Deep learning and the electronic structure problem
Mills, Kyle; Spanner, Michael; Tamblyn, Isaac
In the past decade, the fields of artificial intelligence and computer vision have progressed remarkably. Supported by the enthusiasm of large tech companies, as well as significant hardware advances and the utilization of graphical processing units to accelerate computations, deep neural networks (DNN) are gaining momentum as a robust choice for many diverse machine learning applications. We have demonstrated the ability of a DNN to solve a quantum mechanical eigenvalue equation directly, without the need to compute a wavefunction, and without knowledge of the underlying physics. We have trained a convolutional neural network to predict the total energy of an electron in a confining, 2-dimensional electrostatic potential. We numerically solved the one-electron Schrödinger equation for millions of electrostatic potentials, and used this as training data for our neural network. Four classes of potentials were assessed: the canonical cases of the harmonic oscillator and infinite well, and two types of randomly generated potentials for which no analytic solution is known. We compare the performance of the neural network and consider how these results could lead to future advances in electronic structure theory.
Levin, Alan R.; Zhang, Deyin; Polizzi, Eric
2012-11-01
In a recent article Polizzi (2009) [15], the FEAST algorithm has been presented as a general purpose eigenvalue solver which is ideally suited for addressing the numerical challenges in electronic structure calculations. Here, FEAST is presented beyond the “black-box” solver as a fundamental modeling framework which can naturally address the original numerical complexity of the electronic structure problem as formulated by Slater in 1937 [3]. The non-linear eigenvalue problem arising from the muffin-tin decomposition of the real-space domain is first derived and then reformulated to be solved exactly within the FEAST framework. This new framework is presented as a fundamental and practical solution for performing both accurate and scalable electronic structure calculations, bypassing the various issues of using traditional approaches such as linearization and pseudopotential techniques. A finite element implementation of this FEAST framework along with simulation results for various molecular systems is also presented and discussed.
Electronic structure and properties of uranyl compounds. Problems of electron-donor conception
International Nuclear Information System (INIS)
Glebov, V.A.
1982-01-01
Comparison of the series of the ligand mutual substitution in the uranyl compounds with the ligand series of d-elements and with the uranyl ''covalent model'', is made. The data on ionization potentials of the ligand higher valent levels and on the structure of some uranyl nitrate compounds are considered. It is concluded that the mechanism of the ligand effect on the properties of uranyl grouping is more complex, than it is supposed in the traditional representations on the nature of electron-donor interactions in the uranyl compounds
Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John
2016-04-01
Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a
International Nuclear Information System (INIS)
Jones, Wesley B; Bester, Gabriel; Canning, Andrew; Franceschetti, Alberto; Graf, Peter A; Kim, Kwiseon; Langou, Julien; Wang Linwang; Dongarra, Jack; Zunger, Alex
2005-01-01
Researchers at the National Renewable Energy Laboratory and their collaborators have developed over the past ∼10 years a set of algorithms for an atomistic description of the electronic structure of nanostructures, based on plane-wave pseudopotentials and configurationinteraction. The present contribution describes the first step in assembling these various codes into a single, portable, integrated set of software packages. This package is part of an ongoing research project in the development stage. Components of NanoPSE include codes for atomistic nanostructure generation and passivation, valence force field model for atomic relaxation, code for potential field generation, empirical pseudopotential method solver, strained linear combination of bulk bands method solver, configuration interaction solver for excited states, selection of linear algebra methods, and several inverse band structure solvers. Although not available for general distribution at this time as it is being developed and tested, the design goal of the NanoPSE software is to provide a software context for collaboration. The software package is enabled by fcdev, an integrated collection of best practice GNU software for open source development and distribution augmented to better support FORTRAN
Locally self-consistent Green’s function approach to the electronic structure problem
DEFF Research Database (Denmark)
Abrikosov, I.A.; Simak, S.I.; Johansson, B.
1997-01-01
scattering problem in a local interaction zone (LIZ) embedded in an effective medium judiciously chosen to minimize the size of the, LIZ. The excellent real-space convergence of the LSGF calculations and the reliability of its results are demonstrated for a broad spectrum of metallic alloys with different...... degree of order. The relation of the convergence of our method to fundamental properties of the system, that is, the effective cluster interactions, is discussed....
International Nuclear Information System (INIS)
Grosso, G.
1986-01-01
The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The basic strategies employed to attack the problem of electronic-structure calculations are presented. Successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green'sfunction, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide further insight by the author into the physical aspects of the different methods and are a guide to the use of their mathematical techniques. A discussion is offered of completely a priori Hartree-Fock calculations and attempts to extend them. Special aspects of the different methods are also discussed in light of recently published related work
Structural Identification Problem
Directory of Open Access Journals (Sweden)
Suvorov Aleksei
2016-01-01
Full Text Available The identification problem of the existing structures though the Quasi-Newton and its modification, Trust region algorithms is discussed. For the structural problems, which could be represented by means of the mathematical modelling of the finite element code discussed method is extremely useful. The nonlinear minimization problem of the L2 norm for the structures with linear elastic behaviour is solved by using of the Optimization Toolbox of Matlab. The direct and inverse procedures for the composition of the desired function to minimize are illustrated for the spatial 3D truss structure as well as for the problem of plane finite elements. The truss identification problem is solved with 2 and 3 unknown parameters in order to compare the computational efforts and for the graphical purposes. The particular commands of the Matlab codes are present in this paper.
Electronics for Piezoelectric Smart Structures
Warkentin, D. J.; Tani, J.
1997-01-01
This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.
Collaborative problem structuring using MARVEL
Veldhuis, G.A.; Scheepstal, P.G.M. van; Rouwette, E.A.J.A.; Logtens, T.W.A.
2015-01-01
When faced with wicked and messy problems, practitioners can rely on a variety of problem structuring methods (PSMs). Although previous efforts have been made to combine such methods with simulation, currently, few exist that integrate a simulation capability within problem structuring. Our
Electronic structure of silicene
International Nuclear Information System (INIS)
Voon, L. C. Lew Yan
2015-01-01
In this topical review, we discuss the electronic structure of free-standing silicene by comparing results obtained using different theoretical methods. Silicene is a single atomic layer of silicon similar to graphene. The interest in silicene is the same as for graphene, in being two-dimensional and possessing a Dirac cone. One advantage of silicene is due to its compatibility with current silicon electronics. Both empirical and first-principles techniques have been used to study the electronic properties of silicene. We will provide a brief overview of the parameter space for first-principles calculations. However, since the theory is standard, no extensive discussion will be included. Instead, we will emphasize what empirical methods can provide to such investigations and the current state of these theories. Finally, we will review the properties computed using both types of theories for free-standing silicene, with emphasis on areas where we have contributed. Comparisons to graphene is provided throughout. (topical review)
The electronic structures of solids
Coles, B R
2013-01-01
The Electronic Structures of Solids aims to provide students of solid state physics with the essential concepts they will need in considering properties of solids that depend on their electronic structures and idea of the electronic character of particular materials and groups of materials. The book first discusses the electronic structure of atoms, including hydrogen atom and many-electron atom. The text also underscores bonding between atoms and electrons in metals. Discussions focus on bonding energies and structures in the solid elements, eigenstates of free-electron gas, and electrical co
Fundamental problems in the evaluation of electron micrographs
International Nuclear Information System (INIS)
Huiser, A.M.J.
1979-01-01
A theoretical assessment of optical images in electron microscopy is presented. The relation between the structure of the objects one usually encounters in electron microscopy and the recorded images is found to depend upon the scattering by the object of fast electrons from the source and the propagation of the scattered electrons through the rest of the microscope. A model is developed which enables the calculation of the mutual intensity in the object plane, under conditions which usually apply in electron microscopy, such as small angle scattering. The phase problem in electron microscopy is also fully discussed. (C.F.)
Electron conductance in curved quantum structures
DEFF Research Database (Denmark)
Willatzen, Morten; Gravesen, Jens
2010-01-01
is computationally fast and provides direct (geometrical) parameter insight as regards the determination of the electron transmission coefficient. We present, as a case study, calculations of the electron conductivity of a helically shaped quantum-wire structure and discuss the influence of the quantum......A differential-geometry analysis is employed to investigate the transmission of electrons through a curved quantum-wire structure. Although the problem is a three-dimensional spatial problem, the Schrodinger equation can be separated into three general coordinates. Hence, the proposed method...
The electron-atom ionization problem
International Nuclear Information System (INIS)
McCarthy, I.E.
1995-02-01
Methods of calculating electron-atom ionization as a three-body problem with Coulomb boundary conditions are considered. In the absence of a fully-valid computational method for a time-independent experiment the approximation is made that the incident electron experiences a screened potential. Approximations involving a final state that obeys the three-body Coulomb boundary condition are compared with the distorted-wave Born approximation and the convergent close-coupling method. 24 refs., 6 figs
Electron holography for fields in solids: Problems and progress
International Nuclear Information System (INIS)
Lichte, Hannes; Börrnert, Felix; Lenk, Andreas; Lubk, Axel; Röder, Falk; Sickmann, Jan; Sturm, Sebastian; Vogel, Karin; Wolf, Daniel
2013-01-01
Electron holography initially was invented by Dennis Gabor for solving the problems raised by the aberrations of electron lenses in Transmission Electron Microscopy. Nowadays, after hardware correction of aberrations allows true atomic resolution of the structure, for comprehensive understanding of solids, determination of electric and magnetic nanofields is the most challenging task. Since fields are phase objects in the TEM, electron holography is the unrivaled method of choice. After more than 40 years of experimental realization and steady improvement, holography is increasingly contributing to these highly sophisticated and essential questions in materials science, as well to the understanding of electron waves and their interaction with matter. - Highlights: • We review the development of the method of electron holography. • We outline the role of information content as guideline. • We outline the improvements of the method. • We sketch the future instrumental development. • We summarize the still existing problems to solve
Electronic structure of superlattices
International Nuclear Information System (INIS)
Altarelli, M.
1987-01-01
Calculations of electronic states in semiconductor superlattices are briefly reviewed, with emphasis on the envelope-function method and on comparison with experiments. The energy levels in presence of external magnetic fields are discussed and compared to magneto-optical experiments. (author) [pt
Electronic structure of alloys
International Nuclear Information System (INIS)
Ehrenreich, H.; Schwartz, L.M.
1976-01-01
The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references
Electron holography for fields in solids: problems and progress.
Lichte, Hannes; Börrnert, Felix; Lenk, Andreas; Lubk, Axel; Röder, Falk; Sickmann, Jan; Sturm, Sebastian; Vogel, Karin; Wolf, Daniel
2013-11-01
Electron holography initially was invented by Dennis Gabor for solving the problems raised by the aberrations of electron lenses in Transmission Electron Microscopy. Nowadays, after hardware correction of aberrations allows true atomic resolution of the structure, for comprehensive understanding of solids, determination of electric and magnetic nanofields is the most challenging task. Since fields are phase objects in the TEM, electron holography is the unrivaled method of choice. After more than 40 years of experimental realization and steady improvement, holography is increasingly contributing to these highly sophisticated and essential questions in materials science, as well to the understanding of electron waves and their interaction with matter. © 2013 Elsevier B.V. All rights reserved.
Electronic structure of silicon superlattices
International Nuclear Information System (INIS)
Krishnamurthy, S.; Moriarty, J.A.
1984-01-01
Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon
Fingerprint-based structure retrieval using electron density.
Yin, Shuangye; Dokholyan, Nikolay V
2011-03-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.
Electronic structure and correlation effects in actinides
International Nuclear Information System (INIS)
Albers, R.C.
1998-01-01
This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related
Ballistic transport and electronic structure
Schep, Kees M.; Kelly, Paul J.; Bauer, Gerrit E.W.
1998-01-01
The role of the electronic structure in determining the transport properties of ballistic point contacts is studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi surface. The essential physics is first clarified for simple models. For real
The Electronic Structure of Calcium
DEFF Research Database (Denmark)
Jan, J.-P.; Skriver, Hans Lomholt
1981-01-01
The electronic structure of calcium under pressure is re-examined by means of self-consistent energy band calculations based on the local density approximation and using the linear muffin-tin orbitals (LMTO) method with corrections to the atomic sphere approximation included. At zero pressure...
Electronic structure of metal clusters
International Nuclear Information System (INIS)
Wertheim, G.K.
1989-01-01
Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)
Electronic recombination in some physics problems
International Nuclear Information System (INIS)
Guzman, O.
1988-01-01
This work is related to calculations of electronic recombination rates, as a function of electronic density, electronic temperature, and ion nuclear charge. Recombination times can be calculated and compared to cooling time, in cooling processes of ion beans by electrons from storage rings. (A.C.A.S.) [pt
Considerations on field problem structure
International Nuclear Information System (INIS)
Pavelescu, M.
1977-01-01
A survey of the three field problem types known today: equilibrium, eigen value and propagation problems is presented. The place occupied by neutron field in the nuclear reactor systems both statics and dynamics is shown. The special class of approximate solution method concerning the solving of field and boundary equations is analysed. The residual and variational method and the finite element method which presents a special interest are examined as well. (author)
Montero, E.; Gonzalez, M. J.
2009-01-01
Problem-based learning has been at the core of significant developments in engineering education in recent years. This term refers to any learning environment in which the problem drives the learning, because it is posed in such a way that students realize they need to acquire new knowledge before the problem can be solved. This paper presents the…
Electron gun controlled smart structure
Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.
2001-01-01
Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.
Projected quasiparticle theory for molecular electronic structure
Scuseria, Gustavo E.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Samanta, Kousik; Ellis, Jason K.
2011-09-01
We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.
Inference problems in structural biology
DEFF Research Database (Denmark)
Olsson, Simon
The structure and dynamics of biological molecules are essential for their function. Consequently, a wealth of experimental techniques have been developed to study these features. However, while experiments yield detailed information about geometrical features of molecules, this information is of...
Electronic structure of lanthanide scandates
Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.
2018-02-01
X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.
Proposals for the solution of the phase problem in electron microscopy
International Nuclear Information System (INIS)
Toorn, P. van.
1979-01-01
This thesis discusses the phase problem in electron microscopy, i.e. the determination of the unknown complex wave function in the image plane or in the exit pupil from the measured intensity distributions in both planes. The calculation of the wave function is the first problem to be solved for the determination of the object structure from electron micrographs. (Auth.)
Electron scattering and nuclear structure
International Nuclear Information System (INIS)
Frois, B.
1987-01-01
The search for the appropriate degrees of freedom to describe nuclei is the central focus of nuclear physics today. Therefore the authors explore in this review their current understanding of nuclear structure as defined by electromagnetic data. The precision of the electromagnetic probe allows us to define accurately the limits of present theoretical descriptions. The authors review here a broad range of subjects that have been addressed by recent experiments, from the study of meson exchange currents and single-particle distributions to collective excitations in heavy nuclei. However, they do not discuss elastic magnetic scattering, inelastic excitation of discrete states, or single-nucleon knockout reactions since these reactions were recently reviewed. The principal aim of this review is to offer a fresh perspective on nuclear structure, based on the new generation of electron scattering data presented here and in the above-mentioned articles
Electronic structure of spin systems
Energy Technology Data Exchange (ETDEWEB)
Saha-Dasgupta, Tanusri
2016-04-15
Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.
Problems of structural mechanics in nuclear design
International Nuclear Information System (INIS)
Patwardhan, V.M.; Kakodkar, Anil
1975-01-01
A very careful and detailed stress analysis of nuclear presure vessels and components is essential for ensuring the safety and integrity of nuclear power plants. The nuclear designer, therefore, relies heavily on structural mechanics for application of the most advanced stress analysis techniques to practical design problems. The paper reviews the inter-relation between structural mechanics and nuclear design and discusses a few of the specific structural mechanics problems faced by the nuclear designers in the Department of Atomic Energy, India. (author)
Second benchmark problem for WIPP structural computations
International Nuclear Information System (INIS)
Krieg, R.D.; Morgan, H.S.; Hunter, T.O.
1980-12-01
This report describes the second benchmark problem for comparison of the structural codes used in the WIPP project. The first benchmark problem consisted of heated and unheated drifts at a depth of 790 m, whereas this problem considers a shallower level (650 m) more typical of the repository horizon. But more important, the first problem considered a homogeneous salt configuration, whereas this problem considers a configuration with 27 distinct geologic layers, including 10 clay layers - 4 of which are to be modeled as possible slip planes. The inclusion of layering introduces complications in structural and thermal calculations that were not present in the first benchmark problem. These additional complications will be handled differently by the various codes used to compute drift closure rates. This second benchmark problem will assess these codes by evaluating the treatment of these complications
Problem Resolution through Electronic Mail: A Five-Step Model.
Grandgenett, Neal; Grandgenett, Don
2001-01-01
Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…
Electronic structure of semiconductor interfaces
Energy Technology Data Exchange (ETDEWEB)
Herman, F
1983-02-01
The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.
Electronic structure of semiconductor interfaces
International Nuclear Information System (INIS)
Herman, F.
1983-01-01
The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt
Thick-Restart Lanczos Method for Electronic Structure Calculations
International Nuclear Information System (INIS)
Simon, Horst D.; Wang, L.-W.; Wu, Kesheng
1999-01-01
This paper describes two recent innovations related to the classic Lanczos method for eigenvalue problems, namely the thick-restart technique and dynamic restarting schemes. Combining these two new techniques we are able to implement an efficient eigenvalue problem solver. This paper will demonstrate its effectiveness on one particular class of problems for which this method is well suited: linear eigenvalue problems generated from non-self-consistent electronic structure calculations
Structural priority approach to fluid-structure interaction problems
International Nuclear Information System (INIS)
Au-Yang, M.K.; Galford, J.E.
1981-01-01
In a large class of dynamic problems occurring in nuclear reactor safety analysis, the forcing function is derived from the fluid enclosed within the structure itself. Since the structural displacement depends on the fluid pressure, which in turn depends on the structural boundaries, a rigorous approach to this class of problems involves simultaneous solution of the coupled fluid mechanics and structural dynamics equations with the structural response and the fluid pressure as unknowns. This paper offers an alternate approach to the foregoing problems. 8 refs
Fluid Structure Interaction for Hydraulic Problems
International Nuclear Information System (INIS)
Souli, Mhamed; Aquelet, Nicolas
2011-01-01
Fluid Structure interaction plays an important role in engineering applications. Physical phenomena such as flow induced vibration in nuclear industry, fuel sloshing tank in automotive industry or rotor stator interaction in turbo machinery, can lead to structure deformation and sometimes to failure. In order to solve fluid structure interaction problems, the majority of numerical tests consists in using two different codes to separately solve pressure of the fluid and structural displacements. In this paper, a unique code with an ALE formulation approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The development of the ALE method as well as the coupling in a computational structural dynamic code, allows to solve more large industrial problems related to fluid structure coupling. (authors)
Correlated electronic structure of CeN
Energy Technology Data Exchange (ETDEWEB)
Panda, S.K., E-mail: swarup.panda@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Di Marco, I. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Delin, A. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); KTH Royal Institute of Technology, School of Information and Communication Technology, Department of Materials and Nano Physics, Electrum 229, SE-164 40 Kista (Sweden); KTH Royal Institute of Technology, Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm (Sweden); Eriksson, O., E-mail: olle.eriksson@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden)
2016-04-15
Highlights: • The electronic structure of CeN is studied within the GGA+DMFT approach using SPTF and Hubbard I approximation. • 4f spectral functions from SPTF and Hubbard I are coupled to explain the various spectroscopic manifestations of CeN. • The calculated XPS and BIS spectra show good agreement with the corresponding experimental spectra. • The contribution of the various l-states and the importance of cross-sections for the photoemission process are analyzed. - Abstract: We have studied in detail the electronic structure of CeN including spin orbit coupling (SOC) and electron–electron interaction, within the dynamical mean-field theory combined with density-functional theory in generalized gradient approximation (GGA+DMFT). The effective impurity problem has been solved through the spin-polarized T-matrix fluctuation-exchange (SPTF) solver and the Hubbard I approximation (HIA). The calculated l-projected atomic partial densities of states and the converged potential were used to obtain the X-ray-photoemission-spectra (XPS) and Bremstrahlung Isochromat spectra (BIS). Following the spirit of Gunnarsson–Schonhammer model, we have coupled the SPTF and HIA 4f spectral functions to explain the various spectroscopic manifestations of CeN. Our computed spectra in such a coupled scheme explain the experimental data remarkably well, establishing the validity of our theoretical model in analyzing the electronic structure of CeN. The contribution of the various l-states in the total spectra and the importance of cross sections are also analyzed in detail.
Electron inertia effects on the planar plasma sheath problem
International Nuclear Information System (INIS)
Duarte, V. N.; Clemente, R. A.
2011-01-01
The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.
Electronic structure of graphene beyond the linear dispersion regime
POWER, STEPHEN; FERREIRA, MAURO
2011-01-01
PUBLISHED Among the many interesting features displayed by graphene, one of the most attractive is the simplicity with which its electronic structure can be described. The study of its physical properties is significantly simplified by the linear dispersion relation of electrons in a narrow range around the Fermi level. Unfortunately, the mathematical simplicity of graphene electrons is limited only to this narrow energy region and is not very practical when dealing with problems that invo...
Problems with the electronic health record.
de Ruiter, Hans-Peter; Liaschenko, Joan; Angus, Jan
2016-01-01
One of the most significant changes in modern healthcare delivery has been the evolution of the paper record to the electronic health record (EHR). In this paper we argue that the primary change has been a shift in the focus of documentation from monitoring individual patient progress to recording data pertinent to Institutional Priorities (IPs). The specific IPs to which we refer include: finance/reimbursement; risk management/legal considerations; quality improvement/safety initiatives; meeting regulatory and accreditation standards; and patient care delivery/evidence based practice. Following a brief history of the transition from the paper record to the EHR, the authors discuss unintended or contested consequences resulting from this change. These changes primarily reflect changes in the organization and amount of clinician work and clinician-patient relationships. The paper is not a research report but was informed by an institutional ethnography the aim of which was to understand how the EHR impacted clinicians and administrators in a large, urban hospital in the United States. The paper was also informed by other sources, including the philosophies of Jacques Ellul, Don Idhe, and Langdon Winner. © 2015 John Wiley & Sons Ltd.
The overshoot problem and giant structures
International Nuclear Information System (INIS)
Itzhaki, Nissan
2008-01-01
Models of small-field inflation often suffer from the overshoot problem. A particularly efficient resolution to the problem was proposed recently in the context of string theory. We show that this resolution predicts the existence of giant spherically symmetric overdense regions with radius of at least 110 Mpc. We argue that if such structures will be found they could offer an experimental window into string theory.
Electronic and chemical properties of graphene-based structures:
DEFF Research Database (Denmark)
Vanin, Marco
In the present thesis several aspects of graphene-based structures have been investigated using density functional theory calculations to solve the electronic structure problem. A review of the implementation of a localized basis-set within the projector augmented wave method - the way of describ...... are attractive candidates although issues regarding the poisoning of the active site remain to be addressed....
Experimental Benchmarking of Pu Electronic Structure
International Nuclear Information System (INIS)
Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, N.E. Jr.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.
2008-01-01
The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.
On Helmholtz Problem for Plane Periodical Structures
International Nuclear Information System (INIS)
Akishin, P.G.; Vinitskij, S.I.
1994-01-01
The plane Helmholtz problem of the periodical disc structures with the phase shifts conditions of the solutions along the basis lattice vectors and the Dirichlet conditions on the basic boundaries is considered. The Green function satisfying the quasi periodical conditions on the lattice is constructed. The Helmholtz problem is reduced to the boundary integral equations for the simple layer potentials of this Green function. The methods of the discretization of the arising integral equations are proposed. The procedures of calculation of the matrix elements are discussed. The reality of the spectral parameter of the nonlinear continuous and discretized problems is shown. 8 refs., 2 figs
Electronic structure of defects in semiconductor heterojunctions
International Nuclear Information System (INIS)
Haussy, Bernard; Ganghoffer, Jean Francois
2002-01-01
Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity
Electronic structure studies of fullerites and fullerides
International Nuclear Information System (INIS)
Merkel, M.; Sohmen, E.; Masaki, A.; Romberg, H.; Alexander, M.; Knupfer, M.; Golden, M.S.; Adelmann, P.; Renker, B.; Fink, J.
1993-01-01
The electronic structure of fullerites and fullerides has been investigated by high-resolution photoemission and by high-energy electron energy-loss spectroscopy in transmission. Information on the occupied Π and σ bands, on the unoccupied Π * and σ * bands, and on the joint density of states has been obtained. In particular, we report on the changes of the electronic structure of fullerides as a function of dopant concentration. (orig.)
Adiabatic quantum search algorithm for structured problems
International Nuclear Information System (INIS)
Roland, Jeremie; Cerf, Nicolas J.
2003-01-01
The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size
Standard problems for structural computer codes
International Nuclear Information System (INIS)
Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.
1985-01-01
BNL is investigating the ranges of validity of the analytical methods used to predict the behavior of nuclear safety related structures under accidental and extreme environmental loadings. During FY 85, the investigations were concentrated on special problems that can significantly influence the outcome of the soil structure interaction evaluation process. Specially, limitations and applicability of the standard interaction methods when dealing with lift-off, layering and water table effects, were investigated. This paper describes the work and the results obtained during FY 85 from the studies on lift-off, layering and water-table effects in soil-structure interaction
Solvated electron structure in glassy matrices
International Nuclear Information System (INIS)
Kevan, L.
1981-01-01
Current knowledge of the detailed geometrical structure of solvated electrons in aqueous and organic media is summarized. The geometry of solvated electrons in glassy methanol, ethanol, and 2-methyltetrahydrofuran is discussed. Advanced electron magnetic resonance methods and development of new methods of analysis of electron spin echo modulation patterns, second moment line shapes, and forbidden photon spin-flip transitions for paramagnetic species in these disordered systems are discussed. 66 references are cited
Electronic structure and tautomerism of thioamides
Energy Technology Data Exchange (ETDEWEB)
Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); McGlynn, Sean P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)
2016-05-15
Highlights: • Electronic structure of thioamide group and its relation to Lewis basicity. • Tautomerism of the (thio)amide groups. • Substituent effects on the electronic structure of (thio)amide group. - Abstract: The electronic structures of several thioamides have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of thioamide derivatives are discussed. The predominant tautomers in the gas phase are of keto–(thio)keto form. The addition of cyclohexanone moiety to the thioamide group enhances the Lewis base character of the sulfur atom. The addition of phenyl group to the (thio)amide group significantly affects its electronic structure.
Students’ Creativity: Problem Posing in Structured Situation
Amalina, I. K.; Amirudin, M.; Budiarto, M. T.
2018-01-01
This is a qualitative research concerning on students’ creativity on problem posing task. The study aimed at describing the students’ creative thinking ability to pose the mathematics problem in structured situations with varied condition of given problems. In order to find out the students’ creative thinking ability, an analysis of mathematics problem posing test based on fluency, novelty, and flexibility and interview was applied for categorizing students’ responses on that task. The data analysis used the quality of problem posing and categorized in 4 level of creativity. The results revealed from 29 secondary students grade 8, a student in CTL (Creative Thinking Level) 1 met the fluency. A student in CTL 2 met the novelty, while a student in CTL 3 met both fluency and novelty and no one in CTL 4. These results are affected by students’ mathematical experience. The findings of this study highlight that student’s problem posing creativity are dependent on their experience in mathematics learning and from the point of view of which students start to pose problem.
vhv supply networks, problems of network structure
Energy Technology Data Exchange (ETDEWEB)
Raimbault, J
1966-04-01
The present and future power requirements of the Paris area and the structure of the existing networks are discussed. The various limitations that will have to be allowed for to lay down the structure of a regional transmission network leading in the power of the large national transmission network to within the Paris built up area are described. The theoretical solution that has been adopted, and the features of its final achievement, which is planned for about the year 2000, and the intermediate stages are given. The problem of the structure of the National Power Transmission network which is to supply the regional network was studied. To solve this problem, a 730 kV voltage network will have to be introduced.
Solving complex and disordered surface structures with electron diffraction
International Nuclear Information System (INIS)
Van Hove, M.A.
1987-10-01
The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab
Electron scattering and nuclear structure
International Nuclear Information System (INIS)
Wolynec, E.
1985-01-01
A review of the historical development and the theory necessary to the interpretation of the experimental results is made. Some measurement techniques, experimental results and the technique of analysis of these data are presented. Future perspectives, due to the appearence of continous electron current accelerators, in this field of study are discussed. (L.C.) [pt
STRUCTURAL STABILITY AND ELECTRONIC STRUCTURE OF ...
African Journals Online (AJOL)
2012-12-31
Dec 31, 2012 ... may be applications at high temperature strength and corrosion ... B2 structure, like that found in cesium-chloride (CsCl) and chemical formula RM, where R denotes a rare - earth element and M denotes a late transition metal ...
