and sulphur compounds to Danish land surface, marine waters, fjords and bays using the ACDEP model (Atmospheric Chemistry and Deposition). The model is a so-called trajectory model and simulates the physical and chemical processes in the atmosphere using meteorological and emission data as input. The advantage of combining measurements with model calculations is that the strengths of both methods is obtained. Conclusions concerning: 1) actual concentration levels at the monitoring stations, 2) deposition at the monitoring stations, 3) seasonal variations and 4) long term trends in concentrations and depositions are mainly based on the direct measurements. These are furthermore used to validate the results of the model calculations. Calculations and conclusions concerning: 1) depositions to land surface and to the individual marine water, 2) contributions from different emission

  2. DIMENSION STONE DEPOSITS IN CROATIA

    Directory of Open Access Journals (Sweden)

    Branko Crnković

    1993-12-01

    Full Text Available The geology, petrographycal composition and properties of dimension stone deposits in Croatia are described. Dimension stone deposits in the conception of mobilistic view of the genesis and structure of Dinarides, as well as after stratigraphic units, are considered. Valuation of the dimension stones of the active quarries is exposed. The marketable categories of dimension stone in Croatia are different varietes of limestones and calcareous clastites, primarly of Cretaceous age, and to lesser degree of Jurassic and Paleogene. The greatest part of deposits is concentrated in the Adriatic carbonate platform or Adriaticum.

  3. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  4. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  5. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about...

  6. Electrospark deposition for die repair

    Directory of Open Access Journals (Sweden)

    J. Tušek

    2012-01-01

    Full Text Available The electrospark deposition is a process for surfacing of hard metal alloys, e.g. carbides and stellites, on the surfaces of new or old machine elements. In this process, a high current is conducted through an oscillating electrode and a substrate for a very short period of time. In the paper, the process is described and the thickness of deposited layer, chemical composition, dilution rate and the layer roughness are determined.

  7. Legal Deposit of Electronic Publications

    Directory of Open Access Journals (Sweden)

    Burcu Umut Zan

    2009-06-01

    Full Text Available The most important and basic role of the deposition studies, which are the greatest contributions to the knowledge sharing, is to gather the artistic and philosophical works of a country and provide them for the use of future researchers. However, since early deposition studies were limited with printed publications, they do not involve the electronic publication types appearing with the development of information technology. This stems from the fact that the electronic publications require procedures different from those of the printed publications in terms of deposition steps because of their structures. Today, in order to guarantee that all registered cultural products, which are mostly produced and used in the electronic environment could be fully collected, electronic publications should also be covered by and regulated under legal deposit. This study analyzes the deposition of electronic publications, within the framework of their storage and protection, being put in the use of the users as well as the common approaches to deposition practices in the world parallel to the developments in the information technology. The related situation in Turkey was also evaluated.

  8. A Radon Progeny Deposition Model

    Science.gov (United States)

    Guiseppe, V. E.; Elliott, S. R.; Hime, A.; Rielage, K.; Westerdale, S.

    2011-04-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  9. Analysis of electrophoretic soil humic acids fractions by reversed-phase high performance liquid chromatography with on-line absorbance and fluorescence detection.

    Science.gov (United States)

    Trubetskoj, Oleg A; Richard, Claire; Guyot, Ghislain; Voyard, Guillaume; Trubetskaya, Olga E

    2012-06-22

    A combination of reversed-phase high performance liquid chromatography (RP HPLC) with on-line absorbance and fluorescence detection was used for analysis of chernozem soil humic acids (HAs) and their fractions A, B and C+D with different electrophoretic mobility (EM) and molecular size (MS). Samples were injected onto the column at the identical volume and absorbance. All chromatograms exhibit the resolution of seven peaks. The estimation of relative recovery of HAs and fractions from the reverse-phase column has been done. High MS fraction A, which possesses the low EM, is essentially more hydrophobic (73% of the fraction amount remained adsorbed on the column) and aliphatic than medium MS and EM fraction B (33% of the fraction amount remained adsorbed on the column). The most hydrophilic and aromatic properties belong to low MS fraction C+D, which possess the highest EM and practically was not adsorbed on the column. The hydrophobicity of the bulk HAs lies within the range of fractions hydrophobicity. The absorption spectra of bulk HAs, electrophoretic fractions A, B, C+D and corresponding RP HPLC peaks were featureless but had differences in the values of absorbance ratio at 300 and 400 nm (A3/A4). For fractions A and B this ratio gradually decreased from peak 1 to 7 (from 3.05 to 2.80 and 3.00 to 2.40, respectively). This trend was less pronounced in HAs and practically absent in fraction C+D, where ratio A3/A4 varied within a small range. The strong relationship between fluorescence properties, EM, MS, polarity and aliphaticity/aromaticity of HAs fractions was found. Humic and protein-like fluorescence had different polarity nature. The protein-like fluorescence is located in humic material which irreversibly adsorbed on the reverse-phase column and not subjected to RP HPLC characterization. The humic-like fluorescence at Ex/Em 270/450 nm is mostly located in the hydrophilic peak of low MS fraction C+D. Taking into account that high MS fraction A consisted

  10. Electrophoretic mobility of cell nuclei (EMN index) as a biomarker of the biological aging process: Considering the association between EMN index and age.

    Science.gov (United States)

    Czapla, Z; McPhail, S M

    2015-12-01

    The present study examined whether a specific property of cell microstructures may be useful as a biomarker of aging. Specifically, the association between age and changes of cellular structures reflected in electrophoretic mobility of cell nuclei index (EMN index) values across the adult lifespan was examined. This report considers findings from cross sections of females (n=1273) aged 18-98 years, and males (n=506) aged 19-93 years. A Biotest apparatus was used to perform intracellular microelectrophoresis on buccal epithelial cells collected from each individual. EMN index was calculated on the basis of the number of epithelial cells with mobile nuclei in reference to the cells with immobile nuclei per 100cells. Regression analyses indicated a significant negative association between EMN index value and age for men (r=-0.71, paging. The strength of association observed between EMN index and age for both men and women was encouraging and supports the potential use of EMN index for determining a biological age of an individual (or a group). In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. EMN index has demonstrated potential to meet criteria proposed for biomarkers of aging and further investigations are necessary. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Electrophoretic mobility of semi-flexible double-stranded DNA in defect-controlled polymer networks: Mechanism investigation and role of structural parameters

    Science.gov (United States)

    Khairulina, Kateryna; Li, Xiang; Nishi, Kengo; Shibayama, Mitsuhiro; Chung, Ung-il; Sakai, Takamasa

    2015-06-01

    Our previous studies have reported an empirical model, which explains the electrophoretic mobility (μ) of double-stranded DNA (dsDNA) as a combination of a basic migration term (Rouse-like or reptation) and entropy loss term in polymer gels with ideal network structure. However, this case is of exception, considering a large amount of heterogeneity in the conventional polymer gels. In this study, we systematically tune the heterogeneity in the polymer gels and study the migration of dsDNA in these gels. Our experimental data well agree with the model found for ideal networks. The basic migration mechanism (Rouse-like or reptation) persists perfectly in the conventional heterogeneous polymer gel system, while the entropy loss term continuously changes with increase in the heterogeneity. Furthermore, we found that in the limit where dsDNA is shorter than dsDNA persistence length, the entropy loss term may be related to the collisional motions between DNA fragments and the cross-links.

  12. Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyeong Sook; Lee, Dong-Hyun; Kim, Dae Sung; Lim, Hyung Mi; Lee, Seung-Ho [Korea Institute of Ceramic Engineering Technology (KICET), Seoul (Korea, Republic of); Kim, Chong youp [Korea University, Seoul (Korea, Republic of)

    2013-10-15

    Colloidal silica is used in various industrial products such as chemical mechanical polishing slurry for planarization of silicon and sapphire wafer, organic-inorganic hybrid coatings, binder of investment casting, etc. An accurate determination of particle size and dispersion stability of silica sol is demanded because it has a strong influence on surface of wafer, film of coatings or bulks having mechanical, chemical and optical properties. The study herein is discussed on the effect of measurement results of average particle size, sol viscosity and electrophoretic mobility of particle according to the volume fraction of eight types of silica sol with different size and surface properties of silica particles which are presented by the manufacturer. The measured particle size and the mobility of these sol were changed by volume fraction or particle size due to highly active surface of silica particle and change of concentration of counter ion by dilution of silica sol. While in case the measured sizes of small particles less than 60 nm are increased with increasing volume fraction, the measured sizes of larger particles than 60 nm are slightly decreased. The mobility of small particle such as 12 nm are decreased with increase of viscosity. However, the mobility of 100 nm particles under 0.048 volume fraction are increased with increasing volume fraction and then decreased over higher volume fraction.

  13. A simple method for assessment and minimization of errors in determination of electrophoretic or electroosmotic mobilities and velocities associated with the axial electric field distortion.

    Science.gov (United States)

    Nowak, Paweł Mateusz; Woźniakiewicz, Michał; Kościelniak, Paweł

    2015-12-01

    It is commonly accepted that the modern CE instruments equipped with efficient cooling system enable accurate determination of electrophoretic or electroosmotic mobilities. It is also often assumed that velocity of migration in a given buffer is constant throughout the capillary length. It is simultaneously neglected that the noncooled parts of capillary produce extensive Joule heating leading to an axial electric field distortion, which contributes to a difference between the effective and nominal electric field potentials and between velocities in the cooled and noncooled parts of capillary. This simplification introduces systematic errors, which so far were however not investigated experimentally. There was also no method proposed for their elimination. We show a simple and fast method allowing for estimation and elimination of these errors that is based on combination of a long-end and short-end injections. We use it to study the effects caused by variation of temperature, electric field, capillary length, and pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles.