Electronic structure of point defects in semiconductors
International Nuclear Information System (INIS)
Bruneval, Fabien
2014-01-01
trace concentration (of the order of one part per million). However, owing to the heavy burden of the quantum-mechanical electronic structure calculations, which grow very rapidly with the number of electrons, the present day simulations do not easily exceed a few hundred atoms nowadays. This induces effective defect concentrations of the order of one percent which are very far from the diluted defects observed in the experiments. The extrapolation of high concentrations to low concentrations is difficult because defects in semiconductors often bear a net electric charge which induces long-range interactions between the spuriously interacting charged defects. The first part of my work presents the techniques available in this area, improvements in the techniques and some understanding of these spurious interactions. The second topic addressed in this memoir focuses on improving the electronic structure of defects in semiconductors and insulators. Defects in these materials introduce discrete electronic levels within the band gap of the pristine bulk material. These electronic levels correspond to the electrons involved in the defect states. Their wave function is more or less localized around the defect region and the filling of the state may also vary with the thermodynamic conditions (Fermi level). These levels inside the band gap govern the modification of the properties of electronic and optical transport. Unfortunately the standard ab initio approaches, in the context of Density Functional Theory (DFT), are unable to get the correct band gaps of semiconductors and insulators. This is why many defect properties cannot be predicted with certainty within these approaches. This second part demonstrates how the introduction of the many-body perturbation theory in the so-called GW approximation solves the problem of band gaps and thus allows one to obtain more reliable defect properties. Of course, the field of ab initio electronic structure for defects is far from being
Nonlinearity in structural and electronic materials
International Nuclear Information System (INIS)
Bishop, A.R.; Beardmore, K.M.; Ben-Naim, E.
1997-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project strengthens a nonlinear technology base relevant to a variety of problems arising in condensed matter and materials science, and applies this technology to those problems. In this way the controlled synthesis of, and experiments on, novel electronic and structural materials provide an important focus for nonlinear science, while nonlinear techniques help advance the understanding of the scientific principles underlying the control of microstructure and dynamics in complex materials. This research is primarily focused on four topics: (1) materials microstructure: growth and evolution, and porous media; (2) textures in elastic/martensitic materials; (3) electro- and photo-active polymers; and (4) ultrafast photophysics in complex electronic materials. Accomplishments included the following: organization of a ''Nonlinear Materials'' seminar series and international conferences including ''Fracture, Friction and Deformation,'' ''Nonequilibrium Phase Transitions,'' and ''Landscape Paradigms in Physics and Biology''; invited talks at international conference on ''Synthetic Metals,'' ''Quantum Phase Transitions,'' ''1996 CECAM Euroconference,'' and the 1995 Fall Meeting of the Materials Research Society; large-scale simulations and microscopic modeling of nonlinear coherent energy storage at crack tips and sliding interfaces; large-scale simulation and microscopic elasticity theory for precursor microstructure and dynamics at solid-solid diffusionless phase transformations; large-scale simulation of self-assembling organic thin films on inorganic substrates; analysis and simulation of smoothing of rough atomic surfaces; and modeling and analysis of flux pattern formation in equilibrium and nonequilibrium Josephson junction arrays and layered superconductors
PFEM application in fluid structure interaction problems
Celigueta Jordana, Miguel Ángel; Larese De Tetto, Antonia; Latorre, Salvador
2008-01-01
In the current paper the Particle Finite Element Method (PFEM), an innovative numerical method for solving a wide spectrum of problems involving the interaction of fluid and structures, is briefly presented. Many examples of the use of the PFEM with GiD support are shown. GiD framework provides a useful pre and post processor for the specific features of the method. Its advantages and shortcomings are pointed out in the present work. Peer Reviewed
Electronic structure of metallic glasses
International Nuclear Information System (INIS)
Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.
1981-01-01
This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides
Electronic structure and tautomerism of aryl ketones
International Nuclear Information System (INIS)
Novak, Igor; Klasinc, Leo; Šket, Boris; McGlynn, S.P.
2015-01-01
Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed
Phenomenology of the electron structure function
International Nuclear Information System (INIS)
Slominski, W.; Szwed, J.
2001-01-01
The advantages of introducing the electron structure function (ESF) in electron induced processes are demonstrated. Contrary to the photon structure function it is directly measured in such processes. At present energies, a simultaneous analysis of both the electron and the photon structure functions gives an important test of the experimentally applied methods. Estimates of the ESF at LEP momenta are given. At very high momenta contributions from W and Z bosons together with γ-Z interference can be observed. Predictions for the next generation of experiments are given. (orig.)
Electronic structure and tautomerism of aryl ketones
Energy Technology Data Exchange (ETDEWEB)
Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); Šket, Boris, E-mail: Boris.Sket@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 (Slovenia); McGlynn, S.P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)
2015-07-15
Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed.
Epitaxial graphene electronic structure and transport
International Nuclear Information System (INIS)
De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun
2010-01-01
Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.
Instructional Approach to Molecular Electronic Structure Theory
Dykstra, Clifford E.; Schaefer, Henry F.
1977-01-01
Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)
Removal of Vesicle Structures from Transmission Electron Microscope Images
DEFF Research Database (Denmark)
Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian
2015-01-01
In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruct...
Quantitative vs. qualitative approaches to the electronic structure of solids
International Nuclear Information System (INIS)
Oliva, J.M.; Llunell, Miquel; Alemany, Pere; Canadell, Enric
2003-01-01
The usefulness of qualitative and quantitative theoretical approaches in solid state chemistry is discussed by considering three different types of problems: (a) the distribution of boron and carbon atoms in MB 2 C 2 (M=Ca, La, etc.) phases, (b) the band structure and Fermi surface of low-dimensional transition metal oxides and bronzes, and (c) the correlation between the crystal and electronic structure of the ternary nitride Ca 2 AuN
Overview of nuclear structure with electrons
International Nuclear Information System (INIS)
Geesaman, D. F.
1999-01-01
Following a broad summary of the author's view of nuclear structure in 1974, he will discuss the key elements they have learned in the past 25 years from the research at the M.I.T. Bates Linear Accelerator center and its sister electron accelerator laboratories. Electron scattering has provided the essential measurements for most of the progress. The future is bright for nuclear structure research as their ability to realistically calculate nuclear structure observables has dramatically advanced and they are increasingly able to incorporate an understanding of quantum chromodynamics into their picture of the nucleus
Problems of linear electron (polaron) transport theory in semiconductors
Klinger, M I
1979-01-01
Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon
Treating limbs with electrons: creative solutions to technical problems
International Nuclear Information System (INIS)
Hornby, C.
1993-01-01
The treatment of superficial lesions on limbs involving large areas of skin has long presented a challenge to radiation therapists. In the 1990's the use of electrons provides a good selection of field sizes and beam penetrations. However, the rapidly varying contours of limbs as well as their mobility, continues to necessitate solutions to the problems of accurate field definition, homogeneous dose in particularly at beam junctions and, simple but effective patient stabilization. This paper offers several examples of creative solutions to these problems. 8 refs., 17 figs
Electronic Structure of Eu6C60
Institute of Scientific and Technical Information of China (English)
WANG Xiao-Xiong; LI Hong-Nian; XU Ya-Bo; WANG Peng; ZHANG Wen-Hua; XU Fa-Qiang
2009-01-01
We study the valence band of Eu-intercalated C60 by synchrotron radiation photoelectron spectroscopy to un-derstand the ferromagnetism (FM) and the giant magnetoresistance (GMR) of Eu6C60. The results reveal the semiconducting property and the remarkable 5d6s-π hybridization. Eu-C60 bonding has both ionic and covalent contributions. No more than half the 5d6s electrons transfer from Eu to the LUMO derived band of C60, and the LUMO+1 derived band is not filled. The remaining valence electrons of Eu, together with some π (LUMO, HOMO and HOMO-1) electrons, constitute the covalent bond. The electronic structure implies that the magnetic coupling in Eu6C60 should be through the intra-atomic f-sd exchange and the medium of the π electrons. The possibility of the GMR being tunnelling magnetoresistance is ruled out.
Atomic and electronic structures of novel silicon surface structures
Energy Technology Data Exchange (ETDEWEB)
Terry, J.H. Jr.
1997-03-01
The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.
Electronic money in russia: current state and problems of development
Directory of Open Access Journals (Sweden)
T. G. Bondarenko
2016-01-01
Full Text Available Article is devoted to urgent problems of non-cash methods of calculation development by using electronic money – as one of the modern economically developed state strategic tasks. On modern economic science strong influence appears informatization process. The control expansion tendency, influence and distribution of commerce due to informatization of society led to emergence of the new phenomenon – information economy. Information economy brought new economic events which owing to their novelty are insufficiently studied to life. It is possible to carry electronic money to such phenomena of modern network economy Relevance and, in our opinion, timeliness of this scientific work, consisting in novelty of this non-cash payment method, its prospects and innovation within non-cash methods of calculations. Authors set as the purpose – studying of problems and the prospects of development of electronic money in the Russian Federation. In article theoretical bases of electronic money functioning are described. Determinations and classifications dismissed non-cash a method, and also the principles of electronic money functioning are considered, the questions of their historical development are raised.Authors analyzed statistical data on development of electronic services and channels of their using. Features, benefits and shortcomings of the current state of the market of electronic money are studied. The emphasis on that fact that in modern conditions considerable number of economic actors perform the activities, both in the real environment of economy, and within the virtual environment that promotes expansion of methods of their customer interaction by means of technical devices of personal computers, mobile phones is placed. In article common problems and tendencies of payments with using an electronic money are designated, the research on assessment of the current state and the prospects of electronic money
International Nuclear Information System (INIS)
Tran-Thi, Thu-Hoa
1978-01-01
Based on two hypotheses (effect of structure, and electron affinity), and on the use of two complementary techniques (pulsed radiolysis and gamma radiolysis), this research thesis reports the study of the fate of primary species formed during the radiolysis of N-methylacetamide, either pure or mixed with other solvents. The author first presents experimental conditions, the experimental techniques and their results for both types of radiolysis, and then discusses these results
Electronic structure of the high-temperature oxide superconductors
International Nuclear Information System (INIS)
Pickett, W.E.
1989-01-01
Since the discovery of superconductivity above 30 K by Bednorz and Mueller in the La copper oxide system, the critical temperature has been raised to 90 K in YBa 2 Cu 3 O 7 and to 110 and 125 K in Bi-based and Tl-based copper oxides, respectively. In the two years since this Nobel-prize-winning discovery, a large number of electronic structure calculations have been carried out as a first step in understanding the electronic properties of these materials. In this paper these calculations (mostly of the density-functional type) are gathered and reviewed, and their results are compared with the relevant experimental data. The picture that emerges is one in which the important electronic states are dominated by the copper d and oxygen p orbitals, with strong hybridization between them. Photon, electron, and positron spectroscopies provide important information about the electronic states, and comparison with electronic structure calculations indicates that, while many features can be interpreted in terms of existing calculations, self-energy corrections (''correlations'') are important for a more detailed understanding. The antiferromagnetism that occurs in some regions of the phase diagram poses a particularly challenging problem for any detailed theory. The study of structural stability, lattice dynamics, and electron-phonon coupling in the copper oxides is also discussed. Finally, a brief review is given of the attempts so far to identify interaction constants appropriate for a model Hamiltonian treatment of many-body interactions in these materials
Structural changes induced by electron irradiation
International Nuclear Information System (INIS)
Koike, J.; Pedraza, D.F.
1993-01-01
Highly oriented pyrolytic graphite was irradiated at room temperature with 300 kV electrons. Transmission electron microscopy and electron energy loss spectroscopy were employed to study the structural changes produced by irradiation. The occurrence of a continuous ring intensity in the selected area diffraction (SAD) pattern obtained on a specimen irradiated with the electron beam parallel to the c-crystallographic axis indicated that microstructural changes had occurred. However, from the SAD pattern obtained for the specimens tilted relative to the irradiation direction, it was found that up to a fluence of 1.1x10 27 e/m 2 graphite remained crystalline. An SAD pattern of a specimen irradiated with the electron beam perpendicular to the c-axis confirmed the persistence of crystalline order. High resolution electron microscopy showed that ordering along the c-axis direction remained. A density reduction of 8.9% due to irradiation was determined from the plasmon frequency shift. A qualitative model is proposed to explain these observations. A new determination of the threshold displacement energy, Ed, of carbon atoms in graphite was done by examining the appearance of a continuous ring in the SAD pattern at various electron energies. A value of 30 eV was obtained whether the incident electron beam was parallel or perpendicular to the c-axis, demonstrating that Ed is independent of the displacement direction
Structural stability and electronic structure of YCu ductile ...
African Journals Online (AJOL)
We investigate the structural, elastic and electronic properties of cubic YCu intermetallic compound. Which crystallize in the CsCl- B2 type structure, the investigated using the first principle full potential linearized augmented plane wave method (FP-LAPW) within density functional Theory (DFT). We used generalized ...
Electron acoustic nonlinear structures in planetary magnetospheres
Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.
2018-04-01
In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.
Structure of conduction electrons on polysilanes
Energy Technology Data Exchange (ETDEWEB)
Ichikawa, Tsuneki [Hokkaido Univ., Sapporo (Japan); Kumagai, Jun
1998-10-01
The orbital structures of conduction electrons on permethylated oligosilane, Si{sub 2n}(CH{sub 3}){sub 2n+2}(n = 2 - 8), and poly(cyclohexylmethylsilane) have been determined by the electron spin-echo envelope modulation signals of the radical anions of these silanes in a deuterated rigid matrix at 77 K. The conduction electron on permethylated oligosilane is delocalized over the entire main chain, whereas that on poly(cyclohexylmethylsilane) is localized on a part of the main chain composed of about six Si atoms. Quantum-chemical calculations suggest that Anderson localization due to fluctuation of {sigma} conjugation by conformational disorder of the main chain is responsible for the localization of both the conduction electron and the hole. (author)
Indian Academy of Sciences (India)
Abstract. Results of ab initio electronic structure calculations on the compound MgB2 using the. FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, c/a ratio and the bulk modulus, all of which are in excellent ...
Electronic structure of Fe-based superconductors
Indian Academy of Sciences (India)
Abstract. Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant ...
Electronic structure of Fe-based superconductors
Indian Academy of Sciences (India)
2015-05-29
May 29, 2015 ... Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the ...
Indian Academy of Sciences (India)
Results of ab initio electronic structure calculations on the compound MgB2 using the FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...
The electronic structure of antiferromagnetic chromium
DEFF Research Database (Denmark)
Skriver, Hans Lomholt
1981-01-01
The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...
Electronic structure calculations of calcium silicate hydrates
International Nuclear Information System (INIS)
Sterne, P.A.; Meike, A.
1995-11-01
Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases
Fundamental problem in the relativistic approach to atomic structure theory
International Nuclear Information System (INIS)
Kagawa, Takashi
1987-01-01
It is known that the relativistic atomic structure theory contains a serious fundamental problem, so-called the Brown-Ravenhall (BR) problem or variational collapse. This problem arises from the fact that the energy spectrum of the relativistic Hamiltonian for many-electron systems is not bounded from below because the negative-energy solutions as well as the positive-energy ones are obtained from the relativistic equation. This report outlines two methods to avoid the BR problem in the relativistic calculation, that is, the projection operator method and the general variation method. The former method is described first. The use of a modified Hamiltonian containing a projection operator which projects the positive-energy solutions in the relativistic wave equation has been proposed to remove the BR difficulty. The problem in the use of the projection operator method is that the projection operator for the system cannot be determined uniquely. The final part of this report outlines the general variation method. This method can be applied to any system, such as relativistic ones whose Hamiltonian is not bounded from below. (Nogami, K.)
Electronic structure and electron dynamics at Si(100)
Energy Technology Data Exchange (ETDEWEB)
Weinelt, M. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Max-Born-Institut, Berlin (Germany); Kutschera, M.; Schmidt, R.; Orth, C.; Fauster, T. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Rohlfing, M. [International University Bremen, School of Engineering and Science, P.O. Box 750 561, Bremen (Germany)
2005-02-01
The electronic structure and electron dynamics at a Si(100) surface is studied by two-photon photoemission (2PPE). At 90 K the occupied D{sub up} dangling-bond state is located 150{+-}50 meV below the valence-band maximum (VBM) at the center of the surface Brillouin zone anti {gamma} and exhibits an effective hole mass of (0.5{+-}0.15)m{sub e}. The unoccupied D{sub down} band has a local minimum at anti {gamma} at 650{+-}50 meV above the VBM and shows strong dispersion along the dimer rows of the c(4 x 2) reconstructed surface. At 300 K the D{sub down} position shifts comparable to the Si conduction-band minimum by 40 meV to lower energies but the dispersion of the dangling-bond states is independent of temperature. The surface band bending for p-doped silicon is less than 30 meV, while acceptor-type defects cause significant and preparation-dependent band bending on n-doped samples. 2PPE spectra of Si(100) are dominated by interband transitions between the occupied and unoccupied surface states and emission out of transiently and permanently charged surface defects. Including electron-hole interaction in many-body calculations of the quasi-particle band structure leads us to assign a dangling-bond split-off state to a quasi-one-dimensional surface exciton with a binding energy of 130 meV. Electrons resonantly excited to the unoccupied D{sub down} dangling-bond band with an excess energy of about 350 meV need 1.5{+-}0.2 ps to scatter via phonon emission to the band bottom at anti {gamma} and relax within 5 ps with an excited hole in the occupied surface band to form an exciton living for nanoseconds. (orig.)
Diamond surface: atomic and electronic structure
International Nuclear Information System (INIS)
Pate, B.B.
1984-01-01
Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region
Electronic structure and electron momentum density in TiSi
Energy Technology Data Exchange (ETDEWEB)
Ghaleb, A.M. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq); Mohammad, F.M. [Department of Physics, College of Science, University of Tikreet, Tikreet (Iraq); Sahariya, Jagrati [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Sharma, Mukesh [Physics Division, Forensic Science Laboratory, Jaipur, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)
2013-03-01
We report the electron momentum density in titanium monosilicide using {sup 241}Am Compton spectrometer. Experimental Compton profile has been compared with the theoretical profiles computed using linear combination of atomic orbitals (LCAO). The energy bands, density of states and Fermi surface structures of TiSi are reported using the LCAO and the full potential linearized augmented plane wave methods. Theoretical anisotropies in directional Compton profiles are interpreted in terms of energy bands. To confirm the conducting behavior, we also report the real space analysis of experimental Compton profile of TiSi.
Maalderink, H.H.H.; Bruning, F.B.J.; Schipper, M.M.R. de; Werff, J.J.J. van der; Germs, W.W.C.; Remmers, J.J.C.; Meinders, E.R.
2018-01-01
The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the
Maalderink, H.H.; Bruning, F.B.J.; de Schipper, M.R.; van der Werff, J.J.; Germs, W.C.; Remmers, J.J.C.; Meinders, E.R.
2018-01-01
The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the
Electronic structure of super heavy atoms revisited
International Nuclear Information System (INIS)
Gitman, D M; Levin, A D; Tyutin, I V; Voronov, B L
2013-01-01
The electronic structure of an atom with Z ⩽ Z c = 137 can be described by the Dirac equation with the Coulomb field of a point charge Ze. It was believed that the Dirac equation with Z > Z c poses difficulties because the formula for the lower energy level of the Dirac Hamiltonian formally gives imaginary eigenvalues. But a strict mathematical consideration shows that difficulties with the electronic spectrum for Z > Z c do not arise if the Dirac Hamiltonian is correctly defined as a self-adjoint operator. In this paper, we briefly summarize the main physical results of that consideration in a form suitable for physicists with some additional new details and numerical calculations of the electronic spectra. (comment)
Electronic Structure of Strongly Correlated Materials
Anisimov, Vladimir
2010-01-01
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
Electronic band structures of binary skutterudites
International Nuclear Information System (INIS)
Khan, Banaras; Aliabad, H.A. Rahnamaye; Saifullah; Jalali-Asadabadi, S.; Khan, Imad; Ahmad, Iftikhar
2015-01-01
The electronic properties of complex binary skutterudites, MX 3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures
Electronic band structures of binary skutterudites
Energy Technology Data Exchange (ETDEWEB)
Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)
2015-10-25
The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.
Electrical and electronic waste: a global environmental problem.
Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya
2007-08-01
The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.
Electronic structure of Pu carbides: photoelectron spectroscopy
Czech Academy of Sciences Publication Activity Database
Gouder, T.; Havela, L.; Shick, Alexander; Huber, F.
2008-01-01
Roč. 403, č. 5-9 (2008), s. 852-853 ISSN 0921-4526 R&D Projects: GA AV ČR(CZ) IAA100100530 Grant - others:EU(XE) RITA -CT-2006-026176 Institutional research plan: CEZ:AV0Z10100520 Keywords : photoemission * electronic structure * plutonium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 2008
Structural and electronic properties of thallium compounds
International Nuclear Information System (INIS)
Paliwal, Neetu; Srivastava, Vipul
2016-01-01
The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a_0), bulk modulus (B_0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.
Structural and electronic properties of thallium compounds
Energy Technology Data Exchange (ETDEWEB)
Paliwal, Neetu, E-mail: neetumanish@gmail.com [Department of Physics, AISECT University Bhopal, 464993 (India); Srivastava, Vipul [Department of Engineering Physics, NRI Institute of Research & Technology, Raisen Road, Bhopal, 462021 (India)
2016-05-06
The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.
Structural dynamics of electronic and photonic systems
Suhir, Ephraim; Steinberg, David S
2011-01-01
The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.) In-depth discussion from a mechanical engineer's viewpoint will be conducte
Asymptotic convergence for iterative optimization in electronic structure
International Nuclear Information System (INIS)
Lippert, Ross A.; Sears, Mark P.
2000-01-01
There have recently been a number of proposals for solving large electronic structure problems (local-density approximation, Hartree-Fock, and tight-binding methods) iteratively with a computational effort proportional to the size of the system. The effort needed to perform a single iteration in these schemes is well understood but the convergence rate has been an empirical matter. This paper will show that many of the proposed methods have a single underlying geometrical structure, which has a specific asymptotic convergence behavior, and that behavior can be understood in terms of some simple condition numbers based on the spectrum of the Hamiltonian. (c) 2000 The American Physical Society
International Nuclear Information System (INIS)
Mukashev, K.M.; Sarsenbinov, Sh. Sh.
2000-01-01
Fundamental problems and nature of electron-positron annihilation phenomenon, problems of its application in studies of condensed matter, development of various methodic based on this phenomenon for structural studies in solids, mathematical aspects of experimental deta decoding and program means for computer data processing are discussed. (author)
The structure of algebraic problem in high schools
Chio, José Angel; Álvarez, Aida; Estrada, Pablo
2010-01-01
The paper is aimed at discussing the importance of pupil’s knowledge of algebraic problem structure. The research started by diagnosing pupil’s actual command of algebraic problem structure. Finally suggestions to teachers of mathematics for facing difficulties in solving problems are given.
The structure of algebraic problem in high schools
Directory of Open Access Journals (Sweden)
Chio, José Angel
2010-01-01
Full Text Available The paper is aimed at discussing the importance of pupil’s knowledge of algebraic problem structure. The research started by diagnosing pupil’s actual command of algebraic problem structure. Finally suggestions to teachers of mathematics for facing difficulties in solving problems are given.
Electronic structure theory of the superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Eliav, Ephraim, E-mail: ephraim@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel); Fritzsche, Stephan, E-mail: s.fritzsche@gsi.de [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena (Germany); Kaldor, Uzi, E-mail: kaldor@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel)
2015-12-15
High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac–Coulomb–Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental–computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.
Spectral-Product Methods for Electronic Structure Calculations (Preprint)
National Research Council Canada - National Science Library
Langhoff, P. W; Mills, J. E; Boatz, J. A
2006-01-01
.... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...
Spectral-Product Methods for Electronic Structure Calculations (Postprint)
National Research Council Canada - National Science Library
Langhoff, P. W; Hinde, R. J; Mills, J. D; Boatz, J. A
2007-01-01
.... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...
Electronic structure and superconductivity of europium
International Nuclear Information System (INIS)
Nixon, Lane W.; Papaconstantopoulos, D.A.
2010-01-01
We have calculated the electronic structure of Eu for the bcc, hcp, and fcc crystal structures for volumes near equilibrium up to a calculated 90 GPa pressure using the augmented-plane-wave method in the local-density approximation. The frozen-core approximation was used with a semi-empirical shift of the f-states energies in the radial Schroedinger equation to move the occupied 4f valence states below the Γ 1 energy and into the core. This shift of the highly localized f-states yields the correct europium phase ordering with lattice parameters and bulk moduli in good agreement with experimental data. The calculated superconductivity properties under pressure for the bcc and hcp structures are also found to agree with and follow a T c trend similar to recent measurement by Debessai et al.
Electromagnetic Radiation of Electrons in Periodic Structures
Potylitsyn, Alexander Petrovich
2011-01-01
Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation a...
Boson structure functions from inelastic electron scattering
International Nuclear Information System (INIS)
De Jager, C.W.
1986-01-01
The even /sup 104-110/Pd isotopes and /sup 196/Pt have been investigated at NIKHEF-K by high-resolution inelastic electron scattering. A new IBA-2 calculation has been performed for the Pd isotopes, in which the ratio of the proton and neutron coupling constants is taken from pion scattering. One set of boson structure functions sufficed for the description of the first and second E2-excitations in all Pd isotopes. The data showed no sensitivity for different structure functions for proton and neutron bosons. A preliminary analysis of a number of negative parity states (3/sup -/,5/sup -/ and 7/sup -/), observed in /sup 196/Pt, was performed through the introduction of an f-boson. The first E4-excitation in the palladium isotopes can be reasonably described with a β-structure function, but all other E4-excitations require the introduction of g-boson admixtures
Photoelectron spectroscopy bulk and surface electronic structures
Suga, Shigemasa
2014-01-01
Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...
Electronic Structures of LNA Phosphorothioate Oligonucleotides
Directory of Open Access Journals (Sweden)
Henrik G. Bohr
2017-09-01
Full Text Available Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM calculations and chromatography experiments on locked nucleic acid (LNA phosphorothioate (PS oligonucleotides. iso-potential electrostatic surfaces are essential in this study and have been calculated from the wave functions derived from the QM calculations that provide binding information and other properties of these molecules. The QM calculations give details of the electronic structures in terms of e.g., energy and bonding, which make them distinguish or differentiate between the individual PS diastereoisomers determined by the position of sulfur atoms. Rules are derived from the electronic calculations of these molecules and include the effects of the phosphorothioate chirality and formation of electrostatic potential surfaces. Physical and electrochemical descriptors of the PS oligonucleotides are compared to the experiments in which chiral states on these molecules can be distinguished. The calculations demonstrate that electronic structure, electrostatic potential, and topology are highly sensitive to single PS configuration changes and can give a lead to understanding the activity of the molecules. Keywords: LNA phosphorothioate, DNA/LNA oligonucleotide, diastereoisomers, Hartree-Fock calculations, iso-potential surface, anion chromatograms
Structure problems in the analog computation
International Nuclear Information System (INIS)
Braffort, P.L.
1957-01-01
The recent mathematical development showed the importance of elementary structures (algebraic, topological, etc.) in abeyance under the great domains of classical analysis. Such structures in analog computation are put in evidence and possible development of applied mathematics are discussed. It also studied the topological structures of the standard representation of analog schemes such as additional triangles, integrators, phase inverters and functions generators. The analog method gives only the function of the variable: time, as results of its computations. But the course of computation, for systems including reactive circuits, introduces order structures which are called 'chronological'. Finally, it showed that the approximation methods of ordinary numerical and digital computation present the same structure as these analog computation. The structure analysis permits fruitful comparisons between the several domains of applied mathematics and suggests new important domains of application for analog method. (M.P.)
Dobaczewski, Jacek
2010-06-01
Nuclear structure theory is a domain of physics faced at present with great challenges and opportunities. A larger and larger body of high-precision experimental data has been and continues to be accumulated. Experiments on very exotic short-lived isotopes are the backbone of activity at numerous large-scale facilities. Over the years, tremendous progress has been made in understanding the basic features of nuclei. However, the theoretical description of nuclear systems is still far from being complete and is often not very precise. Many questions, both basic and practical, remain unanswered. The goal of publishing this special focus issue of Journal of Physics G: Nuclear and Particle Physics on Open Problems in Nuclear Structure Theory (OPeNST) is to construct a fundamental inventory thereof, so that the tasks and available options become more clearly exposed and that this will help to stimulate a boost in theoretical activity, commensurate with the experimental progress. The requested format and scope of the articles on OPeNST was quite flexible. The journal simply offered the possibility to provide a forum for the material, which is very often discussed at conferences during the coffee breaks but does not normally have sufficient substance to form regular publications. Nonetheless, very often formulating a problem provides a major step towards its solution, and it may constitute a scientific achievement on its own. Prospective authors were therefore invited to find their own balance between the two extremes of very general problems on the one hand (for example, to solve exactly the many-body equations for a hundred particles) and very specific problems on the other hand (for example, those that one could put in one's own grant proposal). The authors were also asked not to cover results already obtained, nor to limit their presentations to giving a review of the subject, although some elements of those could be included to properly introduce the subject matter
Extraordinary electronic properties in uncommon structure types
Ali, Mazhar Nawaz
In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in
Studies in the electronic structure of matter
International Nuclear Information System (INIS)
Swarts, C.A.
1979-01-01
The results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, the pseudopotential method, Hartree-Fock theory as evaluated by Kennedy and Manson, and Amusia's random phase approximation with exchange (RPAE). Extended Huekel theory is applied to GaAs, GaP, and to the nitrogen isoelectronic trap in GaAs and GaP. The computer perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. By means of model calculations for an independent electron metal, exact lineshapes are obtained for the photon absorption, emission and photoemission spectra of deep core states. 97 references
On some structure-turbulence interaction problems
Maekawa, S.; Lin, Y. K.
1976-01-01
The interactions between a turbulent flow structure; responding to its excitation were studied. The turbulence was typical of those associated with a boundary layer, having a cross-spectral density indicative of convection and statistical decay. A number of structural models were considered. Among the one-dimensional models were an unsupported infinite beam and a periodically supported infinite beam. The fuselage construction of an aircraft was then considered. For the two-dimensional case a simple membrane was used to illustrate the type of formulation applicable to most two-dimensional structures. Both the one-dimensional and two-dimensional structures studied were backed by a cavity filled with an initially quiescent fluid to simulate the acoustic environment when the structure forms one side of a cabin of a sea vessel or aircraft.
Studies in the electronic structure of matter
International Nuclear Information System (INIS)
Miller, D.L.
1979-01-01
KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron--electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic pseudopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron--electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom
Studies in the electronic structure of matter
International Nuclear Information System (INIS)
Miller, D.L.
1979-01-01
KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron-electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic psuedopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron-electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical psuedopotentials. Nitrogen impurity levles in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom
Atomic Reference Data for Electronic Structure Calculations
Kotochigova, S; Shirley, E L
We have generated data for atomic electronic structure calculations, to provide a standard reference for results of specified accuracy under commonly used approximations. Results are presented here for total energies and orbital energy eigenvalues for all atoms from H to U, at microHartree accuracy in the total energy, as computed in the local-density approximation (LDA) the local-spin-density approximation (LSD); the relativistic local-density approximation (RLDA); and scalar-relativistic local-density approximation (ScRLDA).
The electronic structure of impurities in semiconductors
Nylandsted larsen, A; Svane, A
2002-01-01
The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\
Unoccupied surface electronic structure of Gd(0001)
International Nuclear Information System (INIS)
Li, D.; Dowben, P.A.; Ortega, J.E.; Himpsel, F.J.
1994-01-01
The unoccupied surface electronic structure of Gd(0001) was investigated with high-resolution inverse-photoemission spectroscopy. An empty surface state near E F is observed at bar Γ. Two other surface-sensitive features are also revealed at 1.2 and 3.1 eV above the Fermi level. Hydrogen adsorption on Gd surfaces was used to distinguish the surface-sensitive features from the bulk features. The unoccupied bulk-band critical points are determined to be Γ 3 + at 1.9 eV and A 1 at 0.8 eV
Cobalamins uncovered by modern electronic structure calculations
DEFF Research Database (Denmark)
Kepp, Kasper Planeta; Ryde, Ulf
2009-01-01
electronic-structure calculations, in particular density functional methods, the understanding of the molecular mechanism of cobalamins has changed dramatically, going from a dominating view of trans-steric strain effects to a much more complex view involving an arsenal of catalytic strategies. Among...... these are cis-steric distortions, electrostatic stabilization of radical products, the realization that nucleotide units can serve as polar handles, and the careful design of the active sites, with polar residues in the radical enzymes and non-polar residues in the transferases. Together, these strategies...
Electronic golden structure of the periodic chart
Energy Technology Data Exchange (ETDEWEB)
Malinowski, Leonard J. [Interdisciplinary Research Club, Monroeville, PA (United States)], E-mail: LJMalinowski@gmail.com
2009-11-15
The golden ratio has been studied since the ancient Greeks due to its inherent symmetry and aesthetic beauty, especially in the five Platonic Solids. The golden mean is now established as a pillar of El Naschie's E infinity where it achieves the physical manifestation of 0.618 034 MeV. The largest atomic electron orbital total energies average to the golden mean energy. This paper examines the golden ratio in order to expand upon a century old attempt to produce a relatively static, visual, geometric model of atomic structure.
Electronic golden structure of the periodic chart
International Nuclear Information System (INIS)
Malinowski, Leonard J.
2009-01-01
The golden ratio has been studied since the ancient Greeks due to its inherent symmetry and aesthetic beauty, especially in the five Platonic Solids. The golden mean is now established as a pillar of El Naschie's E infinity where it achieves the physical manifestation of 0.618 034 MeV. The largest atomic electron orbital total energies average to the golden mean energy. This paper examines the golden ratio in order to expand upon a century old attempt to produce a relatively static, visual, geometric model of atomic structure.
Electrons, pseudoparticles, and quasiparticles in the one-dimensional many-electron problem
International Nuclear Information System (INIS)
Carmelo, J.M.; Castro Neto, A.H.
1996-01-01
We generalize the concept of quasiparticle for one-dimensional (1D) interacting electronic systems. The ↑ and ↓ quasiparticles recombine the pseudoparticle colors c and s (charge and spin at zero-magnetic field) and are constituted by one many-pseudoparticle topological-momentum shift and one or two pseudoparticles. These excitations cannot be separated. We consider the case of the Hubbard chain. We show that the low-energy electron-quasiparticle transformation has a singular character which justifies the perturbative and nonperturbative nature of the quantum problem in the pseudoparticle and electronic basis, respectively. This follows from the absence of zero-energy electron-quasiparticle overlap in 1D. The existence of Fermi-surface quasiparticles both in 1D and three dimensional (3D) many-electron systems suggests their existence in quantum liquids in dimensions 1 1 or whether it becomes finite as soon as we leave 1D remains an unsolved question. copyright 1996 The American Physical Society
To the problem of electron temperature control in plasma
International Nuclear Information System (INIS)
Galechyan, G.A.; Anna, P.R.
1995-01-01
One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO 2 laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall
To the problem of electron temperature control in plasma
Energy Technology Data Exchange (ETDEWEB)
Galechyan, G.A. [Institute of Applied Problem of Physics, Yerevan (Armenia); Anna, P.R. [Raritan Valley Community College, Somerville, NJ (United States)
1995-12-31
One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO{sub 2} laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall.
Electronic structure of A15 compounds
International Nuclear Information System (INIS)
Pickett, W.E.
1980-01-01
For the past twenty-five years compounds with the A15 crystal structure have dominated the class of high temperature superconductors. The crystal structure of an A15 compound A 3 B is cubic (space group O/sub h/ 3 ). However, the site symmetry (D/sub 2d/) of the A atoms is much lower than cubic, an unusual occurrence in cubic binary compounds. Variations on this theme have supplied the basis of many theoretical models of the anomalous temperature (T) dependence of normal state properties and the low temperature cubic reversible tetragonal structural transformations which accompany high values of T/sub c/ in A15 compounds. In this paper results of self-consistent pseudopotential band structure calculations are used to assess some important aspects of the unique and unusual behavior in A15 compounds: (1) the role of the B atom in determining the overall electronic structure will be shown to be important; (2) the effect of the low site symmetry of the A atom on the charge density and potential will be assessed; and (3) the bonding will be shown to be metallic-covalent with no significant A-B charge transfer
Problem communication (homeostatic structuring of information)
Energy Technology Data Exchange (ETDEWEB)
Bogdanov, N I
1982-01-01
This paper investigates the fundamental connection of intellectual and homeostatic levels of treating information which appear in information structuring. The laws obtained can be applied to artificial intelligence in studies of communication and education. 4 references.
Electronic structure of hcp transition metals
DEFF Research Database (Denmark)
Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.
1975-01-01
Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...
International Nuclear Information System (INIS)
Gautier-Soyer, Martine
1985-01-01
This research thesis reports the use of electron spectroscopy with electrons excited under electronic or photonic (X or UV) bombardment for the study of electronic state density of aluminium, aluminium oxide (Al 2 O 3 ) and aluminium nitride (AlN). The objective is to get an insight into phenomena related to technological problems of adherence, wear, lubrication, corrosion or breakdown met in metals, insulators and semiconductors. The author highlighted the presence of occupied surface states on Al(111) and Al(100), and electronic levels localised in the forbidden band of Al 2 O 3 and AlN, induced by structural defects which promote surface reactivity [fr
Particle Swarm Optimization for Structural Design Problems
Directory of Open Access Journals (Sweden)
Hamit SARUHAN
2010-02-01
Full Text Available The aim of this paper is to employ the Particle Swarm Optimization (PSO technique to a mechanical engineering design problem which is minimizing the volume of a cantilevered beam subject to bending strength constraints. Mechanical engineering design problems are complex activities which are computing capability are more and more required. The most of these problems are solved by conventional mathematical programming techniques that require gradient information. These techniques have several drawbacks from which the main one is becoming trapped in local optima. As an alternative to gradient-based techniques, the PSO does not require the evaluation of gradients of the objective function. The PSO algorithm employs the generation of guided random positions when they search for the global optimum point. The PSO which is a nature inspired heuristics search technique imitates the social behavior of bird flocking. The results obtained by the PSO are compared with Mathematical Programming (MP. It is demonstrated that the PSO performed and obtained better convergence reliability on the global optimum point than the MP. Using the MP, the volume of 2961000 mm3 was obtained while the beam volume of 2945345 mm3 was obtained by the PSO.
Structure and navigation for electronic publishing
Tillinghast, John; Beretta, Giordano B.
1998-01-01
The sudden explosion of the World Wide Web as a new publication medium has given a dramatic boost to the electronic publishing industry, which previously was a limited market centered around CD-ROMs and on-line databases. While the phenomenon has parallels to the advent of the tabloid press in the middle of last century, the electronic nature of the medium brings with it the typical characteristic of 4th wave media, namely the acceleration in its propagation speed and the volume of information. Consequently, e-publications are even flatter than print media; Shakespeare's Romeo and Juliet share the same computer screen with a home-made plagiarized copy of Deep Throat. The most touted tool for locating useful information on the World Wide Web is the search engine. However, due to the medium's flatness, sought information is drowned in a sea of useless information. A better solution is to build tools that allow authors to structure information so that it can easily be navigated. We experimented with the use of ontologies as a tool to formulate structures for information about a specific topic, so that related concepts are placed in adjacent locations and can easily be navigated using simple and ergonomic user models. We describe our effort in building a World Wide Web based photo album that is shared among a small network of people.
Electronic structure and superconductivity of fcc Cr
International Nuclear Information System (INIS)
Xu, J.; Freeman, A.J.; Jarlborg, T.; Brodsky, M.B.
1984-01-01
Results of self-consistent electronic structure calculations are reported for metastable fcc Cr metal. Unlike the case of bcc Cr which has E/sub F/ at a minimum in the density of states (DOS), the DOS at E/sub F/ in fcc Cr is at a peak making this one of the higher-DOS metals with the fcc structure (e.g., comparable with that of Ni and Pt). A calculated Stoner factor of 0.82 indicates that ferromagnetic ordering is not expected. Calculations of the electron-phonon coupling parameter lambda and superconducting transition temperature T/sub c/ were made using the rigid-ion approximation and strong-coupling theory with various estimates of the (unknown) phonon contribution. We conclude that T/sub c/'sroughly-equal2.5 K are reasonable, although they are substantially smaller than the T/sub c/roughly-equal10 K derived from measurements on Au-Cr-Au sandwiches
Inverse Problem Approach for the Alignment of Electron Tomographic Series
International Nuclear Information System (INIS)
Tran, V.D.; Moreaud, M.; Thiebaut, E.; Denis, L.; Becker, J.M.
2014-01-01
In the refining industry, morphological measurements of particles have become an essential part in the characterization catalyst supports. Through these parameters, one can infer the specific physico-chemical properties of the studied materials. One of the main acquisition techniques is electron tomography (or nano-tomography). 3D volumes are reconstructed from sets of projections from different angles made by a Transmission Electron Microscope (TEM). This technique provides a real three-dimensional information at the nano-metric scale. A major issue in this method is the misalignment of the projections that contributes to the reconstruction. The current alignment techniques usually employ fiducial markers such as gold particles for a correct alignment of the images. When the use of markers is not possible, the correlation between adjacent projections is used to align them. However, this method sometimes fails. In this paper, we propose a new method based on the inverse problem approach where a certain criterion is minimized using a variant of the Nelder and Mead simplex algorithm. The proposed approach is composed of two steps. The first step consists of an initial alignment process, which relies on the minimization of a cost function based on robust statistics measuring the similarity of a projection to its previous projections in the series. It reduces strong shifts resulting from the acquisition between successive projections. In the second step, the pre-registered projections are used to initialize an iterative alignment-refinement process which alternates between (i) volume reconstructions and (ii) registrations of measured projections onto simulated projections computed from the volume reconstructed in (i). At the end of this process, we have a correct reconstruction of the volume, the projections being correctly aligned. Our method is tested on simulated data and shown to estimate accurately the translation, rotation and scale of arbitrary transforms. We
Electronic structure of Ca, Sr, and Ba under pressure.
Animalu, A. O. E.; Heine, V.; Vasvari, B.
1967-01-01
Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure
Comparison of optimization methods for electronic-structure calculations
International Nuclear Information System (INIS)
Garner, J.; Das, S.G.; Min, B.I.; Woodward, C.; Benedek, R.
1989-01-01
The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed
Modeling the Structure and Complexity of Engineering Routine Design Problems
Jauregui Becker, Juan Manuel; Wits, Wessel Willems; van Houten, Frederikus J.A.M.
2011-01-01
This paper proposes a model to structure routine design problems as well as a model of its design complexity. The idea is that having a proper model of the structure of such problems enables understanding its complexity, and likewise, a proper understanding of its complexity enables the development
Structuring and assessing large and complex decision problems using MCDA
DEFF Research Database (Denmark)
Barfod, Michael Bruhn
This paper presents an approach for the structuring and assessing of large and complex decision problems using multi-criteria decision analysis (MCDA). The MCDA problem is structured in a decision tree and assessed using the REMBRANDT technique featuring a procedure for limiting the number of pair...
Asessing for Structural Understanding in Childrens' Combinatorial Problem Solving.
English, Lyn
1999-01-01
Assesses children's structural understanding of combinatorial problems when presented in a variety of task situations. Provides an explanatory model of students' combinatorial understandings that informs teaching and assessment. Addresses several components of children's structural understanding of elementary combinatorial problems. (Contains 50…
Electronic Band Structure of Helical Polyisocyanides.
Champagne, Benoît; Liégeois, Vincent; Fripiat, Joseph G; Harris, Frank E
2017-10-19
Restricted Hartree-Fock computations are reported for a methyl isocyanide polymer (repeating unit -C═N-CH 3 ), whose most stable conformation is expected to be a helical chain. The computations used a standard contracted Gaussian orbital set at the computational levels STO-3G, 3-21G, 6-31G, and 6-31G**, and studies were made for two line-group configurations motivated by earlier work and by studies of space-filling molecular models: (1) A structure of line-group symmetry L9 5 , containing a 9-fold screw axis with atoms displaced in the axial direction by 5/9 times the lattice constant, and (2) a structure of symmetry L4 1 that had been proposed, containing a 4-fold screw axis with translation by 1/4 of the lattice constant. Full use of the line-group symmetry was employed to cause most of the computational complexity to depend only on the size of the asymmetric repeating unit. Data reported include computed bond properties, atomic charge distribution, longitudinal polarizability, band structure, and the convoluted density of states. Most features of the description were found to be insensitive to the level of computational approximation. The work also illustrates the importance of exploiting line-group symmetry to extend the range of polymer structural problems that can be treated computationally.
An automatic chip structure optical inspection system for electronic components
Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe
2018-01-01
An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.
Electronic structure of MnSi : The role of electron-electron interactions
Carbone, F; Zangrando, M; Brinkman, A; Nicolaou, A; Bondino, F; Magnano, E; Nugroho, A. A.; Parmigiani, F; Jarlborg, T; van der Marel, D
We present an experimental study of the electronic structure of MnSi. Using x-ray absorption spectroscopy (XAS), x-ray photoemission, and x-ray fluorescence, we provide experimental evidence that MnSi has a mixed valence ground state. We show that self-consistent local density approximation
Electronic structure of MnSi: The role of electron-electron interactions
Carbone, F.; Zangrando, M.; Brinkman, Alexander; Nicolaou, A.; Bondino, F.; Magnano, E.; Nugroho, A.A.; Parmigiani, F.; Jarlborg, Th.; van der Marel, D.
2006-01-01
We present an experimental study of the electronic structure of MnSi. Using x-ray absorption spectroscopy (XAS), x-ray photoemission, and x-ray fluorescence, we provide experimental evidence that MnSi has a mixed valence ground state. We show that self-consistent local density approximation
Electromagnetic radiation of electrons in periodic structures
International Nuclear Information System (INIS)
Potylitsyn, Alexander Petrovich
2011-01-01
Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented. (orig.)
Electron Liquids in Semiconductor Quantum Structures
International Nuclear Information System (INIS)
Pinczuk, Aron
2009-01-01
The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.
Electrons and photons in periodic structures
DEFF Research Database (Denmark)
Pedersen, Jesper Goor
. In particular, the modulation leads to the emergence of band gaps, which are accompanied by a strongly modified density of states near and within the band gap. The main focus is on two applications of such modified densities of states. Firstly, the intentional introduction of defects in an otherwise perfectly...... periodic modulation of an electron gas leads to the emergence of localized defect states with energies within the band gap, where no propagating modes exist. Secondly, the divergence of the photonic density of states near a photonic band gap leads to strongly modified light-matter interactions, which has...... of the density of states near the band gap edge. Using a perturbative approach, we demonstrate certain limits of the attainable slow down factors due to broadening of electromagnetic modes. We discuss the effect of damping due to a finite conductivity as well as structural disorder, and provide a common...
Electronic structure of single crystal C60
International Nuclear Information System (INIS)
Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de
1992-01-01
We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)
Multilevel domain decomposition for electronic structure calculations
International Nuclear Information System (INIS)
Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.
2007-01-01
We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure
Microscopical Studies of Structural and Electronic Properties of Semiconductors
2002-01-01
The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...
Problems and Projects Based Approach For Analog Electronic Circuits' Course
Directory of Open Access Journals (Sweden)
Vahé Nerguizian
2009-04-01
Full Text Available New educational methods and approaches are recently introduced and implemented at several North American and European universities using Problems and Projects Based Approach (PPBA. The PPBA employs a teaching technique based mostly on competences/skills rather than only on knowledge. This method has been implemented and proven by several pedagogical instructors and authors at several educational institutions. This approach is used at different disciplines such as medicine, biology, engineering and many others. It has the advantage to improve the student's skills and the knowledge retention rate, and reflects the 21st century industrial/company needs and demands. Before implementing this approach to a course, a good resources preparation and planning is needed upfront by the responsible or instructor of the course to achieve the course and students related objectives. This paper presents the preparation, the generated documentation and the implementation of a pilot project utilizing PPBA education for a second year undergraduate electronic course over a complete semester, and for two different class groups (morning and evening groups. The outcome of this project (achieved goals, observed difficulties and lessons learned is presented based on different tools such as students 'in class' communication and feedback, different course evaluation forms and the professor/instructor feedback. Resources, challenges, difficulties and recommendations are also assessed and presented. The impact, the effect and the results (during and at the end of the academic fall session of the PPBA on students and instructor are discussed, validated, managed and communicated to help other instructor in taking appropriate approach decisions with respect to this new educational approach compared to the classical one.
Temperature dependence of the electronic structure of semiconductors and insulators
Energy Technology Data Exchange (ETDEWEB)
Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)
2015-09-14
The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.
Heat structural problems in JT-60
International Nuclear Information System (INIS)
Takatsu, Hideyuki; Shimizu, Masaomi; Yamamoto, Masahiro; Nakamura, Hiroo; Miyauchi, Yasuyuki.
1980-01-01
The construction of JT-60 is in progress to study the behavior of hydrogen plasma. The D-T reaction does not occur in this device, therefore the considerations for neutron damage, tritium leakage and so on are not necessary. The long-pulse operation will be done, and the suppression of the production and mixing of impurity is considered in the design of the JT-60. The high temperature baking is possible, and the magnetic limiter is set. The vacuum container has the complex structure consists of 8 sector type thick rings and 8 U-shaped bellows, and has egg-shaped cross section. The main radius of the torus is about 3 m. The material of the vacuum container is INCONEL 625. The analyses of various stresses due to such as atmospheric pressure, eddy current and thermal expansion were made. It is also necessary to consider the thermal stress due to the leakage of neutral beam. The thermal input of about 20 MW per one discharge to the first wall is taken into consideration. The material of the first wall is molybdenum. (Kato, T.)
On some fundamental properties of structural topology optimization problems
DEFF Research Database (Denmark)
Stolpe, Mathias
2010-01-01
We study some fundamental mathematical properties of discretized structural topology optimization problems. Either compliance is minimized with an upper bound on the volume of the structure, or volume is minimized with an upper bound on the compliance. The design variables are either continuous o....... The presented examples can be used as teaching material in graduate and undergraduate courses on structural topology optimization....
Electronic structure of semiconductor quantum films
International Nuclear Information System (INIS)
Zhang, S.B.; Yeh, C.; Zunger, A.
1993-01-01
The electronic structure of thin (≤30 A) free-standing ideal films of Si(001), Si(110), and GaAs(110) is calculated using a plane-wave pseudopotential description. Unlike the expectation based on the simple effective-mass model, we find the following. (i) The band gaps of (001) quantum films exhibit even-odd oscillation as a function of the number N of monolayers. (ii) In addition to sine-type envelope functions which vanish at the film boundaries, some states have cosine envelope functions with extrema at boundaries. (iii) Even-layer Si(001) films exhibit at the valence-band maximum a state whose energy does not vary with the film thickness. Such zero confinement states have constant envelope throughout the film. (iv) Optical transitions in films exhibit boundary-imposed selection rules. Furthermore, oscillator strengths for pseudodirect transitions in the vicinity of forbidden direct transitions can be enhanced by several orders of magnitude. These findings, obtained in direct supercell calculations, can be explained in terms of a truncated crystal (TC) analysis. In this approach the film's wave functions are expanded in terms of pairs of bulk wave functions exhibiting a destructive interference at the boundaries. This maps the eigenvalue spectra of a film onto the bulk band structure evaluated at special k points which satisfy the boundary conditions. We find that the TC representation reproduces accurately the above-mentioned results of direct diagonalization of the film's Hamiltonian. This provides a simple alternative to the effective-mass model and relates the properties of quantum structures to those of the bulk material
Topology optimization for acoustic-structure interaction problems
DEFF Research Database (Denmark)
Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz......-dimensional acoustic-structure interaction problems are optimized to show the validity of the proposed method....
Electronic structure, bonding and chemisorption in metallic hydrides
International Nuclear Information System (INIS)
Ward, J.W.
1980-01-01
Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems
Studies in the electronic structure of matter
International Nuclear Information System (INIS)
Swarts, C.A.
1979-01-01
Chapter I: Here the results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are (I) the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, (II) the pseudopotential method, (III) Hartree-Fock theory as evaluated by Kennedy and Manson, and (IV) Amusia's Random Phase Approximation with Exchange (RPAE). It is shown that the local density theories, although simple, generally fail to produce reliable cross section; the more complicated Hartree-Fock method is no more reliable; the a priori RPAE method is most reliable, but tedious; and the phenomenological pseudopotential method offers a good combination of reliability and simplicity. The muffin-tin approximation, widely used in molecular and condensed matter physics, is examined and found to be adequate. Chapter II: Extended Hueckel theory is applied to GaAs, GaP and to the nitrogen isoelectronic trap in GaAs and GaP. The computed perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. Chapter III: By means of model calculations for an independent electron metal, we obtain exact lineshapes for the photon absorption, emission and photoemission spectra of deep core states. We find in each case an X-ray edge anomaly as pedicted by Nozieres and De Dominicis. Sumrules are used as a general check on the calculations and to explain the deviations of the exact theory from the exciton theory away from threshold
Pathgroups, a dynamic data structure for genome reconstruction problems.
Zheng, Chunfang
2010-07-01
Ancestral gene order reconstruction problems, including the median problem, quartet construction, small phylogeny, guided genome halving and genome aliquoting, are NP hard. Available heuristics dedicated to each of these problems are computationally costly for even small instances. We present a data structure enabling rapid heuristic solution to all these ancestral genome reconstruction problems. A generic greedy algorithm with look-ahead based on an automatically generated priority system suffices for all the problems using this data structure. The efficiency of the algorithm is due to fast updating of the structure during run time and to the simplicity of the priority scheme. We illustrate with the first rapid algorithm for quartet construction and apply this to a set of yeast genomes to corroborate a recent gene sequence-based phylogeny. http://albuquerque.bioinformatics.uottawa.ca/pathgroup/Quartet.html chunfang313@gmail.com Supplementary data are available at Bioinformatics online.
Structural qualia: a solution to the hard problem of consciousness.
Loorits, Kristjan
2014-01-01
The hard problem of consciousness has been often claimed to be unsolvable by the methods of traditional empirical sciences. It has been argued that all the objects of empirical sciences can be fully analyzed in structural terms but that consciousness is (or has) something over and above its structure. However, modern neuroscience has introduced a theoretical framework in which also the apparently non-structural aspects of consciousness, namely the so called qualia or qualitative properties, can be analyzed in structural terms. That framework allows us to see qualia as something compositional with internal structures that fully determine their qualitative nature. Moreover, those internal structures can be identified which certain neural patterns. Thus consciousness as a whole can be seen as a complex neural pattern that misperceives some of its own highly complex structural properties as monadic and qualitative. Such neural pattern is analyzable in fully structural terms and thereby the hard problem is solved.
Structural qualia: a solution to the hard problem of consciousness
Directory of Open Access Journals (Sweden)
Kristjan eLoorits
2014-03-01
Full Text Available The hard problem of consciousness has been often claimed to be unsolvable by the methods of traditional empirical sciences. It has been argued that all the objects of empirical sciences can be fully analyzed in structural terms but that consciousness is (or has something over and above its structure. However, modern neuroscience has introduced a theoretical framework in which also the apparently non-structural aspects of consciousness, namely the so called qualia or qualitative properties, can be analyzed in structural terms. That framework allows us to see qualia as something compositional with internal structures that fully determine their qualitative nature. Moreover, those internal structures can be identified which certain neural patterns. Thus consciousness as a whole can be seen as a complex neural pattern that misperceives some of its own highly complex structural properties as monadic and qualitative. Such neural pattern is analyzable in fully structural terms and thereby the hard problem is solved.
A Critical Systems Metamethodology for Problem Situation Structuring
Slavica P. Petrovic
2012-01-01
The increasing complexity and diversity of management problem situations in organizations, as well as the increasing variety of theories, methodologies, methods, techniques, and models that can be employed in problem situation structuring and solving, must be considered as relevant aspects of management process in contemporary circumstances. Creative holism in management problem situations in organizations is enabled by means of Critical Systems Thinking (CST) as well as Critical Systems Prac...
Applicability Problem in Optimum Reinforced Concrete Structures Design
Directory of Open Access Journals (Sweden)
Ashara Assedeq
2016-01-01
Full Text Available Optimum reinforced concrete structures design is very complex problem, not only considering exactness of calculus but also because of questionable applicability of existing methods in practice. This paper presents the main theoretical mathematical and physical features of the problem formulation as well as the review and analysis of existing methods and solutions considering their exactness and applicability.
Graph-based linear scaling electronic structure theory
Energy Technology Data Exchange (ETDEWEB)
Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Electronic structure and chemical properties of superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Pershina, V [Gesellschaft fuer Schwerionenforschung (GSI), Helmholtzzentrum fuer Schwerionenforschung Gmbh (Germany)
2009-12-31
Relativistic electronic structure calculations of superheavy elements (Z>=104) are analyzed. Preference is given to those related to experimental research. The role of relativistic effects is discussed.
Solving complex band structure problems with the FEAST eigenvalue algorithm
Laux, S. E.
2012-08-01
With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.
Augmented neural networks and problem structure-based heuristics for the bin-packing problem
Kasap, Nihat; Agarwal, Anurag
2012-08-01
In this article, we report on a research project where we applied augmented-neural-networks (AugNNs) approach for solving the classical bin-packing problem (BPP). AugNN is a metaheuristic that combines a priority rule heuristic with the iterative search approach of neural networks to generate good solutions fast. This is the first time this approach has been applied to the BPP. We also propose a decomposition approach for solving harder BPP, in which subproblems are solved using a combination of AugNN approach and heuristics that exploit the problem structure. We discuss the characteristics of problems on which such problem structure-based heuristics could be applied. We empirically show the effectiveness of the AugNN and the decomposition approach on many benchmark problems in the literature. For the 1210 benchmark problems tested, 917 problems were solved to optimality and the average gap between the obtained solution and the upper bound for all the problems was reduced to under 0.66% and computation time averaged below 33 s per problem. We also discuss the computational complexity of our approach.
Discussion on the electronic problems of straw vertex detector
International Nuclear Information System (INIS)
Xi Deming
1992-01-01
The measurement of the characteristic time of the output waveform of straw vertex detector, the design of its high resolution and high counting rate readout system and the problems of the charge and time calibrations are discussed
To the problem of electron beam production in plasma diodes
International Nuclear Information System (INIS)
Korenev, S.A.
1982-01-01
The results of exprriments on electrOn beam generation from plasma emitting surfaces formed by incompleted charged over the dielectric surface, sliding charge over the dielectric surface covered with a layer of barium oxide, discharge due to explosion-emission effects. The experiments have shown that the formed plasma of sliding discharge and discharge in explosion-emission effects is rather homogeneous and the electron beam has the current density homogeneity in the transverse cross section of approximation 20%. At the diode voltage of 150-300 kV the density of electron current for diodes with cathode on the basis of the sliding charge is approximately 0.4-1.0 kA/cm 2 , while for diodes with cathode made of graphite with metallic grid it is approximately 0.5-1.3 kA/cm 2 . The average gap between anode and cathode is 1 cm for both cases
Variational structure of inverse problems in wave propagation and vibration
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
1995-03-01
Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.