    Science.gov (United States)

    Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2016-11-20

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Modeling the relationship between the main emulsion components and stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility of orange beverage emulsion using response surface methodology.

    Science.gov (United States)

    Mirhosseini, Hamed; Tan, Chin Ping; Hamid, Nazimah Sheikh Abdul; Yusof, Salmah

    2007-09-19

    The possible relationships between the main emulsion components (namely, Arabic gum, xanthan gum, and orange oil) and the physicochemical properties of orange beverage emulsion were evaluated by using response surface methodology. The physicochemical emulsion property variables considered as response variables were emulsion stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility. The independent variables had the most and least significant ( p turbidity loss rate, viscosity, viscosity ratio, and mobility, respectively. The main effect of Arabic gum was found to be significant ( p turbidity loss rate. The nonlinear regression equations were significantly ( p 0.86), which had no indication of lack of fit. The results indicated that a combined level of 10.78% (w/w) Arabic gum, 0.56% (w/w) xanthan gum, and 15.27% (w/w) orange oil was predicted to provide the overall optimum region in terms of physicochemical properties studied. No significant ( p > 0.05) difference between the experimental and the predicted values confirmed the adequacy of response surface equations.

  16. Phosphorylation of a specific cdk site in E2F-1 affects its electrophoretic mobility and promotes pRB-binding in vitro

    DEFF Research Database (Denmark)

    Peeper, D S; Keblusek, P; Helin, K

    1995-01-01

    of the retinoblastoma gene (pRB). We find that E2F-1 proteins are heterogeneously phosphorylated in insect cells, as a result of which they migrate as a doublet on SDS-polyacrylamide gels. This electrophoretic shift is shown to be dependent upon specific phosphorylation of E2F-1 on serine-375 (S375), near the pRB......-binding site. Phosphorylation on S375 also occurs in human cells. E2F-1 was most efficiently phosphorylated on this residue by cyclin A/cdk2 kinase, and to a lesser extent by cyclin A/cdk2, irrespective of the presence of the pRB-related p107 protein. Phosphorylation of E2F-1 on S375 greatly enhanced its......The E2F transcription factor family participates in growth control presumably through transcriptional activation of genes that promote entry into S phase. E2F activity is believed to be controlled across the cell cycle by association with various cellular proteins, including the product...

  17. Screening for Functional Non-coding Genetic Variants Using Electrophoretic Mobility Shift Assay (EMSA) and DNA-affinity Precipitation Assay (DAPA).

    Science.gov (United States)

    Miller, Daniel E; Patel, Zubin H; Lu, Xiaoming; Lynch, Arthur T; Weirauch, Matthew T; Kottyan, Leah C

    2016-08-21

    Population and family-based genetic studies typically result in the identification of genetic variants that are statistically associated with a clinical disease or phenotype. For many diseases and traits, most variants are non-coding, and are thus likely to act by impacting subtle, comparatively hard to predict mechanisms controlling gene expression. Here, we describe a general strategic approach to prioritize non-coding variants, and screen them for their function. This approach involves computational prioritization using functional genomic databases followed by experimental analysis of differential binding of transcription factors (TFs) to risk and non-risk alleles. For both electrophoretic mobility shift assay (EMSA) and DNA affinity precipitation assay (DAPA) analysis of genetic variants, a synthetic DNA oligonucleotide (oligo) is used to identify factors in the nuclear lysate of disease or phenotype-relevant cells. For EMSA, the oligonucleotides with or without bound nuclear factors (often TFs) are analyzed by non-denaturing electrophoresis on a tris-borate-EDTA (TBE) polyacrylamide gel. For DAPA, the oligonucleotides are bound to a magnetic column and the nuclear factors that specifically bind the DNA sequence are eluted and analyzed through mass spectrometry or with a reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blot analysis. This general approach can be widely used to study the function of non-coding genetic variants associated with any disease, trait, or phenotype.

  18. Preparative free-flow electrophoretic offline ESI-Fourier transform ion cyclotron resonance/MS analysis of Suwannee River fulvic acid.

    Science.gov (United States)

    Gaspar, Andras; Harir, Mourad; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2010-06-01

    Free-flow electrophoresis (FFE), a preparative free zone electrophoretic method, was used offline in conjunction with ultrahigh-resolution FT/ion cyclotron resonance -MS to resolve the complexity of Suwannee River fulvic acid (SRFA). Before MS, the FFE separation conditions and the compatibility with ESI were optimized. The constituents in SRFA were effectively separated based on their charge states and sizes. The obtained mass spectra were compared by means of van Krevelen diagrams and the calculated aromaticity indices of the individual constituents were used to describe the distribution of aromatic/unsaturated structures across the FFE-fractionated samples. The consolidated number of ions observed within the individual SRFA fractions were much higher than those of the bulk samples alone, demonstrating extensive ion suppression effects in bulk SRFA likely also operating in the analysis of complex biogeochemical mixtures in flow injection mode. The FFE approach allows for producing sizable amounts of sample from dilute solutions, which can be easily fractionated into dozens of individual samples with the possibility of further in-depth characterization.

  19. Evidence of the protein content of bovine and human dental pulps by the action of endodontic irrigation solutions through electrophoretic patterns

    Directory of Open Access Journals (Sweden)

    María E López

    2013-01-01

    Full Text Available Background: Sodium dodecyl sulfate polyacrylamide gel electrophoresis let to show the protein content of different tissues. Dental pulp contains connective tissue which is removed during the endodontic treatment. Many studies consider bovine rather than human pulp tissue because of its size. Aim: To evidence the protein content of bovine and human dental pulps and the action of endodontic irrigation solutions through electrophoretic patterns. Materials and Methods: Extracts of human and bovine dental pulps were prepared. Sodium hypochlorite, calcium hydroxide, chlorhexidine and ethylenediamine tetraacetic acid were used as irrigating solutions. Results: Bovine and human pulps have a small difference in two bands of proteins present between 74 kDa and 80 kDa. The denaturizing capacity of sodium hypochlorite and the washing action of calcium hydroxide and chlorhexidine were evidenced. Ethylenediamine tetraacetic acid solution was shown to contain proteins continuously during the endodontic root canal washing. Conclusions: Differences in pulp tissues and the action of irrigating solutions on their protein content would help on the understanding of the biological process of the endodontic treatment.

  20. Electrophoretically mediated microanalysis for simultaneous on-capillary derivatization of standard amino acids followed by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection.

    Science.gov (United States)

    Celá, Andrea; Mádr, Aleš; Glatz, Zdeněk

    2017-05-26

    Amino acids are crucial compounds involved in most biochemical processes essential for life. Since their dynamic turnover reflects the actual physiology of the cell/organism, a turnover assessment may provide valuable information related to multiple physiological and pathophysiological conditions. The sensitive determination of amino acids is predominantly associated with their derivatization which might be laborious, time-consuming and difficult to standardize. However, capillary electrophoresis offers the automatic injection and mixing of reactants, incubation of the reaction mixture, separation and detection of the reaction products in one on-capillary procedure. Among the on-capillary mixing strategies, electrophoretically mediated microanalysis (EMMA) is superior in terms of mixing efficiency. In this paper, we present an optimization of EMMA for the simultaneous derivatization of standard amino acids by naphthalene-2,3-dicarboxaldehyde/NaCN and its application to targeted human embryo metabolomics. For such a purpose, novel separation conditions were developed involving the background electrolyte, comprised of 73mM sodium dodecyl sulfate, 6.7 % (v/v) 1-propanol, 0.5mM (2-hydroxypropyl)-β-cyclodextrin and 135mM boric acid/sodium hydroxide buffer (pH 9.00). Finally, the optimized EMMA was compared to a fundamentally different mixing strategy, namely the transverse diffusion of laminar flow profiles, and proved to be also suitable for human plasma analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Depositional origin of snow sastrugi

    Science.gov (United States)

    Leonard, K. C.; Tremblay, B.

    2006-12-01

    Sastrugi are wind-parallel elongated surface roughness features found on both land and sea ice. Simple models of sastrugi formation suggest that these features grow via deposition of windblown snow in the lee of an initial perturbation in surface topography, and subsequent erosion of the up-wind end of the bump. We present a mechanism for the creation of sastrugi nucleation sites: the initial surface perturbation. Modeling results of plumes of blowing snow moving at or above 15 meters per second (at the 10m reference level) show that when the snow surface is depleted of loose (erodible) snow, small amounts of deposition occur. Once formed, these irregularly spaced small deposits of snow (less than 0.1 cm over 1m2 or less) can persist and propagate.