Structure problems in the analog computation; Problemes de structure dans le calcul analogique
Energy Technology Data Exchange (ETDEWEB)
Braffort, P L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1957-07-01
The recent mathematical development showed the importance of elementary structures (algebraic, topological, etc.) in abeyance under the great domains of classical analysis. Such structures in analog computation are put in evidence and possible development of applied mathematics are discussed. It also studied the topological structures of the standard representation of analog schemes such as additional triangles, integrators, phase inverters and functions generators. The analog method gives only the function of the variable: time, as results of its computations. But the course of computation, for systems including reactive circuits, introduces order structures which are called 'chronological'. Finally, it showed that the approximation methods of ordinary numerical and digital computation present the same structure as these analog computation. The structure analysis permits fruitful comparisons between the several domains of applied mathematics and suggests new important domains of application for analog method. (M.P.)
Structure problems in the analog computation; Problemes de structure dans le calcul analogique
Energy Technology Data Exchange (ETDEWEB)
Braffort, P.L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1957-07-01
The recent mathematical development showed the importance of elementary structures (algebraic, topological, etc.) in abeyance under the great domains of classical analysis. Such structures in analog computation are put in evidence and possible development of applied mathematics are discussed. It also studied the topological structures of the standard representation of analog schemes such as additional triangles, integrators, phase inverters and functions generators. The analog method gives only the function of the variable: time, as results of its computations. But the course of computation, for systems including reactive circuits, introduces order structures which are called 'chronological'. Finally, it showed that the approximation methods of ordinary numerical and digital computation present the same structure as these analog computation. The structure analysis permits fruitful comparisons between the several domains of applied mathematics and suggests new important domains of application for analog method. (M.P.)
Electronic structure of shandite Co3Sn2S2
Dedkov, Y. S.; Holder, M.; Molodtsov, S. L.; Rosner, H.
2008-03-01
The electronic structure of shandite Co3Sn2S2 was determined by photoelectron spectroscopy and compared with ab initio band structure calculations. Presented results give evidence that this compound has half-metallic ferromagnetic properties.
Inverse Problem Approach for the Alignment of Electron Tomographic Series.
Tran , Viet Dung; Moreaud , Maxime; Thiébaut , Éric; Denis , L.; Becker , Jean-Marie
2014-01-01
In the refining industry, morphological measurements of particles have become an essential part in the characterization catalyst supports. Through these parameters, one can infer the specific physicochemical properties of the studied materials. One of the main acquisition techniques is electron tomography (or nanotomography). 3D volumes are reconstructed from sets of projections from different angles made by a Transmission Elect...
Electronic Structure of the Bismuth Family of High Temperature Superconductors
Energy Technology Data Exchange (ETDEWEB)
Dunn, Lisa
2002-03-07
High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the
Electronic conductance of quantum wire with serial periodic potential structures
International Nuclear Information System (INIS)
Fayad, Hisham M.; Shabat, Mohammed M.; Abdus Salam International Centre for Theoretical Physics, Trieste
2000-08-01
A theory based on the total transfer matrix is presented to investigate the electronic conductance in a quantum wire with serial periodic potentials. We apply the formalism in computation of the electronic conductance in a wire with different physical parameters of the wire structure. The numerical results could be used in designing some future quantum electronic devices. (author)
Atomic and electronic structure of surfaces theoretical foundations
Lannoo, Michel
1991-01-01
Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.
Electronic structure of atoms: atomic spectroscopy information system
International Nuclear Information System (INIS)
Kazakov, V V; Kazakov, V G; Kovalev, V S; Meshkov, O I; Yatsenko, A S
2017-01-01
The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists. (paper)
A General Sparse Tensor Framework for Electronic Structure Theory.
Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I; Head-Gordon, Martin
2017-03-14
Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. However, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We avoid cumbersome machine-generated code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.
Electronic structure of atoms: atomic spectroscopy information system
Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.
2017-10-01
The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.
CIF2Cell: Generating geometries for electronic structure programs
Björkman, Torbjörn
2011-05-01
The CIF2Cell program generates the geometrical setup for a number of electronic structure programs based on the crystallographic information in a Crystallographic Information Framework (CIF) file. The program will retrieve the space group number, Wyckoff positions and crystallographic parameters, make a sensible choice for Bravais lattice vectors (primitive or principal cell) and generate all atomic positions. Supercells can be generated and alloys are handled gracefully. The code currently has output interfaces to the electronic structure programs ABINIT, CASTEP, CPMD, Crystal, Elk, Exciting, EMTO, Fleur, RSPt, Siesta and VASP. Program summaryProgram title: CIF2Cell Catalogue identifier: AEIM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 3 No. of lines in distributed program, including test data, etc.: 12 691 No. of bytes in distributed program, including test data, etc.: 74 933 Distribution format: tar.gz Programming language: Python (versions 2.4-2.7) Computer: Any computer that can run Python (versions 2.4-2.7) Operating system: Any operating system that can run Python (versions 2.4-2.7) Classification: 7.3, 7.8, 8 External routines: PyCIFRW [1] Nature of problem: Generate the geometrical setup of a crystallographic cell for a variety of electronic structure programs from data contained in a CIF file. Solution method: The CIF file is parsed using routines contained in the library PyCIFRW [1], and crystallographic as well as bibliographic information is extracted. The program then generates the principal cell from symmetry information, crystal parameters, space group number and Wyckoff sites. Reduction to a primitive cell is then performed, and the resulting cell is output to suitably named files along with documentation of the information source generated from any bibliographic information contained in the CIF
Electronic Interests and Behaviours Associated with Gambling Problems
Phillips, James G.; Ogeil, Rowan P.; Blaszczynski, Alex
2012-01-01
Multiple computing devices continue to develop capabilities that support online gambling, resulting in the need to evaluate the extent that this trend will contribute to gambling problems. A sample of 1,141 participants completed an online survey assessing interest in and difficulties limiting use of digital services. Questionnaire items measured…
Structure of liquid alkali metals as electron-ion plasmas
International Nuclear Information System (INIS)
Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.
1980-08-01
The static structure factor of liquid alkali metals near freezing, and its dependence on temperature and pressure, are evaluated in an electron-ion plasma model from an accurate theoretical determination of the structure factor of the one-component classical plasma and electron-screening theory. Very good agreement is obtained with the available experimental data. (author)
The assessment of structural dynamics problems in nuclear reactor safety
International Nuclear Information System (INIS)
Liebe, R.
1978-10-01
The paper discusses important physical features of structural dynamics problems in reactor safety. First a general characterization is given of the following problems: Containment deformation due to pool-dynamics during BWR-blowdown; behavior of the core internals due to PWR-blowdown loads; dynamic response of a nuclear power plant during an earthquake; fuel element deformation due to local pressure pulses in an LMFBR core. Several criterias are formulated to classify typical problems so that a better choise can be made both of appropriate mathematical/numerical as well as experimental techniques. The degree of physical coupling between structural dynamics and fluid dynamics is discussed in more detail since it requires particular attention when selecting problem-oriented methods of solution. Some examples are given to illustrate the application and to compare advantages and disadvantages of several numerical methods. Then description is given of experimental techniques in structural dynamics and typical problem areas are identified. Finally some results are presented concerning the fuel element deformation problem in LMFBRs and from the general considerations some important conclusions are summarized. (orig.) 891 RW 892 AP [de
Electronic structure of Mo and W investigated with positron annihilation
Energy Technology Data Exchange (ETDEWEB)
Dutschke, Markus [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Sekania, Michael [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Andronikashvili Institute of Physics, Tbilisi (Georgia); Benea, Diana [Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania); Department of Chemistry, Ludwig Maximilian University of Munich (Germany); Ceeh, Hubert; Weber, Joseph A.; Hugenschmidt, Christoph [FRM II, Technische Universitaet Muenchen, Garching (Germany); Chioncel, Liviu [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Augsburg Center for Innovative Technologies, University of Augsburg (Germany)
2016-07-01
We perform electronic structure calculations to analyze the momentum distribution of the transition metals molybdenum and tungsten. We study the influence of positron-electron and the electron-electron interactions on the shape of the two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) spectra. Our analysis is performed within the framework of the combined Density Functional (DFT) and Dynamical Mean-Field Theory (DMFT). Computed spectra are compared with recent experimental investigations.
Electronic structures of elements according to ionization energies.
Zadeh, Dariush H
2017-11-28
The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.
Correct Brillouin zone and electronic structure of BiPd
Yaresko, Alexander; Schnyder, Andreas P.; Benia, Hadj M.; Yim, Chi-Ming; Levy, Giorgio; Damascelli, Andrea; Ast, Christian R.; Peets, Darren C.; Wahl, Peter
2018-02-01
A promising route to the realization of Majorana fermions is in noncentrosymmetric superconductors, in which spin-orbit coupling lifts the spin degeneracy of both bulk and surface bands. A detailed assessment of the electronic structure is critical to evaluate their suitability for this through establishing the topological properties of the electronic structure. This requires correct identification of the time-reversal-invariant momenta. One such material is BiPd, a recently rediscovered noncentrosymmetric superconductor which can be grown in large, high-quality single crystals and has been studied by several groups using angular resolved photoemission to establish its surface electronic structure. Many of the published electronic structure studies on this material are based on a reciprocal unit cell which is not the actual Brillouin zone of the material. We show here the consequences of this for the electronic structures and show how the inferred topological nature of the material is affected.
Topology optimization of coated structures and material interface problems
DEFF Research Database (Denmark)
Clausen, Anders; Aage, Niels; Sigmund, Ole
2015-01-01
This paper presents a novel method for including coated structures and prescribed material interface properties into the minimum compliance topology optimization problem. Several elements of the method are applicable to a broader range of interface problems. The approach extends the standard SIMP......-step filtering/projection approach. The modeled coating thickness is derived analytically, and the coating is shown to be accurately controlled and applied in a highly uniform manner over the structure. An alternative interpretation of the model is to perform single-material design for additive manufacturing...
International Nuclear Information System (INIS)
Havu, V.; Blum, V.; Havu, P.; Scheffler, M.
2009-01-01
We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as the more rigorous bottom-up approaches.
Electronic structure of hybrid interfaces for polymer-based electronics
International Nuclear Information System (INIS)
Fahlman, M; Crispin, A; Crispin, X; Henze, S K M; Jong, M P de; Osikowicz, W; Tengstedt, C; Salaneck, W R
2007-01-01
The fundamentals of the energy level alignment at anode and cathode electrodes in organic electronics are described. We focus on two different models that treat weakly interacting organic/metal (and organic/organic) interfaces: the induced density of interfacial states model and the so-called integer charge transfer model. The two models are compared and evaluated, mainly using photoelectron spectroscopy data of the energy level alignment of conjugated polymers and molecules at various organic/metal and organic/organic interfaces. We show that two different alignment regimes are generally observed: (i) vacuum level alignment, which corresponds to the lack of vacuum level offsets (Schottky-Mott limit) and hence the lack of charge transfer across the interface, and (ii) Fermi level pinning where the resulting work function of an organic/metal and organic/organic bilayer is independent of the substrate work function and an interface dipole is formed due to charge transfer across the interface. We argue that the experimental results are best described by the integer charge transfer model which predicts the vacuum level alignment when the substrate work function is above the positive charge transfer level and below the negative charge transfer level of the conjugated material. The model further predicts Fermi level pinning to the positive (negative) charge transfer level when the substrate work function is below (above) the positive (negative) charge transfer level. The nature of the integer charge transfer levels depend on the materials system: for conjugated large molecules and polymers, the integer charge transfer states are polarons or bipolarons; for small molecules' highest occupied and lowest unoccupied molecular orbitals and for crystalline systems, the relevant levels are the valence and conduction band edges. Finally, limits and further improvements to the integer charge transfer model are discussed as well as the impact on device design. (topical review)
Monte Carlo methods in electron transport problems. Pt. 1
International Nuclear Information System (INIS)
Cleri, F.
1989-01-01
The condensed-history Monte Carlo method for charged particles transport is reviewed and discussed starting from a general form of the Boltzmann equation (Part I). The physics of the electronic interactions, together with some pedagogic example will be introduced in the part II. The lecture is directed to potential users of the method, for which it can be a useful introduction to the subject matter, and wants to establish the basis of the work on the computer code RECORD, which is at present in a developing stage
The electronic structure of core states under extreme compressions
International Nuclear Information System (INIS)
Straub, G.K.
1992-01-01
At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands
Topology optimization of fluid-structure-interaction problems in poroelasticity
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2013-01-01
This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....
Orbital Models and Electronic Structure Theory
DEFF Research Database (Denmark)
Linderberg, Jan
2012-01-01
This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules...
The Similar Structures and Control Problems of Complex Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between the functions and behaviors of these systems and their similar structures will be studied. Owing to the management of social systems and the course of evolution of biotic systems may be regarded as control processes, the researches will be within the scope of control problems. Moreover, since it is difficult to model for biotic and social systems, it will start with the control problems of complex systems, possessing similar structures, in engineering.The obtained results show that for either linear or nonlinear systems and for a lot of control problemssimilar structures lead to a series of simplifications. In general, the original system may be decomposed into reduced amount of subsystems with lower dimensions and simpler structures. By virtue of such subsystems, the control problems of original system can be solved more simply.At last, it turns round to observe the biotic and social systems and some analyses are given.
Crystal structure from one-electron theory
DEFF Research Database (Denmark)
Skriver, H. L.
1985-01-01
The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...
Electronic structure of molecules using relativistic effective core potentials
International Nuclear Information System (INIS)
Hay, P.J.
1983-01-01
In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis
Kim, C.
2012-01-01
Over the last decade consumer electronic product industries have been confronted with an increase in consumer complaints. Interestingly about half of the reasons for product return are based on so called ‘soft problems’, consumer complaints that cannot be traced back to technical problems. Probably
Poverty—A structural problem of developing countries
Wülker, Gabriele
1981-01-01
The contrast between industrialized and developing countries is often seen as one between two opposites: Rich countries—poor countries. But the poverty in the developing countries is by no means identical with the need for help as perceived in the industrialized societies. Poverty in the Third World is, as the following article shows, a structural problem.
Complex band structure and electronic transmission eigenchannels
DEFF Research Database (Denmark)
Jensen, Anders; Strange, Mikkel; Smidstrup, Soren
2017-01-01
and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...
Syntheses and electronic structures of decamethylmetallocenes
International Nuclear Information System (INIS)
Robbins, J.L.
1981-04-01
The synthesis of decamethylmanganocene [(eta-C 5 (CH 3 ) 5 ) 2 Mn or (Me 5 Cp) 2 Mn)] is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me 5 Cp) 2 Mn is a low-spin, 17-electron compound with an orbitally degenerate, 2 E/sub 2g/ [e/sub 2g/ 3 a/sub 1g/ 2 ] ground state. An x-ray crystallographic study of (Me 5 Cp) 2 Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me 5 Cp) 2 M (M = Mg,V,Cr,Co, and Ni) and [(Me 5 Cp) 2 M]PF 6 (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, [(Me 5 Cp) 2 Ni](PF 6 ) 2 is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me 5 Cp) 2 M → [(Me 5 Cp) 2 M] + (M = Cr,Mn,Fe,Co,Ni), [(Me 5 Cp) 2 Mn] - → (Me 5 Cp) 2 Mn and [(Me 5 Cp) 2 Ni] + → [Me 5 Cp) 2 Ni] 2+ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for [(Me 5 Cp) 2 V(CO) 2 ] + . The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported
Syntheses and electronic structures of decamethylmetallocenes
Energy Technology Data Exchange (ETDEWEB)
Robbins, J.L.
1981-04-01
The synthesis of decamethylmanganocene ((eta-C/sub 5/(CH/sub 3/)/sub 5/)/sub 2/Mn or (Me/sub 5/Cp)/sub 2/Mn)) is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me/sub 5/Cp)/sub 2/Mn is a low-spin, 17-electron compound with an orbitally degenerate, /sup 2/E/sub 2g/ (e/sub 2g//sup 3/ a/sub 1g//sup 2/) ground state. An x-ray crystallographic study of (Me/sub 5/Cp)/sub 2/Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me/sub 5/Cp)/sub 2/M (M = Mg,V,Cr,Co, and Ni) and ((Me/sub 5/Cp)/sub 2/M)PF/sub 6/ (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, ((Me/sub 5/Cp)/sub 2/Ni)(PF/sub 6/)/sub 2/ is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me/sub 5/Cp)/sub 2/M ..-->.. ((Me/sub 5/Cp)/sub 2/M)/sup +/ (M = Cr,Mn,Fe,Co,Ni), ((Me/sub 5/Cp)/sub 2/Mn)/sup -/ ..-->.. (Me/sub 5/Cp)/sub 2/Mn and ((Me/sub 5/Cp)/sub 2/Ni)/sup +/ ..-->.. (Me/sub 5/Cp)/sub 2/Ni)/sup 2 +/ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for ((Me/sub 5/Cp)/sub 2/V(CO)/sub 2/)/sup +/. The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported.
Jitendra, Asha K.; Petersen-Brown, Shawna; Lein, Amy E.; Zaslofsky, Anne F.; Kunkel, Amy K.; Jung, Pyung-Gang; Egan, Andrea M.
2015-01-01
This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et…
Electronic structure and optical properties of solid C60
International Nuclear Information System (INIS)
Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.
2009-01-01
The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .
Electronic structure of fractionally nuclear charged atoms
International Nuclear Information System (INIS)
Pavao, Antonio C.; Bastos, Cristiano C.; Ferreira, Joacy V.
2008-01-01
Different properties of quark chemistry are studied by performing accurate ab initio Hartree- Fock calculations on fractionally nuclear charged atoms. Ground and first excited states of sodium atoms with quarks attached to the nucleus are obtained using CI calculations. It is suggested that the sodium 2 P -> 2 S electronic transition can be used as a guide in searching for unconfined quarks. Also, the variation of the binding electronic energy with nuclear charge in the isoelectronic series of fractionally nuclear charged atoms A ±2/3 and A ±1/3 (A = H, Li, Na, P and Ca) is analyzed. The present calculations suggest that unconfined colored particles have large appetite for heavy nuclei and that quark-antiquark pairs could be stabilized in presence of the atomic matter. (author)
Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem
Ivanov, Stefan; Vassilev, Dimiter
2014-01-01
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A "3-Hamiltonian form" of infinitesimal conformal automorphisms of quaternionic contact structures is presented.
Tailoring electronic structure of polyazomethines thin films
J. Weszka; B. Hajduk; M. Domański; M. Chwastek; J. Jurusik; B. Jarząbek; H. Bednarski; P. Jarka
2010-01-01
Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD) can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic ...
Reading the problem family: post-structuralism and the analysis of social problems.
Reekie, G
1994-01-01
Post-structuralist theory questions the rational pursuit of an underlying 'truth' that often characterizes social scientific inquiry, proposing instead the simultaneous existence of multiple and often contradictory truths. The problem family can, from this perspective, only be known through the different discourses that produce it. This paper suggests some of the political advantages of developing methods of reading 'problems' related to drugs and alcohol. Without this critical attention to language, we risk perpetuating the ways in which problems are talked about and thought about. Drawing on examples from debates surrounding teenage pregnancy and youth drinking, the paper argues that post-structuralism allows us to analyse the specific ways in which professional discourses write social problems, and hence to own them and to re-write them.
Electronic structure and formation energy of a vacancy in aluminum
International Nuclear Information System (INIS)
Chakraborty, B.; Siegel, R.W.
1981-11-01
The electronic structure of a vacancy in Al was calculated self-consistently using norm-conserving ionic pseudopotentials obtained from ab initio atomic calculations. A 27-atom-site supercell containing 1 vacancy and 26 atoms was used to simulate the environment of the vacancy. A vacancy formation energy of 1.5 eV was also calculated (cf. the experimental value of 0.66 eV). The effects of the supercell and the nature of the ionic potential on the resulting electronic structure and formation energy are discussed. Results for the electronic structure of a divacancy are also presented. 3 figures
One-Electron Theory of Metals. Cohesive and Structural Properties
DEFF Research Database (Denmark)
Skriver, Hans Lomholt
The work described in the report r.nd the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from selfconsistent electronic-structure calculations performed...... by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth...
Cost-effective use of minicomputers to solve structural problems
Storaasli, O. O.; Foster, E. P.
1978-01-01
Minicomputers are receiving increased use throughout the aerospace industry. Until recently, their use focused primarily on process control and numerically controlled tooling applications, while their exposure to and the opportunity for structural calculations has been limited. With the increased availability of this computer hardware, the question arises as to the feasibility and practicality of carrying out comprehensive structural analysis on a minicomputer. This paper presents results on the potential for using minicomputers for structural analysis by (1) selecting a comprehensive, finite-element structural analysis system in use on large mainframe computers; (2) implementing the system on a minicomputer; and (3) comparing the performance of the minicomputers with that of a large mainframe computer for the solution to a wide range of finite element structural analysis problems.
Structure and electron-ion correlation in liquid Mg
Energy Technology Data Exchange (ETDEWEB)
Tahara, Shuta [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Fujii, Hiroyuki [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yokota, Yukinobu [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan)]. E-mail: takeda@rc.kyushu-u.ac.jp
2006-11-15
For liquid Mg at 700 deg. C, structure factors were obtained from both neutron and X-ray diffraction measurements. The bond angle and coordination number distributions were derived from the reverse Monte Carlo analysis. By a combination of both structure factors, charge density function and electron-ion partial structure factor were deduced.
Structural and electronic parameters of ferroelectric KWOF
Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.
2010-11-01
The low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 oxyfluoride is formed by chemical synthesis. The electronic parameters of G2-K 3WO 3F 3 have been measured by X-ray photoelectron spectroscopy under excitation with Al Kα radiation (1486.6 eV). Detailed spectra have been recorded for all element core levels and Auger lines. The chemical bonding effects in the WO 3F 3 and WO 6 octahedrons are considered by using the binding energy difference ΔBE(O-W)=BE(O 1s)-BE(W 4f).
Nodal Structure of the Electronic Wigner Function
DEFF Research Database (Denmark)
Schmider, Hartmut; Dahl, Jens Peder
1996-01-01
On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...
Electronic structure of the light actinides
International Nuclear Information System (INIS)
Dunlap, B.D.
1976-01-01
In the last few years, considerable advances have been made in our understanding of the properties of the light actinides. Although these are 5f transition elements formally equivalent to the lanthanide (4f) elements, these materials show a much more varied behavior due to the larger spatial extent and ionizability of the 5f electrons. A review is given of some areas of current interest, especially where hyperfine measurements have played an active role. These include studies of a variety of magnetic phenomena, systematics of isomer shift measurements, and studies of paramagnetic relaxation
Mechanical structure and problem of thorium molten salt reactor
International Nuclear Information System (INIS)
Kamei, Takashi
2011-01-01
After Fukushima Daiichi accident, there became great interest in Thorium Molten Salt Reactor (MSR) for the safety as station blackout leading to auto drainage of molten salts with freeze valve. This article described mechanical structure of MSR and problems of materials and pipes. Material corrosion problem by molten salts would be solved using modified Hastelloy N with Ti and Nb added, which should be confirmed by operation of an experimental reactor. Trends in international activities of MSR were also referred including China declaring MSR development in January 2011 to solve thorium contamination issues at rare earth production and India rich in thorium resources. (T. Tanaka)
Electron beam crosslinked PVC : structure property relationships
International Nuclear Information System (INIS)
Gupta, Neeraj K.; Sabharwal, Sunil
2001-01-01
PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale
Electronic structure and isomer shifts of Sn halides
International Nuclear Information System (INIS)
Terra, J.; Guenzburger, D.
1988-01-01
The all-electron first-principles Discrete Variational method was employed to study the electronic structure of SnF 4 , SnCl 4 , SnBr 4 and SnI 4 . Values of the electronic density at the Sn nucleus were derived and related to 119 Sn Isomer Shifts to obtain the nuclear constant Δ 2 >. Differences in values of ρ(o) area discussed in terms of the chemical bonding between Sn and halogen atoms. (author) [pt
Phase stability and electronic structure of transition-metal aluminides
International Nuclear Information System (INIS)
Carlsson, A.E.
1992-01-01
This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior
International Nuclear Information System (INIS)
Rosen, S.P.; Gelb, J.M.
1987-01-01
We consider the scattering of solar neutrinos by electrons as a means for distinguishing between MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, we find that some correlation between the value R and the appropriate solution. 9 refs., 3 figs
Sutirman; Muhyadi; Surjono, Herman Dwi
2017-01-01
This study aims to investigate the learning implementation of electronic filing and problems faced by teachers in learning implementing of electronic filing. This study is a descriptive research with qualitative approach. Collecting data used interview and documentation techniques. The research subjects consisted of 29 teachers who teach Filing…
Electronic structure of filled tetrahedral semiconductors
Wood, D.M.; Zunger, Alex; Groot, R. de
1985-01-01
We discuss the susceptibility of zinc-blende semiconductors to band-structure modification by insertion of small atoms at their tetrahedral interstitial states. GaP is found to become a direct-gap semiconductor with two He atoms present at its interstitial sites; Si does not. Analysis of the factors
Electronic structure and ionicity of actinide oxides from first principles
DEFF Research Database (Denmark)
Petit, Leon; Svane, Axel; Szotek, Z.
2010-01-01
The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, whi...
On the electronic structure of high Tc superconductors
International Nuclear Information System (INIS)
Fink, J.; Nuecker, N.; Romberg, H.; Alexander, M.; Knupfer, M.; Mante, J.; Claessen, R.; Buslaps, T.; Harm, S.; Manzke, R.; Skibowski, M.
1992-01-01
Studies of the electronic structure of high-T c superconductors and related compounds by high-energy spectroscopies are reviewed. In particular, we report on investigations by electron energy-loss, angle-resolved photoemission, and inverse angle-resolved photoemission spectroscopy. Information on the symmetry and the character of states close to the Fermi level has been obtained. 25 refs., 8 figs
Electronic structure and equilibrium properties of hcp titanium
Indian Academy of Sciences (India)
The electronic structures of hexagonal-close-packed divalent titanium (3-d) and zirconium (4-d) transition metals are studied by using a non-local model potential method. From the present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity of these two metals are determined and ...
Weiss oscillations in the electronic structure of modulated graphene
International Nuclear Information System (INIS)
Tahir, M; Sabeeh, K; MacKinnon, A
2007-01-01
We present a theoretical study of the electronic structure of modulated graphene in the presence of a perpendicular magnetic field. The density of states and the bandwidth for the Dirac electrons in this system are determined. The appearance of unusual Weiss oscillations in the bandwidth and density of states is the main focus of this work
Electronic Structure of Au25 Clusters: Between Discrete and Continuous
Katsiev, Khabiboulakh
2016-07-15
Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.
Electronic Structure of Au25 Clusters: Between Discrete and Continuous
Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Katla, Saikrishna; Li, Ruipeng; Mei, Wai Ning; Skrabalak, Sara; Challa, Challa; Losovyj, Yaroslav
2016-01-01
Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.
Electronic Structure of Cdse Nanowires Terminated With Gold ...
African Journals Online (AJOL)
Bheema
Owing to their unusual electronic and structural properties, SC clusters have received considerable attention ... performing molecular dynamics simulations. A similar .... Analysis of the charge density, gap, corresponding to states with energies ...
Structures and electronics of buried and unburied semiconductor interfaces
International Nuclear Information System (INIS)
Kamiya, Itaru
2011-01-01
The structure of interfaces plays an important role in determining the electronic properties of semiconductor nanostructures. Here, such examples are shown and discussed using semiconductor nanostructures prepared by molecular beam epitaxy and colloidal synthesis.
Manganites in Perovskite Superlattices: Structural and Electronic Properties
Jiwuer, Jilili
2016-01-01
Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors
Structure and electron-ion correlation of liquid germanium
Energy Technology Data Exchange (ETDEWEB)
Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)
2005-08-15
Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.
Structure functions in electron-nucleon deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)
1982-06-26
The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.
First-principle calculations of structural, electronic, optical, elastic ...
Indian Academy of Sciences (India)
S CHEDDADI
2017-11-28
Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.
Electronic structure of incident carbon ions on a graphite surface
International Nuclear Information System (INIS)
Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.
1997-01-01
The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)
Standard problems to evaluate soil structure interaction computer codes
International Nuclear Information System (INIS)
Miller, C.A.; Costantino, C.J.; Philippacopoulos, A.J.
1979-01-01
The seismic response of nuclear power plant structures is often calculated using lumped parameter methods. A finite element model of the structure is coupled to the soil with a spring-dashpot system used to represent the interaction process. The parameters of the interaction model are based on analytic solutions to simple problems which are idealizations of the actual problems of interest. The objective of the work reported in this paper is to compare predicted responses using the standard lumped parameter models with experimental data. These comparisons are shown to be good for a fairly uniform soil system and for loadings which do not result in nonlinear interaction effects such as liftoff. 7 references, 7 figures
An Exploratory Study of Problem Gambling on Casino versus Non-Casino Electronic Gaming Machines
Clarke, Dave; Pulford, Justin; Bellringer, Maria; Abbott, Max; Hodgins, David C.
2012-01-01
Electronic gaming machines (EGMs) have been frequently associated with problem gambling. Little research has compared the relative contribution of casino EGMs versus non-casino EGMs on current problem gambling, after controlling for demographic factors and gambling behaviour. Our exploratory study obtained data from questionnaires administered to…
Mixing problem based learning and conventional teaching methods in an analog electronics course
Podges, J M; Kommers, P A M; Winnips, K; van Joolingen, W R
2014-01-01
This study, undertaken at the Walter Sisulu University of Technology (WSU) in South Africa, describes how problem-based learning (PBL) affects the first year 'analog electronics course', when PBL and the lecturing mode is compared. Problems were designed to match real-life situations. Data between
Mixing Problem Based Learning And Conventional Teaching Methods In An Analog Electronics Course
Podges, J.M.; Kommers, Petrus A.M.; Winnips, K.; van Joolingen, Wouter
2014-01-01
This study, undertaken at the Walter Sisulu University of Technology (WSU) in South Africa, describes how problem-based learning (PBL) affects the first year ‘analog electronics course’, when PBL and the lecturing mode is compared. Problems were designed to match real-life situations. Data between
Jitendra, Asha K; Petersen-Brown, Shawna; Lein, Amy E; Zaslofsky, Anne F; Kunkel, Amy K; Jung, Pyung-Gang; Egan, Andrea M
2015-01-01
This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et al. and 10 single case design (SCD) research studies using criteria suggested by Horner et al. and the What Works Clearinghouse. Results indicated that 14 group design studies met the criteria for high-quality or acceptable research, whereas SCD studies did not meet the standards for an evidence-based practice. Based on these findings, strategy instruction priming the mathematics problem structure is considered an evidence-based practice using only group design methodological criteria. Implications for future research and for practice are discussed. © Hammill Institute on Disabilities 2013.
Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography
International Nuclear Information System (INIS)
Bui, Khanh Huy; Pigino, Gaia; Ishikawa, Takashi
2011-01-01
Based on the molecular architecture revealed by electron cryo-tomography, the mechanism of the bending motion of eukaryotic flagella/cilia is discussed. Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe problems. Here, recent results on the structure of eukaryotic flagella, which is an ATP-driven bending organelle, from green algae Chlamydomonas are presented. Tomographic analysis reveals asymmetric molecular arrangements, especially that of the dynein motor proteins, in flagella, giving insight into the mechanism of planar asymmetric bending motion. Methodological challenges to obtaining higher-resolution structures from this technique are also discussed
Bond portfolio's duration and investment term-structure management problem
Liu, Daobai
2006-01-01
In the considered bond market, there are N zero-coupon bonds transacted continuously, which will mature at equally spaced dates. A duration of bond portfolios under stochastic interest rate model is introduced, which provides a measurement for the interest rate risk. Then we consider an optimal bond investment term-structure management problem using this duration as a performance index, and with the short-term interest rate process satisfying some stochastic differential ...
Structural problems in the construction of natural draught cooling towers
International Nuclear Information System (INIS)
Zerna, W.
1977-01-01
The paper deals with the structural requirements and development possibilities for large cooling towers, and in particular discusses parameter investigations into the reinforcement of cooling tower shells and problems of optimisation. In conclusion proposals are made as to how concrete cooling towers of very large dimensions reinforced with steel, as for example are required in dry cooling for large capacity plant, can be developed economically. (orig.) [de
Electronic structure of UCl5: A reexamination
International Nuclear Information System (INIS)
Soule, E.; Edelstein, N.
1980-01-01
On the basis of the absorption spectrum of UCl 5 recorded at 4.2 K, Leung and Poon attempted a determination of both the spin-orbit coupling constant and the crystal field parameters. Their parameters, however, led to a calculated g-tensor at variance with the position of the electron paramagnetic resonance line observed by Miyake et al. It was therefore attempted to simultaneously interpret both spectra (absorption and EPR), assuming the validity of the Newman superposition model, and taking the point symmetry group on each uranium of the (UCl 5 ) 2 dimer as C 2 sub(v). We obtain one and only one satisfactory solution, namely a set of parameters that reasonably reproduce the observed absorption peaks, and lead to the following principal values of the g-tensor: gx = 0.226 (unobservable); gy = 1.187; gz = 1.186. Therefore the paradox stemming from the apparent isotropy of the EPR signal for a species of low point symmetry is resolved. (orig.)
Electronic structure of metal overlayers on rhodium
International Nuclear Information System (INIS)
Feibelman, P.J.; Hamann, D.R.
1983-01-01
We have evaluated work functions, surface core-level shifts, and surface band dispersions for clean, Ag-covered, and Pd-covered Rh(100) surfaces, and for clean and Ag-covered Rh(111). The calculations were performed self-consistently, using the surface-linearized augmented-plane-wave method. As expected from the Pauling electronegativities, Ag adsorption lowers the work function from the clean Rh value, by several tenths of an eV, while Pd has an almost negligible effect. The values calculated for the core-level shifts of various films are shown to correspond to expectations based on surface band narrowing and layerwise charge neutrality. Using the core-level shifts, we predict heat-of-adsorption differences (for Ag on Pd vs Ag on Rh, etc.) that are in quite good agreement with the empirical predictions of Miedema and Dorleijn. Finally, the chemical inactivity of the Ag-covered Rh surface is associated with the fact that, for that system, the outer-layer local density of states is essentially that of Ag, with a characteristically low value at the Fermi energy. On the other hand, the Pd-covered Rh surface should behave much like clean Rh with an extra electron per surface atom. The surface band dispersions for the Pd-covered and clean Rh surfaces are closely similar. This result contrasts sharply with the case of Pd-covered Nb, for which, because of the appreciable electronegativity difference, the Pd overlayer is effectively ''noble.''
Electronic structure properties of UO2 as a Mott insulator
Sheykhi, Samira; Payami, Mahmoud
2018-06-01
In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.
New Insight into Carbon Nanotube Electronic Structure Selectivity
Energy Technology Data Exchange (ETDEWEB)
Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Jiang, Deen [ORNL
2009-01-01
The fundamental role of aryl diazonium salts for post synthesis selectivity of carbon nanotubes is investigated using extensive electronic structure calculations. The resulting understanding for diazonium salt based selective separation of conducting and semiconducting carbon nanotubes shows how the primary contributions come from the interplay between the intrinsic electronic structure of the carbon nanotubes and that of the anion of the salt. We demonstrate how the electronic transport properties change upon the formation of charge transfer complexes and upon their conversion into covalently attached functional groups. Our results are found to correlate well with experiments and provide for the first time an atomistic description for diazonium salt based chemical separation of carbon nanotubes
Electronic structure of the copper oxides
International Nuclear Information System (INIS)
Pickett, W.E.; Cohen, R.E.; Singh, D.; Krakauer, H.
1989-01-01
Since the discovery of the high temperature superconducting copper oxides a great deal has been learned from experiment about their behavior. From the theoretical side, there continues to be developments both within the band picture and from the model Hamiltonian viewpoint emphasizing correlations. In this paper the authors discuss these complementary viewpoints in relation to some of the experimental data. Due to their background in the band structure area, they approach the discussion by evaluating which phenomena can be (or has been) accounted for by the standard band approach, and point out which properties appear to require more intricate treatments of correlation
Electronic and geometric structures of calcium metaborates
International Nuclear Information System (INIS)
Baranovskij, V.I.; Lopatin, S.I.; Sizov, V.V.
2000-01-01
Calculations of geometric structure, vibration frequencies, ionization potentials and atomization energies of CaBO 2 and CaB 2 O 4 molecules were made. It is shown that linear conformations of the molecules are the most stable ones. In the metaborates studied calcium atom coordination with oxygen is a monodentate one, meanwhile CaB 2 O 4 can be considered as a Ca 2+ compound, whereas CaBO 2 - as a Ca + compound, which explains similarity of the molecule (from the viewpoint of its geometry, spectral and energy characteristics) to alkaline metal metaborates [ru
Ferromagnetism and temperature-dependent electronic structure in metallic films
International Nuclear Information System (INIS)
Herrmann, T.
1999-01-01
In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electron films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many-body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasi particle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin
Equilibrium and nonequilibrium solvation and solute electronic structure
International Nuclear Information System (INIS)
Kim, H.J.; Hynes, J.T.
1990-01-01
When a molecular solute is immersed in a polar and polarizable solvent, the electronic wave function of the solute system is altered compared to its vacuum value; the solute electronic structure is thus solvent-dependent. Further, the wave function will be altered depending upon whether the polarization of the solvent is or is not in equilibrium with the solute charge distribution. More precisely, while the solvent electronic polarization should be in equilibrium with the solute electronic wave function, the much more sluggish solvent orientational polarization need not be. We call this last situation non-equilibrium solvation. We outline a nonlinear Schroedinger equation approach to these issues
Structure and electronic properties of azadirachtin.
de Castro, Elton A S; de Oliveira, Daniel A B; Farias, Sergio A S; Gargano, Ricardo; Martins, João B L
2014-02-01
We performed a combined DFT and Monte Carlo (13)C NMR chemical-shift study of azadirachtin A, a triterpenoid that acts as a natural insect antifeedant. A conformational search using a Monte Carlo technique based on the RM1 semiempirical method was carried out in order to establish its preferred structure. The B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p), M06/6-311++G(d,p), M06-2X/6-311++G(d,p), and CAM-B3LYP/6-311++G(d,p) levels of theory were used to predict NMR chemical shifts. A Monte Carlo population-weighted average spectrum was produced based on the predicted Boltzmann contributions. In general, good agreement between experimental and theoretical data was obtained using both methods, and the (13)C NMR chemical shifts were predicted highly accurately. The geometry was optimized at the semiempirical level and used to calculate the NMR chemical shifts at the DFT level, and these shifts showed only minor deviations from those obtained following structural optimization at the DFT level, and incurred a much lower computational cost. The theoretical ultraviolet spectrum showed a maximum absorption peak that was mainly contributed by the tiglate group.
Structural complexities in the active layers of organic electronics.
Lee, Stephanie S; Loo, Yueh-Lin
2010-01-01
The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.
Atomic and electronic structures of divacancy in graphene nanoribbons
Energy Technology Data Exchange (ETDEWEB)
Zhao Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei Jianwei [School of Mathematics and Physics, Chongqing University of Technology, Chongqing 400054 (China)
2012-01-15
First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between {pi}{sup Low-Asterisk} and {pi} subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.
Electronic structure of a graphene superlattice with massive Dirac fermions
International Nuclear Information System (INIS)
Lima, Jonas R. F.
2015-01-01
We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E g can be tuned in the range 0 ≤ E g ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems
Effects of Structural Correlations on Electronic Properties
International Nuclear Information System (INIS)
Pastawski, H.M.; Weisz, J.F.
1984-01-01
A one dimensional alloy model is treated in the nearest neighbour tight binding approximation in which the correlation of the atoms can be adjusted. The correlation can be changed from a situation in which there is a tendency for atoms to alternate to a situation in which the atoms are randomly located, consistent with a fixed concentration c for A c B 1-c . The results show that when there is short range order, at certain energies there is a tendency for localized states and formation of structure induced minimum in the density of states. The results for the ordered case are similar to those of Charge Density Wave (CDW). A smooth transition is carried out between this case and the randomly disordered case which behaves like the Anderson model for uncorrelated disorder. (M.W.O.) [pt
The surface electronic structure of Y(0001)
International Nuclear Information System (INIS)
Searle, C.
1998-12-01
Yttrium has been grown epitaxially on W(110). The growth was monitored by using photoemission spectroscopy with a synchrotron radiation source. The film thickness has been gauged by the attenuation of the W 4f 7/2 bulk component. The films have been grown reproducibly and show a prominent surface state which is indicative of good order and low contamination. Angle-Resolved Ultra-Violet Photoemission Spectroscopy has been used to examine the valence band of these ultra-thin films. The films show a very different structure to the valence band of a bulk crystal of yttrium. The differences have been investigated by a series of model calculations using the LMASA-46 tight-binding LMTO program. The calculations suggest that the ultra-thin film surface state may be hybridised with a tungsten orbital having (x 2 - y 2 ) character. (author)
International Nuclear Information System (INIS)
Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.
2016-01-01
Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.
Electronic properties in a quantum well structure of Weyl semimetal
International Nuclear Information System (INIS)
You, Wen-Long; Zhou, Jiao-Jiao; Wang, Xue-Feng; Oleś, Andrzej M.
2016-01-01
We investigate the confined states and transport of three-dimensional Weyl electrons around a one-dimensional external rectangular electrostatic potential. The confined states with finite transverse wave vector exist at energies higher than the half well depth or lower than the half barrier height. The rectangular potential appears completely transparent to the normal incident electrons but not otherwise. The tunneling transmission coefficient is sensitive to their incident angle and shows resonant peaks when their energy coincides with the confined spectra. In addition, for the electrons in the conduction (valence) band through a potential barrier (well), the transmission spectrum has a gap of width increasing with the incident angle. Interestingly, the electron linear zero-temperature conductance over the potential can approach zero when the Fermi energy is aligned to the top and bottom energies of the potential, when only electron beams normal to the potential interfaces can pass through. The considered structure can be used to collimate the Weyl electron beams.
Effect of electron emission on an ion sheath structure
International Nuclear Information System (INIS)
Mishra, M K; Phukan, A; Chakraborty, M
2014-01-01
This article reports on the variations of ion sheath structures due to the emission of both hot and cold electrons in the target plasma region of a double plasma device. The ion sheath is produced in front of a negatively biased plate. The plasma is produced by hot filament discharge in the source region, and no discharge is created in the target region of the device. The plate is placed in the target (diffused plasma) region where cold electron emitting filaments are present. These cold electrons are free from maintenance of discharge, which is sustained in the source region. The hot ionizing electrons are present in the source region. Three important parameters are changed by both hot and cold electrons i.e. plasma density, plasma potential and electron temperature. The decrease in plasma potential and the increase in plasma density lead to the contraction of the sheath. (paper)
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
The role of ab initio electronic structure calculations in studies of the strength of materials
International Nuclear Information System (INIS)
Sob, M.; Friak, M.; Legut, D.; Fiala, J.; Vitek, V.
2004-01-01
In this paper we give an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of theoretical tensile strength in metals and intermetallics. First, we review previous as well as ongoing research on this subject. We then describe briefly the electronic structure calculational methods and simulation of the tensile test. This approach is then illustrated by calculations of theoretical tensile strength in iron and in the intermetallic compound Ni 3 Al. The anisotropy of calculated tensile strength is explained in terms of higher-symmetry structures encountered along the deformation paths studied. The table summarizing values of theoretical tensile strengths calculated up to now is presented and the role of ab initio electronic structure calculations in contemporary studies of the strength of material is discussed
Structure Identification in High-Resolution Transmission Electron Microscopic Images
DEFF Research Database (Denmark)
Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm
2014-01-01
A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...
Electronic structure of palladium and its relation to uv spectroscopy
DEFF Research Database (Denmark)
Christensen, N.E.
1976-01-01
The electronic-energy-band structure of palladium has been calculated by means of the relativistic augmented-plane-wave method covering energies up to 30 eV above the Fermi level. The optical interband transitions producing structure in the dielectric function up to photon energies of 25 eV have ...
The electron irradiation effects in different structures of diodes
International Nuclear Information System (INIS)
Li Quanfen; Wang Jiaxu
1993-01-01
This paper describes the different electron irradiation effects in different structures of diodes and the different results produced by different irradiation ways. From this work, we can know how to choose proper manufacture arts and comprehensive factors according to the structures of diodes and the irradiation conditions
Use of Lanczos vectors in fluid/structure interaction problems
International Nuclear Information System (INIS)
Jeans, R.; Mathews, I.C.
1992-01-01
The goals of any numerical computational technique used for the solution of structural acoustics problems in the exterior infinite domain should be of accuracy with rapid convergence, robustness, and computational efficiency. A computer program has been developed to achieve each of these three goals. Accuracy and robustness in the numerical representation of the integral equations used to represent the infinite fluid was attained through the use of boundary element implementations of the surface Helmholtz integral equations. The computational efficiency was resolved through the use of Lanczos vectors to model the deformation characteristics of the structure. The authors have developed collocation and variational techniques to overcome the difficulties previously encountered in the numerical implementation of the hypersingular integral operator. The Cauchy singularity present in the integral formulation is made numerically amenable through the use of tangential derivatives in both the collocation and variational techniques. The variational approach has the advantage that the resulting added fluid mass term is symmetric and combines efficiently with a finite element approximation of the structural elastic response. Several different strategies making use of the Lanczos vectors have been investigated. The first involved the use of Lanczos vectors solely to characterize the structural response. This reduced form of the structural dynamical matrix was then substituted back into a Burton and Miller formulation of the acoustic problem. The second strategy investigated involved forming the complex Lanzcos vectors of the dynamical matrix formed from the addition of a symmetrical added fluid matrix to the structural mass matrix. The size of resultant matrix equation set solved at each frequency for this strategy is determined by the number of Lanczos vectors used. 19 refs., 10 figs., 2 tabs
Electron vortex magnetic holes: A nonlinear coherent plasma structure
Energy Technology Data Exchange (ETDEWEB)
Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)
2015-01-15
We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.
Chemical modulation of electronic structure at the excited state
Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.
2017-12-01
Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.
Orbital approach to the electronic structure of solids
Canadell, Enric; Iung, Christophe
2012-01-01
This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understandingproperties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to ei
Snap-Through Buckling Problem of Spherical Shell Structure
Directory of Open Access Journals (Sweden)
Sumirin Sumirin
2014-12-01
Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.
Design Considerations for Optimized Lateral Spring Structures for Wearable Electronics
Hussain, Aftab M.
2016-03-07
The market for wearable electronics has been gaining momentum in the recent years. For completely electronic wearable textiles with integrated sensors, actuators, computing units and communication circuitry, it is important that there is significant stretchability. This stretchability can be obtained by introducing periodic stretchable structures between the electronic circuits. In this work, we derive the equations and constraints governing the stretchability in horseshoe lateral spring structures. We have derived the optimum design and the parameters therein, to help develop the best spring structures for a given stretchability. We have also developed a figure of merit, called area efficiency of stretchability, to compare all twodimensional stretchable systems. Finally, we experimentally verify the validity of our equations by fabricating a metal/polymer bilayer thin film based stretchable horseshoe lateral spring structures. We obtain a stretchability of 1.875 which is comparable to the theoretical maxima of 2.01 for the given parameters.
Design Considerations for Optimized Lateral Spring Structures for Wearable Electronics
Hussain, Aftab M.; Hussain, Muhammad Mustafa
2016-01-01
The market for wearable electronics has been gaining momentum in the recent years. For completely electronic wearable textiles with integrated sensors, actuators, computing units and communication circuitry, it is important that there is significant stretchability. This stretchability can be obtained by introducing periodic stretchable structures between the electronic circuits. In this work, we derive the equations and constraints governing the stretchability in horseshoe lateral spring structures. We have derived the optimum design and the parameters therein, to help develop the best spring structures for a given stretchability. We have also developed a figure of merit, called area efficiency of stretchability, to compare all twodimensional stretchable systems. Finally, we experimentally verify the validity of our equations by fabricating a metal/polymer bilayer thin film based stretchable horseshoe lateral spring structures. We obtain a stretchability of 1.875 which is comparable to the theoretical maxima of 2.01 for the given parameters.
Studies on electronic structure of GaN(0001) surface
Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K
2002-01-01
An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized
Standardized structure of electronic records for information exchange
International Nuclear Information System (INIS)
Galabova, Sevdalina; Trencheva, Tereza; Trenchev, Ivan
2009-01-01
In the paper is presented the structure of the electronic record whose form is standardized in ISO 2709:2008. This International Standard describes a generalized structure, a framework designed specially for communications between data processing systems and not for use as a processing format within systems.Basic terms are defined as follows: character, data field, directory, directory map, field, field separator etc. It’s presented the general structure of a record. The application analysis of this structure shows the effective information exchange in the widest range.The purpose of this research is to find out advantages and structure of the information exchange format standardized in ISO 2709:2008. Key words: Standardized structure, electronic records, exchange formats, data field, directory, directory map, indicators, identifiers
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
Energy Technology Data Exchange (ETDEWEB)
Vary, James P; Maris, Pieter [Department of Physics, Iowa State University, Ames, IA, 50011 (United States); Ng, Esmond; Yang, Chao [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sosonkina, Masha, E-mail: jvary@iastate.ed [Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames, IA, 50011 (United States)
2009-07-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10{sup 10} and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
International Nuclear Information System (INIS)
Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Generalized Artificial Life Structure for Time-dependent Problems
Institute of Scientific and Technical Information of China (English)
TSAU Minhe; KAO Weiwen; CHANG Albert
2009-01-01
In recent years, more attention has been paid on artificial life researches. Artificial life(AL) is a research on regulating gene parameters of digital organisms under complicated problematic environments through natural selections and evolutions to achieve the final emergence of intelligence. Most recent studies focused on solving certain real problems by artificial life methods, yet without much address on the AL life basic mechanism. The real problems are often very complicated, and the proposed methods sometimes seem too simple to handle those problems. This study proposed a new approach in AL research, named "generalized artificial life structure(GALS)", in which the traditional "gene bits" in genetic algorithms is first replaced by "gene parameters", which could appear anywhere in GALS. A modeling procedure is taken to normalize the input data, and AL "tissue" is innovated to make AL more complex. GALS is anticipated to contribute significantly to the fitness of AL evolution. The formation of"tissue" begins with some different AL basic cells, and then tissue is produced by the casual selections of one or several of these cells. As a result, the gene parameters, represented by "tissues", could become highly diversified. This diversification should have obvious effects on improving gene fitness. This study took the innovative method of GALS in a stock forecasting problem under a carefully designed manipulating platform. And the researching results verify that the GALS is successful in improving the gene evolution fitness.
The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons
Yang, Huihui; Chen, Hongshan
2017-07-01
The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9
Quantum chemistry the development of ab initio methods in molecular electronic structure theory
Schaefer III, Henry F
2004-01-01
This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi
Structure of Matter An Introductory Course with Problems and Solutions
Rigamonti, Attilio
2009-01-01
This is the second edition of this textbook, the original of which was published in 2007. Initial undergraduate studies in physics are usually in an organized format devoted to elementary aspects, which is then followed by advanced programmes in specialized fields. A difficult task is to provide a formative introduction in the early period, suitable as a base for courses more complex, thus bridging the wide gap between elementary physics and topics pertaining to research activities. This textbook remains an endeavour toward that goal, and is based on a mixture of simplified institutional theory and solved problems. In this way, the hope is to provide physical insight, basic knowledge and motivation, without impeding advanced learning. The choice has been to limit the focus to key concepts and to those aspects most typical of atoms, molecules and compounds, by looking at the basic, structural components, without paying detailed attention to the properties possessed by them. Problems are intertwined with formal...
Structure of Matter An Introductory Course with Problems and Solutions
Rigamonti, Attilio
2007-01-01
This is the second edition of this textbook, the original of which was published in 2007. Initial undergraduate studies in physics are usually in an organized format devoted to elementary aspects, which is then followed by advanced programmes in specialized fields. A difficult task is to provide a formative introduction in the early period, suitable as a base for courses more complex, thus bridging the wide gap between elementary physics and topics pertaining to research activities. This textbook remains an endeavour toward that goal, and is based on a mixture of simplified institutional theory and solved problems. In this way, the hope is to provide physical insight, basic knowledge and motivation, without impeding advanced learning. The choice has been to limit the focus to key concepts and to those aspects most typical of atoms, molecules and compounds, by looking at the basic, structural components, without paying detailed attention to the properties possessed by them. Problems are intertwined with formal...
Modeling of the atomic and electronic structures of interfaces
International Nuclear Information System (INIS)
Sutton, A.P.
1988-01-01
Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature
Extremely large magnetoresistance and electronic structure of TmSb
Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long
2018-02-01
We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.
Structural analysis for diagnosis with application to ship propulsion problem
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, Mogens
2002-01-01
Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential tech-nique to obtain redundant information for diagnosis, is reconsidered in this paper. Matching is reformulated as a problem...... of relating faults to known parameters and measurements of a system. Using explicit fault modelling, minimal overdetermined subsystems are shown to provide necessary redundancy relations from the matching. Details of the method are presented and a realistic example used to clearly describe individual steps....
Electronic Structure of Large-Scale Graphene Nanoflakes
Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong
2014-01-01
With the help of the recently developed SIESTA-PEXSI method [J. Phys.: Condens. Matter \\textbf{26}, 305503 (2014)], we perform Kohn-Sham density functional theory (DFT) calculations to study the stability and electronic structure of hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, HOMO-LUMO energy gap, edge states and aromaticity, depend sensitively on the type of edges (ACGNFs and ZZGNFs), size and the n...
Solving some problems of engineering seismology by structural method
International Nuclear Information System (INIS)
Ishtev, K.G.; Hadjikov, L.M.; Dineva, P.S.; Jordanov, P.P.
1983-01-01
The work suggests a method for solving the direct and inverse problems of the engineer seismology by means of the structural approach of the systems theory. This approach gives a possibility for a simultaneous accounting of the two basic types of damping of the seismic signals in the earth foundation-geometrical damping and a damping in consequence of a dissipative energy loss. By the structural scheme an automatic account is made of the geometric damping of the signals. The damping from a dissipative energy loss on the other hand is accounted for through a choice of the type of frequency characteristics or the transmission functions of the different layers. With a few examples the advantages of the model including the two types of attenuation of the seismic signal are illustrated. An integral coefficient of damping is calculated which analogously to the frequency functions represents a generalized characteristic of is the whole earth foundation. (orig./HP)
Structure of matter an introductory course with problems and solutions
Rigamonti, Attilio
2015-01-01
This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how ...
Data Structures: Sequence Problems, Range Queries, and Fault Tolerance
DEFF Research Database (Denmark)
Jørgensen, Allan Grønlund
performance and money in the design of todays high speed memory technologies. Hardware, power failures, and environmental conditions such as cosmic rays and alpha particles can all alter the memory in unpredictable ways. In applications where large memory capacities are needed at low cost, it makes sense......The focus of this dissertation is on algorithms, in particular data structures that give provably ecient solutions for sequence analysis problems, range queries, and fault tolerant computing. The work presented in this dissertation is divided into three parts. In Part I we consider algorithms...... to assume that the algorithms themselves are in charge for dealing with memory faults. We investigate searching, sorting and counting algorithms and data structures that provably returns sensible information in spite of memory corruptions....
Human enamel structure studied by high resolution electron microscopy
International Nuclear Information System (INIS)
Wen, S.L.
1989-01-01
Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references
Study of electronic and structural properties of CaS
International Nuclear Information System (INIS)
Mirfenderski, M.; Akbarzdeh, H.; Mokhtari, A.
2003-01-01
The electronic and structural properties of CaS are calculated using full potential linearized augmented plane wave method within the local density approximation and generalized gradient approximation for the exchange -correlation energy. For both structures, NaCl structure (B1) and CsCl structure (B2), the obtained values for lattice parameters, bulk modulus and its pressure derivative and transition pressure are in reasonable agreement with the experimental values. For electronic properties, the obtained value for band gap is smaller than the experimental value as well as other calculated results based on density functional theory. Engel and Vosko calculated an exchange potential for some atoms within the so-called optimize-potential model and then used the virial relation and constructed a new exchange-correlation functional. We used that functional and obtained reasonable results for band gap. Finally we investigated the possibility for a third phase ( Zinc Blend structure) for this crystal
Ceramic materials on perovskite-type structure for electronic applications
International Nuclear Information System (INIS)
Surowiak, Z.
2003-01-01
Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)
Application of electron crystallography to structure characterization of ZnS nanocrystals
Directory of Open Access Journals (Sweden)
Jin-Gyu Kim
2011-07-01
Full Text Available We chracterized the structure properties of two types of ZnS nanocrystals by electron crystallography. X-ray diffraction analysis for these ZnS nanocrystals was performed to determine their initial structures. Their crystallite sizes were about 5.9 nm and 8.1 nm and their crystal systems were hexagonal and cubic, respectively. Their atomic structures, however, could not be determined because of the weak diffraction intensities as well as the unexpected intensities from impurty. To overcome these problems, the structures of ZnS nanocrystals were resolved by electron crystallography using EF-EPD (energy-filtered electron powder diffraction and HRTEM (high resolution transmission electron microscopy methods. The structrues determined by Rietveld analysis are P63mc (a = 3.8452 Å, c = 18.5453 Å and F-43m (a = 5.4356 Å, respectively. Their crystallite shapes were nanorods and quasi-nanoparticles and the nanorod crystal were grown along the [001] direction. It was revealed that the phase transformation between the cubic sphalerite to the hexagonal wurtzite structure of ZnS nanocrytals was related to their shapes and growth mechanism. Electron cryststallogrpahy, employing EF-EPD and HRTEM methods together, has advantages for structure analysis and property chracterization of nano-sized materials.
Electron confinement in thin metal films. Structure, morphology and interactions
Energy Technology Data Exchange (ETDEWEB)
Dil, J.H.
2006-05-15
This thesis investigates the interplay between reduced dimensionality, electronic structure, and interface effects in ultrathin metal layers (Pb, In, Al) on a variety of substrates (Si, Cu, graphite). These layers can be grown with such a perfection that electron confinement in the direction normal to the film leads to the occurrence of quantum well states in their valence bands. These quantum well states are studied in detail, and their behaviour with film thickness, on different substrates, and other parameters of growth are used here to characterise a variety of physical properties of such nanoscale systems. The sections of the thesis deal with a determination of quantum well state energies for a large data set on different systems, the interplay between film morphology and electronic structure, and the influence of substrate electronic structure on their band shape; finally, new ground is broken by demonstrating electron localization and correlation effects, and the possibility to measure the influence of electron-phonon coupling in bulk bands. (orig.)
Atomic and electronic structure of exfoliated black phosphorus
International Nuclear Information System (INIS)
Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre; Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J.
2015-01-01
Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO 3 or H 3 PO 3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time
Atomic and electronic structure of exfoliated black phosphorus
Energy Technology Data Exchange (ETDEWEB)
Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2015-11-15
Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.