  2. Improved corrosion resistant and mechanical behavior of distinct composite coatings (silica/titania/zirconia on Ti–6Al–4V deposited by EPD

    Directory of Open Access Journals (Sweden)

    M. Chellappa

    2017-09-01

    Full Text Available Synthesized composite powders (ZrO2/TiO2, SiO2/TiO2, and SiO2/ZrO2 were successfully deposited on Ti–6Al–4V by electrophoretic deposition method (EPD to improve its electrochemical characteristics for better biomedical applications. In the present investigation, the three composite powders were prepared by sol–gel synthesis and its phase purity was analyzed by Powder X-ray diffraction (XRD method. Further, the performance of the deposited coatings was assessed by scanning electron microscopy (SEM coupled with energy dispersive X-ray analysis (EDAX, scratch resistance test. The electrochemical properties of the composite coatings were analyzed by Potentiodynamic (Tafel polarization and electrochemical impedance spectroscopy (EIS studies. From the results, we observed that the corrosion resistance behavior of the different composite coated metallic substrate exhibited divergent corrosion resistance nature than blank Ti–6Al–4V. Of all these coatings on Ti–6Al–4V, the composite made up of, ZrO2/TiO2 has pronounced corrosion resistance behavior in Ringer’s solution when compared to others. This behavior is due to the presence of strong adherent coating owing to the existence of uniform deposition on Ti–6Al–4V.

  3. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Cem Sarica; Michael Volk

    2004-06-01

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

  4. Lateritic nickel deposits of Brazil

    Science.gov (United States)

    de Oliveira, S. M. Barros; Trescases, J. J.; Melfi, A. José

    1992-03-01

    Many nickel deposits are known in Brazil, accounting for about 350 · 106 tons of ore with an average of 1.5% Ni. All are of the lateritic type. These deposits are scattered throughout the country, being rarer in the Northeastern Region and in the South, below 25 °S latitude. They are mainly associated with mafic-ultramafic massifs of large dimensions and ultramafic alkaline complexes, and occur in climatic regions of contrasting seasons. The weathering profile developed over the fresh rock consists, from bottom to top, of the following horizons: altered rock, coarse saprolite, argillaceous saprolite, ferruginous saprolite and lateritic overburden. The thickness of each horizon varies from one deposit to another, the whole profile generally exceeding 20 m. The saprolitic horizons with inherited minerals (serpentine, chlorite) or neoformed minerals (smectites) constitute the silicated nickel ore and are thicker were climatic conditions are drier; the ferruginous upper horizons made up of iron oxide-hydroxides are more developed in more humid regions. In Brazil, the silicated ore generally prevails over the oxidized ore. The main Ni-bearing minerals are serpentine, smectite, garnierite and goethite. The lateritic nickel deposits of Brazil may be correlated with two erosion surfaces, corresponding to the Sul Americano (Lower Tertiary) and Velhas (Upper Tertiary) levelling cycles. The degree of dismantling of the higher and more ancient surface and the consequent development of the Velhas Surface control the position of the nickel accumulation in the landscape. Thus, the deposits may be found either in the lowlands or in the highlands, where they are always covered by a silcrete layer. The alteration profiles in the Brazilian lateritic nickel deposits are broadly similar to those described elsewhere in the world. However, they present two characteristic features: the silicated ore prevails over the oxidized ore, and a silicified layer covers the profies developed on

  5. The role of transverse speed on deposition height and material efficiency in laser deposited titanium alloy

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-03-01

    Full Text Available deposition and reweighing after deposition. The substrate and the deposits were thoroughly cleaned using wire brush and acetone to remove unmelted powder particles from the surface of the substrate and the deposit. The height and width of the deposits were...

  6. Fabrication and optical properties of TiO sub 2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes

    CERN Document Server

    Lin, Y; Yuan, X Y; Xie, T; Zhang, L D

    2003-01-01

    Ordered TiO sub 2 nanowire arrays have been successfully fabricated into the nanochannels of a porous anodic alumina membrane by sol-gel electrophoretic deposition. After annealing at 500 deg. C, the TiO sub 2 nanowire arrays and the individual nanowires were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and x-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense and continuous with a uniform diameter throughout their entire length. XRD and SAED analysis together indicate that these TiO sub 2 nanowires crystallize in the anatase polycrystalline structure. The optical absorption band edge of TiO sub 2 nanowire arrays exhibits a blue shift with respect of that of the bulk TiO sub 2 owing to the quantum size effect.

  7. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    To investigate the physical process of deposition and resuspension of particles in the indoor environment, scale experiments are used and a sampling method is established. The influences of surface orientation and turbulence and velocity of the air on the dust load on a surface are analysed....

  8. Nitrogen deposition and terrestrial biodiversity

    Science.gov (United States)

    Christopher M. Clark; Yongfei Bai; William D. Bowman; Jane M. Cowles; Mark E. Fenn; Frank S. Gilliam; Gareth K. Phoenix; Ilyas Siddique; Carly J. Stevens; Harald U. Sverdrup; Heather L. Throop

    2013-01-01

    Nitrogen deposition, along with habitat losses and climate change, has been identified as a primary threat to biodiversity worldwide (Butchart et al., 2010; MEA, 2005; Sala et al., 2000). The source of this stressor to natural systems is generally twofold: burning of fossil fuels and the use of fertilizers in modern intensive agriculture. Each of these human...

  9. Grow Your Own Copper Deposit

    Science.gov (United States)

    Corcoran, Timothy John

    2009-01-01

    Crystals are beautiful structures--yet they occur naturally in dirty and remote places. In the inquiry-based activity described here, students will enjoy the process of creating their own crystals and using microscopes to examine them. It demonstrates the process of mineral concentration and deposition. Upon completing this activity, students…

  10. Simple Chemical Vapor Deposition Experiment

    Science.gov (United States)

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  11. Fossil ascomycetes in Quaternary deposits

    NARCIS (Netherlands)

    van Geel, B.; Aptroot, A.

    2006-01-01

    Abstract: Remains of various ascomycetes, mainly ascospores, have been detected during palynological studies of lake sediments, peat deposits and samples from archaeological sites. Many taxa can be identified to genus or species level of extant taxa. Ascospore remains may sometimes give indications

  12. THE ENVIRONMENTAL THE ENVIRONMENTAL DEPOSITION ...

    African Journals Online (AJOL)

    eobe

    textural characteristics, organic matter contents, mineralogical ... such as the organic matter content and depositional environment of the .... laminated. 100. 10510 Shale. Light grey shale. 100. 10610 Shale. Medium grey shale. 100. 10640 Shale. Dark grey shale with termination. 100. 10680 Shale. Dark grey shale with.

  13. Electro-spark deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated critical to the life and economy of the advanced fossil energy systems as the higher temperatures and corrosive environments exceed the limits of known structural materials to accommodate the service conditions. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. A new development is the demonstration of advanced aluminide-based ESD coatings for erosion and wear applications. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that yields an order of magnitude increase in deposition rates and achievable coating thicknesses. Achieving this regime has required the development of advanced ESD electronic capabilities. Development is now focused on further improvements in deposition rates, system reliability when operating at process extremes, and economic competitiveness.

  14. Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application

    DEFF Research Database (Denmark)

    Smeacetto, Federico; De Miranda, Auristela; Cabanas Polo, Sandra

    2015-01-01

    Cr-containing stainless steels are widely used as metallic interconnects for SOFCs. Volatile Cr-containing species, which originate from the oxide formed on steel, can poison the cathode material and subsequently cause degradation in the SOFC stack. Mn1.5Co1.5O4 spinel is one of the most promisin...

  15. EPD-deposited ZnO thin films: a review

    Directory of Open Access Journals (Sweden)

    Verde, M.

    2014-08-01

    Full Text Available ZnO-based materials and specifically ZnO films with tailored morphology have been subjected to extensive research in the past few years due to their high potential for multiple prospective applications, mainly in electronics. Electrophoretic Deposition (EPD constitutes an economical, ecofriendly, low energy consuming and easily scalable alternative to the high energy consuming evaporative techniques which are commonly used for the obtaining of these ZnO films. For its application, however, the use of stable, well dispersed suspensions is a necessary requirement, and thus a thorough study of their colloidal chemistry is essential. In this work the main contributions to the study of colloidal chemistry of ZnO nanoparticle suspensions and their shaping into ZnO films by EPD are summarized.Los materiales basados en ZnO y en particular las láminas de ZnO con morfología controlada han sido objeto en los últimos años de numerosas investigaciones debido al elevado potencial que presentan para múltiples aplicaciones emergentes, principalmente en electrónica. La deposición electroforética (EPD constituye un método alternativo económico, ecológico, de bajo coste energético y elevada escalabilidad para la producción de éstas láminas de ZnO, en contraste con las técnicas evaporativas empleadas habitualmente, las cuales presentan un elevado impacto energético, así como una escalabilidad complicada. Para su aplicación, sin embargo, y puesto que el principal requisito es el uso de suspensiones estables y bien dispersas, es necesario un detallado estudio de la coloidequímica de las mismas. En este trabajo se resumen las aportaciones más relevantes relativas al estudio de los distintos parámetros que afectan a la estabilidad coloidal de las suspensiones de nanopartículas de ZnO y al proceso de obtención de las láminas mediante EPD a partir de las mismas.

  16. Constructing deposition chronologies for peat deposits using radiocarbon dating

    Directory of Open Access Journals (Sweden)

    N. Piotrowska

    2011-06-01

    Full Text Available Radiocarbon dating is one of the main methods used to establish peat chronologies. This article reviews the basis of the method and its application to dating of peat deposits. Important steps in the radiocarbon dating procedure are described, including selection and extraction of material (and fractions for dating, chemical and physical preparation of media suitable for measurements, measurements of 14C activity or concentration, calculations, calibration of results and age-depth modelling.

  17. Preliminary evaluation of total protein concentration and electrophoretic protein fractions in fresh and frozen serum from wild Horned Vipers (Vipera ammodytes ammodytes).