Momentum space analysis of the electronic structure of biphenyl
International Nuclear Information System (INIS)
Morini, F; Shojaei, S H Reza; Deleuze, M S
2014-01-01
The results of a yet to come experimental study of the electronic structure of biphenyl employing electron momentum spectroscopy (EMS) have been theoretically predicted, taking into account complications such as structural mobility in the electronic ground state, electronic correlation and relaxation, and a dispersion of the inner-valence ionization intensity to electronically excited (shake-up) configurations in the cation. The main purpose of this work is to explore the current limits of EMS in unraveling details of the molecular structure, namely the torsional characteristics of large and floppy aromatic molecules. At the benchmark ADC(3)/cc-pVDZ level of theory, the influence of the twist angle between the two phenyl rings is found to be extremely limited, except for individual orbital momentum profiles corresponding to ionization lines at electron binding energies ranging from 15 to 18 eV. When taking band overlap effects into account, this influence is deceptively far too limited to allow for any experimental determination of the torsional characteristics of biphenyl by means of EMS. (paper)
Quasiparticle GW calculations within the GPAW electronic structure code
DEFF Research Database (Denmark)
Hüser, Falco
The GPAW electronic structure code, developed at the physics department at the Technical University of Denmark, is used today by researchers all over the world to model the structural, electronic, optical and chemical properties of materials. They address fundamental questions in material science...... and use their knowledge to design new materials for a vast range of applications. Todays hottest topics are, amongst many others, better materials for energy conversion (e.g. solar cells), energy storage (batteries) and catalysts for the removal of environmentally dangerous exhausts. The mentioned...... properties are to a large extent governed by the physics on the atomic scale, that means pure quantum mechanics. For many decades, Density Functional Theory has been the computational method of choice, since it provides a fairly easy and yet accurate way of determining electronic structures and related...
A multipole acceptability criterion for electronic structure theory
International Nuclear Information System (INIS)
Schwegler, E.; Challacombe, M.; Head-Gordon, M.
1998-01-01
Accurate and computationally inexpensive estimates of multipole expansion errors are crucial to the success of several fast electronic structure methods. In this paper, a new nonempirical multipole acceptability criterion is described that is directly applicable to expansions of high order moments. Several model calculations typical of electronic structure theory are presented to demonstrate its performance. For cases involving small translation distances, accuracies are increased by up to five orders of magnitude over an empirical criterion. The new multipole acceptance criterion is on average within an order of magnitude of the exact expansion error. Use of the multipole acceptance criterion in hierarchical multipole based methods as well as in traditional electronic structure methods is discussed. copyright 1998 American Institute of Physics
Structural and electronic properties of L-amino acids
Tulip, P. R.; Clark, S. J.
2005-05-01
The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.
Electron transfer reactions in structural units of copper proteins
International Nuclear Information System (INIS)
Faraggi, M.
1975-01-01
In previous pulse radiolysis studies it was suggested that the reduction of the Cu(II) ions in copper proteins by the hydrated electron is a multi-step electron migration process. The technique has been extended to investigate the reduction of some structural units of these proteins. These studies include: the reaction of the hydrated electron with peptides, the reaction of the disulphide bridge with formate radical ion and radicals produced by the reduction of peptides, and the reaction of Cu(II)-peptide complex with esub(aq)sup(-) and CO 2 - . Using these results the reduction mechanism of copper and other proteins will be discussed. (author)
Electronic structure of deep impurity centers in silicon
International Nuclear Information System (INIS)
Oosten, A.B. van.
1989-01-01
This thesis reports an experimental study of deep level impurity centers in silicon, with much attention for theoretical interpretation of the data. A detailed picture of the electronic structure of several centers was obtained by magnetic resonance techniques, such as electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and field scanned ENDOR (FSE). The thesis consists of two parts. The first part deals with chalcogen (sulfur, selenium and tellurium) related impurities, which are mostly double donors. The second part is about late transition metal (nickel, palladium and platinum) impurities, which are single (Pd,Pt) or double (Ni) acceptor centers. (author). 155 refs.; 51 figs.; 23 tabs
Vaišvila, Anicetas; Vaičikonis, Eduardas
2006-01-01
The problems of implementation of two new EU Directives is discussed in this article. It is so called WEEE (Waste Electrical and Electronic Equipment) and RoHS (Restriction of use of certain Hazardous Substances in electrical and electronic equipment), as well as influence of these directives to quality and environmental management systems. The RoHS directive requires a number of potentially hazardous substances (lead, mercury, cadmium, hexavalent chromium, polybrominated byphenyls (PBB) and ...
Photoelectron spectra and electronic structure of some spiroborate complexes
Energy Technology Data Exchange (ETDEWEB)
Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.
2014-12-15
Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.
Electronic structure of ordered and disordered Fe sub 3 Pt
Major, Z; Jarlborg, T; Bruno, E; Ginatempo, B; Staunton, J B; Poulter, J
2003-01-01
The electronic structure of invar alloys (i.e. materials in which the near absence of thermal expansion is observed) has been the focus of much study, owing both to the technological applications of these materials and interest in the fundamental mechanism that is responsible for the effect. Here, calculations of the magnetic Compton profiles are presented for ordered and disordered Fe sub 3 Pt alloys. Using linear muffin-tin orbital and KKR methods, the latter incorporating the coherent potential approximation to describe the substitutional disorder, the electronic band structure and measurable quantities such as the Fermi surface topology are presented.
Band structure and unconventional electronic topology of CoSi
Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.
2018-04-01
Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \
Comparison of electronic structure between monolayer silicenes on Ag (111)
Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi
2015-08-01
The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.
Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction
Energy Technology Data Exchange (ETDEWEB)
Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)
2017-09-10
A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.
Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem
Webb, William
2013-04-01
Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!
Surface electron structure of short-period semiconductor superlattice
International Nuclear Information System (INIS)
Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.
2004-01-01
Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences
Electronic structure and optical properties of AIN under high pressure
International Nuclear Information System (INIS)
Li Zetao; Dang Suihu; Li Chunxia
2011-01-01
We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)
Electronic structure of disordered alloys, surfaces and interfaces
Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter
1997-01-01
At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...
Electronic structure of nitrides PuN and UN
Lukoyanov, A. V.; Anisimov, V. I.
2016-11-01
The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin-orbit coupling and the strong correlations of 5 f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f 6 configuration and the jj-type coupling. An increase in the occupancy of the 5 f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN x β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.
Electronic structure of binuclear acetylacetonates of boron difluoride
Tikhonov, Sergey A.; Svistunova, Irina V.; Samoilov, Ilya S.; Osmushko, Ivan S.; Borisenko, Aleksandr V.; Vovna, Vitaliy I.
2018-05-01
The electronic structure of boron difluoride acetylacetonate and its three derivatives was studied using photoelectron and absorption spectroscopy, as well as the density functional theory. In a series of binuclear acetylacetonate complexes containing bridge-moieties of sulfur and selenium atoms, it was found an appreciable mixing of the π3-orbital of the chelate cycle with atomic orbitals S 3p and Se 4p resulting in destabilization of the HOMO levels by 0.4-0.6 eV, in comparison with the monomer. The positively charged fragment C(CH3)-CX-C(CH3) causes the field effect, which leads to stabilization of the LUMO levels by 0.3-0.4 eV and C 1s-levels by 0.5-1.2 eV. An analysis of the research results on the electronic structure made it possible to determine the effect of substituents in the γ position on the absorption spectra, which is mainly determined by the electron density transfer from the chalcogen atoms to the chelate cycles. It is shown that the calculated energy intervals between electron levels correlate well with the structure of the photoelectron spectra of valence and core electrons.
The electronic structure of C60 and its derivatives
International Nuclear Information System (INIS)
Lichtenberger, D.L.; Rempe, M.E.; Gruhn, N.E.; Wright, L.L.
1993-01-01
Molecular orbital calculations are used to examine the electronic structure of C 60 and its interaction with metals and some other atoms. The bonding capabilities of the η 5 , η 6 , and the two possible η 2 sites of C 60 to metals are probed with Fenske-Hall calculations of a silver cation bound in those positions. These results are compared to the bonding capabilities of cyclopentadiene, benzene and ethylene, respectively. It is found that the silver cation bonding to C 60 is favored at the η 2 that is shared between five-membered rings, but that the silver cation bonds more favorably to ethylene than to the η 2 site of C 60 . The electronic structure of the known platinum compound, C 60 Pt(phosphine) 2 , where the bonding is also to this η 2 site, is investigated and compared to the electronic structure of the corresponding ethylene complex. In this more electron-rich metal case, the bonding of the C 60 and ethylene are very similar. A calculation on C 60 OsO 4 (NH 3 ) 2 , where C 60 is bound to two oxygens, shows that the orbital composition correlates with the observed NMR shifts of the carbon atoms. The calculations are used to clarify the interpretations of experimental data obtained from STM, NMR, PES and reactivity. The latest results of these electronic studies will be presented
Workshop report of problems relating to multi-electron excited ions in plasma
International Nuclear Information System (INIS)
Fujimoto, Takashi; Suzuki, Hiroshi; Takayanagi, Toshinobu; Koike, Fumihiro; Nakamura, Koji.
1979-08-01
A workshop was held to discuss the problems relating to multiple electron-excited ions in plasma. The first part of this report deals with the problems of satellite lines. The satellite lines from laser plasma and vacuum sparks are discussed. Review papers on satellite lines and bielectronic recombination are also presented. The second part of this report deals with the problems of autoionization. Theory, comment on the compound state, observation of autoionization and resonance scattering, excitation cross-section, inner shell ionization, excitation through autoionization, and the bielectronic recombination of helium-like ions are discussed. (Kato, T.)
Nature-Inspired Structural Materials for Flexible Electronic Devices.
Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong
2017-10-25
Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.
Electronic Structure of GdCuGe Intermetallic Compound
Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.
2018-04-01
The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.
First principle calculations of alkali hydride electronic structures
International Nuclear Information System (INIS)
Novakovic, N; Radisavljevic, I; Colognesi, D; Ostojic, S; Ivanovic, N
2007-01-01
Electronic structure, volume optimization, bulk moduli, elastic constants, and frequencies of the transversal optical vibrations in LiH, NaH, KH, RbH, and CsH are calculated using the full potential augmented plane wave method, extended with local orbitals, and the full potential linearized augmented plane wave method. The obtained results show some common features in the electronic structure of these compounds, but also clear differences, which cannot be explained using simple empirical trends. The differences are particularly prominent in the electronic distributions and interactions in various crystallographic planes. In the light of these findings we have elaborated some selected experimental results and discussed several theoretical approaches frequently used for the description of various alkali hydride properties
Strontium titanate thin film deposition - structural and electronical characterization
Energy Technology Data Exchange (ETDEWEB)
Hanzig, Florian; Hanzig, Juliane; Stoecker, Hartmut; Mehner, Erik; Abendroth, Barbara; Meyer, Dirk C. [TU Bergakademie Freiberg, Institut fuer Experimentelle Physik (Germany); Franke, Michael [TU Bergakademie Freiberg, Institut fuer Elektronik- und Sensormaterialien (Germany)
2012-07-01
Strontium titanate is on the one hand a widely-used model oxide for solids which crystallize in perovskite type of structure. On the other hand, with its large band-gap energy and its mixed ionic and electronic conductivity, SrTiO{sub 3} is a promising isolating material in metal-insulator-metal (MIM) structures for resistive switching memory cells. Here, we used physical vapour deposition methods (e. g. electron-beam and sputtering) to produce strontium titanate layers. Sample thicknesses were probed with X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). Additionally, layer densities and dielectric functions were quantified with XRR and SE, respectively. Using infrared spectroscopy free electron concentrations were obtained. Phase and element composition analysis was carried out with grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. Subsequent temperature treatment of samples lead to crystallization of the initially amorphous strontium titanate.
Directory of Open Access Journals (Sweden)
Yulia V. Dementieva
2016-01-01
Full Text Available The aim of the study is the description of the main problems of formation of the student’s electronic portfolio in the conditions of realization of Federal State Educational Standards of the Higher Education (FSES of HE.Methods.Theoretical analysis of scientific literature concerning the subject under discussion; monitoring of existing practices in modern Russian Universities procedures for the formation and maintenance of students electronic portfolio.Results. The author describes the main problems of the electronic students’ portfolio formation; some ways of solving described problems are offered.Scientific novelty concludes in the formation of key ideas of the electronic students’ portfolio based on the understanding of requirements of Federal State Educational Standards of Higher Education for the results of mastering educational programs. They are the formation of general cultural, general professional and professional competences.Practical significance. The researching results will become the theoretical basis for the systematic organization of the process of creating and maintaining an electronic students’ portfolio during the whole period of their studying at the university; the researching results can become a basis for methodological developments.
Dornburg, Courtney C; Stevens, Susan M; Hendrickson, Stacey M L; Davidson, George S
2009-08-01
An experiment was conducted to compare the effectiveness of individual versus group electronic brainstorming to address difficult, real-world challenges. Although industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges during the course of 4 days. Employees and contractors at a national laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a real-world problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p industrial reliance on electronic problem-solving groups should be tempered, and large nominal groups may be more appropriate corporate problem-solving vehicles.
Electron Heat Flux in Pressure Balance Structures at Ulysses
Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.
The structure of spinach Photosystem I studied by electron microscopy
Boekema, Egbert J.; Wynn, R. Max; Malkin, Richard
1990-01-01
The structure of three types of Photosystem I (PS I) complex isolated from spinach chloroplasts was studied by electron microscopy and computer image analysis. Molecular projections (top views and side views) of a native PS I complex (PSI-200), an antenna-depleted PS I complex (PSI-100) and the PS I
Ground-state electronic structure of actinide monocarbides and mononitrides
DEFF Research Database (Denmark)
Petit, Leon; Svane, Axel; Szotek, Z.
2009-01-01
The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...
Effects of thickness on electronic structure of titanium thin films
Indian Academy of Sciences (India)
using near-edge X-ray absorption fine structure (NEXAFS) technique at titanium L2,3 edge in total electron yield .... the contribution of titanium L2,3 levels to the absorption co- ... all absorption coefficient of a sample is related to the atomic.
Empirical pseudo-potential studies on electronic structure
Indian Academy of Sciences (India)
Theoretical investigations of electronic structure of quantum dots is of current interest in nanophase materials. Empirical theories such as effective mass approximation, tight binding methods and empirical pseudo-potential method are capable of explaining the experimentally observed optical properties. We employ the ...
Electronic structure and superconductivity of MgB 2
Indian Academy of Sciences (India)
Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...
First principles calculations of structural, electronic and thermal ...
Indian Academy of Sciences (India)
Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...
Structural, elastic, electronic and optical properties of bi-alkali ...
Indian Academy of Sciences (India)
The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.
First-principle calculations of the structural, electronic ...
Indian Academy of Sciences (India)
First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ... functional theory (DFT) combined with the quasi-harmonic .... is consistent with Vegard's law which assumes that the lat- tice constant varies .... reflects a charge-transfer effect which is due to the different.
Structural, energetic and electronic properties of intercalated boron ...
Indian Academy of Sciences (India)
2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...
Small round structured viruses (SRSVs) and transmission electron ...
African Journals Online (AJOL)
Administrator
immune-electron microscopy (IEM) from patients' feces. They reported this virus particle as the causative agent of winter vomiting outbreaks in Norwalk (Kapikian et al.,. 1972). This is the remarkable landmark study of non- bacterial gastroenteritis viruses, especially for small round structured viruses (SRSVs). After that, many.
Electronic structure and optical properties of thorium monopnictides
Indian Academy of Sciences (India)
Unknown
Indian Academy of Sciences. 165. Electronic structure and optical properties of thorium monopnictides. S KUMAR* and S AULUCK†. Physics Department, Institute of Engineering and Technology, M.J.P. Rohilkhand University, Bareilly 243 006,. India. †Department of Physics, Indian Institute of Technology, Roorkee 247 667, ...
Variational cellular model of the molecular and crystal electronic structure
International Nuclear Information System (INIS)
Ferreira, L.G.; Leite, J.R.
1977-12-01
A variational version of the cellular method is developed to calculate the electronic structure of molecules and crystals. Due to the simplicity of the secular equation, the method is easy to be implemented. Preliminary calculations on the hydrogen molecular ion suggest that it is also accurate and of fast convergence [pt
CLOPW; a mixed basis set full potential electronic structure method
Bekker, H.G.; Bekker, Hermie Gerhard
1997-01-01
This thesis is about the development of the full potental CLOPW package for electronic structure calculations. Chapter 1 provides the necessary background in the theory of solid state physics. It gives a short overview of the effective one particle model as commonly used in solid state physics. It
The effect of oxygen exposure on pentacene electronic structure
Vollmer, A; Jurchescu, OD; Arfaoui, [No Value; Salzmann, [No Value; Palstra, TTM; Rudolf, P; Niemax, J; Pflaum, J; Rabe, JP; Koch, N; Arfaoui, I.; Salzmann, I.
We use ultraviolet photoelectron spectroscopy to investigate the effect of oxygen and air exposure on the electronic structure of pentacene single crystals and thin films. it is found that O-2 and water do not react noticeably with pentacene, whereas singlet oxygen/ozone readily oxidize the organic
Electronic structures and photophysics of d8-d8 complexes
Czech Academy of Sciences Publication Activity Database
Gray, H. B.; Záliš, Stanislav; Vlček, Antonín
2017-01-01
Roč. 345, AUG 2017 (2017), s. 297-317 ISSN 0010-8545 R&D Projects: GA MŠk LH13015 Grant - others:COST(XE) CM1405 Institutional support: RVO:61388955 Keywords : excitation * electronic structures * photophysics Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 13.324, year: 2016
The electronic structure of 4d and 5d silicides
Speier, W.; Kumar, L.; Sarma, D.D.; Groot, R.A. de; Fuggle, J.C.
1989-01-01
A systematic experimental and theoretical study of the electronic structure of stoichiometric silicides with Nb, Mo, Ta and W is presented. We have employed x-ray photoemission and bremsstrahlung isochromat spectroscopy as experimental techniques and interpreted the measured data by calculation of
Highlighting material structure with transmission electron diffraction correlation coefficient maps.
Kiss, Ákos K; Rauch, Edgar F; Lábár, János L
2016-04-01
Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.
First principles calculations of structural, electronic and thermal ...
Indian Academy of Sciences (India)
Administrator
2013-07-28
Jul 28, 2013 ... The structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and BeTe using .... results for all the systems are presented in table 1, along ... as interatomic bonding, equations of state and phonon spectra.
Electronic Structure of Single- and Multiple-shell Carbon Fullerenes
Lin, Yeong-Lieh; Nori, Franco
1993-01-01
We study the electronic states of giant single-shell and the recently discovered nested multi-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the $\\pi$-state energy spectra of large fullerene cages: $C_{240}$, $C_{540}$, $C_{960}$, $C_{1500}$, $C_{2160}$ and $C_{2940}$. Our iteration technique reduces the dimensionality of the problem by more than one order of magnitude (factors of $\\...
Application of the Green's function method to some nonlinear problems of an electron storage ring
International Nuclear Information System (INIS)
Kheifets, S.
1984-01-01
One of the most important characteristics of an electron storage ring is the size of the beam. However analytical calculations of beam size are beset with problems and the computational methods and programs which are used to overcome these are inadequate for all problems in which stochastic noise is an essential part. Two examples are, for an electron storage ring, beam-size evaluation including beam-beam interactions, and finding the beam size for a nonlinear machine. The method described should overcome some of the problems. It uses the Green's function method applied to the Fokker-Planck equation governing the distribution function in the phase space of particle motion. The new step is to consider the particle motion in two degrees of freedom rather than in one dimension. The technique is described fully and is then applied to a strong-focusing machine. (U.K.)
Structural and Electronic Investigations of Complex Intermetallic Compounds
Energy Technology Data Exchange (ETDEWEB)
Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)
2008-01-01
In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic
The electron transport problem sampling by Monte Carlo individual collision technique
International Nuclear Information System (INIS)
Androsenko, P.A.; Belousov, V.I.
2005-01-01
The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)
The electron transport problem sampling by Monte Carlo individual collision technique
Energy Technology Data Exchange (ETDEWEB)
Androsenko, P.A.; Belousov, V.I. [Obninsk State Technical Univ. of Nuclear Power Engineering, Kaluga region (Russian Federation)
2005-07-01
The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)
Electronic structures of azafullerene C48N12
International Nuclear Information System (INIS)
Brena, Barbara; Luo Yi
2003-01-01
Two recently proposed low-energy azafullerene C 48 N 12 isomers have been theoretically characterized using x-ray spectroscopies. The x-ray photoelectron spectroscopy, the near-edge absorption fine structure, the x-ray emission spectroscopy, and the ultraviolet photoelectron spectroscopy for both isomers have been predicted at the gradient-corrected density functional theory level. These spectroscopies together give a comprehensive insight of the electronic structure on the core, valence, and unoccupied orbitals. They have also provided a convincing way for identifying the isomer structures
Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik
2017-08-01
A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.
Electronic structure of graphene on Ni surfaces with different orientation
International Nuclear Information System (INIS)
Pudikov, D.A.; Zhizhin, E.V.; Rybkin, A.G.; Rybkina, A.A.; Zhukov, Y.M.; Vilkov, O. Yu.; Shikin, A.M.
2016-01-01
An experimental study of the graphene, synthesized by propylene cracking on Ni surfaces with different orientation: (100) and (111), using angle-resolved photoemission, has been performed. It has been shown that graphene on Ni(111) had a perfect lateral structure due to consistency of their lattices, whereas graphene/Ni(100) consisted of a lot of domains. For both systems electronic structure was quite similar and demonstrated a strong bonding of graphene to the underlying Ni surface. After Au intercalation the electronic structure of graphene in both systems was shifted to the Fermi level and became linear in the vicinity of the K point of the Brillouin zone. - Highlights: • Graphene on Ni(111) is well-ordered, whereas on Ni(100) – multi-domain. • Graphene on Ni(111) and Ni(100) is strongly bonded with substrate. • Intercalation of Au atoms restores the linearity in dispersion and makes graphene quasi-free on both Ni(100) and Ni(111).
Surface morphology and electronic structure of Ni/Ag(100)
International Nuclear Information System (INIS)
Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.
2000-01-01
The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society
Electronic structure and optical properties of metal doped tetraphenylporphyrins
Shah, Esha V.; Roy, Debesh R.
2018-05-01
A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.
Problem statement for optimal design of steel structures
Directory of Open Access Journals (Sweden)
Ginzburg Aleksandr Vital'evich
2014-07-01
Full Text Available The presented article considers the following complex of tasks. The main stages of the life cycle of a building construction with the indication of process entrance and process exit are described. Requirements imposed on steel constructions are considered. The optimum range of application for steel designs is specified, as well as merits and demerits of a design material. The nomenclature of metal designs is listed - the block diagram is constructed. Possible optimality criteria of steel designs, offered by various authors for various types of constructions are considered. It is established that most often the criterion of a minimum of design mass is accepted as criterion of optimality; more rarely - a minimum of the given expenses, a minimum of a design cost in business. In the present article special attention is paid to a type of objective function of optimization problem. It is also established that depending on the accepted optimality criterion, the use of different types of functions is possible. This complexity of objective function depends on completeness of optimality criterion application. In the work the authors consider the following objective functions: the mass of the main element of a design; objective function by criterion of factory cost; objective function by criterion of cost in business. According to these examples it can be seen that objective functions by the criteria of labor expenses for production of designs are generally non-linear, which complicates solving the optimization problem. Another important factor influencing the problem of optimal design solution for steel designs, which is analyzed, is account for operating restrictions. In the article 8 groups of restrictions are analyzed. Attempts to completely account for the parameters of objective function optimized by particular optimality criteria, taking into account all the operating restrictions, considerably complicates the problem of designing. For solving this
Structuring students’ analogical reasoning in solving algebra problem
Lailiyah, S.; Nusantara, T.; Sa'dijah, C.; Irawan, E. B.; Kusaeri; Asyhar, A. H.
2018-01-01
The average achievement of Indonesian students’ mathematics skills according to Benchmark International Trends in Mathematics and Science Study (TIMSS) is ranked at the 38th out of 42 countries and according to the survey result in Program for International Student Assessment (PISA) is ranked at the 64th out of 65 countries. The low mathematics skill of Indonesian student has become an important reason to research more deeply about reasoning and algebra in mathematics. Analogical reasoning is a very important component in mathematics because it is the key to creativity and it can make the learning process in the classroom become effective. The major part of the analogical reasoning is about structuring including the processes of inferencing and decision-making happens. Those processes involve base domain and target domain. Methodologically, the subjects of this research were 42 students from class XII. The sources of data were derived from the results of thinks aloud, the transcribed interviews, and the videos taken while the subject working on the instruments and interviews. The collected data were analyzed using qualitative techniques. The result of this study described the structuring characteristics of students’ analogical reasoning in solving algebra problems from all the research subjects.
Electronic structure of multi-walled carbon fullerenes
International Nuclear Information System (INIS)
Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V; Kidd, Tim E; Stollenwerk, Andrew J
2017-01-01
Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures. (paper)
Characterization of strained semiconductor structures using transmission electron microscopy
Energy Technology Data Exchange (ETDEWEB)
Oezdoel, Vasfi Burak
2011-08-15
Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)
Structure determination of modulated structures by powder X-ray diffraction and electron diffraction
Czech Academy of Sciences Publication Activity Database
Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.
2016-01-01
Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016
Hosson, J.Th.M. de; Raedt, H.A. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS
2005-01-01
This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the
Schwingenschlö gl, Udo; Schuster, Cosima B.; Fré sard, Raymond
2009-01-01
Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare
The future demand for and structural problems of Japanese Radiotherapy
International Nuclear Information System (INIS)
Imai, Atsushi; Inoue, Toshihiko; Teshima, Teruki; Ohno, Yuko; Yamashita, Takashi; Mitsuhashi, Norio; Hiraoka, Masahiro; Sumi, Minako
2001-01-01
Recently, as the number of elderly people in Japan is growing, so is the number of new cancer cases. The number of patients treated with radiotherapy is therefore also on the increase, so that it is important to estimate the future demand for radiotherapy and to make preparations for it. All the surveys were conducted for 106 facilities selected randomly out of 556 radiotherapy facilities in Japan. To obtain trends in the number of new cancer patients treated with radiotherapy in Japan, we conducted a survey with a self-administered mail questionnaire designed to obtain the number of new patients treated with radiotherapy for each year of the past decade (1990-99). The future number of new patients treated with radiotherapy was estimated from the data thus obtained. To investigate structural problems of Japanese radiotherapy, surveys about the number of treatment machines and full-time equivalent (FTE) radiation oncologists were conducted according to data from the Japanese Society for Therapeutic Radiology and Oncology (JASTRO) structure survey and the Patterns of Care Study (PCS). We also compared the structure of Japanese radiotherapy with that in the USA. The number of patients treated with radiotherapy has increased for every institutional stratum, with an overall increase of 1.4-fold over the past 10 years in Japan. It is estimated that the number of cancer patients treated with radiotherapy will reach 190000 in 2015. In Japanese non-academic institutions, less than one FTE radiation oncologist has been managing many of these patients. In both equipment and manpower, academic institutions exceed non-academic institutions. The future demand for Japanese radiotherapy will grow substantially, so that it is of vital importance to prepare for it. Specifically, the number of FTE radiation oncologists must be increased. (author)
Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons
Shan, Shaukat Ali; Imtiaz, Nadia
2018-05-01
The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.
ELSI: A unified software interface for Kohn-Sham electronic structure solvers
Yu, Victor Wen-zhe; Corsetti, Fabiano; García, Alberto; Huhn, William P.; Jacquelin, Mathias; Jia, Weile; Lange, Björn; Lin, Lin; Lu, Jianfeng; Mi, Wenhui; Seifitokaldani, Ali; Vázquez-Mayagoitia, Álvaro; Yang, Chao; Yang, Haizhao; Blum, Volker
2018-01-01
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.
Electronic structure of divacancy-hydrogen complexes in silicon
International Nuclear Information System (INIS)
Coutinho, J; Torres, V J B; Jones, R; Oeberg, S; Briddon, P R
2003-01-01
Divacancy-hydrogen complexes (V 2 H and V 2 H 2 ) in Si are studied by ab initio modelling using large supercells. Here we pay special attention to their electronic structure, showing that these defects produce deep carrier traps. Calculated electrical gap levels indicate that V 2 H 2 is an acceptor, whereas V 2 H is amphoteric, with levels close to those of the well known divacancy. Finally our results are compared with the available data from deep level transient spectroscopy and electron paramagnetic resonance experiments
Structural defects in laser- and electron-beam annealed silicon
International Nuclear Information System (INIS)
Narayan, J.
1979-01-01
Laser and electron beam pulses provide almost an ideal source of heat by which thin layers of semiconductors can be rapidly melted and solidified with heating and cooling rates exceeding 10 80 C/sec. Microstructural modifications obtained as a function of laser parameters are examined and it is shown that both laser and electron beam pulses can be used to remove displacement damage, dislocations, dislocation loops and precipitates. Annealing of defects underneath the oxide layers in silicon is possible within a narrow energy window. The formation of cellular structure provides a rather clear evidence of melting which leads to segregation and supercooling, and subsequent cell formation
Synthesis, reactivity, and electronic structure of molecular uranium nitrides
Cleaves, Peter A.
2016-01-01
The study of metal-ligand multiple bonding offers insight into the electronic structure and bond of metal systems. Until recently, for uranium, such systems were limited to uranyl, and terminal chalcogenide, imide and carbene complexes. In 2012, this was extended to nitrides with the first preparation of a uranium–nitride (U≡N) species isolable under standard conditions, namely [U(TrenTIPS)(N)][Na(12C4)2] (52), which is prepared by the two-electron reduction of sodium azide with a trivalent u...
Electronic structure of superlattices of graphene and hexagonal boron nitride
Kaloni, Thaneshwor P.
2011-11-14
We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.
Acceptors in cadmium telluride. Identification and electronic structure
International Nuclear Information System (INIS)
Molva, E.
1983-11-01
It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined [fr
Grid-based electronic structure calculations: The tensor decomposition approach
Energy Technology Data Exchange (ETDEWEB)
Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)
2016-05-01
We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.
Electronic structure of superlattices of graphene and hexagonal boron nitride
Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo
2011-01-01
We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.
International Nuclear Information System (INIS)
Koupilová, Zdeňka; Mandíková, Dana; Snětinová, Marie
2017-01-01
Ten years ago we started to develop a Collection of Fully Solved Problems aimed at introductory undergraduate and high school level students. The collection is specially designed to encourage students in an active approach to problem solving, e.g. to solve at least some parts of a problem on their own. Nowadays the Collection contains about 800 fully solved problems in physics in Czech and nearly 180 problems in English. It has several hundreds of unique visitors per school day. Based on user feedback, the collection is used by students mainly for their home study and by teachers as a supplementary material. The creation of the structured solution of the physics problems has proved to be a beneficial activity for prospective physics teachers (students of our department). (paper)
Koupilová, Zdeňka; Mandíková, Dana; Snětinová, Marie
2017-09-01
Ten years ago we started to develop a Collection of Fully Solved Problems aimed at introductory undergraduate and high school level students. The collection is specially designed to encourage students in an active approach to problem solving, e.g. to solve at least some parts of a problem on their own. Nowadays the Collection contains about 800 fully solved problems in physics in Czech and nearly 180 problems in English. It has several hundreds of unique visitors per school day. Based on user feedback, the collection is used by students mainly for their home study and by teachers as a supplementary material. The creation of the structured solution of the physics problems has proved to be a beneficial activity for prospective physics teachers (students of our department).
Lin, Qisheng; Miller, Gordon J
2018-01-16
Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural
Deciphering the quark-gluon structure of the photon in electronγ collisions
International Nuclear Information System (INIS)
Eboli, O.J.P.; Gonzalez-Garcia, M.C.; Halzen, F.; Novaes, S.F.
1992-11-01
The capability of an electron γ collider to unravel the hadronic content of the photon is investigated. The experimental problem for probing the gluonic structure of the photon is that small-x triggers overwhelmingly select soft photons rather than soft gluons in hard photons. It is showed that the problem can be finessed in experiments where laser back-scattering is used to prepare a source of very hard photons. It is illustrated their power for studying the parton distribution of the photon and, specifically, for separating the quark and gluon components in events where dijets, jet-γ pairs, and heavy quark pairs are produced. (author)
Research Projects in Physics: A Mechanism for Teaching Ill-Structured Problem Solving
Milbourne, Jeff; Bennett, Jonathan
2017-10-01
Physics education research has a tradition of studying problem solving, exploring themes such as physical intuition and differences between expert and novice problem solvers. However, most of this work has focused on traditional, or well-structured, problems, similar to what might appear in a textbook. Less work has been done with open-ended, or ill-structured, problems, similar to the types of problems students might face in their professional lives. Given the national discourse on educational system reform aligned with 21st century skills, including problem solving, it is critical to provide educational experiences that help students learn to solve all types of problems, including ill-structured problems.
Electronic structure and insulating gap in epitaxial VO2 polymorphs
Directory of Open Access Journals (Sweden)
Shinbuhm Lee
2015-12-01
Full Text Available Determining the origin of the insulating gap in the monoclinic V O2(M1 is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating V O2(A and V O2(B thin films to better understand the insulating phase of VO2. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO2 phases. By x-ray absorption and optical spectroscopy, we find that the shift of unoccupied t2g orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VO2 polymorphs. The distinct splitting of the half-filled t2g orbital is observed only in the M1 phase, widening the bandgap up to ∼0.6 eV. Our approach of comparing all three insulating VO2 phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO2.
Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.
2015-07-01
The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.
International Nuclear Information System (INIS)
Mishra, P; Lohani, H; Sekhar, B R; Kundu, A K; Menon, Krishnakumar S R; Patel, R; Solanki, G K
2015-01-01
The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ–Z, Γ–Y and Γ–T symmetry directions. The valence band maximum occurs nearly midway along the Γ–Z direction, at a binding energy of −0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4p z orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ–T direction. Detailed electronic structure analysis reveals the significance of the cation–anion 4p orbitals hybridization in the valence band dispersion of IV–VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis. (paper)
Electronic structure of p type Delta doped systems
International Nuclear Information System (INIS)
Gaggero S, L.M.; Perez A, R.
1998-01-01
We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)
Valence electronic structure of tantalum carbide and nitride
Institute of Scientific and Technical Information of China (English)
FAN; ChangZeng
2007-01-01
The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……
Valence electronic structure of tantalum carbide and nitride
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
@@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.
Study of polysilane mainchain electronic structure by picosecond pulse radiolysis
International Nuclear Information System (INIS)
Habara, H.; Saeki, A.; Kunimi, Y.; Seki, S.; Kozawa, T.; Yoshida, Y.; Tagawa, S.
2000-01-01
The electronic structure of a charged polysilane molecle is studied. The transient absorption spectroscopy was carried out for charged radicals of poly (methylphenylsilane): PMPS by pico-second and nanosecond pulse radiolysis technique. It was observed that the peak of the transient absorption spectra shifted to longer wavelength region within a few nsec, and an increase was observed in the optical density at 370 nm, which had been already assigned to the radical anions of PMPS. It is ascribed to inter-segment electron transfer (intra-molecular transfer) through polymer chain. The nanosecond pulse radiolysis experiments gave similar kinetic traces in near-UV and IR region. This suggests the presence of an interband level, that is, a polaron level occupied by an excess electron or a hole. (author)
Anomalous electronic structure and magnetoresistance in TaAs2.
Luo, Yongkang; McDonald, R D; Rosa, P F S; Scott, B; Wakeham, N; Ghimire, N J; Bauer, E D; Thompson, J D; Ronning, F
2016-06-07
The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.
Two-particle approach to the electronic structure of solids
International Nuclear Information System (INIS)
Gonis, A.
2007-01-01
Based on an extension of Hubbard's treatment of the electronic structure of correlated electrons in matter we propose a methodology that incorporates the scattering off the Coulomb interaction through the determination of a two-particle propagator. The Green function equations of motion are then used to obtain single-particle Green functions and related properties such as densities of states. The solutions of the equations of motion in two- and single-particle spaces are accomplished through applications of the coherent potential approximation. The formalism is illustrated by means of calculations for a single-band model system representing a linear arrangement of sites with nearest neighbor hopping and an one-site repulsion when two electrons of opposite spin occupy the same site in the lattice in the manner described by the so-called Hubbard Hamiltonian
Carbon nanotube on Si(001): structural and electronic properties
International Nuclear Information System (INIS)
Orellana, W.; Fazzio, A.; Miwa, R.W.
2003-01-01
Full text: The promising nanoscale technology based on carbon nanotubes has attracted much attention due to the unique electronic, chemical and mechanical properties of the nanotubes. Single-wall carbon nanotubes (SWCNs) provide an ideal atomically uniform one dimensional (1D) conductors, having a strong electronic confinement around its circumference, which can be retained up to room temperature[1]. This interesting property may lead one to consider SWCNs as 1D conductors for the development of nanoscale electronic devices. In this work the structural and electronic properties of the contact between a metallic (6,6) SWCN adsorbed on a silicon (001) surface are studied from first-principles total-energy calculations. We consider two adsorption sites for the tube on the Si(001) surface: on the top of the Si-dimer rows and on the surface 'trench' between two consecutive dimer rows. Our results show a chemical bond between the nanotube and Si(001) when the tube is located along the 'trench', which corresponds to the only bound structure. We find a binding energy per tube length of 0.21 eV/angstrom. We also verified that the binding energy depends on the rotation of the tube. Typically, a rotation of 15 deg can reduce the binding energy up to 0.07 eV/angstrom. Our calculated electronic properties indicate that the most stable structure shows a subband associated to the tube/surface bond that cross the Fermi level. This result indicates an enhanced metallic behavior along the tube/surface contact characterizing a 1D quantum wire. The charge transfer between the Si surface and the tube is also discussed. [1] Z. Yao, C. Dekker, and P. Avouris in Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris Eds., (Springer, Berlin 2001), p. 147. (author)
Fast electronic structure methods for strongly correlated molecular systems
International Nuclear Information System (INIS)
Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung
2005-01-01
A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given
Strongly correlated electron materials. I. Theory of the quasiparticle structure
International Nuclear Information System (INIS)
Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.
1993-01-01
In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity
Phase Diagram and Electronic Structure of Praseodymium and Plutonium
Directory of Open Access Journals (Sweden)
Nicola Lanatà
2015-01-01
Full Text Available We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.
Relationship between electronic structure and radioprotective activity of some indazoles
International Nuclear Information System (INIS)
Sokolov, Yu.A.
2000-01-01
The quantum-chemical study of electronic structure of 29 indasoles with complete optimization of geometry and search of quantitative link between the established characteristics and radioprotective activity (RPA) was carried out through the MNDO method with application of multiple linear and nonlinear regression analysis and the basic component method. The equations of correlation relationship between the RPA and electronic characteristics are presented. 10 indasole structures, the forecasted RPA values whereof (survival rate, %) equal 50% and above, are selected. The statistic significance of the obtained correlation equations and their regression coefficients make it possible to conclude, that the established relationships are not accidental and are prospective for forecasting RPA of other close compounds of the indasole series [ru
Electronic structure of C and Si fullerenes and fullerides
International Nuclear Information System (INIS)
Saito, S.
1996-01-01
Fullerenes, i.e., cage-structure clusters are now studied intensively as a building unit for a new class of materials. The electronic structure of C 60 and Si 20 fullerenes and their fullerides obtained in the framework of the density-functional theory is discussed with emphasis on the electronic as well as the geometrical hierarchy in superconducting fullerides. In both C 60 and Si 20 fullerides, the charge transfer from alkali atoms to fullerenes and the hybridization between alkaline-earth states and fullerene states are observed. Also A 3 C 60 and (Ba 3 Si 3 Na rate at Si 20 ) 2 superconductors are found to have high Fermi-level density of states, although the mechanism giving it is different in two materials. Interesting materials to be produced in the future are also discussed. (orig.)
International Nuclear Information System (INIS)
Zhang Man-Hong
2016-01-01
By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code. The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson’s algorithm, the one proposed by Eyert needs fewer total iteration numbers. (paper)
Schwingenschlögl, Udo
2009-12-01
Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare the generalized gradient approximation to the hybrid functional approach of exact exchange for correlated electrons (EECE). In contrast to the former, the latter reproduces the insulating state of the compound and the midgap states. The EECE approach, in general, appears to be appropriate for describing stripe phases in systems with orbital degrees of freedom. Copyright © EPLA, 2009.
Electronic structure and superconductivity of FeSe-related superconductors.
Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J
2015-05-13
FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.
Structural and electronic properties of hydrosilylated silicon surfaces
Energy Technology Data Exchange (ETDEWEB)
Baumer, A.
2005-11-15
The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)
Electronic structure of ternary hydrides based on light elements
Energy Technology Data Exchange (ETDEWEB)
Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)
2005-12-08
Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.
Final Technical Report: Electronic Structure Workshop (ES13)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shiwei [College of William and Mary, Williamsburg, VA (United States)
2015-02-26
The 25th Annual Workshop on Recent Developments in Electronic Structure Methods (ES2013) was successfully held at the College of William & Mary in Williamsburg VA on June 11-14, 2013. The workshop website is at http://es13.wm.edu/ , which contains updated information on the workshop and a permanent archive of the scientific contents. DOE's continued support has been instrumental to the success of the workshop.
Formalized Medical Guidelines and a Structured Electronic Health Record.
Czech Academy of Sciences Publication Activity Database
Peleška, Jan; Anger, Z.; Buchtela, David; Šebesta, K.; Tomečková, Marie; Veselý, Arnošt; Zvára, K.; Zvárová, Jana
2005-01-01
Roč. 11, - (2005), s. 4652-4656 ISSN 1727-1983. [EMBEC'05. European Medical and Biomedical Conference /3./. Prague, 20.11.2005-25.11.2005] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : formalization of guidelines in cardilogy * GLIF model * structure electronic health record * algorithm in cardiovascular diagnostics and treatment Subject RIV: BD - Theory of Information
Dissociative recombination of interstellar ions: electronic structure calculations for HCO+
International Nuclear Information System (INIS)
Kraemer, W.P.; Hazi, A.U.
1985-01-01
The present study of the interstellar formyl ion HCO + is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO + process. Similar calculations for the isoelectronic ions HOC + and HN 2 + are in progress. 60 refs
Strain-induced changes to the electronic structure of germanium
Tahini, H. A.
2012-04-17
Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.
Structured electron beams from nano-engineered cathodes
Energy Technology Data Exchange (ETDEWEB)
Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab
2017-03-07
The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.
Strain-induced changes to the electronic structure of germanium
Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas
2012-01-01
Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.
Atomic structures and electronic properties of phosphorene grain boundaries
International Nuclear Information System (INIS)
Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun; Zhang, Junfeng
2016-01-01
Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials. (paper)
Electronic shell structure and chemisorption on gold nanoparticles
DEFF Research Database (Denmark)
Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer
2011-01-01
to distort considerably, creating large band gaps at the Fermi level. For up to 200 atoms we consider structures generated with a simple EMT potential and clusters based on cuboctahedra and icosahedra. All types of cluster geometry exhibit jelliumlike electronic shell structure. We calculate adsorption...... energies of several atoms on the cuboctahedral clusters. Adsorption energies are found to vary abruptly at magic numbers. Using a Newns-Anderson model we find that the effect of magic numbers on adsorption energy can be understood from the location of adsorbate-induced states with respect to the cluster...
DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.
Wahiduzzaman, Mohammad; Oliveira, Augusto F; Philipsen, Pier; Zhechkov, Lyuben; van Lenthe, Erik; Witek, Henryk A; Heine, Thomas
2013-09-10
A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.
Highlighting material structure with transmission electron diffraction correlation coefficient maps
International Nuclear Information System (INIS)
Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.
2016-01-01
Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.
Thermorheological behavior and coupling problem of structural materials
International Nuclear Information System (INIS)
Bychawski, Z.
1975-01-01
The rheological behavior of structural materials is considerably stimulated in the presence of a temperature field. This influence is manifested by the changes in their thermodynamic characteristics. Two alternatives of substantial behavior are investigated. One is concerned with comparatively small influence of dissipative properties on the amount of internal energy while the other one related to the deformation state characterized by almost total dissipation process. The above problems mentioned are discussed in connection with the meaning of thermomechanical coupling. A double significance may be prescribed to the latter. One follows from the appearence of heat fluxes due to deformation changes and the other is concerned with total or specified responses of the material. The corresponding constitutive equation for the body considered is derived by using the generalized superposition principle. On the basis of the functional obtained the form of dissipative function is obtained. It follows directly from superposing energetic phenomena of dissipative character. As both the procedures are effected at the differential level, the resulting integral forms are obtained by assuming the integrability conditions to be valid. The results are discussed on the basis of premises which follow from the law of thermodynamics of irreversible processes. It is concluded that dissipative ability of the material may constitute a certain measure of its actual stability. In particular, the amount of dissipated energy may indicate the attainment of certain state of the material in question which should be considered as critical
Using Digital Mapping Tool in Ill-Structured Problem Solving
Bai, Hua
2013-01-01
Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…
Electronic structures near surfaces of perovskite type oxides
International Nuclear Information System (INIS)
Hara, Toru
2005-01-01
This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed
Transmission electron microscopy in molecular structural biology: A historical survey.
Harris, J Robin
2015-09-01
In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.
Direct electron crystallographic determination of zeolite zonal structures
International Nuclear Information System (INIS)
Dorset, Douglas L.; Gilmore, Christopher J.; Jorda, Jose Luis; Nicolopoulos, Stavros
2007-01-01
The prospect for improving the success of ab initio zeolite structure investigations with electron diffraction data is evaluated. First of all, the quality of intensities obtained by precession electron diffraction at small hollow cone illumination angles is evaluated for seven representative materials: ITQ-1, ITQ-7, ITQ-29, ZSM-5, ZSM-10, mordenite, and MCM-68. It is clear that, for most examples, an appreciable fraction of a secondary scattering perturbation is removed by precession at small angles. In one case, ZSM-10, it can also be argued that precession diffraction produces a dramatically improved 'kinematical' data set. There seems to no real support for application of a Lorentz correction to these data and there is no reason to expect for any of these samples that a two-beam dynamical scattering relationship between structure factor amplitude and observed intensity should be valid. Removal of secondary scattering by the precession mode appears to facilitate ab initio structure analysis. Most zeolite structures investigated could be solved by maximum entropy and likelihood phasing via error-correcting codes when precession data were used. Examples include the projected structure of mordenite that could not be determined from selected area data alone. One anomaly is the case of ZSM-5, where the best structure determination in projection is made from selected area diffraction data. In a control study, the zonal structure of SSZ-48 could be determined from selected area diffraction data by either maximum entropy and likelihood or traditional direct methods. While the maximum entropy and likelihood approach enjoys some advantages over traditional direct methods (non-dependence on predicted phase invariant sums), some effort must be made to improve the figures of merit used to identify potential structure solutions
Arias, E.; Florez, E.; Pérez-Torres, J. F.
2017-06-01
A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.
International Nuclear Information System (INIS)
Kulagin, N.
2005-01-01
Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f N and excited 5f N n'l' N' configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC +1 -AC +4 show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC +n :[L] k are compared, too
Ge, Xun; Law, Victor; Huang, Kun
2016-01-01
One of the goals for problem-based learning (PBL) is to promote self-regulation. Although self-regulation has been studied extensively, its interrelationships with ill-structured problem solving have been unclear. In order to clarify the interrelationships, this article proposes a conceptual framework illustrating the iterative processes among…
Wright, Adam; Bates, David W
2010-01-01
BACKGROUND: Many natural phenomena demonstrate power-law distributions, where very common items predominate. Problems, medications and lab results represent some of the most important data elements in medicine, but their overall distribution has not been reported. OBJECTIVE: Our objective is to determine whether problems, medications and lab results demonstrate a power law distribution. METHODS: Retrospective review of electronic medical record data for 100,000 randomly selected patients seen at least twice in 2006 and 2007 at the Brigham and Women's Hospital in Boston and its affiliated medical practices. RESULTS: All three data types exhibited a power law distribution. The 12.5% most frequently used problems account for 80% of all patient problems, the top 11.8% of medications account for 80% of all medication orders and the top 4.5% of lab result types account for all lab results. CONCLUSION: These three data elements exhibited power law distributions with a small number of common items representing a substantial proportion of all orders and observations, which has implications for electronic health record design.
Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker
We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.
The electron-electron instability in a spherical plasma structure with an intermediate double layer
International Nuclear Information System (INIS)
Lapuerta, V.; Ahedo, E.
2003-01-01
A linear dynamic model of a spherical plasma structure with an intermediate double layer is analyzed in the high-frequency range. The two ion populations tend to stay frozen in their stationary response and this prevents the displacement of the double layer. Different electron modes dominate the plasma dynamics in each quasineutral region. The electrostatic potential and the electron current are the magnitudes most perturbed. The structure develops a reactive electron-electron instability, which is made up of a countable family of eigenmodes. Space-charge effects must be included in the quasineutral regions to determine the eigenmode carrying the maximum growth rate. Except for very small Debye lengths, the fundamental eigenmode governs the instability. The growth rate for the higher harmonics approaches that of an infinite plasma. The instability modes develop mainly on the plasma at the high-potential side of the double layer. The influence of the parameters defining the stationary solution on the instability growth rate is investigated, and the parametric regions of stability are found. The comparison with a couple of experiments on plasma contactors is satisfactory
Electronic structure and electron-phonon coupling in layered copper oxide superconductors
International Nuclear Information System (INIS)
Pickett, W.E.; Cohen, R.E.; Krakauer, H.
1991-01-01
Experimental data on the layered Cu-O superconductors seem more and more to reflect normal Fermi-liquid behavior and substantial correspondence with band structure predictions. Recent self-consistent, microscopic band theoretic calculations of the electronic structure, lattice instabilities, phonon frequencies, and electron-phonon coupling characteristics and strength for La 2 CuO 4 and YBa 2 Cu 3 O 7 are reviewed. A dominant feature of the coupling is a novel Madelung-like contribution which would be screened out in high density of states superconductors but survives in cuprates because of weak screening. Local density functional theory correctly predicts the instability of (La, Ba) 2 CuO 4 to both the low-temperature orthorhombic phase (below room temperature) and the lower-temperature tetragonal phase (below 50 K). (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kohn, S.; Weare, J.; Ong, E.; Baden, S.
1997-05-01
We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.
Structural and electronic properties of La C[sub 82
Energy Technology Data Exchange (ETDEWEB)
Laasonen, K.; Andreoni, W.; Parrinello, M. (Zurich Research Lab., Rueschlikon (Switzerland))
1992-12-18
The structural and electronic properties of the La C[sub 82] fullerene have been investigated by means of the Car-Parrinello method, which is based on the local density approximation of the density functional theory. The topological arrangement of the C[sub 82] cage was assumed to be a C[sub 3v] symmetry isomer. Three configurations were considered, one with the lanthanum atom at the center of the cluster, one with it along the threefold axis, and one with it at a low-symmetry, highly coordinated site. The structure was fully relaxed and it was found that the last of these configurations is energetically preferred. In this position, the lanthanum atom is nearly in a La[sup 3+] state and the unpaired electron is somewhat delocalized on the cage, in agreement with available experimental data. This arrangement suggests that the chemical shifts of the 5s and 5p lanthanum states can be used as a structural probe and as a way of further validating this picture. It is argued that this conclusion is not affected by the assumed fullerene structure.
Valence band electronic structure of Pd based ternary chalcogenide superconductors
Energy Technology Data Exchange (ETDEWEB)
Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)
2016-12-15
Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.
Atomic and electronic structures of an extremely fragile liquid.
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-12-18
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.
International Nuclear Information System (INIS)
Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.
2005-01-01
An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions
Electronic structure of PPP@ZnO from all-electron quasiarticle calculations
Höffling, Benjamin; Nabok, Dimitri; Draxl, Claudia; Condensed Matter Theory Group, Humboldt University Berlin Team
We investigate the electronic properties of poly(para-phenylene) (PPP) adsorbed on the non-polar (001) surface of rocksalt (rs) ZnO using all-electron density functional theory (DFT) as well as quasiparticle (QP) calculations within the GW approach. A particular focus is put on the electronic band discontinuities at the interface, where we investigate the impact of quantum confinement, molecular polarization, and charge rearrangement. For our prototypical system, PPP@ZnO, we find a type-I heterostructure. Comparison of the band offsets derived from a QP-treatment of the hybrid system with predictions based on mesoscopic methods, like the Shockley-Anderson model or alignment via the electrostatic potential, reveals the inadequacy of these simple approaches for the prediction of the electronic structure of such inorganic/organic heterosystems. Finally, we explore the optical excitations of the interface compared to the features of the pristine components and discuss the methodological implications for the ab-initio treatment of interface electronics.
Structural and electronic properties of carbon nanotubes under hydrostatic pressures
International Nuclear Information System (INIS)
Zhang Ying; Cao Juexian; Yang Wei
2008-01-01
We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an sp 2 -to-sp 3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes
Geometric and electronic structures of small GaN clusters
Energy Technology Data Exchange (ETDEWEB)
Song Bin; Cao Peilin
2004-08-02
The geometric and electronic structures of Ga{sub x}N{sub y} (x+y{<=}8) clusters have been calculated using a full-potential linear-muffin-tin-orbital method, combined with molecular dynamics and simulated annealing techniques. It is found that the structures, binding energies and HOMO-LUMO gaps of these clusters strongly depend on their size and composition. The lowest energy structures of these clusters are obtained, and the trends in the geometries are discussed. The binding energy of the cluster increases as the size of cluster increases. N-rich cluster has larger binding energy than Ga-rich ones. The HOMO-LUMO gaps of these clusters are evaluated.
Energy Technology Data Exchange (ETDEWEB)
Zhou, X.J.
2010-04-30
In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not
International Nuclear Information System (INIS)
Zhou, X.J.
2010-01-01
In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible
Electronic Structure and Transport in Solids from First Principles
Mustafa, Jamal Ibrahim
The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations
Novel electronic structures of superlattice composed of graphene and silicene
International Nuclear Information System (INIS)
Yu, S.; Li, X.D.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z.
2014-01-01
Highlights: • Graphene/silicene superlattices exhibit metallic electronic properties. • Dirac point of graphene is folded to the Γ-point in the superlattice system. • Significant changes in the transport properties of the graphene layers are expected. • Small amount of charge transfer from the graphene to the silicene layers is found. - Abstract: Superlattice is a major force in providing man-made materials with unique properties. Here we report a study of the structural and electronic properties of a superlattice made with alternate stacking of graphene and hexagonal silicene. Three possible stacking models, i.e., the top-, bridge- and hollow-stacking, are considered. The top-stacking is found to be the most stable pattern. Although both the free-standing graphene and silicene are semi-metals, our results suggest that the graphene and silicene layers in the superlattice both exhibit metallic electronic properties due to a small amount of charge transfer from the graphene to the silicene layers. More importantly, the Dirac point of graphene is folded to the Γ-point of the superlattice, instead of the K-point in the isolated graphene. Such a change in the Dirac point of graphene could lead to significant change in the transportation property of the graphene layer. Moreover, the band structure and the charge transfer indicate that the interaction between the stacking sheets in the graphene/silicene superlattice is more than just the van der Waals interaction
Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope
Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter
2010-03-01
Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable
HREELS to identify electronic structures of organic thin films.
Oeter, D; Ziegler, C; Göpel, W
1995-10-01
The electronic structure of alpha-oligothiophene (alphanT) thin films has been investigated for increasing chain lengths of n= 4-8 thiophene units with high resolution electron energy loss spectroscopy (HREELS) in the specular reflection geometry at a primary energy of 15 eV. The great advantage of this technique in contrast to UV/VIS absorption spectroscopy results from the fact, that the impact scattering mechanism of HREELS makes it possible to also detect optically forbidden electronic transitions. On the other hand, the electrons used as probes in HREELS have a wavelength which is two orders of magnitudes smaller if compared to those of photons used in UV/VIS absorption spectroscopy. Therefore individual molecules are excited by HREELS independent from each other and hence the excitation of collective excitons is not possible. As a result, information about the orientation of the molecules cannot be achieved with HREELS, which, however, is possible in polarization-dependent UV/VIS spectroscopy.
Electronic structure and mechanical properties of plasma nitrided ferrous alloys
Energy Technology Data Exchange (ETDEWEB)
Portolan, E. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Baumvol, I.J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-970 (Brazil); Figueroa, C.A., E-mail: cafiguer@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil)
2009-04-15
The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p{sub 3/2} photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN{sub x}). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.
Electronic structure and mechanical properties of plasma nitrided ferrous alloys
Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.
2009-04-01
The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.
Electronic structure and mechanical properties of plasma nitrided ferrous alloys
International Nuclear Information System (INIS)
Portolan, E.; Baumvol, I.J.R.; Figueroa, C.A.
2009-01-01
The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x ). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.
Electron structure of amorphous semi-conductor states
International Nuclear Information System (INIS)
Wiid, D.H.; Lemmer, R.H.
1975-01-01
The electrical properties of amorphous materials are determined by their electron states. Since the electrons are much lighter than the massive ions, the energy levels of the electrons are extremely sensitive to changes in the states of the ions, e.g. a change in their positions. A method has been developed to approximate the positional disorder inthe crystal by a compositional disorder, i.e. the substitution, in a pure crystal, of ions by impurities. The advantage of this lies in the retention of the periodicity of the lattice. This model is linked with an investigation at present under way, in which the mobility, electrical resistance, etc. of a silicon crystal is determined as a function of its amorphous state. It is for instance possible to control the degree of disorder in the crystal, and the problem is to characterise the disorder by a specific parameter. For theoretical calculations such a parameter is essential and it is therefore also the biggest shortcoming in all the theories that, as far as is known, have been developed. It is possible to set up a general phenomenological theory for, for example, electrical resistance, but in view of its complex nature only rough approximations can be made [af
Design and fabrication of a continuous wave electron accelerating structure
International Nuclear Information System (INIS)
Takahashi, Jiro
1997-01-01
The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)
Structural phase transition and electronic properties in samarium chalcogenides
Energy Technology Data Exchange (ETDEWEB)
Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)
2016-05-06
The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.
On the Structure of the Fixed Charge Transportation Problem
Kowalski, K.
2005-01-01
This work extends the theory of the fixed charge transportation problem (FCTP), currently based mostly on a forty-year-old publication by Hirsch and Danzig. This paper presents novel properties that need to be considered by those using existing, or those developing new methods for optimizing FCTP. It also defines the problem in an easier way,…
Features for Exploiting Black-Box Optimization Problem Structure
DEFF Research Database (Denmark)
Tierney, Kevin; Malitsky, Yuri; Abell, Tinus
2013-01-01
landscape of BBO problems and show how an algorithm portfolio approach can exploit these general, problem indepen- dent features and outperform the utilization of any single minimization search strategy. We test our methodology on data from the GECCO Workshop on BBO Benchmarking 2012, which contains 21...
Electronic structure of benzene adsorbed on Ni and Cu surfaces
Energy Technology Data Exchange (ETDEWEB)
Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others
1997-04-01
Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.