    Science.gov (United States)

    Proverbio, Daniela; de Giorgi, Giada Bagnagatti; Della Pepa, Alessandra; Baggiani, Luciana; Spada, Eva; Perego, Roberta; Comazzi, Carlo; Belloli, Angelo

    2012-12-01

    Determination of the health status of reptiles is based on physical examination and evaluation of hematologic and biochemical values. Evaluation of serum total protein (TP) concentration and protein fractions plays an important role in health assessment; however, little is known about references value for these analytes in wild viperoid snakes. In addition, studies evaluating the stability of proteins in frozen viperoid serum are lacking. The aims of this study were to establish preliminary reference values for concentrations of TP and protein fractions in serum from wild vipers and to evaluate the stability of serum proteins in frozen serum samples from viperoid snakes. Blood samples were collected from wild Horned Vipers (Vipera ammodytes ammodytes). Using fresh serum, TP concentrations were determined using the biuret method and protein fractions were analyzed using agarose gel electrophoresis (AGE); albumin/globulin ratios were calculated. Analyses were also performed on serum frozen at -20°C for 70 days and then thawed. Pre- and post-storage results were compared using the Mann-Whitney U-test. Five adult wild Horned Vipers were sampled and comprised 4 males and 1 female. The female snake had higher TP concentrations than the male snakes. The electrophoretic patterns demonstrated 6 protein fractions that were similar for all 5 snakes. There were no significant changes in the concentrations of the 6 protein fractions post-storage; the percentage of the alpha-1 fraction was increased in frozen/thawed serum. Total protein concentrations in serum from Vipera ammodytes ammodytes were in agreement with published reference intervals for healthy reptiles and viperoid snakes. Serum protein fractions were easy to identify using AGE electrophoresis. © 2012 American Society for Veterinary Clinical Pathology.

  18. Two-dimensional electrophoretic comparison of metastatic and non-metastatic human breast tumors using in vitro cultured epithelial cells derived from the cancer tissues

    Directory of Open Access Journals (Sweden)

    Buršíková Eva

    2008-04-01

    Full Text Available Abstract Background Breast carcinomas represent a heterogeneous group of tumors diverse in behavior, outcome, and response to therapy. Identification of proteins resembling the tumor biology can improve the diagnosis, prediction, treatment selection, and targeting of therapy. Since the beginning of the post-genomic era, the focus of molecular biology gradually moved from genomes to proteins and proteomes and to their functionality. Proteomics can potentially capture dynamic changes in protein expression integrating both genetic and epigenetic influences. Methods We prepared primary cultures of epithelial cells from 23 breast cancer tissue samples and performed comparative proteomic analysis. Seven patients developed distant metastases within three-year follow-up. These samples were included into a metastase-positive group, the others formed a metastase-negative group. Two-dimensional electrophoretical (2-DE gels in pH range 4–7 were prepared. Spot densities in 2-DE protein maps were subjected to statistical analyses (R/maanova package and data-mining analysis (GUHA. For identification of proteins in selected spots, liquid chromatography-tandem mass spectrometry (LC-MS/MS was employed. Results Three protein spots were significantly altered between the metastatic and non-metastatic groups. The correlations were proven at the 0.05 significance level. Nucleophosmin was increased in the group with metastases. The levels of 2,3-trans-enoyl-CoA isomerase and glutathione peroxidase 1 were decreased. Conclusion We have performed an extensive proteomic study of mammary epithelial cells from breast cancer patients. We have found differentially expressed proteins between the samples from metastase-positive and metastase-negative patient groups.

  19. Imaging Approaches for Contact Lens Deposition.

    Science.gov (United States)

    Panthi, Shyam; Nichols, Jason J

    2017-07-01

    Deposition on contact lenses (CLs) starts quickly after their application to the ocular surface. Deposits may be composed of tear film components or other extraneous substances. These deposits have been related to various adverse conditions of the eye, leading to reduced biocompatibility between the CLs and the ocular surface. Analysis of these deposits is essential to better elucidate the relationship between these deposits and their adverse reactions so that better methods of increasing biocompatibility can be developed. Although methods such as enzymatic assays are available for quantitative analysis, they do not provide a complete picture of the deposition (e.g., lack of morphological details), and therefore, the use of imaging methods that can provide both qualitative and quantitative information about the deposits may be more preferable. Therefore, a search of the peer-reviewed literature that focused on imaging methods in the analysis of deposits on CLs was conducted. Various methods of imaging deposits in-vitro, in-vivo, or ex-vivo have been described along with the associated results. Imaging methods using fluorescence-based techniques and scanning electron microscopy appear to be the most frequently used methods. Some of the described methods not only provided morphologies but also identified the types of various deposits that were attached to the CLs. Various CL materials possessed different deposition morphologies and different quantities of the attached deposits. Further imaging studies performed in conjunction with other methods that could identify and quantify the deposits at a molecular level are recommended.

  20. High throughput semiconductor deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Young, David L.; Ptak, Aaron Joseph; Kuech, Thomas F.; Schulte, Kevin; Simon, John D.

    2017-11-21

    A reactor for growing or depositing semiconductor films or devices. The reactor may be designed for inline production of III-V materials grown by hydride vapor phase epitaxy (HVPE). The operating principles of the HVPE reactor can be used to provide a completely or partially inline reactor for many different materials. An exemplary design of the reactor is shown in the attached drawings. In some instances, all or many of the pieces of the reactor formed of quartz, such as welded quartz tubing, while other reactors are made from metal with appropriate corrosion resistant coatings such as quartz or other materials, e.g., corrosion resistant material, or stainless steel tubing or pipes may be used with a corrosion resistant material useful with HVPE-type reactants and gases. Using HVPE in the reactor allows use of lower-cost precursors at higher deposition rates such as in the range of 1 to 5 .mu.m/minute.

  1. Chemical vapor deposition of sialon

    Science.gov (United States)

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  2. Measuring coal deposits by radar

    Science.gov (United States)

    Barr, T. A.

    1980-01-01

    Front-surface, local-oscillator radar directly compares frequency of signals reflected from front and back surfaces of coal deposits. Thickness is measured directly as frequency difference. Transmitter is frequency modulated, so thickness is computed directly from frequency difference. Because front and back reflections are detected in combination rather than separately, masking of comparatively weak back signal is less problem. Also system is not sensitive to extraneous reflections from targets between transmitting antenna and coal surface.

  3. Analysing the Cenozoic depositional record

    DEFF Research Database (Denmark)

    Goledowski, Bartosz; Clausen, O.R.; Nielsen, S.B.

    2008-01-01

    between the global climate record (oxygen isotopes) and lithology variations on the Eocene-Oligocene transition in the eastern North Sea. Due to the strongly limited time resolution of low temperature thermochronology, the Cenozoic sedimentary record potentially provides the most detailed history...... models. The matrix mass deposition history will be compared with the paleoclimate record (e.g. oxygen isotope curves) to see if the previously observed correlation in the eastern North Sea can be extended to other ages and locations.  ...

  4. Pele Plume Deposit on Io

    Science.gov (United States)

    1997-01-01

    The varied effects of Ionian volcanism can be seen in this false color infrared composite image of Io's trailing hemisphere. Low resolution color data from Galileo's first orbit (June, 1996) have been combined with a higher resolution clear filter picture taken on the third orbit (November, 1996) of the spacecraft around Jupiter.A diffuse ring of bright red material encircles Pele, the site of an ongoing, high velocity volcanic eruption. Pele's plume is nearly invisible, except in back-lit photographs, but its deposits indicate energetic ejection of sulfurous materials out to distances more than 600 kilometers from the central vent. Another bright red deposit lies adjacent to Marduk, also a currently active ediface. High temperature hot spots have been detected at both these locations, due to the eruption of molten material in lava flows or lava lakes. Bright red deposits on Io darken and disappear within years or decades of deposition, so the presence of bright red materials marks the sites of recent volcanism.This composite was created from data obtained by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The region imaged is centered on 15 degrees South, 224 degrees West, and is almost 2400 kilometers across. The finest details that can be discerned in this picture are about 3 kilometers across. North is towards the top of the picture and the sun illuminates the surface from the west.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  6. Particle Deposition onto Enclosure Surfaces

    Science.gov (United States)

    2009-08-20

    from constant bombardment by surrounding gas molecules. Such irregular motions of pollen grains in water were first observed by the botanist Robert...mode" particles, when neither of the mechanism works effectively to cause particle deposition (Figure 3). With respect to particle composition ... analyses as well as the limitations associated with these models. 7.1 Homogeneous Turbulence Model Modeling efforts for studying particle

  7. Electro-spark deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Pacific Northwest Lab., WA (United States)

    1996-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated as one of the enabling technologies for advanced energy systems. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that promises an order of magnitude increase in deposition rates and achievable coating thicknesses. Since this regime borders on and exceeds the normal operating limits of existing ESD electronic equipment, development is in progress to produce equipment that can consistently and reliably achieve these conditions for a broad range of materials. Progress so far has resulted in a consistent 500% increase in deposition rates, and greater rates still are anticipated. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, the incorporation of the process into the operations of a major gas turbine manufacturer, major new applications in gas turbine blade and steam turbine blade protection and repair, and in military, medical, metal-working, and recreational equipment applications.

  8. Forming method of deposited film

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Masaaki; Kanai, Masahiro; Han' na, Jun' ichi; Shimizu, Isamu

    1987-06-23

    This invention relates with a forming method of a functional deposited film which is useful for electronic devices such as semiconductor device, photosensitive device for electrophotography, etc. It enables to attain energy saving and film quality control at the same time, and large area deposited film can be obtained which has uniform physical properties. It also excels in productivity. In other words, a starting material which contains elements of Group II of the Periodic Table (Zn, Cd, Hg) and elements of Group VI (O, S, Se, Te) which are in the gaseous form, is contacted in a reaction vessel with gaseous halogen-based oxidizer to chemically form an excited precursor, from which a deposited film formed on a substrate. Halogenic oxidizer is chlorine and fluorine. Example of Group II-containing compound is Zn(CH/sub 3/)/sub 2/, and examples of Group II-containing compound are NO, H/sub 2/S, Se(C/sub 2/H/sub 5/)/sub 2/. Example of the substrate is Al, s/s, polyester, polyethylene, glass, etc.. (3 tabs)

  9. Federal Deposit Insurance Corporation (FDIC) Insured Banks

    Data.gov (United States)

    Department of Homeland Security — The Summary of Deposits (SOD) is the annual survey of branch office deposits for all FDIC-insured institutions including insured U.S. branches of foreign banks. Data...

  10. CTD_DATABASE - Cascadia tsunami deposit database

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have...

  11. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin......, which make them promising alternatives to the commercially successful solar cell material copper indium gallium diselenide (CIGS). Complementing our group's work on pulsed laser deposition of CZTS, we collaborated with IMEM-CNR in Parma, Italy, to deposit CZTS by pulsed electron deposition for the first...... of using pulsed electron deposition was to make CZTS at a low processing temperature, avoiding the 570 °C annealing step used for our pulsed laser deposited solar cells. Preliminary solar cells had an efficiency of 0.2 % with a 300 °C deposition step without annealing. Further process control is needed...

  12. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented.......In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  13. Innovations in marketing of deposit services

    OpenAIRE

    Vasylieva, T. A.; I.V. Didenko

    2016-01-01

    The aim of the article is recent studies of global trends in marketing of innovative deposit services. The results of the analysis. Summing up the general, it should be noted that, according to our goal, we systematized the theoretical basis of innovation in marketing services and deposit rated their performance justified the specific marketing innovation support domestic banks in the deposit market. Conclusions and directions of further researches. Deposit market is an important resour...

  14. 75 FR 6348 - Deposit of Biological Materials

    Science.gov (United States)

    2010-02-09

    ... Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection; comment [email protected] . Include ``0651-0022 Deposit of Biological Materials comment'' in the subject line [email protected] . SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part of...

  15. Dry deposition of particles to ocean surfaces

    NARCIS (Netherlands)

    Larsen, S.E.; Edson, J.B.; Hummelshoj, P.; Jensen, N.O.; Leeuw, G. de; Mestayer, P.G.

    1995-01-01

    Dry deposition of atmospheric particles mainly depends on wind speed and particle diameter. The dry deposition velocity, Vd, is found to vary by a factor of 100-1,000 with diameter in a likely diameter range, adding uncertainty to deposition estimates, because the diameter distribution for many

  16. 31 CFR 29.334 - Deposit service.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Deposit service. 29.334 Section 29... Satisfied by June 30, 1997 § 29.334 Deposit service. (a) Teachers Plan. (1) Periods of civilian service that... Benefit Payments under the Teachers Plan if the deposit for the service was paid in full to the Teachers...

  17. 37 CFR 1.25 - Deposit accounts.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Deposit accounts. 1.25... Deposit accounts. (a) For the convenience of attorneys, and the general public in paying any fees due, in ordering services offered by the Office, copies of records, etc., deposit accounts may be established in...

  18. 31 CFR 357.26 - Direct Deposit.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Direct Deposit. 357.26 Section 357.26... Treasury Direct) § 357.26 Direct Deposit. (a) General. A payment by the Department with respect to a security shall be by direct deposit unless it is deemed necessary by the Department to make payment by...

  19. 78 FR 16472 - Deposit of Biological Materials

    Science.gov (United States)

    2013-03-15

    ... United States Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection....'' SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part of a patent application is...) or, (2) deposited in a suitable depository that has been recognized as an International Depositary...

  20. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  1. 50 CFR 259.34 - Minimum and maximum deposits; maximum time to deposit.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Minimum and maximum deposits; maximum time to deposit. 259.34 Section 259.34 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Capital Construction Fund Agreement § 259.34 Minimum and maximum deposits; maximum time to deposit. (a...

  2. [Imaging findings of cristal deposit disorders].

    Science.gov (United States)

    Hirschmann, Anna; Studler, Ueli

    2016-01-01

    Cristal deposit disorders are characterised by cristal deposits in hyaline and fibrocartilage, in synovium, capsule, ligaments and tendons and periarticular soft tissue. Calciumpyrophosphatedihydrate (CPPD), hydroxyapatite (calcific tendinitis) and uric acid arthropathies are the most common cristal deposit diseases. Radiography is still the number one image modality for initial imaging and the identification of cristal-induced inflammatory arthropathies. Differentiation between the entities of cristal deposit arthropathies can be challenging. Clincial and radiological findings may overlap in different cristal deposit arthropathies, owing a certain diagnosis difficult.

  3. PRELIMINARY RESULTS ON ELECTROPHORETIC AND ...

    African Journals Online (AJOL)

    search, Salisbury, for her invaluable contribution to this project. References. BOSCH, M.W., 1951. Biochim. biophys. Acta. '1,61. GILES, B.G., 1962. J. Sci. Fd. Agric. 13,164. GRABAR, P. & BURTIN, P., 1964.lmmunoelectrophoretic. Analysis. Amsterdam: Elsevier. TIAPNER, K.D., BRADSHAW, R.A., HARTZELL, C.R. &. GURD ...

  4. Selective Photoinitiated Electrophoretic Separator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA Johnson Space Center needs for gas separation and collection technology for lunar in-situ resource utilization, Physical Optics Corporation (POC)...

  5. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...... contributions to the theory of cluster stopping in matter as well as for practical applications requiring ultra-shallow implantation and modification of surfaces on the nanoscale. Metal clusters from the magnetron cluster source are of interest for the production of optical sensors to detect specific biological...

  6. Metal deposition using seed layers

    Science.gov (United States)

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  7. Energetic deposition of thin metal films

    CERN Document Server

    Al-Busaidy, M S K

    2001-01-01

    deposited films. The primary aim of this thesis was to study the physical effect of energetic deposition metal thin films. The secondary aim is to enhance the quality of the films produced to a desired quality. Grazing incidence X-ray reflectivity (GIXR) measurements from a high-energy synchrotron radiation source were carried out to study and characterise the samples. Optical Profilers Interferometery, Atomic Force Microscope (AFM), Auger electron spectroscopy (AES), Medium energy ion spectroscopy (MEIS), and the Electron microscope studies were the other main structural characterisation tools used. AI/Fe trilayers, as well as multilayers were deposited using a Nordico planar D.C. magnetron deposition system at different voltage biases and pressures. The films were calibrated and investigated. The relation between energetic deposition variation and structural properties was intensely researched. Energetic deposition refers to the method in which the deposited species possess higher kinetic energy and impact ...

  8. Legal Deposit of Digital Materials

    Directory of Open Access Journals (Sweden)

    Erik Oltmans

    2003-09-01

    Full Text Available Digital publishing is causing a real paradigm shift for research institutions and publishers, as well as for libraries. As a consequence these institutions have to develop new policies, new business models and new infrastructures and techniques. A major problem is that, at the same rate at which our world is becoming digital, the digital information is threatened. New types of hardware, computer applications and file formats supersede each other, making our recorded digital information inaccessible in the long-term. In the past years libraries and archives have undertaken several actions and studies on digital preservation issues. For instance the Koninklijke Bibliotheek (KB has jointly with IBM developed a standard-based deposit system: Digital Information Archiving System ( DIAS. Using DIAS the KB realised in 2002 an electronic deposit (the e-Depot and signed archiving agreements with major science publishers for permanent keeping of their digital materials. In this paper I will discuss the fully operational e-Depot at the KB. I will focus on the data flow of processing the digital publications, and I will address the issue of digital preservation in detail.

  9. Area Selective Polymer Brush Deposition.

    Science.gov (United States)

    Cummins, Cian; Shaw, Matthew T; Morris, Michael A

    2017-08-01

    Polymer brush films with chemical functionality to attach to site specific substrate areas are introduced for area selective deposition (ASD) application. It is demonstrated that polymer brushes with chemically defined end sites can be selectively bound to copper-specific regions of patterned copper/silica (Cu/SiO2 ) substrates. The process described overcomes various limitations of currently used technology including cost, complexity, and throughput, with potential implications for future electronic devices and nanomanufacturing. A comparative study of amine-terminated polystyrene and amine-terminated poly-2-vinyl pyridine polymer brushes (i.e., PS-NH2 and P2VP-NH2 ) with similar molecular weights display contrasting behavior on patterned Cu/SiO2 line features. Further, a thiol terminated poly-2-vinyl pyridine polymer brush (i.e., P2VP-SH) is investigated as a direct spin-on process to fabricate a metal oxide layer atop Cu areas only. The results presented here detail a novel methodology and open a new exciting process for ASD practices that can facilitate the precise deposition of dense metal, semiconductor, or dielectric films. We also discuss the applicability of polymer brushes to ASD uses going forward. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Salt deposition at particle contact points

    Science.gov (United States)

    Nie, Xiaodong; Evitts, Richard W.; Besant, Robert W.; Kennell, Glyn F.