Electronic structure classifications using scanning tunneling microscopy conductance imaging
International Nuclear Information System (INIS)
Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.
1998-01-01
The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics
Electronic structure of molecules using relativistic effective core potentials
International Nuclear Information System (INIS)
Hay, P.J.
1981-01-01
Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies
Development and application of advanced methods for electronic structure calculations
DEFF Research Database (Denmark)
Schmidt, Per Simmendefeldt
. For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...
Structural and electronic properties of GaAsBi
International Nuclear Information System (INIS)
Achour, H.; Louhibi, S.; Amrani, B.; Tebboune, A.; Sekkal, N.
2008-05-01
The structural and electronic properties of the GaAs 1-x Bi x ternary alloy are investigated by means of two first principles and full potential methods, the linear augmented plane waves (FPLAPW) method and a recent version of the full potential linear muffin-tin orbitals method (FPLMTO) which enables an accurate treatment of the interstitial regions. In particular, we have found that the maximal GaBi mole fraction x for which GaBixAs 1-x remains a semiconductor is probably around x = 0.5. The electronic properties of (GaAs) m /(GaBi) n quantum well superlattices (SLs) have also been calculated and it is found that such SLs are semiconductors when m is larger or equal to n. (author)
Protonated serotonin: Geometry, electronic structures and photophysical properties
Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan
2017-07-01
The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.
Electronic structure characterization and bandgap engineering of solar hydrogen materials
International Nuclear Information System (INIS)
Guo, Jinghua
2007-01-01
Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe 2 O 3 and ZnO
De Corte, E.; And Others
One important finding from recent research on multiplication word problems is that children's performances are strongly affected by the nature of the multiplier (whether it is an integer, decimal larger than 1 or a decimal smaller than 1). On the other hand, the size of the multiplicand has little or no effect on problem difficulty. The aim of the…
Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim
2017-12-01
This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.
Quantum Monte Carlo for electronic structure: Recent developments and applications
International Nuclear Information System (INIS)
Rodriguez, M.M.S.; Lawrence Berkeley Lab., CA
1995-04-01
Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function's nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2 H and C 2 H 2 . The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included
International Nuclear Information System (INIS)
Nascimento, M.A.C. do
1992-01-01
A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)
Electron microscope investigation into dislocation structure of cast aluminium alloys
International Nuclear Information System (INIS)
Zolotorevskij, V.S.; Orelkina, T.A.; Istomin-Kastrovskij, V.V.
1978-01-01
By applying the diffraction electron microscopy method, the general specific features of the disclocation structure of cast binary alloys of aluminium with different additions were established. It is shown that in most alloys, when they undergo cooling in the process of crystallization at the rate of about 850 deg/min, the cellular dislocation structure is formed. It is shown that in all the alloys studied, the total density of dislocations of one order is about-10 9 cm -2 , which exceeds by 1 to 2 orders of magnitude the value which follows from the Tiller theory of concentration stresses. It has been experimentally established that the contribution of shrinkage and thermal stresses to the formation of a dislocation structure is rather insignificant; yet the dislocation density values calculated according to the size of dendritic cells and the medium angles of their disorientation are close to those determined by the electron-microscopic method. This is the basis for making a supposition that the greater part of the dislocations in castings are formed as a result of comparing dendritic branches with one another, which are disoriented in respect to each other
Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy
Energy Technology Data Exchange (ETDEWEB)
Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.
2011-01-01
Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).
Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons
Energy Technology Data Exchange (ETDEWEB)
Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)
2015-08-07
We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.
Energy Technology Data Exchange (ETDEWEB)
Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)
2000-01-01
Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.
Structural studies of glasses by transmission electron microscopy and electron diffraction
International Nuclear Information System (INIS)
Kashchieva, E.P.
1997-01-01
The purpose of this work is to present information about the applications of transmission electron microscopy (TEM) and electron diffraction (ED) for structural investigations of glasses. TEM investigations have been carried out on some binary and on a large number of ternary borate-telluride systems where glass-forming oxides, oxides of transitional elements and modified oxides of elements from I, II and III groups in the periodic table, are used as third component. The large experimental data given by TEM method allows the fine classification of the micro-heterogeneities. A special case of micro-heterogeneous structure with technological origin occurs near the boundary between the 2 immiscible liquids obtained at macro-phase separation. TEM was also used for the direct observation of the glass structure and we have studied the nano-scale structure of borate glasses obtained at slow and fast cooling of the melts. The ED possesses advantages for analysis of amorphous thin films or micro-pastilles and it is a very useful technique for study in materials containing simultaneously light and heavy elements. A comparison between the possibilities of the 3 diffraction techniques (X-ray diffraction, neutron diffraction and ED) is presented
III - V semiconductor structures for biosensor and molecular electronics applications
Energy Technology Data Exchange (ETDEWEB)
Luber, S M
2007-01-15
The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a
III - V semiconductor structures for biosensor and molecular electronics applications
Energy Technology Data Exchange (ETDEWEB)
Luber, S.M.
2007-01-15
The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed
Electronic structure and magnetic properties of Pd sub(3)Fe
International Nuclear Information System (INIS)
Kuhnen, C.A.
1988-01-01
In this work we study the electronic and magnetic properties of the Pd sub(3)Fe alloy. For the ordered phase of Pd sub(3)Fe we employed the Linear Muffin-Tin Orbitals Method, with the atomic sphere approximation, which is a first principles method and includes spin polarization. The theoretical results for the thermal and magnetic properties show good agreement with experience. Here we explain the formation of the localized magnetic moments from completely itinerant electrons. We investigate the influence of the hydrogen in the physical properties of the compound Pd sub(3)Fe, where we obtain a drastic reduction in the magnetic moments at the Pd and Fe sites. This reduction is confirmed by experience. The self consistent potentials of the Pd sub(3)Fe compound were used for an analysis of the influence of the disorder in the electronic structure of Pd sub(3)Fe alloy. To this end, we employ a spin polarized version of the Green's Function Method with the Coherent Potential Approximation (or KKR-CPA). The results obtained show that in random ferromagnetic alloys different degrees of disorder occurs for the different spin directions. The formation of the magnetic moments in these alloys were explained from the existence of 'virtual crystal' states for spin up electrons and 'split band' states for spin down electrons. Finally we employ the muffin-tin orbitals to calculate the X-ray photoemission spectra of the Pd sub(3)Fe and Pd sub(3)FeH compounds, which allows us a direct comparison between theory and experiment. (author)
Electronic, structural, and optical properties of crystalline yttria
International Nuclear Information System (INIS)
Xu, Y.; Gu, Z.; Ching, W.Y.
1997-01-01
The electronic structure of crystalline Y 2 O 3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom- and orbital-resolved partial DOS, effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B ' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Γ is obtained which increases with pressure at a rate of dE g /dP=0.012eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y 2 O 3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of var-epsilon(0)=3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Γ between the top of the valence band and the bottom of the conduction band may be symmetry forbidden. copyright 1997 The American Physical Society
Pre-Service Elementary Teachers' Motivation and Ill-Structured Problem Solving in Korea
Kim, Min Kyeong; Cho, Mi Kyung
2016-01-01
This article examines the use and application of an ill-structured problem to pre-service elementary teachers in Korea in order to find implications of pre-service teacher education with regard to contextualized problem solving by analyzing experiences of ill-structured problem solving. Participants were divided into small groups depending on the…
Hong, Jee Yun; Kim, Min Kyeong
2016-01-01
Ill-structured problems can be regarded as one of the measures that meet recent social needs emphasizing students' abilities to solve real-life problems. This study aimed to analyze the mathematical abstraction process in solving such problems, and to identify the mathematical abstraction level ([I] Recognition of mathematical structure through…
Propagation of uncertainties in problems of structural reliability
International Nuclear Information System (INIS)
Mazumdar, M.; Marshall, J.A.; Chay, S.C.
1978-01-01
The problem of controlling a variable Y such that the probability of its exceeding a specified design limit L is very small, is treated. This variable is related to a set of random variables Xsub(i) by means of a known function Y=f(Xsub(i)). The following approximate methods are considered for estimating the propagation of error in the Xsub(i)'s through the function f(-): linearization; method of moments; Monte Carlo methods; numerical integration. Response surface and associated design of experiments problems as well as statistical inference problems are discussed. (Auth.)
Modern quantum chemistry introduction to advanced electronic structure theory
Szabo, Attila
1996-01-01
The aim of this graduate-level textbook is to present and explain, at other than a superficial level, modem ab initio approaches to the calculation of the electronic structure and properties of molecules. The first three chapters contain introductory material culminating in a thorough discussion of the Hartree-Fock approximation.The remaining four chapters describe a variety of more sophisticated approaches, which improve upon this approximation.Among the highlights of the seven chapters are (1) a review of the mathematics (mostly matrix algebra) required for the rest of the book, (2) an intr
Structural, electronic and optical properties of carbon nitride
Energy Technology Data Exchange (ETDEWEB)
Cohen, M L [California Univ., Berkeley (United States). Dept. of Physics
1996-05-01
Carbon nitride was proposed as a superhard material and a structural prototype, {beta}-C{sub 3}N{sub 4}, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that {beta}-C{sub 3}N{sub 4} will have a minimum gap which is indirect at 6.4{+-}0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented. (orig.)
Electronic structure and photoelectron spectra of boron beta-diketonates
International Nuclear Information System (INIS)
Borisenko, A.V.; Vovna, V.I.
1990-01-01
Photoelectron spectra and data of semiempirical (MNDO, CNDO/2, CNDO/S, INDO) and nonempirical (with STO-3G basis) methods of calculation were obtained to analyse the electronic structure of boron-containing diketonate cycle and the influence of substitution effect (aromatic substituents in particular) on it. The sequence and the character of upper occupied MO were determined; the nature of bond of the fragment X 2 B + and AA was established; charges of six-membered ion and influence of substituents on their values were determined. 13 refs.; 5 figs.; 4 tabs
8th international conference on electronic spectroscopy and structure
Energy Technology Data Exchange (ETDEWEB)
Robinson, Art
2000-10-16
Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.
Electronic band structure of magnetic bilayer graphene superlattices
International Nuclear Information System (INIS)
Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien
2014-01-01
Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.
Wavelets in self-consistent electronic structure calculations
International Nuclear Information System (INIS)
Wei, S.; Chou, M.Y.
1996-01-01
We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society
Self-consistent electronic-structure calculations for interface geometries
International Nuclear Information System (INIS)
Sowa, E.C.; Gonis, A.; MacLaren, J.M.; Zhang, X.G.
1992-01-01
This paper describes a technique for computing self-consistent electronic structures and total energies of planar defects, such as interfaces, which are embedded in an otherwise perfect crystal. As in the Layer Korringa-Kohn-Rostoker approach, the solid is treated as a set of coupled layers of atoms, using Bloch's theorem to take advantage of the two-dimensional periodicity of the individual layers. The layers are coupled using the techniques of the Real-Space Multiple-Scattering Theory, avoiding artificial slab or supercell boundary conditions. A total-energy calculation on a Cu crystal, which has been split apart at a (111) plane, is used to illustrate the method
Alloying effect on the electronic structures of hydrogen storage compounds
Energy Technology Data Exchange (ETDEWEB)
Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.
1997-05-20
The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.
STRUCTURE FOR SUB-ASSEMBLIES OF ELECTRONIC EQUIPMENT
Bell, P.R.; Harris, C.C.
1959-03-31
Sub-assemblies for electronic systems, particularly a unit which is self- contained and which may be adapted for quick application to and detachment from a chassis or panel, are discussed. The disclosed structure serves the dual purpose of a cover or enclosure for a subassembly comprising a base plate and also acts as a clamp for retaining the base plate in position on a chassis. The clamping action is provided by flexible fingers projecting from the side walls of the cover and extending through grooves in the base plate to engage with the opposite side of the chassis.
Design of Carborane Molecular Architectures via Electronic Structure Computations
International Nuclear Information System (INIS)
Oliva, J.M.; Serrano-Andres, L.; Klein, D.J.; Schleyer, P.V.R.; Mich, J.
2009-01-01
Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive design of poly carborane architectures through assembly of molecular units. Aspects considered were (i) the striking modification of geometrical parameters through substitution, (ii) endohedral carboranes and proposed ejection mechanisms for energy/ion/atom/energy storage/transport, (iii) the excited state character in single and dimeric molecular units, and (iv) higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within carborane superclusters is feasible in order to modernize and improve future photo energy processes.
Microstructural and electron-structural anomalies and high temperature superconductivity
International Nuclear Information System (INIS)
Gao, L.; Huang, Z.J.; Bechtold, J.; Hor, P.H.; Chu, C.W.; Xue, Y.Y.; Sun, Y.Y.; Meng, R.L.; Tao, Y.K.
1989-01-01
Microstructural and electron-structural anomalies have been found to exist in all HYSs by x-ray diffraction and positron annihilation experiments. These anomalies are induced either by doping near the metal-insulator phase boundary at 300 K, or by cooling the HTSs below T c . This has been taken as evidence for a charge transfer between the CuO 2 -layers and their surroundings, which suggests the importance of charge transfers and implies the importance of charge fluctuations in HTS. Several new compounds with the T'- and T*-phases have been found. Further implications of these observations are discussed
Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures
Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.
2014-01-01
Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.
The Role of Content Knowledge in Ill-Structured Problem Solving for High School Physics Students
Milbourne, Jeff; Wiebe, Eric
2018-01-01
While Physics Education Research has a rich tradition of problem-solving scholarship, most of the work has focused on more traditional, well-defined problems. Less work has been done with ill-structured problems, problems that are better aligned with the engineering and design-based scenarios promoted by the Next Generation Science Standards. This…
International Nuclear Information System (INIS)
Rosen, S.P.; Gelb, J.M.
1989-01-01
This paper considers the scattering of solar neutrinos by electrons as a means for distinguishing between different MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, some correlation between the value of R and each solution is found. A value of R ≤ 1/3 implies that the adiabatic solution is correct, while values between 1/3 and 3/5 are consistent with the large angle solution. A value close to 1/2 is also consistent with the non-adiabatic solution, and a value less than (1/6 - 1/7) implies oscillations into sterile neutrinos
International Nuclear Information System (INIS)
Gjoennes, J.K.; Olsen, A.
1985-08-01
The paper describes the reasearch activities and plans at the electron microscopy laboratorium, Physics Departmen, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods
Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment
Energy Technology Data Exchange (ETDEWEB)
Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard
2010-07-27
Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.
Electronic structure of CdTe using GGA+USIC
International Nuclear Information System (INIS)
Menéndez-Proupin, E.; Amézaga, A.; Cruz Hernández, N.
2014-01-01
A simple method to obtain a gap-corrected band structure of cadmium telluride within density functional theory is presented. On-site Coulomb self-interaction-like correction potential has been applied to the 5p-shell of Te and the 4d-shell of Cd. The predicted physical properties are similar to or better than those obtained with hybrid functionals and at largely reduced computational cost. In addition to the corrected electronic structure, the lattice parameters and the bulk modulus are improved. The relative stabilities of the different phases (zincblende, wurtzite, rocksalt and cinnabar) are preserved. The formation energy of the cadmium vacancy remains close to the values obtained from hybrid functional calculations
Electronic structure of Ag8GeS6
Directory of Open Access Journals (Sweden)
D.I. Bletskan
2017-04-01
Full Text Available For the first time, the energy band structure, total and partial densities of states of Ag8GeS6 crystal were calculated using the ab initio density functional method in LDA and LDA+U approximations. Argyrodite is direct-gap semiconductor with the calculated band gap width Egd = 1.46 eV in the LDA+U approximation. The valence band of argyrodite contains four energy separated groups of occupied subzones. The unique feature of electron-energy structure of Ag8GeS6 crystal is the energy overlapping between the occupied d-states of Ag atoms and the delocalized valence p-states of S atoms in relatively close proximity to the valence band top.
Radiological protection problems associated with parasitic X-ray emission from electronic products
International Nuclear Information System (INIS)
Amlinger, G.; Anger, K.; Billaudelle, H.; Ehlers, J.; Fendt, H.W.; Festag, J.G.; Haug, R.; Herrmann, K.H.; Klein, H.; Kossel, F.; Krebs, A.; Lauterbach, U.; Leibssle, H. Fa.; Lustig, H.; Maushart, R.; Milde, K.G.; Peter, F.; Ritter, J.; Riecke, W.D.; Rosenbaum, O.; Schiekel, M. Fa.; Schleich, F.; Schmidt, Th.; Speyer, K.; Teschke, L.; Tzschaschel, R.; Wagner, H.; Wehner, G.; Wendel, W.; Zehender, E.; Aiginoer, H.; Zakovsky, J.; Blom, G.; De backer, J.; Delhove, J.; Hublet, P.; Lejeune, P.; Misslin, A.; Nuyts, R.; Popovitch, I.; Hjardemaal, O.; Oehlenschlaeger, N.; Gonzalez Del Campo, R.; Becker, S.; Elder, R.L.; Matthews, J.D.; Sheldon, J.L.; Viitaniemi, T.J.; Aouizerate, H.; Aymeric, H.; Barthe, J.; Bermann, F.; Berthaud, Madeleine; Blanc, D.; Bory, P.; Bourrieau, J.; Bouville, A.; Bovagne, H.; Bresson, G.; Casanovas, J.; Cassanhiol, E.; Cassanhiol, E.; Chambragne, J.; Chanteur, J.; Choquet, R.; Cluchet, J.; Commanay, L.; Commanay, P.; Cros, J.L.; Dana, M.; Danna, J.; Decossas, J.L.; Delpla, M.; Destame, D.; Dieval, M.; Drouet, J.; Dubec, A.; Galy, J.; Garnier, A.; Gouerne, R.; Gras, M.; Grob, R.; Guelfucci, J.P.; Guevenoux, J.; Guichardiere, R.; Hamard, J.; Hardy, J.; Haym, J.P.; Hionette, J.; Jacob, G.; Lavie, J.M.; Levy, L.; Logre, P.; Manquene, J.; Martin, H.; Mathieu, J.; Odievre, Monique; Oustrin, J.; Palluel, P.; Patau, J.P.; Penotet, H.; Perrot, A.; Petel, M.; Peyrelavigne, A.; Peyrelavigne, Monique; Provincial, M.; Raedersdorff, J.; Renard, Cl.; Roche, L.; Roche, R.; Schaeffer, R.; Soubiran, J.; Soudain, G.; Stern, J.C.; Terrissol, M.; Tixier, M.; Vialettes, H.; Wauquier, J.M.; Casbolt, P.N.; Ciuciura, A.; Goodhew, E.G.; Jones, I.S.; O'riordan, M.C.; Speight, D.L.; Ward, P.R.; Williams, K.F.; Biro, T.; Vago, G.; Rosental, N.; Argiero, L.; Belli, M.; Boggio, M.; Carfi, N.; Garretti, S.; Loppa, A.; Parisi, A.; Susanna, A.; Ogawa, I.; Koren, K.; Aten, J.B.Th.; Barendsen, G.W.; Den Boer, A.M.; De Pijper, M.A.; Hekman, H.; Julius, H.W.; Strackee, L.; Van daatselaar, G.; Lorentzon, L.; Hadzi-Pealo, M.; Jeremio, M.; Stevanovio, Marija; Oosterkamp, W.J.; Shalmon, E.; Doyen, Diana; Goetschalkx, J.; Puel, R.
1971-03-01
During the past few decades there has been an increase in the production of many types of electronic devices such as rectifying tubes, thyratrons, klystrons, magnetrons, etc., containing elements capable of emitting undesirable X-radiation. These components are not only found in equipment used in industry and research laboratories, but also in devices of a more domestic nature, such as colour television sets, usually low in energy, this radiation may nevertheless constitute a health hazard for many users of such devices and may affect not only workers but even the population as a whole. The Commission of the European Communities (Euratom) felt it was desirable to review the state of the art with regard to problems of radiological protection arising in the manufacture, repair and use of such electronic equipment and to seek suitable technical and administrative solutions. In conjunction with the Centre Physique Atomique et Nucleaire of the Paul Sabatier University, the Commission held an International Symposium in Toulouse on 3-6 November 1970, which was attended by manufacturers of electronic equipment, officials of technical inspection bodies and representatives of public health and occupational safety authorities. The following items were discussed: classification and identification of sources of parasitic X-rays, methods of measuring soft X-rays, biological aspects of exposure to soft X-rays, performance standards and methods for testing and inspecting electronic equipment. The Symposium was followed attentively by 180 delegates from 21 countries and international organizations, and was concluded by a round table discussion at which the chairmen of the different sessions, assisted by experts, drew conclusions from their sessions and from the discussions, pointing up the problems which needed most urgently to be studied. This document contains the texts, in their original versions, of the papers presented at the meetings, together with the minutes of the
Energy Technology Data Exchange (ETDEWEB)
Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)
2014-01-17
Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.
Modifying the Electronic Properties of Nano-Structures Using Strain
International Nuclear Information System (INIS)
Lamba, V K; Engles, D
2012-01-01
We used density-functional theory based Non equilibrium green function simulations to study the effects of strain and quantum confinement on the electronic properties of Germanium and Silicon NWs along the [110] direction, such as the energy gap and the effective masses of the electron and hole. The diameters of the NWs being studied in a range of 3-20 Å. On basis of our calculation we conclude that the Ge [110] NWs possess a direct band gap, while Si [110] NWs possess indirect band gap at nanoscale. The band gap is almost a linear function of strain when the diameter of Ge NWs D 15 Å; and for Si it is linear in behaviour. On doping silicon wire we found that the bandgap shows parabolic behaviour for change in strain. We also concluded that the band gap and the effective masses of charge carries (i.e. electron and hole) changes by applying the strain to the NWs. Our results suggested that strain can be used to tune the band structures of NWs, which may help in de sign of future nanoelectronic devices.
Electronic structure and chemical bond of high Tc superconductors
International Nuclear Information System (INIS)
Gupta, R.P.
1988-01-01
Results of the band structure calculations for the compound Bi 2 Sr 2 CaCu 2 O 8 are discussed and compared to those obtained for YBa 2 Cu 3 O 7 . An analysis of the contribution of the densities of states at the different atomic sites shows that the states at the Fermi energy. E F , have a strong bidimensional character due to the CuO 2 planes. Moreover, for the bismuth compound, the contribution of the Bi-O planes at E F is substantial. The elements Y and Ba in YBa 2 Cu 3 O 7 , Ca and Sr in Bi 2 Sr 2 CaCu 2 O 8 act essentially as electron donors, the corresponding densities of states at E F are very small. An analysis of the electronic charge at the different atomic sites is presented. The respective roles of the CuO 2 planes. Cu-O chains and Bi-O planes on the electronic properties at the Fermi level are discussed [fr
Electronic structure and physicochemical properties of selected penicillins
Soriano-Correa, Catalina; Ruiz, Juan F. Sánchez; Raya, A.; Esquivel, Rodolfo O.
Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree-Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full ?-lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6? (in contrast with previous studies focused at the 3? substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the ?-lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules.
Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography.
Loss, Leandro A; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram
2012-10-01
Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides.
Electronic structure, optical spectra and contact terms of the CoF64- cluster in LiF
International Nuclear Information System (INIS)
Albuquerque, E.L.; Maffeo, B.; Brandi, H.S.; Siqueira, M.L. de
1975-01-01
The electronic structure, the optical absorption bands and the magnetic hyperfine contact terms have been calculated for CoF 6 4- in LiF using the Multiple Scattering Xα Method. The results obtained are compared with experiment and once more indicated that this scheme is convenient to treat such complex problems
DEFF Research Database (Denmark)
Enkovaara, J.; Rostgaard, Carsten; Mortensen, Jens Jørgen
2010-01-01
Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical...
Electronic structure imperfections and chemical bonding at graphene interfaces
Schultz, Brian Joseph
nanomaterial with lateral dimensions in the hundreds of microns if not larger, with a corresponding atomic vertical thickness poses significant difficulties. Graphene's unique structure is dominated by surface area or potentially hybridized interfaces; consequently, the true realization of this remarkable nanomaterial in device constructs relies on engineering graphene interfaces at the surface in order to controllably mold the electronic structure. Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy and the transmission mode analogue scanning transmission X-ray microscopy (STXM) are particularly useful tools to study the unoccupied states of graphene and graphene interfaces. In addition, polarized NEXAFS and STXM studies provide information on surface orientation, bond sterics, and the extent of substrate alignment before and after interfacial hybridization. The work presented in this dissertation is fundamentally informed by NEXAFS and STXM measurements on graphene/metal, graphene/dielectric, and graphene/organic interfaces. We start with a general review of the electronic structure of freestanding graphene and graphene interfaces in Chapter 1. In Chapter 2, we investigate freestanding single-layer graphene via STXM and NEXAFS demonstrating that electronic structure heterogeneities from synthesis and processing are ubiquitous in 2-dimensional graphene. We show the mapping of discrete charge transfer regions as a result of doped impurities that decorate the surfaces of graphene and that transfer processing imparts local electronic corrugations or ripples. In corroboration with density functional theory, definitive assignments to the spectral features, global steric orientations of the localized domains, and quantitative charge transfer schemes are evidenced. In the following chapters, we deliberately (Chapter 3) incorporate substitutional nitrogen into reduced graphene oxide to induce C--N charge redistribution and improve global conductivity, (Chapter 4
Electronic structure of single- and multiple-shell carbon fullerenes
International Nuclear Information System (INIS)
Lin, Y.; Nori, F.
1994-01-01
We study the electronic states of giant single-shell and the recently discovered nested multiple-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the π-state energy spectra of large fullerene cages: C 240 , C 540 , C 960 , C 1500 , C 2160 , and C 2940 . Our iteration technique reduces the size of the problem by more than one order of magnitude (factors of ∼12 and 20), while the symmetry-based approach reduces it by a factor of 10. We also find formulas for the highest occupied and lowest unoccupied molecular orbital energies of C 60n 2 fullerenes as a function of n, demonstrating a tendency towards a metallic regime for increasing n. For multiple-shell fullerenes, we analytically obtain the eigenvalues of the intershell interaction
Direct observations of the MOF (UiO-66) structure by transmission electron microscopy
Zhu, Liangkui; Zhang, Daliang; Xue, Ming; Li, Huan; Qiu, Shilun
2013-01-01
As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure
Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi
2017-07-18
The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can
Electronic properties of a new structured Sin/O superlattice
Directory of Open Access Journals (Sweden)
S. Yu
2016-11-01
Full Text Available Silicon is a material which dominants the semiconductor industry and has a well-established processing technology based on it. However, silicon has an indirect-bandgap and is not efficient in light emitting. This limits its applications in optoelectronics. In this paper, we proposed a new structural model for the silicon-based superlattice, i.e., the Sin/O one. The model consists of alternating films of n-layers of Si and a monolayer of oxygen along z-direction, together with a surface cell of Si(001 (2×1 reconstruction in the x-y plane. The importance of employing such a Si(001 (2×1 reconstruction is that all the electrons at interface can be strongly bonded. Our results showed interesting electronic properties, e.g., the band folding and large band gap of bulk Si, when the thickness of the silicon layers was increased (but still thin. Our structure might also offer other interesting properties.
Structural enzymology using X-ray free electron lasers
Directory of Open Access Journals (Sweden)
Christopher Kupitz
2017-07-01
Full Text Available Mix-and-inject serial crystallography (MISC is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i room temperature structures at near atomic resolution, (ii time resolution ranging from microseconds to seconds, and (iii convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.
Mechanical properties and electronic structures of Fe-Al intermetallic
Energy Technology Data Exchange (ETDEWEB)
Liu, YaHui; Chong, XiaoYu; Jiang, YeHua, E-mail: jiangyehua@kmust.edu.cn; Zhou, Rong; Feng, Jing, E-mail: jingfeng@kmust.edu.cn
2017-02-01
Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe{sub 3}Al, FeAl, FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe{sub 2}Al{sub 5} has the lowest formation enthalpy, which shows the Fe{sub 2}Al{sub 5} is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young’s modulus and anisotropic index. Fe{sub 3}Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong’s modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.
Organic/metal interfaces. Electronic and structural properties
Energy Technology Data Exchange (ETDEWEB)
Duhm, Steffen
2008-07-17
This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron acceptors, (iii) the role of thermodynamic equilibrium at organic/ organic homo-interfaces and (iv) the correlation of interfacial electronic structure and bonding distance. To address these issues a broad experimental approach was necessary: mainly ultraviolet photoelectron spectroscopy was used, supported by X-ray photoelectron spectroscopy, metastable atom electron spectroscopy, X-ray diffraction and X-ray standing waves, to examine vacuum sublimed thin films of conjugated organic molecules (COMs) in ultrahigh vacuum. (i) A novel approach is presented to explain the phenomenon that the ionization energy in molecular assemblies is orientation dependent. It is demonstrated that this is due to a macroscopic impact of intramolecular dipoles on the ionization energy in molecular assemblies. Furthermore, the correlation of molecular orientation and conformation has been studied in detail for COMs on various substrates. (ii) A new approach was developed to tune hole injection barriers ({delta}{sub h}) at organic/metal interfaces by adsorbing a (sub-) monolayer of an organic electron acceptor on the metal electrode. Charge transfer from the metal to the acceptor leads to a chemisorbed layer, which reduces {delta}{sub h} to the COM overlayer. This concept was tested with three acceptors and a lowering of {delta}{sub h} of up to 1.2 eV could be observed. (iii) A transition from vacuum-level alignment to molecular level pinning at the homo-interface between a lying monolayer and standing multilayers of a COM was observed, which depended on the amount of a pre-deposited acceptor. The