    2015-09-01

    Caking may occur when granular potash fertilizer with a moisture content greater than 0.25 % (w/w) undergoes drying. Since cake strength is proportional to the mass of crystal deposited per unit volume near contact points (and other factors) the modelling of mass deposition near contact points is important. The Young-Laplace equation for the air-salt-solution interface is used to determine the geometry of a 2-D planar saline film between two cubic potash particles. A 2-D theoretical model is developed and applied for ion diffusion and deposition near the contact point during drying. The numerical predictions of ion diffusion in an initially saturated salt illustrate the transient spatial distribution of new KCl deposits along the solid surfaces near the contact line. These results indicate the average salt deposition commences at the air-liquid-solid intersection, where the liquid film is thinnest, and moves toward the particle contact point with increasing area averaged KCl deposits, causing the formation of crystal deposits and bridges near contact points. It is concluded that the average salt deposit height increases inversely with distance from the contact point and decreases with initial contact angle of the contact region, but the deposition is nearly independent of the evaporation or drying rate near each contact region. Caking strength depends on, among other parameters, the amount of salt deposition near contact points.

  11. Global properties and propensity to dimerization of the amyloid-beta (12-28) peptide fragment through the modeling of its monomer and dimer diffusion coefficients and electrophoretic mobilities.

    Science.gov (United States)

    Deiber, Julio A; Peirotti, Marta B; Piaggio, Maria V

    2015-03-01

    Neuronal activity loss may be due to toxicity caused mainly by amyloid-beta (1-40) and (1-42) peptides forming soluble oligomers. Here the amyloid-beta (12-28) peptide fragment (monomer) and its dimer are characterized at low pH through the modeling of their diffusion coefficients and effective electrophoretic mobilities. Translational diffusion coefficient experimental values of monomer and dimer analogs of this peptide fragment and monomer and dimer mixtures at thermodynamic equilibrium are used as reported in the literature for different monomer initial concentrations. The resulting electrokinetic and hydrodynamic global properties are employed to evaluate the amyloid-beta (12-28) peptide fragment propensity to dimerization through a thermodynamic theoretical framework. Therefore equilibrium constants are considered at pH 2.9 to elucidate one of the amyloidogenic mechanisms involving the central hydrophobic region LVFFA of the peptide spanning residues 17-21 associated with phenylalanine at positions 19 and 20 in the amino acid sequence of amyloid-beta peptides. An analysis demonstrating that peptide aggregation is a concentration-dependent process is provided, where both pair and intraparticle charge regulation phenomena become relevant. It is shown that the modeling of the effective electrophoretic mobility of the amyloid-beta (12-28) peptide fragment is crucial to understand the effect of hydrophobic region LVFFA in the amyloidogenic process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Atmosfærisk deposition

    DEFF Research Database (Denmark)

    Ellermann, T.; Hertel, O.; Kemp, K.

    Kvælstofdepositionen til danske havområder, fjorde, vige og bugte er for 2001 blevet beregnet til 118 ktons N, hvilket er ca. 20 % lavere end i 2000. Tilsvarende er depositionen til landområderne beregnet til 87 ktons N, hvilket svarer til deposition i 2000. Den primære årsag til den højere depos...... koncentrationer af tungmetaller (Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, og Pb) i 2001 adskiller sig ikke væsentligt fra det seneste år. Over de sidste ti år er der sket et fald i tungmetalniveauerne på mellem en faktor to og tre; størst for Pb og Cd....

  13. [Diagnosis of calcified deposits in soft tissues].

    Science.gov (United States)

    Wybier, M; Laredo, J D; Parlier, C; Champsaur, P

    1997-01-01

    Calcific deposit within soft tissues is frequently a clue for diagnosis. The radiological analysis of a calcific deposit within soft tissues includes the following aspects: the basic structure of the calcification, the grade of differentiation of the calcification, the site of the calcification, the number of calcific deposits, the shape of the calcification, the changes in the adjacent non-calcified soft tissues and in the adjacent bone, the course of the clinical signs, the course of the radiological abnormalities.

  14. Structural characterization of MAPLE deposited lipase biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Ausanio, Giovanni; Bloisi, Francesco [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Calabria, Raffaela [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Califano, Valeria, E-mail: v.califano@im.cnr.it [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Massoli, Patrizio [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Vicari, Luciano R.M. [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy)

    2014-11-30

    Highlights: • Lipase from Candida Rugosa was deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on KBr pellets, mica and glass substrate. • The deposited film was characterized morphologically and structurally by optical microscopy, SEM and FTIR analysis. • Results of characterization underlined a phenomenon of aggregation taking place. • The aggregation phenomenon was reversible since lipase showed activity in the transesterification reaction between soybean oil and isopropyl alcohol once detached from the substrate. - Abstract: Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography–mass spectrometry gave results consistent with undamaged deposition of lipase.

  15. Copper Deposits in Sedimentary and Volcanogenic Rocks

    Science.gov (United States)

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be

  16. Giant landslide deposits in northwest Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Fauque, L.; Strecker, M.R.; Bloom, A.L.

    1985-01-01

    Giant Quaternary landslide deposits occur along mountain fronts in the structural transition zone between the high-angle reverse-fault-bounded Sierras Pampeanas and the low-angle thrust belt of the Sierras Subandinas. There are two modes of occurrence: (1) chaotic masses without distinct geometry, and (2) masses with distinct lobate geometry similar to glacial moraines. Type (1) deposits occur where the moving rock mass followed a narrow valley and blocked the drainage. Many of these caused subsequent formation of lakes and changed the sedimentation processes on pediments at the mountain fronts. In type (2) deposits, lateral and frontal ridges are up to 10 m higher than the interior parts; in some places pressure ridges within the lobes are well preserved. Type (2) deposits show reverse grading and were deposited on relatively smooth pediments or alluvial fans. The lobate geometry strongly suggests that type (2) deposits are a product of flowage and are debris stream or sturzstrom deposits (sense of Heim, 1932 and Hsu, 1975). All investigated deposits occur in areas of demonstrated Quaternary faulting and are interpreted as the result of tectonic movements, although structural inhomogeneities in the source area may have been a significant factor for some of the landslides. No datable materials have yet been found associated with the deposits.

  17. Electrophoretic Profile of Albumin, α1, α2, β and γ Globulin in Sera of Opioid Dependants and Non-dependants

    Directory of Open Access Journals (Sweden)

    koros Div-salaar

    2008-02-01

    Full Text Available Div-salaar K1, Saravani R2, Shamsi-e-meimandi M3, Taei M4, Sheikholeslami A5 1. MSc. Staff member of Neurology Sciences Research Center, Kerman University of Medical Sciences 2. Instructor, Department of Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences 3. Instructor, Department of Physiology and Pharmacology, Faculty of Medicine, Neurology Sciences Research Center, Karman University of Medical Sciences 4. Researcher, Neurology Sciences Research Center, Karman University of Medical Sciences 5. B.Sc in Environmental Hygiene, Kerman University of Medical Sciences Abstract Background: The prevalence rate of opioids consumption is high in Iran. The latest research approach related to substance abuse considers the role of plasma proteins in novel treatments of addiction. Since long-term consumption of opioids has some effects on liver function and plasma transfer systems, the present study was designed to determine the electrophoretic profile of plasma proteins in opiates-addict subjects. Materials and methods: In this cross-control study, the sample groups consisted of 42 opium consumers and 35 heroine dependents as case group and 35 non-addict volunteers as control group. The control group was matched with addicts for age and sex. Opioid consumption was confirmed by laboratory diagnostic tests on urine samples such as immunochromatography (RSA, rapidosis and complementary tests including liquid-solid column chromatography and thin layer chromatography (TLC. After blood collection and serum preparation, serum electrophoresis was performed. Data were presented as mean±SEM and analyzed by SPSS ver.11.5. The comparison of groups was done by using parametric tests and p<0.01 was considered as statistically significant. Results: There was no significant difference in the amounts of albumin, alpha-1-globulin, alpha-2-globulin and beta-globulin between groups. Gamma-globulin concentration was not significantly different between

  18. Hideout in steam generator tube deposits

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, P.V.; Franklin, K.J.; Turner, C.W

    1998-05-01

    Hideout in deposits on steam generator tubes was studied using tubes coated with magnetite. Hideout from sodium chloride solutions at 279 degrees C was followed using an on-line high-temperature conductivity probe, as well as by chemical analysis of solution samples from the autoclave in which the studies were done. Significant hideout was observed only at a heat flux greater than 200 kW/m{sup 2}, corresponding to a temperature drop greater than 2 degrees C across the deposits. The concentration factor resulting from the hideout increased highly non-linearly with the heat flux (varying as high as the fourth power of the heat flux). The decrease in the apparent concentration factor with increasing deposit thickness suggested that the pores in the deposit were occupied by a mixture of steam and water, which is consistent with the conclusion from the thermal conductivity measurements on deposits in a separate study. Analyses of the deposits after the hideout tests showed no evidence of any hidden-out solute species, probably due to the concentrations being very near the detection limits and to their escape from the deposit as the tests were being ended. This study showed that hideout in deposits may concentrate solutes in the steam generator bulk water by a factor as high as 2 x 10{sup 3}. Corrosion was evident under the deposit in some tests, with some chromium enrichment on the surface of the tube. Chromium enrichment usually indicates an acidic environment, but the mobility required of chromium to become incorporated into the thick magnetite deposit may indicate corrosion under an alkaline environment. An alkaline environment could result from preferential accumulation of sodium in the solution in the deposit during the hideout process. (author)

  19. Colloid Deposit Morphology and Clogging in Porous Media: Fundamental Insights Through Investigation of Deposit Fractal Dimension.

    Science.gov (United States)

    Roth, Eric J; Gilbert, Benjamin; Mays, David C

    2015-10-20

    Experiments reveal a wide discrepancy between the permeability of porous media containing colloid deposits and the available predictive equations. Evidence suggests that this discrepancy results, in part, from the predictive equations failing to account for colloid deposit morphology. This article reports a series of experiments using static light scattering (SLS) to characterize colloid deposit morphology within refractive index matched (RIM) porous media during flow through a column. Real time measurements of permeability, specific deposit, deposit fractal dimension, and deposit radius of gyration, at different vertical positions, were conducted with initially clean porous media at various ionic strengths and fluid velocities. Decreased permeability (i.e., increased clogging) corresponded with higher specific deposit, lower fractal dimension, and smaller radius of gyration. During deposition, fractal dimension, radius of gyration, and permeability decreased with increasing specific deposit. During flushing with colloid-free fluid, these trends reversed, with increased fractal dimension, radius of gyration, and permeability. These observations suggest a deposition scenario in which large and uniform aggregates become deposits, which reduce porosity, lead to higher fluid shear forces, which then decompose the deposits, filling the pore space with small and dendritic fragments of aggregate.

  20. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by Hot Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Schropp, R.E.I.; van der Werf, C.H.M.; Verlaan, V.; Rath, J.K.; Li, H. B. T.

    2009-01-01

    The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted,

  1. Pulsed laser deposition in Twente: from research tool towards industrial deposition

    NARCIS (Netherlands)

    Blank, David H.A.; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    After the discovery of the perovskite high Tc superconductors in 1986, a rare and almost unknown deposition technique attracted attention. Pulsed laser deposition (PLD), or laser ablation as it was called in the beginning, became popular because of the possibility to deposit complex materials, like

  2. Ammonia release method for depositing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Silver, G.L.; Martin, F.S.

    1993-12-31

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  3. Antireflection coatings on plastics deposited by plasma ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 4 ... The plasma polymerization process is more economical than ion-assisted physical vapour deposition processes as regards equipment and source materials and is more cost-effective, enabling the surface treatment and deposition of the ARC in the same ...

  4. Origin of bonebeds in Quaternary tank deposits

    Science.gov (United States)

    Araújo-Júnior, Hermínio Ismael de; Porpino, Kleberson de Oliveira; Bergqvist, Lílian Paglarelli

    2017-07-01

    Tank deposits are an exceptional type of fossiliferous deposit and bear a remarkably fossil record of the Pleistocene megafauna of South America, particularly of Brazil. The taphonomy of vertebrate remains preserved in this type of environmental context was clearly driven by climate, similarly to most of the Quaternary continental fossil record. The formation of the vertebrates fossil record in tank deposits was influenced by the climate seasonality typical of arid climate. The taphonomic history of most tank deposits is a consequence of this seasonality and, as a result, the paleoecological data preserved in their fossil assemblages is reliable with respect to paleobiological and paleoenvironmental settings of the Quaternary ecosystems of the Brazilian Intertropical Region (BIR). Other tank deposits experienced an unusual taphonomic history that, besides climate, was affected by recurrent events of reworking produced by the depositional agents dominant in the surrounding alluvial plains. The conclusions obtained here concerning the main taphonomic settings and formative processes that characterize fossil vertebrate assemblages of tank deposits will help further studies aimed to recover information on the paleoecology of Quaternary fauna collected in such deposits by allowing a better understanding of their time and spatial resolutions and other potential biases.

  5. 33 CFR 20.605 - Depositions.

    Science.gov (United States)

    2010-07-01

    ... questions and responses that were noted at the taking of the deposition and that would have been sustained if the witness had been personally present and testifying at a hearing, a deposition may be offered... taken by telephone conference call upon such terms, conditions, and arrangements as are prescribed in...

  6. Global reactive nitrogen deposition from lightning NOx

    NARCIS (Netherlands)

    Shepon, A.; Gildor, H.; Labrador, L.J.; Butler, T.; Ganzeveld, L.N.; Lawrence, M.G.

    2007-01-01

    We present results of the deposition of nitrogen compounds formed from lightning (LNO x ) using the global chemical transport Model of Atmospheric Transport and Chemistry¿Max Planck Institute for Chemistry version. The model indicates an approximately equal deposition of LNO x in both terrestrial

  7. Plant responses to insect egg deposition

    NARCIS (Netherlands)

    Hilker, M.; Fatouros, N.E.

    2015-01-01

    Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect

  8. Deposition of contaminant aerosol on human skin

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Roed, Jørn; Byrne, M.A.

    2006-01-01

    Over recent years, it has been established that deposition of various types of pollutant aerosols (e.g., radioactive) on human skin can have serious deleterious effects on health. However. only few investigations in the past have been devoted to measurement of deposition velocities on skin...

  9. 32 CFR 807.6 - Depositing payments.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Depositing payments. 807.6 Section 807.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION SALE TO THE PUBLIC § 807.6 Depositing payments. Obtain instructions from the local Accounting and Finance Office...

  10. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  11. 37 CFR 2.208 - Deposit accounts.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Deposit accounts. 2.208 Section 2.208 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Fees and Payment of Money in Trademark Cases § 2.208 Deposit...

  12. Deposition and Investigation of Hydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Safonov Aleksey

    2015-01-01

    Full Text Available The fluoropolymer coatings of different morphologies are deposited by the HWCVD (Hot Wire CVD method. The effect of activator filament temperature on the structure of fluoropolymer coating is shown. The results of studying the hydrophobic fluoropolymer coatings with different structures, deposited by the HWCVD method, are presented.

  13. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    Ash deposition on boiler surfaces is a major problem encountered during biomass combustion. Ash deposition adversely influences the boiler efficiency, may corrode heat transfer surfaces, and may even completely block flue gas channels in severe cases, causing expensive unscheduled boiler shutdown...

  14. Chemistry of deposit formation in distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hazlett, R.N.; Power, A.J.; Kelso, A.G.; Solly, R.K.

    1986-01-01

    The chemistry of deposit formation in distillate fuels was investigated at 65 and 80 C for time peroids equivalent to up to four years ambient storage. The chemical environment was varied by using different fuels, fuel blends, deposit promoters, and stabilzers. Blends of light cycle oil (LCO) in straight-run automotive distillate oil (ADO) were studied in most detail. A variety of carboxylic acids, a sulfonic acid, thiophenol, and caustic extract from LCO (primarily phenols) increased deposit formation, some very dramatically. For the carboxylic acids, a linear relationship was found between the hydrogen ion concentration calculated from pK/sub a/ values for water solutions and the amount of deposit formed. These acids enhanced deposit formation by catalytic action and are not incorporated into the deposit. Dodecylbenzenesulfonic acid and thiophenol were both strong deposit promoters, the latter deriving its major activity through partial conversion to benzenesulfonic acid during fuel stress. The phenols in the LCO caustic extract react via oxidative coupling to increase molecular size and develop low solubility in the fuel. A tertiary aliphatic amine stabilzer was effective for reducing the amounts of deposits from most stressed fuels and from all blends tested.

  15. The geomicrobiology of bauxite deposits

    Directory of Open Access Journals (Sweden)

    Xiluo Hao

    2010-10-01

    Full Text Available Bauxite deposits are studied because of their economic value and because they play an important role in the study of paleoclimate and paleogeography of continents. They provide a rare record of the weathering and evolution of continental surfaces. Geomicrobiological analysis makes it possible to verify that microorganisms have played a critical role during the formation of bauxite with the possibility already intimated in previous studies. Ambient temperature, abundance of water, organic carbon and bioavailable iron and other metal substrates provide a suitable environment for microbes to inhabit. Thiobacillus, Leptospirilum, Thermophilic bacteria and Heterotrophs have been shown to be able to oxidize ferrous iron and to reduce sulfate-generating sulfuric acid, which can accelerate the weathering of aluminosilicates and precipitation of iron oxyhydroxides. Microorganisms referred to the genus Bacillus can mediate the release of alkaline metals. Although the dissimilatory iron-reducing and sulfate-reducing bacteria in bauxites have not yet been identified, some recorded authigenic carbonates and “bacteriopyrites” that appear to be unique in morphology and grain size might record microbial activity. Typical bauxite minerals such as gibbsite, kaolinite, covellite, galena, pyrite, zircon, calcium plagioclase, orthoclase, and albite have been investigated as part of an analysis of microbial mediation. The paleoecology of such bauxitic microorganisms inhabiting continental (sub surfaces, revealed through geomicrobiological analysis, will add a further dimension to paleoclimatic and paleoenvironmental studies.

  16. A preliminary deposit model for lithium brines

    Science.gov (United States)

    Bradley, Dwight; Munk, LeeAnn; Jochens, Hillary; Hynek, Scott; Labay, Keith A.

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. The global transition away from hydrocarbons toward energy alternatives increases demand for many scarce metals. Among these is lithium, a key component of lithium-ion batteries for electric and hybrid vehicles. Lithium brine deposits account for about three-fourths of the world’s lithium production. Updating an earlier deposit model, we emphasize geologic information that might directly or indirectly help in exploration for lithium brine deposits, or for assessing regions for mineral resource potential. Special attention is given to the best-known deposit in the world—Clayton Valley, Nevada, and to the giant Salar de Atacama, Chile.

  17. Tax evasion and Swiss bank deposits

    DEFF Research Database (Denmark)

    Johannesen, Niels

    2014-01-01

    Bank deposits in offshore financial centers may be used to evade taxes on interest income. A recent EU reform limits the scope for this type of tax evasion by introducing a withholding tax on interest income earned by EU households in Switzerland and several other offshore centers. This paper...... estimates the impact of the withholding tax on Swiss bank deposits held by EU residents while using non-EU residents who were not subject to the tax as a comparison group. We present evidence that Swiss bank deposits owned by EU residents declined by 30–40% relative to other Swiss bank deposits in two...... quarters immediately before and after the tax was introduced. We also present evidence suggesting that the drop in Swiss bank deposits was driven by behavioral responses aiming to escape the tax - such as the transfer of funds to bank accounts in other offshore centers and the transfer of formal ownership...

  18. Chemical vapor deposition coating for micromachines

    Energy Technology Data Exchange (ETDEWEB)

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  19. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  20. Chemical Vapor Deposition and Atomic Layer Deposition of Coatings for Mechanical Applications

    Science.gov (United States)

    Doll, G. L.; Mensah, B. A.; Mohseni, H.; Scharf, T. W.

    2010-01-01

    Chemical vapor deposition (CVD) of films and coatings involves the chemical reaction of gases on or near a substrate surface. This deposition method can produce coatings with tightly controlled dimensions and novel structures. Furthermore, the non-line-of-sight-deposition capability of CVD facilitates the coating of complex-shaped mechanical components. Atomic layer deposition (ALD) is also a chemical gas phase thin film deposition technique, but unlike CVD, it utilizes “self-limiting” surface adsorption reactions (chemisorption) to control the thickness of deposited films. This article provides an overview of CVD and ALD, discusses some of their fundamental and practical aspects, and examines their advantages and limitations versus other vapor processing techniques such as physical vapor deposition in regard to coatings for mechanical applications. Finally, site-specific cross-sectional transmission electron microscopy inside the wear track of an ALD ZnO/ZrO2 8 bilayers nanolaminate coating determined the mechanisms that control the friction and wear.

  1. 31 CFR 344.4 - What are Time Deposit securities?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false What are Time Deposit securities? 344... LOCAL GOVERNMENT SERIES Time Deposit Securities § 344.4 What are Time Deposit securities? Time Deposit...? The issuer must fix the maturity periods for Time Deposit securities, which are issued as follows: (1...

  2. 50 CFR 270.16 - Deposit of funds.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Deposit of funds. 270.16 Section 270.16... Deposit of funds. All funds collected or received by a Council under this section must be deposited in an... deposited in any interest-bearing account or certificate of deposit of a bank that is a member of the...

  3. Structural characterization of MAPLE deposited lipase biofilm

    Science.gov (United States)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  4. Lateritic, supergene rare earth element (REE) deposits

    Science.gov (United States)

    Cocker, Mark D.

    2014-01-01

    Intensive lateritic weathering of bedrock under tropical or sub-tropical climatic conditions can form a variety of secondary, supergene-type deposits. These secondary deposits may range in composition from aluminous bauxites to iron and niobium, and include rare earth elements (REE). Over 250 lateritic deposits of REE are currently known and many have been important sources of REE. In southeastern China, lateritic REE deposits, known as ion-adsorption type deposits, have been the world’s largest source of heavy REE (HREE). The lateritized upper parts of carbonatite intrusions are being investigated for REE in South America, Africa, Asia and Australia, with the Mt. Weld deposit in Australia being brought into production in late 2012. Lateritic REE deposits may be derived from a wide range of primary host rocks, but all have similar laterite and enrichment profiles, and are probably formed under similar climatic conditions. The weathering profile commonly consists of a depleted zone, an enriched zone, and a partially weathered zone which overlie the protolith. Lateritic weathering may commonly extend to depths of 30 to 60 m. REE are mobilized from the breakdown of primary REE-bearing minerals and redeposited in the enriched zone deeper in the weathering horizon as secondary minerals, as colloids, or adsorbed on other secondary minerals. Enrichment of REE may range from 3 to 10 times that of the source lithology; in some instances, enrichment may range up to 100 times.

  5. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  6. Rare earth element deposits in China

    Science.gov (United States)

    Xie, Yu-Ling; Hou, Zeng-qian; Goldfarb, Richard J.; Guo, Xiang; Wang, Lei

    2016-01-01

    China is the world’s leading rare earth element (REE) producer and hosts a variety of deposit types. Carbonatite- related REE deposits, the most significant deposit type, include two giant deposits presently being mined in China, Bayan Obo and Maoniuping, the first and third largest deposits of this type in the world, respectively. The carbonatite-related deposits host the majority of China’s REE resource and are the primary supplier of the world’s light REE. The REE-bearing clay deposits, or ion adsorption-type deposits, are second in importance and are the main source in China for heavy REE resources. Other REE resources include those within monazite or xenotime placers, beach placers, alkaline granites, pegmatites, and hydrothermal veins, as well as some additional deposit types in which REE are recovered as by-products. Carbonatite-related REE deposits in China occur along craton margins, both in rifts (e.g., Bayan Obo) and in reactivated transpressional margins (e.g., Maoniuping). They comprise those along the northern, eastern, and southern margins of the North China block, and along the western margin of the Yangtze block. Major structural features along the craton margins provide first-order controls for REE-related Proterozoic to Cenozoic carbonatite alkaline complexes; these are emplaced in continental margin rifts or strike-slip faults. The ion adsorption-type REE deposits, mainly situated in the South China block, are genetically linked to the weathering of granite and, less commonly, volcanic rocks and lamprophyres. Indosinian (early Mesozoic) and Yanshanian (late Mesozoic) granites are the most important parent rocks for these REE deposits, although Caledonian (early Paleozoic) granites are also of local importance. The primary REE enrichment is hosted in various mineral phases in the igneous rocks and, during the weathering process, the REE are released and adsorbed by clay minerals in the weathering profile. Currently, these REE-rich clays are

  7. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  8. An Introduction to Atomic Layer Deposition

    Science.gov (United States)

    Dwivedi, Vivek H.

    2017-01-01

    Atomic Layer Deposition has been instrumental in providing a deposition method for multiple space flight applications. It is well known that ALD is a cost effective nanoadditive-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases, thin films can be deposited on a myriad of substrates from flat surfaces to those with significant topography. By providing atomic layer control, where single layers of atoms can be deposited, the fabrication of metal transparent films, precise nano-laminates, and coatings of nano-channels, pores and particles is achievable. The feasibility of this technology for NASA line of business applications range from thermal systems, optics, sensors, to environmental protection. An overview of this technology will be presented.

  9. Tax Evasion and Swiss Bank Deposits

    DEFF Research Database (Denmark)

    Johannesen, Niels

    with banking secrecy. In this paper, we estimate the impact of the source tax on Swiss bank deposits held by EU residents while using that non-EU residents were not subject to the tax to apply a natural experiment methodology. We find that the 15% source tax caused Swiss bank deposits of EU residents to drop...... by more than 40% with most of the response occurring in two quarters immediately before and after the source tax was introduced. The estimates imply an elasticity of Swiss deposits with respect to the net-of-source-tax-rate in the range 2.5-3.......Bank deposits in jurisdictions with banking secrecy constitute an effective tool to evade taxes on interest income. A recent EU reform reduces the scope for this type of tax evasion by introducing a source tax on interest income earned by EU residents in Switzerland and several other jurisdictions...

  10. ROE Wet Nitrate Deposition 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet nitrate deposition in kilograms per hectare from 2011 to 2013. Summary data in this indicator were provided by EPA’s...

  11. ROE Total Nitrogen Deposition 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset identifies the amount of wet, dry, and total deposition of nitrogen in kilograms per hectare from 1989 to 1991 at a set of point locations across the...

  12. ROE Total Nitrogen Deposition 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset identifies the amount of wet, dry, and total deposition of nitrogen in kilograms per hectare from 2011 to 2013 at a set of point locations across the...

  13. Rare earth element mines, deposits, and occurrences

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains location, geologic and mineral economic data for world rare earth mines, deposits, and occurrences. The data in this compilation were derived...

  14. 7 CFR 47.16 - Depositions.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE MARKETING OF PERISHABLE AGRICULTURAL COMMODITIES RULES OF PRACTICE... which the deposition is to be conducted (telephone, audio-visual telecommunication, or by personal...

  15. Major mineral deposits of the world

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Regional locations and general geologic setting of known deposits of major nonfuel mineral commodities. Originally compiled in five parts by diverse authors,...

  16. ROE Total Sulfur Deposition 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset identifies the amount of wet, dry, and total deposition of sulfur in kilograms per hectare from 1989 to 1991 at a set of point locations across the...

  17. ROE Wet Nitrate Deposition 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet nitrate deposition in kilograms per hectare from 1989 to 1991. Summary data in this indicator were provided by EPA’s...

  18. Porphyry copper deposits of the world

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Information on porphyry copper deposits from around the world with grade and tonnage models, a general classification based on geologic setting, mineralogy, with...

  19. NOAA/WDC Global Tsunami Deposits Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Discover where, when and how severely tsunamis affected Earth in geologic history. Information regarding Tsunami Deposits and Proxies for Tsunami Events complements...

  20. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...